]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
cgroup: replace explicit ss_mask checking with for_each_subsys_which
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 rcu_lockdep_assert(rcu_read_lock_held() || \
111 lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /*
143 * The default hierarchy, reserved for the subsystems that are otherwise
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
146 */
147 struct cgroup_root cgrp_dfl_root;
148
149 /*
150 * The default hierarchy always exists but is hidden until mounted for the
151 * first time. This is for backward compatibility.
152 */
153 static bool cgrp_dfl_root_visible;
154
155 /*
156 * Set by the boot param of the same name and makes subsystems with NULL
157 * ->dfl_files to use ->legacy_files on the default hierarchy.
158 */
159 static bool cgroup_legacy_files_on_dfl;
160
161 /* some controllers are not supported in the default hierarchy */
162 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
163
164 /* The list of hierarchy roots */
165
166 static LIST_HEAD(cgroup_roots);
167 static int cgroup_root_count;
168
169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
170 static DEFINE_IDR(cgroup_hierarchy_idr);
171
172 /*
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
178 */
179 static u64 css_serial_nr_next = 1;
180
181 /*
182 * These bitmask flags indicate whether tasks in the fork and exit paths have
183 * fork/exit handlers to call. This avoids us having to do extra work in the
184 * fork/exit path to check which subsystems have fork/exit callbacks.
185 */
186 static unsigned long have_fork_callback __read_mostly;
187 static unsigned long have_exit_callback __read_mostly;
188
189 static struct cftype cgroup_dfl_base_files[];
190 static struct cftype cgroup_legacy_base_files[];
191
192 static int rebind_subsystems(struct cgroup_root *dst_root,
193 unsigned long ss_mask);
194 static int cgroup_destroy_locked(struct cgroup *cgrp);
195 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
196 bool visible);
197 static void css_release(struct percpu_ref *ref);
198 static void kill_css(struct cgroup_subsys_state *css);
199 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
200 bool is_add);
201
202 /* IDR wrappers which synchronize using cgroup_idr_lock */
203 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
204 gfp_t gfp_mask)
205 {
206 int ret;
207
208 idr_preload(gfp_mask);
209 spin_lock_bh(&cgroup_idr_lock);
210 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
211 spin_unlock_bh(&cgroup_idr_lock);
212 idr_preload_end();
213 return ret;
214 }
215
216 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
217 {
218 void *ret;
219
220 spin_lock_bh(&cgroup_idr_lock);
221 ret = idr_replace(idr, ptr, id);
222 spin_unlock_bh(&cgroup_idr_lock);
223 return ret;
224 }
225
226 static void cgroup_idr_remove(struct idr *idr, int id)
227 {
228 spin_lock_bh(&cgroup_idr_lock);
229 idr_remove(idr, id);
230 spin_unlock_bh(&cgroup_idr_lock);
231 }
232
233 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
234 {
235 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
236
237 if (parent_css)
238 return container_of(parent_css, struct cgroup, self);
239 return NULL;
240 }
241
242 /**
243 * cgroup_css - obtain a cgroup's css for the specified subsystem
244 * @cgrp: the cgroup of interest
245 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
246 *
247 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
248 * function must be called either under cgroup_mutex or rcu_read_lock() and
249 * the caller is responsible for pinning the returned css if it wants to
250 * keep accessing it outside the said locks. This function may return
251 * %NULL if @cgrp doesn't have @subsys_id enabled.
252 */
253 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
254 struct cgroup_subsys *ss)
255 {
256 if (ss)
257 return rcu_dereference_check(cgrp->subsys[ss->id],
258 lockdep_is_held(&cgroup_mutex));
259 else
260 return &cgrp->self;
261 }
262
263 /**
264 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
265 * @cgrp: the cgroup of interest
266 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
267 *
268 * Similar to cgroup_css() but returns the effective css, which is defined
269 * as the matching css of the nearest ancestor including self which has @ss
270 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
271 * function is guaranteed to return non-NULL css.
272 */
273 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
274 struct cgroup_subsys *ss)
275 {
276 lockdep_assert_held(&cgroup_mutex);
277
278 if (!ss)
279 return &cgrp->self;
280
281 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
282 return NULL;
283
284 /*
285 * This function is used while updating css associations and thus
286 * can't test the csses directly. Use ->child_subsys_mask.
287 */
288 while (cgroup_parent(cgrp) &&
289 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
290 cgrp = cgroup_parent(cgrp);
291
292 return cgroup_css(cgrp, ss);
293 }
294
295 /**
296 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
297 * @cgrp: the cgroup of interest
298 * @ss: the subsystem of interest
299 *
300 * Find and get the effective css of @cgrp for @ss. The effective css is
301 * defined as the matching css of the nearest ancestor including self which
302 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
303 * the root css is returned, so this function always returns a valid css.
304 * The returned css must be put using css_put().
305 */
306 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
307 struct cgroup_subsys *ss)
308 {
309 struct cgroup_subsys_state *css;
310
311 rcu_read_lock();
312
313 do {
314 css = cgroup_css(cgrp, ss);
315
316 if (css && css_tryget_online(css))
317 goto out_unlock;
318 cgrp = cgroup_parent(cgrp);
319 } while (cgrp);
320
321 css = init_css_set.subsys[ss->id];
322 css_get(css);
323 out_unlock:
324 rcu_read_unlock();
325 return css;
326 }
327
328 /* convenient tests for these bits */
329 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
330 {
331 return !(cgrp->self.flags & CSS_ONLINE);
332 }
333
334 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
335 {
336 struct cgroup *cgrp = of->kn->parent->priv;
337 struct cftype *cft = of_cft(of);
338
339 /*
340 * This is open and unprotected implementation of cgroup_css().
341 * seq_css() is only called from a kernfs file operation which has
342 * an active reference on the file. Because all the subsystem
343 * files are drained before a css is disassociated with a cgroup,
344 * the matching css from the cgroup's subsys table is guaranteed to
345 * be and stay valid until the enclosing operation is complete.
346 */
347 if (cft->ss)
348 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
349 else
350 return &cgrp->self;
351 }
352 EXPORT_SYMBOL_GPL(of_css);
353
354 /**
355 * cgroup_is_descendant - test ancestry
356 * @cgrp: the cgroup to be tested
357 * @ancestor: possible ancestor of @cgrp
358 *
359 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
360 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
361 * and @ancestor are accessible.
362 */
363 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
364 {
365 while (cgrp) {
366 if (cgrp == ancestor)
367 return true;
368 cgrp = cgroup_parent(cgrp);
369 }
370 return false;
371 }
372
373 static int notify_on_release(const struct cgroup *cgrp)
374 {
375 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
376 }
377
378 /**
379 * for_each_css - iterate all css's of a cgroup
380 * @css: the iteration cursor
381 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
382 * @cgrp: the target cgroup to iterate css's of
383 *
384 * Should be called under cgroup_[tree_]mutex.
385 */
386 #define for_each_css(css, ssid, cgrp) \
387 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
388 if (!((css) = rcu_dereference_check( \
389 (cgrp)->subsys[(ssid)], \
390 lockdep_is_held(&cgroup_mutex)))) { } \
391 else
392
393 /**
394 * for_each_e_css - iterate all effective css's of a cgroup
395 * @css: the iteration cursor
396 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
397 * @cgrp: the target cgroup to iterate css's of
398 *
399 * Should be called under cgroup_[tree_]mutex.
400 */
401 #define for_each_e_css(css, ssid, cgrp) \
402 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
403 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
404 ; \
405 else
406
407 /**
408 * for_each_subsys - iterate all enabled cgroup subsystems
409 * @ss: the iteration cursor
410 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
411 */
412 #define for_each_subsys(ss, ssid) \
413 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
414 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
415
416 /**
417 * for_each_subsys_which - filter for_each_subsys with a bitmask
418 * @ss: the iteration cursor
419 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
420 * @ss_maskp: a pointer to the bitmask
421 *
422 * The block will only run for cases where the ssid-th bit (1 << ssid) of
423 * mask is set to 1.
424 */
425 #define for_each_subsys_which(ss, ssid, ss_maskp) \
426 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
427 ; \
428 else \
429 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
430 if (((ss) = cgroup_subsys[ssid]) && false) \
431 break; \
432 else
433
434 /* iterate across the hierarchies */
435 #define for_each_root(root) \
436 list_for_each_entry((root), &cgroup_roots, root_list)
437
438 /* iterate over child cgrps, lock should be held throughout iteration */
439 #define cgroup_for_each_live_child(child, cgrp) \
440 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
441 if (({ lockdep_assert_held(&cgroup_mutex); \
442 cgroup_is_dead(child); })) \
443 ; \
444 else
445
446 static void cgroup_release_agent(struct work_struct *work);
447 static void check_for_release(struct cgroup *cgrp);
448
449 /*
450 * A cgroup can be associated with multiple css_sets as different tasks may
451 * belong to different cgroups on different hierarchies. In the other
452 * direction, a css_set is naturally associated with multiple cgroups.
453 * This M:N relationship is represented by the following link structure
454 * which exists for each association and allows traversing the associations
455 * from both sides.
456 */
457 struct cgrp_cset_link {
458 /* the cgroup and css_set this link associates */
459 struct cgroup *cgrp;
460 struct css_set *cset;
461
462 /* list of cgrp_cset_links anchored at cgrp->cset_links */
463 struct list_head cset_link;
464
465 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
466 struct list_head cgrp_link;
467 };
468
469 /*
470 * The default css_set - used by init and its children prior to any
471 * hierarchies being mounted. It contains a pointer to the root state
472 * for each subsystem. Also used to anchor the list of css_sets. Not
473 * reference-counted, to improve performance when child cgroups
474 * haven't been created.
475 */
476 struct css_set init_css_set = {
477 .refcount = ATOMIC_INIT(1),
478 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
479 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
480 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
481 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
482 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
483 };
484
485 static int css_set_count = 1; /* 1 for init_css_set */
486
487 /**
488 * cgroup_update_populated - updated populated count of a cgroup
489 * @cgrp: the target cgroup
490 * @populated: inc or dec populated count
491 *
492 * @cgrp is either getting the first task (css_set) or losing the last.
493 * Update @cgrp->populated_cnt accordingly. The count is propagated
494 * towards root so that a given cgroup's populated_cnt is zero iff the
495 * cgroup and all its descendants are empty.
496 *
497 * @cgrp's interface file "cgroup.populated" is zero if
498 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
499 * changes from or to zero, userland is notified that the content of the
500 * interface file has changed. This can be used to detect when @cgrp and
501 * its descendants become populated or empty.
502 */
503 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
504 {
505 lockdep_assert_held(&css_set_rwsem);
506
507 do {
508 bool trigger;
509
510 if (populated)
511 trigger = !cgrp->populated_cnt++;
512 else
513 trigger = !--cgrp->populated_cnt;
514
515 if (!trigger)
516 break;
517
518 if (cgrp->populated_kn)
519 kernfs_notify(cgrp->populated_kn);
520 cgrp = cgroup_parent(cgrp);
521 } while (cgrp);
522 }
523
524 /*
525 * hash table for cgroup groups. This improves the performance to find
526 * an existing css_set. This hash doesn't (currently) take into
527 * account cgroups in empty hierarchies.
528 */
529 #define CSS_SET_HASH_BITS 7
530 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
531
532 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
533 {
534 unsigned long key = 0UL;
535 struct cgroup_subsys *ss;
536 int i;
537
538 for_each_subsys(ss, i)
539 key += (unsigned long)css[i];
540 key = (key >> 16) ^ key;
541
542 return key;
543 }
544
545 static void put_css_set_locked(struct css_set *cset)
546 {
547 struct cgrp_cset_link *link, *tmp_link;
548 struct cgroup_subsys *ss;
549 int ssid;
550
551 lockdep_assert_held(&css_set_rwsem);
552
553 if (!atomic_dec_and_test(&cset->refcount))
554 return;
555
556 /* This css_set is dead. unlink it and release cgroup refcounts */
557 for_each_subsys(ss, ssid)
558 list_del(&cset->e_cset_node[ssid]);
559 hash_del(&cset->hlist);
560 css_set_count--;
561
562 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
563 struct cgroup *cgrp = link->cgrp;
564
565 list_del(&link->cset_link);
566 list_del(&link->cgrp_link);
567
568 /* @cgrp can't go away while we're holding css_set_rwsem */
569 if (list_empty(&cgrp->cset_links)) {
570 cgroup_update_populated(cgrp, false);
571 check_for_release(cgrp);
572 }
573
574 kfree(link);
575 }
576
577 kfree_rcu(cset, rcu_head);
578 }
579
580 static void put_css_set(struct css_set *cset)
581 {
582 /*
583 * Ensure that the refcount doesn't hit zero while any readers
584 * can see it. Similar to atomic_dec_and_lock(), but for an
585 * rwlock
586 */
587 if (atomic_add_unless(&cset->refcount, -1, 1))
588 return;
589
590 down_write(&css_set_rwsem);
591 put_css_set_locked(cset);
592 up_write(&css_set_rwsem);
593 }
594
595 /*
596 * refcounted get/put for css_set objects
597 */
598 static inline void get_css_set(struct css_set *cset)
599 {
600 atomic_inc(&cset->refcount);
601 }
602
603 /**
604 * compare_css_sets - helper function for find_existing_css_set().
605 * @cset: candidate css_set being tested
606 * @old_cset: existing css_set for a task
607 * @new_cgrp: cgroup that's being entered by the task
608 * @template: desired set of css pointers in css_set (pre-calculated)
609 *
610 * Returns true if "cset" matches "old_cset" except for the hierarchy
611 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
612 */
613 static bool compare_css_sets(struct css_set *cset,
614 struct css_set *old_cset,
615 struct cgroup *new_cgrp,
616 struct cgroup_subsys_state *template[])
617 {
618 struct list_head *l1, *l2;
619
620 /*
621 * On the default hierarchy, there can be csets which are
622 * associated with the same set of cgroups but different csses.
623 * Let's first ensure that csses match.
624 */
625 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
626 return false;
627
628 /*
629 * Compare cgroup pointers in order to distinguish between
630 * different cgroups in hierarchies. As different cgroups may
631 * share the same effective css, this comparison is always
632 * necessary.
633 */
634 l1 = &cset->cgrp_links;
635 l2 = &old_cset->cgrp_links;
636 while (1) {
637 struct cgrp_cset_link *link1, *link2;
638 struct cgroup *cgrp1, *cgrp2;
639
640 l1 = l1->next;
641 l2 = l2->next;
642 /* See if we reached the end - both lists are equal length. */
643 if (l1 == &cset->cgrp_links) {
644 BUG_ON(l2 != &old_cset->cgrp_links);
645 break;
646 } else {
647 BUG_ON(l2 == &old_cset->cgrp_links);
648 }
649 /* Locate the cgroups associated with these links. */
650 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
651 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
652 cgrp1 = link1->cgrp;
653 cgrp2 = link2->cgrp;
654 /* Hierarchies should be linked in the same order. */
655 BUG_ON(cgrp1->root != cgrp2->root);
656
657 /*
658 * If this hierarchy is the hierarchy of the cgroup
659 * that's changing, then we need to check that this
660 * css_set points to the new cgroup; if it's any other
661 * hierarchy, then this css_set should point to the
662 * same cgroup as the old css_set.
663 */
664 if (cgrp1->root == new_cgrp->root) {
665 if (cgrp1 != new_cgrp)
666 return false;
667 } else {
668 if (cgrp1 != cgrp2)
669 return false;
670 }
671 }
672 return true;
673 }
674
675 /**
676 * find_existing_css_set - init css array and find the matching css_set
677 * @old_cset: the css_set that we're using before the cgroup transition
678 * @cgrp: the cgroup that we're moving into
679 * @template: out param for the new set of csses, should be clear on entry
680 */
681 static struct css_set *find_existing_css_set(struct css_set *old_cset,
682 struct cgroup *cgrp,
683 struct cgroup_subsys_state *template[])
684 {
685 struct cgroup_root *root = cgrp->root;
686 struct cgroup_subsys *ss;
687 struct css_set *cset;
688 unsigned long key;
689 int i;
690
691 /*
692 * Build the set of subsystem state objects that we want to see in the
693 * new css_set. while subsystems can change globally, the entries here
694 * won't change, so no need for locking.
695 */
696 for_each_subsys(ss, i) {
697 if (root->subsys_mask & (1UL << i)) {
698 /*
699 * @ss is in this hierarchy, so we want the
700 * effective css from @cgrp.
701 */
702 template[i] = cgroup_e_css(cgrp, ss);
703 } else {
704 /*
705 * @ss is not in this hierarchy, so we don't want
706 * to change the css.
707 */
708 template[i] = old_cset->subsys[i];
709 }
710 }
711
712 key = css_set_hash(template);
713 hash_for_each_possible(css_set_table, cset, hlist, key) {
714 if (!compare_css_sets(cset, old_cset, cgrp, template))
715 continue;
716
717 /* This css_set matches what we need */
718 return cset;
719 }
720
721 /* No existing cgroup group matched */
722 return NULL;
723 }
724
725 static void free_cgrp_cset_links(struct list_head *links_to_free)
726 {
727 struct cgrp_cset_link *link, *tmp_link;
728
729 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
730 list_del(&link->cset_link);
731 kfree(link);
732 }
733 }
734
735 /**
736 * allocate_cgrp_cset_links - allocate cgrp_cset_links
737 * @count: the number of links to allocate
738 * @tmp_links: list_head the allocated links are put on
739 *
740 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
741 * through ->cset_link. Returns 0 on success or -errno.
742 */
743 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
744 {
745 struct cgrp_cset_link *link;
746 int i;
747
748 INIT_LIST_HEAD(tmp_links);
749
750 for (i = 0; i < count; i++) {
751 link = kzalloc(sizeof(*link), GFP_KERNEL);
752 if (!link) {
753 free_cgrp_cset_links(tmp_links);
754 return -ENOMEM;
755 }
756 list_add(&link->cset_link, tmp_links);
757 }
758 return 0;
759 }
760
761 /**
762 * link_css_set - a helper function to link a css_set to a cgroup
763 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
764 * @cset: the css_set to be linked
765 * @cgrp: the destination cgroup
766 */
767 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
768 struct cgroup *cgrp)
769 {
770 struct cgrp_cset_link *link;
771
772 BUG_ON(list_empty(tmp_links));
773
774 if (cgroup_on_dfl(cgrp))
775 cset->dfl_cgrp = cgrp;
776
777 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
778 link->cset = cset;
779 link->cgrp = cgrp;
780
781 if (list_empty(&cgrp->cset_links))
782 cgroup_update_populated(cgrp, true);
783 list_move(&link->cset_link, &cgrp->cset_links);
784
785 /*
786 * Always add links to the tail of the list so that the list
787 * is sorted by order of hierarchy creation
788 */
789 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
790 }
791
792 /**
793 * find_css_set - return a new css_set with one cgroup updated
794 * @old_cset: the baseline css_set
795 * @cgrp: the cgroup to be updated
796 *
797 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
798 * substituted into the appropriate hierarchy.
799 */
800 static struct css_set *find_css_set(struct css_set *old_cset,
801 struct cgroup *cgrp)
802 {
803 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
804 struct css_set *cset;
805 struct list_head tmp_links;
806 struct cgrp_cset_link *link;
807 struct cgroup_subsys *ss;
808 unsigned long key;
809 int ssid;
810
811 lockdep_assert_held(&cgroup_mutex);
812
813 /* First see if we already have a cgroup group that matches
814 * the desired set */
815 down_read(&css_set_rwsem);
816 cset = find_existing_css_set(old_cset, cgrp, template);
817 if (cset)
818 get_css_set(cset);
819 up_read(&css_set_rwsem);
820
821 if (cset)
822 return cset;
823
824 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
825 if (!cset)
826 return NULL;
827
828 /* Allocate all the cgrp_cset_link objects that we'll need */
829 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
830 kfree(cset);
831 return NULL;
832 }
833
834 atomic_set(&cset->refcount, 1);
835 INIT_LIST_HEAD(&cset->cgrp_links);
836 INIT_LIST_HEAD(&cset->tasks);
837 INIT_LIST_HEAD(&cset->mg_tasks);
838 INIT_LIST_HEAD(&cset->mg_preload_node);
839 INIT_LIST_HEAD(&cset->mg_node);
840 INIT_HLIST_NODE(&cset->hlist);
841
842 /* Copy the set of subsystem state objects generated in
843 * find_existing_css_set() */
844 memcpy(cset->subsys, template, sizeof(cset->subsys));
845
846 down_write(&css_set_rwsem);
847 /* Add reference counts and links from the new css_set. */
848 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
849 struct cgroup *c = link->cgrp;
850
851 if (c->root == cgrp->root)
852 c = cgrp;
853 link_css_set(&tmp_links, cset, c);
854 }
855
856 BUG_ON(!list_empty(&tmp_links));
857
858 css_set_count++;
859
860 /* Add @cset to the hash table */
861 key = css_set_hash(cset->subsys);
862 hash_add(css_set_table, &cset->hlist, key);
863
864 for_each_subsys(ss, ssid)
865 list_add_tail(&cset->e_cset_node[ssid],
866 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
867
868 up_write(&css_set_rwsem);
869
870 return cset;
871 }
872
873 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
874 {
875 struct cgroup *root_cgrp = kf_root->kn->priv;
876
877 return root_cgrp->root;
878 }
879
880 static int cgroup_init_root_id(struct cgroup_root *root)
881 {
882 int id;
883
884 lockdep_assert_held(&cgroup_mutex);
885
886 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
887 if (id < 0)
888 return id;
889
890 root->hierarchy_id = id;
891 return 0;
892 }
893
894 static void cgroup_exit_root_id(struct cgroup_root *root)
895 {
896 lockdep_assert_held(&cgroup_mutex);
897
898 if (root->hierarchy_id) {
899 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
900 root->hierarchy_id = 0;
901 }
902 }
903
904 static void cgroup_free_root(struct cgroup_root *root)
905 {
906 if (root) {
907 /* hierarchy ID should already have been released */
908 WARN_ON_ONCE(root->hierarchy_id);
909
910 idr_destroy(&root->cgroup_idr);
911 kfree(root);
912 }
913 }
914
915 static void cgroup_destroy_root(struct cgroup_root *root)
916 {
917 struct cgroup *cgrp = &root->cgrp;
918 struct cgrp_cset_link *link, *tmp_link;
919
920 mutex_lock(&cgroup_mutex);
921
922 BUG_ON(atomic_read(&root->nr_cgrps));
923 BUG_ON(!list_empty(&cgrp->self.children));
924
925 /* Rebind all subsystems back to the default hierarchy */
926 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
927
928 /*
929 * Release all the links from cset_links to this hierarchy's
930 * root cgroup
931 */
932 down_write(&css_set_rwsem);
933
934 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
935 list_del(&link->cset_link);
936 list_del(&link->cgrp_link);
937 kfree(link);
938 }
939 up_write(&css_set_rwsem);
940
941 if (!list_empty(&root->root_list)) {
942 list_del(&root->root_list);
943 cgroup_root_count--;
944 }
945
946 cgroup_exit_root_id(root);
947
948 mutex_unlock(&cgroup_mutex);
949
950 kernfs_destroy_root(root->kf_root);
951 cgroup_free_root(root);
952 }
953
954 /* look up cgroup associated with given css_set on the specified hierarchy */
955 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
956 struct cgroup_root *root)
957 {
958 struct cgroup *res = NULL;
959
960 lockdep_assert_held(&cgroup_mutex);
961 lockdep_assert_held(&css_set_rwsem);
962
963 if (cset == &init_css_set) {
964 res = &root->cgrp;
965 } else {
966 struct cgrp_cset_link *link;
967
968 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
969 struct cgroup *c = link->cgrp;
970
971 if (c->root == root) {
972 res = c;
973 break;
974 }
975 }
976 }
977
978 BUG_ON(!res);
979 return res;
980 }
981
982 /*
983 * Return the cgroup for "task" from the given hierarchy. Must be
984 * called with cgroup_mutex and css_set_rwsem held.
985 */
986 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
987 struct cgroup_root *root)
988 {
989 /*
990 * No need to lock the task - since we hold cgroup_mutex the
991 * task can't change groups, so the only thing that can happen
992 * is that it exits and its css is set back to init_css_set.
993 */
994 return cset_cgroup_from_root(task_css_set(task), root);
995 }
996
997 /*
998 * A task must hold cgroup_mutex to modify cgroups.
999 *
1000 * Any task can increment and decrement the count field without lock.
1001 * So in general, code holding cgroup_mutex can't rely on the count
1002 * field not changing. However, if the count goes to zero, then only
1003 * cgroup_attach_task() can increment it again. Because a count of zero
1004 * means that no tasks are currently attached, therefore there is no
1005 * way a task attached to that cgroup can fork (the other way to
1006 * increment the count). So code holding cgroup_mutex can safely
1007 * assume that if the count is zero, it will stay zero. Similarly, if
1008 * a task holds cgroup_mutex on a cgroup with zero count, it
1009 * knows that the cgroup won't be removed, as cgroup_rmdir()
1010 * needs that mutex.
1011 *
1012 * A cgroup can only be deleted if both its 'count' of using tasks
1013 * is zero, and its list of 'children' cgroups is empty. Since all
1014 * tasks in the system use _some_ cgroup, and since there is always at
1015 * least one task in the system (init, pid == 1), therefore, root cgroup
1016 * always has either children cgroups and/or using tasks. So we don't
1017 * need a special hack to ensure that root cgroup cannot be deleted.
1018 *
1019 * P.S. One more locking exception. RCU is used to guard the
1020 * update of a tasks cgroup pointer by cgroup_attach_task()
1021 */
1022
1023 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
1024 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1025 static const struct file_operations proc_cgroupstats_operations;
1026
1027 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1028 char *buf)
1029 {
1030 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1031 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1032 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1033 cft->ss->name, cft->name);
1034 else
1035 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1036 return buf;
1037 }
1038
1039 /**
1040 * cgroup_file_mode - deduce file mode of a control file
1041 * @cft: the control file in question
1042 *
1043 * returns cft->mode if ->mode is not 0
1044 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1045 * returns S_IRUGO if it has only a read handler
1046 * returns S_IWUSR if it has only a write hander
1047 */
1048 static umode_t cgroup_file_mode(const struct cftype *cft)
1049 {
1050 umode_t mode = 0;
1051
1052 if (cft->mode)
1053 return cft->mode;
1054
1055 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1056 mode |= S_IRUGO;
1057
1058 if (cft->write_u64 || cft->write_s64 || cft->write)
1059 mode |= S_IWUSR;
1060
1061 return mode;
1062 }
1063
1064 static void cgroup_get(struct cgroup *cgrp)
1065 {
1066 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1067 css_get(&cgrp->self);
1068 }
1069
1070 static bool cgroup_tryget(struct cgroup *cgrp)
1071 {
1072 return css_tryget(&cgrp->self);
1073 }
1074
1075 static void cgroup_put(struct cgroup *cgrp)
1076 {
1077 css_put(&cgrp->self);
1078 }
1079
1080 /**
1081 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1082 * @cgrp: the target cgroup
1083 * @subtree_control: the new subtree_control mask to consider
1084 *
1085 * On the default hierarchy, a subsystem may request other subsystems to be
1086 * enabled together through its ->depends_on mask. In such cases, more
1087 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1088 *
1089 * This function calculates which subsystems need to be enabled if
1090 * @subtree_control is to be applied to @cgrp. The returned mask is always
1091 * a superset of @subtree_control and follows the usual hierarchy rules.
1092 */
1093 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1094 unsigned long subtree_control)
1095 {
1096 struct cgroup *parent = cgroup_parent(cgrp);
1097 unsigned long cur_ss_mask = subtree_control;
1098 struct cgroup_subsys *ss;
1099 int ssid;
1100
1101 lockdep_assert_held(&cgroup_mutex);
1102
1103 if (!cgroup_on_dfl(cgrp))
1104 return cur_ss_mask;
1105
1106 while (true) {
1107 unsigned long new_ss_mask = cur_ss_mask;
1108
1109 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1110 new_ss_mask |= ss->depends_on;
1111
1112 /*
1113 * Mask out subsystems which aren't available. This can
1114 * happen only if some depended-upon subsystems were bound
1115 * to non-default hierarchies.
1116 */
1117 if (parent)
1118 new_ss_mask &= parent->child_subsys_mask;
1119 else
1120 new_ss_mask &= cgrp->root->subsys_mask;
1121
1122 if (new_ss_mask == cur_ss_mask)
1123 break;
1124 cur_ss_mask = new_ss_mask;
1125 }
1126
1127 return cur_ss_mask;
1128 }
1129
1130 /**
1131 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1132 * @cgrp: the target cgroup
1133 *
1134 * Update @cgrp->child_subsys_mask according to the current
1135 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1136 */
1137 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1138 {
1139 cgrp->child_subsys_mask =
1140 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1141 }
1142
1143 /**
1144 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1145 * @kn: the kernfs_node being serviced
1146 *
1147 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1148 * the method finishes if locking succeeded. Note that once this function
1149 * returns the cgroup returned by cgroup_kn_lock_live() may become
1150 * inaccessible any time. If the caller intends to continue to access the
1151 * cgroup, it should pin it before invoking this function.
1152 */
1153 static void cgroup_kn_unlock(struct kernfs_node *kn)
1154 {
1155 struct cgroup *cgrp;
1156
1157 if (kernfs_type(kn) == KERNFS_DIR)
1158 cgrp = kn->priv;
1159 else
1160 cgrp = kn->parent->priv;
1161
1162 mutex_unlock(&cgroup_mutex);
1163
1164 kernfs_unbreak_active_protection(kn);
1165 cgroup_put(cgrp);
1166 }
1167
1168 /**
1169 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1170 * @kn: the kernfs_node being serviced
1171 *
1172 * This helper is to be used by a cgroup kernfs method currently servicing
1173 * @kn. It breaks the active protection, performs cgroup locking and
1174 * verifies that the associated cgroup is alive. Returns the cgroup if
1175 * alive; otherwise, %NULL. A successful return should be undone by a
1176 * matching cgroup_kn_unlock() invocation.
1177 *
1178 * Any cgroup kernfs method implementation which requires locking the
1179 * associated cgroup should use this helper. It avoids nesting cgroup
1180 * locking under kernfs active protection and allows all kernfs operations
1181 * including self-removal.
1182 */
1183 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1184 {
1185 struct cgroup *cgrp;
1186
1187 if (kernfs_type(kn) == KERNFS_DIR)
1188 cgrp = kn->priv;
1189 else
1190 cgrp = kn->parent->priv;
1191
1192 /*
1193 * We're gonna grab cgroup_mutex which nests outside kernfs
1194 * active_ref. cgroup liveliness check alone provides enough
1195 * protection against removal. Ensure @cgrp stays accessible and
1196 * break the active_ref protection.
1197 */
1198 if (!cgroup_tryget(cgrp))
1199 return NULL;
1200 kernfs_break_active_protection(kn);
1201
1202 mutex_lock(&cgroup_mutex);
1203
1204 if (!cgroup_is_dead(cgrp))
1205 return cgrp;
1206
1207 cgroup_kn_unlock(kn);
1208 return NULL;
1209 }
1210
1211 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1212 {
1213 char name[CGROUP_FILE_NAME_MAX];
1214
1215 lockdep_assert_held(&cgroup_mutex);
1216 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1217 }
1218
1219 /**
1220 * cgroup_clear_dir - remove subsys files in a cgroup directory
1221 * @cgrp: target cgroup
1222 * @subsys_mask: mask of the subsystem ids whose files should be removed
1223 */
1224 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1225 {
1226 struct cgroup_subsys *ss;
1227 int i;
1228
1229 for_each_subsys(ss, i) {
1230 struct cftype *cfts;
1231
1232 if (!(subsys_mask & (1 << i)))
1233 continue;
1234 list_for_each_entry(cfts, &ss->cfts, node)
1235 cgroup_addrm_files(cgrp, cfts, false);
1236 }
1237 }
1238
1239 static int rebind_subsystems(struct cgroup_root *dst_root,
1240 unsigned long ss_mask)
1241 {
1242 struct cgroup_subsys *ss;
1243 unsigned long tmp_ss_mask;
1244 int ssid, i, ret;
1245
1246 lockdep_assert_held(&cgroup_mutex);
1247
1248 for_each_subsys_which(ss, ssid, &ss_mask) {
1249 /* if @ss has non-root csses attached to it, can't move */
1250 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1251 return -EBUSY;
1252
1253 /* can't move between two non-dummy roots either */
1254 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1255 return -EBUSY;
1256 }
1257
1258 /* skip creating root files on dfl_root for inhibited subsystems */
1259 tmp_ss_mask = ss_mask;
1260 if (dst_root == &cgrp_dfl_root)
1261 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1262
1263 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1264 if (ret) {
1265 if (dst_root != &cgrp_dfl_root)
1266 return ret;
1267
1268 /*
1269 * Rebinding back to the default root is not allowed to
1270 * fail. Using both default and non-default roots should
1271 * be rare. Moving subsystems back and forth even more so.
1272 * Just warn about it and continue.
1273 */
1274 if (cgrp_dfl_root_visible) {
1275 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1276 ret, ss_mask);
1277 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1278 }
1279 }
1280
1281 /*
1282 * Nothing can fail from this point on. Remove files for the
1283 * removed subsystems and rebind each subsystem.
1284 */
1285 for_each_subsys_which(ss, ssid, &ss_mask)
1286 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1287
1288 for_each_subsys_which(ss, ssid, &ss_mask) {
1289 struct cgroup_root *src_root;
1290 struct cgroup_subsys_state *css;
1291 struct css_set *cset;
1292
1293 src_root = ss->root;
1294 css = cgroup_css(&src_root->cgrp, ss);
1295
1296 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1297
1298 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1299 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1300 ss->root = dst_root;
1301 css->cgroup = &dst_root->cgrp;
1302
1303 down_write(&css_set_rwsem);
1304 hash_for_each(css_set_table, i, cset, hlist)
1305 list_move_tail(&cset->e_cset_node[ss->id],
1306 &dst_root->cgrp.e_csets[ss->id]);
1307 up_write(&css_set_rwsem);
1308
1309 src_root->subsys_mask &= ~(1 << ssid);
1310 src_root->cgrp.subtree_control &= ~(1 << ssid);
1311 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1312
1313 /* default hierarchy doesn't enable controllers by default */
1314 dst_root->subsys_mask |= 1 << ssid;
1315 if (dst_root != &cgrp_dfl_root) {
1316 dst_root->cgrp.subtree_control |= 1 << ssid;
1317 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1318 }
1319
1320 if (ss->bind)
1321 ss->bind(css);
1322 }
1323
1324 kernfs_activate(dst_root->cgrp.kn);
1325 return 0;
1326 }
1327
1328 static int cgroup_show_options(struct seq_file *seq,
1329 struct kernfs_root *kf_root)
1330 {
1331 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1332 struct cgroup_subsys *ss;
1333 int ssid;
1334
1335 for_each_subsys(ss, ssid)
1336 if (root->subsys_mask & (1 << ssid))
1337 seq_printf(seq, ",%s", ss->name);
1338 if (root->flags & CGRP_ROOT_NOPREFIX)
1339 seq_puts(seq, ",noprefix");
1340 if (root->flags & CGRP_ROOT_XATTR)
1341 seq_puts(seq, ",xattr");
1342
1343 spin_lock(&release_agent_path_lock);
1344 if (strlen(root->release_agent_path))
1345 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1346 spin_unlock(&release_agent_path_lock);
1347
1348 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1349 seq_puts(seq, ",clone_children");
1350 if (strlen(root->name))
1351 seq_printf(seq, ",name=%s", root->name);
1352 return 0;
1353 }
1354
1355 struct cgroup_sb_opts {
1356 unsigned long subsys_mask;
1357 unsigned int flags;
1358 char *release_agent;
1359 bool cpuset_clone_children;
1360 char *name;
1361 /* User explicitly requested empty subsystem */
1362 bool none;
1363 };
1364
1365 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1366 {
1367 char *token, *o = data;
1368 bool all_ss = false, one_ss = false;
1369 unsigned long mask = -1UL;
1370 struct cgroup_subsys *ss;
1371 int nr_opts = 0;
1372 int i;
1373
1374 #ifdef CONFIG_CPUSETS
1375 mask = ~(1U << cpuset_cgrp_id);
1376 #endif
1377
1378 memset(opts, 0, sizeof(*opts));
1379
1380 while ((token = strsep(&o, ",")) != NULL) {
1381 nr_opts++;
1382
1383 if (!*token)
1384 return -EINVAL;
1385 if (!strcmp(token, "none")) {
1386 /* Explicitly have no subsystems */
1387 opts->none = true;
1388 continue;
1389 }
1390 if (!strcmp(token, "all")) {
1391 /* Mutually exclusive option 'all' + subsystem name */
1392 if (one_ss)
1393 return -EINVAL;
1394 all_ss = true;
1395 continue;
1396 }
1397 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1398 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1399 continue;
1400 }
1401 if (!strcmp(token, "noprefix")) {
1402 opts->flags |= CGRP_ROOT_NOPREFIX;
1403 continue;
1404 }
1405 if (!strcmp(token, "clone_children")) {
1406 opts->cpuset_clone_children = true;
1407 continue;
1408 }
1409 if (!strcmp(token, "xattr")) {
1410 opts->flags |= CGRP_ROOT_XATTR;
1411 continue;
1412 }
1413 if (!strncmp(token, "release_agent=", 14)) {
1414 /* Specifying two release agents is forbidden */
1415 if (opts->release_agent)
1416 return -EINVAL;
1417 opts->release_agent =
1418 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1419 if (!opts->release_agent)
1420 return -ENOMEM;
1421 continue;
1422 }
1423 if (!strncmp(token, "name=", 5)) {
1424 const char *name = token + 5;
1425 /* Can't specify an empty name */
1426 if (!strlen(name))
1427 return -EINVAL;
1428 /* Must match [\w.-]+ */
1429 for (i = 0; i < strlen(name); i++) {
1430 char c = name[i];
1431 if (isalnum(c))
1432 continue;
1433 if ((c == '.') || (c == '-') || (c == '_'))
1434 continue;
1435 return -EINVAL;
1436 }
1437 /* Specifying two names is forbidden */
1438 if (opts->name)
1439 return -EINVAL;
1440 opts->name = kstrndup(name,
1441 MAX_CGROUP_ROOT_NAMELEN - 1,
1442 GFP_KERNEL);
1443 if (!opts->name)
1444 return -ENOMEM;
1445
1446 continue;
1447 }
1448
1449 for_each_subsys(ss, i) {
1450 if (strcmp(token, ss->name))
1451 continue;
1452 if (ss->disabled)
1453 continue;
1454
1455 /* Mutually exclusive option 'all' + subsystem name */
1456 if (all_ss)
1457 return -EINVAL;
1458 opts->subsys_mask |= (1 << i);
1459 one_ss = true;
1460
1461 break;
1462 }
1463 if (i == CGROUP_SUBSYS_COUNT)
1464 return -ENOENT;
1465 }
1466
1467 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1468 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1469 if (nr_opts != 1) {
1470 pr_err("sane_behavior: no other mount options allowed\n");
1471 return -EINVAL;
1472 }
1473 return 0;
1474 }
1475
1476 /*
1477 * If the 'all' option was specified select all the subsystems,
1478 * otherwise if 'none', 'name=' and a subsystem name options were
1479 * not specified, let's default to 'all'
1480 */
1481 if (all_ss || (!one_ss && !opts->none && !opts->name))
1482 for_each_subsys(ss, i)
1483 if (!ss->disabled)
1484 opts->subsys_mask |= (1 << i);
1485
1486 /*
1487 * We either have to specify by name or by subsystems. (So all
1488 * empty hierarchies must have a name).
1489 */
1490 if (!opts->subsys_mask && !opts->name)
1491 return -EINVAL;
1492
1493 /*
1494 * Option noprefix was introduced just for backward compatibility
1495 * with the old cpuset, so we allow noprefix only if mounting just
1496 * the cpuset subsystem.
1497 */
1498 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1499 return -EINVAL;
1500
1501 /* Can't specify "none" and some subsystems */
1502 if (opts->subsys_mask && opts->none)
1503 return -EINVAL;
1504
1505 return 0;
1506 }
1507
1508 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1509 {
1510 int ret = 0;
1511 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1512 struct cgroup_sb_opts opts;
1513 unsigned long added_mask, removed_mask;
1514
1515 if (root == &cgrp_dfl_root) {
1516 pr_err("remount is not allowed\n");
1517 return -EINVAL;
1518 }
1519
1520 mutex_lock(&cgroup_mutex);
1521
1522 /* See what subsystems are wanted */
1523 ret = parse_cgroupfs_options(data, &opts);
1524 if (ret)
1525 goto out_unlock;
1526
1527 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1528 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1529 task_tgid_nr(current), current->comm);
1530
1531 added_mask = opts.subsys_mask & ~root->subsys_mask;
1532 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1533
1534 /* Don't allow flags or name to change at remount */
1535 if ((opts.flags ^ root->flags) ||
1536 (opts.name && strcmp(opts.name, root->name))) {
1537 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1538 opts.flags, opts.name ?: "", root->flags, root->name);
1539 ret = -EINVAL;
1540 goto out_unlock;
1541 }
1542
1543 /* remounting is not allowed for populated hierarchies */
1544 if (!list_empty(&root->cgrp.self.children)) {
1545 ret = -EBUSY;
1546 goto out_unlock;
1547 }
1548
1549 ret = rebind_subsystems(root, added_mask);
1550 if (ret)
1551 goto out_unlock;
1552
1553 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1554
1555 if (opts.release_agent) {
1556 spin_lock(&release_agent_path_lock);
1557 strcpy(root->release_agent_path, opts.release_agent);
1558 spin_unlock(&release_agent_path_lock);
1559 }
1560 out_unlock:
1561 kfree(opts.release_agent);
1562 kfree(opts.name);
1563 mutex_unlock(&cgroup_mutex);
1564 return ret;
1565 }
1566
1567 /*
1568 * To reduce the fork() overhead for systems that are not actually using
1569 * their cgroups capability, we don't maintain the lists running through
1570 * each css_set to its tasks until we see the list actually used - in other
1571 * words after the first mount.
1572 */
1573 static bool use_task_css_set_links __read_mostly;
1574
1575 static void cgroup_enable_task_cg_lists(void)
1576 {
1577 struct task_struct *p, *g;
1578
1579 down_write(&css_set_rwsem);
1580
1581 if (use_task_css_set_links)
1582 goto out_unlock;
1583
1584 use_task_css_set_links = true;
1585
1586 /*
1587 * We need tasklist_lock because RCU is not safe against
1588 * while_each_thread(). Besides, a forking task that has passed
1589 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1590 * is not guaranteed to have its child immediately visible in the
1591 * tasklist if we walk through it with RCU.
1592 */
1593 read_lock(&tasklist_lock);
1594 do_each_thread(g, p) {
1595 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1596 task_css_set(p) != &init_css_set);
1597
1598 /*
1599 * We should check if the process is exiting, otherwise
1600 * it will race with cgroup_exit() in that the list
1601 * entry won't be deleted though the process has exited.
1602 * Do it while holding siglock so that we don't end up
1603 * racing against cgroup_exit().
1604 */
1605 spin_lock_irq(&p->sighand->siglock);
1606 if (!(p->flags & PF_EXITING)) {
1607 struct css_set *cset = task_css_set(p);
1608
1609 list_add(&p->cg_list, &cset->tasks);
1610 get_css_set(cset);
1611 }
1612 spin_unlock_irq(&p->sighand->siglock);
1613 } while_each_thread(g, p);
1614 read_unlock(&tasklist_lock);
1615 out_unlock:
1616 up_write(&css_set_rwsem);
1617 }
1618
1619 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1620 {
1621 struct cgroup_subsys *ss;
1622 int ssid;
1623
1624 INIT_LIST_HEAD(&cgrp->self.sibling);
1625 INIT_LIST_HEAD(&cgrp->self.children);
1626 INIT_LIST_HEAD(&cgrp->cset_links);
1627 INIT_LIST_HEAD(&cgrp->pidlists);
1628 mutex_init(&cgrp->pidlist_mutex);
1629 cgrp->self.cgroup = cgrp;
1630 cgrp->self.flags |= CSS_ONLINE;
1631
1632 for_each_subsys(ss, ssid)
1633 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1634
1635 init_waitqueue_head(&cgrp->offline_waitq);
1636 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1637 }
1638
1639 static void init_cgroup_root(struct cgroup_root *root,
1640 struct cgroup_sb_opts *opts)
1641 {
1642 struct cgroup *cgrp = &root->cgrp;
1643
1644 INIT_LIST_HEAD(&root->root_list);
1645 atomic_set(&root->nr_cgrps, 1);
1646 cgrp->root = root;
1647 init_cgroup_housekeeping(cgrp);
1648 idr_init(&root->cgroup_idr);
1649
1650 root->flags = opts->flags;
1651 if (opts->release_agent)
1652 strcpy(root->release_agent_path, opts->release_agent);
1653 if (opts->name)
1654 strcpy(root->name, opts->name);
1655 if (opts->cpuset_clone_children)
1656 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1657 }
1658
1659 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1660 {
1661 LIST_HEAD(tmp_links);
1662 struct cgroup *root_cgrp = &root->cgrp;
1663 struct cftype *base_files;
1664 struct css_set *cset;
1665 int i, ret;
1666
1667 lockdep_assert_held(&cgroup_mutex);
1668
1669 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1670 if (ret < 0)
1671 goto out;
1672 root_cgrp->id = ret;
1673
1674 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1675 GFP_KERNEL);
1676 if (ret)
1677 goto out;
1678
1679 /*
1680 * We're accessing css_set_count without locking css_set_rwsem here,
1681 * but that's OK - it can only be increased by someone holding
1682 * cgroup_lock, and that's us. The worst that can happen is that we
1683 * have some link structures left over
1684 */
1685 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1686 if (ret)
1687 goto cancel_ref;
1688
1689 ret = cgroup_init_root_id(root);
1690 if (ret)
1691 goto cancel_ref;
1692
1693 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1694 KERNFS_ROOT_CREATE_DEACTIVATED,
1695 root_cgrp);
1696 if (IS_ERR(root->kf_root)) {
1697 ret = PTR_ERR(root->kf_root);
1698 goto exit_root_id;
1699 }
1700 root_cgrp->kn = root->kf_root->kn;
1701
1702 if (root == &cgrp_dfl_root)
1703 base_files = cgroup_dfl_base_files;
1704 else
1705 base_files = cgroup_legacy_base_files;
1706
1707 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1708 if (ret)
1709 goto destroy_root;
1710
1711 ret = rebind_subsystems(root, ss_mask);
1712 if (ret)
1713 goto destroy_root;
1714
1715 /*
1716 * There must be no failure case after here, since rebinding takes
1717 * care of subsystems' refcounts, which are explicitly dropped in
1718 * the failure exit path.
1719 */
1720 list_add(&root->root_list, &cgroup_roots);
1721 cgroup_root_count++;
1722
1723 /*
1724 * Link the root cgroup in this hierarchy into all the css_set
1725 * objects.
1726 */
1727 down_write(&css_set_rwsem);
1728 hash_for_each(css_set_table, i, cset, hlist)
1729 link_css_set(&tmp_links, cset, root_cgrp);
1730 up_write(&css_set_rwsem);
1731
1732 BUG_ON(!list_empty(&root_cgrp->self.children));
1733 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1734
1735 kernfs_activate(root_cgrp->kn);
1736 ret = 0;
1737 goto out;
1738
1739 destroy_root:
1740 kernfs_destroy_root(root->kf_root);
1741 root->kf_root = NULL;
1742 exit_root_id:
1743 cgroup_exit_root_id(root);
1744 cancel_ref:
1745 percpu_ref_exit(&root_cgrp->self.refcnt);
1746 out:
1747 free_cgrp_cset_links(&tmp_links);
1748 return ret;
1749 }
1750
1751 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1752 int flags, const char *unused_dev_name,
1753 void *data)
1754 {
1755 struct super_block *pinned_sb = NULL;
1756 struct cgroup_subsys *ss;
1757 struct cgroup_root *root;
1758 struct cgroup_sb_opts opts;
1759 struct dentry *dentry;
1760 int ret;
1761 int i;
1762 bool new_sb;
1763
1764 /*
1765 * The first time anyone tries to mount a cgroup, enable the list
1766 * linking each css_set to its tasks and fix up all existing tasks.
1767 */
1768 if (!use_task_css_set_links)
1769 cgroup_enable_task_cg_lists();
1770
1771 mutex_lock(&cgroup_mutex);
1772
1773 /* First find the desired set of subsystems */
1774 ret = parse_cgroupfs_options(data, &opts);
1775 if (ret)
1776 goto out_unlock;
1777
1778 /* look for a matching existing root */
1779 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1780 cgrp_dfl_root_visible = true;
1781 root = &cgrp_dfl_root;
1782 cgroup_get(&root->cgrp);
1783 ret = 0;
1784 goto out_unlock;
1785 }
1786
1787 /*
1788 * Destruction of cgroup root is asynchronous, so subsystems may
1789 * still be dying after the previous unmount. Let's drain the
1790 * dying subsystems. We just need to ensure that the ones
1791 * unmounted previously finish dying and don't care about new ones
1792 * starting. Testing ref liveliness is good enough.
1793 */
1794 for_each_subsys(ss, i) {
1795 if (!(opts.subsys_mask & (1 << i)) ||
1796 ss->root == &cgrp_dfl_root)
1797 continue;
1798
1799 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1800 mutex_unlock(&cgroup_mutex);
1801 msleep(10);
1802 ret = restart_syscall();
1803 goto out_free;
1804 }
1805 cgroup_put(&ss->root->cgrp);
1806 }
1807
1808 for_each_root(root) {
1809 bool name_match = false;
1810
1811 if (root == &cgrp_dfl_root)
1812 continue;
1813
1814 /*
1815 * If we asked for a name then it must match. Also, if
1816 * name matches but sybsys_mask doesn't, we should fail.
1817 * Remember whether name matched.
1818 */
1819 if (opts.name) {
1820 if (strcmp(opts.name, root->name))
1821 continue;
1822 name_match = true;
1823 }
1824
1825 /*
1826 * If we asked for subsystems (or explicitly for no
1827 * subsystems) then they must match.
1828 */
1829 if ((opts.subsys_mask || opts.none) &&
1830 (opts.subsys_mask != root->subsys_mask)) {
1831 if (!name_match)
1832 continue;
1833 ret = -EBUSY;
1834 goto out_unlock;
1835 }
1836
1837 if (root->flags ^ opts.flags)
1838 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1839
1840 /*
1841 * We want to reuse @root whose lifetime is governed by its
1842 * ->cgrp. Let's check whether @root is alive and keep it
1843 * that way. As cgroup_kill_sb() can happen anytime, we
1844 * want to block it by pinning the sb so that @root doesn't
1845 * get killed before mount is complete.
1846 *
1847 * With the sb pinned, tryget_live can reliably indicate
1848 * whether @root can be reused. If it's being killed,
1849 * drain it. We can use wait_queue for the wait but this
1850 * path is super cold. Let's just sleep a bit and retry.
1851 */
1852 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1853 if (IS_ERR(pinned_sb) ||
1854 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1855 mutex_unlock(&cgroup_mutex);
1856 if (!IS_ERR_OR_NULL(pinned_sb))
1857 deactivate_super(pinned_sb);
1858 msleep(10);
1859 ret = restart_syscall();
1860 goto out_free;
1861 }
1862
1863 ret = 0;
1864 goto out_unlock;
1865 }
1866
1867 /*
1868 * No such thing, create a new one. name= matching without subsys
1869 * specification is allowed for already existing hierarchies but we
1870 * can't create new one without subsys specification.
1871 */
1872 if (!opts.subsys_mask && !opts.none) {
1873 ret = -EINVAL;
1874 goto out_unlock;
1875 }
1876
1877 root = kzalloc(sizeof(*root), GFP_KERNEL);
1878 if (!root) {
1879 ret = -ENOMEM;
1880 goto out_unlock;
1881 }
1882
1883 init_cgroup_root(root, &opts);
1884
1885 ret = cgroup_setup_root(root, opts.subsys_mask);
1886 if (ret)
1887 cgroup_free_root(root);
1888
1889 out_unlock:
1890 mutex_unlock(&cgroup_mutex);
1891 out_free:
1892 kfree(opts.release_agent);
1893 kfree(opts.name);
1894
1895 if (ret)
1896 return ERR_PTR(ret);
1897
1898 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1899 CGROUP_SUPER_MAGIC, &new_sb);
1900 if (IS_ERR(dentry) || !new_sb)
1901 cgroup_put(&root->cgrp);
1902
1903 /*
1904 * If @pinned_sb, we're reusing an existing root and holding an
1905 * extra ref on its sb. Mount is complete. Put the extra ref.
1906 */
1907 if (pinned_sb) {
1908 WARN_ON(new_sb);
1909 deactivate_super(pinned_sb);
1910 }
1911
1912 return dentry;
1913 }
1914
1915 static void cgroup_kill_sb(struct super_block *sb)
1916 {
1917 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1918 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1919
1920 /*
1921 * If @root doesn't have any mounts or children, start killing it.
1922 * This prevents new mounts by disabling percpu_ref_tryget_live().
1923 * cgroup_mount() may wait for @root's release.
1924 *
1925 * And don't kill the default root.
1926 */
1927 if (!list_empty(&root->cgrp.self.children) ||
1928 root == &cgrp_dfl_root)
1929 cgroup_put(&root->cgrp);
1930 else
1931 percpu_ref_kill(&root->cgrp.self.refcnt);
1932
1933 kernfs_kill_sb(sb);
1934 }
1935
1936 static struct file_system_type cgroup_fs_type = {
1937 .name = "cgroup",
1938 .mount = cgroup_mount,
1939 .kill_sb = cgroup_kill_sb,
1940 };
1941
1942 static struct kobject *cgroup_kobj;
1943
1944 /**
1945 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1946 * @task: target task
1947 * @buf: the buffer to write the path into
1948 * @buflen: the length of the buffer
1949 *
1950 * Determine @task's cgroup on the first (the one with the lowest non-zero
1951 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1952 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1953 * cgroup controller callbacks.
1954 *
1955 * Return value is the same as kernfs_path().
1956 */
1957 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1958 {
1959 struct cgroup_root *root;
1960 struct cgroup *cgrp;
1961 int hierarchy_id = 1;
1962 char *path = NULL;
1963
1964 mutex_lock(&cgroup_mutex);
1965 down_read(&css_set_rwsem);
1966
1967 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1968
1969 if (root) {
1970 cgrp = task_cgroup_from_root(task, root);
1971 path = cgroup_path(cgrp, buf, buflen);
1972 } else {
1973 /* if no hierarchy exists, everyone is in "/" */
1974 if (strlcpy(buf, "/", buflen) < buflen)
1975 path = buf;
1976 }
1977
1978 up_read(&css_set_rwsem);
1979 mutex_unlock(&cgroup_mutex);
1980 return path;
1981 }
1982 EXPORT_SYMBOL_GPL(task_cgroup_path);
1983
1984 /* used to track tasks and other necessary states during migration */
1985 struct cgroup_taskset {
1986 /* the src and dst cset list running through cset->mg_node */
1987 struct list_head src_csets;
1988 struct list_head dst_csets;
1989
1990 /*
1991 * Fields for cgroup_taskset_*() iteration.
1992 *
1993 * Before migration is committed, the target migration tasks are on
1994 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1995 * the csets on ->dst_csets. ->csets point to either ->src_csets
1996 * or ->dst_csets depending on whether migration is committed.
1997 *
1998 * ->cur_csets and ->cur_task point to the current task position
1999 * during iteration.
2000 */
2001 struct list_head *csets;
2002 struct css_set *cur_cset;
2003 struct task_struct *cur_task;
2004 };
2005
2006 /**
2007 * cgroup_taskset_first - reset taskset and return the first task
2008 * @tset: taskset of interest
2009 *
2010 * @tset iteration is initialized and the first task is returned.
2011 */
2012 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2013 {
2014 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2015 tset->cur_task = NULL;
2016
2017 return cgroup_taskset_next(tset);
2018 }
2019
2020 /**
2021 * cgroup_taskset_next - iterate to the next task in taskset
2022 * @tset: taskset of interest
2023 *
2024 * Return the next task in @tset. Iteration must have been initialized
2025 * with cgroup_taskset_first().
2026 */
2027 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2028 {
2029 struct css_set *cset = tset->cur_cset;
2030 struct task_struct *task = tset->cur_task;
2031
2032 while (&cset->mg_node != tset->csets) {
2033 if (!task)
2034 task = list_first_entry(&cset->mg_tasks,
2035 struct task_struct, cg_list);
2036 else
2037 task = list_next_entry(task, cg_list);
2038
2039 if (&task->cg_list != &cset->mg_tasks) {
2040 tset->cur_cset = cset;
2041 tset->cur_task = task;
2042 return task;
2043 }
2044
2045 cset = list_next_entry(cset, mg_node);
2046 task = NULL;
2047 }
2048
2049 return NULL;
2050 }
2051
2052 /**
2053 * cgroup_task_migrate - move a task from one cgroup to another.
2054 * @old_cgrp: the cgroup @tsk is being migrated from
2055 * @tsk: the task being migrated
2056 * @new_cset: the new css_set @tsk is being attached to
2057 *
2058 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2059 */
2060 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2061 struct task_struct *tsk,
2062 struct css_set *new_cset)
2063 {
2064 struct css_set *old_cset;
2065
2066 lockdep_assert_held(&cgroup_mutex);
2067 lockdep_assert_held(&css_set_rwsem);
2068
2069 /*
2070 * We are synchronized through cgroup_threadgroup_rwsem against
2071 * PF_EXITING setting such that we can't race against cgroup_exit()
2072 * changing the css_set to init_css_set and dropping the old one.
2073 */
2074 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2075 old_cset = task_css_set(tsk);
2076
2077 get_css_set(new_cset);
2078 rcu_assign_pointer(tsk->cgroups, new_cset);
2079
2080 /*
2081 * Use move_tail so that cgroup_taskset_first() still returns the
2082 * leader after migration. This works because cgroup_migrate()
2083 * ensures that the dst_cset of the leader is the first on the
2084 * tset's dst_csets list.
2085 */
2086 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2087
2088 /*
2089 * We just gained a reference on old_cset by taking it from the
2090 * task. As trading it for new_cset is protected by cgroup_mutex,
2091 * we're safe to drop it here; it will be freed under RCU.
2092 */
2093 put_css_set_locked(old_cset);
2094 }
2095
2096 /**
2097 * cgroup_migrate_finish - cleanup after attach
2098 * @preloaded_csets: list of preloaded css_sets
2099 *
2100 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2101 * those functions for details.
2102 */
2103 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2104 {
2105 struct css_set *cset, *tmp_cset;
2106
2107 lockdep_assert_held(&cgroup_mutex);
2108
2109 down_write(&css_set_rwsem);
2110 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2111 cset->mg_src_cgrp = NULL;
2112 cset->mg_dst_cset = NULL;
2113 list_del_init(&cset->mg_preload_node);
2114 put_css_set_locked(cset);
2115 }
2116 up_write(&css_set_rwsem);
2117 }
2118
2119 /**
2120 * cgroup_migrate_add_src - add a migration source css_set
2121 * @src_cset: the source css_set to add
2122 * @dst_cgrp: the destination cgroup
2123 * @preloaded_csets: list of preloaded css_sets
2124 *
2125 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2126 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2127 * up by cgroup_migrate_finish().
2128 *
2129 * This function may be called without holding cgroup_threadgroup_rwsem
2130 * even if the target is a process. Threads may be created and destroyed
2131 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2132 * into play and the preloaded css_sets are guaranteed to cover all
2133 * migrations.
2134 */
2135 static void cgroup_migrate_add_src(struct css_set *src_cset,
2136 struct cgroup *dst_cgrp,
2137 struct list_head *preloaded_csets)
2138 {
2139 struct cgroup *src_cgrp;
2140
2141 lockdep_assert_held(&cgroup_mutex);
2142 lockdep_assert_held(&css_set_rwsem);
2143
2144 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2145
2146 if (!list_empty(&src_cset->mg_preload_node))
2147 return;
2148
2149 WARN_ON(src_cset->mg_src_cgrp);
2150 WARN_ON(!list_empty(&src_cset->mg_tasks));
2151 WARN_ON(!list_empty(&src_cset->mg_node));
2152
2153 src_cset->mg_src_cgrp = src_cgrp;
2154 get_css_set(src_cset);
2155 list_add(&src_cset->mg_preload_node, preloaded_csets);
2156 }
2157
2158 /**
2159 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2160 * @dst_cgrp: the destination cgroup (may be %NULL)
2161 * @preloaded_csets: list of preloaded source css_sets
2162 *
2163 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2164 * have been preloaded to @preloaded_csets. This function looks up and
2165 * pins all destination css_sets, links each to its source, and append them
2166 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2167 * source css_set is assumed to be its cgroup on the default hierarchy.
2168 *
2169 * This function must be called after cgroup_migrate_add_src() has been
2170 * called on each migration source css_set. After migration is performed
2171 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2172 * @preloaded_csets.
2173 */
2174 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2175 struct list_head *preloaded_csets)
2176 {
2177 LIST_HEAD(csets);
2178 struct css_set *src_cset, *tmp_cset;
2179
2180 lockdep_assert_held(&cgroup_mutex);
2181
2182 /*
2183 * Except for the root, child_subsys_mask must be zero for a cgroup
2184 * with tasks so that child cgroups don't compete against tasks.
2185 */
2186 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2187 dst_cgrp->child_subsys_mask)
2188 return -EBUSY;
2189
2190 /* look up the dst cset for each src cset and link it to src */
2191 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2192 struct css_set *dst_cset;
2193
2194 dst_cset = find_css_set(src_cset,
2195 dst_cgrp ?: src_cset->dfl_cgrp);
2196 if (!dst_cset)
2197 goto err;
2198
2199 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2200
2201 /*
2202 * If src cset equals dst, it's noop. Drop the src.
2203 * cgroup_migrate() will skip the cset too. Note that we
2204 * can't handle src == dst as some nodes are used by both.
2205 */
2206 if (src_cset == dst_cset) {
2207 src_cset->mg_src_cgrp = NULL;
2208 list_del_init(&src_cset->mg_preload_node);
2209 put_css_set(src_cset);
2210 put_css_set(dst_cset);
2211 continue;
2212 }
2213
2214 src_cset->mg_dst_cset = dst_cset;
2215
2216 if (list_empty(&dst_cset->mg_preload_node))
2217 list_add(&dst_cset->mg_preload_node, &csets);
2218 else
2219 put_css_set(dst_cset);
2220 }
2221
2222 list_splice_tail(&csets, preloaded_csets);
2223 return 0;
2224 err:
2225 cgroup_migrate_finish(&csets);
2226 return -ENOMEM;
2227 }
2228
2229 /**
2230 * cgroup_migrate - migrate a process or task to a cgroup
2231 * @cgrp: the destination cgroup
2232 * @leader: the leader of the process or the task to migrate
2233 * @threadgroup: whether @leader points to the whole process or a single task
2234 *
2235 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2236 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2237 * caller is also responsible for invoking cgroup_migrate_add_src() and
2238 * cgroup_migrate_prepare_dst() on the targets before invoking this
2239 * function and following up with cgroup_migrate_finish().
2240 *
2241 * As long as a controller's ->can_attach() doesn't fail, this function is
2242 * guaranteed to succeed. This means that, excluding ->can_attach()
2243 * failure, when migrating multiple targets, the success or failure can be
2244 * decided for all targets by invoking group_migrate_prepare_dst() before
2245 * actually starting migrating.
2246 */
2247 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2248 bool threadgroup)
2249 {
2250 struct cgroup_taskset tset = {
2251 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2252 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2253 .csets = &tset.src_csets,
2254 };
2255 struct cgroup_subsys_state *css, *failed_css = NULL;
2256 struct css_set *cset, *tmp_cset;
2257 struct task_struct *task, *tmp_task;
2258 int i, ret;
2259
2260 /*
2261 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2262 * already PF_EXITING could be freed from underneath us unless we
2263 * take an rcu_read_lock.
2264 */
2265 down_write(&css_set_rwsem);
2266 rcu_read_lock();
2267 task = leader;
2268 do {
2269 /* @task either already exited or can't exit until the end */
2270 if (task->flags & PF_EXITING)
2271 goto next;
2272
2273 /* leave @task alone if post_fork() hasn't linked it yet */
2274 if (list_empty(&task->cg_list))
2275 goto next;
2276
2277 cset = task_css_set(task);
2278 if (!cset->mg_src_cgrp)
2279 goto next;
2280
2281 /*
2282 * cgroup_taskset_first() must always return the leader.
2283 * Take care to avoid disturbing the ordering.
2284 */
2285 list_move_tail(&task->cg_list, &cset->mg_tasks);
2286 if (list_empty(&cset->mg_node))
2287 list_add_tail(&cset->mg_node, &tset.src_csets);
2288 if (list_empty(&cset->mg_dst_cset->mg_node))
2289 list_move_tail(&cset->mg_dst_cset->mg_node,
2290 &tset.dst_csets);
2291 next:
2292 if (!threadgroup)
2293 break;
2294 } while_each_thread(leader, task);
2295 rcu_read_unlock();
2296 up_write(&css_set_rwsem);
2297
2298 /* methods shouldn't be called if no task is actually migrating */
2299 if (list_empty(&tset.src_csets))
2300 return 0;
2301
2302 /* check that we can legitimately attach to the cgroup */
2303 for_each_e_css(css, i, cgrp) {
2304 if (css->ss->can_attach) {
2305 ret = css->ss->can_attach(css, &tset);
2306 if (ret) {
2307 failed_css = css;
2308 goto out_cancel_attach;
2309 }
2310 }
2311 }
2312
2313 /*
2314 * Now that we're guaranteed success, proceed to move all tasks to
2315 * the new cgroup. There are no failure cases after here, so this
2316 * is the commit point.
2317 */
2318 down_write(&css_set_rwsem);
2319 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2320 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2321 cgroup_task_migrate(cset->mg_src_cgrp, task,
2322 cset->mg_dst_cset);
2323 }
2324 up_write(&css_set_rwsem);
2325
2326 /*
2327 * Migration is committed, all target tasks are now on dst_csets.
2328 * Nothing is sensitive to fork() after this point. Notify
2329 * controllers that migration is complete.
2330 */
2331 tset.csets = &tset.dst_csets;
2332
2333 for_each_e_css(css, i, cgrp)
2334 if (css->ss->attach)
2335 css->ss->attach(css, &tset);
2336
2337 ret = 0;
2338 goto out_release_tset;
2339
2340 out_cancel_attach:
2341 for_each_e_css(css, i, cgrp) {
2342 if (css == failed_css)
2343 break;
2344 if (css->ss->cancel_attach)
2345 css->ss->cancel_attach(css, &tset);
2346 }
2347 out_release_tset:
2348 down_write(&css_set_rwsem);
2349 list_splice_init(&tset.dst_csets, &tset.src_csets);
2350 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2351 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2352 list_del_init(&cset->mg_node);
2353 }
2354 up_write(&css_set_rwsem);
2355 return ret;
2356 }
2357
2358 /**
2359 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2360 * @dst_cgrp: the cgroup to attach to
2361 * @leader: the task or the leader of the threadgroup to be attached
2362 * @threadgroup: attach the whole threadgroup?
2363 *
2364 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2365 */
2366 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2367 struct task_struct *leader, bool threadgroup)
2368 {
2369 LIST_HEAD(preloaded_csets);
2370 struct task_struct *task;
2371 int ret;
2372
2373 /* look up all src csets */
2374 down_read(&css_set_rwsem);
2375 rcu_read_lock();
2376 task = leader;
2377 do {
2378 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2379 &preloaded_csets);
2380 if (!threadgroup)
2381 break;
2382 } while_each_thread(leader, task);
2383 rcu_read_unlock();
2384 up_read(&css_set_rwsem);
2385
2386 /* prepare dst csets and commit */
2387 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2388 if (!ret)
2389 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2390
2391 cgroup_migrate_finish(&preloaded_csets);
2392 return ret;
2393 }
2394
2395 /*
2396 * Find the task_struct of the task to attach by vpid and pass it along to the
2397 * function to attach either it or all tasks in its threadgroup. Will lock
2398 * cgroup_mutex and threadgroup.
2399 */
2400 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2401 size_t nbytes, loff_t off, bool threadgroup)
2402 {
2403 struct task_struct *tsk;
2404 const struct cred *cred = current_cred(), *tcred;
2405 struct cgroup *cgrp;
2406 pid_t pid;
2407 int ret;
2408
2409 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2410 return -EINVAL;
2411
2412 cgrp = cgroup_kn_lock_live(of->kn);
2413 if (!cgrp)
2414 return -ENODEV;
2415
2416 percpu_down_write(&cgroup_threadgroup_rwsem);
2417 rcu_read_lock();
2418 if (pid) {
2419 tsk = find_task_by_vpid(pid);
2420 if (!tsk) {
2421 ret = -ESRCH;
2422 goto out_unlock_rcu;
2423 }
2424 /*
2425 * even if we're attaching all tasks in the thread group, we
2426 * only need to check permissions on one of them.
2427 */
2428 tcred = __task_cred(tsk);
2429 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2430 !uid_eq(cred->euid, tcred->uid) &&
2431 !uid_eq(cred->euid, tcred->suid)) {
2432 ret = -EACCES;
2433 goto out_unlock_rcu;
2434 }
2435 } else
2436 tsk = current;
2437
2438 if (threadgroup)
2439 tsk = tsk->group_leader;
2440
2441 /*
2442 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2443 * trapped in a cpuset, or RT worker may be born in a cgroup
2444 * with no rt_runtime allocated. Just say no.
2445 */
2446 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2447 ret = -EINVAL;
2448 goto out_unlock_rcu;
2449 }
2450
2451 get_task_struct(tsk);
2452 rcu_read_unlock();
2453
2454 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2455
2456 put_task_struct(tsk);
2457 goto out_unlock_threadgroup;
2458
2459 out_unlock_rcu:
2460 rcu_read_unlock();
2461 out_unlock_threadgroup:
2462 percpu_up_write(&cgroup_threadgroup_rwsem);
2463 cgroup_kn_unlock(of->kn);
2464 return ret ?: nbytes;
2465 }
2466
2467 /**
2468 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2469 * @from: attach to all cgroups of a given task
2470 * @tsk: the task to be attached
2471 */
2472 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2473 {
2474 struct cgroup_root *root;
2475 int retval = 0;
2476
2477 mutex_lock(&cgroup_mutex);
2478 for_each_root(root) {
2479 struct cgroup *from_cgrp;
2480
2481 if (root == &cgrp_dfl_root)
2482 continue;
2483
2484 down_read(&css_set_rwsem);
2485 from_cgrp = task_cgroup_from_root(from, root);
2486 up_read(&css_set_rwsem);
2487
2488 retval = cgroup_attach_task(from_cgrp, tsk, false);
2489 if (retval)
2490 break;
2491 }
2492 mutex_unlock(&cgroup_mutex);
2493
2494 return retval;
2495 }
2496 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2497
2498 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2499 char *buf, size_t nbytes, loff_t off)
2500 {
2501 return __cgroup_procs_write(of, buf, nbytes, off, false);
2502 }
2503
2504 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2505 char *buf, size_t nbytes, loff_t off)
2506 {
2507 return __cgroup_procs_write(of, buf, nbytes, off, true);
2508 }
2509
2510 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2511 char *buf, size_t nbytes, loff_t off)
2512 {
2513 struct cgroup *cgrp;
2514
2515 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2516
2517 cgrp = cgroup_kn_lock_live(of->kn);
2518 if (!cgrp)
2519 return -ENODEV;
2520 spin_lock(&release_agent_path_lock);
2521 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2522 sizeof(cgrp->root->release_agent_path));
2523 spin_unlock(&release_agent_path_lock);
2524 cgroup_kn_unlock(of->kn);
2525 return nbytes;
2526 }
2527
2528 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2529 {
2530 struct cgroup *cgrp = seq_css(seq)->cgroup;
2531
2532 spin_lock(&release_agent_path_lock);
2533 seq_puts(seq, cgrp->root->release_agent_path);
2534 spin_unlock(&release_agent_path_lock);
2535 seq_putc(seq, '\n');
2536 return 0;
2537 }
2538
2539 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2540 {
2541 seq_puts(seq, "0\n");
2542 return 0;
2543 }
2544
2545 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2546 {
2547 struct cgroup_subsys *ss;
2548 bool printed = false;
2549 int ssid;
2550
2551 for_each_subsys_which(ss, ssid, &ss_mask) {
2552 if (printed)
2553 seq_putc(seq, ' ');
2554 seq_printf(seq, "%s", ss->name);
2555 printed = true;
2556 }
2557 if (printed)
2558 seq_putc(seq, '\n');
2559 }
2560
2561 /* show controllers which are currently attached to the default hierarchy */
2562 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2563 {
2564 struct cgroup *cgrp = seq_css(seq)->cgroup;
2565
2566 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2567 ~cgrp_dfl_root_inhibit_ss_mask);
2568 return 0;
2569 }
2570
2571 /* show controllers which are enabled from the parent */
2572 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2573 {
2574 struct cgroup *cgrp = seq_css(seq)->cgroup;
2575
2576 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2577 return 0;
2578 }
2579
2580 /* show controllers which are enabled for a given cgroup's children */
2581 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2582 {
2583 struct cgroup *cgrp = seq_css(seq)->cgroup;
2584
2585 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2586 return 0;
2587 }
2588
2589 /**
2590 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2591 * @cgrp: root of the subtree to update csses for
2592 *
2593 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2594 * css associations need to be updated accordingly. This function looks up
2595 * all css_sets which are attached to the subtree, creates the matching
2596 * updated css_sets and migrates the tasks to the new ones.
2597 */
2598 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2599 {
2600 LIST_HEAD(preloaded_csets);
2601 struct cgroup_subsys_state *css;
2602 struct css_set *src_cset;
2603 int ret;
2604
2605 lockdep_assert_held(&cgroup_mutex);
2606
2607 percpu_down_write(&cgroup_threadgroup_rwsem);
2608
2609 /* look up all csses currently attached to @cgrp's subtree */
2610 down_read(&css_set_rwsem);
2611 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2612 struct cgrp_cset_link *link;
2613
2614 /* self is not affected by child_subsys_mask change */
2615 if (css->cgroup == cgrp)
2616 continue;
2617
2618 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2619 cgroup_migrate_add_src(link->cset, cgrp,
2620 &preloaded_csets);
2621 }
2622 up_read(&css_set_rwsem);
2623
2624 /* NULL dst indicates self on default hierarchy */
2625 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2626 if (ret)
2627 goto out_finish;
2628
2629 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2630 struct task_struct *last_task = NULL, *task;
2631
2632 /* src_csets precede dst_csets, break on the first dst_cset */
2633 if (!src_cset->mg_src_cgrp)
2634 break;
2635
2636 /*
2637 * All tasks in src_cset need to be migrated to the
2638 * matching dst_cset. Empty it process by process. We
2639 * walk tasks but migrate processes. The leader might even
2640 * belong to a different cset but such src_cset would also
2641 * be among the target src_csets because the default
2642 * hierarchy enforces per-process membership.
2643 */
2644 while (true) {
2645 down_read(&css_set_rwsem);
2646 task = list_first_entry_or_null(&src_cset->tasks,
2647 struct task_struct, cg_list);
2648 if (task) {
2649 task = task->group_leader;
2650 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2651 get_task_struct(task);
2652 }
2653 up_read(&css_set_rwsem);
2654
2655 if (!task)
2656 break;
2657
2658 /* guard against possible infinite loop */
2659 if (WARN(last_task == task,
2660 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2661 goto out_finish;
2662 last_task = task;
2663
2664 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2665
2666 put_task_struct(task);
2667
2668 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2669 goto out_finish;
2670 }
2671 }
2672
2673 out_finish:
2674 cgroup_migrate_finish(&preloaded_csets);
2675 percpu_up_write(&cgroup_threadgroup_rwsem);
2676 return ret;
2677 }
2678
2679 /* change the enabled child controllers for a cgroup in the default hierarchy */
2680 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2681 char *buf, size_t nbytes,
2682 loff_t off)
2683 {
2684 unsigned long enable = 0, disable = 0;
2685 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2686 struct cgroup *cgrp, *child;
2687 struct cgroup_subsys *ss;
2688 char *tok;
2689 int ssid, ret;
2690
2691 /*
2692 * Parse input - space separated list of subsystem names prefixed
2693 * with either + or -.
2694 */
2695 buf = strstrip(buf);
2696 while ((tok = strsep(&buf, " "))) {
2697 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2698
2699 if (tok[0] == '\0')
2700 continue;
2701 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2702 if (ss->disabled || strcmp(tok + 1, ss->name))
2703 continue;
2704
2705 if (*tok == '+') {
2706 enable |= 1 << ssid;
2707 disable &= ~(1 << ssid);
2708 } else if (*tok == '-') {
2709 disable |= 1 << ssid;
2710 enable &= ~(1 << ssid);
2711 } else {
2712 return -EINVAL;
2713 }
2714 break;
2715 }
2716 if (ssid == CGROUP_SUBSYS_COUNT)
2717 return -EINVAL;
2718 }
2719
2720 cgrp = cgroup_kn_lock_live(of->kn);
2721 if (!cgrp)
2722 return -ENODEV;
2723
2724 for_each_subsys(ss, ssid) {
2725 if (enable & (1 << ssid)) {
2726 if (cgrp->subtree_control & (1 << ssid)) {
2727 enable &= ~(1 << ssid);
2728 continue;
2729 }
2730
2731 /* unavailable or not enabled on the parent? */
2732 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2733 (cgroup_parent(cgrp) &&
2734 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2735 ret = -ENOENT;
2736 goto out_unlock;
2737 }
2738 } else if (disable & (1 << ssid)) {
2739 if (!(cgrp->subtree_control & (1 << ssid))) {
2740 disable &= ~(1 << ssid);
2741 continue;
2742 }
2743
2744 /* a child has it enabled? */
2745 cgroup_for_each_live_child(child, cgrp) {
2746 if (child->subtree_control & (1 << ssid)) {
2747 ret = -EBUSY;
2748 goto out_unlock;
2749 }
2750 }
2751 }
2752 }
2753
2754 if (!enable && !disable) {
2755 ret = 0;
2756 goto out_unlock;
2757 }
2758
2759 /*
2760 * Except for the root, subtree_control must be zero for a cgroup
2761 * with tasks so that child cgroups don't compete against tasks.
2762 */
2763 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2764 ret = -EBUSY;
2765 goto out_unlock;
2766 }
2767
2768 /*
2769 * Update subsys masks and calculate what needs to be done. More
2770 * subsystems than specified may need to be enabled or disabled
2771 * depending on subsystem dependencies.
2772 */
2773 old_sc = cgrp->subtree_control;
2774 old_ss = cgrp->child_subsys_mask;
2775 new_sc = (old_sc | enable) & ~disable;
2776 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2777
2778 css_enable = ~old_ss & new_ss;
2779 css_disable = old_ss & ~new_ss;
2780 enable |= css_enable;
2781 disable |= css_disable;
2782
2783 /*
2784 * Because css offlining is asynchronous, userland might try to
2785 * re-enable the same controller while the previous instance is
2786 * still around. In such cases, wait till it's gone using
2787 * offline_waitq.
2788 */
2789 for_each_subsys_which(ss, ssid, &css_enable) {
2790 cgroup_for_each_live_child(child, cgrp) {
2791 DEFINE_WAIT(wait);
2792
2793 if (!cgroup_css(child, ss))
2794 continue;
2795
2796 cgroup_get(child);
2797 prepare_to_wait(&child->offline_waitq, &wait,
2798 TASK_UNINTERRUPTIBLE);
2799 cgroup_kn_unlock(of->kn);
2800 schedule();
2801 finish_wait(&child->offline_waitq, &wait);
2802 cgroup_put(child);
2803
2804 return restart_syscall();
2805 }
2806 }
2807
2808 cgrp->subtree_control = new_sc;
2809 cgrp->child_subsys_mask = new_ss;
2810
2811 /*
2812 * Create new csses or make the existing ones visible. A css is
2813 * created invisible if it's being implicitly enabled through
2814 * dependency. An invisible css is made visible when the userland
2815 * explicitly enables it.
2816 */
2817 for_each_subsys(ss, ssid) {
2818 if (!(enable & (1 << ssid)))
2819 continue;
2820
2821 cgroup_for_each_live_child(child, cgrp) {
2822 if (css_enable & (1 << ssid))
2823 ret = create_css(child, ss,
2824 cgrp->subtree_control & (1 << ssid));
2825 else
2826 ret = cgroup_populate_dir(child, 1 << ssid);
2827 if (ret)
2828 goto err_undo_css;
2829 }
2830 }
2831
2832 /*
2833 * At this point, cgroup_e_css() results reflect the new csses
2834 * making the following cgroup_update_dfl_csses() properly update
2835 * css associations of all tasks in the subtree.
2836 */
2837 ret = cgroup_update_dfl_csses(cgrp);
2838 if (ret)
2839 goto err_undo_css;
2840
2841 /*
2842 * All tasks are migrated out of disabled csses. Kill or hide
2843 * them. A css is hidden when the userland requests it to be
2844 * disabled while other subsystems are still depending on it. The
2845 * css must not actively control resources and be in the vanilla
2846 * state if it's made visible again later. Controllers which may
2847 * be depended upon should provide ->css_reset() for this purpose.
2848 */
2849 for_each_subsys(ss, ssid) {
2850 if (!(disable & (1 << ssid)))
2851 continue;
2852
2853 cgroup_for_each_live_child(child, cgrp) {
2854 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2855
2856 if (css_disable & (1 << ssid)) {
2857 kill_css(css);
2858 } else {
2859 cgroup_clear_dir(child, 1 << ssid);
2860 if (ss->css_reset)
2861 ss->css_reset(css);
2862 }
2863 }
2864 }
2865
2866 /*
2867 * The effective csses of all the descendants (excluding @cgrp) may
2868 * have changed. Subsystems can optionally subscribe to this event
2869 * by implementing ->css_e_css_changed() which is invoked if any of
2870 * the effective csses seen from the css's cgroup may have changed.
2871 */
2872 for_each_subsys(ss, ssid) {
2873 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2874 struct cgroup_subsys_state *css;
2875
2876 if (!ss->css_e_css_changed || !this_css)
2877 continue;
2878
2879 css_for_each_descendant_pre(css, this_css)
2880 if (css != this_css)
2881 ss->css_e_css_changed(css);
2882 }
2883
2884 kernfs_activate(cgrp->kn);
2885 ret = 0;
2886 out_unlock:
2887 cgroup_kn_unlock(of->kn);
2888 return ret ?: nbytes;
2889
2890 err_undo_css:
2891 cgrp->subtree_control = old_sc;
2892 cgrp->child_subsys_mask = old_ss;
2893
2894 for_each_subsys(ss, ssid) {
2895 if (!(enable & (1 << ssid)))
2896 continue;
2897
2898 cgroup_for_each_live_child(child, cgrp) {
2899 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2900
2901 if (!css)
2902 continue;
2903
2904 if (css_enable & (1 << ssid))
2905 kill_css(css);
2906 else
2907 cgroup_clear_dir(child, 1 << ssid);
2908 }
2909 }
2910 goto out_unlock;
2911 }
2912
2913 static int cgroup_populated_show(struct seq_file *seq, void *v)
2914 {
2915 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2916 return 0;
2917 }
2918
2919 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2920 size_t nbytes, loff_t off)
2921 {
2922 struct cgroup *cgrp = of->kn->parent->priv;
2923 struct cftype *cft = of->kn->priv;
2924 struct cgroup_subsys_state *css;
2925 int ret;
2926
2927 if (cft->write)
2928 return cft->write(of, buf, nbytes, off);
2929
2930 /*
2931 * kernfs guarantees that a file isn't deleted with operations in
2932 * flight, which means that the matching css is and stays alive and
2933 * doesn't need to be pinned. The RCU locking is not necessary
2934 * either. It's just for the convenience of using cgroup_css().
2935 */
2936 rcu_read_lock();
2937 css = cgroup_css(cgrp, cft->ss);
2938 rcu_read_unlock();
2939
2940 if (cft->write_u64) {
2941 unsigned long long v;
2942 ret = kstrtoull(buf, 0, &v);
2943 if (!ret)
2944 ret = cft->write_u64(css, cft, v);
2945 } else if (cft->write_s64) {
2946 long long v;
2947 ret = kstrtoll(buf, 0, &v);
2948 if (!ret)
2949 ret = cft->write_s64(css, cft, v);
2950 } else {
2951 ret = -EINVAL;
2952 }
2953
2954 return ret ?: nbytes;
2955 }
2956
2957 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2958 {
2959 return seq_cft(seq)->seq_start(seq, ppos);
2960 }
2961
2962 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2963 {
2964 return seq_cft(seq)->seq_next(seq, v, ppos);
2965 }
2966
2967 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2968 {
2969 seq_cft(seq)->seq_stop(seq, v);
2970 }
2971
2972 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2973 {
2974 struct cftype *cft = seq_cft(m);
2975 struct cgroup_subsys_state *css = seq_css(m);
2976
2977 if (cft->seq_show)
2978 return cft->seq_show(m, arg);
2979
2980 if (cft->read_u64)
2981 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2982 else if (cft->read_s64)
2983 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2984 else
2985 return -EINVAL;
2986 return 0;
2987 }
2988
2989 static struct kernfs_ops cgroup_kf_single_ops = {
2990 .atomic_write_len = PAGE_SIZE,
2991 .write = cgroup_file_write,
2992 .seq_show = cgroup_seqfile_show,
2993 };
2994
2995 static struct kernfs_ops cgroup_kf_ops = {
2996 .atomic_write_len = PAGE_SIZE,
2997 .write = cgroup_file_write,
2998 .seq_start = cgroup_seqfile_start,
2999 .seq_next = cgroup_seqfile_next,
3000 .seq_stop = cgroup_seqfile_stop,
3001 .seq_show = cgroup_seqfile_show,
3002 };
3003
3004 /*
3005 * cgroup_rename - Only allow simple rename of directories in place.
3006 */
3007 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3008 const char *new_name_str)
3009 {
3010 struct cgroup *cgrp = kn->priv;
3011 int ret;
3012
3013 if (kernfs_type(kn) != KERNFS_DIR)
3014 return -ENOTDIR;
3015 if (kn->parent != new_parent)
3016 return -EIO;
3017
3018 /*
3019 * This isn't a proper migration and its usefulness is very
3020 * limited. Disallow on the default hierarchy.
3021 */
3022 if (cgroup_on_dfl(cgrp))
3023 return -EPERM;
3024
3025 /*
3026 * We're gonna grab cgroup_mutex which nests outside kernfs
3027 * active_ref. kernfs_rename() doesn't require active_ref
3028 * protection. Break them before grabbing cgroup_mutex.
3029 */
3030 kernfs_break_active_protection(new_parent);
3031 kernfs_break_active_protection(kn);
3032
3033 mutex_lock(&cgroup_mutex);
3034
3035 ret = kernfs_rename(kn, new_parent, new_name_str);
3036
3037 mutex_unlock(&cgroup_mutex);
3038
3039 kernfs_unbreak_active_protection(kn);
3040 kernfs_unbreak_active_protection(new_parent);
3041 return ret;
3042 }
3043
3044 /* set uid and gid of cgroup dirs and files to that of the creator */
3045 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3046 {
3047 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3048 .ia_uid = current_fsuid(),
3049 .ia_gid = current_fsgid(), };
3050
3051 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3052 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3053 return 0;
3054
3055 return kernfs_setattr(kn, &iattr);
3056 }
3057
3058 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3059 {
3060 char name[CGROUP_FILE_NAME_MAX];
3061 struct kernfs_node *kn;
3062 struct lock_class_key *key = NULL;
3063 int ret;
3064
3065 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3066 key = &cft->lockdep_key;
3067 #endif
3068 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3069 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3070 NULL, key);
3071 if (IS_ERR(kn))
3072 return PTR_ERR(kn);
3073
3074 ret = cgroup_kn_set_ugid(kn);
3075 if (ret) {
3076 kernfs_remove(kn);
3077 return ret;
3078 }
3079
3080 if (cft->seq_show == cgroup_populated_show)
3081 cgrp->populated_kn = kn;
3082 return 0;
3083 }
3084
3085 /**
3086 * cgroup_addrm_files - add or remove files to a cgroup directory
3087 * @cgrp: the target cgroup
3088 * @cfts: array of cftypes to be added
3089 * @is_add: whether to add or remove
3090 *
3091 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3092 * For removals, this function never fails. If addition fails, this
3093 * function doesn't remove files already added. The caller is responsible
3094 * for cleaning up.
3095 */
3096 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3097 bool is_add)
3098 {
3099 struct cftype *cft;
3100 int ret;
3101
3102 lockdep_assert_held(&cgroup_mutex);
3103
3104 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3105 /* does cft->flags tell us to skip this file on @cgrp? */
3106 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3107 continue;
3108 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3109 continue;
3110 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3111 continue;
3112 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3113 continue;
3114
3115 if (is_add) {
3116 ret = cgroup_add_file(cgrp, cft);
3117 if (ret) {
3118 pr_warn("%s: failed to add %s, err=%d\n",
3119 __func__, cft->name, ret);
3120 return ret;
3121 }
3122 } else {
3123 cgroup_rm_file(cgrp, cft);
3124 }
3125 }
3126 return 0;
3127 }
3128
3129 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3130 {
3131 LIST_HEAD(pending);
3132 struct cgroup_subsys *ss = cfts[0].ss;
3133 struct cgroup *root = &ss->root->cgrp;
3134 struct cgroup_subsys_state *css;
3135 int ret = 0;
3136
3137 lockdep_assert_held(&cgroup_mutex);
3138
3139 /* add/rm files for all cgroups created before */
3140 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3141 struct cgroup *cgrp = css->cgroup;
3142
3143 if (cgroup_is_dead(cgrp))
3144 continue;
3145
3146 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3147 if (ret)
3148 break;
3149 }
3150
3151 if (is_add && !ret)
3152 kernfs_activate(root->kn);
3153 return ret;
3154 }
3155
3156 static void cgroup_exit_cftypes(struct cftype *cfts)
3157 {
3158 struct cftype *cft;
3159
3160 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3161 /* free copy for custom atomic_write_len, see init_cftypes() */
3162 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3163 kfree(cft->kf_ops);
3164 cft->kf_ops = NULL;
3165 cft->ss = NULL;
3166
3167 /* revert flags set by cgroup core while adding @cfts */
3168 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3169 }
3170 }
3171
3172 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3173 {
3174 struct cftype *cft;
3175
3176 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3177 struct kernfs_ops *kf_ops;
3178
3179 WARN_ON(cft->ss || cft->kf_ops);
3180
3181 if (cft->seq_start)
3182 kf_ops = &cgroup_kf_ops;
3183 else
3184 kf_ops = &cgroup_kf_single_ops;
3185
3186 /*
3187 * Ugh... if @cft wants a custom max_write_len, we need to
3188 * make a copy of kf_ops to set its atomic_write_len.
3189 */
3190 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3191 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3192 if (!kf_ops) {
3193 cgroup_exit_cftypes(cfts);
3194 return -ENOMEM;
3195 }
3196 kf_ops->atomic_write_len = cft->max_write_len;
3197 }
3198
3199 cft->kf_ops = kf_ops;
3200 cft->ss = ss;
3201 }
3202
3203 return 0;
3204 }
3205
3206 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3207 {
3208 lockdep_assert_held(&cgroup_mutex);
3209
3210 if (!cfts || !cfts[0].ss)
3211 return -ENOENT;
3212
3213 list_del(&cfts->node);
3214 cgroup_apply_cftypes(cfts, false);
3215 cgroup_exit_cftypes(cfts);
3216 return 0;
3217 }
3218
3219 /**
3220 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3221 * @cfts: zero-length name terminated array of cftypes
3222 *
3223 * Unregister @cfts. Files described by @cfts are removed from all
3224 * existing cgroups and all future cgroups won't have them either. This
3225 * function can be called anytime whether @cfts' subsys is attached or not.
3226 *
3227 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3228 * registered.
3229 */
3230 int cgroup_rm_cftypes(struct cftype *cfts)
3231 {
3232 int ret;
3233
3234 mutex_lock(&cgroup_mutex);
3235 ret = cgroup_rm_cftypes_locked(cfts);
3236 mutex_unlock(&cgroup_mutex);
3237 return ret;
3238 }
3239
3240 /**
3241 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3242 * @ss: target cgroup subsystem
3243 * @cfts: zero-length name terminated array of cftypes
3244 *
3245 * Register @cfts to @ss. Files described by @cfts are created for all
3246 * existing cgroups to which @ss is attached and all future cgroups will
3247 * have them too. This function can be called anytime whether @ss is
3248 * attached or not.
3249 *
3250 * Returns 0 on successful registration, -errno on failure. Note that this
3251 * function currently returns 0 as long as @cfts registration is successful
3252 * even if some file creation attempts on existing cgroups fail.
3253 */
3254 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3255 {
3256 int ret;
3257
3258 if (ss->disabled)
3259 return 0;
3260
3261 if (!cfts || cfts[0].name[0] == '\0')
3262 return 0;
3263
3264 ret = cgroup_init_cftypes(ss, cfts);
3265 if (ret)
3266 return ret;
3267
3268 mutex_lock(&cgroup_mutex);
3269
3270 list_add_tail(&cfts->node, &ss->cfts);
3271 ret = cgroup_apply_cftypes(cfts, true);
3272 if (ret)
3273 cgroup_rm_cftypes_locked(cfts);
3274
3275 mutex_unlock(&cgroup_mutex);
3276 return ret;
3277 }
3278
3279 /**
3280 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3281 * @ss: target cgroup subsystem
3282 * @cfts: zero-length name terminated array of cftypes
3283 *
3284 * Similar to cgroup_add_cftypes() but the added files are only used for
3285 * the default hierarchy.
3286 */
3287 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3288 {
3289 struct cftype *cft;
3290
3291 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3292 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3293 return cgroup_add_cftypes(ss, cfts);
3294 }
3295
3296 /**
3297 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3298 * @ss: target cgroup subsystem
3299 * @cfts: zero-length name terminated array of cftypes
3300 *
3301 * Similar to cgroup_add_cftypes() but the added files are only used for
3302 * the legacy hierarchies.
3303 */
3304 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3305 {
3306 struct cftype *cft;
3307
3308 /*
3309 * If legacy_flies_on_dfl, we want to show the legacy files on the
3310 * dfl hierarchy but iff the target subsystem hasn't been updated
3311 * for the dfl hierarchy yet.
3312 */
3313 if (!cgroup_legacy_files_on_dfl ||
3314 ss->dfl_cftypes != ss->legacy_cftypes) {
3315 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3316 cft->flags |= __CFTYPE_NOT_ON_DFL;
3317 }
3318
3319 return cgroup_add_cftypes(ss, cfts);
3320 }
3321
3322 /**
3323 * cgroup_task_count - count the number of tasks in a cgroup.
3324 * @cgrp: the cgroup in question
3325 *
3326 * Return the number of tasks in the cgroup.
3327 */
3328 static int cgroup_task_count(const struct cgroup *cgrp)
3329 {
3330 int count = 0;
3331 struct cgrp_cset_link *link;
3332
3333 down_read(&css_set_rwsem);
3334 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3335 count += atomic_read(&link->cset->refcount);
3336 up_read(&css_set_rwsem);
3337 return count;
3338 }
3339
3340 /**
3341 * css_next_child - find the next child of a given css
3342 * @pos: the current position (%NULL to initiate traversal)
3343 * @parent: css whose children to walk
3344 *
3345 * This function returns the next child of @parent and should be called
3346 * under either cgroup_mutex or RCU read lock. The only requirement is
3347 * that @parent and @pos are accessible. The next sibling is guaranteed to
3348 * be returned regardless of their states.
3349 *
3350 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3351 * css which finished ->css_online() is guaranteed to be visible in the
3352 * future iterations and will stay visible until the last reference is put.
3353 * A css which hasn't finished ->css_online() or already finished
3354 * ->css_offline() may show up during traversal. It's each subsystem's
3355 * responsibility to synchronize against on/offlining.
3356 */
3357 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3358 struct cgroup_subsys_state *parent)
3359 {
3360 struct cgroup_subsys_state *next;
3361
3362 cgroup_assert_mutex_or_rcu_locked();
3363
3364 /*
3365 * @pos could already have been unlinked from the sibling list.
3366 * Once a cgroup is removed, its ->sibling.next is no longer
3367 * updated when its next sibling changes. CSS_RELEASED is set when
3368 * @pos is taken off list, at which time its next pointer is valid,
3369 * and, as releases are serialized, the one pointed to by the next
3370 * pointer is guaranteed to not have started release yet. This
3371 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3372 * critical section, the one pointed to by its next pointer is
3373 * guaranteed to not have finished its RCU grace period even if we
3374 * have dropped rcu_read_lock() inbetween iterations.
3375 *
3376 * If @pos has CSS_RELEASED set, its next pointer can't be
3377 * dereferenced; however, as each css is given a monotonically
3378 * increasing unique serial number and always appended to the
3379 * sibling list, the next one can be found by walking the parent's
3380 * children until the first css with higher serial number than
3381 * @pos's. While this path can be slower, it happens iff iteration
3382 * races against release and the race window is very small.
3383 */
3384 if (!pos) {
3385 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3386 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3387 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3388 } else {
3389 list_for_each_entry_rcu(next, &parent->children, sibling)
3390 if (next->serial_nr > pos->serial_nr)
3391 break;
3392 }
3393
3394 /*
3395 * @next, if not pointing to the head, can be dereferenced and is
3396 * the next sibling.
3397 */
3398 if (&next->sibling != &parent->children)
3399 return next;
3400 return NULL;
3401 }
3402
3403 /**
3404 * css_next_descendant_pre - find the next descendant for pre-order walk
3405 * @pos: the current position (%NULL to initiate traversal)
3406 * @root: css whose descendants to walk
3407 *
3408 * To be used by css_for_each_descendant_pre(). Find the next descendant
3409 * to visit for pre-order traversal of @root's descendants. @root is
3410 * included in the iteration and the first node to be visited.
3411 *
3412 * While this function requires cgroup_mutex or RCU read locking, it
3413 * doesn't require the whole traversal to be contained in a single critical
3414 * section. This function will return the correct next descendant as long
3415 * as both @pos and @root are accessible and @pos is a descendant of @root.
3416 *
3417 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3418 * css which finished ->css_online() is guaranteed to be visible in the
3419 * future iterations and will stay visible until the last reference is put.
3420 * A css which hasn't finished ->css_online() or already finished
3421 * ->css_offline() may show up during traversal. It's each subsystem's
3422 * responsibility to synchronize against on/offlining.
3423 */
3424 struct cgroup_subsys_state *
3425 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3426 struct cgroup_subsys_state *root)
3427 {
3428 struct cgroup_subsys_state *next;
3429
3430 cgroup_assert_mutex_or_rcu_locked();
3431
3432 /* if first iteration, visit @root */
3433 if (!pos)
3434 return root;
3435
3436 /* visit the first child if exists */
3437 next = css_next_child(NULL, pos);
3438 if (next)
3439 return next;
3440
3441 /* no child, visit my or the closest ancestor's next sibling */
3442 while (pos != root) {
3443 next = css_next_child(pos, pos->parent);
3444 if (next)
3445 return next;
3446 pos = pos->parent;
3447 }
3448
3449 return NULL;
3450 }
3451
3452 /**
3453 * css_rightmost_descendant - return the rightmost descendant of a css
3454 * @pos: css of interest
3455 *
3456 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3457 * is returned. This can be used during pre-order traversal to skip
3458 * subtree of @pos.
3459 *
3460 * While this function requires cgroup_mutex or RCU read locking, it
3461 * doesn't require the whole traversal to be contained in a single critical
3462 * section. This function will return the correct rightmost descendant as
3463 * long as @pos is accessible.
3464 */
3465 struct cgroup_subsys_state *
3466 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3467 {
3468 struct cgroup_subsys_state *last, *tmp;
3469
3470 cgroup_assert_mutex_or_rcu_locked();
3471
3472 do {
3473 last = pos;
3474 /* ->prev isn't RCU safe, walk ->next till the end */
3475 pos = NULL;
3476 css_for_each_child(tmp, last)
3477 pos = tmp;
3478 } while (pos);
3479
3480 return last;
3481 }
3482
3483 static struct cgroup_subsys_state *
3484 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3485 {
3486 struct cgroup_subsys_state *last;
3487
3488 do {
3489 last = pos;
3490 pos = css_next_child(NULL, pos);
3491 } while (pos);
3492
3493 return last;
3494 }
3495
3496 /**
3497 * css_next_descendant_post - find the next descendant for post-order walk
3498 * @pos: the current position (%NULL to initiate traversal)
3499 * @root: css whose descendants to walk
3500 *
3501 * To be used by css_for_each_descendant_post(). Find the next descendant
3502 * to visit for post-order traversal of @root's descendants. @root is
3503 * included in the iteration and the last node to be visited.
3504 *
3505 * While this function requires cgroup_mutex or RCU read locking, it
3506 * doesn't require the whole traversal to be contained in a single critical
3507 * section. This function will return the correct next descendant as long
3508 * as both @pos and @cgroup are accessible and @pos is a descendant of
3509 * @cgroup.
3510 *
3511 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3512 * css which finished ->css_online() is guaranteed to be visible in the
3513 * future iterations and will stay visible until the last reference is put.
3514 * A css which hasn't finished ->css_online() or already finished
3515 * ->css_offline() may show up during traversal. It's each subsystem's
3516 * responsibility to synchronize against on/offlining.
3517 */
3518 struct cgroup_subsys_state *
3519 css_next_descendant_post(struct cgroup_subsys_state *pos,
3520 struct cgroup_subsys_state *root)
3521 {
3522 struct cgroup_subsys_state *next;
3523
3524 cgroup_assert_mutex_or_rcu_locked();
3525
3526 /* if first iteration, visit leftmost descendant which may be @root */
3527 if (!pos)
3528 return css_leftmost_descendant(root);
3529
3530 /* if we visited @root, we're done */
3531 if (pos == root)
3532 return NULL;
3533
3534 /* if there's an unvisited sibling, visit its leftmost descendant */
3535 next = css_next_child(pos, pos->parent);
3536 if (next)
3537 return css_leftmost_descendant(next);
3538
3539 /* no sibling left, visit parent */
3540 return pos->parent;
3541 }
3542
3543 /**
3544 * css_has_online_children - does a css have online children
3545 * @css: the target css
3546 *
3547 * Returns %true if @css has any online children; otherwise, %false. This
3548 * function can be called from any context but the caller is responsible
3549 * for synchronizing against on/offlining as necessary.
3550 */
3551 bool css_has_online_children(struct cgroup_subsys_state *css)
3552 {
3553 struct cgroup_subsys_state *child;
3554 bool ret = false;
3555
3556 rcu_read_lock();
3557 css_for_each_child(child, css) {
3558 if (child->flags & CSS_ONLINE) {
3559 ret = true;
3560 break;
3561 }
3562 }
3563 rcu_read_unlock();
3564 return ret;
3565 }
3566
3567 /**
3568 * css_advance_task_iter - advance a task itererator to the next css_set
3569 * @it: the iterator to advance
3570 *
3571 * Advance @it to the next css_set to walk.
3572 */
3573 static void css_advance_task_iter(struct css_task_iter *it)
3574 {
3575 struct list_head *l = it->cset_pos;
3576 struct cgrp_cset_link *link;
3577 struct css_set *cset;
3578
3579 /* Advance to the next non-empty css_set */
3580 do {
3581 l = l->next;
3582 if (l == it->cset_head) {
3583 it->cset_pos = NULL;
3584 return;
3585 }
3586
3587 if (it->ss) {
3588 cset = container_of(l, struct css_set,
3589 e_cset_node[it->ss->id]);
3590 } else {
3591 link = list_entry(l, struct cgrp_cset_link, cset_link);
3592 cset = link->cset;
3593 }
3594 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3595
3596 it->cset_pos = l;
3597
3598 if (!list_empty(&cset->tasks))
3599 it->task_pos = cset->tasks.next;
3600 else
3601 it->task_pos = cset->mg_tasks.next;
3602
3603 it->tasks_head = &cset->tasks;
3604 it->mg_tasks_head = &cset->mg_tasks;
3605 }
3606
3607 /**
3608 * css_task_iter_start - initiate task iteration
3609 * @css: the css to walk tasks of
3610 * @it: the task iterator to use
3611 *
3612 * Initiate iteration through the tasks of @css. The caller can call
3613 * css_task_iter_next() to walk through the tasks until the function
3614 * returns NULL. On completion of iteration, css_task_iter_end() must be
3615 * called.
3616 *
3617 * Note that this function acquires a lock which is released when the
3618 * iteration finishes. The caller can't sleep while iteration is in
3619 * progress.
3620 */
3621 void css_task_iter_start(struct cgroup_subsys_state *css,
3622 struct css_task_iter *it)
3623 __acquires(css_set_rwsem)
3624 {
3625 /* no one should try to iterate before mounting cgroups */
3626 WARN_ON_ONCE(!use_task_css_set_links);
3627
3628 down_read(&css_set_rwsem);
3629
3630 it->ss = css->ss;
3631
3632 if (it->ss)
3633 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3634 else
3635 it->cset_pos = &css->cgroup->cset_links;
3636
3637 it->cset_head = it->cset_pos;
3638
3639 css_advance_task_iter(it);
3640 }
3641
3642 /**
3643 * css_task_iter_next - return the next task for the iterator
3644 * @it: the task iterator being iterated
3645 *
3646 * The "next" function for task iteration. @it should have been
3647 * initialized via css_task_iter_start(). Returns NULL when the iteration
3648 * reaches the end.
3649 */
3650 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3651 {
3652 struct task_struct *res;
3653 struct list_head *l = it->task_pos;
3654
3655 /* If the iterator cg is NULL, we have no tasks */
3656 if (!it->cset_pos)
3657 return NULL;
3658 res = list_entry(l, struct task_struct, cg_list);
3659
3660 /*
3661 * Advance iterator to find next entry. cset->tasks is consumed
3662 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3663 * next cset.
3664 */
3665 l = l->next;
3666
3667 if (l == it->tasks_head)
3668 l = it->mg_tasks_head->next;
3669
3670 if (l == it->mg_tasks_head)
3671 css_advance_task_iter(it);
3672 else
3673 it->task_pos = l;
3674
3675 return res;
3676 }
3677
3678 /**
3679 * css_task_iter_end - finish task iteration
3680 * @it: the task iterator to finish
3681 *
3682 * Finish task iteration started by css_task_iter_start().
3683 */
3684 void css_task_iter_end(struct css_task_iter *it)
3685 __releases(css_set_rwsem)
3686 {
3687 up_read(&css_set_rwsem);
3688 }
3689
3690 /**
3691 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3692 * @to: cgroup to which the tasks will be moved
3693 * @from: cgroup in which the tasks currently reside
3694 *
3695 * Locking rules between cgroup_post_fork() and the migration path
3696 * guarantee that, if a task is forking while being migrated, the new child
3697 * is guaranteed to be either visible in the source cgroup after the
3698 * parent's migration is complete or put into the target cgroup. No task
3699 * can slip out of migration through forking.
3700 */
3701 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3702 {
3703 LIST_HEAD(preloaded_csets);
3704 struct cgrp_cset_link *link;
3705 struct css_task_iter it;
3706 struct task_struct *task;
3707 int ret;
3708
3709 mutex_lock(&cgroup_mutex);
3710
3711 /* all tasks in @from are being moved, all csets are source */
3712 down_read(&css_set_rwsem);
3713 list_for_each_entry(link, &from->cset_links, cset_link)
3714 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3715 up_read(&css_set_rwsem);
3716
3717 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3718 if (ret)
3719 goto out_err;
3720
3721 /*
3722 * Migrate tasks one-by-one until @form is empty. This fails iff
3723 * ->can_attach() fails.
3724 */
3725 do {
3726 css_task_iter_start(&from->self, &it);
3727 task = css_task_iter_next(&it);
3728 if (task)
3729 get_task_struct(task);
3730 css_task_iter_end(&it);
3731
3732 if (task) {
3733 ret = cgroup_migrate(to, task, false);
3734 put_task_struct(task);
3735 }
3736 } while (task && !ret);
3737 out_err:
3738 cgroup_migrate_finish(&preloaded_csets);
3739 mutex_unlock(&cgroup_mutex);
3740 return ret;
3741 }
3742
3743 /*
3744 * Stuff for reading the 'tasks'/'procs' files.
3745 *
3746 * Reading this file can return large amounts of data if a cgroup has
3747 * *lots* of attached tasks. So it may need several calls to read(),
3748 * but we cannot guarantee that the information we produce is correct
3749 * unless we produce it entirely atomically.
3750 *
3751 */
3752
3753 /* which pidlist file are we talking about? */
3754 enum cgroup_filetype {
3755 CGROUP_FILE_PROCS,
3756 CGROUP_FILE_TASKS,
3757 };
3758
3759 /*
3760 * A pidlist is a list of pids that virtually represents the contents of one
3761 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3762 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3763 * to the cgroup.
3764 */
3765 struct cgroup_pidlist {
3766 /*
3767 * used to find which pidlist is wanted. doesn't change as long as
3768 * this particular list stays in the list.
3769 */
3770 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3771 /* array of xids */
3772 pid_t *list;
3773 /* how many elements the above list has */
3774 int length;
3775 /* each of these stored in a list by its cgroup */
3776 struct list_head links;
3777 /* pointer to the cgroup we belong to, for list removal purposes */
3778 struct cgroup *owner;
3779 /* for delayed destruction */
3780 struct delayed_work destroy_dwork;
3781 };
3782
3783 /*
3784 * The following two functions "fix" the issue where there are more pids
3785 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3786 * TODO: replace with a kernel-wide solution to this problem
3787 */
3788 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3789 static void *pidlist_allocate(int count)
3790 {
3791 if (PIDLIST_TOO_LARGE(count))
3792 return vmalloc(count * sizeof(pid_t));
3793 else
3794 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3795 }
3796
3797 static void pidlist_free(void *p)
3798 {
3799 kvfree(p);
3800 }
3801
3802 /*
3803 * Used to destroy all pidlists lingering waiting for destroy timer. None
3804 * should be left afterwards.
3805 */
3806 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3807 {
3808 struct cgroup_pidlist *l, *tmp_l;
3809
3810 mutex_lock(&cgrp->pidlist_mutex);
3811 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3812 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3813 mutex_unlock(&cgrp->pidlist_mutex);
3814
3815 flush_workqueue(cgroup_pidlist_destroy_wq);
3816 BUG_ON(!list_empty(&cgrp->pidlists));
3817 }
3818
3819 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3820 {
3821 struct delayed_work *dwork = to_delayed_work(work);
3822 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3823 destroy_dwork);
3824 struct cgroup_pidlist *tofree = NULL;
3825
3826 mutex_lock(&l->owner->pidlist_mutex);
3827
3828 /*
3829 * Destroy iff we didn't get queued again. The state won't change
3830 * as destroy_dwork can only be queued while locked.
3831 */
3832 if (!delayed_work_pending(dwork)) {
3833 list_del(&l->links);
3834 pidlist_free(l->list);
3835 put_pid_ns(l->key.ns);
3836 tofree = l;
3837 }
3838
3839 mutex_unlock(&l->owner->pidlist_mutex);
3840 kfree(tofree);
3841 }
3842
3843 /*
3844 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3845 * Returns the number of unique elements.
3846 */
3847 static int pidlist_uniq(pid_t *list, int length)
3848 {
3849 int src, dest = 1;
3850
3851 /*
3852 * we presume the 0th element is unique, so i starts at 1. trivial
3853 * edge cases first; no work needs to be done for either
3854 */
3855 if (length == 0 || length == 1)
3856 return length;
3857 /* src and dest walk down the list; dest counts unique elements */
3858 for (src = 1; src < length; src++) {
3859 /* find next unique element */
3860 while (list[src] == list[src-1]) {
3861 src++;
3862 if (src == length)
3863 goto after;
3864 }
3865 /* dest always points to where the next unique element goes */
3866 list[dest] = list[src];
3867 dest++;
3868 }
3869 after:
3870 return dest;
3871 }
3872
3873 /*
3874 * The two pid files - task and cgroup.procs - guaranteed that the result
3875 * is sorted, which forced this whole pidlist fiasco. As pid order is
3876 * different per namespace, each namespace needs differently sorted list,
3877 * making it impossible to use, for example, single rbtree of member tasks
3878 * sorted by task pointer. As pidlists can be fairly large, allocating one
3879 * per open file is dangerous, so cgroup had to implement shared pool of
3880 * pidlists keyed by cgroup and namespace.
3881 *
3882 * All this extra complexity was caused by the original implementation
3883 * committing to an entirely unnecessary property. In the long term, we
3884 * want to do away with it. Explicitly scramble sort order if on the
3885 * default hierarchy so that no such expectation exists in the new
3886 * interface.
3887 *
3888 * Scrambling is done by swapping every two consecutive bits, which is
3889 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3890 */
3891 static pid_t pid_fry(pid_t pid)
3892 {
3893 unsigned a = pid & 0x55555555;
3894 unsigned b = pid & 0xAAAAAAAA;
3895
3896 return (a << 1) | (b >> 1);
3897 }
3898
3899 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3900 {
3901 if (cgroup_on_dfl(cgrp))
3902 return pid_fry(pid);
3903 else
3904 return pid;
3905 }
3906
3907 static int cmppid(const void *a, const void *b)
3908 {
3909 return *(pid_t *)a - *(pid_t *)b;
3910 }
3911
3912 static int fried_cmppid(const void *a, const void *b)
3913 {
3914 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3915 }
3916
3917 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3918 enum cgroup_filetype type)
3919 {
3920 struct cgroup_pidlist *l;
3921 /* don't need task_nsproxy() if we're looking at ourself */
3922 struct pid_namespace *ns = task_active_pid_ns(current);
3923
3924 lockdep_assert_held(&cgrp->pidlist_mutex);
3925
3926 list_for_each_entry(l, &cgrp->pidlists, links)
3927 if (l->key.type == type && l->key.ns == ns)
3928 return l;
3929 return NULL;
3930 }
3931
3932 /*
3933 * find the appropriate pidlist for our purpose (given procs vs tasks)
3934 * returns with the lock on that pidlist already held, and takes care
3935 * of the use count, or returns NULL with no locks held if we're out of
3936 * memory.
3937 */
3938 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3939 enum cgroup_filetype type)
3940 {
3941 struct cgroup_pidlist *l;
3942
3943 lockdep_assert_held(&cgrp->pidlist_mutex);
3944
3945 l = cgroup_pidlist_find(cgrp, type);
3946 if (l)
3947 return l;
3948
3949 /* entry not found; create a new one */
3950 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3951 if (!l)
3952 return l;
3953
3954 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3955 l->key.type = type;
3956 /* don't need task_nsproxy() if we're looking at ourself */
3957 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3958 l->owner = cgrp;
3959 list_add(&l->links, &cgrp->pidlists);
3960 return l;
3961 }
3962
3963 /*
3964 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3965 */
3966 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3967 struct cgroup_pidlist **lp)
3968 {
3969 pid_t *array;
3970 int length;
3971 int pid, n = 0; /* used for populating the array */
3972 struct css_task_iter it;
3973 struct task_struct *tsk;
3974 struct cgroup_pidlist *l;
3975
3976 lockdep_assert_held(&cgrp->pidlist_mutex);
3977
3978 /*
3979 * If cgroup gets more users after we read count, we won't have
3980 * enough space - tough. This race is indistinguishable to the
3981 * caller from the case that the additional cgroup users didn't
3982 * show up until sometime later on.
3983 */
3984 length = cgroup_task_count(cgrp);
3985 array = pidlist_allocate(length);
3986 if (!array)
3987 return -ENOMEM;
3988 /* now, populate the array */
3989 css_task_iter_start(&cgrp->self, &it);
3990 while ((tsk = css_task_iter_next(&it))) {
3991 if (unlikely(n == length))
3992 break;
3993 /* get tgid or pid for procs or tasks file respectively */
3994 if (type == CGROUP_FILE_PROCS)
3995 pid = task_tgid_vnr(tsk);
3996 else
3997 pid = task_pid_vnr(tsk);
3998 if (pid > 0) /* make sure to only use valid results */
3999 array[n++] = pid;
4000 }
4001 css_task_iter_end(&it);
4002 length = n;
4003 /* now sort & (if procs) strip out duplicates */
4004 if (cgroup_on_dfl(cgrp))
4005 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4006 else
4007 sort(array, length, sizeof(pid_t), cmppid, NULL);
4008 if (type == CGROUP_FILE_PROCS)
4009 length = pidlist_uniq(array, length);
4010
4011 l = cgroup_pidlist_find_create(cgrp, type);
4012 if (!l) {
4013 pidlist_free(array);
4014 return -ENOMEM;
4015 }
4016
4017 /* store array, freeing old if necessary */
4018 pidlist_free(l->list);
4019 l->list = array;
4020 l->length = length;
4021 *lp = l;
4022 return 0;
4023 }
4024
4025 /**
4026 * cgroupstats_build - build and fill cgroupstats
4027 * @stats: cgroupstats to fill information into
4028 * @dentry: A dentry entry belonging to the cgroup for which stats have
4029 * been requested.
4030 *
4031 * Build and fill cgroupstats so that taskstats can export it to user
4032 * space.
4033 */
4034 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4035 {
4036 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4037 struct cgroup *cgrp;
4038 struct css_task_iter it;
4039 struct task_struct *tsk;
4040
4041 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4042 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4043 kernfs_type(kn) != KERNFS_DIR)
4044 return -EINVAL;
4045
4046 mutex_lock(&cgroup_mutex);
4047
4048 /*
4049 * We aren't being called from kernfs and there's no guarantee on
4050 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4051 * @kn->priv is RCU safe. Let's do the RCU dancing.
4052 */
4053 rcu_read_lock();
4054 cgrp = rcu_dereference(kn->priv);
4055 if (!cgrp || cgroup_is_dead(cgrp)) {
4056 rcu_read_unlock();
4057 mutex_unlock(&cgroup_mutex);
4058 return -ENOENT;
4059 }
4060 rcu_read_unlock();
4061
4062 css_task_iter_start(&cgrp->self, &it);
4063 while ((tsk = css_task_iter_next(&it))) {
4064 switch (tsk->state) {
4065 case TASK_RUNNING:
4066 stats->nr_running++;
4067 break;
4068 case TASK_INTERRUPTIBLE:
4069 stats->nr_sleeping++;
4070 break;
4071 case TASK_UNINTERRUPTIBLE:
4072 stats->nr_uninterruptible++;
4073 break;
4074 case TASK_STOPPED:
4075 stats->nr_stopped++;
4076 break;
4077 default:
4078 if (delayacct_is_task_waiting_on_io(tsk))
4079 stats->nr_io_wait++;
4080 break;
4081 }
4082 }
4083 css_task_iter_end(&it);
4084
4085 mutex_unlock(&cgroup_mutex);
4086 return 0;
4087 }
4088
4089
4090 /*
4091 * seq_file methods for the tasks/procs files. The seq_file position is the
4092 * next pid to display; the seq_file iterator is a pointer to the pid
4093 * in the cgroup->l->list array.
4094 */
4095
4096 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4097 {
4098 /*
4099 * Initially we receive a position value that corresponds to
4100 * one more than the last pid shown (or 0 on the first call or
4101 * after a seek to the start). Use a binary-search to find the
4102 * next pid to display, if any
4103 */
4104 struct kernfs_open_file *of = s->private;
4105 struct cgroup *cgrp = seq_css(s)->cgroup;
4106 struct cgroup_pidlist *l;
4107 enum cgroup_filetype type = seq_cft(s)->private;
4108 int index = 0, pid = *pos;
4109 int *iter, ret;
4110
4111 mutex_lock(&cgrp->pidlist_mutex);
4112
4113 /*
4114 * !NULL @of->priv indicates that this isn't the first start()
4115 * after open. If the matching pidlist is around, we can use that.
4116 * Look for it. Note that @of->priv can't be used directly. It
4117 * could already have been destroyed.
4118 */
4119 if (of->priv)
4120 of->priv = cgroup_pidlist_find(cgrp, type);
4121
4122 /*
4123 * Either this is the first start() after open or the matching
4124 * pidlist has been destroyed inbetween. Create a new one.
4125 */
4126 if (!of->priv) {
4127 ret = pidlist_array_load(cgrp, type,
4128 (struct cgroup_pidlist **)&of->priv);
4129 if (ret)
4130 return ERR_PTR(ret);
4131 }
4132 l = of->priv;
4133
4134 if (pid) {
4135 int end = l->length;
4136
4137 while (index < end) {
4138 int mid = (index + end) / 2;
4139 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4140 index = mid;
4141 break;
4142 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4143 index = mid + 1;
4144 else
4145 end = mid;
4146 }
4147 }
4148 /* If we're off the end of the array, we're done */
4149 if (index >= l->length)
4150 return NULL;
4151 /* Update the abstract position to be the actual pid that we found */
4152 iter = l->list + index;
4153 *pos = cgroup_pid_fry(cgrp, *iter);
4154 return iter;
4155 }
4156
4157 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4158 {
4159 struct kernfs_open_file *of = s->private;
4160 struct cgroup_pidlist *l = of->priv;
4161
4162 if (l)
4163 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4164 CGROUP_PIDLIST_DESTROY_DELAY);
4165 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4166 }
4167
4168 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4169 {
4170 struct kernfs_open_file *of = s->private;
4171 struct cgroup_pidlist *l = of->priv;
4172 pid_t *p = v;
4173 pid_t *end = l->list + l->length;
4174 /*
4175 * Advance to the next pid in the array. If this goes off the
4176 * end, we're done
4177 */
4178 p++;
4179 if (p >= end) {
4180 return NULL;
4181 } else {
4182 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4183 return p;
4184 }
4185 }
4186
4187 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4188 {
4189 seq_printf(s, "%d\n", *(int *)v);
4190
4191 return 0;
4192 }
4193
4194 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4195 struct cftype *cft)
4196 {
4197 return notify_on_release(css->cgroup);
4198 }
4199
4200 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4201 struct cftype *cft, u64 val)
4202 {
4203 if (val)
4204 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4205 else
4206 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4207 return 0;
4208 }
4209
4210 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4211 struct cftype *cft)
4212 {
4213 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4214 }
4215
4216 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4217 struct cftype *cft, u64 val)
4218 {
4219 if (val)
4220 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4221 else
4222 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4223 return 0;
4224 }
4225
4226 /* cgroup core interface files for the default hierarchy */
4227 static struct cftype cgroup_dfl_base_files[] = {
4228 {
4229 .name = "cgroup.procs",
4230 .seq_start = cgroup_pidlist_start,
4231 .seq_next = cgroup_pidlist_next,
4232 .seq_stop = cgroup_pidlist_stop,
4233 .seq_show = cgroup_pidlist_show,
4234 .private = CGROUP_FILE_PROCS,
4235 .write = cgroup_procs_write,
4236 .mode = S_IRUGO | S_IWUSR,
4237 },
4238 {
4239 .name = "cgroup.controllers",
4240 .flags = CFTYPE_ONLY_ON_ROOT,
4241 .seq_show = cgroup_root_controllers_show,
4242 },
4243 {
4244 .name = "cgroup.controllers",
4245 .flags = CFTYPE_NOT_ON_ROOT,
4246 .seq_show = cgroup_controllers_show,
4247 },
4248 {
4249 .name = "cgroup.subtree_control",
4250 .seq_show = cgroup_subtree_control_show,
4251 .write = cgroup_subtree_control_write,
4252 },
4253 {
4254 .name = "cgroup.populated",
4255 .flags = CFTYPE_NOT_ON_ROOT,
4256 .seq_show = cgroup_populated_show,
4257 },
4258 { } /* terminate */
4259 };
4260
4261 /* cgroup core interface files for the legacy hierarchies */
4262 static struct cftype cgroup_legacy_base_files[] = {
4263 {
4264 .name = "cgroup.procs",
4265 .seq_start = cgroup_pidlist_start,
4266 .seq_next = cgroup_pidlist_next,
4267 .seq_stop = cgroup_pidlist_stop,
4268 .seq_show = cgroup_pidlist_show,
4269 .private = CGROUP_FILE_PROCS,
4270 .write = cgroup_procs_write,
4271 .mode = S_IRUGO | S_IWUSR,
4272 },
4273 {
4274 .name = "cgroup.clone_children",
4275 .read_u64 = cgroup_clone_children_read,
4276 .write_u64 = cgroup_clone_children_write,
4277 },
4278 {
4279 .name = "cgroup.sane_behavior",
4280 .flags = CFTYPE_ONLY_ON_ROOT,
4281 .seq_show = cgroup_sane_behavior_show,
4282 },
4283 {
4284 .name = "tasks",
4285 .seq_start = cgroup_pidlist_start,
4286 .seq_next = cgroup_pidlist_next,
4287 .seq_stop = cgroup_pidlist_stop,
4288 .seq_show = cgroup_pidlist_show,
4289 .private = CGROUP_FILE_TASKS,
4290 .write = cgroup_tasks_write,
4291 .mode = S_IRUGO | S_IWUSR,
4292 },
4293 {
4294 .name = "notify_on_release",
4295 .read_u64 = cgroup_read_notify_on_release,
4296 .write_u64 = cgroup_write_notify_on_release,
4297 },
4298 {
4299 .name = "release_agent",
4300 .flags = CFTYPE_ONLY_ON_ROOT,
4301 .seq_show = cgroup_release_agent_show,
4302 .write = cgroup_release_agent_write,
4303 .max_write_len = PATH_MAX - 1,
4304 },
4305 { } /* terminate */
4306 };
4307
4308 /**
4309 * cgroup_populate_dir - create subsys files in a cgroup directory
4310 * @cgrp: target cgroup
4311 * @subsys_mask: mask of the subsystem ids whose files should be added
4312 *
4313 * On failure, no file is added.
4314 */
4315 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4316 {
4317 struct cgroup_subsys *ss;
4318 int i, ret = 0;
4319
4320 /* process cftsets of each subsystem */
4321 for_each_subsys(ss, i) {
4322 struct cftype *cfts;
4323
4324 if (!(subsys_mask & (1 << i)))
4325 continue;
4326
4327 list_for_each_entry(cfts, &ss->cfts, node) {
4328 ret = cgroup_addrm_files(cgrp, cfts, true);
4329 if (ret < 0)
4330 goto err;
4331 }
4332 }
4333 return 0;
4334 err:
4335 cgroup_clear_dir(cgrp, subsys_mask);
4336 return ret;
4337 }
4338
4339 /*
4340 * css destruction is four-stage process.
4341 *
4342 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4343 * Implemented in kill_css().
4344 *
4345 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4346 * and thus css_tryget_online() is guaranteed to fail, the css can be
4347 * offlined by invoking offline_css(). After offlining, the base ref is
4348 * put. Implemented in css_killed_work_fn().
4349 *
4350 * 3. When the percpu_ref reaches zero, the only possible remaining
4351 * accessors are inside RCU read sections. css_release() schedules the
4352 * RCU callback.
4353 *
4354 * 4. After the grace period, the css can be freed. Implemented in
4355 * css_free_work_fn().
4356 *
4357 * It is actually hairier because both step 2 and 4 require process context
4358 * and thus involve punting to css->destroy_work adding two additional
4359 * steps to the already complex sequence.
4360 */
4361 static void css_free_work_fn(struct work_struct *work)
4362 {
4363 struct cgroup_subsys_state *css =
4364 container_of(work, struct cgroup_subsys_state, destroy_work);
4365 struct cgroup_subsys *ss = css->ss;
4366 struct cgroup *cgrp = css->cgroup;
4367
4368 percpu_ref_exit(&css->refcnt);
4369
4370 if (ss) {
4371 /* css free path */
4372 int id = css->id;
4373
4374 if (css->parent)
4375 css_put(css->parent);
4376
4377 ss->css_free(css);
4378 cgroup_idr_remove(&ss->css_idr, id);
4379 cgroup_put(cgrp);
4380 } else {
4381 /* cgroup free path */
4382 atomic_dec(&cgrp->root->nr_cgrps);
4383 cgroup_pidlist_destroy_all(cgrp);
4384 cancel_work_sync(&cgrp->release_agent_work);
4385
4386 if (cgroup_parent(cgrp)) {
4387 /*
4388 * We get a ref to the parent, and put the ref when
4389 * this cgroup is being freed, so it's guaranteed
4390 * that the parent won't be destroyed before its
4391 * children.
4392 */
4393 cgroup_put(cgroup_parent(cgrp));
4394 kernfs_put(cgrp->kn);
4395 kfree(cgrp);
4396 } else {
4397 /*
4398 * This is root cgroup's refcnt reaching zero,
4399 * which indicates that the root should be
4400 * released.
4401 */
4402 cgroup_destroy_root(cgrp->root);
4403 }
4404 }
4405 }
4406
4407 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4408 {
4409 struct cgroup_subsys_state *css =
4410 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4411
4412 INIT_WORK(&css->destroy_work, css_free_work_fn);
4413 queue_work(cgroup_destroy_wq, &css->destroy_work);
4414 }
4415
4416 static void css_release_work_fn(struct work_struct *work)
4417 {
4418 struct cgroup_subsys_state *css =
4419 container_of(work, struct cgroup_subsys_state, destroy_work);
4420 struct cgroup_subsys *ss = css->ss;
4421 struct cgroup *cgrp = css->cgroup;
4422
4423 mutex_lock(&cgroup_mutex);
4424
4425 css->flags |= CSS_RELEASED;
4426 list_del_rcu(&css->sibling);
4427
4428 if (ss) {
4429 /* css release path */
4430 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4431 if (ss->css_released)
4432 ss->css_released(css);
4433 } else {
4434 /* cgroup release path */
4435 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4436 cgrp->id = -1;
4437
4438 /*
4439 * There are two control paths which try to determine
4440 * cgroup from dentry without going through kernfs -
4441 * cgroupstats_build() and css_tryget_online_from_dir().
4442 * Those are supported by RCU protecting clearing of
4443 * cgrp->kn->priv backpointer.
4444 */
4445 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4446 }
4447
4448 mutex_unlock(&cgroup_mutex);
4449
4450 call_rcu(&css->rcu_head, css_free_rcu_fn);
4451 }
4452
4453 static void css_release(struct percpu_ref *ref)
4454 {
4455 struct cgroup_subsys_state *css =
4456 container_of(ref, struct cgroup_subsys_state, refcnt);
4457
4458 INIT_WORK(&css->destroy_work, css_release_work_fn);
4459 queue_work(cgroup_destroy_wq, &css->destroy_work);
4460 }
4461
4462 static void init_and_link_css(struct cgroup_subsys_state *css,
4463 struct cgroup_subsys *ss, struct cgroup *cgrp)
4464 {
4465 lockdep_assert_held(&cgroup_mutex);
4466
4467 cgroup_get(cgrp);
4468
4469 memset(css, 0, sizeof(*css));
4470 css->cgroup = cgrp;
4471 css->ss = ss;
4472 INIT_LIST_HEAD(&css->sibling);
4473 INIT_LIST_HEAD(&css->children);
4474 css->serial_nr = css_serial_nr_next++;
4475
4476 if (cgroup_parent(cgrp)) {
4477 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4478 css_get(css->parent);
4479 }
4480
4481 BUG_ON(cgroup_css(cgrp, ss));
4482 }
4483
4484 /* invoke ->css_online() on a new CSS and mark it online if successful */
4485 static int online_css(struct cgroup_subsys_state *css)
4486 {
4487 struct cgroup_subsys *ss = css->ss;
4488 int ret = 0;
4489
4490 lockdep_assert_held(&cgroup_mutex);
4491
4492 if (ss->css_online)
4493 ret = ss->css_online(css);
4494 if (!ret) {
4495 css->flags |= CSS_ONLINE;
4496 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4497 }
4498 return ret;
4499 }
4500
4501 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4502 static void offline_css(struct cgroup_subsys_state *css)
4503 {
4504 struct cgroup_subsys *ss = css->ss;
4505
4506 lockdep_assert_held(&cgroup_mutex);
4507
4508 if (!(css->flags & CSS_ONLINE))
4509 return;
4510
4511 if (ss->css_offline)
4512 ss->css_offline(css);
4513
4514 css->flags &= ~CSS_ONLINE;
4515 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4516
4517 wake_up_all(&css->cgroup->offline_waitq);
4518 }
4519
4520 /**
4521 * create_css - create a cgroup_subsys_state
4522 * @cgrp: the cgroup new css will be associated with
4523 * @ss: the subsys of new css
4524 * @visible: whether to create control knobs for the new css or not
4525 *
4526 * Create a new css associated with @cgrp - @ss pair. On success, the new
4527 * css is online and installed in @cgrp with all interface files created if
4528 * @visible. Returns 0 on success, -errno on failure.
4529 */
4530 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4531 bool visible)
4532 {
4533 struct cgroup *parent = cgroup_parent(cgrp);
4534 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4535 struct cgroup_subsys_state *css;
4536 int err;
4537
4538 lockdep_assert_held(&cgroup_mutex);
4539
4540 css = ss->css_alloc(parent_css);
4541 if (IS_ERR(css))
4542 return PTR_ERR(css);
4543
4544 init_and_link_css(css, ss, cgrp);
4545
4546 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4547 if (err)
4548 goto err_free_css;
4549
4550 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4551 if (err < 0)
4552 goto err_free_percpu_ref;
4553 css->id = err;
4554
4555 if (visible) {
4556 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4557 if (err)
4558 goto err_free_id;
4559 }
4560
4561 /* @css is ready to be brought online now, make it visible */
4562 list_add_tail_rcu(&css->sibling, &parent_css->children);
4563 cgroup_idr_replace(&ss->css_idr, css, css->id);
4564
4565 err = online_css(css);
4566 if (err)
4567 goto err_list_del;
4568
4569 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4570 cgroup_parent(parent)) {
4571 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4572 current->comm, current->pid, ss->name);
4573 if (!strcmp(ss->name, "memory"))
4574 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4575 ss->warned_broken_hierarchy = true;
4576 }
4577
4578 return 0;
4579
4580 err_list_del:
4581 list_del_rcu(&css->sibling);
4582 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4583 err_free_id:
4584 cgroup_idr_remove(&ss->css_idr, css->id);
4585 err_free_percpu_ref:
4586 percpu_ref_exit(&css->refcnt);
4587 err_free_css:
4588 call_rcu(&css->rcu_head, css_free_rcu_fn);
4589 return err;
4590 }
4591
4592 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4593 umode_t mode)
4594 {
4595 struct cgroup *parent, *cgrp;
4596 struct cgroup_root *root;
4597 struct cgroup_subsys *ss;
4598 struct kernfs_node *kn;
4599 struct cftype *base_files;
4600 int ssid, ret;
4601
4602 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4603 */
4604 if (strchr(name, '\n'))
4605 return -EINVAL;
4606
4607 parent = cgroup_kn_lock_live(parent_kn);
4608 if (!parent)
4609 return -ENODEV;
4610 root = parent->root;
4611
4612 /* allocate the cgroup and its ID, 0 is reserved for the root */
4613 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4614 if (!cgrp) {
4615 ret = -ENOMEM;
4616 goto out_unlock;
4617 }
4618
4619 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4620 if (ret)
4621 goto out_free_cgrp;
4622
4623 /*
4624 * Temporarily set the pointer to NULL, so idr_find() won't return
4625 * a half-baked cgroup.
4626 */
4627 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4628 if (cgrp->id < 0) {
4629 ret = -ENOMEM;
4630 goto out_cancel_ref;
4631 }
4632
4633 init_cgroup_housekeeping(cgrp);
4634
4635 cgrp->self.parent = &parent->self;
4636 cgrp->root = root;
4637
4638 if (notify_on_release(parent))
4639 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4640
4641 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4642 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4643
4644 /* create the directory */
4645 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4646 if (IS_ERR(kn)) {
4647 ret = PTR_ERR(kn);
4648 goto out_free_id;
4649 }
4650 cgrp->kn = kn;
4651
4652 /*
4653 * This extra ref will be put in cgroup_free_fn() and guarantees
4654 * that @cgrp->kn is always accessible.
4655 */
4656 kernfs_get(kn);
4657
4658 cgrp->self.serial_nr = css_serial_nr_next++;
4659
4660 /* allocation complete, commit to creation */
4661 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4662 atomic_inc(&root->nr_cgrps);
4663 cgroup_get(parent);
4664
4665 /*
4666 * @cgrp is now fully operational. If something fails after this
4667 * point, it'll be released via the normal destruction path.
4668 */
4669 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4670
4671 ret = cgroup_kn_set_ugid(kn);
4672 if (ret)
4673 goto out_destroy;
4674
4675 if (cgroup_on_dfl(cgrp))
4676 base_files = cgroup_dfl_base_files;
4677 else
4678 base_files = cgroup_legacy_base_files;
4679
4680 ret = cgroup_addrm_files(cgrp, base_files, true);
4681 if (ret)
4682 goto out_destroy;
4683
4684 /* let's create and online css's */
4685 for_each_subsys(ss, ssid) {
4686 if (parent->child_subsys_mask & (1 << ssid)) {
4687 ret = create_css(cgrp, ss,
4688 parent->subtree_control & (1 << ssid));
4689 if (ret)
4690 goto out_destroy;
4691 }
4692 }
4693
4694 /*
4695 * On the default hierarchy, a child doesn't automatically inherit
4696 * subtree_control from the parent. Each is configured manually.
4697 */
4698 if (!cgroup_on_dfl(cgrp)) {
4699 cgrp->subtree_control = parent->subtree_control;
4700 cgroup_refresh_child_subsys_mask(cgrp);
4701 }
4702
4703 kernfs_activate(kn);
4704
4705 ret = 0;
4706 goto out_unlock;
4707
4708 out_free_id:
4709 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4710 out_cancel_ref:
4711 percpu_ref_exit(&cgrp->self.refcnt);
4712 out_free_cgrp:
4713 kfree(cgrp);
4714 out_unlock:
4715 cgroup_kn_unlock(parent_kn);
4716 return ret;
4717
4718 out_destroy:
4719 cgroup_destroy_locked(cgrp);
4720 goto out_unlock;
4721 }
4722
4723 /*
4724 * This is called when the refcnt of a css is confirmed to be killed.
4725 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4726 * initate destruction and put the css ref from kill_css().
4727 */
4728 static void css_killed_work_fn(struct work_struct *work)
4729 {
4730 struct cgroup_subsys_state *css =
4731 container_of(work, struct cgroup_subsys_state, destroy_work);
4732
4733 mutex_lock(&cgroup_mutex);
4734 offline_css(css);
4735 mutex_unlock(&cgroup_mutex);
4736
4737 css_put(css);
4738 }
4739
4740 /* css kill confirmation processing requires process context, bounce */
4741 static void css_killed_ref_fn(struct percpu_ref *ref)
4742 {
4743 struct cgroup_subsys_state *css =
4744 container_of(ref, struct cgroup_subsys_state, refcnt);
4745
4746 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4747 queue_work(cgroup_destroy_wq, &css->destroy_work);
4748 }
4749
4750 /**
4751 * kill_css - destroy a css
4752 * @css: css to destroy
4753 *
4754 * This function initiates destruction of @css by removing cgroup interface
4755 * files and putting its base reference. ->css_offline() will be invoked
4756 * asynchronously once css_tryget_online() is guaranteed to fail and when
4757 * the reference count reaches zero, @css will be released.
4758 */
4759 static void kill_css(struct cgroup_subsys_state *css)
4760 {
4761 lockdep_assert_held(&cgroup_mutex);
4762
4763 /*
4764 * This must happen before css is disassociated with its cgroup.
4765 * See seq_css() for details.
4766 */
4767 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4768
4769 /*
4770 * Killing would put the base ref, but we need to keep it alive
4771 * until after ->css_offline().
4772 */
4773 css_get(css);
4774
4775 /*
4776 * cgroup core guarantees that, by the time ->css_offline() is
4777 * invoked, no new css reference will be given out via
4778 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4779 * proceed to offlining css's because percpu_ref_kill() doesn't
4780 * guarantee that the ref is seen as killed on all CPUs on return.
4781 *
4782 * Use percpu_ref_kill_and_confirm() to get notifications as each
4783 * css is confirmed to be seen as killed on all CPUs.
4784 */
4785 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4786 }
4787
4788 /**
4789 * cgroup_destroy_locked - the first stage of cgroup destruction
4790 * @cgrp: cgroup to be destroyed
4791 *
4792 * css's make use of percpu refcnts whose killing latency shouldn't be
4793 * exposed to userland and are RCU protected. Also, cgroup core needs to
4794 * guarantee that css_tryget_online() won't succeed by the time
4795 * ->css_offline() is invoked. To satisfy all the requirements,
4796 * destruction is implemented in the following two steps.
4797 *
4798 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4799 * userland visible parts and start killing the percpu refcnts of
4800 * css's. Set up so that the next stage will be kicked off once all
4801 * the percpu refcnts are confirmed to be killed.
4802 *
4803 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4804 * rest of destruction. Once all cgroup references are gone, the
4805 * cgroup is RCU-freed.
4806 *
4807 * This function implements s1. After this step, @cgrp is gone as far as
4808 * the userland is concerned and a new cgroup with the same name may be
4809 * created. As cgroup doesn't care about the names internally, this
4810 * doesn't cause any problem.
4811 */
4812 static int cgroup_destroy_locked(struct cgroup *cgrp)
4813 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4814 {
4815 struct cgroup_subsys_state *css;
4816 bool empty;
4817 int ssid;
4818
4819 lockdep_assert_held(&cgroup_mutex);
4820
4821 /*
4822 * css_set_rwsem synchronizes access to ->cset_links and prevents
4823 * @cgrp from being removed while put_css_set() is in progress.
4824 */
4825 down_read(&css_set_rwsem);
4826 empty = list_empty(&cgrp->cset_links);
4827 up_read(&css_set_rwsem);
4828 if (!empty)
4829 return -EBUSY;
4830
4831 /*
4832 * Make sure there's no live children. We can't test emptiness of
4833 * ->self.children as dead children linger on it while being
4834 * drained; otherwise, "rmdir parent/child parent" may fail.
4835 */
4836 if (css_has_online_children(&cgrp->self))
4837 return -EBUSY;
4838
4839 /*
4840 * Mark @cgrp dead. This prevents further task migration and child
4841 * creation by disabling cgroup_lock_live_group().
4842 */
4843 cgrp->self.flags &= ~CSS_ONLINE;
4844
4845 /* initiate massacre of all css's */
4846 for_each_css(css, ssid, cgrp)
4847 kill_css(css);
4848
4849 /*
4850 * Remove @cgrp directory along with the base files. @cgrp has an
4851 * extra ref on its kn.
4852 */
4853 kernfs_remove(cgrp->kn);
4854
4855 check_for_release(cgroup_parent(cgrp));
4856
4857 /* put the base reference */
4858 percpu_ref_kill(&cgrp->self.refcnt);
4859
4860 return 0;
4861 };
4862
4863 static int cgroup_rmdir(struct kernfs_node *kn)
4864 {
4865 struct cgroup *cgrp;
4866 int ret = 0;
4867
4868 cgrp = cgroup_kn_lock_live(kn);
4869 if (!cgrp)
4870 return 0;
4871
4872 ret = cgroup_destroy_locked(cgrp);
4873
4874 cgroup_kn_unlock(kn);
4875 return ret;
4876 }
4877
4878 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4879 .remount_fs = cgroup_remount,
4880 .show_options = cgroup_show_options,
4881 .mkdir = cgroup_mkdir,
4882 .rmdir = cgroup_rmdir,
4883 .rename = cgroup_rename,
4884 };
4885
4886 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4887 {
4888 struct cgroup_subsys_state *css;
4889
4890 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4891
4892 mutex_lock(&cgroup_mutex);
4893
4894 idr_init(&ss->css_idr);
4895 INIT_LIST_HEAD(&ss->cfts);
4896
4897 /* Create the root cgroup state for this subsystem */
4898 ss->root = &cgrp_dfl_root;
4899 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4900 /* We don't handle early failures gracefully */
4901 BUG_ON(IS_ERR(css));
4902 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4903
4904 /*
4905 * Root csses are never destroyed and we can't initialize
4906 * percpu_ref during early init. Disable refcnting.
4907 */
4908 css->flags |= CSS_NO_REF;
4909
4910 if (early) {
4911 /* allocation can't be done safely during early init */
4912 css->id = 1;
4913 } else {
4914 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4915 BUG_ON(css->id < 0);
4916 }
4917
4918 /* Update the init_css_set to contain a subsys
4919 * pointer to this state - since the subsystem is
4920 * newly registered, all tasks and hence the
4921 * init_css_set is in the subsystem's root cgroup. */
4922 init_css_set.subsys[ss->id] = css;
4923
4924 have_fork_callback |= (bool)ss->fork << ss->id;
4925 have_exit_callback |= (bool)ss->exit << ss->id;
4926
4927 /* At system boot, before all subsystems have been
4928 * registered, no tasks have been forked, so we don't
4929 * need to invoke fork callbacks here. */
4930 BUG_ON(!list_empty(&init_task.tasks));
4931
4932 BUG_ON(online_css(css));
4933
4934 mutex_unlock(&cgroup_mutex);
4935 }
4936
4937 /**
4938 * cgroup_init_early - cgroup initialization at system boot
4939 *
4940 * Initialize cgroups at system boot, and initialize any
4941 * subsystems that request early init.
4942 */
4943 int __init cgroup_init_early(void)
4944 {
4945 static struct cgroup_sb_opts __initdata opts;
4946 struct cgroup_subsys *ss;
4947 int i;
4948
4949 init_cgroup_root(&cgrp_dfl_root, &opts);
4950 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4951
4952 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4953
4954 for_each_subsys(ss, i) {
4955 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4956 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4957 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4958 ss->id, ss->name);
4959 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4960 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4961
4962 ss->id = i;
4963 ss->name = cgroup_subsys_name[i];
4964
4965 if (ss->early_init)
4966 cgroup_init_subsys(ss, true);
4967 }
4968 return 0;
4969 }
4970
4971 /**
4972 * cgroup_init - cgroup initialization
4973 *
4974 * Register cgroup filesystem and /proc file, and initialize
4975 * any subsystems that didn't request early init.
4976 */
4977 int __init cgroup_init(void)
4978 {
4979 struct cgroup_subsys *ss;
4980 unsigned long key;
4981 int ssid, err;
4982
4983 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
4984 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4985 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4986
4987 mutex_lock(&cgroup_mutex);
4988
4989 /* Add init_css_set to the hash table */
4990 key = css_set_hash(init_css_set.subsys);
4991 hash_add(css_set_table, &init_css_set.hlist, key);
4992
4993 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4994
4995 mutex_unlock(&cgroup_mutex);
4996
4997 for_each_subsys(ss, ssid) {
4998 if (ss->early_init) {
4999 struct cgroup_subsys_state *css =
5000 init_css_set.subsys[ss->id];
5001
5002 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5003 GFP_KERNEL);
5004 BUG_ON(css->id < 0);
5005 } else {
5006 cgroup_init_subsys(ss, false);
5007 }
5008
5009 list_add_tail(&init_css_set.e_cset_node[ssid],
5010 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5011
5012 /*
5013 * Setting dfl_root subsys_mask needs to consider the
5014 * disabled flag and cftype registration needs kmalloc,
5015 * both of which aren't available during early_init.
5016 */
5017 if (ss->disabled)
5018 continue;
5019
5020 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5021
5022 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5023 ss->dfl_cftypes = ss->legacy_cftypes;
5024
5025 if (!ss->dfl_cftypes)
5026 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5027
5028 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5029 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5030 } else {
5031 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5032 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5033 }
5034
5035 if (ss->bind)
5036 ss->bind(init_css_set.subsys[ssid]);
5037 }
5038
5039 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5040 if (!cgroup_kobj)
5041 return -ENOMEM;
5042
5043 err = register_filesystem(&cgroup_fs_type);
5044 if (err < 0) {
5045 kobject_put(cgroup_kobj);
5046 return err;
5047 }
5048
5049 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5050 return 0;
5051 }
5052
5053 static int __init cgroup_wq_init(void)
5054 {
5055 /*
5056 * There isn't much point in executing destruction path in
5057 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5058 * Use 1 for @max_active.
5059 *
5060 * We would prefer to do this in cgroup_init() above, but that
5061 * is called before init_workqueues(): so leave this until after.
5062 */
5063 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5064 BUG_ON(!cgroup_destroy_wq);
5065
5066 /*
5067 * Used to destroy pidlists and separate to serve as flush domain.
5068 * Cap @max_active to 1 too.
5069 */
5070 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5071 0, 1);
5072 BUG_ON(!cgroup_pidlist_destroy_wq);
5073
5074 return 0;
5075 }
5076 core_initcall(cgroup_wq_init);
5077
5078 /*
5079 * proc_cgroup_show()
5080 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5081 * - Used for /proc/<pid>/cgroup.
5082 */
5083 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5084 struct pid *pid, struct task_struct *tsk)
5085 {
5086 char *buf, *path;
5087 int retval;
5088 struct cgroup_root *root;
5089
5090 retval = -ENOMEM;
5091 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5092 if (!buf)
5093 goto out;
5094
5095 mutex_lock(&cgroup_mutex);
5096 down_read(&css_set_rwsem);
5097
5098 for_each_root(root) {
5099 struct cgroup_subsys *ss;
5100 struct cgroup *cgrp;
5101 int ssid, count = 0;
5102
5103 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5104 continue;
5105
5106 seq_printf(m, "%d:", root->hierarchy_id);
5107 for_each_subsys(ss, ssid)
5108 if (root->subsys_mask & (1 << ssid))
5109 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5110 if (strlen(root->name))
5111 seq_printf(m, "%sname=%s", count ? "," : "",
5112 root->name);
5113 seq_putc(m, ':');
5114 cgrp = task_cgroup_from_root(tsk, root);
5115 path = cgroup_path(cgrp, buf, PATH_MAX);
5116 if (!path) {
5117 retval = -ENAMETOOLONG;
5118 goto out_unlock;
5119 }
5120 seq_puts(m, path);
5121 seq_putc(m, '\n');
5122 }
5123
5124 retval = 0;
5125 out_unlock:
5126 up_read(&css_set_rwsem);
5127 mutex_unlock(&cgroup_mutex);
5128 kfree(buf);
5129 out:
5130 return retval;
5131 }
5132
5133 /* Display information about each subsystem and each hierarchy */
5134 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5135 {
5136 struct cgroup_subsys *ss;
5137 int i;
5138
5139 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5140 /*
5141 * ideally we don't want subsystems moving around while we do this.
5142 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5143 * subsys/hierarchy state.
5144 */
5145 mutex_lock(&cgroup_mutex);
5146
5147 for_each_subsys(ss, i)
5148 seq_printf(m, "%s\t%d\t%d\t%d\n",
5149 ss->name, ss->root->hierarchy_id,
5150 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5151
5152 mutex_unlock(&cgroup_mutex);
5153 return 0;
5154 }
5155
5156 static int cgroupstats_open(struct inode *inode, struct file *file)
5157 {
5158 return single_open(file, proc_cgroupstats_show, NULL);
5159 }
5160
5161 static const struct file_operations proc_cgroupstats_operations = {
5162 .open = cgroupstats_open,
5163 .read = seq_read,
5164 .llseek = seq_lseek,
5165 .release = single_release,
5166 };
5167
5168 /**
5169 * cgroup_fork - initialize cgroup related fields during copy_process()
5170 * @child: pointer to task_struct of forking parent process.
5171 *
5172 * A task is associated with the init_css_set until cgroup_post_fork()
5173 * attaches it to the parent's css_set. Empty cg_list indicates that
5174 * @child isn't holding reference to its css_set.
5175 */
5176 void cgroup_fork(struct task_struct *child)
5177 {
5178 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5179 INIT_LIST_HEAD(&child->cg_list);
5180 }
5181
5182 /**
5183 * cgroup_post_fork - called on a new task after adding it to the task list
5184 * @child: the task in question
5185 *
5186 * Adds the task to the list running through its css_set if necessary and
5187 * call the subsystem fork() callbacks. Has to be after the task is
5188 * visible on the task list in case we race with the first call to
5189 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5190 * list.
5191 */
5192 void cgroup_post_fork(struct task_struct *child)
5193 {
5194 struct cgroup_subsys *ss;
5195 int i;
5196
5197 /*
5198 * This may race against cgroup_enable_task_cg_lists(). As that
5199 * function sets use_task_css_set_links before grabbing
5200 * tasklist_lock and we just went through tasklist_lock to add
5201 * @child, it's guaranteed that either we see the set
5202 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5203 * @child during its iteration.
5204 *
5205 * If we won the race, @child is associated with %current's
5206 * css_set. Grabbing css_set_rwsem guarantees both that the
5207 * association is stable, and, on completion of the parent's
5208 * migration, @child is visible in the source of migration or
5209 * already in the destination cgroup. This guarantee is necessary
5210 * when implementing operations which need to migrate all tasks of
5211 * a cgroup to another.
5212 *
5213 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5214 * will remain in init_css_set. This is safe because all tasks are
5215 * in the init_css_set before cg_links is enabled and there's no
5216 * operation which transfers all tasks out of init_css_set.
5217 */
5218 if (use_task_css_set_links) {
5219 struct css_set *cset;
5220
5221 down_write(&css_set_rwsem);
5222 cset = task_css_set(current);
5223 if (list_empty(&child->cg_list)) {
5224 rcu_assign_pointer(child->cgroups, cset);
5225 list_add(&child->cg_list, &cset->tasks);
5226 get_css_set(cset);
5227 }
5228 up_write(&css_set_rwsem);
5229 }
5230
5231 /*
5232 * Call ss->fork(). This must happen after @child is linked on
5233 * css_set; otherwise, @child might change state between ->fork()
5234 * and addition to css_set.
5235 */
5236 for_each_subsys_which(ss, i, &have_fork_callback)
5237 ss->fork(child);
5238 }
5239
5240 /**
5241 * cgroup_exit - detach cgroup from exiting task
5242 * @tsk: pointer to task_struct of exiting process
5243 *
5244 * Description: Detach cgroup from @tsk and release it.
5245 *
5246 * Note that cgroups marked notify_on_release force every task in
5247 * them to take the global cgroup_mutex mutex when exiting.
5248 * This could impact scaling on very large systems. Be reluctant to
5249 * use notify_on_release cgroups where very high task exit scaling
5250 * is required on large systems.
5251 *
5252 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5253 * call cgroup_exit() while the task is still competent to handle
5254 * notify_on_release(), then leave the task attached to the root cgroup in
5255 * each hierarchy for the remainder of its exit. No need to bother with
5256 * init_css_set refcnting. init_css_set never goes away and we can't race
5257 * with migration path - PF_EXITING is visible to migration path.
5258 */
5259 void cgroup_exit(struct task_struct *tsk)
5260 {
5261 struct cgroup_subsys *ss;
5262 struct css_set *cset;
5263 bool put_cset = false;
5264 int i;
5265
5266 /*
5267 * Unlink from @tsk from its css_set. As migration path can't race
5268 * with us, we can check cg_list without grabbing css_set_rwsem.
5269 */
5270 if (!list_empty(&tsk->cg_list)) {
5271 down_write(&css_set_rwsem);
5272 list_del_init(&tsk->cg_list);
5273 up_write(&css_set_rwsem);
5274 put_cset = true;
5275 }
5276
5277 /* Reassign the task to the init_css_set. */
5278 cset = task_css_set(tsk);
5279 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5280
5281 /* see cgroup_post_fork() for details */
5282 for_each_subsys_which(ss, i, &have_exit_callback) {
5283 struct cgroup_subsys_state *old_css = cset->subsys[i];
5284 struct cgroup_subsys_state *css = task_css(tsk, i);
5285
5286 ss->exit(css, old_css, tsk);
5287 }
5288
5289 if (put_cset)
5290 put_css_set(cset);
5291 }
5292
5293 static void check_for_release(struct cgroup *cgrp)
5294 {
5295 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5296 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5297 schedule_work(&cgrp->release_agent_work);
5298 }
5299
5300 /*
5301 * Notify userspace when a cgroup is released, by running the
5302 * configured release agent with the name of the cgroup (path
5303 * relative to the root of cgroup file system) as the argument.
5304 *
5305 * Most likely, this user command will try to rmdir this cgroup.
5306 *
5307 * This races with the possibility that some other task will be
5308 * attached to this cgroup before it is removed, or that some other
5309 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5310 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5311 * unused, and this cgroup will be reprieved from its death sentence,
5312 * to continue to serve a useful existence. Next time it's released,
5313 * we will get notified again, if it still has 'notify_on_release' set.
5314 *
5315 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5316 * means only wait until the task is successfully execve()'d. The
5317 * separate release agent task is forked by call_usermodehelper(),
5318 * then control in this thread returns here, without waiting for the
5319 * release agent task. We don't bother to wait because the caller of
5320 * this routine has no use for the exit status of the release agent
5321 * task, so no sense holding our caller up for that.
5322 */
5323 static void cgroup_release_agent(struct work_struct *work)
5324 {
5325 struct cgroup *cgrp =
5326 container_of(work, struct cgroup, release_agent_work);
5327 char *pathbuf = NULL, *agentbuf = NULL, *path;
5328 char *argv[3], *envp[3];
5329
5330 mutex_lock(&cgroup_mutex);
5331
5332 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5333 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5334 if (!pathbuf || !agentbuf)
5335 goto out;
5336
5337 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5338 if (!path)
5339 goto out;
5340
5341 argv[0] = agentbuf;
5342 argv[1] = path;
5343 argv[2] = NULL;
5344
5345 /* minimal command environment */
5346 envp[0] = "HOME=/";
5347 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5348 envp[2] = NULL;
5349
5350 mutex_unlock(&cgroup_mutex);
5351 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5352 goto out_free;
5353 out:
5354 mutex_unlock(&cgroup_mutex);
5355 out_free:
5356 kfree(agentbuf);
5357 kfree(pathbuf);
5358 }
5359
5360 static int __init cgroup_disable(char *str)
5361 {
5362 struct cgroup_subsys *ss;
5363 char *token;
5364 int i;
5365
5366 while ((token = strsep(&str, ",")) != NULL) {
5367 if (!*token)
5368 continue;
5369
5370 for_each_subsys(ss, i) {
5371 if (!strcmp(token, ss->name)) {
5372 ss->disabled = 1;
5373 printk(KERN_INFO "Disabling %s control group"
5374 " subsystem\n", ss->name);
5375 break;
5376 }
5377 }
5378 }
5379 return 1;
5380 }
5381 __setup("cgroup_disable=", cgroup_disable);
5382
5383 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5384 {
5385 printk("cgroup: using legacy files on the default hierarchy\n");
5386 cgroup_legacy_files_on_dfl = true;
5387 return 0;
5388 }
5389 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5390
5391 /**
5392 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5393 * @dentry: directory dentry of interest
5394 * @ss: subsystem of interest
5395 *
5396 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5397 * to get the corresponding css and return it. If such css doesn't exist
5398 * or can't be pinned, an ERR_PTR value is returned.
5399 */
5400 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5401 struct cgroup_subsys *ss)
5402 {
5403 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5404 struct cgroup_subsys_state *css = NULL;
5405 struct cgroup *cgrp;
5406
5407 /* is @dentry a cgroup dir? */
5408 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5409 kernfs_type(kn) != KERNFS_DIR)
5410 return ERR_PTR(-EBADF);
5411
5412 rcu_read_lock();
5413
5414 /*
5415 * This path doesn't originate from kernfs and @kn could already
5416 * have been or be removed at any point. @kn->priv is RCU
5417 * protected for this access. See css_release_work_fn() for details.
5418 */
5419 cgrp = rcu_dereference(kn->priv);
5420 if (cgrp)
5421 css = cgroup_css(cgrp, ss);
5422
5423 if (!css || !css_tryget_online(css))
5424 css = ERR_PTR(-ENOENT);
5425
5426 rcu_read_unlock();
5427 return css;
5428 }
5429
5430 /**
5431 * css_from_id - lookup css by id
5432 * @id: the cgroup id
5433 * @ss: cgroup subsys to be looked into
5434 *
5435 * Returns the css if there's valid one with @id, otherwise returns NULL.
5436 * Should be called under rcu_read_lock().
5437 */
5438 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5439 {
5440 WARN_ON_ONCE(!rcu_read_lock_held());
5441 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5442 }
5443
5444 #ifdef CONFIG_CGROUP_DEBUG
5445 static struct cgroup_subsys_state *
5446 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5447 {
5448 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5449
5450 if (!css)
5451 return ERR_PTR(-ENOMEM);
5452
5453 return css;
5454 }
5455
5456 static void debug_css_free(struct cgroup_subsys_state *css)
5457 {
5458 kfree(css);
5459 }
5460
5461 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5462 struct cftype *cft)
5463 {
5464 return cgroup_task_count(css->cgroup);
5465 }
5466
5467 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5468 struct cftype *cft)
5469 {
5470 return (u64)(unsigned long)current->cgroups;
5471 }
5472
5473 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5474 struct cftype *cft)
5475 {
5476 u64 count;
5477
5478 rcu_read_lock();
5479 count = atomic_read(&task_css_set(current)->refcount);
5480 rcu_read_unlock();
5481 return count;
5482 }
5483
5484 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5485 {
5486 struct cgrp_cset_link *link;
5487 struct css_set *cset;
5488 char *name_buf;
5489
5490 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5491 if (!name_buf)
5492 return -ENOMEM;
5493
5494 down_read(&css_set_rwsem);
5495 rcu_read_lock();
5496 cset = rcu_dereference(current->cgroups);
5497 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5498 struct cgroup *c = link->cgrp;
5499
5500 cgroup_name(c, name_buf, NAME_MAX + 1);
5501 seq_printf(seq, "Root %d group %s\n",
5502 c->root->hierarchy_id, name_buf);
5503 }
5504 rcu_read_unlock();
5505 up_read(&css_set_rwsem);
5506 kfree(name_buf);
5507 return 0;
5508 }
5509
5510 #define MAX_TASKS_SHOWN_PER_CSS 25
5511 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5512 {
5513 struct cgroup_subsys_state *css = seq_css(seq);
5514 struct cgrp_cset_link *link;
5515
5516 down_read(&css_set_rwsem);
5517 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5518 struct css_set *cset = link->cset;
5519 struct task_struct *task;
5520 int count = 0;
5521
5522 seq_printf(seq, "css_set %p\n", cset);
5523
5524 list_for_each_entry(task, &cset->tasks, cg_list) {
5525 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5526 goto overflow;
5527 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5528 }
5529
5530 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5531 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5532 goto overflow;
5533 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5534 }
5535 continue;
5536 overflow:
5537 seq_puts(seq, " ...\n");
5538 }
5539 up_read(&css_set_rwsem);
5540 return 0;
5541 }
5542
5543 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5544 {
5545 return (!cgroup_has_tasks(css->cgroup) &&
5546 !css_has_online_children(&css->cgroup->self));
5547 }
5548
5549 static struct cftype debug_files[] = {
5550 {
5551 .name = "taskcount",
5552 .read_u64 = debug_taskcount_read,
5553 },
5554
5555 {
5556 .name = "current_css_set",
5557 .read_u64 = current_css_set_read,
5558 },
5559
5560 {
5561 .name = "current_css_set_refcount",
5562 .read_u64 = current_css_set_refcount_read,
5563 },
5564
5565 {
5566 .name = "current_css_set_cg_links",
5567 .seq_show = current_css_set_cg_links_read,
5568 },
5569
5570 {
5571 .name = "cgroup_css_links",
5572 .seq_show = cgroup_css_links_read,
5573 },
5574
5575 {
5576 .name = "releasable",
5577 .read_u64 = releasable_read,
5578 },
5579
5580 { } /* terminate */
5581 };
5582
5583 struct cgroup_subsys debug_cgrp_subsys = {
5584 .css_alloc = debug_css_alloc,
5585 .css_free = debug_css_free,
5586 .legacy_cftypes = debug_files,
5587 };
5588 #endif /* CONFIG_CGROUP_DEBUG */