]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
Merge remote-tracking branches 'asoc/topic/omap', 'asoc/topic/oom' and 'asoc/topic...
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DECLARE_RWSEM(css_set_rwsem);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_rwsem);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DECLARE_RWSEM(css_set_rwsem);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104 static DEFINE_SPINLOCK(release_agent_path_lock);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys *cgroup_subsys[] = {
128 #include <linux/cgroup_subsys.h>
129 };
130 #undef SUBSYS
131
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 /*
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
143 */
144 struct cgroup_root cgrp_dfl_root;
145
146 /*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150 static bool cgrp_dfl_root_visible;
151
152 /* some controllers are not supported in the default hierarchy */
153 static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
154 #ifdef CONFIG_CGROUP_DEBUG
155 | (1 << debug_cgrp_id)
156 #endif
157 ;
158
159 /* The list of hierarchy roots */
160
161 static LIST_HEAD(cgroup_roots);
162 static int cgroup_root_count;
163
164 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
165 static DEFINE_IDR(cgroup_hierarchy_idr);
166
167 /*
168 * Assign a monotonically increasing serial number to csses. It guarantees
169 * cgroups with bigger numbers are newer than those with smaller numbers.
170 * Also, as csses are always appended to the parent's ->children list, it
171 * guarantees that sibling csses are always sorted in the ascending serial
172 * number order on the list. Protected by cgroup_mutex.
173 */
174 static u64 css_serial_nr_next = 1;
175
176 /* This flag indicates whether tasks in the fork and exit paths should
177 * check for fork/exit handlers to call. This avoids us having to do
178 * extra work in the fork/exit path if none of the subsystems need to
179 * be called.
180 */
181 static int need_forkexit_callback __read_mostly;
182
183 static struct cftype cgroup_base_files[];
184
185 static void cgroup_put(struct cgroup *cgrp);
186 static int rebind_subsystems(struct cgroup_root *dst_root,
187 unsigned int ss_mask);
188 static int cgroup_destroy_locked(struct cgroup *cgrp);
189 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss);
190 static void css_release(struct percpu_ref *ref);
191 static void kill_css(struct cgroup_subsys_state *css);
192 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
193 bool is_add);
194 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
195
196 /* IDR wrappers which synchronize using cgroup_idr_lock */
197 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
198 gfp_t gfp_mask)
199 {
200 int ret;
201
202 idr_preload(gfp_mask);
203 spin_lock_bh(&cgroup_idr_lock);
204 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
205 spin_unlock_bh(&cgroup_idr_lock);
206 idr_preload_end();
207 return ret;
208 }
209
210 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
211 {
212 void *ret;
213
214 spin_lock_bh(&cgroup_idr_lock);
215 ret = idr_replace(idr, ptr, id);
216 spin_unlock_bh(&cgroup_idr_lock);
217 return ret;
218 }
219
220 static void cgroup_idr_remove(struct idr *idr, int id)
221 {
222 spin_lock_bh(&cgroup_idr_lock);
223 idr_remove(idr, id);
224 spin_unlock_bh(&cgroup_idr_lock);
225 }
226
227 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
228 {
229 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
230
231 if (parent_css)
232 return container_of(parent_css, struct cgroup, self);
233 return NULL;
234 }
235
236 /**
237 * cgroup_css - obtain a cgroup's css for the specified subsystem
238 * @cgrp: the cgroup of interest
239 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
240 *
241 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
242 * function must be called either under cgroup_mutex or rcu_read_lock() and
243 * the caller is responsible for pinning the returned css if it wants to
244 * keep accessing it outside the said locks. This function may return
245 * %NULL if @cgrp doesn't have @subsys_id enabled.
246 */
247 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
248 struct cgroup_subsys *ss)
249 {
250 if (ss)
251 return rcu_dereference_check(cgrp->subsys[ss->id],
252 lockdep_is_held(&cgroup_mutex));
253 else
254 return &cgrp->self;
255 }
256
257 /**
258 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
259 * @cgrp: the cgroup of interest
260 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
261 *
262 * Similar to cgroup_css() but returns the effctive css, which is defined
263 * as the matching css of the nearest ancestor including self which has @ss
264 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
265 * function is guaranteed to return non-NULL css.
266 */
267 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
268 struct cgroup_subsys *ss)
269 {
270 lockdep_assert_held(&cgroup_mutex);
271
272 if (!ss)
273 return &cgrp->self;
274
275 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
276 return NULL;
277
278 while (cgroup_parent(cgrp) &&
279 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
280 cgrp = cgroup_parent(cgrp);
281
282 return cgroup_css(cgrp, ss);
283 }
284
285 /* convenient tests for these bits */
286 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
287 {
288 return !(cgrp->self.flags & CSS_ONLINE);
289 }
290
291 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
292 {
293 struct cgroup *cgrp = of->kn->parent->priv;
294 struct cftype *cft = of_cft(of);
295
296 /*
297 * This is open and unprotected implementation of cgroup_css().
298 * seq_css() is only called from a kernfs file operation which has
299 * an active reference on the file. Because all the subsystem
300 * files are drained before a css is disassociated with a cgroup,
301 * the matching css from the cgroup's subsys table is guaranteed to
302 * be and stay valid until the enclosing operation is complete.
303 */
304 if (cft->ss)
305 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
306 else
307 return &cgrp->self;
308 }
309 EXPORT_SYMBOL_GPL(of_css);
310
311 /**
312 * cgroup_is_descendant - test ancestry
313 * @cgrp: the cgroup to be tested
314 * @ancestor: possible ancestor of @cgrp
315 *
316 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
317 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
318 * and @ancestor are accessible.
319 */
320 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
321 {
322 while (cgrp) {
323 if (cgrp == ancestor)
324 return true;
325 cgrp = cgroup_parent(cgrp);
326 }
327 return false;
328 }
329
330 static int cgroup_is_releasable(const struct cgroup *cgrp)
331 {
332 const int bits =
333 (1 << CGRP_RELEASABLE) |
334 (1 << CGRP_NOTIFY_ON_RELEASE);
335 return (cgrp->flags & bits) == bits;
336 }
337
338 static int notify_on_release(const struct cgroup *cgrp)
339 {
340 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
341 }
342
343 /**
344 * for_each_css - iterate all css's of a cgroup
345 * @css: the iteration cursor
346 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
347 * @cgrp: the target cgroup to iterate css's of
348 *
349 * Should be called under cgroup_[tree_]mutex.
350 */
351 #define for_each_css(css, ssid, cgrp) \
352 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
353 if (!((css) = rcu_dereference_check( \
354 (cgrp)->subsys[(ssid)], \
355 lockdep_is_held(&cgroup_mutex)))) { } \
356 else
357
358 /**
359 * for_each_e_css - iterate all effective css's of a cgroup
360 * @css: the iteration cursor
361 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
362 * @cgrp: the target cgroup to iterate css's of
363 *
364 * Should be called under cgroup_[tree_]mutex.
365 */
366 #define for_each_e_css(css, ssid, cgrp) \
367 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
368 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
369 ; \
370 else
371
372 /**
373 * for_each_subsys - iterate all enabled cgroup subsystems
374 * @ss: the iteration cursor
375 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
376 */
377 #define for_each_subsys(ss, ssid) \
378 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
379 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
380
381 /* iterate across the hierarchies */
382 #define for_each_root(root) \
383 list_for_each_entry((root), &cgroup_roots, root_list)
384
385 /* iterate over child cgrps, lock should be held throughout iteration */
386 #define cgroup_for_each_live_child(child, cgrp) \
387 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
388 if (({ lockdep_assert_held(&cgroup_mutex); \
389 cgroup_is_dead(child); })) \
390 ; \
391 else
392
393 /* the list of cgroups eligible for automatic release. Protected by
394 * release_list_lock */
395 static LIST_HEAD(release_list);
396 static DEFINE_RAW_SPINLOCK(release_list_lock);
397 static void cgroup_release_agent(struct work_struct *work);
398 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
399 static void check_for_release(struct cgroup *cgrp);
400
401 /*
402 * A cgroup can be associated with multiple css_sets as different tasks may
403 * belong to different cgroups on different hierarchies. In the other
404 * direction, a css_set is naturally associated with multiple cgroups.
405 * This M:N relationship is represented by the following link structure
406 * which exists for each association and allows traversing the associations
407 * from both sides.
408 */
409 struct cgrp_cset_link {
410 /* the cgroup and css_set this link associates */
411 struct cgroup *cgrp;
412 struct css_set *cset;
413
414 /* list of cgrp_cset_links anchored at cgrp->cset_links */
415 struct list_head cset_link;
416
417 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
418 struct list_head cgrp_link;
419 };
420
421 /*
422 * The default css_set - used by init and its children prior to any
423 * hierarchies being mounted. It contains a pointer to the root state
424 * for each subsystem. Also used to anchor the list of css_sets. Not
425 * reference-counted, to improve performance when child cgroups
426 * haven't been created.
427 */
428 struct css_set init_css_set = {
429 .refcount = ATOMIC_INIT(1),
430 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
431 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
432 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
433 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
434 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
435 };
436
437 static int css_set_count = 1; /* 1 for init_css_set */
438
439 /**
440 * cgroup_update_populated - updated populated count of a cgroup
441 * @cgrp: the target cgroup
442 * @populated: inc or dec populated count
443 *
444 * @cgrp is either getting the first task (css_set) or losing the last.
445 * Update @cgrp->populated_cnt accordingly. The count is propagated
446 * towards root so that a given cgroup's populated_cnt is zero iff the
447 * cgroup and all its descendants are empty.
448 *
449 * @cgrp's interface file "cgroup.populated" is zero if
450 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
451 * changes from or to zero, userland is notified that the content of the
452 * interface file has changed. This can be used to detect when @cgrp and
453 * its descendants become populated or empty.
454 */
455 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
456 {
457 lockdep_assert_held(&css_set_rwsem);
458
459 do {
460 bool trigger;
461
462 if (populated)
463 trigger = !cgrp->populated_cnt++;
464 else
465 trigger = !--cgrp->populated_cnt;
466
467 if (!trigger)
468 break;
469
470 if (cgrp->populated_kn)
471 kernfs_notify(cgrp->populated_kn);
472 cgrp = cgroup_parent(cgrp);
473 } while (cgrp);
474 }
475
476 /*
477 * hash table for cgroup groups. This improves the performance to find
478 * an existing css_set. This hash doesn't (currently) take into
479 * account cgroups in empty hierarchies.
480 */
481 #define CSS_SET_HASH_BITS 7
482 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
483
484 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
485 {
486 unsigned long key = 0UL;
487 struct cgroup_subsys *ss;
488 int i;
489
490 for_each_subsys(ss, i)
491 key += (unsigned long)css[i];
492 key = (key >> 16) ^ key;
493
494 return key;
495 }
496
497 static void put_css_set_locked(struct css_set *cset, bool taskexit)
498 {
499 struct cgrp_cset_link *link, *tmp_link;
500 struct cgroup_subsys *ss;
501 int ssid;
502
503 lockdep_assert_held(&css_set_rwsem);
504
505 if (!atomic_dec_and_test(&cset->refcount))
506 return;
507
508 /* This css_set is dead. unlink it and release cgroup refcounts */
509 for_each_subsys(ss, ssid)
510 list_del(&cset->e_cset_node[ssid]);
511 hash_del(&cset->hlist);
512 css_set_count--;
513
514 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
515 struct cgroup *cgrp = link->cgrp;
516
517 list_del(&link->cset_link);
518 list_del(&link->cgrp_link);
519
520 /* @cgrp can't go away while we're holding css_set_rwsem */
521 if (list_empty(&cgrp->cset_links)) {
522 cgroup_update_populated(cgrp, false);
523 if (notify_on_release(cgrp)) {
524 if (taskexit)
525 set_bit(CGRP_RELEASABLE, &cgrp->flags);
526 check_for_release(cgrp);
527 }
528 }
529
530 kfree(link);
531 }
532
533 kfree_rcu(cset, rcu_head);
534 }
535
536 static void put_css_set(struct css_set *cset, bool taskexit)
537 {
538 /*
539 * Ensure that the refcount doesn't hit zero while any readers
540 * can see it. Similar to atomic_dec_and_lock(), but for an
541 * rwlock
542 */
543 if (atomic_add_unless(&cset->refcount, -1, 1))
544 return;
545
546 down_write(&css_set_rwsem);
547 put_css_set_locked(cset, taskexit);
548 up_write(&css_set_rwsem);
549 }
550
551 /*
552 * refcounted get/put for css_set objects
553 */
554 static inline void get_css_set(struct css_set *cset)
555 {
556 atomic_inc(&cset->refcount);
557 }
558
559 /**
560 * compare_css_sets - helper function for find_existing_css_set().
561 * @cset: candidate css_set being tested
562 * @old_cset: existing css_set for a task
563 * @new_cgrp: cgroup that's being entered by the task
564 * @template: desired set of css pointers in css_set (pre-calculated)
565 *
566 * Returns true if "cset" matches "old_cset" except for the hierarchy
567 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
568 */
569 static bool compare_css_sets(struct css_set *cset,
570 struct css_set *old_cset,
571 struct cgroup *new_cgrp,
572 struct cgroup_subsys_state *template[])
573 {
574 struct list_head *l1, *l2;
575
576 /*
577 * On the default hierarchy, there can be csets which are
578 * associated with the same set of cgroups but different csses.
579 * Let's first ensure that csses match.
580 */
581 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
582 return false;
583
584 /*
585 * Compare cgroup pointers in order to distinguish between
586 * different cgroups in hierarchies. As different cgroups may
587 * share the same effective css, this comparison is always
588 * necessary.
589 */
590 l1 = &cset->cgrp_links;
591 l2 = &old_cset->cgrp_links;
592 while (1) {
593 struct cgrp_cset_link *link1, *link2;
594 struct cgroup *cgrp1, *cgrp2;
595
596 l1 = l1->next;
597 l2 = l2->next;
598 /* See if we reached the end - both lists are equal length. */
599 if (l1 == &cset->cgrp_links) {
600 BUG_ON(l2 != &old_cset->cgrp_links);
601 break;
602 } else {
603 BUG_ON(l2 == &old_cset->cgrp_links);
604 }
605 /* Locate the cgroups associated with these links. */
606 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
607 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
608 cgrp1 = link1->cgrp;
609 cgrp2 = link2->cgrp;
610 /* Hierarchies should be linked in the same order. */
611 BUG_ON(cgrp1->root != cgrp2->root);
612
613 /*
614 * If this hierarchy is the hierarchy of the cgroup
615 * that's changing, then we need to check that this
616 * css_set points to the new cgroup; if it's any other
617 * hierarchy, then this css_set should point to the
618 * same cgroup as the old css_set.
619 */
620 if (cgrp1->root == new_cgrp->root) {
621 if (cgrp1 != new_cgrp)
622 return false;
623 } else {
624 if (cgrp1 != cgrp2)
625 return false;
626 }
627 }
628 return true;
629 }
630
631 /**
632 * find_existing_css_set - init css array and find the matching css_set
633 * @old_cset: the css_set that we're using before the cgroup transition
634 * @cgrp: the cgroup that we're moving into
635 * @template: out param for the new set of csses, should be clear on entry
636 */
637 static struct css_set *find_existing_css_set(struct css_set *old_cset,
638 struct cgroup *cgrp,
639 struct cgroup_subsys_state *template[])
640 {
641 struct cgroup_root *root = cgrp->root;
642 struct cgroup_subsys *ss;
643 struct css_set *cset;
644 unsigned long key;
645 int i;
646
647 /*
648 * Build the set of subsystem state objects that we want to see in the
649 * new css_set. while subsystems can change globally, the entries here
650 * won't change, so no need for locking.
651 */
652 for_each_subsys(ss, i) {
653 if (root->subsys_mask & (1UL << i)) {
654 /*
655 * @ss is in this hierarchy, so we want the
656 * effective css from @cgrp.
657 */
658 template[i] = cgroup_e_css(cgrp, ss);
659 } else {
660 /*
661 * @ss is not in this hierarchy, so we don't want
662 * to change the css.
663 */
664 template[i] = old_cset->subsys[i];
665 }
666 }
667
668 key = css_set_hash(template);
669 hash_for_each_possible(css_set_table, cset, hlist, key) {
670 if (!compare_css_sets(cset, old_cset, cgrp, template))
671 continue;
672
673 /* This css_set matches what we need */
674 return cset;
675 }
676
677 /* No existing cgroup group matched */
678 return NULL;
679 }
680
681 static void free_cgrp_cset_links(struct list_head *links_to_free)
682 {
683 struct cgrp_cset_link *link, *tmp_link;
684
685 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
686 list_del(&link->cset_link);
687 kfree(link);
688 }
689 }
690
691 /**
692 * allocate_cgrp_cset_links - allocate cgrp_cset_links
693 * @count: the number of links to allocate
694 * @tmp_links: list_head the allocated links are put on
695 *
696 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
697 * through ->cset_link. Returns 0 on success or -errno.
698 */
699 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
700 {
701 struct cgrp_cset_link *link;
702 int i;
703
704 INIT_LIST_HEAD(tmp_links);
705
706 for (i = 0; i < count; i++) {
707 link = kzalloc(sizeof(*link), GFP_KERNEL);
708 if (!link) {
709 free_cgrp_cset_links(tmp_links);
710 return -ENOMEM;
711 }
712 list_add(&link->cset_link, tmp_links);
713 }
714 return 0;
715 }
716
717 /**
718 * link_css_set - a helper function to link a css_set to a cgroup
719 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
720 * @cset: the css_set to be linked
721 * @cgrp: the destination cgroup
722 */
723 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
724 struct cgroup *cgrp)
725 {
726 struct cgrp_cset_link *link;
727
728 BUG_ON(list_empty(tmp_links));
729
730 if (cgroup_on_dfl(cgrp))
731 cset->dfl_cgrp = cgrp;
732
733 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
734 link->cset = cset;
735 link->cgrp = cgrp;
736
737 if (list_empty(&cgrp->cset_links))
738 cgroup_update_populated(cgrp, true);
739 list_move(&link->cset_link, &cgrp->cset_links);
740
741 /*
742 * Always add links to the tail of the list so that the list
743 * is sorted by order of hierarchy creation
744 */
745 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
746 }
747
748 /**
749 * find_css_set - return a new css_set with one cgroup updated
750 * @old_cset: the baseline css_set
751 * @cgrp: the cgroup to be updated
752 *
753 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
754 * substituted into the appropriate hierarchy.
755 */
756 static struct css_set *find_css_set(struct css_set *old_cset,
757 struct cgroup *cgrp)
758 {
759 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
760 struct css_set *cset;
761 struct list_head tmp_links;
762 struct cgrp_cset_link *link;
763 struct cgroup_subsys *ss;
764 unsigned long key;
765 int ssid;
766
767 lockdep_assert_held(&cgroup_mutex);
768
769 /* First see if we already have a cgroup group that matches
770 * the desired set */
771 down_read(&css_set_rwsem);
772 cset = find_existing_css_set(old_cset, cgrp, template);
773 if (cset)
774 get_css_set(cset);
775 up_read(&css_set_rwsem);
776
777 if (cset)
778 return cset;
779
780 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
781 if (!cset)
782 return NULL;
783
784 /* Allocate all the cgrp_cset_link objects that we'll need */
785 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
786 kfree(cset);
787 return NULL;
788 }
789
790 atomic_set(&cset->refcount, 1);
791 INIT_LIST_HEAD(&cset->cgrp_links);
792 INIT_LIST_HEAD(&cset->tasks);
793 INIT_LIST_HEAD(&cset->mg_tasks);
794 INIT_LIST_HEAD(&cset->mg_preload_node);
795 INIT_LIST_HEAD(&cset->mg_node);
796 INIT_HLIST_NODE(&cset->hlist);
797
798 /* Copy the set of subsystem state objects generated in
799 * find_existing_css_set() */
800 memcpy(cset->subsys, template, sizeof(cset->subsys));
801
802 down_write(&css_set_rwsem);
803 /* Add reference counts and links from the new css_set. */
804 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
805 struct cgroup *c = link->cgrp;
806
807 if (c->root == cgrp->root)
808 c = cgrp;
809 link_css_set(&tmp_links, cset, c);
810 }
811
812 BUG_ON(!list_empty(&tmp_links));
813
814 css_set_count++;
815
816 /* Add @cset to the hash table */
817 key = css_set_hash(cset->subsys);
818 hash_add(css_set_table, &cset->hlist, key);
819
820 for_each_subsys(ss, ssid)
821 list_add_tail(&cset->e_cset_node[ssid],
822 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
823
824 up_write(&css_set_rwsem);
825
826 return cset;
827 }
828
829 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
830 {
831 struct cgroup *root_cgrp = kf_root->kn->priv;
832
833 return root_cgrp->root;
834 }
835
836 static int cgroup_init_root_id(struct cgroup_root *root)
837 {
838 int id;
839
840 lockdep_assert_held(&cgroup_mutex);
841
842 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
843 if (id < 0)
844 return id;
845
846 root->hierarchy_id = id;
847 return 0;
848 }
849
850 static void cgroup_exit_root_id(struct cgroup_root *root)
851 {
852 lockdep_assert_held(&cgroup_mutex);
853
854 if (root->hierarchy_id) {
855 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
856 root->hierarchy_id = 0;
857 }
858 }
859
860 static void cgroup_free_root(struct cgroup_root *root)
861 {
862 if (root) {
863 /* hierarhcy ID shoulid already have been released */
864 WARN_ON_ONCE(root->hierarchy_id);
865
866 idr_destroy(&root->cgroup_idr);
867 kfree(root);
868 }
869 }
870
871 static void cgroup_destroy_root(struct cgroup_root *root)
872 {
873 struct cgroup *cgrp = &root->cgrp;
874 struct cgrp_cset_link *link, *tmp_link;
875
876 mutex_lock(&cgroup_mutex);
877
878 BUG_ON(atomic_read(&root->nr_cgrps));
879 BUG_ON(!list_empty(&cgrp->self.children));
880
881 /* Rebind all subsystems back to the default hierarchy */
882 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
883
884 /*
885 * Release all the links from cset_links to this hierarchy's
886 * root cgroup
887 */
888 down_write(&css_set_rwsem);
889
890 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
891 list_del(&link->cset_link);
892 list_del(&link->cgrp_link);
893 kfree(link);
894 }
895 up_write(&css_set_rwsem);
896
897 if (!list_empty(&root->root_list)) {
898 list_del(&root->root_list);
899 cgroup_root_count--;
900 }
901
902 cgroup_exit_root_id(root);
903
904 mutex_unlock(&cgroup_mutex);
905
906 kernfs_destroy_root(root->kf_root);
907 cgroup_free_root(root);
908 }
909
910 /* look up cgroup associated with given css_set on the specified hierarchy */
911 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
912 struct cgroup_root *root)
913 {
914 struct cgroup *res = NULL;
915
916 lockdep_assert_held(&cgroup_mutex);
917 lockdep_assert_held(&css_set_rwsem);
918
919 if (cset == &init_css_set) {
920 res = &root->cgrp;
921 } else {
922 struct cgrp_cset_link *link;
923
924 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
925 struct cgroup *c = link->cgrp;
926
927 if (c->root == root) {
928 res = c;
929 break;
930 }
931 }
932 }
933
934 BUG_ON(!res);
935 return res;
936 }
937
938 /*
939 * Return the cgroup for "task" from the given hierarchy. Must be
940 * called with cgroup_mutex and css_set_rwsem held.
941 */
942 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
943 struct cgroup_root *root)
944 {
945 /*
946 * No need to lock the task - since we hold cgroup_mutex the
947 * task can't change groups, so the only thing that can happen
948 * is that it exits and its css is set back to init_css_set.
949 */
950 return cset_cgroup_from_root(task_css_set(task), root);
951 }
952
953 /*
954 * A task must hold cgroup_mutex to modify cgroups.
955 *
956 * Any task can increment and decrement the count field without lock.
957 * So in general, code holding cgroup_mutex can't rely on the count
958 * field not changing. However, if the count goes to zero, then only
959 * cgroup_attach_task() can increment it again. Because a count of zero
960 * means that no tasks are currently attached, therefore there is no
961 * way a task attached to that cgroup can fork (the other way to
962 * increment the count). So code holding cgroup_mutex can safely
963 * assume that if the count is zero, it will stay zero. Similarly, if
964 * a task holds cgroup_mutex on a cgroup with zero count, it
965 * knows that the cgroup won't be removed, as cgroup_rmdir()
966 * needs that mutex.
967 *
968 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
969 * (usually) take cgroup_mutex. These are the two most performance
970 * critical pieces of code here. The exception occurs on cgroup_exit(),
971 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
972 * is taken, and if the cgroup count is zero, a usermode call made
973 * to the release agent with the name of the cgroup (path relative to
974 * the root of cgroup file system) as the argument.
975 *
976 * A cgroup can only be deleted if both its 'count' of using tasks
977 * is zero, and its list of 'children' cgroups is empty. Since all
978 * tasks in the system use _some_ cgroup, and since there is always at
979 * least one task in the system (init, pid == 1), therefore, root cgroup
980 * always has either children cgroups and/or using tasks. So we don't
981 * need a special hack to ensure that root cgroup cannot be deleted.
982 *
983 * P.S. One more locking exception. RCU is used to guard the
984 * update of a tasks cgroup pointer by cgroup_attach_task()
985 */
986
987 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
988 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
989 static const struct file_operations proc_cgroupstats_operations;
990
991 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
992 char *buf)
993 {
994 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
995 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
996 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
997 cft->ss->name, cft->name);
998 else
999 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1000 return buf;
1001 }
1002
1003 /**
1004 * cgroup_file_mode - deduce file mode of a control file
1005 * @cft: the control file in question
1006 *
1007 * returns cft->mode if ->mode is not 0
1008 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1009 * returns S_IRUGO if it has only a read handler
1010 * returns S_IWUSR if it has only a write hander
1011 */
1012 static umode_t cgroup_file_mode(const struct cftype *cft)
1013 {
1014 umode_t mode = 0;
1015
1016 if (cft->mode)
1017 return cft->mode;
1018
1019 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1020 mode |= S_IRUGO;
1021
1022 if (cft->write_u64 || cft->write_s64 || cft->write)
1023 mode |= S_IWUSR;
1024
1025 return mode;
1026 }
1027
1028 static void cgroup_get(struct cgroup *cgrp)
1029 {
1030 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1031 css_get(&cgrp->self);
1032 }
1033
1034 static void cgroup_put(struct cgroup *cgrp)
1035 {
1036 css_put(&cgrp->self);
1037 }
1038
1039 /**
1040 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1041 * @kn: the kernfs_node being serviced
1042 *
1043 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1044 * the method finishes if locking succeeded. Note that once this function
1045 * returns the cgroup returned by cgroup_kn_lock_live() may become
1046 * inaccessible any time. If the caller intends to continue to access the
1047 * cgroup, it should pin it before invoking this function.
1048 */
1049 static void cgroup_kn_unlock(struct kernfs_node *kn)
1050 {
1051 struct cgroup *cgrp;
1052
1053 if (kernfs_type(kn) == KERNFS_DIR)
1054 cgrp = kn->priv;
1055 else
1056 cgrp = kn->parent->priv;
1057
1058 mutex_unlock(&cgroup_mutex);
1059
1060 kernfs_unbreak_active_protection(kn);
1061 cgroup_put(cgrp);
1062 }
1063
1064 /**
1065 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1066 * @kn: the kernfs_node being serviced
1067 *
1068 * This helper is to be used by a cgroup kernfs method currently servicing
1069 * @kn. It breaks the active protection, performs cgroup locking and
1070 * verifies that the associated cgroup is alive. Returns the cgroup if
1071 * alive; otherwise, %NULL. A successful return should be undone by a
1072 * matching cgroup_kn_unlock() invocation.
1073 *
1074 * Any cgroup kernfs method implementation which requires locking the
1075 * associated cgroup should use this helper. It avoids nesting cgroup
1076 * locking under kernfs active protection and allows all kernfs operations
1077 * including self-removal.
1078 */
1079 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1080 {
1081 struct cgroup *cgrp;
1082
1083 if (kernfs_type(kn) == KERNFS_DIR)
1084 cgrp = kn->priv;
1085 else
1086 cgrp = kn->parent->priv;
1087
1088 /*
1089 * We're gonna grab cgroup_mutex which nests outside kernfs
1090 * active_ref. cgroup liveliness check alone provides enough
1091 * protection against removal. Ensure @cgrp stays accessible and
1092 * break the active_ref protection.
1093 */
1094 cgroup_get(cgrp);
1095 kernfs_break_active_protection(kn);
1096
1097 mutex_lock(&cgroup_mutex);
1098
1099 if (!cgroup_is_dead(cgrp))
1100 return cgrp;
1101
1102 cgroup_kn_unlock(kn);
1103 return NULL;
1104 }
1105
1106 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1107 {
1108 char name[CGROUP_FILE_NAME_MAX];
1109
1110 lockdep_assert_held(&cgroup_mutex);
1111 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1112 }
1113
1114 /**
1115 * cgroup_clear_dir - remove subsys files in a cgroup directory
1116 * @cgrp: target cgroup
1117 * @subsys_mask: mask of the subsystem ids whose files should be removed
1118 */
1119 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1120 {
1121 struct cgroup_subsys *ss;
1122 int i;
1123
1124 for_each_subsys(ss, i) {
1125 struct cftype *cfts;
1126
1127 if (!(subsys_mask & (1 << i)))
1128 continue;
1129 list_for_each_entry(cfts, &ss->cfts, node)
1130 cgroup_addrm_files(cgrp, cfts, false);
1131 }
1132 }
1133
1134 static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1135 {
1136 struct cgroup_subsys *ss;
1137 unsigned int tmp_ss_mask;
1138 int ssid, i, ret;
1139
1140 lockdep_assert_held(&cgroup_mutex);
1141
1142 for_each_subsys(ss, ssid) {
1143 if (!(ss_mask & (1 << ssid)))
1144 continue;
1145
1146 /* if @ss has non-root csses attached to it, can't move */
1147 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1148 return -EBUSY;
1149
1150 /* can't move between two non-dummy roots either */
1151 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1152 return -EBUSY;
1153 }
1154
1155 /* skip creating root files on dfl_root for inhibited subsystems */
1156 tmp_ss_mask = ss_mask;
1157 if (dst_root == &cgrp_dfl_root)
1158 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1159
1160 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1161 if (ret) {
1162 if (dst_root != &cgrp_dfl_root)
1163 return ret;
1164
1165 /*
1166 * Rebinding back to the default root is not allowed to
1167 * fail. Using both default and non-default roots should
1168 * be rare. Moving subsystems back and forth even more so.
1169 * Just warn about it and continue.
1170 */
1171 if (cgrp_dfl_root_visible) {
1172 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1173 ret, ss_mask);
1174 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1175 }
1176 }
1177
1178 /*
1179 * Nothing can fail from this point on. Remove files for the
1180 * removed subsystems and rebind each subsystem.
1181 */
1182 for_each_subsys(ss, ssid)
1183 if (ss_mask & (1 << ssid))
1184 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1185
1186 for_each_subsys(ss, ssid) {
1187 struct cgroup_root *src_root;
1188 struct cgroup_subsys_state *css;
1189 struct css_set *cset;
1190
1191 if (!(ss_mask & (1 << ssid)))
1192 continue;
1193
1194 src_root = ss->root;
1195 css = cgroup_css(&src_root->cgrp, ss);
1196
1197 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1198
1199 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1200 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1201 ss->root = dst_root;
1202 css->cgroup = &dst_root->cgrp;
1203
1204 down_write(&css_set_rwsem);
1205 hash_for_each(css_set_table, i, cset, hlist)
1206 list_move_tail(&cset->e_cset_node[ss->id],
1207 &dst_root->cgrp.e_csets[ss->id]);
1208 up_write(&css_set_rwsem);
1209
1210 src_root->subsys_mask &= ~(1 << ssid);
1211 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1212
1213 /* default hierarchy doesn't enable controllers by default */
1214 dst_root->subsys_mask |= 1 << ssid;
1215 if (dst_root != &cgrp_dfl_root)
1216 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
1217
1218 if (ss->bind)
1219 ss->bind(css);
1220 }
1221
1222 kernfs_activate(dst_root->cgrp.kn);
1223 return 0;
1224 }
1225
1226 static int cgroup_show_options(struct seq_file *seq,
1227 struct kernfs_root *kf_root)
1228 {
1229 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1230 struct cgroup_subsys *ss;
1231 int ssid;
1232
1233 for_each_subsys(ss, ssid)
1234 if (root->subsys_mask & (1 << ssid))
1235 seq_printf(seq, ",%s", ss->name);
1236 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1237 seq_puts(seq, ",sane_behavior");
1238 if (root->flags & CGRP_ROOT_NOPREFIX)
1239 seq_puts(seq, ",noprefix");
1240 if (root->flags & CGRP_ROOT_XATTR)
1241 seq_puts(seq, ",xattr");
1242
1243 spin_lock(&release_agent_path_lock);
1244 if (strlen(root->release_agent_path))
1245 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1246 spin_unlock(&release_agent_path_lock);
1247
1248 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1249 seq_puts(seq, ",clone_children");
1250 if (strlen(root->name))
1251 seq_printf(seq, ",name=%s", root->name);
1252 return 0;
1253 }
1254
1255 struct cgroup_sb_opts {
1256 unsigned int subsys_mask;
1257 unsigned int flags;
1258 char *release_agent;
1259 bool cpuset_clone_children;
1260 char *name;
1261 /* User explicitly requested empty subsystem */
1262 bool none;
1263 };
1264
1265 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1266 {
1267 char *token, *o = data;
1268 bool all_ss = false, one_ss = false;
1269 unsigned int mask = -1U;
1270 struct cgroup_subsys *ss;
1271 int i;
1272
1273 #ifdef CONFIG_CPUSETS
1274 mask = ~(1U << cpuset_cgrp_id);
1275 #endif
1276
1277 memset(opts, 0, sizeof(*opts));
1278
1279 while ((token = strsep(&o, ",")) != NULL) {
1280 if (!*token)
1281 return -EINVAL;
1282 if (!strcmp(token, "none")) {
1283 /* Explicitly have no subsystems */
1284 opts->none = true;
1285 continue;
1286 }
1287 if (!strcmp(token, "all")) {
1288 /* Mutually exclusive option 'all' + subsystem name */
1289 if (one_ss)
1290 return -EINVAL;
1291 all_ss = true;
1292 continue;
1293 }
1294 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1295 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1296 continue;
1297 }
1298 if (!strcmp(token, "noprefix")) {
1299 opts->flags |= CGRP_ROOT_NOPREFIX;
1300 continue;
1301 }
1302 if (!strcmp(token, "clone_children")) {
1303 opts->cpuset_clone_children = true;
1304 continue;
1305 }
1306 if (!strcmp(token, "xattr")) {
1307 opts->flags |= CGRP_ROOT_XATTR;
1308 continue;
1309 }
1310 if (!strncmp(token, "release_agent=", 14)) {
1311 /* Specifying two release agents is forbidden */
1312 if (opts->release_agent)
1313 return -EINVAL;
1314 opts->release_agent =
1315 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1316 if (!opts->release_agent)
1317 return -ENOMEM;
1318 continue;
1319 }
1320 if (!strncmp(token, "name=", 5)) {
1321 const char *name = token + 5;
1322 /* Can't specify an empty name */
1323 if (!strlen(name))
1324 return -EINVAL;
1325 /* Must match [\w.-]+ */
1326 for (i = 0; i < strlen(name); i++) {
1327 char c = name[i];
1328 if (isalnum(c))
1329 continue;
1330 if ((c == '.') || (c == '-') || (c == '_'))
1331 continue;
1332 return -EINVAL;
1333 }
1334 /* Specifying two names is forbidden */
1335 if (opts->name)
1336 return -EINVAL;
1337 opts->name = kstrndup(name,
1338 MAX_CGROUP_ROOT_NAMELEN - 1,
1339 GFP_KERNEL);
1340 if (!opts->name)
1341 return -ENOMEM;
1342
1343 continue;
1344 }
1345
1346 for_each_subsys(ss, i) {
1347 if (strcmp(token, ss->name))
1348 continue;
1349 if (ss->disabled)
1350 continue;
1351
1352 /* Mutually exclusive option 'all' + subsystem name */
1353 if (all_ss)
1354 return -EINVAL;
1355 opts->subsys_mask |= (1 << i);
1356 one_ss = true;
1357
1358 break;
1359 }
1360 if (i == CGROUP_SUBSYS_COUNT)
1361 return -ENOENT;
1362 }
1363
1364 /* Consistency checks */
1365
1366 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1367 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1368
1369 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1370 opts->cpuset_clone_children || opts->release_agent ||
1371 opts->name) {
1372 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
1373 return -EINVAL;
1374 }
1375 } else {
1376 /*
1377 * If the 'all' option was specified select all the
1378 * subsystems, otherwise if 'none', 'name=' and a subsystem
1379 * name options were not specified, let's default to 'all'
1380 */
1381 if (all_ss || (!one_ss && !opts->none && !opts->name))
1382 for_each_subsys(ss, i)
1383 if (!ss->disabled)
1384 opts->subsys_mask |= (1 << i);
1385
1386 /*
1387 * We either have to specify by name or by subsystems. (So
1388 * all empty hierarchies must have a name).
1389 */
1390 if (!opts->subsys_mask && !opts->name)
1391 return -EINVAL;
1392 }
1393
1394 /*
1395 * Option noprefix was introduced just for backward compatibility
1396 * with the old cpuset, so we allow noprefix only if mounting just
1397 * the cpuset subsystem.
1398 */
1399 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1400 return -EINVAL;
1401
1402
1403 /* Can't specify "none" and some subsystems */
1404 if (opts->subsys_mask && opts->none)
1405 return -EINVAL;
1406
1407 return 0;
1408 }
1409
1410 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1411 {
1412 int ret = 0;
1413 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1414 struct cgroup_sb_opts opts;
1415 unsigned int added_mask, removed_mask;
1416
1417 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1418 pr_err("sane_behavior: remount is not allowed\n");
1419 return -EINVAL;
1420 }
1421
1422 mutex_lock(&cgroup_mutex);
1423
1424 /* See what subsystems are wanted */
1425 ret = parse_cgroupfs_options(data, &opts);
1426 if (ret)
1427 goto out_unlock;
1428
1429 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1430 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1431 task_tgid_nr(current), current->comm);
1432
1433 added_mask = opts.subsys_mask & ~root->subsys_mask;
1434 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1435
1436 /* Don't allow flags or name to change at remount */
1437 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1438 (opts.name && strcmp(opts.name, root->name))) {
1439 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1440 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1441 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1442 ret = -EINVAL;
1443 goto out_unlock;
1444 }
1445
1446 /* remounting is not allowed for populated hierarchies */
1447 if (!list_empty(&root->cgrp.self.children)) {
1448 ret = -EBUSY;
1449 goto out_unlock;
1450 }
1451
1452 ret = rebind_subsystems(root, added_mask);
1453 if (ret)
1454 goto out_unlock;
1455
1456 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1457
1458 if (opts.release_agent) {
1459 spin_lock(&release_agent_path_lock);
1460 strcpy(root->release_agent_path, opts.release_agent);
1461 spin_unlock(&release_agent_path_lock);
1462 }
1463 out_unlock:
1464 kfree(opts.release_agent);
1465 kfree(opts.name);
1466 mutex_unlock(&cgroup_mutex);
1467 return ret;
1468 }
1469
1470 /*
1471 * To reduce the fork() overhead for systems that are not actually using
1472 * their cgroups capability, we don't maintain the lists running through
1473 * each css_set to its tasks until we see the list actually used - in other
1474 * words after the first mount.
1475 */
1476 static bool use_task_css_set_links __read_mostly;
1477
1478 static void cgroup_enable_task_cg_lists(void)
1479 {
1480 struct task_struct *p, *g;
1481
1482 down_write(&css_set_rwsem);
1483
1484 if (use_task_css_set_links)
1485 goto out_unlock;
1486
1487 use_task_css_set_links = true;
1488
1489 /*
1490 * We need tasklist_lock because RCU is not safe against
1491 * while_each_thread(). Besides, a forking task that has passed
1492 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1493 * is not guaranteed to have its child immediately visible in the
1494 * tasklist if we walk through it with RCU.
1495 */
1496 read_lock(&tasklist_lock);
1497 do_each_thread(g, p) {
1498 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1499 task_css_set(p) != &init_css_set);
1500
1501 /*
1502 * We should check if the process is exiting, otherwise
1503 * it will race with cgroup_exit() in that the list
1504 * entry won't be deleted though the process has exited.
1505 * Do it while holding siglock so that we don't end up
1506 * racing against cgroup_exit().
1507 */
1508 spin_lock_irq(&p->sighand->siglock);
1509 if (!(p->flags & PF_EXITING)) {
1510 struct css_set *cset = task_css_set(p);
1511
1512 list_add(&p->cg_list, &cset->tasks);
1513 get_css_set(cset);
1514 }
1515 spin_unlock_irq(&p->sighand->siglock);
1516 } while_each_thread(g, p);
1517 read_unlock(&tasklist_lock);
1518 out_unlock:
1519 up_write(&css_set_rwsem);
1520 }
1521
1522 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1523 {
1524 struct cgroup_subsys *ss;
1525 int ssid;
1526
1527 INIT_LIST_HEAD(&cgrp->self.sibling);
1528 INIT_LIST_HEAD(&cgrp->self.children);
1529 INIT_LIST_HEAD(&cgrp->cset_links);
1530 INIT_LIST_HEAD(&cgrp->release_list);
1531 INIT_LIST_HEAD(&cgrp->pidlists);
1532 mutex_init(&cgrp->pidlist_mutex);
1533 cgrp->self.cgroup = cgrp;
1534 cgrp->self.flags |= CSS_ONLINE;
1535
1536 for_each_subsys(ss, ssid)
1537 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1538
1539 init_waitqueue_head(&cgrp->offline_waitq);
1540 }
1541
1542 static void init_cgroup_root(struct cgroup_root *root,
1543 struct cgroup_sb_opts *opts)
1544 {
1545 struct cgroup *cgrp = &root->cgrp;
1546
1547 INIT_LIST_HEAD(&root->root_list);
1548 atomic_set(&root->nr_cgrps, 1);
1549 cgrp->root = root;
1550 init_cgroup_housekeeping(cgrp);
1551 idr_init(&root->cgroup_idr);
1552
1553 root->flags = opts->flags;
1554 if (opts->release_agent)
1555 strcpy(root->release_agent_path, opts->release_agent);
1556 if (opts->name)
1557 strcpy(root->name, opts->name);
1558 if (opts->cpuset_clone_children)
1559 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1560 }
1561
1562 static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1563 {
1564 LIST_HEAD(tmp_links);
1565 struct cgroup *root_cgrp = &root->cgrp;
1566 struct css_set *cset;
1567 int i, ret;
1568
1569 lockdep_assert_held(&cgroup_mutex);
1570
1571 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1572 if (ret < 0)
1573 goto out;
1574 root_cgrp->id = ret;
1575
1576 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1577 if (ret)
1578 goto out;
1579
1580 /*
1581 * We're accessing css_set_count without locking css_set_rwsem here,
1582 * but that's OK - it can only be increased by someone holding
1583 * cgroup_lock, and that's us. The worst that can happen is that we
1584 * have some link structures left over
1585 */
1586 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1587 if (ret)
1588 goto cancel_ref;
1589
1590 ret = cgroup_init_root_id(root);
1591 if (ret)
1592 goto cancel_ref;
1593
1594 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1595 KERNFS_ROOT_CREATE_DEACTIVATED,
1596 root_cgrp);
1597 if (IS_ERR(root->kf_root)) {
1598 ret = PTR_ERR(root->kf_root);
1599 goto exit_root_id;
1600 }
1601 root_cgrp->kn = root->kf_root->kn;
1602
1603 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1604 if (ret)
1605 goto destroy_root;
1606
1607 ret = rebind_subsystems(root, ss_mask);
1608 if (ret)
1609 goto destroy_root;
1610
1611 /*
1612 * There must be no failure case after here, since rebinding takes
1613 * care of subsystems' refcounts, which are explicitly dropped in
1614 * the failure exit path.
1615 */
1616 list_add(&root->root_list, &cgroup_roots);
1617 cgroup_root_count++;
1618
1619 /*
1620 * Link the root cgroup in this hierarchy into all the css_set
1621 * objects.
1622 */
1623 down_write(&css_set_rwsem);
1624 hash_for_each(css_set_table, i, cset, hlist)
1625 link_css_set(&tmp_links, cset, root_cgrp);
1626 up_write(&css_set_rwsem);
1627
1628 BUG_ON(!list_empty(&root_cgrp->self.children));
1629 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1630
1631 kernfs_activate(root_cgrp->kn);
1632 ret = 0;
1633 goto out;
1634
1635 destroy_root:
1636 kernfs_destroy_root(root->kf_root);
1637 root->kf_root = NULL;
1638 exit_root_id:
1639 cgroup_exit_root_id(root);
1640 cancel_ref:
1641 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
1642 out:
1643 free_cgrp_cset_links(&tmp_links);
1644 return ret;
1645 }
1646
1647 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1648 int flags, const char *unused_dev_name,
1649 void *data)
1650 {
1651 struct super_block *pinned_sb = NULL;
1652 struct cgroup_subsys *ss;
1653 struct cgroup_root *root;
1654 struct cgroup_sb_opts opts;
1655 struct dentry *dentry;
1656 int ret;
1657 int i;
1658 bool new_sb;
1659
1660 /*
1661 * The first time anyone tries to mount a cgroup, enable the list
1662 * linking each css_set to its tasks and fix up all existing tasks.
1663 */
1664 if (!use_task_css_set_links)
1665 cgroup_enable_task_cg_lists();
1666
1667 mutex_lock(&cgroup_mutex);
1668
1669 /* First find the desired set of subsystems */
1670 ret = parse_cgroupfs_options(data, &opts);
1671 if (ret)
1672 goto out_unlock;
1673
1674 /* look for a matching existing root */
1675 if (!opts.subsys_mask && !opts.none && !opts.name) {
1676 cgrp_dfl_root_visible = true;
1677 root = &cgrp_dfl_root;
1678 cgroup_get(&root->cgrp);
1679 ret = 0;
1680 goto out_unlock;
1681 }
1682
1683 /*
1684 * Destruction of cgroup root is asynchronous, so subsystems may
1685 * still be dying after the previous unmount. Let's drain the
1686 * dying subsystems. We just need to ensure that the ones
1687 * unmounted previously finish dying and don't care about new ones
1688 * starting. Testing ref liveliness is good enough.
1689 */
1690 for_each_subsys(ss, i) {
1691 if (!(opts.subsys_mask & (1 << i)) ||
1692 ss->root == &cgrp_dfl_root)
1693 continue;
1694
1695 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1696 mutex_unlock(&cgroup_mutex);
1697 msleep(10);
1698 ret = restart_syscall();
1699 goto out_free;
1700 }
1701 cgroup_put(&ss->root->cgrp);
1702 }
1703
1704 for_each_root(root) {
1705 bool name_match = false;
1706
1707 if (root == &cgrp_dfl_root)
1708 continue;
1709
1710 /*
1711 * If we asked for a name then it must match. Also, if
1712 * name matches but sybsys_mask doesn't, we should fail.
1713 * Remember whether name matched.
1714 */
1715 if (opts.name) {
1716 if (strcmp(opts.name, root->name))
1717 continue;
1718 name_match = true;
1719 }
1720
1721 /*
1722 * If we asked for subsystems (or explicitly for no
1723 * subsystems) then they must match.
1724 */
1725 if ((opts.subsys_mask || opts.none) &&
1726 (opts.subsys_mask != root->subsys_mask)) {
1727 if (!name_match)
1728 continue;
1729 ret = -EBUSY;
1730 goto out_unlock;
1731 }
1732
1733 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1734 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1735 pr_err("sane_behavior: new mount options should match the existing superblock\n");
1736 ret = -EINVAL;
1737 goto out_unlock;
1738 } else {
1739 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1740 }
1741 }
1742
1743 /*
1744 * We want to reuse @root whose lifetime is governed by its
1745 * ->cgrp. Let's check whether @root is alive and keep it
1746 * that way. As cgroup_kill_sb() can happen anytime, we
1747 * want to block it by pinning the sb so that @root doesn't
1748 * get killed before mount is complete.
1749 *
1750 * With the sb pinned, tryget_live can reliably indicate
1751 * whether @root can be reused. If it's being killed,
1752 * drain it. We can use wait_queue for the wait but this
1753 * path is super cold. Let's just sleep a bit and retry.
1754 */
1755 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1756 if (IS_ERR(pinned_sb) ||
1757 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1758 mutex_unlock(&cgroup_mutex);
1759 if (!IS_ERR_OR_NULL(pinned_sb))
1760 deactivate_super(pinned_sb);
1761 msleep(10);
1762 ret = restart_syscall();
1763 goto out_free;
1764 }
1765
1766 ret = 0;
1767 goto out_unlock;
1768 }
1769
1770 /*
1771 * No such thing, create a new one. name= matching without subsys
1772 * specification is allowed for already existing hierarchies but we
1773 * can't create new one without subsys specification.
1774 */
1775 if (!opts.subsys_mask && !opts.none) {
1776 ret = -EINVAL;
1777 goto out_unlock;
1778 }
1779
1780 root = kzalloc(sizeof(*root), GFP_KERNEL);
1781 if (!root) {
1782 ret = -ENOMEM;
1783 goto out_unlock;
1784 }
1785
1786 init_cgroup_root(root, &opts);
1787
1788 ret = cgroup_setup_root(root, opts.subsys_mask);
1789 if (ret)
1790 cgroup_free_root(root);
1791
1792 out_unlock:
1793 mutex_unlock(&cgroup_mutex);
1794 out_free:
1795 kfree(opts.release_agent);
1796 kfree(opts.name);
1797
1798 if (ret)
1799 return ERR_PTR(ret);
1800
1801 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1802 CGROUP_SUPER_MAGIC, &new_sb);
1803 if (IS_ERR(dentry) || !new_sb)
1804 cgroup_put(&root->cgrp);
1805
1806 /*
1807 * If @pinned_sb, we're reusing an existing root and holding an
1808 * extra ref on its sb. Mount is complete. Put the extra ref.
1809 */
1810 if (pinned_sb) {
1811 WARN_ON(new_sb);
1812 deactivate_super(pinned_sb);
1813 }
1814
1815 return dentry;
1816 }
1817
1818 static void cgroup_kill_sb(struct super_block *sb)
1819 {
1820 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1821 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1822
1823 /*
1824 * If @root doesn't have any mounts or children, start killing it.
1825 * This prevents new mounts by disabling percpu_ref_tryget_live().
1826 * cgroup_mount() may wait for @root's release.
1827 *
1828 * And don't kill the default root.
1829 */
1830 if (css_has_online_children(&root->cgrp.self) ||
1831 root == &cgrp_dfl_root)
1832 cgroup_put(&root->cgrp);
1833 else
1834 percpu_ref_kill(&root->cgrp.self.refcnt);
1835
1836 kernfs_kill_sb(sb);
1837 }
1838
1839 static struct file_system_type cgroup_fs_type = {
1840 .name = "cgroup",
1841 .mount = cgroup_mount,
1842 .kill_sb = cgroup_kill_sb,
1843 };
1844
1845 static struct kobject *cgroup_kobj;
1846
1847 /**
1848 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1849 * @task: target task
1850 * @buf: the buffer to write the path into
1851 * @buflen: the length of the buffer
1852 *
1853 * Determine @task's cgroup on the first (the one with the lowest non-zero
1854 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1855 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1856 * cgroup controller callbacks.
1857 *
1858 * Return value is the same as kernfs_path().
1859 */
1860 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1861 {
1862 struct cgroup_root *root;
1863 struct cgroup *cgrp;
1864 int hierarchy_id = 1;
1865 char *path = NULL;
1866
1867 mutex_lock(&cgroup_mutex);
1868 down_read(&css_set_rwsem);
1869
1870 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1871
1872 if (root) {
1873 cgrp = task_cgroup_from_root(task, root);
1874 path = cgroup_path(cgrp, buf, buflen);
1875 } else {
1876 /* if no hierarchy exists, everyone is in "/" */
1877 if (strlcpy(buf, "/", buflen) < buflen)
1878 path = buf;
1879 }
1880
1881 up_read(&css_set_rwsem);
1882 mutex_unlock(&cgroup_mutex);
1883 return path;
1884 }
1885 EXPORT_SYMBOL_GPL(task_cgroup_path);
1886
1887 /* used to track tasks and other necessary states during migration */
1888 struct cgroup_taskset {
1889 /* the src and dst cset list running through cset->mg_node */
1890 struct list_head src_csets;
1891 struct list_head dst_csets;
1892
1893 /*
1894 * Fields for cgroup_taskset_*() iteration.
1895 *
1896 * Before migration is committed, the target migration tasks are on
1897 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1898 * the csets on ->dst_csets. ->csets point to either ->src_csets
1899 * or ->dst_csets depending on whether migration is committed.
1900 *
1901 * ->cur_csets and ->cur_task point to the current task position
1902 * during iteration.
1903 */
1904 struct list_head *csets;
1905 struct css_set *cur_cset;
1906 struct task_struct *cur_task;
1907 };
1908
1909 /**
1910 * cgroup_taskset_first - reset taskset and return the first task
1911 * @tset: taskset of interest
1912 *
1913 * @tset iteration is initialized and the first task is returned.
1914 */
1915 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1916 {
1917 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1918 tset->cur_task = NULL;
1919
1920 return cgroup_taskset_next(tset);
1921 }
1922
1923 /**
1924 * cgroup_taskset_next - iterate to the next task in taskset
1925 * @tset: taskset of interest
1926 *
1927 * Return the next task in @tset. Iteration must have been initialized
1928 * with cgroup_taskset_first().
1929 */
1930 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1931 {
1932 struct css_set *cset = tset->cur_cset;
1933 struct task_struct *task = tset->cur_task;
1934
1935 while (&cset->mg_node != tset->csets) {
1936 if (!task)
1937 task = list_first_entry(&cset->mg_tasks,
1938 struct task_struct, cg_list);
1939 else
1940 task = list_next_entry(task, cg_list);
1941
1942 if (&task->cg_list != &cset->mg_tasks) {
1943 tset->cur_cset = cset;
1944 tset->cur_task = task;
1945 return task;
1946 }
1947
1948 cset = list_next_entry(cset, mg_node);
1949 task = NULL;
1950 }
1951
1952 return NULL;
1953 }
1954
1955 /**
1956 * cgroup_task_migrate - move a task from one cgroup to another.
1957 * @old_cgrp: the cgroup @tsk is being migrated from
1958 * @tsk: the task being migrated
1959 * @new_cset: the new css_set @tsk is being attached to
1960 *
1961 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1962 */
1963 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1964 struct task_struct *tsk,
1965 struct css_set *new_cset)
1966 {
1967 struct css_set *old_cset;
1968
1969 lockdep_assert_held(&cgroup_mutex);
1970 lockdep_assert_held(&css_set_rwsem);
1971
1972 /*
1973 * We are synchronized through threadgroup_lock() against PF_EXITING
1974 * setting such that we can't race against cgroup_exit() changing the
1975 * css_set to init_css_set and dropping the old one.
1976 */
1977 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1978 old_cset = task_css_set(tsk);
1979
1980 get_css_set(new_cset);
1981 rcu_assign_pointer(tsk->cgroups, new_cset);
1982
1983 /*
1984 * Use move_tail so that cgroup_taskset_first() still returns the
1985 * leader after migration. This works because cgroup_migrate()
1986 * ensures that the dst_cset of the leader is the first on the
1987 * tset's dst_csets list.
1988 */
1989 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
1990
1991 /*
1992 * We just gained a reference on old_cset by taking it from the
1993 * task. As trading it for new_cset is protected by cgroup_mutex,
1994 * we're safe to drop it here; it will be freed under RCU.
1995 */
1996 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1997 put_css_set_locked(old_cset, false);
1998 }
1999
2000 /**
2001 * cgroup_migrate_finish - cleanup after attach
2002 * @preloaded_csets: list of preloaded css_sets
2003 *
2004 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2005 * those functions for details.
2006 */
2007 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2008 {
2009 struct css_set *cset, *tmp_cset;
2010
2011 lockdep_assert_held(&cgroup_mutex);
2012
2013 down_write(&css_set_rwsem);
2014 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2015 cset->mg_src_cgrp = NULL;
2016 cset->mg_dst_cset = NULL;
2017 list_del_init(&cset->mg_preload_node);
2018 put_css_set_locked(cset, false);
2019 }
2020 up_write(&css_set_rwsem);
2021 }
2022
2023 /**
2024 * cgroup_migrate_add_src - add a migration source css_set
2025 * @src_cset: the source css_set to add
2026 * @dst_cgrp: the destination cgroup
2027 * @preloaded_csets: list of preloaded css_sets
2028 *
2029 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2030 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2031 * up by cgroup_migrate_finish().
2032 *
2033 * This function may be called without holding threadgroup_lock even if the
2034 * target is a process. Threads may be created and destroyed but as long
2035 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2036 * the preloaded css_sets are guaranteed to cover all migrations.
2037 */
2038 static void cgroup_migrate_add_src(struct css_set *src_cset,
2039 struct cgroup *dst_cgrp,
2040 struct list_head *preloaded_csets)
2041 {
2042 struct cgroup *src_cgrp;
2043
2044 lockdep_assert_held(&cgroup_mutex);
2045 lockdep_assert_held(&css_set_rwsem);
2046
2047 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2048
2049 if (!list_empty(&src_cset->mg_preload_node))
2050 return;
2051
2052 WARN_ON(src_cset->mg_src_cgrp);
2053 WARN_ON(!list_empty(&src_cset->mg_tasks));
2054 WARN_ON(!list_empty(&src_cset->mg_node));
2055
2056 src_cset->mg_src_cgrp = src_cgrp;
2057 get_css_set(src_cset);
2058 list_add(&src_cset->mg_preload_node, preloaded_csets);
2059 }
2060
2061 /**
2062 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2063 * @dst_cgrp: the destination cgroup (may be %NULL)
2064 * @preloaded_csets: list of preloaded source css_sets
2065 *
2066 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2067 * have been preloaded to @preloaded_csets. This function looks up and
2068 * pins all destination css_sets, links each to its source, and append them
2069 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2070 * source css_set is assumed to be its cgroup on the default hierarchy.
2071 *
2072 * This function must be called after cgroup_migrate_add_src() has been
2073 * called on each migration source css_set. After migration is performed
2074 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2075 * @preloaded_csets.
2076 */
2077 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2078 struct list_head *preloaded_csets)
2079 {
2080 LIST_HEAD(csets);
2081 struct css_set *src_cset, *tmp_cset;
2082
2083 lockdep_assert_held(&cgroup_mutex);
2084
2085 /*
2086 * Except for the root, child_subsys_mask must be zero for a cgroup
2087 * with tasks so that child cgroups don't compete against tasks.
2088 */
2089 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2090 dst_cgrp->child_subsys_mask)
2091 return -EBUSY;
2092
2093 /* look up the dst cset for each src cset and link it to src */
2094 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2095 struct css_set *dst_cset;
2096
2097 dst_cset = find_css_set(src_cset,
2098 dst_cgrp ?: src_cset->dfl_cgrp);
2099 if (!dst_cset)
2100 goto err;
2101
2102 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2103
2104 /*
2105 * If src cset equals dst, it's noop. Drop the src.
2106 * cgroup_migrate() will skip the cset too. Note that we
2107 * can't handle src == dst as some nodes are used by both.
2108 */
2109 if (src_cset == dst_cset) {
2110 src_cset->mg_src_cgrp = NULL;
2111 list_del_init(&src_cset->mg_preload_node);
2112 put_css_set(src_cset, false);
2113 put_css_set(dst_cset, false);
2114 continue;
2115 }
2116
2117 src_cset->mg_dst_cset = dst_cset;
2118
2119 if (list_empty(&dst_cset->mg_preload_node))
2120 list_add(&dst_cset->mg_preload_node, &csets);
2121 else
2122 put_css_set(dst_cset, false);
2123 }
2124
2125 list_splice_tail(&csets, preloaded_csets);
2126 return 0;
2127 err:
2128 cgroup_migrate_finish(&csets);
2129 return -ENOMEM;
2130 }
2131
2132 /**
2133 * cgroup_migrate - migrate a process or task to a cgroup
2134 * @cgrp: the destination cgroup
2135 * @leader: the leader of the process or the task to migrate
2136 * @threadgroup: whether @leader points to the whole process or a single task
2137 *
2138 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2139 * process, the caller must be holding threadgroup_lock of @leader. The
2140 * caller is also responsible for invoking cgroup_migrate_add_src() and
2141 * cgroup_migrate_prepare_dst() on the targets before invoking this
2142 * function and following up with cgroup_migrate_finish().
2143 *
2144 * As long as a controller's ->can_attach() doesn't fail, this function is
2145 * guaranteed to succeed. This means that, excluding ->can_attach()
2146 * failure, when migrating multiple targets, the success or failure can be
2147 * decided for all targets by invoking group_migrate_prepare_dst() before
2148 * actually starting migrating.
2149 */
2150 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2151 bool threadgroup)
2152 {
2153 struct cgroup_taskset tset = {
2154 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2155 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2156 .csets = &tset.src_csets,
2157 };
2158 struct cgroup_subsys_state *css, *failed_css = NULL;
2159 struct css_set *cset, *tmp_cset;
2160 struct task_struct *task, *tmp_task;
2161 int i, ret;
2162
2163 /*
2164 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2165 * already PF_EXITING could be freed from underneath us unless we
2166 * take an rcu_read_lock.
2167 */
2168 down_write(&css_set_rwsem);
2169 rcu_read_lock();
2170 task = leader;
2171 do {
2172 /* @task either already exited or can't exit until the end */
2173 if (task->flags & PF_EXITING)
2174 goto next;
2175
2176 /* leave @task alone if post_fork() hasn't linked it yet */
2177 if (list_empty(&task->cg_list))
2178 goto next;
2179
2180 cset = task_css_set(task);
2181 if (!cset->mg_src_cgrp)
2182 goto next;
2183
2184 /*
2185 * cgroup_taskset_first() must always return the leader.
2186 * Take care to avoid disturbing the ordering.
2187 */
2188 list_move_tail(&task->cg_list, &cset->mg_tasks);
2189 if (list_empty(&cset->mg_node))
2190 list_add_tail(&cset->mg_node, &tset.src_csets);
2191 if (list_empty(&cset->mg_dst_cset->mg_node))
2192 list_move_tail(&cset->mg_dst_cset->mg_node,
2193 &tset.dst_csets);
2194 next:
2195 if (!threadgroup)
2196 break;
2197 } while_each_thread(leader, task);
2198 rcu_read_unlock();
2199 up_write(&css_set_rwsem);
2200
2201 /* methods shouldn't be called if no task is actually migrating */
2202 if (list_empty(&tset.src_csets))
2203 return 0;
2204
2205 /* check that we can legitimately attach to the cgroup */
2206 for_each_e_css(css, i, cgrp) {
2207 if (css->ss->can_attach) {
2208 ret = css->ss->can_attach(css, &tset);
2209 if (ret) {
2210 failed_css = css;
2211 goto out_cancel_attach;
2212 }
2213 }
2214 }
2215
2216 /*
2217 * Now that we're guaranteed success, proceed to move all tasks to
2218 * the new cgroup. There are no failure cases after here, so this
2219 * is the commit point.
2220 */
2221 down_write(&css_set_rwsem);
2222 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2223 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2224 cgroup_task_migrate(cset->mg_src_cgrp, task,
2225 cset->mg_dst_cset);
2226 }
2227 up_write(&css_set_rwsem);
2228
2229 /*
2230 * Migration is committed, all target tasks are now on dst_csets.
2231 * Nothing is sensitive to fork() after this point. Notify
2232 * controllers that migration is complete.
2233 */
2234 tset.csets = &tset.dst_csets;
2235
2236 for_each_e_css(css, i, cgrp)
2237 if (css->ss->attach)
2238 css->ss->attach(css, &tset);
2239
2240 ret = 0;
2241 goto out_release_tset;
2242
2243 out_cancel_attach:
2244 for_each_e_css(css, i, cgrp) {
2245 if (css == failed_css)
2246 break;
2247 if (css->ss->cancel_attach)
2248 css->ss->cancel_attach(css, &tset);
2249 }
2250 out_release_tset:
2251 down_write(&css_set_rwsem);
2252 list_splice_init(&tset.dst_csets, &tset.src_csets);
2253 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2254 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2255 list_del_init(&cset->mg_node);
2256 }
2257 up_write(&css_set_rwsem);
2258 return ret;
2259 }
2260
2261 /**
2262 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2263 * @dst_cgrp: the cgroup to attach to
2264 * @leader: the task or the leader of the threadgroup to be attached
2265 * @threadgroup: attach the whole threadgroup?
2266 *
2267 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2268 */
2269 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2270 struct task_struct *leader, bool threadgroup)
2271 {
2272 LIST_HEAD(preloaded_csets);
2273 struct task_struct *task;
2274 int ret;
2275
2276 /* look up all src csets */
2277 down_read(&css_set_rwsem);
2278 rcu_read_lock();
2279 task = leader;
2280 do {
2281 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2282 &preloaded_csets);
2283 if (!threadgroup)
2284 break;
2285 } while_each_thread(leader, task);
2286 rcu_read_unlock();
2287 up_read(&css_set_rwsem);
2288
2289 /* prepare dst csets and commit */
2290 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2291 if (!ret)
2292 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2293
2294 cgroup_migrate_finish(&preloaded_csets);
2295 return ret;
2296 }
2297
2298 /*
2299 * Find the task_struct of the task to attach by vpid and pass it along to the
2300 * function to attach either it or all tasks in its threadgroup. Will lock
2301 * cgroup_mutex and threadgroup.
2302 */
2303 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2304 size_t nbytes, loff_t off, bool threadgroup)
2305 {
2306 struct task_struct *tsk;
2307 const struct cred *cred = current_cred(), *tcred;
2308 struct cgroup *cgrp;
2309 pid_t pid;
2310 int ret;
2311
2312 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2313 return -EINVAL;
2314
2315 cgrp = cgroup_kn_lock_live(of->kn);
2316 if (!cgrp)
2317 return -ENODEV;
2318
2319 retry_find_task:
2320 rcu_read_lock();
2321 if (pid) {
2322 tsk = find_task_by_vpid(pid);
2323 if (!tsk) {
2324 rcu_read_unlock();
2325 ret = -ESRCH;
2326 goto out_unlock_cgroup;
2327 }
2328 /*
2329 * even if we're attaching all tasks in the thread group, we
2330 * only need to check permissions on one of them.
2331 */
2332 tcred = __task_cred(tsk);
2333 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2334 !uid_eq(cred->euid, tcred->uid) &&
2335 !uid_eq(cred->euid, tcred->suid)) {
2336 rcu_read_unlock();
2337 ret = -EACCES;
2338 goto out_unlock_cgroup;
2339 }
2340 } else
2341 tsk = current;
2342
2343 if (threadgroup)
2344 tsk = tsk->group_leader;
2345
2346 /*
2347 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2348 * trapped in a cpuset, or RT worker may be born in a cgroup
2349 * with no rt_runtime allocated. Just say no.
2350 */
2351 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2352 ret = -EINVAL;
2353 rcu_read_unlock();
2354 goto out_unlock_cgroup;
2355 }
2356
2357 get_task_struct(tsk);
2358 rcu_read_unlock();
2359
2360 threadgroup_lock(tsk);
2361 if (threadgroup) {
2362 if (!thread_group_leader(tsk)) {
2363 /*
2364 * a race with de_thread from another thread's exec()
2365 * may strip us of our leadership, if this happens,
2366 * there is no choice but to throw this task away and
2367 * try again; this is
2368 * "double-double-toil-and-trouble-check locking".
2369 */
2370 threadgroup_unlock(tsk);
2371 put_task_struct(tsk);
2372 goto retry_find_task;
2373 }
2374 }
2375
2376 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2377
2378 threadgroup_unlock(tsk);
2379
2380 put_task_struct(tsk);
2381 out_unlock_cgroup:
2382 cgroup_kn_unlock(of->kn);
2383 return ret ?: nbytes;
2384 }
2385
2386 /**
2387 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2388 * @from: attach to all cgroups of a given task
2389 * @tsk: the task to be attached
2390 */
2391 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2392 {
2393 struct cgroup_root *root;
2394 int retval = 0;
2395
2396 mutex_lock(&cgroup_mutex);
2397 for_each_root(root) {
2398 struct cgroup *from_cgrp;
2399
2400 if (root == &cgrp_dfl_root)
2401 continue;
2402
2403 down_read(&css_set_rwsem);
2404 from_cgrp = task_cgroup_from_root(from, root);
2405 up_read(&css_set_rwsem);
2406
2407 retval = cgroup_attach_task(from_cgrp, tsk, false);
2408 if (retval)
2409 break;
2410 }
2411 mutex_unlock(&cgroup_mutex);
2412
2413 return retval;
2414 }
2415 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2416
2417 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2418 char *buf, size_t nbytes, loff_t off)
2419 {
2420 return __cgroup_procs_write(of, buf, nbytes, off, false);
2421 }
2422
2423 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2424 char *buf, size_t nbytes, loff_t off)
2425 {
2426 return __cgroup_procs_write(of, buf, nbytes, off, true);
2427 }
2428
2429 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2430 char *buf, size_t nbytes, loff_t off)
2431 {
2432 struct cgroup *cgrp;
2433
2434 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2435
2436 cgrp = cgroup_kn_lock_live(of->kn);
2437 if (!cgrp)
2438 return -ENODEV;
2439 spin_lock(&release_agent_path_lock);
2440 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2441 sizeof(cgrp->root->release_agent_path));
2442 spin_unlock(&release_agent_path_lock);
2443 cgroup_kn_unlock(of->kn);
2444 return nbytes;
2445 }
2446
2447 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2448 {
2449 struct cgroup *cgrp = seq_css(seq)->cgroup;
2450
2451 spin_lock(&release_agent_path_lock);
2452 seq_puts(seq, cgrp->root->release_agent_path);
2453 spin_unlock(&release_agent_path_lock);
2454 seq_putc(seq, '\n');
2455 return 0;
2456 }
2457
2458 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2459 {
2460 struct cgroup *cgrp = seq_css(seq)->cgroup;
2461
2462 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2463 return 0;
2464 }
2465
2466 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2467 {
2468 struct cgroup_subsys *ss;
2469 bool printed = false;
2470 int ssid;
2471
2472 for_each_subsys(ss, ssid) {
2473 if (ss_mask & (1 << ssid)) {
2474 if (printed)
2475 seq_putc(seq, ' ');
2476 seq_printf(seq, "%s", ss->name);
2477 printed = true;
2478 }
2479 }
2480 if (printed)
2481 seq_putc(seq, '\n');
2482 }
2483
2484 /* show controllers which are currently attached to the default hierarchy */
2485 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2486 {
2487 struct cgroup *cgrp = seq_css(seq)->cgroup;
2488
2489 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2490 ~cgrp_dfl_root_inhibit_ss_mask);
2491 return 0;
2492 }
2493
2494 /* show controllers which are enabled from the parent */
2495 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2496 {
2497 struct cgroup *cgrp = seq_css(seq)->cgroup;
2498
2499 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->child_subsys_mask);
2500 return 0;
2501 }
2502
2503 /* show controllers which are enabled for a given cgroup's children */
2504 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2505 {
2506 struct cgroup *cgrp = seq_css(seq)->cgroup;
2507
2508 cgroup_print_ss_mask(seq, cgrp->child_subsys_mask);
2509 return 0;
2510 }
2511
2512 /**
2513 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2514 * @cgrp: root of the subtree to update csses for
2515 *
2516 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2517 * css associations need to be updated accordingly. This function looks up
2518 * all css_sets which are attached to the subtree, creates the matching
2519 * updated css_sets and migrates the tasks to the new ones.
2520 */
2521 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2522 {
2523 LIST_HEAD(preloaded_csets);
2524 struct cgroup_subsys_state *css;
2525 struct css_set *src_cset;
2526 int ret;
2527
2528 lockdep_assert_held(&cgroup_mutex);
2529
2530 /* look up all csses currently attached to @cgrp's subtree */
2531 down_read(&css_set_rwsem);
2532 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2533 struct cgrp_cset_link *link;
2534
2535 /* self is not affected by child_subsys_mask change */
2536 if (css->cgroup == cgrp)
2537 continue;
2538
2539 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2540 cgroup_migrate_add_src(link->cset, cgrp,
2541 &preloaded_csets);
2542 }
2543 up_read(&css_set_rwsem);
2544
2545 /* NULL dst indicates self on default hierarchy */
2546 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2547 if (ret)
2548 goto out_finish;
2549
2550 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2551 struct task_struct *last_task = NULL, *task;
2552
2553 /* src_csets precede dst_csets, break on the first dst_cset */
2554 if (!src_cset->mg_src_cgrp)
2555 break;
2556
2557 /*
2558 * All tasks in src_cset need to be migrated to the
2559 * matching dst_cset. Empty it process by process. We
2560 * walk tasks but migrate processes. The leader might even
2561 * belong to a different cset but such src_cset would also
2562 * be among the target src_csets because the default
2563 * hierarchy enforces per-process membership.
2564 */
2565 while (true) {
2566 down_read(&css_set_rwsem);
2567 task = list_first_entry_or_null(&src_cset->tasks,
2568 struct task_struct, cg_list);
2569 if (task) {
2570 task = task->group_leader;
2571 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2572 get_task_struct(task);
2573 }
2574 up_read(&css_set_rwsem);
2575
2576 if (!task)
2577 break;
2578
2579 /* guard against possible infinite loop */
2580 if (WARN(last_task == task,
2581 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2582 goto out_finish;
2583 last_task = task;
2584
2585 threadgroup_lock(task);
2586 /* raced against de_thread() from another thread? */
2587 if (!thread_group_leader(task)) {
2588 threadgroup_unlock(task);
2589 put_task_struct(task);
2590 continue;
2591 }
2592
2593 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2594
2595 threadgroup_unlock(task);
2596 put_task_struct(task);
2597
2598 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2599 goto out_finish;
2600 }
2601 }
2602
2603 out_finish:
2604 cgroup_migrate_finish(&preloaded_csets);
2605 return ret;
2606 }
2607
2608 /* change the enabled child controllers for a cgroup in the default hierarchy */
2609 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2610 char *buf, size_t nbytes,
2611 loff_t off)
2612 {
2613 unsigned int enable = 0, disable = 0;
2614 struct cgroup *cgrp, *child;
2615 struct cgroup_subsys *ss;
2616 char *tok;
2617 int ssid, ret;
2618
2619 /*
2620 * Parse input - space separated list of subsystem names prefixed
2621 * with either + or -.
2622 */
2623 buf = strstrip(buf);
2624 while ((tok = strsep(&buf, " "))) {
2625 if (tok[0] == '\0')
2626 continue;
2627 for_each_subsys(ss, ssid) {
2628 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2629 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2630 continue;
2631
2632 if (*tok == '+') {
2633 enable |= 1 << ssid;
2634 disable &= ~(1 << ssid);
2635 } else if (*tok == '-') {
2636 disable |= 1 << ssid;
2637 enable &= ~(1 << ssid);
2638 } else {
2639 return -EINVAL;
2640 }
2641 break;
2642 }
2643 if (ssid == CGROUP_SUBSYS_COUNT)
2644 return -EINVAL;
2645 }
2646
2647 cgrp = cgroup_kn_lock_live(of->kn);
2648 if (!cgrp)
2649 return -ENODEV;
2650
2651 for_each_subsys(ss, ssid) {
2652 if (enable & (1 << ssid)) {
2653 if (cgrp->child_subsys_mask & (1 << ssid)) {
2654 enable &= ~(1 << ssid);
2655 continue;
2656 }
2657
2658 /*
2659 * Because css offlining is asynchronous, userland
2660 * might try to re-enable the same controller while
2661 * the previous instance is still around. In such
2662 * cases, wait till it's gone using offline_waitq.
2663 */
2664 cgroup_for_each_live_child(child, cgrp) {
2665 DEFINE_WAIT(wait);
2666
2667 if (!cgroup_css(child, ss))
2668 continue;
2669
2670 cgroup_get(child);
2671 prepare_to_wait(&child->offline_waitq, &wait,
2672 TASK_UNINTERRUPTIBLE);
2673 cgroup_kn_unlock(of->kn);
2674 schedule();
2675 finish_wait(&child->offline_waitq, &wait);
2676 cgroup_put(child);
2677
2678 return restart_syscall();
2679 }
2680
2681 /* unavailable or not enabled on the parent? */
2682 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2683 (cgroup_parent(cgrp) &&
2684 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ssid)))) {
2685 ret = -ENOENT;
2686 goto out_unlock;
2687 }
2688 } else if (disable & (1 << ssid)) {
2689 if (!(cgrp->child_subsys_mask & (1 << ssid))) {
2690 disable &= ~(1 << ssid);
2691 continue;
2692 }
2693
2694 /* a child has it enabled? */
2695 cgroup_for_each_live_child(child, cgrp) {
2696 if (child->child_subsys_mask & (1 << ssid)) {
2697 ret = -EBUSY;
2698 goto out_unlock;
2699 }
2700 }
2701 }
2702 }
2703
2704 if (!enable && !disable) {
2705 ret = 0;
2706 goto out_unlock;
2707 }
2708
2709 /*
2710 * Except for the root, child_subsys_mask must be zero for a cgroup
2711 * with tasks so that child cgroups don't compete against tasks.
2712 */
2713 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2714 ret = -EBUSY;
2715 goto out_unlock;
2716 }
2717
2718 /*
2719 * Create csses for enables and update child_subsys_mask. This
2720 * changes cgroup_e_css() results which in turn makes the
2721 * subsequent cgroup_update_dfl_csses() associate all tasks in the
2722 * subtree to the updated csses.
2723 */
2724 for_each_subsys(ss, ssid) {
2725 if (!(enable & (1 << ssid)))
2726 continue;
2727
2728 cgroup_for_each_live_child(child, cgrp) {
2729 ret = create_css(child, ss);
2730 if (ret)
2731 goto err_undo_css;
2732 }
2733 }
2734
2735 cgrp->child_subsys_mask |= enable;
2736 cgrp->child_subsys_mask &= ~disable;
2737
2738 ret = cgroup_update_dfl_csses(cgrp);
2739 if (ret)
2740 goto err_undo_css;
2741
2742 /* all tasks are now migrated away from the old csses, kill them */
2743 for_each_subsys(ss, ssid) {
2744 if (!(disable & (1 << ssid)))
2745 continue;
2746
2747 cgroup_for_each_live_child(child, cgrp)
2748 kill_css(cgroup_css(child, ss));
2749 }
2750
2751 kernfs_activate(cgrp->kn);
2752 ret = 0;
2753 out_unlock:
2754 cgroup_kn_unlock(of->kn);
2755 return ret ?: nbytes;
2756
2757 err_undo_css:
2758 cgrp->child_subsys_mask &= ~enable;
2759 cgrp->child_subsys_mask |= disable;
2760
2761 for_each_subsys(ss, ssid) {
2762 if (!(enable & (1 << ssid)))
2763 continue;
2764
2765 cgroup_for_each_live_child(child, cgrp) {
2766 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2767 if (css)
2768 kill_css(css);
2769 }
2770 }
2771 goto out_unlock;
2772 }
2773
2774 static int cgroup_populated_show(struct seq_file *seq, void *v)
2775 {
2776 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2777 return 0;
2778 }
2779
2780 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2781 size_t nbytes, loff_t off)
2782 {
2783 struct cgroup *cgrp = of->kn->parent->priv;
2784 struct cftype *cft = of->kn->priv;
2785 struct cgroup_subsys_state *css;
2786 int ret;
2787
2788 if (cft->write)
2789 return cft->write(of, buf, nbytes, off);
2790
2791 /*
2792 * kernfs guarantees that a file isn't deleted with operations in
2793 * flight, which means that the matching css is and stays alive and
2794 * doesn't need to be pinned. The RCU locking is not necessary
2795 * either. It's just for the convenience of using cgroup_css().
2796 */
2797 rcu_read_lock();
2798 css = cgroup_css(cgrp, cft->ss);
2799 rcu_read_unlock();
2800
2801 if (cft->write_u64) {
2802 unsigned long long v;
2803 ret = kstrtoull(buf, 0, &v);
2804 if (!ret)
2805 ret = cft->write_u64(css, cft, v);
2806 } else if (cft->write_s64) {
2807 long long v;
2808 ret = kstrtoll(buf, 0, &v);
2809 if (!ret)
2810 ret = cft->write_s64(css, cft, v);
2811 } else {
2812 ret = -EINVAL;
2813 }
2814
2815 return ret ?: nbytes;
2816 }
2817
2818 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2819 {
2820 return seq_cft(seq)->seq_start(seq, ppos);
2821 }
2822
2823 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2824 {
2825 return seq_cft(seq)->seq_next(seq, v, ppos);
2826 }
2827
2828 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2829 {
2830 seq_cft(seq)->seq_stop(seq, v);
2831 }
2832
2833 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2834 {
2835 struct cftype *cft = seq_cft(m);
2836 struct cgroup_subsys_state *css = seq_css(m);
2837
2838 if (cft->seq_show)
2839 return cft->seq_show(m, arg);
2840
2841 if (cft->read_u64)
2842 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2843 else if (cft->read_s64)
2844 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2845 else
2846 return -EINVAL;
2847 return 0;
2848 }
2849
2850 static struct kernfs_ops cgroup_kf_single_ops = {
2851 .atomic_write_len = PAGE_SIZE,
2852 .write = cgroup_file_write,
2853 .seq_show = cgroup_seqfile_show,
2854 };
2855
2856 static struct kernfs_ops cgroup_kf_ops = {
2857 .atomic_write_len = PAGE_SIZE,
2858 .write = cgroup_file_write,
2859 .seq_start = cgroup_seqfile_start,
2860 .seq_next = cgroup_seqfile_next,
2861 .seq_stop = cgroup_seqfile_stop,
2862 .seq_show = cgroup_seqfile_show,
2863 };
2864
2865 /*
2866 * cgroup_rename - Only allow simple rename of directories in place.
2867 */
2868 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2869 const char *new_name_str)
2870 {
2871 struct cgroup *cgrp = kn->priv;
2872 int ret;
2873
2874 if (kernfs_type(kn) != KERNFS_DIR)
2875 return -ENOTDIR;
2876 if (kn->parent != new_parent)
2877 return -EIO;
2878
2879 /*
2880 * This isn't a proper migration and its usefulness is very
2881 * limited. Disallow if sane_behavior.
2882 */
2883 if (cgroup_sane_behavior(cgrp))
2884 return -EPERM;
2885
2886 /*
2887 * We're gonna grab cgroup_mutex which nests outside kernfs
2888 * active_ref. kernfs_rename() doesn't require active_ref
2889 * protection. Break them before grabbing cgroup_mutex.
2890 */
2891 kernfs_break_active_protection(new_parent);
2892 kernfs_break_active_protection(kn);
2893
2894 mutex_lock(&cgroup_mutex);
2895
2896 ret = kernfs_rename(kn, new_parent, new_name_str);
2897
2898 mutex_unlock(&cgroup_mutex);
2899
2900 kernfs_unbreak_active_protection(kn);
2901 kernfs_unbreak_active_protection(new_parent);
2902 return ret;
2903 }
2904
2905 /* set uid and gid of cgroup dirs and files to that of the creator */
2906 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2907 {
2908 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2909 .ia_uid = current_fsuid(),
2910 .ia_gid = current_fsgid(), };
2911
2912 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2913 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2914 return 0;
2915
2916 return kernfs_setattr(kn, &iattr);
2917 }
2918
2919 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2920 {
2921 char name[CGROUP_FILE_NAME_MAX];
2922 struct kernfs_node *kn;
2923 struct lock_class_key *key = NULL;
2924 int ret;
2925
2926 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2927 key = &cft->lockdep_key;
2928 #endif
2929 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2930 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2931 NULL, false, key);
2932 if (IS_ERR(kn))
2933 return PTR_ERR(kn);
2934
2935 ret = cgroup_kn_set_ugid(kn);
2936 if (ret) {
2937 kernfs_remove(kn);
2938 return ret;
2939 }
2940
2941 if (cft->seq_show == cgroup_populated_show)
2942 cgrp->populated_kn = kn;
2943 return 0;
2944 }
2945
2946 /**
2947 * cgroup_addrm_files - add or remove files to a cgroup directory
2948 * @cgrp: the target cgroup
2949 * @cfts: array of cftypes to be added
2950 * @is_add: whether to add or remove
2951 *
2952 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2953 * For removals, this function never fails. If addition fails, this
2954 * function doesn't remove files already added. The caller is responsible
2955 * for cleaning up.
2956 */
2957 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2958 bool is_add)
2959 {
2960 struct cftype *cft;
2961 int ret;
2962
2963 lockdep_assert_held(&cgroup_mutex);
2964
2965 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2966 /* does cft->flags tell us to skip this file on @cgrp? */
2967 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2968 continue;
2969 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2970 continue;
2971 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
2972 continue;
2973 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
2974 continue;
2975
2976 if (is_add) {
2977 ret = cgroup_add_file(cgrp, cft);
2978 if (ret) {
2979 pr_warn("%s: failed to add %s, err=%d\n",
2980 __func__, cft->name, ret);
2981 return ret;
2982 }
2983 } else {
2984 cgroup_rm_file(cgrp, cft);
2985 }
2986 }
2987 return 0;
2988 }
2989
2990 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
2991 {
2992 LIST_HEAD(pending);
2993 struct cgroup_subsys *ss = cfts[0].ss;
2994 struct cgroup *root = &ss->root->cgrp;
2995 struct cgroup_subsys_state *css;
2996 int ret = 0;
2997
2998 lockdep_assert_held(&cgroup_mutex);
2999
3000 /* add/rm files for all cgroups created before */
3001 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3002 struct cgroup *cgrp = css->cgroup;
3003
3004 if (cgroup_is_dead(cgrp))
3005 continue;
3006
3007 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3008 if (ret)
3009 break;
3010 }
3011
3012 if (is_add && !ret)
3013 kernfs_activate(root->kn);
3014 return ret;
3015 }
3016
3017 static void cgroup_exit_cftypes(struct cftype *cfts)
3018 {
3019 struct cftype *cft;
3020
3021 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3022 /* free copy for custom atomic_write_len, see init_cftypes() */
3023 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3024 kfree(cft->kf_ops);
3025 cft->kf_ops = NULL;
3026 cft->ss = NULL;
3027 }
3028 }
3029
3030 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3031 {
3032 struct cftype *cft;
3033
3034 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3035 struct kernfs_ops *kf_ops;
3036
3037 WARN_ON(cft->ss || cft->kf_ops);
3038
3039 if (cft->seq_start)
3040 kf_ops = &cgroup_kf_ops;
3041 else
3042 kf_ops = &cgroup_kf_single_ops;
3043
3044 /*
3045 * Ugh... if @cft wants a custom max_write_len, we need to
3046 * make a copy of kf_ops to set its atomic_write_len.
3047 */
3048 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3049 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3050 if (!kf_ops) {
3051 cgroup_exit_cftypes(cfts);
3052 return -ENOMEM;
3053 }
3054 kf_ops->atomic_write_len = cft->max_write_len;
3055 }
3056
3057 cft->kf_ops = kf_ops;
3058 cft->ss = ss;
3059 }
3060
3061 return 0;
3062 }
3063
3064 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3065 {
3066 lockdep_assert_held(&cgroup_mutex);
3067
3068 if (!cfts || !cfts[0].ss)
3069 return -ENOENT;
3070
3071 list_del(&cfts->node);
3072 cgroup_apply_cftypes(cfts, false);
3073 cgroup_exit_cftypes(cfts);
3074 return 0;
3075 }
3076
3077 /**
3078 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3079 * @cfts: zero-length name terminated array of cftypes
3080 *
3081 * Unregister @cfts. Files described by @cfts are removed from all
3082 * existing cgroups and all future cgroups won't have them either. This
3083 * function can be called anytime whether @cfts' subsys is attached or not.
3084 *
3085 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3086 * registered.
3087 */
3088 int cgroup_rm_cftypes(struct cftype *cfts)
3089 {
3090 int ret;
3091
3092 mutex_lock(&cgroup_mutex);
3093 ret = cgroup_rm_cftypes_locked(cfts);
3094 mutex_unlock(&cgroup_mutex);
3095 return ret;
3096 }
3097
3098 /**
3099 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3100 * @ss: target cgroup subsystem
3101 * @cfts: zero-length name terminated array of cftypes
3102 *
3103 * Register @cfts to @ss. Files described by @cfts are created for all
3104 * existing cgroups to which @ss is attached and all future cgroups will
3105 * have them too. This function can be called anytime whether @ss is
3106 * attached or not.
3107 *
3108 * Returns 0 on successful registration, -errno on failure. Note that this
3109 * function currently returns 0 as long as @cfts registration is successful
3110 * even if some file creation attempts on existing cgroups fail.
3111 */
3112 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3113 {
3114 int ret;
3115
3116 if (ss->disabled)
3117 return 0;
3118
3119 if (!cfts || cfts[0].name[0] == '\0')
3120 return 0;
3121
3122 ret = cgroup_init_cftypes(ss, cfts);
3123 if (ret)
3124 return ret;
3125
3126 mutex_lock(&cgroup_mutex);
3127
3128 list_add_tail(&cfts->node, &ss->cfts);
3129 ret = cgroup_apply_cftypes(cfts, true);
3130 if (ret)
3131 cgroup_rm_cftypes_locked(cfts);
3132
3133 mutex_unlock(&cgroup_mutex);
3134 return ret;
3135 }
3136
3137 /**
3138 * cgroup_task_count - count the number of tasks in a cgroup.
3139 * @cgrp: the cgroup in question
3140 *
3141 * Return the number of tasks in the cgroup.
3142 */
3143 static int cgroup_task_count(const struct cgroup *cgrp)
3144 {
3145 int count = 0;
3146 struct cgrp_cset_link *link;
3147
3148 down_read(&css_set_rwsem);
3149 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3150 count += atomic_read(&link->cset->refcount);
3151 up_read(&css_set_rwsem);
3152 return count;
3153 }
3154
3155 /**
3156 * css_next_child - find the next child of a given css
3157 * @pos: the current position (%NULL to initiate traversal)
3158 * @parent: css whose children to walk
3159 *
3160 * This function returns the next child of @parent and should be called
3161 * under either cgroup_mutex or RCU read lock. The only requirement is
3162 * that @parent and @pos are accessible. The next sibling is guaranteed to
3163 * be returned regardless of their states.
3164 *
3165 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3166 * css which finished ->css_online() is guaranteed to be visible in the
3167 * future iterations and will stay visible until the last reference is put.
3168 * A css which hasn't finished ->css_online() or already finished
3169 * ->css_offline() may show up during traversal. It's each subsystem's
3170 * responsibility to synchronize against on/offlining.
3171 */
3172 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3173 struct cgroup_subsys_state *parent)
3174 {
3175 struct cgroup_subsys_state *next;
3176
3177 cgroup_assert_mutex_or_rcu_locked();
3178
3179 /*
3180 * @pos could already have been unlinked from the sibling list.
3181 * Once a cgroup is removed, its ->sibling.next is no longer
3182 * updated when its next sibling changes. CSS_RELEASED is set when
3183 * @pos is taken off list, at which time its next pointer is valid,
3184 * and, as releases are serialized, the one pointed to by the next
3185 * pointer is guaranteed to not have started release yet. This
3186 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3187 * critical section, the one pointed to by its next pointer is
3188 * guaranteed to not have finished its RCU grace period even if we
3189 * have dropped rcu_read_lock() inbetween iterations.
3190 *
3191 * If @pos has CSS_RELEASED set, its next pointer can't be
3192 * dereferenced; however, as each css is given a monotonically
3193 * increasing unique serial number and always appended to the
3194 * sibling list, the next one can be found by walking the parent's
3195 * children until the first css with higher serial number than
3196 * @pos's. While this path can be slower, it happens iff iteration
3197 * races against release and the race window is very small.
3198 */
3199 if (!pos) {
3200 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3201 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3202 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3203 } else {
3204 list_for_each_entry_rcu(next, &parent->children, sibling)
3205 if (next->serial_nr > pos->serial_nr)
3206 break;
3207 }
3208
3209 /*
3210 * @next, if not pointing to the head, can be dereferenced and is
3211 * the next sibling.
3212 */
3213 if (&next->sibling != &parent->children)
3214 return next;
3215 return NULL;
3216 }
3217
3218 /**
3219 * css_next_descendant_pre - find the next descendant for pre-order walk
3220 * @pos: the current position (%NULL to initiate traversal)
3221 * @root: css whose descendants to walk
3222 *
3223 * To be used by css_for_each_descendant_pre(). Find the next descendant
3224 * to visit for pre-order traversal of @root's descendants. @root is
3225 * included in the iteration and the first node to be visited.
3226 *
3227 * While this function requires cgroup_mutex or RCU read locking, it
3228 * doesn't require the whole traversal to be contained in a single critical
3229 * section. This function will return the correct next descendant as long
3230 * as both @pos and @root are accessible and @pos is a descendant of @root.
3231 *
3232 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3233 * css which finished ->css_online() is guaranteed to be visible in the
3234 * future iterations and will stay visible until the last reference is put.
3235 * A css which hasn't finished ->css_online() or already finished
3236 * ->css_offline() may show up during traversal. It's each subsystem's
3237 * responsibility to synchronize against on/offlining.
3238 */
3239 struct cgroup_subsys_state *
3240 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3241 struct cgroup_subsys_state *root)
3242 {
3243 struct cgroup_subsys_state *next;
3244
3245 cgroup_assert_mutex_or_rcu_locked();
3246
3247 /* if first iteration, visit @root */
3248 if (!pos)
3249 return root;
3250
3251 /* visit the first child if exists */
3252 next = css_next_child(NULL, pos);
3253 if (next)
3254 return next;
3255
3256 /* no child, visit my or the closest ancestor's next sibling */
3257 while (pos != root) {
3258 next = css_next_child(pos, pos->parent);
3259 if (next)
3260 return next;
3261 pos = pos->parent;
3262 }
3263
3264 return NULL;
3265 }
3266
3267 /**
3268 * css_rightmost_descendant - return the rightmost descendant of a css
3269 * @pos: css of interest
3270 *
3271 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3272 * is returned. This can be used during pre-order traversal to skip
3273 * subtree of @pos.
3274 *
3275 * While this function requires cgroup_mutex or RCU read locking, it
3276 * doesn't require the whole traversal to be contained in a single critical
3277 * section. This function will return the correct rightmost descendant as
3278 * long as @pos is accessible.
3279 */
3280 struct cgroup_subsys_state *
3281 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3282 {
3283 struct cgroup_subsys_state *last, *tmp;
3284
3285 cgroup_assert_mutex_or_rcu_locked();
3286
3287 do {
3288 last = pos;
3289 /* ->prev isn't RCU safe, walk ->next till the end */
3290 pos = NULL;
3291 css_for_each_child(tmp, last)
3292 pos = tmp;
3293 } while (pos);
3294
3295 return last;
3296 }
3297
3298 static struct cgroup_subsys_state *
3299 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3300 {
3301 struct cgroup_subsys_state *last;
3302
3303 do {
3304 last = pos;
3305 pos = css_next_child(NULL, pos);
3306 } while (pos);
3307
3308 return last;
3309 }
3310
3311 /**
3312 * css_next_descendant_post - find the next descendant for post-order walk
3313 * @pos: the current position (%NULL to initiate traversal)
3314 * @root: css whose descendants to walk
3315 *
3316 * To be used by css_for_each_descendant_post(). Find the next descendant
3317 * to visit for post-order traversal of @root's descendants. @root is
3318 * included in the iteration and the last node to be visited.
3319 *
3320 * While this function requires cgroup_mutex or RCU read locking, it
3321 * doesn't require the whole traversal to be contained in a single critical
3322 * section. This function will return the correct next descendant as long
3323 * as both @pos and @cgroup are accessible and @pos is a descendant of
3324 * @cgroup.
3325 *
3326 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3327 * css which finished ->css_online() is guaranteed to be visible in the
3328 * future iterations and will stay visible until the last reference is put.
3329 * A css which hasn't finished ->css_online() or already finished
3330 * ->css_offline() may show up during traversal. It's each subsystem's
3331 * responsibility to synchronize against on/offlining.
3332 */
3333 struct cgroup_subsys_state *
3334 css_next_descendant_post(struct cgroup_subsys_state *pos,
3335 struct cgroup_subsys_state *root)
3336 {
3337 struct cgroup_subsys_state *next;
3338
3339 cgroup_assert_mutex_or_rcu_locked();
3340
3341 /* if first iteration, visit leftmost descendant which may be @root */
3342 if (!pos)
3343 return css_leftmost_descendant(root);
3344
3345 /* if we visited @root, we're done */
3346 if (pos == root)
3347 return NULL;
3348
3349 /* if there's an unvisited sibling, visit its leftmost descendant */
3350 next = css_next_child(pos, pos->parent);
3351 if (next)
3352 return css_leftmost_descendant(next);
3353
3354 /* no sibling left, visit parent */
3355 return pos->parent;
3356 }
3357
3358 /**
3359 * css_has_online_children - does a css have online children
3360 * @css: the target css
3361 *
3362 * Returns %true if @css has any online children; otherwise, %false. This
3363 * function can be called from any context but the caller is responsible
3364 * for synchronizing against on/offlining as necessary.
3365 */
3366 bool css_has_online_children(struct cgroup_subsys_state *css)
3367 {
3368 struct cgroup_subsys_state *child;
3369 bool ret = false;
3370
3371 rcu_read_lock();
3372 css_for_each_child(child, css) {
3373 if (child->flags & CSS_ONLINE) {
3374 ret = true;
3375 break;
3376 }
3377 }
3378 rcu_read_unlock();
3379 return ret;
3380 }
3381
3382 /**
3383 * css_advance_task_iter - advance a task itererator to the next css_set
3384 * @it: the iterator to advance
3385 *
3386 * Advance @it to the next css_set to walk.
3387 */
3388 static void css_advance_task_iter(struct css_task_iter *it)
3389 {
3390 struct list_head *l = it->cset_pos;
3391 struct cgrp_cset_link *link;
3392 struct css_set *cset;
3393
3394 /* Advance to the next non-empty css_set */
3395 do {
3396 l = l->next;
3397 if (l == it->cset_head) {
3398 it->cset_pos = NULL;
3399 return;
3400 }
3401
3402 if (it->ss) {
3403 cset = container_of(l, struct css_set,
3404 e_cset_node[it->ss->id]);
3405 } else {
3406 link = list_entry(l, struct cgrp_cset_link, cset_link);
3407 cset = link->cset;
3408 }
3409 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3410
3411 it->cset_pos = l;
3412
3413 if (!list_empty(&cset->tasks))
3414 it->task_pos = cset->tasks.next;
3415 else
3416 it->task_pos = cset->mg_tasks.next;
3417
3418 it->tasks_head = &cset->tasks;
3419 it->mg_tasks_head = &cset->mg_tasks;
3420 }
3421
3422 /**
3423 * css_task_iter_start - initiate task iteration
3424 * @css: the css to walk tasks of
3425 * @it: the task iterator to use
3426 *
3427 * Initiate iteration through the tasks of @css. The caller can call
3428 * css_task_iter_next() to walk through the tasks until the function
3429 * returns NULL. On completion of iteration, css_task_iter_end() must be
3430 * called.
3431 *
3432 * Note that this function acquires a lock which is released when the
3433 * iteration finishes. The caller can't sleep while iteration is in
3434 * progress.
3435 */
3436 void css_task_iter_start(struct cgroup_subsys_state *css,
3437 struct css_task_iter *it)
3438 __acquires(css_set_rwsem)
3439 {
3440 /* no one should try to iterate before mounting cgroups */
3441 WARN_ON_ONCE(!use_task_css_set_links);
3442
3443 down_read(&css_set_rwsem);
3444
3445 it->ss = css->ss;
3446
3447 if (it->ss)
3448 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3449 else
3450 it->cset_pos = &css->cgroup->cset_links;
3451
3452 it->cset_head = it->cset_pos;
3453
3454 css_advance_task_iter(it);
3455 }
3456
3457 /**
3458 * css_task_iter_next - return the next task for the iterator
3459 * @it: the task iterator being iterated
3460 *
3461 * The "next" function for task iteration. @it should have been
3462 * initialized via css_task_iter_start(). Returns NULL when the iteration
3463 * reaches the end.
3464 */
3465 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3466 {
3467 struct task_struct *res;
3468 struct list_head *l = it->task_pos;
3469
3470 /* If the iterator cg is NULL, we have no tasks */
3471 if (!it->cset_pos)
3472 return NULL;
3473 res = list_entry(l, struct task_struct, cg_list);
3474
3475 /*
3476 * Advance iterator to find next entry. cset->tasks is consumed
3477 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3478 * next cset.
3479 */
3480 l = l->next;
3481
3482 if (l == it->tasks_head)
3483 l = it->mg_tasks_head->next;
3484
3485 if (l == it->mg_tasks_head)
3486 css_advance_task_iter(it);
3487 else
3488 it->task_pos = l;
3489
3490 return res;
3491 }
3492
3493 /**
3494 * css_task_iter_end - finish task iteration
3495 * @it: the task iterator to finish
3496 *
3497 * Finish task iteration started by css_task_iter_start().
3498 */
3499 void css_task_iter_end(struct css_task_iter *it)
3500 __releases(css_set_rwsem)
3501 {
3502 up_read(&css_set_rwsem);
3503 }
3504
3505 /**
3506 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3507 * @to: cgroup to which the tasks will be moved
3508 * @from: cgroup in which the tasks currently reside
3509 *
3510 * Locking rules between cgroup_post_fork() and the migration path
3511 * guarantee that, if a task is forking while being migrated, the new child
3512 * is guaranteed to be either visible in the source cgroup after the
3513 * parent's migration is complete or put into the target cgroup. No task
3514 * can slip out of migration through forking.
3515 */
3516 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3517 {
3518 LIST_HEAD(preloaded_csets);
3519 struct cgrp_cset_link *link;
3520 struct css_task_iter it;
3521 struct task_struct *task;
3522 int ret;
3523
3524 mutex_lock(&cgroup_mutex);
3525
3526 /* all tasks in @from are being moved, all csets are source */
3527 down_read(&css_set_rwsem);
3528 list_for_each_entry(link, &from->cset_links, cset_link)
3529 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3530 up_read(&css_set_rwsem);
3531
3532 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3533 if (ret)
3534 goto out_err;
3535
3536 /*
3537 * Migrate tasks one-by-one until @form is empty. This fails iff
3538 * ->can_attach() fails.
3539 */
3540 do {
3541 css_task_iter_start(&from->self, &it);
3542 task = css_task_iter_next(&it);
3543 if (task)
3544 get_task_struct(task);
3545 css_task_iter_end(&it);
3546
3547 if (task) {
3548 ret = cgroup_migrate(to, task, false);
3549 put_task_struct(task);
3550 }
3551 } while (task && !ret);
3552 out_err:
3553 cgroup_migrate_finish(&preloaded_csets);
3554 mutex_unlock(&cgroup_mutex);
3555 return ret;
3556 }
3557
3558 /*
3559 * Stuff for reading the 'tasks'/'procs' files.
3560 *
3561 * Reading this file can return large amounts of data if a cgroup has
3562 * *lots* of attached tasks. So it may need several calls to read(),
3563 * but we cannot guarantee that the information we produce is correct
3564 * unless we produce it entirely atomically.
3565 *
3566 */
3567
3568 /* which pidlist file are we talking about? */
3569 enum cgroup_filetype {
3570 CGROUP_FILE_PROCS,
3571 CGROUP_FILE_TASKS,
3572 };
3573
3574 /*
3575 * A pidlist is a list of pids that virtually represents the contents of one
3576 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3577 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3578 * to the cgroup.
3579 */
3580 struct cgroup_pidlist {
3581 /*
3582 * used to find which pidlist is wanted. doesn't change as long as
3583 * this particular list stays in the list.
3584 */
3585 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3586 /* array of xids */
3587 pid_t *list;
3588 /* how many elements the above list has */
3589 int length;
3590 /* each of these stored in a list by its cgroup */
3591 struct list_head links;
3592 /* pointer to the cgroup we belong to, for list removal purposes */
3593 struct cgroup *owner;
3594 /* for delayed destruction */
3595 struct delayed_work destroy_dwork;
3596 };
3597
3598 /*
3599 * The following two functions "fix" the issue where there are more pids
3600 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3601 * TODO: replace with a kernel-wide solution to this problem
3602 */
3603 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3604 static void *pidlist_allocate(int count)
3605 {
3606 if (PIDLIST_TOO_LARGE(count))
3607 return vmalloc(count * sizeof(pid_t));
3608 else
3609 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3610 }
3611
3612 static void pidlist_free(void *p)
3613 {
3614 if (is_vmalloc_addr(p))
3615 vfree(p);
3616 else
3617 kfree(p);
3618 }
3619
3620 /*
3621 * Used to destroy all pidlists lingering waiting for destroy timer. None
3622 * should be left afterwards.
3623 */
3624 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3625 {
3626 struct cgroup_pidlist *l, *tmp_l;
3627
3628 mutex_lock(&cgrp->pidlist_mutex);
3629 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3630 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3631 mutex_unlock(&cgrp->pidlist_mutex);
3632
3633 flush_workqueue(cgroup_pidlist_destroy_wq);
3634 BUG_ON(!list_empty(&cgrp->pidlists));
3635 }
3636
3637 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3638 {
3639 struct delayed_work *dwork = to_delayed_work(work);
3640 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3641 destroy_dwork);
3642 struct cgroup_pidlist *tofree = NULL;
3643
3644 mutex_lock(&l->owner->pidlist_mutex);
3645
3646 /*
3647 * Destroy iff we didn't get queued again. The state won't change
3648 * as destroy_dwork can only be queued while locked.
3649 */
3650 if (!delayed_work_pending(dwork)) {
3651 list_del(&l->links);
3652 pidlist_free(l->list);
3653 put_pid_ns(l->key.ns);
3654 tofree = l;
3655 }
3656
3657 mutex_unlock(&l->owner->pidlist_mutex);
3658 kfree(tofree);
3659 }
3660
3661 /*
3662 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3663 * Returns the number of unique elements.
3664 */
3665 static int pidlist_uniq(pid_t *list, int length)
3666 {
3667 int src, dest = 1;
3668
3669 /*
3670 * we presume the 0th element is unique, so i starts at 1. trivial
3671 * edge cases first; no work needs to be done for either
3672 */
3673 if (length == 0 || length == 1)
3674 return length;
3675 /* src and dest walk down the list; dest counts unique elements */
3676 for (src = 1; src < length; src++) {
3677 /* find next unique element */
3678 while (list[src] == list[src-1]) {
3679 src++;
3680 if (src == length)
3681 goto after;
3682 }
3683 /* dest always points to where the next unique element goes */
3684 list[dest] = list[src];
3685 dest++;
3686 }
3687 after:
3688 return dest;
3689 }
3690
3691 /*
3692 * The two pid files - task and cgroup.procs - guaranteed that the result
3693 * is sorted, which forced this whole pidlist fiasco. As pid order is
3694 * different per namespace, each namespace needs differently sorted list,
3695 * making it impossible to use, for example, single rbtree of member tasks
3696 * sorted by task pointer. As pidlists can be fairly large, allocating one
3697 * per open file is dangerous, so cgroup had to implement shared pool of
3698 * pidlists keyed by cgroup and namespace.
3699 *
3700 * All this extra complexity was caused by the original implementation
3701 * committing to an entirely unnecessary property. In the long term, we
3702 * want to do away with it. Explicitly scramble sort order if
3703 * sane_behavior so that no such expectation exists in the new interface.
3704 *
3705 * Scrambling is done by swapping every two consecutive bits, which is
3706 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3707 */
3708 static pid_t pid_fry(pid_t pid)
3709 {
3710 unsigned a = pid & 0x55555555;
3711 unsigned b = pid & 0xAAAAAAAA;
3712
3713 return (a << 1) | (b >> 1);
3714 }
3715
3716 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3717 {
3718 if (cgroup_sane_behavior(cgrp))
3719 return pid_fry(pid);
3720 else
3721 return pid;
3722 }
3723
3724 static int cmppid(const void *a, const void *b)
3725 {
3726 return *(pid_t *)a - *(pid_t *)b;
3727 }
3728
3729 static int fried_cmppid(const void *a, const void *b)
3730 {
3731 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3732 }
3733
3734 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3735 enum cgroup_filetype type)
3736 {
3737 struct cgroup_pidlist *l;
3738 /* don't need task_nsproxy() if we're looking at ourself */
3739 struct pid_namespace *ns = task_active_pid_ns(current);
3740
3741 lockdep_assert_held(&cgrp->pidlist_mutex);
3742
3743 list_for_each_entry(l, &cgrp->pidlists, links)
3744 if (l->key.type == type && l->key.ns == ns)
3745 return l;
3746 return NULL;
3747 }
3748
3749 /*
3750 * find the appropriate pidlist for our purpose (given procs vs tasks)
3751 * returns with the lock on that pidlist already held, and takes care
3752 * of the use count, or returns NULL with no locks held if we're out of
3753 * memory.
3754 */
3755 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3756 enum cgroup_filetype type)
3757 {
3758 struct cgroup_pidlist *l;
3759
3760 lockdep_assert_held(&cgrp->pidlist_mutex);
3761
3762 l = cgroup_pidlist_find(cgrp, type);
3763 if (l)
3764 return l;
3765
3766 /* entry not found; create a new one */
3767 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3768 if (!l)
3769 return l;
3770
3771 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3772 l->key.type = type;
3773 /* don't need task_nsproxy() if we're looking at ourself */
3774 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3775 l->owner = cgrp;
3776 list_add(&l->links, &cgrp->pidlists);
3777 return l;
3778 }
3779
3780 /*
3781 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3782 */
3783 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3784 struct cgroup_pidlist **lp)
3785 {
3786 pid_t *array;
3787 int length;
3788 int pid, n = 0; /* used for populating the array */
3789 struct css_task_iter it;
3790 struct task_struct *tsk;
3791 struct cgroup_pidlist *l;
3792
3793 lockdep_assert_held(&cgrp->pidlist_mutex);
3794
3795 /*
3796 * If cgroup gets more users after we read count, we won't have
3797 * enough space - tough. This race is indistinguishable to the
3798 * caller from the case that the additional cgroup users didn't
3799 * show up until sometime later on.
3800 */
3801 length = cgroup_task_count(cgrp);
3802 array = pidlist_allocate(length);
3803 if (!array)
3804 return -ENOMEM;
3805 /* now, populate the array */
3806 css_task_iter_start(&cgrp->self, &it);
3807 while ((tsk = css_task_iter_next(&it))) {
3808 if (unlikely(n == length))
3809 break;
3810 /* get tgid or pid for procs or tasks file respectively */
3811 if (type == CGROUP_FILE_PROCS)
3812 pid = task_tgid_vnr(tsk);
3813 else
3814 pid = task_pid_vnr(tsk);
3815 if (pid > 0) /* make sure to only use valid results */
3816 array[n++] = pid;
3817 }
3818 css_task_iter_end(&it);
3819 length = n;
3820 /* now sort & (if procs) strip out duplicates */
3821 if (cgroup_sane_behavior(cgrp))
3822 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3823 else
3824 sort(array, length, sizeof(pid_t), cmppid, NULL);
3825 if (type == CGROUP_FILE_PROCS)
3826 length = pidlist_uniq(array, length);
3827
3828 l = cgroup_pidlist_find_create(cgrp, type);
3829 if (!l) {
3830 mutex_unlock(&cgrp->pidlist_mutex);
3831 pidlist_free(array);
3832 return -ENOMEM;
3833 }
3834
3835 /* store array, freeing old if necessary */
3836 pidlist_free(l->list);
3837 l->list = array;
3838 l->length = length;
3839 *lp = l;
3840 return 0;
3841 }
3842
3843 /**
3844 * cgroupstats_build - build and fill cgroupstats
3845 * @stats: cgroupstats to fill information into
3846 * @dentry: A dentry entry belonging to the cgroup for which stats have
3847 * been requested.
3848 *
3849 * Build and fill cgroupstats so that taskstats can export it to user
3850 * space.
3851 */
3852 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3853 {
3854 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
3855 struct cgroup *cgrp;
3856 struct css_task_iter it;
3857 struct task_struct *tsk;
3858
3859 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3860 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3861 kernfs_type(kn) != KERNFS_DIR)
3862 return -EINVAL;
3863
3864 mutex_lock(&cgroup_mutex);
3865
3866 /*
3867 * We aren't being called from kernfs and there's no guarantee on
3868 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
3869 * @kn->priv is RCU safe. Let's do the RCU dancing.
3870 */
3871 rcu_read_lock();
3872 cgrp = rcu_dereference(kn->priv);
3873 if (!cgrp || cgroup_is_dead(cgrp)) {
3874 rcu_read_unlock();
3875 mutex_unlock(&cgroup_mutex);
3876 return -ENOENT;
3877 }
3878 rcu_read_unlock();
3879
3880 css_task_iter_start(&cgrp->self, &it);
3881 while ((tsk = css_task_iter_next(&it))) {
3882 switch (tsk->state) {
3883 case TASK_RUNNING:
3884 stats->nr_running++;
3885 break;
3886 case TASK_INTERRUPTIBLE:
3887 stats->nr_sleeping++;
3888 break;
3889 case TASK_UNINTERRUPTIBLE:
3890 stats->nr_uninterruptible++;
3891 break;
3892 case TASK_STOPPED:
3893 stats->nr_stopped++;
3894 break;
3895 default:
3896 if (delayacct_is_task_waiting_on_io(tsk))
3897 stats->nr_io_wait++;
3898 break;
3899 }
3900 }
3901 css_task_iter_end(&it);
3902
3903 mutex_unlock(&cgroup_mutex);
3904 return 0;
3905 }
3906
3907
3908 /*
3909 * seq_file methods for the tasks/procs files. The seq_file position is the
3910 * next pid to display; the seq_file iterator is a pointer to the pid
3911 * in the cgroup->l->list array.
3912 */
3913
3914 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3915 {
3916 /*
3917 * Initially we receive a position value that corresponds to
3918 * one more than the last pid shown (or 0 on the first call or
3919 * after a seek to the start). Use a binary-search to find the
3920 * next pid to display, if any
3921 */
3922 struct kernfs_open_file *of = s->private;
3923 struct cgroup *cgrp = seq_css(s)->cgroup;
3924 struct cgroup_pidlist *l;
3925 enum cgroup_filetype type = seq_cft(s)->private;
3926 int index = 0, pid = *pos;
3927 int *iter, ret;
3928
3929 mutex_lock(&cgrp->pidlist_mutex);
3930
3931 /*
3932 * !NULL @of->priv indicates that this isn't the first start()
3933 * after open. If the matching pidlist is around, we can use that.
3934 * Look for it. Note that @of->priv can't be used directly. It
3935 * could already have been destroyed.
3936 */
3937 if (of->priv)
3938 of->priv = cgroup_pidlist_find(cgrp, type);
3939
3940 /*
3941 * Either this is the first start() after open or the matching
3942 * pidlist has been destroyed inbetween. Create a new one.
3943 */
3944 if (!of->priv) {
3945 ret = pidlist_array_load(cgrp, type,
3946 (struct cgroup_pidlist **)&of->priv);
3947 if (ret)
3948 return ERR_PTR(ret);
3949 }
3950 l = of->priv;
3951
3952 if (pid) {
3953 int end = l->length;
3954
3955 while (index < end) {
3956 int mid = (index + end) / 2;
3957 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
3958 index = mid;
3959 break;
3960 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
3961 index = mid + 1;
3962 else
3963 end = mid;
3964 }
3965 }
3966 /* If we're off the end of the array, we're done */
3967 if (index >= l->length)
3968 return NULL;
3969 /* Update the abstract position to be the actual pid that we found */
3970 iter = l->list + index;
3971 *pos = cgroup_pid_fry(cgrp, *iter);
3972 return iter;
3973 }
3974
3975 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3976 {
3977 struct kernfs_open_file *of = s->private;
3978 struct cgroup_pidlist *l = of->priv;
3979
3980 if (l)
3981 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
3982 CGROUP_PIDLIST_DESTROY_DELAY);
3983 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
3984 }
3985
3986 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3987 {
3988 struct kernfs_open_file *of = s->private;
3989 struct cgroup_pidlist *l = of->priv;
3990 pid_t *p = v;
3991 pid_t *end = l->list + l->length;
3992 /*
3993 * Advance to the next pid in the array. If this goes off the
3994 * end, we're done
3995 */
3996 p++;
3997 if (p >= end) {
3998 return NULL;
3999 } else {
4000 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4001 return p;
4002 }
4003 }
4004
4005 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4006 {
4007 return seq_printf(s, "%d\n", *(int *)v);
4008 }
4009
4010 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4011 struct cftype *cft)
4012 {
4013 return notify_on_release(css->cgroup);
4014 }
4015
4016 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4017 struct cftype *cft, u64 val)
4018 {
4019 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
4020 if (val)
4021 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4022 else
4023 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4024 return 0;
4025 }
4026
4027 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4028 struct cftype *cft)
4029 {
4030 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4031 }
4032
4033 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4034 struct cftype *cft, u64 val)
4035 {
4036 if (val)
4037 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4038 else
4039 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4040 return 0;
4041 }
4042
4043 static struct cftype cgroup_base_files[] = {
4044 {
4045 .name = "cgroup.procs",
4046 .seq_start = cgroup_pidlist_start,
4047 .seq_next = cgroup_pidlist_next,
4048 .seq_stop = cgroup_pidlist_stop,
4049 .seq_show = cgroup_pidlist_show,
4050 .private = CGROUP_FILE_PROCS,
4051 .write = cgroup_procs_write,
4052 .mode = S_IRUGO | S_IWUSR,
4053 },
4054 {
4055 .name = "cgroup.clone_children",
4056 .flags = CFTYPE_INSANE,
4057 .read_u64 = cgroup_clone_children_read,
4058 .write_u64 = cgroup_clone_children_write,
4059 },
4060 {
4061 .name = "cgroup.sane_behavior",
4062 .flags = CFTYPE_ONLY_ON_ROOT,
4063 .seq_show = cgroup_sane_behavior_show,
4064 },
4065 {
4066 .name = "cgroup.controllers",
4067 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
4068 .seq_show = cgroup_root_controllers_show,
4069 },
4070 {
4071 .name = "cgroup.controllers",
4072 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4073 .seq_show = cgroup_controllers_show,
4074 },
4075 {
4076 .name = "cgroup.subtree_control",
4077 .flags = CFTYPE_ONLY_ON_DFL,
4078 .seq_show = cgroup_subtree_control_show,
4079 .write = cgroup_subtree_control_write,
4080 },
4081 {
4082 .name = "cgroup.populated",
4083 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4084 .seq_show = cgroup_populated_show,
4085 },
4086
4087 /*
4088 * Historical crazy stuff. These don't have "cgroup." prefix and
4089 * don't exist if sane_behavior. If you're depending on these, be
4090 * prepared to be burned.
4091 */
4092 {
4093 .name = "tasks",
4094 .flags = CFTYPE_INSANE, /* use "procs" instead */
4095 .seq_start = cgroup_pidlist_start,
4096 .seq_next = cgroup_pidlist_next,
4097 .seq_stop = cgroup_pidlist_stop,
4098 .seq_show = cgroup_pidlist_show,
4099 .private = CGROUP_FILE_TASKS,
4100 .write = cgroup_tasks_write,
4101 .mode = S_IRUGO | S_IWUSR,
4102 },
4103 {
4104 .name = "notify_on_release",
4105 .flags = CFTYPE_INSANE,
4106 .read_u64 = cgroup_read_notify_on_release,
4107 .write_u64 = cgroup_write_notify_on_release,
4108 },
4109 {
4110 .name = "release_agent",
4111 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4112 .seq_show = cgroup_release_agent_show,
4113 .write = cgroup_release_agent_write,
4114 .max_write_len = PATH_MAX - 1,
4115 },
4116 { } /* terminate */
4117 };
4118
4119 /**
4120 * cgroup_populate_dir - create subsys files in a cgroup directory
4121 * @cgrp: target cgroup
4122 * @subsys_mask: mask of the subsystem ids whose files should be added
4123 *
4124 * On failure, no file is added.
4125 */
4126 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4127 {
4128 struct cgroup_subsys *ss;
4129 int i, ret = 0;
4130
4131 /* process cftsets of each subsystem */
4132 for_each_subsys(ss, i) {
4133 struct cftype *cfts;
4134
4135 if (!(subsys_mask & (1 << i)))
4136 continue;
4137
4138 list_for_each_entry(cfts, &ss->cfts, node) {
4139 ret = cgroup_addrm_files(cgrp, cfts, true);
4140 if (ret < 0)
4141 goto err;
4142 }
4143 }
4144 return 0;
4145 err:
4146 cgroup_clear_dir(cgrp, subsys_mask);
4147 return ret;
4148 }
4149
4150 /*
4151 * css destruction is four-stage process.
4152 *
4153 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4154 * Implemented in kill_css().
4155 *
4156 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4157 * and thus css_tryget_online() is guaranteed to fail, the css can be
4158 * offlined by invoking offline_css(). After offlining, the base ref is
4159 * put. Implemented in css_killed_work_fn().
4160 *
4161 * 3. When the percpu_ref reaches zero, the only possible remaining
4162 * accessors are inside RCU read sections. css_release() schedules the
4163 * RCU callback.
4164 *
4165 * 4. After the grace period, the css can be freed. Implemented in
4166 * css_free_work_fn().
4167 *
4168 * It is actually hairier because both step 2 and 4 require process context
4169 * and thus involve punting to css->destroy_work adding two additional
4170 * steps to the already complex sequence.
4171 */
4172 static void css_free_work_fn(struct work_struct *work)
4173 {
4174 struct cgroup_subsys_state *css =
4175 container_of(work, struct cgroup_subsys_state, destroy_work);
4176 struct cgroup *cgrp = css->cgroup;
4177
4178 if (css->ss) {
4179 /* css free path */
4180 if (css->parent)
4181 css_put(css->parent);
4182
4183 css->ss->css_free(css);
4184 cgroup_put(cgrp);
4185 } else {
4186 /* cgroup free path */
4187 atomic_dec(&cgrp->root->nr_cgrps);
4188 cgroup_pidlist_destroy_all(cgrp);
4189
4190 if (cgroup_parent(cgrp)) {
4191 /*
4192 * We get a ref to the parent, and put the ref when
4193 * this cgroup is being freed, so it's guaranteed
4194 * that the parent won't be destroyed before its
4195 * children.
4196 */
4197 cgroup_put(cgroup_parent(cgrp));
4198 kernfs_put(cgrp->kn);
4199 kfree(cgrp);
4200 } else {
4201 /*
4202 * This is root cgroup's refcnt reaching zero,
4203 * which indicates that the root should be
4204 * released.
4205 */
4206 cgroup_destroy_root(cgrp->root);
4207 }
4208 }
4209 }
4210
4211 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4212 {
4213 struct cgroup_subsys_state *css =
4214 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4215
4216 INIT_WORK(&css->destroy_work, css_free_work_fn);
4217 queue_work(cgroup_destroy_wq, &css->destroy_work);
4218 }
4219
4220 static void css_release_work_fn(struct work_struct *work)
4221 {
4222 struct cgroup_subsys_state *css =
4223 container_of(work, struct cgroup_subsys_state, destroy_work);
4224 struct cgroup_subsys *ss = css->ss;
4225 struct cgroup *cgrp = css->cgroup;
4226
4227 mutex_lock(&cgroup_mutex);
4228
4229 css->flags |= CSS_RELEASED;
4230 list_del_rcu(&css->sibling);
4231
4232 if (ss) {
4233 /* css release path */
4234 cgroup_idr_remove(&ss->css_idr, css->id);
4235 } else {
4236 /* cgroup release path */
4237 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4238 cgrp->id = -1;
4239 }
4240
4241 mutex_unlock(&cgroup_mutex);
4242
4243 call_rcu(&css->rcu_head, css_free_rcu_fn);
4244 }
4245
4246 static void css_release(struct percpu_ref *ref)
4247 {
4248 struct cgroup_subsys_state *css =
4249 container_of(ref, struct cgroup_subsys_state, refcnt);
4250
4251 INIT_WORK(&css->destroy_work, css_release_work_fn);
4252 queue_work(cgroup_destroy_wq, &css->destroy_work);
4253 }
4254
4255 static void init_and_link_css(struct cgroup_subsys_state *css,
4256 struct cgroup_subsys *ss, struct cgroup *cgrp)
4257 {
4258 lockdep_assert_held(&cgroup_mutex);
4259
4260 cgroup_get(cgrp);
4261
4262 memset(css, 0, sizeof(*css));
4263 css->cgroup = cgrp;
4264 css->ss = ss;
4265 INIT_LIST_HEAD(&css->sibling);
4266 INIT_LIST_HEAD(&css->children);
4267 css->serial_nr = css_serial_nr_next++;
4268
4269 if (cgroup_parent(cgrp)) {
4270 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4271 css_get(css->parent);
4272 }
4273
4274 BUG_ON(cgroup_css(cgrp, ss));
4275 }
4276
4277 /* invoke ->css_online() on a new CSS and mark it online if successful */
4278 static int online_css(struct cgroup_subsys_state *css)
4279 {
4280 struct cgroup_subsys *ss = css->ss;
4281 int ret = 0;
4282
4283 lockdep_assert_held(&cgroup_mutex);
4284
4285 if (ss->css_online)
4286 ret = ss->css_online(css);
4287 if (!ret) {
4288 css->flags |= CSS_ONLINE;
4289 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4290 }
4291 return ret;
4292 }
4293
4294 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4295 static void offline_css(struct cgroup_subsys_state *css)
4296 {
4297 struct cgroup_subsys *ss = css->ss;
4298
4299 lockdep_assert_held(&cgroup_mutex);
4300
4301 if (!(css->flags & CSS_ONLINE))
4302 return;
4303
4304 if (ss->css_offline)
4305 ss->css_offline(css);
4306
4307 css->flags &= ~CSS_ONLINE;
4308 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4309
4310 wake_up_all(&css->cgroup->offline_waitq);
4311 }
4312
4313 /**
4314 * create_css - create a cgroup_subsys_state
4315 * @cgrp: the cgroup new css will be associated with
4316 * @ss: the subsys of new css
4317 *
4318 * Create a new css associated with @cgrp - @ss pair. On success, the new
4319 * css is online and installed in @cgrp with all interface files created.
4320 * Returns 0 on success, -errno on failure.
4321 */
4322 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4323 {
4324 struct cgroup *parent = cgroup_parent(cgrp);
4325 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4326 struct cgroup_subsys_state *css;
4327 int err;
4328
4329 lockdep_assert_held(&cgroup_mutex);
4330
4331 css = ss->css_alloc(parent_css);
4332 if (IS_ERR(css))
4333 return PTR_ERR(css);
4334
4335 init_and_link_css(css, ss, cgrp);
4336
4337 err = percpu_ref_init(&css->refcnt, css_release);
4338 if (err)
4339 goto err_free_css;
4340
4341 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4342 if (err < 0)
4343 goto err_free_percpu_ref;
4344 css->id = err;
4345
4346 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4347 if (err)
4348 goto err_free_id;
4349
4350 /* @css is ready to be brought online now, make it visible */
4351 list_add_tail_rcu(&css->sibling, &parent_css->children);
4352 cgroup_idr_replace(&ss->css_idr, css, css->id);
4353
4354 err = online_css(css);
4355 if (err)
4356 goto err_list_del;
4357
4358 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4359 cgroup_parent(parent)) {
4360 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4361 current->comm, current->pid, ss->name);
4362 if (!strcmp(ss->name, "memory"))
4363 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4364 ss->warned_broken_hierarchy = true;
4365 }
4366
4367 return 0;
4368
4369 err_list_del:
4370 list_del_rcu(&css->sibling);
4371 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4372 err_free_id:
4373 cgroup_idr_remove(&ss->css_idr, css->id);
4374 err_free_percpu_ref:
4375 percpu_ref_cancel_init(&css->refcnt);
4376 err_free_css:
4377 call_rcu(&css->rcu_head, css_free_rcu_fn);
4378 return err;
4379 }
4380
4381 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4382 umode_t mode)
4383 {
4384 struct cgroup *parent, *cgrp;
4385 struct cgroup_root *root;
4386 struct cgroup_subsys *ss;
4387 struct kernfs_node *kn;
4388 int ssid, ret;
4389
4390 parent = cgroup_kn_lock_live(parent_kn);
4391 if (!parent)
4392 return -ENODEV;
4393 root = parent->root;
4394
4395 /* allocate the cgroup and its ID, 0 is reserved for the root */
4396 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4397 if (!cgrp) {
4398 ret = -ENOMEM;
4399 goto out_unlock;
4400 }
4401
4402 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4403 if (ret)
4404 goto out_free_cgrp;
4405
4406 /*
4407 * Temporarily set the pointer to NULL, so idr_find() won't return
4408 * a half-baked cgroup.
4409 */
4410 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4411 if (cgrp->id < 0) {
4412 ret = -ENOMEM;
4413 goto out_cancel_ref;
4414 }
4415
4416 init_cgroup_housekeeping(cgrp);
4417
4418 cgrp->self.parent = &parent->self;
4419 cgrp->root = root;
4420
4421 if (notify_on_release(parent))
4422 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4423
4424 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4425 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4426
4427 /* create the directory */
4428 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4429 if (IS_ERR(kn)) {
4430 ret = PTR_ERR(kn);
4431 goto out_free_id;
4432 }
4433 cgrp->kn = kn;
4434
4435 /*
4436 * This extra ref will be put in cgroup_free_fn() and guarantees
4437 * that @cgrp->kn is always accessible.
4438 */
4439 kernfs_get(kn);
4440
4441 cgrp->self.serial_nr = css_serial_nr_next++;
4442
4443 /* allocation complete, commit to creation */
4444 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4445 atomic_inc(&root->nr_cgrps);
4446 cgroup_get(parent);
4447
4448 /*
4449 * @cgrp is now fully operational. If something fails after this
4450 * point, it'll be released via the normal destruction path.
4451 */
4452 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4453
4454 ret = cgroup_kn_set_ugid(kn);
4455 if (ret)
4456 goto out_destroy;
4457
4458 ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4459 if (ret)
4460 goto out_destroy;
4461
4462 /* let's create and online css's */
4463 for_each_subsys(ss, ssid) {
4464 if (parent->child_subsys_mask & (1 << ssid)) {
4465 ret = create_css(cgrp, ss);
4466 if (ret)
4467 goto out_destroy;
4468 }
4469 }
4470
4471 /*
4472 * On the default hierarchy, a child doesn't automatically inherit
4473 * child_subsys_mask from the parent. Each is configured manually.
4474 */
4475 if (!cgroup_on_dfl(cgrp))
4476 cgrp->child_subsys_mask = parent->child_subsys_mask;
4477
4478 kernfs_activate(kn);
4479
4480 ret = 0;
4481 goto out_unlock;
4482
4483 out_free_id:
4484 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4485 out_cancel_ref:
4486 percpu_ref_cancel_init(&cgrp->self.refcnt);
4487 out_free_cgrp:
4488 kfree(cgrp);
4489 out_unlock:
4490 cgroup_kn_unlock(parent_kn);
4491 return ret;
4492
4493 out_destroy:
4494 cgroup_destroy_locked(cgrp);
4495 goto out_unlock;
4496 }
4497
4498 /*
4499 * This is called when the refcnt of a css is confirmed to be killed.
4500 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4501 * initate destruction and put the css ref from kill_css().
4502 */
4503 static void css_killed_work_fn(struct work_struct *work)
4504 {
4505 struct cgroup_subsys_state *css =
4506 container_of(work, struct cgroup_subsys_state, destroy_work);
4507
4508 mutex_lock(&cgroup_mutex);
4509 offline_css(css);
4510 mutex_unlock(&cgroup_mutex);
4511
4512 css_put(css);
4513 }
4514
4515 /* css kill confirmation processing requires process context, bounce */
4516 static void css_killed_ref_fn(struct percpu_ref *ref)
4517 {
4518 struct cgroup_subsys_state *css =
4519 container_of(ref, struct cgroup_subsys_state, refcnt);
4520
4521 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4522 queue_work(cgroup_destroy_wq, &css->destroy_work);
4523 }
4524
4525 /**
4526 * kill_css - destroy a css
4527 * @css: css to destroy
4528 *
4529 * This function initiates destruction of @css by removing cgroup interface
4530 * files and putting its base reference. ->css_offline() will be invoked
4531 * asynchronously once css_tryget_online() is guaranteed to fail and when
4532 * the reference count reaches zero, @css will be released.
4533 */
4534 static void kill_css(struct cgroup_subsys_state *css)
4535 {
4536 lockdep_assert_held(&cgroup_mutex);
4537
4538 /*
4539 * This must happen before css is disassociated with its cgroup.
4540 * See seq_css() for details.
4541 */
4542 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4543
4544 /*
4545 * Killing would put the base ref, but we need to keep it alive
4546 * until after ->css_offline().
4547 */
4548 css_get(css);
4549
4550 /*
4551 * cgroup core guarantees that, by the time ->css_offline() is
4552 * invoked, no new css reference will be given out via
4553 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4554 * proceed to offlining css's because percpu_ref_kill() doesn't
4555 * guarantee that the ref is seen as killed on all CPUs on return.
4556 *
4557 * Use percpu_ref_kill_and_confirm() to get notifications as each
4558 * css is confirmed to be seen as killed on all CPUs.
4559 */
4560 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4561 }
4562
4563 /**
4564 * cgroup_destroy_locked - the first stage of cgroup destruction
4565 * @cgrp: cgroup to be destroyed
4566 *
4567 * css's make use of percpu refcnts whose killing latency shouldn't be
4568 * exposed to userland and are RCU protected. Also, cgroup core needs to
4569 * guarantee that css_tryget_online() won't succeed by the time
4570 * ->css_offline() is invoked. To satisfy all the requirements,
4571 * destruction is implemented in the following two steps.
4572 *
4573 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4574 * userland visible parts and start killing the percpu refcnts of
4575 * css's. Set up so that the next stage will be kicked off once all
4576 * the percpu refcnts are confirmed to be killed.
4577 *
4578 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4579 * rest of destruction. Once all cgroup references are gone, the
4580 * cgroup is RCU-freed.
4581 *
4582 * This function implements s1. After this step, @cgrp is gone as far as
4583 * the userland is concerned and a new cgroup with the same name may be
4584 * created. As cgroup doesn't care about the names internally, this
4585 * doesn't cause any problem.
4586 */
4587 static int cgroup_destroy_locked(struct cgroup *cgrp)
4588 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4589 {
4590 struct cgroup_subsys_state *css;
4591 bool empty;
4592 int ssid;
4593
4594 lockdep_assert_held(&cgroup_mutex);
4595
4596 /*
4597 * css_set_rwsem synchronizes access to ->cset_links and prevents
4598 * @cgrp from being removed while put_css_set() is in progress.
4599 */
4600 down_read(&css_set_rwsem);
4601 empty = list_empty(&cgrp->cset_links);
4602 up_read(&css_set_rwsem);
4603 if (!empty)
4604 return -EBUSY;
4605
4606 /*
4607 * Make sure there's no live children. We can't test emptiness of
4608 * ->self.children as dead children linger on it while being
4609 * drained; otherwise, "rmdir parent/child parent" may fail.
4610 */
4611 if (css_has_online_children(&cgrp->self))
4612 return -EBUSY;
4613
4614 /*
4615 * Mark @cgrp dead. This prevents further task migration and child
4616 * creation by disabling cgroup_lock_live_group().
4617 */
4618 cgrp->self.flags &= ~CSS_ONLINE;
4619
4620 /* initiate massacre of all css's */
4621 for_each_css(css, ssid, cgrp)
4622 kill_css(css);
4623
4624 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
4625 raw_spin_lock(&release_list_lock);
4626 if (!list_empty(&cgrp->release_list))
4627 list_del_init(&cgrp->release_list);
4628 raw_spin_unlock(&release_list_lock);
4629
4630 /*
4631 * Remove @cgrp directory along with the base files. @cgrp has an
4632 * extra ref on its kn.
4633 */
4634 kernfs_remove(cgrp->kn);
4635
4636 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4637 check_for_release(cgroup_parent(cgrp));
4638
4639 /* put the base reference */
4640 percpu_ref_kill(&cgrp->self.refcnt);
4641
4642 return 0;
4643 };
4644
4645 static int cgroup_rmdir(struct kernfs_node *kn)
4646 {
4647 struct cgroup *cgrp;
4648 int ret = 0;
4649
4650 cgrp = cgroup_kn_lock_live(kn);
4651 if (!cgrp)
4652 return 0;
4653 cgroup_get(cgrp); /* for @kn->priv clearing */
4654
4655 ret = cgroup_destroy_locked(cgrp);
4656
4657 cgroup_kn_unlock(kn);
4658
4659 /*
4660 * There are two control paths which try to determine cgroup from
4661 * dentry without going through kernfs - cgroupstats_build() and
4662 * css_tryget_online_from_dir(). Those are supported by RCU
4663 * protecting clearing of cgrp->kn->priv backpointer, which should
4664 * happen after all files under it have been removed.
4665 */
4666 if (!ret)
4667 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
4668
4669 cgroup_put(cgrp);
4670 return ret;
4671 }
4672
4673 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4674 .remount_fs = cgroup_remount,
4675 .show_options = cgroup_show_options,
4676 .mkdir = cgroup_mkdir,
4677 .rmdir = cgroup_rmdir,
4678 .rename = cgroup_rename,
4679 };
4680
4681 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4682 {
4683 struct cgroup_subsys_state *css;
4684
4685 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4686
4687 mutex_lock(&cgroup_mutex);
4688
4689 idr_init(&ss->css_idr);
4690 INIT_LIST_HEAD(&ss->cfts);
4691
4692 /* Create the root cgroup state for this subsystem */
4693 ss->root = &cgrp_dfl_root;
4694 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4695 /* We don't handle early failures gracefully */
4696 BUG_ON(IS_ERR(css));
4697 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4698
4699 /*
4700 * Root csses are never destroyed and we can't initialize
4701 * percpu_ref during early init. Disable refcnting.
4702 */
4703 css->flags |= CSS_NO_REF;
4704
4705 if (early) {
4706 /* allocation can't be done safely during early init */
4707 css->id = 1;
4708 } else {
4709 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4710 BUG_ON(css->id < 0);
4711 }
4712
4713 /* Update the init_css_set to contain a subsys
4714 * pointer to this state - since the subsystem is
4715 * newly registered, all tasks and hence the
4716 * init_css_set is in the subsystem's root cgroup. */
4717 init_css_set.subsys[ss->id] = css;
4718
4719 need_forkexit_callback |= ss->fork || ss->exit;
4720
4721 /* At system boot, before all subsystems have been
4722 * registered, no tasks have been forked, so we don't
4723 * need to invoke fork callbacks here. */
4724 BUG_ON(!list_empty(&init_task.tasks));
4725
4726 BUG_ON(online_css(css));
4727
4728 mutex_unlock(&cgroup_mutex);
4729 }
4730
4731 /**
4732 * cgroup_init_early - cgroup initialization at system boot
4733 *
4734 * Initialize cgroups at system boot, and initialize any
4735 * subsystems that request early init.
4736 */
4737 int __init cgroup_init_early(void)
4738 {
4739 static struct cgroup_sb_opts __initdata opts =
4740 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
4741 struct cgroup_subsys *ss;
4742 int i;
4743
4744 init_cgroup_root(&cgrp_dfl_root, &opts);
4745 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4746
4747 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4748
4749 for_each_subsys(ss, i) {
4750 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4751 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4752 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4753 ss->id, ss->name);
4754 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4755 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4756
4757 ss->id = i;
4758 ss->name = cgroup_subsys_name[i];
4759
4760 if (ss->early_init)
4761 cgroup_init_subsys(ss, true);
4762 }
4763 return 0;
4764 }
4765
4766 /**
4767 * cgroup_init - cgroup initialization
4768 *
4769 * Register cgroup filesystem and /proc file, and initialize
4770 * any subsystems that didn't request early init.
4771 */
4772 int __init cgroup_init(void)
4773 {
4774 struct cgroup_subsys *ss;
4775 unsigned long key;
4776 int ssid, err;
4777
4778 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
4779
4780 mutex_lock(&cgroup_mutex);
4781
4782 /* Add init_css_set to the hash table */
4783 key = css_set_hash(init_css_set.subsys);
4784 hash_add(css_set_table, &init_css_set.hlist, key);
4785
4786 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4787
4788 mutex_unlock(&cgroup_mutex);
4789
4790 for_each_subsys(ss, ssid) {
4791 if (ss->early_init) {
4792 struct cgroup_subsys_state *css =
4793 init_css_set.subsys[ss->id];
4794
4795 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4796 GFP_KERNEL);
4797 BUG_ON(css->id < 0);
4798 } else {
4799 cgroup_init_subsys(ss, false);
4800 }
4801
4802 list_add_tail(&init_css_set.e_cset_node[ssid],
4803 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4804
4805 /*
4806 * Setting dfl_root subsys_mask needs to consider the
4807 * disabled flag and cftype registration needs kmalloc,
4808 * both of which aren't available during early_init.
4809 */
4810 if (!ss->disabled) {
4811 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4812 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4813 }
4814 }
4815
4816 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4817 if (!cgroup_kobj)
4818 return -ENOMEM;
4819
4820 err = register_filesystem(&cgroup_fs_type);
4821 if (err < 0) {
4822 kobject_put(cgroup_kobj);
4823 return err;
4824 }
4825
4826 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4827 return 0;
4828 }
4829
4830 static int __init cgroup_wq_init(void)
4831 {
4832 /*
4833 * There isn't much point in executing destruction path in
4834 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4835 * Use 1 for @max_active.
4836 *
4837 * We would prefer to do this in cgroup_init() above, but that
4838 * is called before init_workqueues(): so leave this until after.
4839 */
4840 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4841 BUG_ON(!cgroup_destroy_wq);
4842
4843 /*
4844 * Used to destroy pidlists and separate to serve as flush domain.
4845 * Cap @max_active to 1 too.
4846 */
4847 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4848 0, 1);
4849 BUG_ON(!cgroup_pidlist_destroy_wq);
4850
4851 return 0;
4852 }
4853 core_initcall(cgroup_wq_init);
4854
4855 /*
4856 * proc_cgroup_show()
4857 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4858 * - Used for /proc/<pid>/cgroup.
4859 */
4860
4861 /* TODO: Use a proper seq_file iterator */
4862 int proc_cgroup_show(struct seq_file *m, void *v)
4863 {
4864 struct pid *pid;
4865 struct task_struct *tsk;
4866 char *buf, *path;
4867 int retval;
4868 struct cgroup_root *root;
4869
4870 retval = -ENOMEM;
4871 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4872 if (!buf)
4873 goto out;
4874
4875 retval = -ESRCH;
4876 pid = m->private;
4877 tsk = get_pid_task(pid, PIDTYPE_PID);
4878 if (!tsk)
4879 goto out_free;
4880
4881 retval = 0;
4882
4883 mutex_lock(&cgroup_mutex);
4884 down_read(&css_set_rwsem);
4885
4886 for_each_root(root) {
4887 struct cgroup_subsys *ss;
4888 struct cgroup *cgrp;
4889 int ssid, count = 0;
4890
4891 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
4892 continue;
4893
4894 seq_printf(m, "%d:", root->hierarchy_id);
4895 for_each_subsys(ss, ssid)
4896 if (root->subsys_mask & (1 << ssid))
4897 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4898 if (strlen(root->name))
4899 seq_printf(m, "%sname=%s", count ? "," : "",
4900 root->name);
4901 seq_putc(m, ':');
4902 cgrp = task_cgroup_from_root(tsk, root);
4903 path = cgroup_path(cgrp, buf, PATH_MAX);
4904 if (!path) {
4905 retval = -ENAMETOOLONG;
4906 goto out_unlock;
4907 }
4908 seq_puts(m, path);
4909 seq_putc(m, '\n');
4910 }
4911
4912 out_unlock:
4913 up_read(&css_set_rwsem);
4914 mutex_unlock(&cgroup_mutex);
4915 put_task_struct(tsk);
4916 out_free:
4917 kfree(buf);
4918 out:
4919 return retval;
4920 }
4921
4922 /* Display information about each subsystem and each hierarchy */
4923 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4924 {
4925 struct cgroup_subsys *ss;
4926 int i;
4927
4928 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4929 /*
4930 * ideally we don't want subsystems moving around while we do this.
4931 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4932 * subsys/hierarchy state.
4933 */
4934 mutex_lock(&cgroup_mutex);
4935
4936 for_each_subsys(ss, i)
4937 seq_printf(m, "%s\t%d\t%d\t%d\n",
4938 ss->name, ss->root->hierarchy_id,
4939 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
4940
4941 mutex_unlock(&cgroup_mutex);
4942 return 0;
4943 }
4944
4945 static int cgroupstats_open(struct inode *inode, struct file *file)
4946 {
4947 return single_open(file, proc_cgroupstats_show, NULL);
4948 }
4949
4950 static const struct file_operations proc_cgroupstats_operations = {
4951 .open = cgroupstats_open,
4952 .read = seq_read,
4953 .llseek = seq_lseek,
4954 .release = single_release,
4955 };
4956
4957 /**
4958 * cgroup_fork - initialize cgroup related fields during copy_process()
4959 * @child: pointer to task_struct of forking parent process.
4960 *
4961 * A task is associated with the init_css_set until cgroup_post_fork()
4962 * attaches it to the parent's css_set. Empty cg_list indicates that
4963 * @child isn't holding reference to its css_set.
4964 */
4965 void cgroup_fork(struct task_struct *child)
4966 {
4967 RCU_INIT_POINTER(child->cgroups, &init_css_set);
4968 INIT_LIST_HEAD(&child->cg_list);
4969 }
4970
4971 /**
4972 * cgroup_post_fork - called on a new task after adding it to the task list
4973 * @child: the task in question
4974 *
4975 * Adds the task to the list running through its css_set if necessary and
4976 * call the subsystem fork() callbacks. Has to be after the task is
4977 * visible on the task list in case we race with the first call to
4978 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4979 * list.
4980 */
4981 void cgroup_post_fork(struct task_struct *child)
4982 {
4983 struct cgroup_subsys *ss;
4984 int i;
4985
4986 /*
4987 * This may race against cgroup_enable_task_cg_links(). As that
4988 * function sets use_task_css_set_links before grabbing
4989 * tasklist_lock and we just went through tasklist_lock to add
4990 * @child, it's guaranteed that either we see the set
4991 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4992 * @child during its iteration.
4993 *
4994 * If we won the race, @child is associated with %current's
4995 * css_set. Grabbing css_set_rwsem guarantees both that the
4996 * association is stable, and, on completion of the parent's
4997 * migration, @child is visible in the source of migration or
4998 * already in the destination cgroup. This guarantee is necessary
4999 * when implementing operations which need to migrate all tasks of
5000 * a cgroup to another.
5001 *
5002 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5003 * will remain in init_css_set. This is safe because all tasks are
5004 * in the init_css_set before cg_links is enabled and there's no
5005 * operation which transfers all tasks out of init_css_set.
5006 */
5007 if (use_task_css_set_links) {
5008 struct css_set *cset;
5009
5010 down_write(&css_set_rwsem);
5011 cset = task_css_set(current);
5012 if (list_empty(&child->cg_list)) {
5013 rcu_assign_pointer(child->cgroups, cset);
5014 list_add(&child->cg_list, &cset->tasks);
5015 get_css_set(cset);
5016 }
5017 up_write(&css_set_rwsem);
5018 }
5019
5020 /*
5021 * Call ss->fork(). This must happen after @child is linked on
5022 * css_set; otherwise, @child might change state between ->fork()
5023 * and addition to css_set.
5024 */
5025 if (need_forkexit_callback) {
5026 for_each_subsys(ss, i)
5027 if (ss->fork)
5028 ss->fork(child);
5029 }
5030 }
5031
5032 /**
5033 * cgroup_exit - detach cgroup from exiting task
5034 * @tsk: pointer to task_struct of exiting process
5035 *
5036 * Description: Detach cgroup from @tsk and release it.
5037 *
5038 * Note that cgroups marked notify_on_release force every task in
5039 * them to take the global cgroup_mutex mutex when exiting.
5040 * This could impact scaling on very large systems. Be reluctant to
5041 * use notify_on_release cgroups where very high task exit scaling
5042 * is required on large systems.
5043 *
5044 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5045 * call cgroup_exit() while the task is still competent to handle
5046 * notify_on_release(), then leave the task attached to the root cgroup in
5047 * each hierarchy for the remainder of its exit. No need to bother with
5048 * init_css_set refcnting. init_css_set never goes away and we can't race
5049 * with migration path - PF_EXITING is visible to migration path.
5050 */
5051 void cgroup_exit(struct task_struct *tsk)
5052 {
5053 struct cgroup_subsys *ss;
5054 struct css_set *cset;
5055 bool put_cset = false;
5056 int i;
5057
5058 /*
5059 * Unlink from @tsk from its css_set. As migration path can't race
5060 * with us, we can check cg_list without grabbing css_set_rwsem.
5061 */
5062 if (!list_empty(&tsk->cg_list)) {
5063 down_write(&css_set_rwsem);
5064 list_del_init(&tsk->cg_list);
5065 up_write(&css_set_rwsem);
5066 put_cset = true;
5067 }
5068
5069 /* Reassign the task to the init_css_set. */
5070 cset = task_css_set(tsk);
5071 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5072
5073 if (need_forkexit_callback) {
5074 /* see cgroup_post_fork() for details */
5075 for_each_subsys(ss, i) {
5076 if (ss->exit) {
5077 struct cgroup_subsys_state *old_css = cset->subsys[i];
5078 struct cgroup_subsys_state *css = task_css(tsk, i);
5079
5080 ss->exit(css, old_css, tsk);
5081 }
5082 }
5083 }
5084
5085 if (put_cset)
5086 put_css_set(cset, true);
5087 }
5088
5089 static void check_for_release(struct cgroup *cgrp)
5090 {
5091 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5092 !css_has_online_children(&cgrp->self)) {
5093 /*
5094 * Control Group is currently removeable. If it's not
5095 * already queued for a userspace notification, queue
5096 * it now
5097 */
5098 int need_schedule_work = 0;
5099
5100 raw_spin_lock(&release_list_lock);
5101 if (!cgroup_is_dead(cgrp) &&
5102 list_empty(&cgrp->release_list)) {
5103 list_add(&cgrp->release_list, &release_list);
5104 need_schedule_work = 1;
5105 }
5106 raw_spin_unlock(&release_list_lock);
5107 if (need_schedule_work)
5108 schedule_work(&release_agent_work);
5109 }
5110 }
5111
5112 /*
5113 * Notify userspace when a cgroup is released, by running the
5114 * configured release agent with the name of the cgroup (path
5115 * relative to the root of cgroup file system) as the argument.
5116 *
5117 * Most likely, this user command will try to rmdir this cgroup.
5118 *
5119 * This races with the possibility that some other task will be
5120 * attached to this cgroup before it is removed, or that some other
5121 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5122 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5123 * unused, and this cgroup will be reprieved from its death sentence,
5124 * to continue to serve a useful existence. Next time it's released,
5125 * we will get notified again, if it still has 'notify_on_release' set.
5126 *
5127 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5128 * means only wait until the task is successfully execve()'d. The
5129 * separate release agent task is forked by call_usermodehelper(),
5130 * then control in this thread returns here, without waiting for the
5131 * release agent task. We don't bother to wait because the caller of
5132 * this routine has no use for the exit status of the release agent
5133 * task, so no sense holding our caller up for that.
5134 */
5135 static void cgroup_release_agent(struct work_struct *work)
5136 {
5137 BUG_ON(work != &release_agent_work);
5138 mutex_lock(&cgroup_mutex);
5139 raw_spin_lock(&release_list_lock);
5140 while (!list_empty(&release_list)) {
5141 char *argv[3], *envp[3];
5142 int i;
5143 char *pathbuf = NULL, *agentbuf = NULL, *path;
5144 struct cgroup *cgrp = list_entry(release_list.next,
5145 struct cgroup,
5146 release_list);
5147 list_del_init(&cgrp->release_list);
5148 raw_spin_unlock(&release_list_lock);
5149 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5150 if (!pathbuf)
5151 goto continue_free;
5152 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5153 if (!path)
5154 goto continue_free;
5155 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5156 if (!agentbuf)
5157 goto continue_free;
5158
5159 i = 0;
5160 argv[i++] = agentbuf;
5161 argv[i++] = path;
5162 argv[i] = NULL;
5163
5164 i = 0;
5165 /* minimal command environment */
5166 envp[i++] = "HOME=/";
5167 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5168 envp[i] = NULL;
5169
5170 /* Drop the lock while we invoke the usermode helper,
5171 * since the exec could involve hitting disk and hence
5172 * be a slow process */
5173 mutex_unlock(&cgroup_mutex);
5174 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5175 mutex_lock(&cgroup_mutex);
5176 continue_free:
5177 kfree(pathbuf);
5178 kfree(agentbuf);
5179 raw_spin_lock(&release_list_lock);
5180 }
5181 raw_spin_unlock(&release_list_lock);
5182 mutex_unlock(&cgroup_mutex);
5183 }
5184
5185 static int __init cgroup_disable(char *str)
5186 {
5187 struct cgroup_subsys *ss;
5188 char *token;
5189 int i;
5190
5191 while ((token = strsep(&str, ",")) != NULL) {
5192 if (!*token)
5193 continue;
5194
5195 for_each_subsys(ss, i) {
5196 if (!strcmp(token, ss->name)) {
5197 ss->disabled = 1;
5198 printk(KERN_INFO "Disabling %s control group"
5199 " subsystem\n", ss->name);
5200 break;
5201 }
5202 }
5203 }
5204 return 1;
5205 }
5206 __setup("cgroup_disable=", cgroup_disable);
5207
5208 /**
5209 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5210 * @dentry: directory dentry of interest
5211 * @ss: subsystem of interest
5212 *
5213 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5214 * to get the corresponding css and return it. If such css doesn't exist
5215 * or can't be pinned, an ERR_PTR value is returned.
5216 */
5217 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5218 struct cgroup_subsys *ss)
5219 {
5220 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5221 struct cgroup_subsys_state *css = NULL;
5222 struct cgroup *cgrp;
5223
5224 /* is @dentry a cgroup dir? */
5225 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5226 kernfs_type(kn) != KERNFS_DIR)
5227 return ERR_PTR(-EBADF);
5228
5229 rcu_read_lock();
5230
5231 /*
5232 * This path doesn't originate from kernfs and @kn could already
5233 * have been or be removed at any point. @kn->priv is RCU
5234 * protected for this access. See cgroup_rmdir() for details.
5235 */
5236 cgrp = rcu_dereference(kn->priv);
5237 if (cgrp)
5238 css = cgroup_css(cgrp, ss);
5239
5240 if (!css || !css_tryget_online(css))
5241 css = ERR_PTR(-ENOENT);
5242
5243 rcu_read_unlock();
5244 return css;
5245 }
5246
5247 /**
5248 * css_from_id - lookup css by id
5249 * @id: the cgroup id
5250 * @ss: cgroup subsys to be looked into
5251 *
5252 * Returns the css if there's valid one with @id, otherwise returns NULL.
5253 * Should be called under rcu_read_lock().
5254 */
5255 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5256 {
5257 WARN_ON_ONCE(!rcu_read_lock_held());
5258 return idr_find(&ss->css_idr, id);
5259 }
5260
5261 #ifdef CONFIG_CGROUP_DEBUG
5262 static struct cgroup_subsys_state *
5263 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5264 {
5265 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5266
5267 if (!css)
5268 return ERR_PTR(-ENOMEM);
5269
5270 return css;
5271 }
5272
5273 static void debug_css_free(struct cgroup_subsys_state *css)
5274 {
5275 kfree(css);
5276 }
5277
5278 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5279 struct cftype *cft)
5280 {
5281 return cgroup_task_count(css->cgroup);
5282 }
5283
5284 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5285 struct cftype *cft)
5286 {
5287 return (u64)(unsigned long)current->cgroups;
5288 }
5289
5290 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5291 struct cftype *cft)
5292 {
5293 u64 count;
5294
5295 rcu_read_lock();
5296 count = atomic_read(&task_css_set(current)->refcount);
5297 rcu_read_unlock();
5298 return count;
5299 }
5300
5301 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5302 {
5303 struct cgrp_cset_link *link;
5304 struct css_set *cset;
5305 char *name_buf;
5306
5307 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5308 if (!name_buf)
5309 return -ENOMEM;
5310
5311 down_read(&css_set_rwsem);
5312 rcu_read_lock();
5313 cset = rcu_dereference(current->cgroups);
5314 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5315 struct cgroup *c = link->cgrp;
5316
5317 cgroup_name(c, name_buf, NAME_MAX + 1);
5318 seq_printf(seq, "Root %d group %s\n",
5319 c->root->hierarchy_id, name_buf);
5320 }
5321 rcu_read_unlock();
5322 up_read(&css_set_rwsem);
5323 kfree(name_buf);
5324 return 0;
5325 }
5326
5327 #define MAX_TASKS_SHOWN_PER_CSS 25
5328 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5329 {
5330 struct cgroup_subsys_state *css = seq_css(seq);
5331 struct cgrp_cset_link *link;
5332
5333 down_read(&css_set_rwsem);
5334 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5335 struct css_set *cset = link->cset;
5336 struct task_struct *task;
5337 int count = 0;
5338
5339 seq_printf(seq, "css_set %p\n", cset);
5340
5341 list_for_each_entry(task, &cset->tasks, cg_list) {
5342 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5343 goto overflow;
5344 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5345 }
5346
5347 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5348 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5349 goto overflow;
5350 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5351 }
5352 continue;
5353 overflow:
5354 seq_puts(seq, " ...\n");
5355 }
5356 up_read(&css_set_rwsem);
5357 return 0;
5358 }
5359
5360 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5361 {
5362 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5363 }
5364
5365 static struct cftype debug_files[] = {
5366 {
5367 .name = "taskcount",
5368 .read_u64 = debug_taskcount_read,
5369 },
5370
5371 {
5372 .name = "current_css_set",
5373 .read_u64 = current_css_set_read,
5374 },
5375
5376 {
5377 .name = "current_css_set_refcount",
5378 .read_u64 = current_css_set_refcount_read,
5379 },
5380
5381 {
5382 .name = "current_css_set_cg_links",
5383 .seq_show = current_css_set_cg_links_read,
5384 },
5385
5386 {
5387 .name = "cgroup_css_links",
5388 .seq_show = cgroup_css_links_read,
5389 },
5390
5391 {
5392 .name = "releasable",
5393 .read_u64 = releasable_read,
5394 },
5395
5396 { } /* terminate */
5397 };
5398
5399 struct cgroup_subsys debug_cgrp_subsys = {
5400 .css_alloc = debug_css_alloc,
5401 .css_free = debug_css_free,
5402 .base_cftypes = debug_files,
5403 };
5404 #endif /* CONFIG_CGROUP_DEBUG */