]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cgroup.c
ACPI / processor_idle: introduce ACPI_PROCESSOR_CSTATE
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/proc_ns.h>
65 #include <net/sock.h>
66
67 /*
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
72 */
73 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
74
75 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
76 MAX_CFTYPE_NAME + 2)
77
78 /*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
82 * css_set_lock protects task->cgroups pointer, the list of css_set
83 * objects, and the chain of tasks off each css_set.
84 *
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
87 */
88 #ifdef CONFIG_PROVE_RCU
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 EXPORT_SYMBOL_GPL(cgroup_mutex);
92 EXPORT_SYMBOL_GPL(css_set_lock);
93 #else
94 static DEFINE_MUTEX(cgroup_mutex);
95 static DEFINE_SPINLOCK(css_set_lock);
96 #endif
97
98 /*
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
101 */
102 static DEFINE_SPINLOCK(cgroup_idr_lock);
103
104 /*
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
107 */
108 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
109
110 /*
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
113 */
114 static DEFINE_SPINLOCK(release_agent_path_lock);
115
116 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
117
118 #define cgroup_assert_mutex_or_rcu_locked() \
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
121 "cgroup_mutex or RCU read lock required");
122
123 /*
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
128 */
129 static struct workqueue_struct *cgroup_destroy_wq;
130
131 /*
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
134 */
135 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
136
137 /* generate an array of cgroup subsystem pointers */
138 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
139 static struct cgroup_subsys *cgroup_subsys[] = {
140 #include <linux/cgroup_subsys.h>
141 };
142 #undef SUBSYS
143
144 /* array of cgroup subsystem names */
145 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146 static const char *cgroup_subsys_name[] = {
147 #include <linux/cgroup_subsys.h>
148 };
149 #undef SUBSYS
150
151 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152 #define SUBSYS(_x) \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157 #include <linux/cgroup_subsys.h>
158 #undef SUBSYS
159
160 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161 static struct static_key_true *cgroup_subsys_enabled_key[] = {
162 #include <linux/cgroup_subsys.h>
163 };
164 #undef SUBSYS
165
166 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168 #include <linux/cgroup_subsys.h>
169 };
170 #undef SUBSYS
171
172 /*
173 * The default hierarchy, reserved for the subsystems that are otherwise
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
176 */
177 struct cgroup_root cgrp_dfl_root;
178 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
179
180 /*
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
183 */
184 static bool cgrp_dfl_visible;
185
186 /* Controllers blocked by the commandline in v1 */
187 static u16 cgroup_no_v1_mask;
188
189 /* some controllers are not supported in the default hierarchy */
190 static u16 cgrp_dfl_inhibit_ss_mask;
191
192 /* some controllers are implicitly enabled on the default hierarchy */
193 static unsigned long cgrp_dfl_implicit_ss_mask;
194
195 /* The list of hierarchy roots */
196
197 static LIST_HEAD(cgroup_roots);
198 static int cgroup_root_count;
199
200 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
201 static DEFINE_IDR(cgroup_hierarchy_idr);
202
203 /*
204 * Assign a monotonically increasing serial number to csses. It guarantees
205 * cgroups with bigger numbers are newer than those with smaller numbers.
206 * Also, as csses are always appended to the parent's ->children list, it
207 * guarantees that sibling csses are always sorted in the ascending serial
208 * number order on the list. Protected by cgroup_mutex.
209 */
210 static u64 css_serial_nr_next = 1;
211
212 /*
213 * These bitmask flags indicate whether tasks in the fork and exit paths have
214 * fork/exit handlers to call. This avoids us having to do extra work in the
215 * fork/exit path to check which subsystems have fork/exit callbacks.
216 */
217 static u16 have_fork_callback __read_mostly;
218 static u16 have_exit_callback __read_mostly;
219 static u16 have_free_callback __read_mostly;
220
221 /* cgroup namespace for init task */
222 struct cgroup_namespace init_cgroup_ns = {
223 .count = { .counter = 2, },
224 .user_ns = &init_user_ns,
225 .ns.ops = &cgroupns_operations,
226 .ns.inum = PROC_CGROUP_INIT_INO,
227 .root_cset = &init_css_set,
228 };
229
230 /* Ditto for the can_fork callback. */
231 static u16 have_canfork_callback __read_mostly;
232
233 static struct file_system_type cgroup2_fs_type;
234 static struct cftype cgroup_dfl_base_files[];
235 static struct cftype cgroup_legacy_base_files[];
236
237 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
238 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
239 static int cgroup_apply_control(struct cgroup *cgrp);
240 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
241 static void css_task_iter_advance(struct css_task_iter *it);
242 static int cgroup_destroy_locked(struct cgroup *cgrp);
243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 struct cgroup_subsys *ss);
245 static void css_release(struct percpu_ref *ref);
246 static void kill_css(struct cgroup_subsys_state *css);
247 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 struct cgroup *cgrp, struct cftype cfts[],
249 bool is_add);
250
251 /**
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
254 *
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
258 */
259 static bool cgroup_ssid_enabled(int ssid)
260 {
261 if (CGROUP_SUBSYS_COUNT == 0)
262 return false;
263
264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265 }
266
267 static bool cgroup_ssid_no_v1(int ssid)
268 {
269 return cgroup_no_v1_mask & (1 << ssid);
270 }
271
272 /**
273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274 * @cgrp: the cgroup of interest
275 *
276 * The default hierarchy is the v2 interface of cgroup and this function
277 * can be used to test whether a cgroup is on the default hierarchy for
278 * cases where a subsystem should behave differnetly depending on the
279 * interface version.
280 *
281 * The set of behaviors which change on the default hierarchy are still
282 * being determined and the mount option is prefixed with __DEVEL__.
283 *
284 * List of changed behaviors:
285 *
286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287 * and "name" are disallowed.
288 *
289 * - When mounting an existing superblock, mount options should match.
290 *
291 * - Remount is disallowed.
292 *
293 * - rename(2) is disallowed.
294 *
295 * - "tasks" is removed. Everything should be at process granularity. Use
296 * "cgroup.procs" instead.
297 *
298 * - "cgroup.procs" is not sorted. pids will be unique unless they got
299 * recycled inbetween reads.
300 *
301 * - "release_agent" and "notify_on_release" are removed. Replacement
302 * notification mechanism will be implemented.
303 *
304 * - "cgroup.clone_children" is removed.
305 *
306 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
307 * and its descendants contain no task; otherwise, 1. The file also
308 * generates kernfs notification which can be monitored through poll and
309 * [di]notify when the value of the file changes.
310 *
311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312 * take masks of ancestors with non-empty cpus/mems, instead of being
313 * moved to an ancestor.
314 *
315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
316 * masks of ancestors.
317 *
318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
319 * is not created.
320 *
321 * - blkcg: blk-throttle becomes properly hierarchical.
322 *
323 * - debug: disallowed on the default hierarchy.
324 */
325 static bool cgroup_on_dfl(const struct cgroup *cgrp)
326 {
327 return cgrp->root == &cgrp_dfl_root;
328 }
329
330 /* IDR wrappers which synchronize using cgroup_idr_lock */
331 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
332 gfp_t gfp_mask)
333 {
334 int ret;
335
336 idr_preload(gfp_mask);
337 spin_lock_bh(&cgroup_idr_lock);
338 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
339 spin_unlock_bh(&cgroup_idr_lock);
340 idr_preload_end();
341 return ret;
342 }
343
344 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
345 {
346 void *ret;
347
348 spin_lock_bh(&cgroup_idr_lock);
349 ret = idr_replace(idr, ptr, id);
350 spin_unlock_bh(&cgroup_idr_lock);
351 return ret;
352 }
353
354 static void cgroup_idr_remove(struct idr *idr, int id)
355 {
356 spin_lock_bh(&cgroup_idr_lock);
357 idr_remove(idr, id);
358 spin_unlock_bh(&cgroup_idr_lock);
359 }
360
361 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
362 {
363 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
364
365 if (parent_css)
366 return container_of(parent_css, struct cgroup, self);
367 return NULL;
368 }
369
370 /* subsystems visibly enabled on a cgroup */
371 static u16 cgroup_control(struct cgroup *cgrp)
372 {
373 struct cgroup *parent = cgroup_parent(cgrp);
374 u16 root_ss_mask = cgrp->root->subsys_mask;
375
376 if (parent)
377 return parent->subtree_control;
378
379 if (cgroup_on_dfl(cgrp))
380 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
381 cgrp_dfl_implicit_ss_mask);
382 return root_ss_mask;
383 }
384
385 /* subsystems enabled on a cgroup */
386 static u16 cgroup_ss_mask(struct cgroup *cgrp)
387 {
388 struct cgroup *parent = cgroup_parent(cgrp);
389
390 if (parent)
391 return parent->subtree_ss_mask;
392
393 return cgrp->root->subsys_mask;
394 }
395
396 /**
397 * cgroup_css - obtain a cgroup's css for the specified subsystem
398 * @cgrp: the cgroup of interest
399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
400 *
401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
402 * function must be called either under cgroup_mutex or rcu_read_lock() and
403 * the caller is responsible for pinning the returned css if it wants to
404 * keep accessing it outside the said locks. This function may return
405 * %NULL if @cgrp doesn't have @subsys_id enabled.
406 */
407 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
408 struct cgroup_subsys *ss)
409 {
410 if (ss)
411 return rcu_dereference_check(cgrp->subsys[ss->id],
412 lockdep_is_held(&cgroup_mutex));
413 else
414 return &cgrp->self;
415 }
416
417 /**
418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419 * @cgrp: the cgroup of interest
420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
421 *
422 * Similar to cgroup_css() but returns the effective css, which is defined
423 * as the matching css of the nearest ancestor including self which has @ss
424 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
425 * function is guaranteed to return non-NULL css.
426 */
427 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
428 struct cgroup_subsys *ss)
429 {
430 lockdep_assert_held(&cgroup_mutex);
431
432 if (!ss)
433 return &cgrp->self;
434
435 /*
436 * This function is used while updating css associations and thus
437 * can't test the csses directly. Test ss_mask.
438 */
439 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
440 cgrp = cgroup_parent(cgrp);
441 if (!cgrp)
442 return NULL;
443 }
444
445 return cgroup_css(cgrp, ss);
446 }
447
448 /**
449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest
452 *
453 * Find and get the effective css of @cgrp for @ss. The effective css is
454 * defined as the matching css of the nearest ancestor including self which
455 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
456 * the root css is returned, so this function always returns a valid css.
457 * The returned css must be put using css_put().
458 */
459 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461 {
462 struct cgroup_subsys_state *css;
463
464 rcu_read_lock();
465
466 do {
467 css = cgroup_css(cgrp, ss);
468
469 if (css && css_tryget_online(css))
470 goto out_unlock;
471 cgrp = cgroup_parent(cgrp);
472 } while (cgrp);
473
474 css = init_css_set.subsys[ss->id];
475 css_get(css);
476 out_unlock:
477 rcu_read_unlock();
478 return css;
479 }
480
481 /* convenient tests for these bits */
482 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
483 {
484 return !(cgrp->self.flags & CSS_ONLINE);
485 }
486
487 static void cgroup_get(struct cgroup *cgrp)
488 {
489 WARN_ON_ONCE(cgroup_is_dead(cgrp));
490 css_get(&cgrp->self);
491 }
492
493 static bool cgroup_tryget(struct cgroup *cgrp)
494 {
495 return css_tryget(&cgrp->self);
496 }
497
498 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
499 {
500 struct cgroup *cgrp = of->kn->parent->priv;
501 struct cftype *cft = of_cft(of);
502
503 /*
504 * This is open and unprotected implementation of cgroup_css().
505 * seq_css() is only called from a kernfs file operation which has
506 * an active reference on the file. Because all the subsystem
507 * files are drained before a css is disassociated with a cgroup,
508 * the matching css from the cgroup's subsys table is guaranteed to
509 * be and stay valid until the enclosing operation is complete.
510 */
511 if (cft->ss)
512 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
513 else
514 return &cgrp->self;
515 }
516 EXPORT_SYMBOL_GPL(of_css);
517
518 static int notify_on_release(const struct cgroup *cgrp)
519 {
520 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
521 }
522
523 /**
524 * for_each_css - iterate all css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
528 *
529 * Should be called under cgroup_[tree_]mutex.
530 */
531 #define for_each_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = rcu_dereference_check( \
534 (cgrp)->subsys[(ssid)], \
535 lockdep_is_held(&cgroup_mutex)))) { } \
536 else
537
538 /**
539 * for_each_e_css - iterate all effective css's of a cgroup
540 * @css: the iteration cursor
541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542 * @cgrp: the target cgroup to iterate css's of
543 *
544 * Should be called under cgroup_[tree_]mutex.
545 */
546 #define for_each_e_css(css, ssid, cgrp) \
547 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
548 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
549 ; \
550 else
551
552 /**
553 * for_each_subsys - iterate all enabled cgroup subsystems
554 * @ss: the iteration cursor
555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
556 */
557 #define for_each_subsys(ss, ssid) \
558 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
559 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
560
561 /**
562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
563 * @ss: the iteration cursor
564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
565 * @ss_mask: the bitmask
566 *
567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
568 * @ss_mask is set.
569 */
570 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
571 unsigned long __ss_mask = (ss_mask); \
572 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
573 (ssid) = 0; \
574 break; \
575 } \
576 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
577 (ss) = cgroup_subsys[ssid]; \
578 {
579
580 #define while_each_subsys_mask() \
581 } \
582 } \
583 } while (false)
584
585 /* iterate across the hierarchies */
586 #define for_each_root(root) \
587 list_for_each_entry((root), &cgroup_roots, root_list)
588
589 /* iterate over child cgrps, lock should be held throughout iteration */
590 #define cgroup_for_each_live_child(child, cgrp) \
591 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
592 if (({ lockdep_assert_held(&cgroup_mutex); \
593 cgroup_is_dead(child); })) \
594 ; \
595 else
596
597 /* walk live descendants in preorder */
598 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
599 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
600 if (({ lockdep_assert_held(&cgroup_mutex); \
601 (dsct) = (d_css)->cgroup; \
602 cgroup_is_dead(dsct); })) \
603 ; \
604 else
605
606 /* walk live descendants in postorder */
607 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
608 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609 if (({ lockdep_assert_held(&cgroup_mutex); \
610 (dsct) = (d_css)->cgroup; \
611 cgroup_is_dead(dsct); })) \
612 ; \
613 else
614
615 static void cgroup_release_agent(struct work_struct *work);
616 static void check_for_release(struct cgroup *cgrp);
617
618 /*
619 * A cgroup can be associated with multiple css_sets as different tasks may
620 * belong to different cgroups on different hierarchies. In the other
621 * direction, a css_set is naturally associated with multiple cgroups.
622 * This M:N relationship is represented by the following link structure
623 * which exists for each association and allows traversing the associations
624 * from both sides.
625 */
626 struct cgrp_cset_link {
627 /* the cgroup and css_set this link associates */
628 struct cgroup *cgrp;
629 struct css_set *cset;
630
631 /* list of cgrp_cset_links anchored at cgrp->cset_links */
632 struct list_head cset_link;
633
634 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635 struct list_head cgrp_link;
636 };
637
638 /*
639 * The default css_set - used by init and its children prior to any
640 * hierarchies being mounted. It contains a pointer to the root state
641 * for each subsystem. Also used to anchor the list of css_sets. Not
642 * reference-counted, to improve performance when child cgroups
643 * haven't been created.
644 */
645 struct css_set init_css_set = {
646 .refcount = ATOMIC_INIT(1),
647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
648 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
649 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
650 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
651 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
652 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
653 };
654
655 static int css_set_count = 1; /* 1 for init_css_set */
656
657 /**
658 * css_set_populated - does a css_set contain any tasks?
659 * @cset: target css_set
660 */
661 static bool css_set_populated(struct css_set *cset)
662 {
663 lockdep_assert_held(&css_set_lock);
664
665 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
666 }
667
668 /**
669 * cgroup_update_populated - updated populated count of a cgroup
670 * @cgrp: the target cgroup
671 * @populated: inc or dec populated count
672 *
673 * One of the css_sets associated with @cgrp is either getting its first
674 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
675 * count is propagated towards root so that a given cgroup's populated_cnt
676 * is zero iff the cgroup and all its descendants don't contain any tasks.
677 *
678 * @cgrp's interface file "cgroup.populated" is zero if
679 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
680 * changes from or to zero, userland is notified that the content of the
681 * interface file has changed. This can be used to detect when @cgrp and
682 * its descendants become populated or empty.
683 */
684 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
685 {
686 lockdep_assert_held(&css_set_lock);
687
688 do {
689 bool trigger;
690
691 if (populated)
692 trigger = !cgrp->populated_cnt++;
693 else
694 trigger = !--cgrp->populated_cnt;
695
696 if (!trigger)
697 break;
698
699 check_for_release(cgrp);
700 cgroup_file_notify(&cgrp->events_file);
701
702 cgrp = cgroup_parent(cgrp);
703 } while (cgrp);
704 }
705
706 /**
707 * css_set_update_populated - update populated state of a css_set
708 * @cset: target css_set
709 * @populated: whether @cset is populated or depopulated
710 *
711 * @cset is either getting the first task or losing the last. Update the
712 * ->populated_cnt of all associated cgroups accordingly.
713 */
714 static void css_set_update_populated(struct css_set *cset, bool populated)
715 {
716 struct cgrp_cset_link *link;
717
718 lockdep_assert_held(&css_set_lock);
719
720 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
721 cgroup_update_populated(link->cgrp, populated);
722 }
723
724 /**
725 * css_set_move_task - move a task from one css_set to another
726 * @task: task being moved
727 * @from_cset: css_set @task currently belongs to (may be NULL)
728 * @to_cset: new css_set @task is being moved to (may be NULL)
729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
730 *
731 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
732 * css_set, @from_cset can be NULL. If @task is being disassociated
733 * instead of moved, @to_cset can be NULL.
734 *
735 * This function automatically handles populated_cnt updates and
736 * css_task_iter adjustments but the caller is responsible for managing
737 * @from_cset and @to_cset's reference counts.
738 */
739 static void css_set_move_task(struct task_struct *task,
740 struct css_set *from_cset, struct css_set *to_cset,
741 bool use_mg_tasks)
742 {
743 lockdep_assert_held(&css_set_lock);
744
745 if (to_cset && !css_set_populated(to_cset))
746 css_set_update_populated(to_cset, true);
747
748 if (from_cset) {
749 struct css_task_iter *it, *pos;
750
751 WARN_ON_ONCE(list_empty(&task->cg_list));
752
753 /*
754 * @task is leaving, advance task iterators which are
755 * pointing to it so that they can resume at the next
756 * position. Advancing an iterator might remove it from
757 * the list, use safe walk. See css_task_iter_advance*()
758 * for details.
759 */
760 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
761 iters_node)
762 if (it->task_pos == &task->cg_list)
763 css_task_iter_advance(it);
764
765 list_del_init(&task->cg_list);
766 if (!css_set_populated(from_cset))
767 css_set_update_populated(from_cset, false);
768 } else {
769 WARN_ON_ONCE(!list_empty(&task->cg_list));
770 }
771
772 if (to_cset) {
773 /*
774 * We are synchronized through cgroup_threadgroup_rwsem
775 * against PF_EXITING setting such that we can't race
776 * against cgroup_exit() changing the css_set to
777 * init_css_set and dropping the old one.
778 */
779 WARN_ON_ONCE(task->flags & PF_EXITING);
780
781 rcu_assign_pointer(task->cgroups, to_cset);
782 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
783 &to_cset->tasks);
784 }
785 }
786
787 /*
788 * hash table for cgroup groups. This improves the performance to find
789 * an existing css_set. This hash doesn't (currently) take into
790 * account cgroups in empty hierarchies.
791 */
792 #define CSS_SET_HASH_BITS 7
793 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
794
795 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
796 {
797 unsigned long key = 0UL;
798 struct cgroup_subsys *ss;
799 int i;
800
801 for_each_subsys(ss, i)
802 key += (unsigned long)css[i];
803 key = (key >> 16) ^ key;
804
805 return key;
806 }
807
808 static void put_css_set_locked(struct css_set *cset)
809 {
810 struct cgrp_cset_link *link, *tmp_link;
811 struct cgroup_subsys *ss;
812 int ssid;
813
814 lockdep_assert_held(&css_set_lock);
815
816 if (!atomic_dec_and_test(&cset->refcount))
817 return;
818
819 /* This css_set is dead. unlink it and release cgroup and css refs */
820 for_each_subsys(ss, ssid) {
821 list_del(&cset->e_cset_node[ssid]);
822 css_put(cset->subsys[ssid]);
823 }
824 hash_del(&cset->hlist);
825 css_set_count--;
826
827 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
828 list_del(&link->cset_link);
829 list_del(&link->cgrp_link);
830 if (cgroup_parent(link->cgrp))
831 cgroup_put(link->cgrp);
832 kfree(link);
833 }
834
835 kfree_rcu(cset, rcu_head);
836 }
837
838 static void put_css_set(struct css_set *cset)
839 {
840 unsigned long flags;
841
842 /*
843 * Ensure that the refcount doesn't hit zero while any readers
844 * can see it. Similar to atomic_dec_and_lock(), but for an
845 * rwlock
846 */
847 if (atomic_add_unless(&cset->refcount, -1, 1))
848 return;
849
850 spin_lock_irqsave(&css_set_lock, flags);
851 put_css_set_locked(cset);
852 spin_unlock_irqrestore(&css_set_lock, flags);
853 }
854
855 /*
856 * refcounted get/put for css_set objects
857 */
858 static inline void get_css_set(struct css_set *cset)
859 {
860 atomic_inc(&cset->refcount);
861 }
862
863 /**
864 * compare_css_sets - helper function for find_existing_css_set().
865 * @cset: candidate css_set being tested
866 * @old_cset: existing css_set for a task
867 * @new_cgrp: cgroup that's being entered by the task
868 * @template: desired set of css pointers in css_set (pre-calculated)
869 *
870 * Returns true if "cset" matches "old_cset" except for the hierarchy
871 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
872 */
873 static bool compare_css_sets(struct css_set *cset,
874 struct css_set *old_cset,
875 struct cgroup *new_cgrp,
876 struct cgroup_subsys_state *template[])
877 {
878 struct list_head *l1, *l2;
879
880 /*
881 * On the default hierarchy, there can be csets which are
882 * associated with the same set of cgroups but different csses.
883 * Let's first ensure that csses match.
884 */
885 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
886 return false;
887
888 /*
889 * Compare cgroup pointers in order to distinguish between
890 * different cgroups in hierarchies. As different cgroups may
891 * share the same effective css, this comparison is always
892 * necessary.
893 */
894 l1 = &cset->cgrp_links;
895 l2 = &old_cset->cgrp_links;
896 while (1) {
897 struct cgrp_cset_link *link1, *link2;
898 struct cgroup *cgrp1, *cgrp2;
899
900 l1 = l1->next;
901 l2 = l2->next;
902 /* See if we reached the end - both lists are equal length. */
903 if (l1 == &cset->cgrp_links) {
904 BUG_ON(l2 != &old_cset->cgrp_links);
905 break;
906 } else {
907 BUG_ON(l2 == &old_cset->cgrp_links);
908 }
909 /* Locate the cgroups associated with these links. */
910 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
911 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
912 cgrp1 = link1->cgrp;
913 cgrp2 = link2->cgrp;
914 /* Hierarchies should be linked in the same order. */
915 BUG_ON(cgrp1->root != cgrp2->root);
916
917 /*
918 * If this hierarchy is the hierarchy of the cgroup
919 * that's changing, then we need to check that this
920 * css_set points to the new cgroup; if it's any other
921 * hierarchy, then this css_set should point to the
922 * same cgroup as the old css_set.
923 */
924 if (cgrp1->root == new_cgrp->root) {
925 if (cgrp1 != new_cgrp)
926 return false;
927 } else {
928 if (cgrp1 != cgrp2)
929 return false;
930 }
931 }
932 return true;
933 }
934
935 /**
936 * find_existing_css_set - init css array and find the matching css_set
937 * @old_cset: the css_set that we're using before the cgroup transition
938 * @cgrp: the cgroup that we're moving into
939 * @template: out param for the new set of csses, should be clear on entry
940 */
941 static struct css_set *find_existing_css_set(struct css_set *old_cset,
942 struct cgroup *cgrp,
943 struct cgroup_subsys_state *template[])
944 {
945 struct cgroup_root *root = cgrp->root;
946 struct cgroup_subsys *ss;
947 struct css_set *cset;
948 unsigned long key;
949 int i;
950
951 /*
952 * Build the set of subsystem state objects that we want to see in the
953 * new css_set. while subsystems can change globally, the entries here
954 * won't change, so no need for locking.
955 */
956 for_each_subsys(ss, i) {
957 if (root->subsys_mask & (1UL << i)) {
958 /*
959 * @ss is in this hierarchy, so we want the
960 * effective css from @cgrp.
961 */
962 template[i] = cgroup_e_css(cgrp, ss);
963 } else {
964 /*
965 * @ss is not in this hierarchy, so we don't want
966 * to change the css.
967 */
968 template[i] = old_cset->subsys[i];
969 }
970 }
971
972 key = css_set_hash(template);
973 hash_for_each_possible(css_set_table, cset, hlist, key) {
974 if (!compare_css_sets(cset, old_cset, cgrp, template))
975 continue;
976
977 /* This css_set matches what we need */
978 return cset;
979 }
980
981 /* No existing cgroup group matched */
982 return NULL;
983 }
984
985 static void free_cgrp_cset_links(struct list_head *links_to_free)
986 {
987 struct cgrp_cset_link *link, *tmp_link;
988
989 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
990 list_del(&link->cset_link);
991 kfree(link);
992 }
993 }
994
995 /**
996 * allocate_cgrp_cset_links - allocate cgrp_cset_links
997 * @count: the number of links to allocate
998 * @tmp_links: list_head the allocated links are put on
999 *
1000 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1001 * through ->cset_link. Returns 0 on success or -errno.
1002 */
1003 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1004 {
1005 struct cgrp_cset_link *link;
1006 int i;
1007
1008 INIT_LIST_HEAD(tmp_links);
1009
1010 for (i = 0; i < count; i++) {
1011 link = kzalloc(sizeof(*link), GFP_KERNEL);
1012 if (!link) {
1013 free_cgrp_cset_links(tmp_links);
1014 return -ENOMEM;
1015 }
1016 list_add(&link->cset_link, tmp_links);
1017 }
1018 return 0;
1019 }
1020
1021 /**
1022 * link_css_set - a helper function to link a css_set to a cgroup
1023 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1024 * @cset: the css_set to be linked
1025 * @cgrp: the destination cgroup
1026 */
1027 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1028 struct cgroup *cgrp)
1029 {
1030 struct cgrp_cset_link *link;
1031
1032 BUG_ON(list_empty(tmp_links));
1033
1034 if (cgroup_on_dfl(cgrp))
1035 cset->dfl_cgrp = cgrp;
1036
1037 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1038 link->cset = cset;
1039 link->cgrp = cgrp;
1040
1041 /*
1042 * Always add links to the tail of the lists so that the lists are
1043 * in choronological order.
1044 */
1045 list_move_tail(&link->cset_link, &cgrp->cset_links);
1046 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1047
1048 if (cgroup_parent(cgrp))
1049 cgroup_get(cgrp);
1050 }
1051
1052 /**
1053 * find_css_set - return a new css_set with one cgroup updated
1054 * @old_cset: the baseline css_set
1055 * @cgrp: the cgroup to be updated
1056 *
1057 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1058 * substituted into the appropriate hierarchy.
1059 */
1060 static struct css_set *find_css_set(struct css_set *old_cset,
1061 struct cgroup *cgrp)
1062 {
1063 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1064 struct css_set *cset;
1065 struct list_head tmp_links;
1066 struct cgrp_cset_link *link;
1067 struct cgroup_subsys *ss;
1068 unsigned long key;
1069 int ssid;
1070
1071 lockdep_assert_held(&cgroup_mutex);
1072
1073 /* First see if we already have a cgroup group that matches
1074 * the desired set */
1075 spin_lock_irq(&css_set_lock);
1076 cset = find_existing_css_set(old_cset, cgrp, template);
1077 if (cset)
1078 get_css_set(cset);
1079 spin_unlock_irq(&css_set_lock);
1080
1081 if (cset)
1082 return cset;
1083
1084 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1085 if (!cset)
1086 return NULL;
1087
1088 /* Allocate all the cgrp_cset_link objects that we'll need */
1089 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1090 kfree(cset);
1091 return NULL;
1092 }
1093
1094 atomic_set(&cset->refcount, 1);
1095 INIT_LIST_HEAD(&cset->cgrp_links);
1096 INIT_LIST_HEAD(&cset->tasks);
1097 INIT_LIST_HEAD(&cset->mg_tasks);
1098 INIT_LIST_HEAD(&cset->mg_preload_node);
1099 INIT_LIST_HEAD(&cset->mg_node);
1100 INIT_LIST_HEAD(&cset->task_iters);
1101 INIT_HLIST_NODE(&cset->hlist);
1102
1103 /* Copy the set of subsystem state objects generated in
1104 * find_existing_css_set() */
1105 memcpy(cset->subsys, template, sizeof(cset->subsys));
1106
1107 spin_lock_irq(&css_set_lock);
1108 /* Add reference counts and links from the new css_set. */
1109 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1110 struct cgroup *c = link->cgrp;
1111
1112 if (c->root == cgrp->root)
1113 c = cgrp;
1114 link_css_set(&tmp_links, cset, c);
1115 }
1116
1117 BUG_ON(!list_empty(&tmp_links));
1118
1119 css_set_count++;
1120
1121 /* Add @cset to the hash table */
1122 key = css_set_hash(cset->subsys);
1123 hash_add(css_set_table, &cset->hlist, key);
1124
1125 for_each_subsys(ss, ssid) {
1126 struct cgroup_subsys_state *css = cset->subsys[ssid];
1127
1128 list_add_tail(&cset->e_cset_node[ssid],
1129 &css->cgroup->e_csets[ssid]);
1130 css_get(css);
1131 }
1132
1133 spin_unlock_irq(&css_set_lock);
1134
1135 return cset;
1136 }
1137
1138 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1139 {
1140 struct cgroup *root_cgrp = kf_root->kn->priv;
1141
1142 return root_cgrp->root;
1143 }
1144
1145 static int cgroup_init_root_id(struct cgroup_root *root)
1146 {
1147 int id;
1148
1149 lockdep_assert_held(&cgroup_mutex);
1150
1151 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1152 if (id < 0)
1153 return id;
1154
1155 root->hierarchy_id = id;
1156 return 0;
1157 }
1158
1159 static void cgroup_exit_root_id(struct cgroup_root *root)
1160 {
1161 lockdep_assert_held(&cgroup_mutex);
1162
1163 if (root->hierarchy_id) {
1164 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1165 root->hierarchy_id = 0;
1166 }
1167 }
1168
1169 static void cgroup_free_root(struct cgroup_root *root)
1170 {
1171 if (root) {
1172 /* hierarchy ID should already have been released */
1173 WARN_ON_ONCE(root->hierarchy_id);
1174
1175 idr_destroy(&root->cgroup_idr);
1176 kfree(root);
1177 }
1178 }
1179
1180 static void cgroup_destroy_root(struct cgroup_root *root)
1181 {
1182 struct cgroup *cgrp = &root->cgrp;
1183 struct cgrp_cset_link *link, *tmp_link;
1184
1185 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1186
1187 BUG_ON(atomic_read(&root->nr_cgrps));
1188 BUG_ON(!list_empty(&cgrp->self.children));
1189
1190 /* Rebind all subsystems back to the default hierarchy */
1191 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1192
1193 /*
1194 * Release all the links from cset_links to this hierarchy's
1195 * root cgroup
1196 */
1197 spin_lock_irq(&css_set_lock);
1198
1199 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1200 list_del(&link->cset_link);
1201 list_del(&link->cgrp_link);
1202 kfree(link);
1203 }
1204
1205 spin_unlock_irq(&css_set_lock);
1206
1207 if (!list_empty(&root->root_list)) {
1208 list_del(&root->root_list);
1209 cgroup_root_count--;
1210 }
1211
1212 cgroup_exit_root_id(root);
1213
1214 mutex_unlock(&cgroup_mutex);
1215
1216 kernfs_destroy_root(root->kf_root);
1217 cgroup_free_root(root);
1218 }
1219
1220 /*
1221 * look up cgroup associated with current task's cgroup namespace on the
1222 * specified hierarchy
1223 */
1224 static struct cgroup *
1225 current_cgns_cgroup_from_root(struct cgroup_root *root)
1226 {
1227 struct cgroup *res = NULL;
1228 struct css_set *cset;
1229
1230 lockdep_assert_held(&css_set_lock);
1231
1232 rcu_read_lock();
1233
1234 cset = current->nsproxy->cgroup_ns->root_cset;
1235 if (cset == &init_css_set) {
1236 res = &root->cgrp;
1237 } else {
1238 struct cgrp_cset_link *link;
1239
1240 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1241 struct cgroup *c = link->cgrp;
1242
1243 if (c->root == root) {
1244 res = c;
1245 break;
1246 }
1247 }
1248 }
1249 rcu_read_unlock();
1250
1251 BUG_ON(!res);
1252 return res;
1253 }
1254
1255 /* look up cgroup associated with given css_set on the specified hierarchy */
1256 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1257 struct cgroup_root *root)
1258 {
1259 struct cgroup *res = NULL;
1260
1261 lockdep_assert_held(&cgroup_mutex);
1262 lockdep_assert_held(&css_set_lock);
1263
1264 if (cset == &init_css_set) {
1265 res = &root->cgrp;
1266 } else {
1267 struct cgrp_cset_link *link;
1268
1269 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1270 struct cgroup *c = link->cgrp;
1271
1272 if (c->root == root) {
1273 res = c;
1274 break;
1275 }
1276 }
1277 }
1278
1279 BUG_ON(!res);
1280 return res;
1281 }
1282
1283 /*
1284 * Return the cgroup for "task" from the given hierarchy. Must be
1285 * called with cgroup_mutex and css_set_lock held.
1286 */
1287 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1288 struct cgroup_root *root)
1289 {
1290 /*
1291 * No need to lock the task - since we hold cgroup_mutex the
1292 * task can't change groups, so the only thing that can happen
1293 * is that it exits and its css is set back to init_css_set.
1294 */
1295 return cset_cgroup_from_root(task_css_set(task), root);
1296 }
1297
1298 /*
1299 * A task must hold cgroup_mutex to modify cgroups.
1300 *
1301 * Any task can increment and decrement the count field without lock.
1302 * So in general, code holding cgroup_mutex can't rely on the count
1303 * field not changing. However, if the count goes to zero, then only
1304 * cgroup_attach_task() can increment it again. Because a count of zero
1305 * means that no tasks are currently attached, therefore there is no
1306 * way a task attached to that cgroup can fork (the other way to
1307 * increment the count). So code holding cgroup_mutex can safely
1308 * assume that if the count is zero, it will stay zero. Similarly, if
1309 * a task holds cgroup_mutex on a cgroup with zero count, it
1310 * knows that the cgroup won't be removed, as cgroup_rmdir()
1311 * needs that mutex.
1312 *
1313 * A cgroup can only be deleted if both its 'count' of using tasks
1314 * is zero, and its list of 'children' cgroups is empty. Since all
1315 * tasks in the system use _some_ cgroup, and since there is always at
1316 * least one task in the system (init, pid == 1), therefore, root cgroup
1317 * always has either children cgroups and/or using tasks. So we don't
1318 * need a special hack to ensure that root cgroup cannot be deleted.
1319 *
1320 * P.S. One more locking exception. RCU is used to guard the
1321 * update of a tasks cgroup pointer by cgroup_attach_task()
1322 */
1323
1324 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1325 static const struct file_operations proc_cgroupstats_operations;
1326
1327 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1328 char *buf)
1329 {
1330 struct cgroup_subsys *ss = cft->ss;
1331
1332 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1333 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1334 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1335 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1336 cft->name);
1337 else
1338 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1339 return buf;
1340 }
1341
1342 /**
1343 * cgroup_file_mode - deduce file mode of a control file
1344 * @cft: the control file in question
1345 *
1346 * S_IRUGO for read, S_IWUSR for write.
1347 */
1348 static umode_t cgroup_file_mode(const struct cftype *cft)
1349 {
1350 umode_t mode = 0;
1351
1352 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1353 mode |= S_IRUGO;
1354
1355 if (cft->write_u64 || cft->write_s64 || cft->write) {
1356 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1357 mode |= S_IWUGO;
1358 else
1359 mode |= S_IWUSR;
1360 }
1361
1362 return mode;
1363 }
1364
1365 /**
1366 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1367 * @subtree_control: the new subtree_control mask to consider
1368 * @this_ss_mask: available subsystems
1369 *
1370 * On the default hierarchy, a subsystem may request other subsystems to be
1371 * enabled together through its ->depends_on mask. In such cases, more
1372 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1373 *
1374 * This function calculates which subsystems need to be enabled if
1375 * @subtree_control is to be applied while restricted to @this_ss_mask.
1376 */
1377 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1378 {
1379 u16 cur_ss_mask = subtree_control;
1380 struct cgroup_subsys *ss;
1381 int ssid;
1382
1383 lockdep_assert_held(&cgroup_mutex);
1384
1385 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1386
1387 while (true) {
1388 u16 new_ss_mask = cur_ss_mask;
1389
1390 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1391 new_ss_mask |= ss->depends_on;
1392 } while_each_subsys_mask();
1393
1394 /*
1395 * Mask out subsystems which aren't available. This can
1396 * happen only if some depended-upon subsystems were bound
1397 * to non-default hierarchies.
1398 */
1399 new_ss_mask &= this_ss_mask;
1400
1401 if (new_ss_mask == cur_ss_mask)
1402 break;
1403 cur_ss_mask = new_ss_mask;
1404 }
1405
1406 return cur_ss_mask;
1407 }
1408
1409 /**
1410 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1411 * @kn: the kernfs_node being serviced
1412 *
1413 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1414 * the method finishes if locking succeeded. Note that once this function
1415 * returns the cgroup returned by cgroup_kn_lock_live() may become
1416 * inaccessible any time. If the caller intends to continue to access the
1417 * cgroup, it should pin it before invoking this function.
1418 */
1419 static void cgroup_kn_unlock(struct kernfs_node *kn)
1420 {
1421 struct cgroup *cgrp;
1422
1423 if (kernfs_type(kn) == KERNFS_DIR)
1424 cgrp = kn->priv;
1425 else
1426 cgrp = kn->parent->priv;
1427
1428 mutex_unlock(&cgroup_mutex);
1429
1430 kernfs_unbreak_active_protection(kn);
1431 cgroup_put(cgrp);
1432 }
1433
1434 /**
1435 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1436 * @kn: the kernfs_node being serviced
1437 * @drain_offline: perform offline draining on the cgroup
1438 *
1439 * This helper is to be used by a cgroup kernfs method currently servicing
1440 * @kn. It breaks the active protection, performs cgroup locking and
1441 * verifies that the associated cgroup is alive. Returns the cgroup if
1442 * alive; otherwise, %NULL. A successful return should be undone by a
1443 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1444 * cgroup is drained of offlining csses before return.
1445 *
1446 * Any cgroup kernfs method implementation which requires locking the
1447 * associated cgroup should use this helper. It avoids nesting cgroup
1448 * locking under kernfs active protection and allows all kernfs operations
1449 * including self-removal.
1450 */
1451 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1452 bool drain_offline)
1453 {
1454 struct cgroup *cgrp;
1455
1456 if (kernfs_type(kn) == KERNFS_DIR)
1457 cgrp = kn->priv;
1458 else
1459 cgrp = kn->parent->priv;
1460
1461 /*
1462 * We're gonna grab cgroup_mutex which nests outside kernfs
1463 * active_ref. cgroup liveliness check alone provides enough
1464 * protection against removal. Ensure @cgrp stays accessible and
1465 * break the active_ref protection.
1466 */
1467 if (!cgroup_tryget(cgrp))
1468 return NULL;
1469 kernfs_break_active_protection(kn);
1470
1471 if (drain_offline)
1472 cgroup_lock_and_drain_offline(cgrp);
1473 else
1474 mutex_lock(&cgroup_mutex);
1475
1476 if (!cgroup_is_dead(cgrp))
1477 return cgrp;
1478
1479 cgroup_kn_unlock(kn);
1480 return NULL;
1481 }
1482
1483 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1484 {
1485 char name[CGROUP_FILE_NAME_MAX];
1486
1487 lockdep_assert_held(&cgroup_mutex);
1488
1489 if (cft->file_offset) {
1490 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1491 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1492
1493 spin_lock_irq(&cgroup_file_kn_lock);
1494 cfile->kn = NULL;
1495 spin_unlock_irq(&cgroup_file_kn_lock);
1496 }
1497
1498 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1499 }
1500
1501 /**
1502 * css_clear_dir - remove subsys files in a cgroup directory
1503 * @css: taget css
1504 */
1505 static void css_clear_dir(struct cgroup_subsys_state *css)
1506 {
1507 struct cgroup *cgrp = css->cgroup;
1508 struct cftype *cfts;
1509
1510 if (!(css->flags & CSS_VISIBLE))
1511 return;
1512
1513 css->flags &= ~CSS_VISIBLE;
1514
1515 list_for_each_entry(cfts, &css->ss->cfts, node)
1516 cgroup_addrm_files(css, cgrp, cfts, false);
1517 }
1518
1519 /**
1520 * css_populate_dir - create subsys files in a cgroup directory
1521 * @css: target css
1522 *
1523 * On failure, no file is added.
1524 */
1525 static int css_populate_dir(struct cgroup_subsys_state *css)
1526 {
1527 struct cgroup *cgrp = css->cgroup;
1528 struct cftype *cfts, *failed_cfts;
1529 int ret;
1530
1531 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1532 return 0;
1533
1534 if (!css->ss) {
1535 if (cgroup_on_dfl(cgrp))
1536 cfts = cgroup_dfl_base_files;
1537 else
1538 cfts = cgroup_legacy_base_files;
1539
1540 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1541 }
1542
1543 list_for_each_entry(cfts, &css->ss->cfts, node) {
1544 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1545 if (ret < 0) {
1546 failed_cfts = cfts;
1547 goto err;
1548 }
1549 }
1550
1551 css->flags |= CSS_VISIBLE;
1552
1553 return 0;
1554 err:
1555 list_for_each_entry(cfts, &css->ss->cfts, node) {
1556 if (cfts == failed_cfts)
1557 break;
1558 cgroup_addrm_files(css, cgrp, cfts, false);
1559 }
1560 return ret;
1561 }
1562
1563 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1564 {
1565 struct cgroup *dcgrp = &dst_root->cgrp;
1566 struct cgroup_subsys *ss;
1567 int ssid, i, ret;
1568
1569 lockdep_assert_held(&cgroup_mutex);
1570
1571 do_each_subsys_mask(ss, ssid, ss_mask) {
1572 /*
1573 * If @ss has non-root csses attached to it, can't move.
1574 * If @ss is an implicit controller, it is exempt from this
1575 * rule and can be stolen.
1576 */
1577 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1578 !ss->implicit_on_dfl)
1579 return -EBUSY;
1580
1581 /* can't move between two non-dummy roots either */
1582 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1583 return -EBUSY;
1584 } while_each_subsys_mask();
1585
1586 do_each_subsys_mask(ss, ssid, ss_mask) {
1587 struct cgroup_root *src_root = ss->root;
1588 struct cgroup *scgrp = &src_root->cgrp;
1589 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1590 struct css_set *cset;
1591
1592 WARN_ON(!css || cgroup_css(dcgrp, ss));
1593
1594 /* disable from the source */
1595 src_root->subsys_mask &= ~(1 << ssid);
1596 WARN_ON(cgroup_apply_control(scgrp));
1597 cgroup_finalize_control(scgrp, 0);
1598
1599 /* rebind */
1600 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1601 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1602 ss->root = dst_root;
1603 css->cgroup = dcgrp;
1604
1605 spin_lock_irq(&css_set_lock);
1606 hash_for_each(css_set_table, i, cset, hlist)
1607 list_move_tail(&cset->e_cset_node[ss->id],
1608 &dcgrp->e_csets[ss->id]);
1609 spin_unlock_irq(&css_set_lock);
1610
1611 /* default hierarchy doesn't enable controllers by default */
1612 dst_root->subsys_mask |= 1 << ssid;
1613 if (dst_root == &cgrp_dfl_root) {
1614 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1615 } else {
1616 dcgrp->subtree_control |= 1 << ssid;
1617 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1618 }
1619
1620 ret = cgroup_apply_control(dcgrp);
1621 if (ret)
1622 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1623 ss->name, ret);
1624
1625 if (ss->bind)
1626 ss->bind(css);
1627 } while_each_subsys_mask();
1628
1629 kernfs_activate(dcgrp->kn);
1630 return 0;
1631 }
1632
1633 static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1634 struct kernfs_root *kf_root)
1635 {
1636 int len = 0;
1637 char *buf = NULL;
1638 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1639 struct cgroup *ns_cgroup;
1640
1641 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1642 if (!buf)
1643 return -ENOMEM;
1644
1645 spin_lock_irq(&css_set_lock);
1646 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1647 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1648 spin_unlock_irq(&css_set_lock);
1649
1650 if (len >= PATH_MAX)
1651 len = -ERANGE;
1652 else if (len > 0) {
1653 seq_escape(sf, buf, " \t\n\\");
1654 len = 0;
1655 }
1656 kfree(buf);
1657 return len;
1658 }
1659
1660 static int cgroup_show_options(struct seq_file *seq,
1661 struct kernfs_root *kf_root)
1662 {
1663 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1664 struct cgroup_subsys *ss;
1665 int ssid;
1666
1667 if (root != &cgrp_dfl_root)
1668 for_each_subsys(ss, ssid)
1669 if (root->subsys_mask & (1 << ssid))
1670 seq_show_option(seq, ss->legacy_name, NULL);
1671 if (root->flags & CGRP_ROOT_NOPREFIX)
1672 seq_puts(seq, ",noprefix");
1673 if (root->flags & CGRP_ROOT_XATTR)
1674 seq_puts(seq, ",xattr");
1675
1676 spin_lock(&release_agent_path_lock);
1677 if (strlen(root->release_agent_path))
1678 seq_show_option(seq, "release_agent",
1679 root->release_agent_path);
1680 spin_unlock(&release_agent_path_lock);
1681
1682 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1683 seq_puts(seq, ",clone_children");
1684 if (strlen(root->name))
1685 seq_show_option(seq, "name", root->name);
1686 return 0;
1687 }
1688
1689 struct cgroup_sb_opts {
1690 u16 subsys_mask;
1691 unsigned int flags;
1692 char *release_agent;
1693 bool cpuset_clone_children;
1694 char *name;
1695 /* User explicitly requested empty subsystem */
1696 bool none;
1697 };
1698
1699 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1700 {
1701 char *token, *o = data;
1702 bool all_ss = false, one_ss = false;
1703 u16 mask = U16_MAX;
1704 struct cgroup_subsys *ss;
1705 int nr_opts = 0;
1706 int i;
1707
1708 #ifdef CONFIG_CPUSETS
1709 mask = ~((u16)1 << cpuset_cgrp_id);
1710 #endif
1711
1712 memset(opts, 0, sizeof(*opts));
1713
1714 while ((token = strsep(&o, ",")) != NULL) {
1715 nr_opts++;
1716
1717 if (!*token)
1718 return -EINVAL;
1719 if (!strcmp(token, "none")) {
1720 /* Explicitly have no subsystems */
1721 opts->none = true;
1722 continue;
1723 }
1724 if (!strcmp(token, "all")) {
1725 /* Mutually exclusive option 'all' + subsystem name */
1726 if (one_ss)
1727 return -EINVAL;
1728 all_ss = true;
1729 continue;
1730 }
1731 if (!strcmp(token, "noprefix")) {
1732 opts->flags |= CGRP_ROOT_NOPREFIX;
1733 continue;
1734 }
1735 if (!strcmp(token, "clone_children")) {
1736 opts->cpuset_clone_children = true;
1737 continue;
1738 }
1739 if (!strcmp(token, "xattr")) {
1740 opts->flags |= CGRP_ROOT_XATTR;
1741 continue;
1742 }
1743 if (!strncmp(token, "release_agent=", 14)) {
1744 /* Specifying two release agents is forbidden */
1745 if (opts->release_agent)
1746 return -EINVAL;
1747 opts->release_agent =
1748 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1749 if (!opts->release_agent)
1750 return -ENOMEM;
1751 continue;
1752 }
1753 if (!strncmp(token, "name=", 5)) {
1754 const char *name = token + 5;
1755 /* Can't specify an empty name */
1756 if (!strlen(name))
1757 return -EINVAL;
1758 /* Must match [\w.-]+ */
1759 for (i = 0; i < strlen(name); i++) {
1760 char c = name[i];
1761 if (isalnum(c))
1762 continue;
1763 if ((c == '.') || (c == '-') || (c == '_'))
1764 continue;
1765 return -EINVAL;
1766 }
1767 /* Specifying two names is forbidden */
1768 if (opts->name)
1769 return -EINVAL;
1770 opts->name = kstrndup(name,
1771 MAX_CGROUP_ROOT_NAMELEN - 1,
1772 GFP_KERNEL);
1773 if (!opts->name)
1774 return -ENOMEM;
1775
1776 continue;
1777 }
1778
1779 for_each_subsys(ss, i) {
1780 if (strcmp(token, ss->legacy_name))
1781 continue;
1782 if (!cgroup_ssid_enabled(i))
1783 continue;
1784 if (cgroup_ssid_no_v1(i))
1785 continue;
1786
1787 /* Mutually exclusive option 'all' + subsystem name */
1788 if (all_ss)
1789 return -EINVAL;
1790 opts->subsys_mask |= (1 << i);
1791 one_ss = true;
1792
1793 break;
1794 }
1795 if (i == CGROUP_SUBSYS_COUNT)
1796 return -ENOENT;
1797 }
1798
1799 /*
1800 * If the 'all' option was specified select all the subsystems,
1801 * otherwise if 'none', 'name=' and a subsystem name options were
1802 * not specified, let's default to 'all'
1803 */
1804 if (all_ss || (!one_ss && !opts->none && !opts->name))
1805 for_each_subsys(ss, i)
1806 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1807 opts->subsys_mask |= (1 << i);
1808
1809 /*
1810 * We either have to specify by name or by subsystems. (So all
1811 * empty hierarchies must have a name).
1812 */
1813 if (!opts->subsys_mask && !opts->name)
1814 return -EINVAL;
1815
1816 /*
1817 * Option noprefix was introduced just for backward compatibility
1818 * with the old cpuset, so we allow noprefix only if mounting just
1819 * the cpuset subsystem.
1820 */
1821 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1822 return -EINVAL;
1823
1824 /* Can't specify "none" and some subsystems */
1825 if (opts->subsys_mask && opts->none)
1826 return -EINVAL;
1827
1828 return 0;
1829 }
1830
1831 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1832 {
1833 int ret = 0;
1834 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1835 struct cgroup_sb_opts opts;
1836 u16 added_mask, removed_mask;
1837
1838 if (root == &cgrp_dfl_root) {
1839 pr_err("remount is not allowed\n");
1840 return -EINVAL;
1841 }
1842
1843 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1844
1845 /* See what subsystems are wanted */
1846 ret = parse_cgroupfs_options(data, &opts);
1847 if (ret)
1848 goto out_unlock;
1849
1850 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1851 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1852 task_tgid_nr(current), current->comm);
1853
1854 added_mask = opts.subsys_mask & ~root->subsys_mask;
1855 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1856
1857 /* Don't allow flags or name to change at remount */
1858 if ((opts.flags ^ root->flags) ||
1859 (opts.name && strcmp(opts.name, root->name))) {
1860 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1861 opts.flags, opts.name ?: "", root->flags, root->name);
1862 ret = -EINVAL;
1863 goto out_unlock;
1864 }
1865
1866 /* remounting is not allowed for populated hierarchies */
1867 if (!list_empty(&root->cgrp.self.children)) {
1868 ret = -EBUSY;
1869 goto out_unlock;
1870 }
1871
1872 ret = rebind_subsystems(root, added_mask);
1873 if (ret)
1874 goto out_unlock;
1875
1876 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1877
1878 if (opts.release_agent) {
1879 spin_lock(&release_agent_path_lock);
1880 strcpy(root->release_agent_path, opts.release_agent);
1881 spin_unlock(&release_agent_path_lock);
1882 }
1883 out_unlock:
1884 kfree(opts.release_agent);
1885 kfree(opts.name);
1886 mutex_unlock(&cgroup_mutex);
1887 return ret;
1888 }
1889
1890 /*
1891 * To reduce the fork() overhead for systems that are not actually using
1892 * their cgroups capability, we don't maintain the lists running through
1893 * each css_set to its tasks until we see the list actually used - in other
1894 * words after the first mount.
1895 */
1896 static bool use_task_css_set_links __read_mostly;
1897
1898 static void cgroup_enable_task_cg_lists(void)
1899 {
1900 struct task_struct *p, *g;
1901
1902 spin_lock_irq(&css_set_lock);
1903
1904 if (use_task_css_set_links)
1905 goto out_unlock;
1906
1907 use_task_css_set_links = true;
1908
1909 /*
1910 * We need tasklist_lock because RCU is not safe against
1911 * while_each_thread(). Besides, a forking task that has passed
1912 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1913 * is not guaranteed to have its child immediately visible in the
1914 * tasklist if we walk through it with RCU.
1915 */
1916 read_lock(&tasklist_lock);
1917 do_each_thread(g, p) {
1918 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1919 task_css_set(p) != &init_css_set);
1920
1921 /*
1922 * We should check if the process is exiting, otherwise
1923 * it will race with cgroup_exit() in that the list
1924 * entry won't be deleted though the process has exited.
1925 * Do it while holding siglock so that we don't end up
1926 * racing against cgroup_exit().
1927 *
1928 * Interrupts were already disabled while acquiring
1929 * the css_set_lock, so we do not need to disable it
1930 * again when acquiring the sighand->siglock here.
1931 */
1932 spin_lock(&p->sighand->siglock);
1933 if (!(p->flags & PF_EXITING)) {
1934 struct css_set *cset = task_css_set(p);
1935
1936 if (!css_set_populated(cset))
1937 css_set_update_populated(cset, true);
1938 list_add_tail(&p->cg_list, &cset->tasks);
1939 get_css_set(cset);
1940 }
1941 spin_unlock(&p->sighand->siglock);
1942 } while_each_thread(g, p);
1943 read_unlock(&tasklist_lock);
1944 out_unlock:
1945 spin_unlock_irq(&css_set_lock);
1946 }
1947
1948 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1949 {
1950 struct cgroup_subsys *ss;
1951 int ssid;
1952
1953 INIT_LIST_HEAD(&cgrp->self.sibling);
1954 INIT_LIST_HEAD(&cgrp->self.children);
1955 INIT_LIST_HEAD(&cgrp->cset_links);
1956 INIT_LIST_HEAD(&cgrp->pidlists);
1957 mutex_init(&cgrp->pidlist_mutex);
1958 cgrp->self.cgroup = cgrp;
1959 cgrp->self.flags |= CSS_ONLINE;
1960
1961 for_each_subsys(ss, ssid)
1962 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1963
1964 init_waitqueue_head(&cgrp->offline_waitq);
1965 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1966 }
1967
1968 static void init_cgroup_root(struct cgroup_root *root,
1969 struct cgroup_sb_opts *opts)
1970 {
1971 struct cgroup *cgrp = &root->cgrp;
1972
1973 INIT_LIST_HEAD(&root->root_list);
1974 atomic_set(&root->nr_cgrps, 1);
1975 cgrp->root = root;
1976 init_cgroup_housekeeping(cgrp);
1977 idr_init(&root->cgroup_idr);
1978
1979 root->flags = opts->flags;
1980 if (opts->release_agent)
1981 strcpy(root->release_agent_path, opts->release_agent);
1982 if (opts->name)
1983 strcpy(root->name, opts->name);
1984 if (opts->cpuset_clone_children)
1985 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1986 }
1987
1988 static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1989 {
1990 LIST_HEAD(tmp_links);
1991 struct cgroup *root_cgrp = &root->cgrp;
1992 struct css_set *cset;
1993 int i, ret;
1994
1995 lockdep_assert_held(&cgroup_mutex);
1996
1997 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1998 if (ret < 0)
1999 goto out;
2000 root_cgrp->id = ret;
2001 root_cgrp->ancestor_ids[0] = ret;
2002
2003 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
2004 GFP_KERNEL);
2005 if (ret)
2006 goto out;
2007
2008 /*
2009 * We're accessing css_set_count without locking css_set_lock here,
2010 * but that's OK - it can only be increased by someone holding
2011 * cgroup_lock, and that's us. Later rebinding may disable
2012 * controllers on the default hierarchy and thus create new csets,
2013 * which can't be more than the existing ones. Allocate 2x.
2014 */
2015 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2016 if (ret)
2017 goto cancel_ref;
2018
2019 ret = cgroup_init_root_id(root);
2020 if (ret)
2021 goto cancel_ref;
2022
2023 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2024 KERNFS_ROOT_CREATE_DEACTIVATED,
2025 root_cgrp);
2026 if (IS_ERR(root->kf_root)) {
2027 ret = PTR_ERR(root->kf_root);
2028 goto exit_root_id;
2029 }
2030 root_cgrp->kn = root->kf_root->kn;
2031
2032 ret = css_populate_dir(&root_cgrp->self);
2033 if (ret)
2034 goto destroy_root;
2035
2036 ret = rebind_subsystems(root, ss_mask);
2037 if (ret)
2038 goto destroy_root;
2039
2040 /*
2041 * There must be no failure case after here, since rebinding takes
2042 * care of subsystems' refcounts, which are explicitly dropped in
2043 * the failure exit path.
2044 */
2045 list_add(&root->root_list, &cgroup_roots);
2046 cgroup_root_count++;
2047
2048 /*
2049 * Link the root cgroup in this hierarchy into all the css_set
2050 * objects.
2051 */
2052 spin_lock_irq(&css_set_lock);
2053 hash_for_each(css_set_table, i, cset, hlist) {
2054 link_css_set(&tmp_links, cset, root_cgrp);
2055 if (css_set_populated(cset))
2056 cgroup_update_populated(root_cgrp, true);
2057 }
2058 spin_unlock_irq(&css_set_lock);
2059
2060 BUG_ON(!list_empty(&root_cgrp->self.children));
2061 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2062
2063 kernfs_activate(root_cgrp->kn);
2064 ret = 0;
2065 goto out;
2066
2067 destroy_root:
2068 kernfs_destroy_root(root->kf_root);
2069 root->kf_root = NULL;
2070 exit_root_id:
2071 cgroup_exit_root_id(root);
2072 cancel_ref:
2073 percpu_ref_exit(&root_cgrp->self.refcnt);
2074 out:
2075 free_cgrp_cset_links(&tmp_links);
2076 return ret;
2077 }
2078
2079 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2080 int flags, const char *unused_dev_name,
2081 void *data)
2082 {
2083 bool is_v2 = fs_type == &cgroup2_fs_type;
2084 struct super_block *pinned_sb = NULL;
2085 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2086 struct cgroup_subsys *ss;
2087 struct cgroup_root *root;
2088 struct cgroup_sb_opts opts;
2089 struct dentry *dentry;
2090 int ret;
2091 int i;
2092 bool new_sb;
2093
2094 get_cgroup_ns(ns);
2095
2096 /* Check if the caller has permission to mount. */
2097 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2098 put_cgroup_ns(ns);
2099 return ERR_PTR(-EPERM);
2100 }
2101
2102 /*
2103 * The first time anyone tries to mount a cgroup, enable the list
2104 * linking each css_set to its tasks and fix up all existing tasks.
2105 */
2106 if (!use_task_css_set_links)
2107 cgroup_enable_task_cg_lists();
2108
2109 if (is_v2) {
2110 if (data) {
2111 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2112 put_cgroup_ns(ns);
2113 return ERR_PTR(-EINVAL);
2114 }
2115 cgrp_dfl_visible = true;
2116 root = &cgrp_dfl_root;
2117 cgroup_get(&root->cgrp);
2118 goto out_mount;
2119 }
2120
2121 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2122
2123 /* First find the desired set of subsystems */
2124 ret = parse_cgroupfs_options(data, &opts);
2125 if (ret)
2126 goto out_unlock;
2127
2128 /*
2129 * Destruction of cgroup root is asynchronous, so subsystems may
2130 * still be dying after the previous unmount. Let's drain the
2131 * dying subsystems. We just need to ensure that the ones
2132 * unmounted previously finish dying and don't care about new ones
2133 * starting. Testing ref liveliness is good enough.
2134 */
2135 for_each_subsys(ss, i) {
2136 if (!(opts.subsys_mask & (1 << i)) ||
2137 ss->root == &cgrp_dfl_root)
2138 continue;
2139
2140 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2141 mutex_unlock(&cgroup_mutex);
2142 msleep(10);
2143 ret = restart_syscall();
2144 goto out_free;
2145 }
2146 cgroup_put(&ss->root->cgrp);
2147 }
2148
2149 for_each_root(root) {
2150 bool name_match = false;
2151
2152 if (root == &cgrp_dfl_root)
2153 continue;
2154
2155 /*
2156 * If we asked for a name then it must match. Also, if
2157 * name matches but sybsys_mask doesn't, we should fail.
2158 * Remember whether name matched.
2159 */
2160 if (opts.name) {
2161 if (strcmp(opts.name, root->name))
2162 continue;
2163 name_match = true;
2164 }
2165
2166 /*
2167 * If we asked for subsystems (or explicitly for no
2168 * subsystems) then they must match.
2169 */
2170 if ((opts.subsys_mask || opts.none) &&
2171 (opts.subsys_mask != root->subsys_mask)) {
2172 if (!name_match)
2173 continue;
2174 ret = -EBUSY;
2175 goto out_unlock;
2176 }
2177
2178 if (root->flags ^ opts.flags)
2179 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2180
2181 /*
2182 * We want to reuse @root whose lifetime is governed by its
2183 * ->cgrp. Let's check whether @root is alive and keep it
2184 * that way. As cgroup_kill_sb() can happen anytime, we
2185 * want to block it by pinning the sb so that @root doesn't
2186 * get killed before mount is complete.
2187 *
2188 * With the sb pinned, tryget_live can reliably indicate
2189 * whether @root can be reused. If it's being killed,
2190 * drain it. We can use wait_queue for the wait but this
2191 * path is super cold. Let's just sleep a bit and retry.
2192 */
2193 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2194 if (IS_ERR(pinned_sb) ||
2195 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2196 mutex_unlock(&cgroup_mutex);
2197 if (!IS_ERR_OR_NULL(pinned_sb))
2198 deactivate_super(pinned_sb);
2199 msleep(10);
2200 ret = restart_syscall();
2201 goto out_free;
2202 }
2203
2204 ret = 0;
2205 goto out_unlock;
2206 }
2207
2208 /*
2209 * No such thing, create a new one. name= matching without subsys
2210 * specification is allowed for already existing hierarchies but we
2211 * can't create new one without subsys specification.
2212 */
2213 if (!opts.subsys_mask && !opts.none) {
2214 ret = -EINVAL;
2215 goto out_unlock;
2216 }
2217
2218 /*
2219 * We know this subsystem has not yet been bound. Users in a non-init
2220 * user namespace may only mount hierarchies with no bound subsystems,
2221 * i.e. 'none,name=user1'
2222 */
2223 if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2224 ret = -EPERM;
2225 goto out_unlock;
2226 }
2227
2228 root = kzalloc(sizeof(*root), GFP_KERNEL);
2229 if (!root) {
2230 ret = -ENOMEM;
2231 goto out_unlock;
2232 }
2233
2234 init_cgroup_root(root, &opts);
2235
2236 ret = cgroup_setup_root(root, opts.subsys_mask);
2237 if (ret)
2238 cgroup_free_root(root);
2239
2240 out_unlock:
2241 mutex_unlock(&cgroup_mutex);
2242 out_free:
2243 kfree(opts.release_agent);
2244 kfree(opts.name);
2245
2246 if (ret) {
2247 put_cgroup_ns(ns);
2248 return ERR_PTR(ret);
2249 }
2250 out_mount:
2251 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2252 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2253 &new_sb);
2254
2255 /*
2256 * In non-init cgroup namespace, instead of root cgroup's
2257 * dentry, we return the dentry corresponding to the
2258 * cgroupns->root_cgrp.
2259 */
2260 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2261 struct dentry *nsdentry;
2262 struct cgroup *cgrp;
2263
2264 mutex_lock(&cgroup_mutex);
2265 spin_lock_irq(&css_set_lock);
2266
2267 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2268
2269 spin_unlock_irq(&css_set_lock);
2270 mutex_unlock(&cgroup_mutex);
2271
2272 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2273 dput(dentry);
2274 dentry = nsdentry;
2275 }
2276
2277 if (IS_ERR(dentry) || !new_sb)
2278 cgroup_put(&root->cgrp);
2279
2280 /*
2281 * If @pinned_sb, we're reusing an existing root and holding an
2282 * extra ref on its sb. Mount is complete. Put the extra ref.
2283 */
2284 if (pinned_sb) {
2285 WARN_ON(new_sb);
2286 deactivate_super(pinned_sb);
2287 }
2288
2289 put_cgroup_ns(ns);
2290 return dentry;
2291 }
2292
2293 static void cgroup_kill_sb(struct super_block *sb)
2294 {
2295 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2296 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2297
2298 /*
2299 * If @root doesn't have any mounts or children, start killing it.
2300 * This prevents new mounts by disabling percpu_ref_tryget_live().
2301 * cgroup_mount() may wait for @root's release.
2302 *
2303 * And don't kill the default root.
2304 */
2305 if (!list_empty(&root->cgrp.self.children) ||
2306 root == &cgrp_dfl_root)
2307 cgroup_put(&root->cgrp);
2308 else
2309 percpu_ref_kill(&root->cgrp.self.refcnt);
2310
2311 kernfs_kill_sb(sb);
2312 }
2313
2314 static struct file_system_type cgroup_fs_type = {
2315 .name = "cgroup",
2316 .mount = cgroup_mount,
2317 .kill_sb = cgroup_kill_sb,
2318 .fs_flags = FS_USERNS_MOUNT,
2319 };
2320
2321 static struct file_system_type cgroup2_fs_type = {
2322 .name = "cgroup2",
2323 .mount = cgroup_mount,
2324 .kill_sb = cgroup_kill_sb,
2325 .fs_flags = FS_USERNS_MOUNT,
2326 };
2327
2328 static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2329 struct cgroup_namespace *ns)
2330 {
2331 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2332 int ret;
2333
2334 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2335 if (ret < 0 || ret >= buflen)
2336 return NULL;
2337 return buf;
2338 }
2339
2340 char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2341 struct cgroup_namespace *ns)
2342 {
2343 char *ret;
2344
2345 mutex_lock(&cgroup_mutex);
2346 spin_lock_irq(&css_set_lock);
2347
2348 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2349
2350 spin_unlock_irq(&css_set_lock);
2351 mutex_unlock(&cgroup_mutex);
2352
2353 return ret;
2354 }
2355 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2356
2357 /**
2358 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2359 * @task: target task
2360 * @buf: the buffer to write the path into
2361 * @buflen: the length of the buffer
2362 *
2363 * Determine @task's cgroup on the first (the one with the lowest non-zero
2364 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2365 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2366 * cgroup controller callbacks.
2367 *
2368 * Return value is the same as kernfs_path().
2369 */
2370 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2371 {
2372 struct cgroup_root *root;
2373 struct cgroup *cgrp;
2374 int hierarchy_id = 1;
2375 char *path = NULL;
2376
2377 mutex_lock(&cgroup_mutex);
2378 spin_lock_irq(&css_set_lock);
2379
2380 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2381
2382 if (root) {
2383 cgrp = task_cgroup_from_root(task, root);
2384 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2385 } else {
2386 /* if no hierarchy exists, everyone is in "/" */
2387 if (strlcpy(buf, "/", buflen) < buflen)
2388 path = buf;
2389 }
2390
2391 spin_unlock_irq(&css_set_lock);
2392 mutex_unlock(&cgroup_mutex);
2393 return path;
2394 }
2395 EXPORT_SYMBOL_GPL(task_cgroup_path);
2396
2397 /* used to track tasks and other necessary states during migration */
2398 struct cgroup_taskset {
2399 /* the src and dst cset list running through cset->mg_node */
2400 struct list_head src_csets;
2401 struct list_head dst_csets;
2402
2403 /* the subsys currently being processed */
2404 int ssid;
2405
2406 /*
2407 * Fields for cgroup_taskset_*() iteration.
2408 *
2409 * Before migration is committed, the target migration tasks are on
2410 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2411 * the csets on ->dst_csets. ->csets point to either ->src_csets
2412 * or ->dst_csets depending on whether migration is committed.
2413 *
2414 * ->cur_csets and ->cur_task point to the current task position
2415 * during iteration.
2416 */
2417 struct list_head *csets;
2418 struct css_set *cur_cset;
2419 struct task_struct *cur_task;
2420 };
2421
2422 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2423 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2424 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2425 .csets = &tset.src_csets, \
2426 }
2427
2428 /**
2429 * cgroup_taskset_add - try to add a migration target task to a taskset
2430 * @task: target task
2431 * @tset: target taskset
2432 *
2433 * Add @task, which is a migration target, to @tset. This function becomes
2434 * noop if @task doesn't need to be migrated. @task's css_set should have
2435 * been added as a migration source and @task->cg_list will be moved from
2436 * the css_set's tasks list to mg_tasks one.
2437 */
2438 static void cgroup_taskset_add(struct task_struct *task,
2439 struct cgroup_taskset *tset)
2440 {
2441 struct css_set *cset;
2442
2443 lockdep_assert_held(&css_set_lock);
2444
2445 /* @task either already exited or can't exit until the end */
2446 if (task->flags & PF_EXITING)
2447 return;
2448
2449 /* leave @task alone if post_fork() hasn't linked it yet */
2450 if (list_empty(&task->cg_list))
2451 return;
2452
2453 cset = task_css_set(task);
2454 if (!cset->mg_src_cgrp)
2455 return;
2456
2457 list_move_tail(&task->cg_list, &cset->mg_tasks);
2458 if (list_empty(&cset->mg_node))
2459 list_add_tail(&cset->mg_node, &tset->src_csets);
2460 if (list_empty(&cset->mg_dst_cset->mg_node))
2461 list_move_tail(&cset->mg_dst_cset->mg_node,
2462 &tset->dst_csets);
2463 }
2464
2465 /**
2466 * cgroup_taskset_first - reset taskset and return the first task
2467 * @tset: taskset of interest
2468 * @dst_cssp: output variable for the destination css
2469 *
2470 * @tset iteration is initialized and the first task is returned.
2471 */
2472 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2473 struct cgroup_subsys_state **dst_cssp)
2474 {
2475 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2476 tset->cur_task = NULL;
2477
2478 return cgroup_taskset_next(tset, dst_cssp);
2479 }
2480
2481 /**
2482 * cgroup_taskset_next - iterate to the next task in taskset
2483 * @tset: taskset of interest
2484 * @dst_cssp: output variable for the destination css
2485 *
2486 * Return the next task in @tset. Iteration must have been initialized
2487 * with cgroup_taskset_first().
2488 */
2489 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2490 struct cgroup_subsys_state **dst_cssp)
2491 {
2492 struct css_set *cset = tset->cur_cset;
2493 struct task_struct *task = tset->cur_task;
2494
2495 while (&cset->mg_node != tset->csets) {
2496 if (!task)
2497 task = list_first_entry(&cset->mg_tasks,
2498 struct task_struct, cg_list);
2499 else
2500 task = list_next_entry(task, cg_list);
2501
2502 if (&task->cg_list != &cset->mg_tasks) {
2503 tset->cur_cset = cset;
2504 tset->cur_task = task;
2505
2506 /*
2507 * This function may be called both before and
2508 * after cgroup_taskset_migrate(). The two cases
2509 * can be distinguished by looking at whether @cset
2510 * has its ->mg_dst_cset set.
2511 */
2512 if (cset->mg_dst_cset)
2513 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2514 else
2515 *dst_cssp = cset->subsys[tset->ssid];
2516
2517 return task;
2518 }
2519
2520 cset = list_next_entry(cset, mg_node);
2521 task = NULL;
2522 }
2523
2524 return NULL;
2525 }
2526
2527 /**
2528 * cgroup_taskset_migrate - migrate a taskset
2529 * @tset: taget taskset
2530 * @root: cgroup root the migration is taking place on
2531 *
2532 * Migrate tasks in @tset as setup by migration preparation functions.
2533 * This function fails iff one of the ->can_attach callbacks fails and
2534 * guarantees that either all or none of the tasks in @tset are migrated.
2535 * @tset is consumed regardless of success.
2536 */
2537 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2538 struct cgroup_root *root)
2539 {
2540 struct cgroup_subsys *ss;
2541 struct task_struct *task, *tmp_task;
2542 struct css_set *cset, *tmp_cset;
2543 int ssid, failed_ssid, ret;
2544
2545 /* methods shouldn't be called if no task is actually migrating */
2546 if (list_empty(&tset->src_csets))
2547 return 0;
2548
2549 /* check that we can legitimately attach to the cgroup */
2550 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2551 if (ss->can_attach) {
2552 tset->ssid = ssid;
2553 ret = ss->can_attach(tset);
2554 if (ret) {
2555 failed_ssid = ssid;
2556 goto out_cancel_attach;
2557 }
2558 }
2559 } while_each_subsys_mask();
2560
2561 /*
2562 * Now that we're guaranteed success, proceed to move all tasks to
2563 * the new cgroup. There are no failure cases after here, so this
2564 * is the commit point.
2565 */
2566 spin_lock_irq(&css_set_lock);
2567 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2568 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2569 struct css_set *from_cset = task_css_set(task);
2570 struct css_set *to_cset = cset->mg_dst_cset;
2571
2572 get_css_set(to_cset);
2573 css_set_move_task(task, from_cset, to_cset, true);
2574 put_css_set_locked(from_cset);
2575 }
2576 }
2577 spin_unlock_irq(&css_set_lock);
2578
2579 /*
2580 * Migration is committed, all target tasks are now on dst_csets.
2581 * Nothing is sensitive to fork() after this point. Notify
2582 * controllers that migration is complete.
2583 */
2584 tset->csets = &tset->dst_csets;
2585
2586 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2587 if (ss->attach) {
2588 tset->ssid = ssid;
2589 ss->attach(tset);
2590 }
2591 } while_each_subsys_mask();
2592
2593 ret = 0;
2594 goto out_release_tset;
2595
2596 out_cancel_attach:
2597 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2598 if (ssid == failed_ssid)
2599 break;
2600 if (ss->cancel_attach) {
2601 tset->ssid = ssid;
2602 ss->cancel_attach(tset);
2603 }
2604 } while_each_subsys_mask();
2605 out_release_tset:
2606 spin_lock_irq(&css_set_lock);
2607 list_splice_init(&tset->dst_csets, &tset->src_csets);
2608 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2609 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2610 list_del_init(&cset->mg_node);
2611 }
2612 spin_unlock_irq(&css_set_lock);
2613 return ret;
2614 }
2615
2616 /**
2617 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2618 * @dst_cgrp: destination cgroup to test
2619 *
2620 * On the default hierarchy, except for the root, subtree_control must be
2621 * zero for migration destination cgroups with tasks so that child cgroups
2622 * don't compete against tasks.
2623 */
2624 static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2625 {
2626 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2627 !dst_cgrp->subtree_control;
2628 }
2629
2630 /**
2631 * cgroup_migrate_finish - cleanup after attach
2632 * @preloaded_csets: list of preloaded css_sets
2633 *
2634 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2635 * those functions for details.
2636 */
2637 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2638 {
2639 struct css_set *cset, *tmp_cset;
2640
2641 lockdep_assert_held(&cgroup_mutex);
2642
2643 spin_lock_irq(&css_set_lock);
2644 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2645 cset->mg_src_cgrp = NULL;
2646 cset->mg_dst_cgrp = NULL;
2647 cset->mg_dst_cset = NULL;
2648 list_del_init(&cset->mg_preload_node);
2649 put_css_set_locked(cset);
2650 }
2651 spin_unlock_irq(&css_set_lock);
2652 }
2653
2654 /**
2655 * cgroup_migrate_add_src - add a migration source css_set
2656 * @src_cset: the source css_set to add
2657 * @dst_cgrp: the destination cgroup
2658 * @preloaded_csets: list of preloaded css_sets
2659 *
2660 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2661 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2662 * up by cgroup_migrate_finish().
2663 *
2664 * This function may be called without holding cgroup_threadgroup_rwsem
2665 * even if the target is a process. Threads may be created and destroyed
2666 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2667 * into play and the preloaded css_sets are guaranteed to cover all
2668 * migrations.
2669 */
2670 static void cgroup_migrate_add_src(struct css_set *src_cset,
2671 struct cgroup *dst_cgrp,
2672 struct list_head *preloaded_csets)
2673 {
2674 struct cgroup *src_cgrp;
2675
2676 lockdep_assert_held(&cgroup_mutex);
2677 lockdep_assert_held(&css_set_lock);
2678
2679 /*
2680 * If ->dead, @src_set is associated with one or more dead cgroups
2681 * and doesn't contain any migratable tasks. Ignore it early so
2682 * that the rest of migration path doesn't get confused by it.
2683 */
2684 if (src_cset->dead)
2685 return;
2686
2687 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2688
2689 if (!list_empty(&src_cset->mg_preload_node))
2690 return;
2691
2692 WARN_ON(src_cset->mg_src_cgrp);
2693 WARN_ON(src_cset->mg_dst_cgrp);
2694 WARN_ON(!list_empty(&src_cset->mg_tasks));
2695 WARN_ON(!list_empty(&src_cset->mg_node));
2696
2697 src_cset->mg_src_cgrp = src_cgrp;
2698 src_cset->mg_dst_cgrp = dst_cgrp;
2699 get_css_set(src_cset);
2700 list_add(&src_cset->mg_preload_node, preloaded_csets);
2701 }
2702
2703 /**
2704 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2705 * @preloaded_csets: list of preloaded source css_sets
2706 *
2707 * Tasks are about to be moved and all the source css_sets have been
2708 * preloaded to @preloaded_csets. This function looks up and pins all
2709 * destination css_sets, links each to its source, and append them to
2710 * @preloaded_csets.
2711 *
2712 * This function must be called after cgroup_migrate_add_src() has been
2713 * called on each migration source css_set. After migration is performed
2714 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2715 * @preloaded_csets.
2716 */
2717 static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2718 {
2719 LIST_HEAD(csets);
2720 struct css_set *src_cset, *tmp_cset;
2721
2722 lockdep_assert_held(&cgroup_mutex);
2723
2724 /* look up the dst cset for each src cset and link it to src */
2725 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2726 struct css_set *dst_cset;
2727
2728 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2729 if (!dst_cset)
2730 goto err;
2731
2732 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2733
2734 /*
2735 * If src cset equals dst, it's noop. Drop the src.
2736 * cgroup_migrate() will skip the cset too. Note that we
2737 * can't handle src == dst as some nodes are used by both.
2738 */
2739 if (src_cset == dst_cset) {
2740 src_cset->mg_src_cgrp = NULL;
2741 src_cset->mg_dst_cgrp = NULL;
2742 list_del_init(&src_cset->mg_preload_node);
2743 put_css_set(src_cset);
2744 put_css_set(dst_cset);
2745 continue;
2746 }
2747
2748 src_cset->mg_dst_cset = dst_cset;
2749
2750 if (list_empty(&dst_cset->mg_preload_node))
2751 list_add(&dst_cset->mg_preload_node, &csets);
2752 else
2753 put_css_set(dst_cset);
2754 }
2755
2756 list_splice_tail(&csets, preloaded_csets);
2757 return 0;
2758 err:
2759 cgroup_migrate_finish(&csets);
2760 return -ENOMEM;
2761 }
2762
2763 /**
2764 * cgroup_migrate - migrate a process or task to a cgroup
2765 * @leader: the leader of the process or the task to migrate
2766 * @threadgroup: whether @leader points to the whole process or a single task
2767 * @root: cgroup root migration is taking place on
2768 *
2769 * Migrate a process or task denoted by @leader. If migrating a process,
2770 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2771 * responsible for invoking cgroup_migrate_add_src() and
2772 * cgroup_migrate_prepare_dst() on the targets before invoking this
2773 * function and following up with cgroup_migrate_finish().
2774 *
2775 * As long as a controller's ->can_attach() doesn't fail, this function is
2776 * guaranteed to succeed. This means that, excluding ->can_attach()
2777 * failure, when migrating multiple targets, the success or failure can be
2778 * decided for all targets by invoking group_migrate_prepare_dst() before
2779 * actually starting migrating.
2780 */
2781 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2782 struct cgroup_root *root)
2783 {
2784 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2785 struct task_struct *task;
2786
2787 /*
2788 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2789 * already PF_EXITING could be freed from underneath us unless we
2790 * take an rcu_read_lock.
2791 */
2792 spin_lock_irq(&css_set_lock);
2793 rcu_read_lock();
2794 task = leader;
2795 do {
2796 cgroup_taskset_add(task, &tset);
2797 if (!threadgroup)
2798 break;
2799 } while_each_thread(leader, task);
2800 rcu_read_unlock();
2801 spin_unlock_irq(&css_set_lock);
2802
2803 return cgroup_taskset_migrate(&tset, root);
2804 }
2805
2806 /**
2807 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2808 * @dst_cgrp: the cgroup to attach to
2809 * @leader: the task or the leader of the threadgroup to be attached
2810 * @threadgroup: attach the whole threadgroup?
2811 *
2812 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2813 */
2814 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2815 struct task_struct *leader, bool threadgroup)
2816 {
2817 LIST_HEAD(preloaded_csets);
2818 struct task_struct *task;
2819 int ret;
2820
2821 if (!cgroup_may_migrate_to(dst_cgrp))
2822 return -EBUSY;
2823
2824 /* look up all src csets */
2825 spin_lock_irq(&css_set_lock);
2826 rcu_read_lock();
2827 task = leader;
2828 do {
2829 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2830 &preloaded_csets);
2831 if (!threadgroup)
2832 break;
2833 } while_each_thread(leader, task);
2834 rcu_read_unlock();
2835 spin_unlock_irq(&css_set_lock);
2836
2837 /* prepare dst csets and commit */
2838 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2839 if (!ret)
2840 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2841
2842 cgroup_migrate_finish(&preloaded_csets);
2843 return ret;
2844 }
2845
2846 static int cgroup_procs_write_permission(struct task_struct *task,
2847 struct cgroup *dst_cgrp,
2848 struct kernfs_open_file *of)
2849 {
2850 const struct cred *cred = current_cred();
2851 const struct cred *tcred = get_task_cred(task);
2852 int ret = 0;
2853
2854 /*
2855 * even if we're attaching all tasks in the thread group, we only
2856 * need to check permissions on one of them.
2857 */
2858 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2859 !uid_eq(cred->euid, tcred->uid) &&
2860 !uid_eq(cred->euid, tcred->suid))
2861 ret = -EACCES;
2862
2863 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2864 struct super_block *sb = of->file->f_path.dentry->d_sb;
2865 struct cgroup *cgrp;
2866 struct inode *inode;
2867
2868 spin_lock_irq(&css_set_lock);
2869 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2870 spin_unlock_irq(&css_set_lock);
2871
2872 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2873 cgrp = cgroup_parent(cgrp);
2874
2875 ret = -ENOMEM;
2876 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2877 if (inode) {
2878 ret = inode_permission(inode, MAY_WRITE);
2879 iput(inode);
2880 }
2881 }
2882
2883 put_cred(tcred);
2884 return ret;
2885 }
2886
2887 /*
2888 * Find the task_struct of the task to attach by vpid and pass it along to the
2889 * function to attach either it or all tasks in its threadgroup. Will lock
2890 * cgroup_mutex and threadgroup.
2891 */
2892 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2893 size_t nbytes, loff_t off, bool threadgroup)
2894 {
2895 struct task_struct *tsk;
2896 struct cgroup_subsys *ss;
2897 struct cgroup *cgrp;
2898 pid_t pid;
2899 int ssid, ret;
2900
2901 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2902 return -EINVAL;
2903
2904 cgrp = cgroup_kn_lock_live(of->kn, false);
2905 if (!cgrp)
2906 return -ENODEV;
2907
2908 percpu_down_write(&cgroup_threadgroup_rwsem);
2909 rcu_read_lock();
2910 if (pid) {
2911 tsk = find_task_by_vpid(pid);
2912 if (!tsk) {
2913 ret = -ESRCH;
2914 goto out_unlock_rcu;
2915 }
2916 } else {
2917 tsk = current;
2918 }
2919
2920 if (threadgroup)
2921 tsk = tsk->group_leader;
2922
2923 /*
2924 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2925 * trapped in a cpuset, or RT worker may be born in a cgroup
2926 * with no rt_runtime allocated. Just say no.
2927 */
2928 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2929 ret = -EINVAL;
2930 goto out_unlock_rcu;
2931 }
2932
2933 get_task_struct(tsk);
2934 rcu_read_unlock();
2935
2936 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2937 if (!ret)
2938 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2939
2940 put_task_struct(tsk);
2941 goto out_unlock_threadgroup;
2942
2943 out_unlock_rcu:
2944 rcu_read_unlock();
2945 out_unlock_threadgroup:
2946 percpu_up_write(&cgroup_threadgroup_rwsem);
2947 for_each_subsys(ss, ssid)
2948 if (ss->post_attach)
2949 ss->post_attach();
2950 cgroup_kn_unlock(of->kn);
2951 return ret ?: nbytes;
2952 }
2953
2954 /**
2955 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2956 * @from: attach to all cgroups of a given task
2957 * @tsk: the task to be attached
2958 */
2959 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2960 {
2961 struct cgroup_root *root;
2962 int retval = 0;
2963
2964 mutex_lock(&cgroup_mutex);
2965 for_each_root(root) {
2966 struct cgroup *from_cgrp;
2967
2968 if (root == &cgrp_dfl_root)
2969 continue;
2970
2971 spin_lock_irq(&css_set_lock);
2972 from_cgrp = task_cgroup_from_root(from, root);
2973 spin_unlock_irq(&css_set_lock);
2974
2975 retval = cgroup_attach_task(from_cgrp, tsk, false);
2976 if (retval)
2977 break;
2978 }
2979 mutex_unlock(&cgroup_mutex);
2980
2981 return retval;
2982 }
2983 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2984
2985 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2986 char *buf, size_t nbytes, loff_t off)
2987 {
2988 return __cgroup_procs_write(of, buf, nbytes, off, false);
2989 }
2990
2991 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2992 char *buf, size_t nbytes, loff_t off)
2993 {
2994 return __cgroup_procs_write(of, buf, nbytes, off, true);
2995 }
2996
2997 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2998 char *buf, size_t nbytes, loff_t off)
2999 {
3000 struct cgroup *cgrp;
3001
3002 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
3003
3004 cgrp = cgroup_kn_lock_live(of->kn, false);
3005 if (!cgrp)
3006 return -ENODEV;
3007 spin_lock(&release_agent_path_lock);
3008 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3009 sizeof(cgrp->root->release_agent_path));
3010 spin_unlock(&release_agent_path_lock);
3011 cgroup_kn_unlock(of->kn);
3012 return nbytes;
3013 }
3014
3015 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3016 {
3017 struct cgroup *cgrp = seq_css(seq)->cgroup;
3018
3019 spin_lock(&release_agent_path_lock);
3020 seq_puts(seq, cgrp->root->release_agent_path);
3021 spin_unlock(&release_agent_path_lock);
3022 seq_putc(seq, '\n');
3023 return 0;
3024 }
3025
3026 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3027 {
3028 seq_puts(seq, "0\n");
3029 return 0;
3030 }
3031
3032 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3033 {
3034 struct cgroup_subsys *ss;
3035 bool printed = false;
3036 int ssid;
3037
3038 do_each_subsys_mask(ss, ssid, ss_mask) {
3039 if (printed)
3040 seq_putc(seq, ' ');
3041 seq_printf(seq, "%s", ss->name);
3042 printed = true;
3043 } while_each_subsys_mask();
3044 if (printed)
3045 seq_putc(seq, '\n');
3046 }
3047
3048 /* show controllers which are enabled from the parent */
3049 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3050 {
3051 struct cgroup *cgrp = seq_css(seq)->cgroup;
3052
3053 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3054 return 0;
3055 }
3056
3057 /* show controllers which are enabled for a given cgroup's children */
3058 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3059 {
3060 struct cgroup *cgrp = seq_css(seq)->cgroup;
3061
3062 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3063 return 0;
3064 }
3065
3066 /**
3067 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3068 * @cgrp: root of the subtree to update csses for
3069 *
3070 * @cgrp's control masks have changed and its subtree's css associations
3071 * need to be updated accordingly. This function looks up all css_sets
3072 * which are attached to the subtree, creates the matching updated css_sets
3073 * and migrates the tasks to the new ones.
3074 */
3075 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3076 {
3077 LIST_HEAD(preloaded_csets);
3078 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3079 struct cgroup_subsys_state *d_css;
3080 struct cgroup *dsct;
3081 struct css_set *src_cset;
3082 int ret;
3083
3084 lockdep_assert_held(&cgroup_mutex);
3085
3086 percpu_down_write(&cgroup_threadgroup_rwsem);
3087
3088 /* look up all csses currently attached to @cgrp's subtree */
3089 spin_lock_irq(&css_set_lock);
3090 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3091 struct cgrp_cset_link *link;
3092
3093 list_for_each_entry(link, &dsct->cset_links, cset_link)
3094 cgroup_migrate_add_src(link->cset, dsct,
3095 &preloaded_csets);
3096 }
3097 spin_unlock_irq(&css_set_lock);
3098
3099 /* NULL dst indicates self on default hierarchy */
3100 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3101 if (ret)
3102 goto out_finish;
3103
3104 spin_lock_irq(&css_set_lock);
3105 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3106 struct task_struct *task, *ntask;
3107
3108 /* src_csets precede dst_csets, break on the first dst_cset */
3109 if (!src_cset->mg_src_cgrp)
3110 break;
3111
3112 /* all tasks in src_csets need to be migrated */
3113 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3114 cgroup_taskset_add(task, &tset);
3115 }
3116 spin_unlock_irq(&css_set_lock);
3117
3118 ret = cgroup_taskset_migrate(&tset, cgrp->root);
3119 out_finish:
3120 cgroup_migrate_finish(&preloaded_csets);
3121 percpu_up_write(&cgroup_threadgroup_rwsem);
3122 return ret;
3123 }
3124
3125 /**
3126 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3127 * @cgrp: root of the target subtree
3128 *
3129 * Because css offlining is asynchronous, userland may try to re-enable a
3130 * controller while the previous css is still around. This function grabs
3131 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3132 */
3133 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3134 __acquires(&cgroup_mutex)
3135 {
3136 struct cgroup *dsct;
3137 struct cgroup_subsys_state *d_css;
3138 struct cgroup_subsys *ss;
3139 int ssid;
3140
3141 restart:
3142 mutex_lock(&cgroup_mutex);
3143
3144 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3145 for_each_subsys(ss, ssid) {
3146 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3147 DEFINE_WAIT(wait);
3148
3149 if (!css || !percpu_ref_is_dying(&css->refcnt))
3150 continue;
3151
3152 cgroup_get(dsct);
3153 prepare_to_wait(&dsct->offline_waitq, &wait,
3154 TASK_UNINTERRUPTIBLE);
3155
3156 mutex_unlock(&cgroup_mutex);
3157 schedule();
3158 finish_wait(&dsct->offline_waitq, &wait);
3159
3160 cgroup_put(dsct);
3161 goto restart;
3162 }
3163 }
3164 }
3165
3166 /**
3167 * cgroup_save_control - save control masks of a subtree
3168 * @cgrp: root of the target subtree
3169 *
3170 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3171 * prefixed fields for @cgrp's subtree including @cgrp itself.
3172 */
3173 static void cgroup_save_control(struct cgroup *cgrp)
3174 {
3175 struct cgroup *dsct;
3176 struct cgroup_subsys_state *d_css;
3177
3178 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3179 dsct->old_subtree_control = dsct->subtree_control;
3180 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3181 }
3182 }
3183
3184 /**
3185 * cgroup_propagate_control - refresh control masks of a subtree
3186 * @cgrp: root of the target subtree
3187 *
3188 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3189 * ->subtree_control and propagate controller availability through the
3190 * subtree so that descendants don't have unavailable controllers enabled.
3191 */
3192 static void cgroup_propagate_control(struct cgroup *cgrp)
3193 {
3194 struct cgroup *dsct;
3195 struct cgroup_subsys_state *d_css;
3196
3197 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3198 dsct->subtree_control &= cgroup_control(dsct);
3199 dsct->subtree_ss_mask =
3200 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3201 cgroup_ss_mask(dsct));
3202 }
3203 }
3204
3205 /**
3206 * cgroup_restore_control - restore control masks of a subtree
3207 * @cgrp: root of the target subtree
3208 *
3209 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3210 * prefixed fields for @cgrp's subtree including @cgrp itself.
3211 */
3212 static void cgroup_restore_control(struct cgroup *cgrp)
3213 {
3214 struct cgroup *dsct;
3215 struct cgroup_subsys_state *d_css;
3216
3217 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3218 dsct->subtree_control = dsct->old_subtree_control;
3219 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3220 }
3221 }
3222
3223 static bool css_visible(struct cgroup_subsys_state *css)
3224 {
3225 struct cgroup_subsys *ss = css->ss;
3226 struct cgroup *cgrp = css->cgroup;
3227
3228 if (cgroup_control(cgrp) & (1 << ss->id))
3229 return true;
3230 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3231 return false;
3232 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3233 }
3234
3235 /**
3236 * cgroup_apply_control_enable - enable or show csses according to control
3237 * @cgrp: root of the target subtree
3238 *
3239 * Walk @cgrp's subtree and create new csses or make the existing ones
3240 * visible. A css is created invisible if it's being implicitly enabled
3241 * through dependency. An invisible css is made visible when the userland
3242 * explicitly enables it.
3243 *
3244 * Returns 0 on success, -errno on failure. On failure, csses which have
3245 * been processed already aren't cleaned up. The caller is responsible for
3246 * cleaning up with cgroup_apply_control_disble().
3247 */
3248 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3249 {
3250 struct cgroup *dsct;
3251 struct cgroup_subsys_state *d_css;
3252 struct cgroup_subsys *ss;
3253 int ssid, ret;
3254
3255 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3256 for_each_subsys(ss, ssid) {
3257 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3258
3259 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3260
3261 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3262 continue;
3263
3264 if (!css) {
3265 css = css_create(dsct, ss);
3266 if (IS_ERR(css))
3267 return PTR_ERR(css);
3268 }
3269
3270 if (css_visible(css)) {
3271 ret = css_populate_dir(css);
3272 if (ret)
3273 return ret;
3274 }
3275 }
3276 }
3277
3278 return 0;
3279 }
3280
3281 /**
3282 * cgroup_apply_control_disable - kill or hide csses according to control
3283 * @cgrp: root of the target subtree
3284 *
3285 * Walk @cgrp's subtree and kill and hide csses so that they match
3286 * cgroup_ss_mask() and cgroup_visible_mask().
3287 *
3288 * A css is hidden when the userland requests it to be disabled while other
3289 * subsystems are still depending on it. The css must not actively control
3290 * resources and be in the vanilla state if it's made visible again later.
3291 * Controllers which may be depended upon should provide ->css_reset() for
3292 * this purpose.
3293 */
3294 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3295 {
3296 struct cgroup *dsct;
3297 struct cgroup_subsys_state *d_css;
3298 struct cgroup_subsys *ss;
3299 int ssid;
3300
3301 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3302 for_each_subsys(ss, ssid) {
3303 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3304
3305 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3306
3307 if (!css)
3308 continue;
3309
3310 if (css->parent &&
3311 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3312 kill_css(css);
3313 } else if (!css_visible(css)) {
3314 css_clear_dir(css);
3315 if (ss->css_reset)
3316 ss->css_reset(css);
3317 }
3318 }
3319 }
3320 }
3321
3322 /**
3323 * cgroup_apply_control - apply control mask updates to the subtree
3324 * @cgrp: root of the target subtree
3325 *
3326 * subsystems can be enabled and disabled in a subtree using the following
3327 * steps.
3328 *
3329 * 1. Call cgroup_save_control() to stash the current state.
3330 * 2. Update ->subtree_control masks in the subtree as desired.
3331 * 3. Call cgroup_apply_control() to apply the changes.
3332 * 4. Optionally perform other related operations.
3333 * 5. Call cgroup_finalize_control() to finish up.
3334 *
3335 * This function implements step 3 and propagates the mask changes
3336 * throughout @cgrp's subtree, updates csses accordingly and perform
3337 * process migrations.
3338 */
3339 static int cgroup_apply_control(struct cgroup *cgrp)
3340 {
3341 int ret;
3342
3343 cgroup_propagate_control(cgrp);
3344
3345 ret = cgroup_apply_control_enable(cgrp);
3346 if (ret)
3347 return ret;
3348
3349 /*
3350 * At this point, cgroup_e_css() results reflect the new csses
3351 * making the following cgroup_update_dfl_csses() properly update
3352 * css associations of all tasks in the subtree.
3353 */
3354 ret = cgroup_update_dfl_csses(cgrp);
3355 if (ret)
3356 return ret;
3357
3358 return 0;
3359 }
3360
3361 /**
3362 * cgroup_finalize_control - finalize control mask update
3363 * @cgrp: root of the target subtree
3364 * @ret: the result of the update
3365 *
3366 * Finalize control mask update. See cgroup_apply_control() for more info.
3367 */
3368 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3369 {
3370 if (ret) {
3371 cgroup_restore_control(cgrp);
3372 cgroup_propagate_control(cgrp);
3373 }
3374
3375 cgroup_apply_control_disable(cgrp);
3376 }
3377
3378 /* change the enabled child controllers for a cgroup in the default hierarchy */
3379 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3380 char *buf, size_t nbytes,
3381 loff_t off)
3382 {
3383 u16 enable = 0, disable = 0;
3384 struct cgroup *cgrp, *child;
3385 struct cgroup_subsys *ss;
3386 char *tok;
3387 int ssid, ret;
3388
3389 /*
3390 * Parse input - space separated list of subsystem names prefixed
3391 * with either + or -.
3392 */
3393 buf = strstrip(buf);
3394 while ((tok = strsep(&buf, " "))) {
3395 if (tok[0] == '\0')
3396 continue;
3397 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3398 if (!cgroup_ssid_enabled(ssid) ||
3399 strcmp(tok + 1, ss->name))
3400 continue;
3401
3402 if (*tok == '+') {
3403 enable |= 1 << ssid;
3404 disable &= ~(1 << ssid);
3405 } else if (*tok == '-') {
3406 disable |= 1 << ssid;
3407 enable &= ~(1 << ssid);
3408 } else {
3409 return -EINVAL;
3410 }
3411 break;
3412 } while_each_subsys_mask();
3413 if (ssid == CGROUP_SUBSYS_COUNT)
3414 return -EINVAL;
3415 }
3416
3417 cgrp = cgroup_kn_lock_live(of->kn, true);
3418 if (!cgrp)
3419 return -ENODEV;
3420
3421 for_each_subsys(ss, ssid) {
3422 if (enable & (1 << ssid)) {
3423 if (cgrp->subtree_control & (1 << ssid)) {
3424 enable &= ~(1 << ssid);
3425 continue;
3426 }
3427
3428 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3429 ret = -ENOENT;
3430 goto out_unlock;
3431 }
3432 } else if (disable & (1 << ssid)) {
3433 if (!(cgrp->subtree_control & (1 << ssid))) {
3434 disable &= ~(1 << ssid);
3435 continue;
3436 }
3437
3438 /* a child has it enabled? */
3439 cgroup_for_each_live_child(child, cgrp) {
3440 if (child->subtree_control & (1 << ssid)) {
3441 ret = -EBUSY;
3442 goto out_unlock;
3443 }
3444 }
3445 }
3446 }
3447
3448 if (!enable && !disable) {
3449 ret = 0;
3450 goto out_unlock;
3451 }
3452
3453 /*
3454 * Except for the root, subtree_control must be zero for a cgroup
3455 * with tasks so that child cgroups don't compete against tasks.
3456 */
3457 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3458 ret = -EBUSY;
3459 goto out_unlock;
3460 }
3461
3462 /* save and update control masks and prepare csses */
3463 cgroup_save_control(cgrp);
3464
3465 cgrp->subtree_control |= enable;
3466 cgrp->subtree_control &= ~disable;
3467
3468 ret = cgroup_apply_control(cgrp);
3469
3470 cgroup_finalize_control(cgrp, ret);
3471
3472 kernfs_activate(cgrp->kn);
3473 ret = 0;
3474 out_unlock:
3475 cgroup_kn_unlock(of->kn);
3476 return ret ?: nbytes;
3477 }
3478
3479 static int cgroup_events_show(struct seq_file *seq, void *v)
3480 {
3481 seq_printf(seq, "populated %d\n",
3482 cgroup_is_populated(seq_css(seq)->cgroup));
3483 return 0;
3484 }
3485
3486 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3487 size_t nbytes, loff_t off)
3488 {
3489 struct cgroup *cgrp = of->kn->parent->priv;
3490 struct cftype *cft = of->kn->priv;
3491 struct cgroup_subsys_state *css;
3492 int ret;
3493
3494 if (cft->write)
3495 return cft->write(of, buf, nbytes, off);
3496
3497 /*
3498 * kernfs guarantees that a file isn't deleted with operations in
3499 * flight, which means that the matching css is and stays alive and
3500 * doesn't need to be pinned. The RCU locking is not necessary
3501 * either. It's just for the convenience of using cgroup_css().
3502 */
3503 rcu_read_lock();
3504 css = cgroup_css(cgrp, cft->ss);
3505 rcu_read_unlock();
3506
3507 if (cft->write_u64) {
3508 unsigned long long v;
3509 ret = kstrtoull(buf, 0, &v);
3510 if (!ret)
3511 ret = cft->write_u64(css, cft, v);
3512 } else if (cft->write_s64) {
3513 long long v;
3514 ret = kstrtoll(buf, 0, &v);
3515 if (!ret)
3516 ret = cft->write_s64(css, cft, v);
3517 } else {
3518 ret = -EINVAL;
3519 }
3520
3521 return ret ?: nbytes;
3522 }
3523
3524 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3525 {
3526 return seq_cft(seq)->seq_start(seq, ppos);
3527 }
3528
3529 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3530 {
3531 return seq_cft(seq)->seq_next(seq, v, ppos);
3532 }
3533
3534 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3535 {
3536 seq_cft(seq)->seq_stop(seq, v);
3537 }
3538
3539 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3540 {
3541 struct cftype *cft = seq_cft(m);
3542 struct cgroup_subsys_state *css = seq_css(m);
3543
3544 if (cft->seq_show)
3545 return cft->seq_show(m, arg);
3546
3547 if (cft->read_u64)
3548 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3549 else if (cft->read_s64)
3550 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3551 else
3552 return -EINVAL;
3553 return 0;
3554 }
3555
3556 static struct kernfs_ops cgroup_kf_single_ops = {
3557 .atomic_write_len = PAGE_SIZE,
3558 .write = cgroup_file_write,
3559 .seq_show = cgroup_seqfile_show,
3560 };
3561
3562 static struct kernfs_ops cgroup_kf_ops = {
3563 .atomic_write_len = PAGE_SIZE,
3564 .write = cgroup_file_write,
3565 .seq_start = cgroup_seqfile_start,
3566 .seq_next = cgroup_seqfile_next,
3567 .seq_stop = cgroup_seqfile_stop,
3568 .seq_show = cgroup_seqfile_show,
3569 };
3570
3571 /*
3572 * cgroup_rename - Only allow simple rename of directories in place.
3573 */
3574 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3575 const char *new_name_str)
3576 {
3577 struct cgroup *cgrp = kn->priv;
3578 int ret;
3579
3580 if (kernfs_type(kn) != KERNFS_DIR)
3581 return -ENOTDIR;
3582 if (kn->parent != new_parent)
3583 return -EIO;
3584
3585 /*
3586 * This isn't a proper migration and its usefulness is very
3587 * limited. Disallow on the default hierarchy.
3588 */
3589 if (cgroup_on_dfl(cgrp))
3590 return -EPERM;
3591
3592 /*
3593 * We're gonna grab cgroup_mutex which nests outside kernfs
3594 * active_ref. kernfs_rename() doesn't require active_ref
3595 * protection. Break them before grabbing cgroup_mutex.
3596 */
3597 kernfs_break_active_protection(new_parent);
3598 kernfs_break_active_protection(kn);
3599
3600 mutex_lock(&cgroup_mutex);
3601
3602 ret = kernfs_rename(kn, new_parent, new_name_str);
3603
3604 mutex_unlock(&cgroup_mutex);
3605
3606 kernfs_unbreak_active_protection(kn);
3607 kernfs_unbreak_active_protection(new_parent);
3608 return ret;
3609 }
3610
3611 /* set uid and gid of cgroup dirs and files to that of the creator */
3612 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3613 {
3614 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3615 .ia_uid = current_fsuid(),
3616 .ia_gid = current_fsgid(), };
3617
3618 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3619 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3620 return 0;
3621
3622 return kernfs_setattr(kn, &iattr);
3623 }
3624
3625 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3626 struct cftype *cft)
3627 {
3628 char name[CGROUP_FILE_NAME_MAX];
3629 struct kernfs_node *kn;
3630 struct lock_class_key *key = NULL;
3631 int ret;
3632
3633 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3634 key = &cft->lockdep_key;
3635 #endif
3636 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3637 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3638 NULL, key);
3639 if (IS_ERR(kn))
3640 return PTR_ERR(kn);
3641
3642 ret = cgroup_kn_set_ugid(kn);
3643 if (ret) {
3644 kernfs_remove(kn);
3645 return ret;
3646 }
3647
3648 if (cft->file_offset) {
3649 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3650
3651 spin_lock_irq(&cgroup_file_kn_lock);
3652 cfile->kn = kn;
3653 spin_unlock_irq(&cgroup_file_kn_lock);
3654 }
3655
3656 return 0;
3657 }
3658
3659 /**
3660 * cgroup_addrm_files - add or remove files to a cgroup directory
3661 * @css: the target css
3662 * @cgrp: the target cgroup (usually css->cgroup)
3663 * @cfts: array of cftypes to be added
3664 * @is_add: whether to add or remove
3665 *
3666 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3667 * For removals, this function never fails.
3668 */
3669 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3670 struct cgroup *cgrp, struct cftype cfts[],
3671 bool is_add)
3672 {
3673 struct cftype *cft, *cft_end = NULL;
3674 int ret = 0;
3675
3676 lockdep_assert_held(&cgroup_mutex);
3677
3678 restart:
3679 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3680 /* does cft->flags tell us to skip this file on @cgrp? */
3681 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3682 continue;
3683 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3684 continue;
3685 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3686 continue;
3687 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3688 continue;
3689
3690 if (is_add) {
3691 ret = cgroup_add_file(css, cgrp, cft);
3692 if (ret) {
3693 pr_warn("%s: failed to add %s, err=%d\n",
3694 __func__, cft->name, ret);
3695 cft_end = cft;
3696 is_add = false;
3697 goto restart;
3698 }
3699 } else {
3700 cgroup_rm_file(cgrp, cft);
3701 }
3702 }
3703 return ret;
3704 }
3705
3706 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3707 {
3708 LIST_HEAD(pending);
3709 struct cgroup_subsys *ss = cfts[0].ss;
3710 struct cgroup *root = &ss->root->cgrp;
3711 struct cgroup_subsys_state *css;
3712 int ret = 0;
3713
3714 lockdep_assert_held(&cgroup_mutex);
3715
3716 /* add/rm files for all cgroups created before */
3717 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3718 struct cgroup *cgrp = css->cgroup;
3719
3720 if (!(css->flags & CSS_VISIBLE))
3721 continue;
3722
3723 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3724 if (ret)
3725 break;
3726 }
3727
3728 if (is_add && !ret)
3729 kernfs_activate(root->kn);
3730 return ret;
3731 }
3732
3733 static void cgroup_exit_cftypes(struct cftype *cfts)
3734 {
3735 struct cftype *cft;
3736
3737 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3738 /* free copy for custom atomic_write_len, see init_cftypes() */
3739 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3740 kfree(cft->kf_ops);
3741 cft->kf_ops = NULL;
3742 cft->ss = NULL;
3743
3744 /* revert flags set by cgroup core while adding @cfts */
3745 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3746 }
3747 }
3748
3749 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3750 {
3751 struct cftype *cft;
3752
3753 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3754 struct kernfs_ops *kf_ops;
3755
3756 WARN_ON(cft->ss || cft->kf_ops);
3757
3758 if (cft->seq_start)
3759 kf_ops = &cgroup_kf_ops;
3760 else
3761 kf_ops = &cgroup_kf_single_ops;
3762
3763 /*
3764 * Ugh... if @cft wants a custom max_write_len, we need to
3765 * make a copy of kf_ops to set its atomic_write_len.
3766 */
3767 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3768 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3769 if (!kf_ops) {
3770 cgroup_exit_cftypes(cfts);
3771 return -ENOMEM;
3772 }
3773 kf_ops->atomic_write_len = cft->max_write_len;
3774 }
3775
3776 cft->kf_ops = kf_ops;
3777 cft->ss = ss;
3778 }
3779
3780 return 0;
3781 }
3782
3783 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3784 {
3785 lockdep_assert_held(&cgroup_mutex);
3786
3787 if (!cfts || !cfts[0].ss)
3788 return -ENOENT;
3789
3790 list_del(&cfts->node);
3791 cgroup_apply_cftypes(cfts, false);
3792 cgroup_exit_cftypes(cfts);
3793 return 0;
3794 }
3795
3796 /**
3797 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3798 * @cfts: zero-length name terminated array of cftypes
3799 *
3800 * Unregister @cfts. Files described by @cfts are removed from all
3801 * existing cgroups and all future cgroups won't have them either. This
3802 * function can be called anytime whether @cfts' subsys is attached or not.
3803 *
3804 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3805 * registered.
3806 */
3807 int cgroup_rm_cftypes(struct cftype *cfts)
3808 {
3809 int ret;
3810
3811 mutex_lock(&cgroup_mutex);
3812 ret = cgroup_rm_cftypes_locked(cfts);
3813 mutex_unlock(&cgroup_mutex);
3814 return ret;
3815 }
3816
3817 /**
3818 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3819 * @ss: target cgroup subsystem
3820 * @cfts: zero-length name terminated array of cftypes
3821 *
3822 * Register @cfts to @ss. Files described by @cfts are created for all
3823 * existing cgroups to which @ss is attached and all future cgroups will
3824 * have them too. This function can be called anytime whether @ss is
3825 * attached or not.
3826 *
3827 * Returns 0 on successful registration, -errno on failure. Note that this
3828 * function currently returns 0 as long as @cfts registration is successful
3829 * even if some file creation attempts on existing cgroups fail.
3830 */
3831 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3832 {
3833 int ret;
3834
3835 if (!cgroup_ssid_enabled(ss->id))
3836 return 0;
3837
3838 if (!cfts || cfts[0].name[0] == '\0')
3839 return 0;
3840
3841 ret = cgroup_init_cftypes(ss, cfts);
3842 if (ret)
3843 return ret;
3844
3845 mutex_lock(&cgroup_mutex);
3846
3847 list_add_tail(&cfts->node, &ss->cfts);
3848 ret = cgroup_apply_cftypes(cfts, true);
3849 if (ret)
3850 cgroup_rm_cftypes_locked(cfts);
3851
3852 mutex_unlock(&cgroup_mutex);
3853 return ret;
3854 }
3855
3856 /**
3857 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3858 * @ss: target cgroup subsystem
3859 * @cfts: zero-length name terminated array of cftypes
3860 *
3861 * Similar to cgroup_add_cftypes() but the added files are only used for
3862 * the default hierarchy.
3863 */
3864 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3865 {
3866 struct cftype *cft;
3867
3868 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3869 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3870 return cgroup_add_cftypes(ss, cfts);
3871 }
3872
3873 /**
3874 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3875 * @ss: target cgroup subsystem
3876 * @cfts: zero-length name terminated array of cftypes
3877 *
3878 * Similar to cgroup_add_cftypes() but the added files are only used for
3879 * the legacy hierarchies.
3880 */
3881 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3882 {
3883 struct cftype *cft;
3884
3885 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3886 cft->flags |= __CFTYPE_NOT_ON_DFL;
3887 return cgroup_add_cftypes(ss, cfts);
3888 }
3889
3890 /**
3891 * cgroup_file_notify - generate a file modified event for a cgroup_file
3892 * @cfile: target cgroup_file
3893 *
3894 * @cfile must have been obtained by setting cftype->file_offset.
3895 */
3896 void cgroup_file_notify(struct cgroup_file *cfile)
3897 {
3898 unsigned long flags;
3899
3900 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3901 if (cfile->kn)
3902 kernfs_notify(cfile->kn);
3903 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3904 }
3905
3906 /**
3907 * cgroup_task_count - count the number of tasks in a cgroup.
3908 * @cgrp: the cgroup in question
3909 *
3910 * Return the number of tasks in the cgroup.
3911 */
3912 static int cgroup_task_count(const struct cgroup *cgrp)
3913 {
3914 int count = 0;
3915 struct cgrp_cset_link *link;
3916
3917 spin_lock_irq(&css_set_lock);
3918 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3919 count += atomic_read(&link->cset->refcount);
3920 spin_unlock_irq(&css_set_lock);
3921 return count;
3922 }
3923
3924 /**
3925 * css_next_child - find the next child of a given css
3926 * @pos: the current position (%NULL to initiate traversal)
3927 * @parent: css whose children to walk
3928 *
3929 * This function returns the next child of @parent and should be called
3930 * under either cgroup_mutex or RCU read lock. The only requirement is
3931 * that @parent and @pos are accessible. The next sibling is guaranteed to
3932 * be returned regardless of their states.
3933 *
3934 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3935 * css which finished ->css_online() is guaranteed to be visible in the
3936 * future iterations and will stay visible until the last reference is put.
3937 * A css which hasn't finished ->css_online() or already finished
3938 * ->css_offline() may show up during traversal. It's each subsystem's
3939 * responsibility to synchronize against on/offlining.
3940 */
3941 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3942 struct cgroup_subsys_state *parent)
3943 {
3944 struct cgroup_subsys_state *next;
3945
3946 cgroup_assert_mutex_or_rcu_locked();
3947
3948 /*
3949 * @pos could already have been unlinked from the sibling list.
3950 * Once a cgroup is removed, its ->sibling.next is no longer
3951 * updated when its next sibling changes. CSS_RELEASED is set when
3952 * @pos is taken off list, at which time its next pointer is valid,
3953 * and, as releases are serialized, the one pointed to by the next
3954 * pointer is guaranteed to not have started release yet. This
3955 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3956 * critical section, the one pointed to by its next pointer is
3957 * guaranteed to not have finished its RCU grace period even if we
3958 * have dropped rcu_read_lock() inbetween iterations.
3959 *
3960 * If @pos has CSS_RELEASED set, its next pointer can't be
3961 * dereferenced; however, as each css is given a monotonically
3962 * increasing unique serial number and always appended to the
3963 * sibling list, the next one can be found by walking the parent's
3964 * children until the first css with higher serial number than
3965 * @pos's. While this path can be slower, it happens iff iteration
3966 * races against release and the race window is very small.
3967 */
3968 if (!pos) {
3969 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3970 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3971 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3972 } else {
3973 list_for_each_entry_rcu(next, &parent->children, sibling)
3974 if (next->serial_nr > pos->serial_nr)
3975 break;
3976 }
3977
3978 /*
3979 * @next, if not pointing to the head, can be dereferenced and is
3980 * the next sibling.
3981 */
3982 if (&next->sibling != &parent->children)
3983 return next;
3984 return NULL;
3985 }
3986
3987 /**
3988 * css_next_descendant_pre - find the next descendant for pre-order walk
3989 * @pos: the current position (%NULL to initiate traversal)
3990 * @root: css whose descendants to walk
3991 *
3992 * To be used by css_for_each_descendant_pre(). Find the next descendant
3993 * to visit for pre-order traversal of @root's descendants. @root is
3994 * included in the iteration and the first node to be visited.
3995 *
3996 * While this function requires cgroup_mutex or RCU read locking, it
3997 * doesn't require the whole traversal to be contained in a single critical
3998 * section. This function will return the correct next descendant as long
3999 * as both @pos and @root are accessible and @pos is a descendant of @root.
4000 *
4001 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4002 * css which finished ->css_online() is guaranteed to be visible in the
4003 * future iterations and will stay visible until the last reference is put.
4004 * A css which hasn't finished ->css_online() or already finished
4005 * ->css_offline() may show up during traversal. It's each subsystem's
4006 * responsibility to synchronize against on/offlining.
4007 */
4008 struct cgroup_subsys_state *
4009 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4010 struct cgroup_subsys_state *root)
4011 {
4012 struct cgroup_subsys_state *next;
4013
4014 cgroup_assert_mutex_or_rcu_locked();
4015
4016 /* if first iteration, visit @root */
4017 if (!pos)
4018 return root;
4019
4020 /* visit the first child if exists */
4021 next = css_next_child(NULL, pos);
4022 if (next)
4023 return next;
4024
4025 /* no child, visit my or the closest ancestor's next sibling */
4026 while (pos != root) {
4027 next = css_next_child(pos, pos->parent);
4028 if (next)
4029 return next;
4030 pos = pos->parent;
4031 }
4032
4033 return NULL;
4034 }
4035
4036 /**
4037 * css_rightmost_descendant - return the rightmost descendant of a css
4038 * @pos: css of interest
4039 *
4040 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4041 * is returned. This can be used during pre-order traversal to skip
4042 * subtree of @pos.
4043 *
4044 * While this function requires cgroup_mutex or RCU read locking, it
4045 * doesn't require the whole traversal to be contained in a single critical
4046 * section. This function will return the correct rightmost descendant as
4047 * long as @pos is accessible.
4048 */
4049 struct cgroup_subsys_state *
4050 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4051 {
4052 struct cgroup_subsys_state *last, *tmp;
4053
4054 cgroup_assert_mutex_or_rcu_locked();
4055
4056 do {
4057 last = pos;
4058 /* ->prev isn't RCU safe, walk ->next till the end */
4059 pos = NULL;
4060 css_for_each_child(tmp, last)
4061 pos = tmp;
4062 } while (pos);
4063
4064 return last;
4065 }
4066
4067 static struct cgroup_subsys_state *
4068 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4069 {
4070 struct cgroup_subsys_state *last;
4071
4072 do {
4073 last = pos;
4074 pos = css_next_child(NULL, pos);
4075 } while (pos);
4076
4077 return last;
4078 }
4079
4080 /**
4081 * css_next_descendant_post - find the next descendant for post-order walk
4082 * @pos: the current position (%NULL to initiate traversal)
4083 * @root: css whose descendants to walk
4084 *
4085 * To be used by css_for_each_descendant_post(). Find the next descendant
4086 * to visit for post-order traversal of @root's descendants. @root is
4087 * included in the iteration and the last node to be visited.
4088 *
4089 * While this function requires cgroup_mutex or RCU read locking, it
4090 * doesn't require the whole traversal to be contained in a single critical
4091 * section. This function will return the correct next descendant as long
4092 * as both @pos and @cgroup are accessible and @pos is a descendant of
4093 * @cgroup.
4094 *
4095 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4096 * css which finished ->css_online() is guaranteed to be visible in the
4097 * future iterations and will stay visible until the last reference is put.
4098 * A css which hasn't finished ->css_online() or already finished
4099 * ->css_offline() may show up during traversal. It's each subsystem's
4100 * responsibility to synchronize against on/offlining.
4101 */
4102 struct cgroup_subsys_state *
4103 css_next_descendant_post(struct cgroup_subsys_state *pos,
4104 struct cgroup_subsys_state *root)
4105 {
4106 struct cgroup_subsys_state *next;
4107
4108 cgroup_assert_mutex_or_rcu_locked();
4109
4110 /* if first iteration, visit leftmost descendant which may be @root */
4111 if (!pos)
4112 return css_leftmost_descendant(root);
4113
4114 /* if we visited @root, we're done */
4115 if (pos == root)
4116 return NULL;
4117
4118 /* if there's an unvisited sibling, visit its leftmost descendant */
4119 next = css_next_child(pos, pos->parent);
4120 if (next)
4121 return css_leftmost_descendant(next);
4122
4123 /* no sibling left, visit parent */
4124 return pos->parent;
4125 }
4126
4127 /**
4128 * css_has_online_children - does a css have online children
4129 * @css: the target css
4130 *
4131 * Returns %true if @css has any online children; otherwise, %false. This
4132 * function can be called from any context but the caller is responsible
4133 * for synchronizing against on/offlining as necessary.
4134 */
4135 bool css_has_online_children(struct cgroup_subsys_state *css)
4136 {
4137 struct cgroup_subsys_state *child;
4138 bool ret = false;
4139
4140 rcu_read_lock();
4141 css_for_each_child(child, css) {
4142 if (child->flags & CSS_ONLINE) {
4143 ret = true;
4144 break;
4145 }
4146 }
4147 rcu_read_unlock();
4148 return ret;
4149 }
4150
4151 /**
4152 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4153 * @it: the iterator to advance
4154 *
4155 * Advance @it to the next css_set to walk.
4156 */
4157 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4158 {
4159 struct list_head *l = it->cset_pos;
4160 struct cgrp_cset_link *link;
4161 struct css_set *cset;
4162
4163 lockdep_assert_held(&css_set_lock);
4164
4165 /* Advance to the next non-empty css_set */
4166 do {
4167 l = l->next;
4168 if (l == it->cset_head) {
4169 it->cset_pos = NULL;
4170 it->task_pos = NULL;
4171 return;
4172 }
4173
4174 if (it->ss) {
4175 cset = container_of(l, struct css_set,
4176 e_cset_node[it->ss->id]);
4177 } else {
4178 link = list_entry(l, struct cgrp_cset_link, cset_link);
4179 cset = link->cset;
4180 }
4181 } while (!css_set_populated(cset));
4182
4183 it->cset_pos = l;
4184
4185 if (!list_empty(&cset->tasks))
4186 it->task_pos = cset->tasks.next;
4187 else
4188 it->task_pos = cset->mg_tasks.next;
4189
4190 it->tasks_head = &cset->tasks;
4191 it->mg_tasks_head = &cset->mg_tasks;
4192
4193 /*
4194 * We don't keep css_sets locked across iteration steps and thus
4195 * need to take steps to ensure that iteration can be resumed after
4196 * the lock is re-acquired. Iteration is performed at two levels -
4197 * css_sets and tasks in them.
4198 *
4199 * Once created, a css_set never leaves its cgroup lists, so a
4200 * pinned css_set is guaranteed to stay put and we can resume
4201 * iteration afterwards.
4202 *
4203 * Tasks may leave @cset across iteration steps. This is resolved
4204 * by registering each iterator with the css_set currently being
4205 * walked and making css_set_move_task() advance iterators whose
4206 * next task is leaving.
4207 */
4208 if (it->cur_cset) {
4209 list_del(&it->iters_node);
4210 put_css_set_locked(it->cur_cset);
4211 }
4212 get_css_set(cset);
4213 it->cur_cset = cset;
4214 list_add(&it->iters_node, &cset->task_iters);
4215 }
4216
4217 static void css_task_iter_advance(struct css_task_iter *it)
4218 {
4219 struct list_head *l = it->task_pos;
4220
4221 lockdep_assert_held(&css_set_lock);
4222 WARN_ON_ONCE(!l);
4223
4224 /*
4225 * Advance iterator to find next entry. cset->tasks is consumed
4226 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4227 * next cset.
4228 */
4229 l = l->next;
4230
4231 if (l == it->tasks_head)
4232 l = it->mg_tasks_head->next;
4233
4234 if (l == it->mg_tasks_head)
4235 css_task_iter_advance_css_set(it);
4236 else
4237 it->task_pos = l;
4238 }
4239
4240 /**
4241 * css_task_iter_start - initiate task iteration
4242 * @css: the css to walk tasks of
4243 * @it: the task iterator to use
4244 *
4245 * Initiate iteration through the tasks of @css. The caller can call
4246 * css_task_iter_next() to walk through the tasks until the function
4247 * returns NULL. On completion of iteration, css_task_iter_end() must be
4248 * called.
4249 */
4250 void css_task_iter_start(struct cgroup_subsys_state *css,
4251 struct css_task_iter *it)
4252 {
4253 /* no one should try to iterate before mounting cgroups */
4254 WARN_ON_ONCE(!use_task_css_set_links);
4255
4256 memset(it, 0, sizeof(*it));
4257
4258 spin_lock_irq(&css_set_lock);
4259
4260 it->ss = css->ss;
4261
4262 if (it->ss)
4263 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4264 else
4265 it->cset_pos = &css->cgroup->cset_links;
4266
4267 it->cset_head = it->cset_pos;
4268
4269 css_task_iter_advance_css_set(it);
4270
4271 spin_unlock_irq(&css_set_lock);
4272 }
4273
4274 /**
4275 * css_task_iter_next - return the next task for the iterator
4276 * @it: the task iterator being iterated
4277 *
4278 * The "next" function for task iteration. @it should have been
4279 * initialized via css_task_iter_start(). Returns NULL when the iteration
4280 * reaches the end.
4281 */
4282 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4283 {
4284 if (it->cur_task) {
4285 put_task_struct(it->cur_task);
4286 it->cur_task = NULL;
4287 }
4288
4289 spin_lock_irq(&css_set_lock);
4290
4291 if (it->task_pos) {
4292 it->cur_task = list_entry(it->task_pos, struct task_struct,
4293 cg_list);
4294 get_task_struct(it->cur_task);
4295 css_task_iter_advance(it);
4296 }
4297
4298 spin_unlock_irq(&css_set_lock);
4299
4300 return it->cur_task;
4301 }
4302
4303 /**
4304 * css_task_iter_end - finish task iteration
4305 * @it: the task iterator to finish
4306 *
4307 * Finish task iteration started by css_task_iter_start().
4308 */
4309 void css_task_iter_end(struct css_task_iter *it)
4310 {
4311 if (it->cur_cset) {
4312 spin_lock_irq(&css_set_lock);
4313 list_del(&it->iters_node);
4314 put_css_set_locked(it->cur_cset);
4315 spin_unlock_irq(&css_set_lock);
4316 }
4317
4318 if (it->cur_task)
4319 put_task_struct(it->cur_task);
4320 }
4321
4322 /**
4323 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4324 * @to: cgroup to which the tasks will be moved
4325 * @from: cgroup in which the tasks currently reside
4326 *
4327 * Locking rules between cgroup_post_fork() and the migration path
4328 * guarantee that, if a task is forking while being migrated, the new child
4329 * is guaranteed to be either visible in the source cgroup after the
4330 * parent's migration is complete or put into the target cgroup. No task
4331 * can slip out of migration through forking.
4332 */
4333 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4334 {
4335 LIST_HEAD(preloaded_csets);
4336 struct cgrp_cset_link *link;
4337 struct css_task_iter it;
4338 struct task_struct *task;
4339 int ret;
4340
4341 if (!cgroup_may_migrate_to(to))
4342 return -EBUSY;
4343
4344 mutex_lock(&cgroup_mutex);
4345
4346 /* all tasks in @from are being moved, all csets are source */
4347 spin_lock_irq(&css_set_lock);
4348 list_for_each_entry(link, &from->cset_links, cset_link)
4349 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4350 spin_unlock_irq(&css_set_lock);
4351
4352 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4353 if (ret)
4354 goto out_err;
4355
4356 /*
4357 * Migrate tasks one-by-one until @from is empty. This fails iff
4358 * ->can_attach() fails.
4359 */
4360 do {
4361 css_task_iter_start(&from->self, &it);
4362 task = css_task_iter_next(&it);
4363 if (task)
4364 get_task_struct(task);
4365 css_task_iter_end(&it);
4366
4367 if (task) {
4368 ret = cgroup_migrate(task, false, to->root);
4369 put_task_struct(task);
4370 }
4371 } while (task && !ret);
4372 out_err:
4373 cgroup_migrate_finish(&preloaded_csets);
4374 mutex_unlock(&cgroup_mutex);
4375 return ret;
4376 }
4377
4378 /*
4379 * Stuff for reading the 'tasks'/'procs' files.
4380 *
4381 * Reading this file can return large amounts of data if a cgroup has
4382 * *lots* of attached tasks. So it may need several calls to read(),
4383 * but we cannot guarantee that the information we produce is correct
4384 * unless we produce it entirely atomically.
4385 *
4386 */
4387
4388 /* which pidlist file are we talking about? */
4389 enum cgroup_filetype {
4390 CGROUP_FILE_PROCS,
4391 CGROUP_FILE_TASKS,
4392 };
4393
4394 /*
4395 * A pidlist is a list of pids that virtually represents the contents of one
4396 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4397 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4398 * to the cgroup.
4399 */
4400 struct cgroup_pidlist {
4401 /*
4402 * used to find which pidlist is wanted. doesn't change as long as
4403 * this particular list stays in the list.
4404 */
4405 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4406 /* array of xids */
4407 pid_t *list;
4408 /* how many elements the above list has */
4409 int length;
4410 /* each of these stored in a list by its cgroup */
4411 struct list_head links;
4412 /* pointer to the cgroup we belong to, for list removal purposes */
4413 struct cgroup *owner;
4414 /* for delayed destruction */
4415 struct delayed_work destroy_dwork;
4416 };
4417
4418 /*
4419 * The following two functions "fix" the issue where there are more pids
4420 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4421 * TODO: replace with a kernel-wide solution to this problem
4422 */
4423 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4424 static void *pidlist_allocate(int count)
4425 {
4426 if (PIDLIST_TOO_LARGE(count))
4427 return vmalloc(count * sizeof(pid_t));
4428 else
4429 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4430 }
4431
4432 static void pidlist_free(void *p)
4433 {
4434 kvfree(p);
4435 }
4436
4437 /*
4438 * Used to destroy all pidlists lingering waiting for destroy timer. None
4439 * should be left afterwards.
4440 */
4441 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4442 {
4443 struct cgroup_pidlist *l, *tmp_l;
4444
4445 mutex_lock(&cgrp->pidlist_mutex);
4446 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4447 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4448 mutex_unlock(&cgrp->pidlist_mutex);
4449
4450 flush_workqueue(cgroup_pidlist_destroy_wq);
4451 BUG_ON(!list_empty(&cgrp->pidlists));
4452 }
4453
4454 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4455 {
4456 struct delayed_work *dwork = to_delayed_work(work);
4457 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4458 destroy_dwork);
4459 struct cgroup_pidlist *tofree = NULL;
4460
4461 mutex_lock(&l->owner->pidlist_mutex);
4462
4463 /*
4464 * Destroy iff we didn't get queued again. The state won't change
4465 * as destroy_dwork can only be queued while locked.
4466 */
4467 if (!delayed_work_pending(dwork)) {
4468 list_del(&l->links);
4469 pidlist_free(l->list);
4470 put_pid_ns(l->key.ns);
4471 tofree = l;
4472 }
4473
4474 mutex_unlock(&l->owner->pidlist_mutex);
4475 kfree(tofree);
4476 }
4477
4478 /*
4479 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4480 * Returns the number of unique elements.
4481 */
4482 static int pidlist_uniq(pid_t *list, int length)
4483 {
4484 int src, dest = 1;
4485
4486 /*
4487 * we presume the 0th element is unique, so i starts at 1. trivial
4488 * edge cases first; no work needs to be done for either
4489 */
4490 if (length == 0 || length == 1)
4491 return length;
4492 /* src and dest walk down the list; dest counts unique elements */
4493 for (src = 1; src < length; src++) {
4494 /* find next unique element */
4495 while (list[src] == list[src-1]) {
4496 src++;
4497 if (src == length)
4498 goto after;
4499 }
4500 /* dest always points to where the next unique element goes */
4501 list[dest] = list[src];
4502 dest++;
4503 }
4504 after:
4505 return dest;
4506 }
4507
4508 /*
4509 * The two pid files - task and cgroup.procs - guaranteed that the result
4510 * is sorted, which forced this whole pidlist fiasco. As pid order is
4511 * different per namespace, each namespace needs differently sorted list,
4512 * making it impossible to use, for example, single rbtree of member tasks
4513 * sorted by task pointer. As pidlists can be fairly large, allocating one
4514 * per open file is dangerous, so cgroup had to implement shared pool of
4515 * pidlists keyed by cgroup and namespace.
4516 *
4517 * All this extra complexity was caused by the original implementation
4518 * committing to an entirely unnecessary property. In the long term, we
4519 * want to do away with it. Explicitly scramble sort order if on the
4520 * default hierarchy so that no such expectation exists in the new
4521 * interface.
4522 *
4523 * Scrambling is done by swapping every two consecutive bits, which is
4524 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4525 */
4526 static pid_t pid_fry(pid_t pid)
4527 {
4528 unsigned a = pid & 0x55555555;
4529 unsigned b = pid & 0xAAAAAAAA;
4530
4531 return (a << 1) | (b >> 1);
4532 }
4533
4534 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4535 {
4536 if (cgroup_on_dfl(cgrp))
4537 return pid_fry(pid);
4538 else
4539 return pid;
4540 }
4541
4542 static int cmppid(const void *a, const void *b)
4543 {
4544 return *(pid_t *)a - *(pid_t *)b;
4545 }
4546
4547 static int fried_cmppid(const void *a, const void *b)
4548 {
4549 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4550 }
4551
4552 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4553 enum cgroup_filetype type)
4554 {
4555 struct cgroup_pidlist *l;
4556 /* don't need task_nsproxy() if we're looking at ourself */
4557 struct pid_namespace *ns = task_active_pid_ns(current);
4558
4559 lockdep_assert_held(&cgrp->pidlist_mutex);
4560
4561 list_for_each_entry(l, &cgrp->pidlists, links)
4562 if (l->key.type == type && l->key.ns == ns)
4563 return l;
4564 return NULL;
4565 }
4566
4567 /*
4568 * find the appropriate pidlist for our purpose (given procs vs tasks)
4569 * returns with the lock on that pidlist already held, and takes care
4570 * of the use count, or returns NULL with no locks held if we're out of
4571 * memory.
4572 */
4573 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4574 enum cgroup_filetype type)
4575 {
4576 struct cgroup_pidlist *l;
4577
4578 lockdep_assert_held(&cgrp->pidlist_mutex);
4579
4580 l = cgroup_pidlist_find(cgrp, type);
4581 if (l)
4582 return l;
4583
4584 /* entry not found; create a new one */
4585 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4586 if (!l)
4587 return l;
4588
4589 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4590 l->key.type = type;
4591 /* don't need task_nsproxy() if we're looking at ourself */
4592 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4593 l->owner = cgrp;
4594 list_add(&l->links, &cgrp->pidlists);
4595 return l;
4596 }
4597
4598 /*
4599 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4600 */
4601 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4602 struct cgroup_pidlist **lp)
4603 {
4604 pid_t *array;
4605 int length;
4606 int pid, n = 0; /* used for populating the array */
4607 struct css_task_iter it;
4608 struct task_struct *tsk;
4609 struct cgroup_pidlist *l;
4610
4611 lockdep_assert_held(&cgrp->pidlist_mutex);
4612
4613 /*
4614 * If cgroup gets more users after we read count, we won't have
4615 * enough space - tough. This race is indistinguishable to the
4616 * caller from the case that the additional cgroup users didn't
4617 * show up until sometime later on.
4618 */
4619 length = cgroup_task_count(cgrp);
4620 array = pidlist_allocate(length);
4621 if (!array)
4622 return -ENOMEM;
4623 /* now, populate the array */
4624 css_task_iter_start(&cgrp->self, &it);
4625 while ((tsk = css_task_iter_next(&it))) {
4626 if (unlikely(n == length))
4627 break;
4628 /* get tgid or pid for procs or tasks file respectively */
4629 if (type == CGROUP_FILE_PROCS)
4630 pid = task_tgid_vnr(tsk);
4631 else
4632 pid = task_pid_vnr(tsk);
4633 if (pid > 0) /* make sure to only use valid results */
4634 array[n++] = pid;
4635 }
4636 css_task_iter_end(&it);
4637 length = n;
4638 /* now sort & (if procs) strip out duplicates */
4639 if (cgroup_on_dfl(cgrp))
4640 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4641 else
4642 sort(array, length, sizeof(pid_t), cmppid, NULL);
4643 if (type == CGROUP_FILE_PROCS)
4644 length = pidlist_uniq(array, length);
4645
4646 l = cgroup_pidlist_find_create(cgrp, type);
4647 if (!l) {
4648 pidlist_free(array);
4649 return -ENOMEM;
4650 }
4651
4652 /* store array, freeing old if necessary */
4653 pidlist_free(l->list);
4654 l->list = array;
4655 l->length = length;
4656 *lp = l;
4657 return 0;
4658 }
4659
4660 /**
4661 * cgroupstats_build - build and fill cgroupstats
4662 * @stats: cgroupstats to fill information into
4663 * @dentry: A dentry entry belonging to the cgroup for which stats have
4664 * been requested.
4665 *
4666 * Build and fill cgroupstats so that taskstats can export it to user
4667 * space.
4668 */
4669 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4670 {
4671 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4672 struct cgroup *cgrp;
4673 struct css_task_iter it;
4674 struct task_struct *tsk;
4675
4676 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4677 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4678 kernfs_type(kn) != KERNFS_DIR)
4679 return -EINVAL;
4680
4681 mutex_lock(&cgroup_mutex);
4682
4683 /*
4684 * We aren't being called from kernfs and there's no guarantee on
4685 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4686 * @kn->priv is RCU safe. Let's do the RCU dancing.
4687 */
4688 rcu_read_lock();
4689 cgrp = rcu_dereference(kn->priv);
4690 if (!cgrp || cgroup_is_dead(cgrp)) {
4691 rcu_read_unlock();
4692 mutex_unlock(&cgroup_mutex);
4693 return -ENOENT;
4694 }
4695 rcu_read_unlock();
4696
4697 css_task_iter_start(&cgrp->self, &it);
4698 while ((tsk = css_task_iter_next(&it))) {
4699 switch (tsk->state) {
4700 case TASK_RUNNING:
4701 stats->nr_running++;
4702 break;
4703 case TASK_INTERRUPTIBLE:
4704 stats->nr_sleeping++;
4705 break;
4706 case TASK_UNINTERRUPTIBLE:
4707 stats->nr_uninterruptible++;
4708 break;
4709 case TASK_STOPPED:
4710 stats->nr_stopped++;
4711 break;
4712 default:
4713 if (delayacct_is_task_waiting_on_io(tsk))
4714 stats->nr_io_wait++;
4715 break;
4716 }
4717 }
4718 css_task_iter_end(&it);
4719
4720 mutex_unlock(&cgroup_mutex);
4721 return 0;
4722 }
4723
4724
4725 /*
4726 * seq_file methods for the tasks/procs files. The seq_file position is the
4727 * next pid to display; the seq_file iterator is a pointer to the pid
4728 * in the cgroup->l->list array.
4729 */
4730
4731 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4732 {
4733 /*
4734 * Initially we receive a position value that corresponds to
4735 * one more than the last pid shown (or 0 on the first call or
4736 * after a seek to the start). Use a binary-search to find the
4737 * next pid to display, if any
4738 */
4739 struct kernfs_open_file *of = s->private;
4740 struct cgroup *cgrp = seq_css(s)->cgroup;
4741 struct cgroup_pidlist *l;
4742 enum cgroup_filetype type = seq_cft(s)->private;
4743 int index = 0, pid = *pos;
4744 int *iter, ret;
4745
4746 mutex_lock(&cgrp->pidlist_mutex);
4747
4748 /*
4749 * !NULL @of->priv indicates that this isn't the first start()
4750 * after open. If the matching pidlist is around, we can use that.
4751 * Look for it. Note that @of->priv can't be used directly. It
4752 * could already have been destroyed.
4753 */
4754 if (of->priv)
4755 of->priv = cgroup_pidlist_find(cgrp, type);
4756
4757 /*
4758 * Either this is the first start() after open or the matching
4759 * pidlist has been destroyed inbetween. Create a new one.
4760 */
4761 if (!of->priv) {
4762 ret = pidlist_array_load(cgrp, type,
4763 (struct cgroup_pidlist **)&of->priv);
4764 if (ret)
4765 return ERR_PTR(ret);
4766 }
4767 l = of->priv;
4768
4769 if (pid) {
4770 int end = l->length;
4771
4772 while (index < end) {
4773 int mid = (index + end) / 2;
4774 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4775 index = mid;
4776 break;
4777 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4778 index = mid + 1;
4779 else
4780 end = mid;
4781 }
4782 }
4783 /* If we're off the end of the array, we're done */
4784 if (index >= l->length)
4785 return NULL;
4786 /* Update the abstract position to be the actual pid that we found */
4787 iter = l->list + index;
4788 *pos = cgroup_pid_fry(cgrp, *iter);
4789 return iter;
4790 }
4791
4792 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4793 {
4794 struct kernfs_open_file *of = s->private;
4795 struct cgroup_pidlist *l = of->priv;
4796
4797 if (l)
4798 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4799 CGROUP_PIDLIST_DESTROY_DELAY);
4800 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4801 }
4802
4803 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4804 {
4805 struct kernfs_open_file *of = s->private;
4806 struct cgroup_pidlist *l = of->priv;
4807 pid_t *p = v;
4808 pid_t *end = l->list + l->length;
4809 /*
4810 * Advance to the next pid in the array. If this goes off the
4811 * end, we're done
4812 */
4813 p++;
4814 if (p >= end) {
4815 return NULL;
4816 } else {
4817 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4818 return p;
4819 }
4820 }
4821
4822 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4823 {
4824 seq_printf(s, "%d\n", *(int *)v);
4825
4826 return 0;
4827 }
4828
4829 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4830 struct cftype *cft)
4831 {
4832 return notify_on_release(css->cgroup);
4833 }
4834
4835 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4836 struct cftype *cft, u64 val)
4837 {
4838 if (val)
4839 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4840 else
4841 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4842 return 0;
4843 }
4844
4845 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4846 struct cftype *cft)
4847 {
4848 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4849 }
4850
4851 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4852 struct cftype *cft, u64 val)
4853 {
4854 if (val)
4855 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4856 else
4857 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4858 return 0;
4859 }
4860
4861 /* cgroup core interface files for the default hierarchy */
4862 static struct cftype cgroup_dfl_base_files[] = {
4863 {
4864 .name = "cgroup.procs",
4865 .file_offset = offsetof(struct cgroup, procs_file),
4866 .seq_start = cgroup_pidlist_start,
4867 .seq_next = cgroup_pidlist_next,
4868 .seq_stop = cgroup_pidlist_stop,
4869 .seq_show = cgroup_pidlist_show,
4870 .private = CGROUP_FILE_PROCS,
4871 .write = cgroup_procs_write,
4872 },
4873 {
4874 .name = "cgroup.controllers",
4875 .seq_show = cgroup_controllers_show,
4876 },
4877 {
4878 .name = "cgroup.subtree_control",
4879 .seq_show = cgroup_subtree_control_show,
4880 .write = cgroup_subtree_control_write,
4881 },
4882 {
4883 .name = "cgroup.events",
4884 .flags = CFTYPE_NOT_ON_ROOT,
4885 .file_offset = offsetof(struct cgroup, events_file),
4886 .seq_show = cgroup_events_show,
4887 },
4888 { } /* terminate */
4889 };
4890
4891 /* cgroup core interface files for the legacy hierarchies */
4892 static struct cftype cgroup_legacy_base_files[] = {
4893 {
4894 .name = "cgroup.procs",
4895 .seq_start = cgroup_pidlist_start,
4896 .seq_next = cgroup_pidlist_next,
4897 .seq_stop = cgroup_pidlist_stop,
4898 .seq_show = cgroup_pidlist_show,
4899 .private = CGROUP_FILE_PROCS,
4900 .write = cgroup_procs_write,
4901 },
4902 {
4903 .name = "cgroup.clone_children",
4904 .read_u64 = cgroup_clone_children_read,
4905 .write_u64 = cgroup_clone_children_write,
4906 },
4907 {
4908 .name = "cgroup.sane_behavior",
4909 .flags = CFTYPE_ONLY_ON_ROOT,
4910 .seq_show = cgroup_sane_behavior_show,
4911 },
4912 {
4913 .name = "tasks",
4914 .seq_start = cgroup_pidlist_start,
4915 .seq_next = cgroup_pidlist_next,
4916 .seq_stop = cgroup_pidlist_stop,
4917 .seq_show = cgroup_pidlist_show,
4918 .private = CGROUP_FILE_TASKS,
4919 .write = cgroup_tasks_write,
4920 },
4921 {
4922 .name = "notify_on_release",
4923 .read_u64 = cgroup_read_notify_on_release,
4924 .write_u64 = cgroup_write_notify_on_release,
4925 },
4926 {
4927 .name = "release_agent",
4928 .flags = CFTYPE_ONLY_ON_ROOT,
4929 .seq_show = cgroup_release_agent_show,
4930 .write = cgroup_release_agent_write,
4931 .max_write_len = PATH_MAX - 1,
4932 },
4933 { } /* terminate */
4934 };
4935
4936 /*
4937 * css destruction is four-stage process.
4938 *
4939 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4940 * Implemented in kill_css().
4941 *
4942 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4943 * and thus css_tryget_online() is guaranteed to fail, the css can be
4944 * offlined by invoking offline_css(). After offlining, the base ref is
4945 * put. Implemented in css_killed_work_fn().
4946 *
4947 * 3. When the percpu_ref reaches zero, the only possible remaining
4948 * accessors are inside RCU read sections. css_release() schedules the
4949 * RCU callback.
4950 *
4951 * 4. After the grace period, the css can be freed. Implemented in
4952 * css_free_work_fn().
4953 *
4954 * It is actually hairier because both step 2 and 4 require process context
4955 * and thus involve punting to css->destroy_work adding two additional
4956 * steps to the already complex sequence.
4957 */
4958 static void css_free_work_fn(struct work_struct *work)
4959 {
4960 struct cgroup_subsys_state *css =
4961 container_of(work, struct cgroup_subsys_state, destroy_work);
4962 struct cgroup_subsys *ss = css->ss;
4963 struct cgroup *cgrp = css->cgroup;
4964
4965 percpu_ref_exit(&css->refcnt);
4966
4967 if (ss) {
4968 /* css free path */
4969 struct cgroup_subsys_state *parent = css->parent;
4970 int id = css->id;
4971
4972 ss->css_free(css);
4973 cgroup_idr_remove(&ss->css_idr, id);
4974 cgroup_put(cgrp);
4975
4976 if (parent)
4977 css_put(parent);
4978 } else {
4979 /* cgroup free path */
4980 atomic_dec(&cgrp->root->nr_cgrps);
4981 cgroup_pidlist_destroy_all(cgrp);
4982 cancel_work_sync(&cgrp->release_agent_work);
4983
4984 if (cgroup_parent(cgrp)) {
4985 /*
4986 * We get a ref to the parent, and put the ref when
4987 * this cgroup is being freed, so it's guaranteed
4988 * that the parent won't be destroyed before its
4989 * children.
4990 */
4991 cgroup_put(cgroup_parent(cgrp));
4992 kernfs_put(cgrp->kn);
4993 kfree(cgrp);
4994 } else {
4995 /*
4996 * This is root cgroup's refcnt reaching zero,
4997 * which indicates that the root should be
4998 * released.
4999 */
5000 cgroup_destroy_root(cgrp->root);
5001 }
5002 }
5003 }
5004
5005 static void css_free_rcu_fn(struct rcu_head *rcu_head)
5006 {
5007 struct cgroup_subsys_state *css =
5008 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5009
5010 INIT_WORK(&css->destroy_work, css_free_work_fn);
5011 queue_work(cgroup_destroy_wq, &css->destroy_work);
5012 }
5013
5014 static void css_release_work_fn(struct work_struct *work)
5015 {
5016 struct cgroup_subsys_state *css =
5017 container_of(work, struct cgroup_subsys_state, destroy_work);
5018 struct cgroup_subsys *ss = css->ss;
5019 struct cgroup *cgrp = css->cgroup;
5020
5021 mutex_lock(&cgroup_mutex);
5022
5023 css->flags |= CSS_RELEASED;
5024 list_del_rcu(&css->sibling);
5025
5026 if (ss) {
5027 /* css release path */
5028 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5029 if (ss->css_released)
5030 ss->css_released(css);
5031 } else {
5032 /* cgroup release path */
5033 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5034 cgrp->id = -1;
5035
5036 /*
5037 * There are two control paths which try to determine
5038 * cgroup from dentry without going through kernfs -
5039 * cgroupstats_build() and css_tryget_online_from_dir().
5040 * Those are supported by RCU protecting clearing of
5041 * cgrp->kn->priv backpointer.
5042 */
5043 if (cgrp->kn)
5044 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5045 NULL);
5046 }
5047
5048 mutex_unlock(&cgroup_mutex);
5049
5050 call_rcu(&css->rcu_head, css_free_rcu_fn);
5051 }
5052
5053 static void css_release(struct percpu_ref *ref)
5054 {
5055 struct cgroup_subsys_state *css =
5056 container_of(ref, struct cgroup_subsys_state, refcnt);
5057
5058 INIT_WORK(&css->destroy_work, css_release_work_fn);
5059 queue_work(cgroup_destroy_wq, &css->destroy_work);
5060 }
5061
5062 static void init_and_link_css(struct cgroup_subsys_state *css,
5063 struct cgroup_subsys *ss, struct cgroup *cgrp)
5064 {
5065 lockdep_assert_held(&cgroup_mutex);
5066
5067 cgroup_get(cgrp);
5068
5069 memset(css, 0, sizeof(*css));
5070 css->cgroup = cgrp;
5071 css->ss = ss;
5072 css->id = -1;
5073 INIT_LIST_HEAD(&css->sibling);
5074 INIT_LIST_HEAD(&css->children);
5075 css->serial_nr = css_serial_nr_next++;
5076 atomic_set(&css->online_cnt, 0);
5077
5078 if (cgroup_parent(cgrp)) {
5079 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5080 css_get(css->parent);
5081 }
5082
5083 BUG_ON(cgroup_css(cgrp, ss));
5084 }
5085
5086 /* invoke ->css_online() on a new CSS and mark it online if successful */
5087 static int online_css(struct cgroup_subsys_state *css)
5088 {
5089 struct cgroup_subsys *ss = css->ss;
5090 int ret = 0;
5091
5092 lockdep_assert_held(&cgroup_mutex);
5093
5094 if (ss->css_online)
5095 ret = ss->css_online(css);
5096 if (!ret) {
5097 css->flags |= CSS_ONLINE;
5098 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5099
5100 atomic_inc(&css->online_cnt);
5101 if (css->parent)
5102 atomic_inc(&css->parent->online_cnt);
5103 }
5104 return ret;
5105 }
5106
5107 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5108 static void offline_css(struct cgroup_subsys_state *css)
5109 {
5110 struct cgroup_subsys *ss = css->ss;
5111
5112 lockdep_assert_held(&cgroup_mutex);
5113
5114 if (!(css->flags & CSS_ONLINE))
5115 return;
5116
5117 if (ss->css_reset)
5118 ss->css_reset(css);
5119
5120 if (ss->css_offline)
5121 ss->css_offline(css);
5122
5123 css->flags &= ~CSS_ONLINE;
5124 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5125
5126 wake_up_all(&css->cgroup->offline_waitq);
5127 }
5128
5129 /**
5130 * css_create - create a cgroup_subsys_state
5131 * @cgrp: the cgroup new css will be associated with
5132 * @ss: the subsys of new css
5133 *
5134 * Create a new css associated with @cgrp - @ss pair. On success, the new
5135 * css is online and installed in @cgrp. This function doesn't create the
5136 * interface files. Returns 0 on success, -errno on failure.
5137 */
5138 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5139 struct cgroup_subsys *ss)
5140 {
5141 struct cgroup *parent = cgroup_parent(cgrp);
5142 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5143 struct cgroup_subsys_state *css;
5144 int err;
5145
5146 lockdep_assert_held(&cgroup_mutex);
5147
5148 css = ss->css_alloc(parent_css);
5149 if (IS_ERR(css))
5150 return css;
5151
5152 init_and_link_css(css, ss, cgrp);
5153
5154 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5155 if (err)
5156 goto err_free_css;
5157
5158 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5159 if (err < 0)
5160 goto err_free_css;
5161 css->id = err;
5162
5163 /* @css is ready to be brought online now, make it visible */
5164 list_add_tail_rcu(&css->sibling, &parent_css->children);
5165 cgroup_idr_replace(&ss->css_idr, css, css->id);
5166
5167 err = online_css(css);
5168 if (err)
5169 goto err_list_del;
5170
5171 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5172 cgroup_parent(parent)) {
5173 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5174 current->comm, current->pid, ss->name);
5175 if (!strcmp(ss->name, "memory"))
5176 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5177 ss->warned_broken_hierarchy = true;
5178 }
5179
5180 return css;
5181
5182 err_list_del:
5183 list_del_rcu(&css->sibling);
5184 err_free_css:
5185 call_rcu(&css->rcu_head, css_free_rcu_fn);
5186 return ERR_PTR(err);
5187 }
5188
5189 static struct cgroup *cgroup_create(struct cgroup *parent)
5190 {
5191 struct cgroup_root *root = parent->root;
5192 struct cgroup *cgrp, *tcgrp;
5193 int level = parent->level + 1;
5194 int ret;
5195
5196 /* allocate the cgroup and its ID, 0 is reserved for the root */
5197 cgrp = kzalloc(sizeof(*cgrp) +
5198 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5199 if (!cgrp)
5200 return ERR_PTR(-ENOMEM);
5201
5202 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5203 if (ret)
5204 goto out_free_cgrp;
5205
5206 /*
5207 * Temporarily set the pointer to NULL, so idr_find() won't return
5208 * a half-baked cgroup.
5209 */
5210 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5211 if (cgrp->id < 0) {
5212 ret = -ENOMEM;
5213 goto out_cancel_ref;
5214 }
5215
5216 init_cgroup_housekeeping(cgrp);
5217
5218 cgrp->self.parent = &parent->self;
5219 cgrp->root = root;
5220 cgrp->level = level;
5221
5222 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5223 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5224
5225 if (notify_on_release(parent))
5226 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5227
5228 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5229 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5230
5231 cgrp->self.serial_nr = css_serial_nr_next++;
5232
5233 /* allocation complete, commit to creation */
5234 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5235 atomic_inc(&root->nr_cgrps);
5236 cgroup_get(parent);
5237
5238 /*
5239 * @cgrp is now fully operational. If something fails after this
5240 * point, it'll be released via the normal destruction path.
5241 */
5242 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5243
5244 /*
5245 * On the default hierarchy, a child doesn't automatically inherit
5246 * subtree_control from the parent. Each is configured manually.
5247 */
5248 if (!cgroup_on_dfl(cgrp))
5249 cgrp->subtree_control = cgroup_control(cgrp);
5250
5251 cgroup_propagate_control(cgrp);
5252
5253 /* @cgrp doesn't have dir yet so the following will only create csses */
5254 ret = cgroup_apply_control_enable(cgrp);
5255 if (ret)
5256 goto out_destroy;
5257
5258 return cgrp;
5259
5260 out_cancel_ref:
5261 percpu_ref_exit(&cgrp->self.refcnt);
5262 out_free_cgrp:
5263 kfree(cgrp);
5264 return ERR_PTR(ret);
5265 out_destroy:
5266 cgroup_destroy_locked(cgrp);
5267 return ERR_PTR(ret);
5268 }
5269
5270 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5271 umode_t mode)
5272 {
5273 struct cgroup *parent, *cgrp;
5274 struct kernfs_node *kn;
5275 int ret;
5276
5277 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5278 if (strchr(name, '\n'))
5279 return -EINVAL;
5280
5281 parent = cgroup_kn_lock_live(parent_kn, false);
5282 if (!parent)
5283 return -ENODEV;
5284
5285 cgrp = cgroup_create(parent);
5286 if (IS_ERR(cgrp)) {
5287 ret = PTR_ERR(cgrp);
5288 goto out_unlock;
5289 }
5290
5291 /* create the directory */
5292 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5293 if (IS_ERR(kn)) {
5294 ret = PTR_ERR(kn);
5295 goto out_destroy;
5296 }
5297 cgrp->kn = kn;
5298
5299 /*
5300 * This extra ref will be put in cgroup_free_fn() and guarantees
5301 * that @cgrp->kn is always accessible.
5302 */
5303 kernfs_get(kn);
5304
5305 ret = cgroup_kn_set_ugid(kn);
5306 if (ret)
5307 goto out_destroy;
5308
5309 ret = css_populate_dir(&cgrp->self);
5310 if (ret)
5311 goto out_destroy;
5312
5313 ret = cgroup_apply_control_enable(cgrp);
5314 if (ret)
5315 goto out_destroy;
5316
5317 /* let's create and online css's */
5318 kernfs_activate(kn);
5319
5320 ret = 0;
5321 goto out_unlock;
5322
5323 out_destroy:
5324 cgroup_destroy_locked(cgrp);
5325 out_unlock:
5326 cgroup_kn_unlock(parent_kn);
5327 return ret;
5328 }
5329
5330 /*
5331 * This is called when the refcnt of a css is confirmed to be killed.
5332 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5333 * initate destruction and put the css ref from kill_css().
5334 */
5335 static void css_killed_work_fn(struct work_struct *work)
5336 {
5337 struct cgroup_subsys_state *css =
5338 container_of(work, struct cgroup_subsys_state, destroy_work);
5339
5340 mutex_lock(&cgroup_mutex);
5341
5342 do {
5343 offline_css(css);
5344 css_put(css);
5345 /* @css can't go away while we're holding cgroup_mutex */
5346 css = css->parent;
5347 } while (css && atomic_dec_and_test(&css->online_cnt));
5348
5349 mutex_unlock(&cgroup_mutex);
5350 }
5351
5352 /* css kill confirmation processing requires process context, bounce */
5353 static void css_killed_ref_fn(struct percpu_ref *ref)
5354 {
5355 struct cgroup_subsys_state *css =
5356 container_of(ref, struct cgroup_subsys_state, refcnt);
5357
5358 if (atomic_dec_and_test(&css->online_cnt)) {
5359 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5360 queue_work(cgroup_destroy_wq, &css->destroy_work);
5361 }
5362 }
5363
5364 /**
5365 * kill_css - destroy a css
5366 * @css: css to destroy
5367 *
5368 * This function initiates destruction of @css by removing cgroup interface
5369 * files and putting its base reference. ->css_offline() will be invoked
5370 * asynchronously once css_tryget_online() is guaranteed to fail and when
5371 * the reference count reaches zero, @css will be released.
5372 */
5373 static void kill_css(struct cgroup_subsys_state *css)
5374 {
5375 lockdep_assert_held(&cgroup_mutex);
5376
5377 /*
5378 * This must happen before css is disassociated with its cgroup.
5379 * See seq_css() for details.
5380 */
5381 css_clear_dir(css);
5382
5383 /*
5384 * Killing would put the base ref, but we need to keep it alive
5385 * until after ->css_offline().
5386 */
5387 css_get(css);
5388
5389 /*
5390 * cgroup core guarantees that, by the time ->css_offline() is
5391 * invoked, no new css reference will be given out via
5392 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5393 * proceed to offlining css's because percpu_ref_kill() doesn't
5394 * guarantee that the ref is seen as killed on all CPUs on return.
5395 *
5396 * Use percpu_ref_kill_and_confirm() to get notifications as each
5397 * css is confirmed to be seen as killed on all CPUs.
5398 */
5399 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5400 }
5401
5402 /**
5403 * cgroup_destroy_locked - the first stage of cgroup destruction
5404 * @cgrp: cgroup to be destroyed
5405 *
5406 * css's make use of percpu refcnts whose killing latency shouldn't be
5407 * exposed to userland and are RCU protected. Also, cgroup core needs to
5408 * guarantee that css_tryget_online() won't succeed by the time
5409 * ->css_offline() is invoked. To satisfy all the requirements,
5410 * destruction is implemented in the following two steps.
5411 *
5412 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5413 * userland visible parts and start killing the percpu refcnts of
5414 * css's. Set up so that the next stage will be kicked off once all
5415 * the percpu refcnts are confirmed to be killed.
5416 *
5417 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5418 * rest of destruction. Once all cgroup references are gone, the
5419 * cgroup is RCU-freed.
5420 *
5421 * This function implements s1. After this step, @cgrp is gone as far as
5422 * the userland is concerned and a new cgroup with the same name may be
5423 * created. As cgroup doesn't care about the names internally, this
5424 * doesn't cause any problem.
5425 */
5426 static int cgroup_destroy_locked(struct cgroup *cgrp)
5427 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5428 {
5429 struct cgroup_subsys_state *css;
5430 struct cgrp_cset_link *link;
5431 int ssid;
5432
5433 lockdep_assert_held(&cgroup_mutex);
5434
5435 /*
5436 * Only migration can raise populated from zero and we're already
5437 * holding cgroup_mutex.
5438 */
5439 if (cgroup_is_populated(cgrp))
5440 return -EBUSY;
5441
5442 /*
5443 * Make sure there's no live children. We can't test emptiness of
5444 * ->self.children as dead children linger on it while being
5445 * drained; otherwise, "rmdir parent/child parent" may fail.
5446 */
5447 if (css_has_online_children(&cgrp->self))
5448 return -EBUSY;
5449
5450 /*
5451 * Mark @cgrp and the associated csets dead. The former prevents
5452 * further task migration and child creation by disabling
5453 * cgroup_lock_live_group(). The latter makes the csets ignored by
5454 * the migration path.
5455 */
5456 cgrp->self.flags &= ~CSS_ONLINE;
5457
5458 spin_lock_irq(&css_set_lock);
5459 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5460 link->cset->dead = true;
5461 spin_unlock_irq(&css_set_lock);
5462
5463 /* initiate massacre of all css's */
5464 for_each_css(css, ssid, cgrp)
5465 kill_css(css);
5466
5467 /*
5468 * Remove @cgrp directory along with the base files. @cgrp has an
5469 * extra ref on its kn.
5470 */
5471 kernfs_remove(cgrp->kn);
5472
5473 check_for_release(cgroup_parent(cgrp));
5474
5475 /* put the base reference */
5476 percpu_ref_kill(&cgrp->self.refcnt);
5477
5478 return 0;
5479 };
5480
5481 static int cgroup_rmdir(struct kernfs_node *kn)
5482 {
5483 struct cgroup *cgrp;
5484 int ret = 0;
5485
5486 cgrp = cgroup_kn_lock_live(kn, false);
5487 if (!cgrp)
5488 return 0;
5489
5490 ret = cgroup_destroy_locked(cgrp);
5491
5492 cgroup_kn_unlock(kn);
5493 return ret;
5494 }
5495
5496 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5497 .remount_fs = cgroup_remount,
5498 .show_options = cgroup_show_options,
5499 .mkdir = cgroup_mkdir,
5500 .rmdir = cgroup_rmdir,
5501 .rename = cgroup_rename,
5502 .show_path = cgroup_show_path,
5503 };
5504
5505 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5506 {
5507 struct cgroup_subsys_state *css;
5508
5509 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5510
5511 mutex_lock(&cgroup_mutex);
5512
5513 idr_init(&ss->css_idr);
5514 INIT_LIST_HEAD(&ss->cfts);
5515
5516 /* Create the root cgroup state for this subsystem */
5517 ss->root = &cgrp_dfl_root;
5518 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5519 /* We don't handle early failures gracefully */
5520 BUG_ON(IS_ERR(css));
5521 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5522
5523 /*
5524 * Root csses are never destroyed and we can't initialize
5525 * percpu_ref during early init. Disable refcnting.
5526 */
5527 css->flags |= CSS_NO_REF;
5528
5529 if (early) {
5530 /* allocation can't be done safely during early init */
5531 css->id = 1;
5532 } else {
5533 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5534 BUG_ON(css->id < 0);
5535 }
5536
5537 /* Update the init_css_set to contain a subsys
5538 * pointer to this state - since the subsystem is
5539 * newly registered, all tasks and hence the
5540 * init_css_set is in the subsystem's root cgroup. */
5541 init_css_set.subsys[ss->id] = css;
5542
5543 have_fork_callback |= (bool)ss->fork << ss->id;
5544 have_exit_callback |= (bool)ss->exit << ss->id;
5545 have_free_callback |= (bool)ss->free << ss->id;
5546 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5547
5548 /* At system boot, before all subsystems have been
5549 * registered, no tasks have been forked, so we don't
5550 * need to invoke fork callbacks here. */
5551 BUG_ON(!list_empty(&init_task.tasks));
5552
5553 BUG_ON(online_css(css));
5554
5555 mutex_unlock(&cgroup_mutex);
5556 }
5557
5558 /**
5559 * cgroup_init_early - cgroup initialization at system boot
5560 *
5561 * Initialize cgroups at system boot, and initialize any
5562 * subsystems that request early init.
5563 */
5564 int __init cgroup_init_early(void)
5565 {
5566 static struct cgroup_sb_opts __initdata opts;
5567 struct cgroup_subsys *ss;
5568 int i;
5569
5570 init_cgroup_root(&cgrp_dfl_root, &opts);
5571 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5572
5573 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5574
5575 for_each_subsys(ss, i) {
5576 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5577 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5578 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5579 ss->id, ss->name);
5580 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5581 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5582
5583 ss->id = i;
5584 ss->name = cgroup_subsys_name[i];
5585 if (!ss->legacy_name)
5586 ss->legacy_name = cgroup_subsys_name[i];
5587
5588 if (ss->early_init)
5589 cgroup_init_subsys(ss, true);
5590 }
5591 return 0;
5592 }
5593
5594 static u16 cgroup_disable_mask __initdata;
5595
5596 /**
5597 * cgroup_init - cgroup initialization
5598 *
5599 * Register cgroup filesystem and /proc file, and initialize
5600 * any subsystems that didn't request early init.
5601 */
5602 int __init cgroup_init(void)
5603 {
5604 struct cgroup_subsys *ss;
5605 int ssid;
5606
5607 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5608 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5609 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5610 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5611
5612 get_user_ns(init_cgroup_ns.user_ns);
5613
5614 mutex_lock(&cgroup_mutex);
5615
5616 /*
5617 * Add init_css_set to the hash table so that dfl_root can link to
5618 * it during init.
5619 */
5620 hash_add(css_set_table, &init_css_set.hlist,
5621 css_set_hash(init_css_set.subsys));
5622
5623 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5624
5625 mutex_unlock(&cgroup_mutex);
5626
5627 for_each_subsys(ss, ssid) {
5628 if (ss->early_init) {
5629 struct cgroup_subsys_state *css =
5630 init_css_set.subsys[ss->id];
5631
5632 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5633 GFP_KERNEL);
5634 BUG_ON(css->id < 0);
5635 } else {
5636 cgroup_init_subsys(ss, false);
5637 }
5638
5639 list_add_tail(&init_css_set.e_cset_node[ssid],
5640 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5641
5642 /*
5643 * Setting dfl_root subsys_mask needs to consider the
5644 * disabled flag and cftype registration needs kmalloc,
5645 * both of which aren't available during early_init.
5646 */
5647 if (cgroup_disable_mask & (1 << ssid)) {
5648 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5649 printk(KERN_INFO "Disabling %s control group subsystem\n",
5650 ss->name);
5651 continue;
5652 }
5653
5654 if (cgroup_ssid_no_v1(ssid))
5655 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5656 ss->name);
5657
5658 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5659
5660 if (ss->implicit_on_dfl)
5661 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5662 else if (!ss->dfl_cftypes)
5663 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5664
5665 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5666 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5667 } else {
5668 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5669 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5670 }
5671
5672 if (ss->bind)
5673 ss->bind(init_css_set.subsys[ssid]);
5674 }
5675
5676 /* init_css_set.subsys[] has been updated, re-hash */
5677 hash_del(&init_css_set.hlist);
5678 hash_add(css_set_table, &init_css_set.hlist,
5679 css_set_hash(init_css_set.subsys));
5680
5681 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5682 WARN_ON(register_filesystem(&cgroup_fs_type));
5683 WARN_ON(register_filesystem(&cgroup2_fs_type));
5684 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5685
5686 return 0;
5687 }
5688
5689 static int __init cgroup_wq_init(void)
5690 {
5691 /*
5692 * There isn't much point in executing destruction path in
5693 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5694 * Use 1 for @max_active.
5695 *
5696 * We would prefer to do this in cgroup_init() above, but that
5697 * is called before init_workqueues(): so leave this until after.
5698 */
5699 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5700 BUG_ON(!cgroup_destroy_wq);
5701
5702 /*
5703 * Used to destroy pidlists and separate to serve as flush domain.
5704 * Cap @max_active to 1 too.
5705 */
5706 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5707 0, 1);
5708 BUG_ON(!cgroup_pidlist_destroy_wq);
5709
5710 return 0;
5711 }
5712 core_initcall(cgroup_wq_init);
5713
5714 /*
5715 * proc_cgroup_show()
5716 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5717 * - Used for /proc/<pid>/cgroup.
5718 */
5719 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5720 struct pid *pid, struct task_struct *tsk)
5721 {
5722 char *buf, *path;
5723 int retval;
5724 struct cgroup_root *root;
5725
5726 retval = -ENOMEM;
5727 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5728 if (!buf)
5729 goto out;
5730
5731 mutex_lock(&cgroup_mutex);
5732 spin_lock_irq(&css_set_lock);
5733
5734 for_each_root(root) {
5735 struct cgroup_subsys *ss;
5736 struct cgroup *cgrp;
5737 int ssid, count = 0;
5738
5739 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5740 continue;
5741
5742 seq_printf(m, "%d:", root->hierarchy_id);
5743 if (root != &cgrp_dfl_root)
5744 for_each_subsys(ss, ssid)
5745 if (root->subsys_mask & (1 << ssid))
5746 seq_printf(m, "%s%s", count++ ? "," : "",
5747 ss->legacy_name);
5748 if (strlen(root->name))
5749 seq_printf(m, "%sname=%s", count ? "," : "",
5750 root->name);
5751 seq_putc(m, ':');
5752
5753 cgrp = task_cgroup_from_root(tsk, root);
5754
5755 /*
5756 * On traditional hierarchies, all zombie tasks show up as
5757 * belonging to the root cgroup. On the default hierarchy,
5758 * while a zombie doesn't show up in "cgroup.procs" and
5759 * thus can't be migrated, its /proc/PID/cgroup keeps
5760 * reporting the cgroup it belonged to before exiting. If
5761 * the cgroup is removed before the zombie is reaped,
5762 * " (deleted)" is appended to the cgroup path.
5763 */
5764 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5765 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5766 current->nsproxy->cgroup_ns);
5767 if (!path) {
5768 retval = -ENAMETOOLONG;
5769 goto out_unlock;
5770 }
5771 } else {
5772 path = "/";
5773 }
5774
5775 seq_puts(m, path);
5776
5777 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5778 seq_puts(m, " (deleted)\n");
5779 else
5780 seq_putc(m, '\n');
5781 }
5782
5783 retval = 0;
5784 out_unlock:
5785 spin_unlock_irq(&css_set_lock);
5786 mutex_unlock(&cgroup_mutex);
5787 kfree(buf);
5788 out:
5789 return retval;
5790 }
5791
5792 /* Display information about each subsystem and each hierarchy */
5793 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5794 {
5795 struct cgroup_subsys *ss;
5796 int i;
5797
5798 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5799 /*
5800 * ideally we don't want subsystems moving around while we do this.
5801 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5802 * subsys/hierarchy state.
5803 */
5804 mutex_lock(&cgroup_mutex);
5805
5806 for_each_subsys(ss, i)
5807 seq_printf(m, "%s\t%d\t%d\t%d\n",
5808 ss->legacy_name, ss->root->hierarchy_id,
5809 atomic_read(&ss->root->nr_cgrps),
5810 cgroup_ssid_enabled(i));
5811
5812 mutex_unlock(&cgroup_mutex);
5813 return 0;
5814 }
5815
5816 static int cgroupstats_open(struct inode *inode, struct file *file)
5817 {
5818 return single_open(file, proc_cgroupstats_show, NULL);
5819 }
5820
5821 static const struct file_operations proc_cgroupstats_operations = {
5822 .open = cgroupstats_open,
5823 .read = seq_read,
5824 .llseek = seq_lseek,
5825 .release = single_release,
5826 };
5827
5828 /**
5829 * cgroup_fork - initialize cgroup related fields during copy_process()
5830 * @child: pointer to task_struct of forking parent process.
5831 *
5832 * A task is associated with the init_css_set until cgroup_post_fork()
5833 * attaches it to the parent's css_set. Empty cg_list indicates that
5834 * @child isn't holding reference to its css_set.
5835 */
5836 void cgroup_fork(struct task_struct *child)
5837 {
5838 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5839 INIT_LIST_HEAD(&child->cg_list);
5840 }
5841
5842 /**
5843 * cgroup_can_fork - called on a new task before the process is exposed
5844 * @child: the task in question.
5845 *
5846 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5847 * returns an error, the fork aborts with that error code. This allows for
5848 * a cgroup subsystem to conditionally allow or deny new forks.
5849 */
5850 int cgroup_can_fork(struct task_struct *child)
5851 {
5852 struct cgroup_subsys *ss;
5853 int i, j, ret;
5854
5855 do_each_subsys_mask(ss, i, have_canfork_callback) {
5856 ret = ss->can_fork(child);
5857 if (ret)
5858 goto out_revert;
5859 } while_each_subsys_mask();
5860
5861 return 0;
5862
5863 out_revert:
5864 for_each_subsys(ss, j) {
5865 if (j >= i)
5866 break;
5867 if (ss->cancel_fork)
5868 ss->cancel_fork(child);
5869 }
5870
5871 return ret;
5872 }
5873
5874 /**
5875 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5876 * @child: the task in question
5877 *
5878 * This calls the cancel_fork() callbacks if a fork failed *after*
5879 * cgroup_can_fork() succeded.
5880 */
5881 void cgroup_cancel_fork(struct task_struct *child)
5882 {
5883 struct cgroup_subsys *ss;
5884 int i;
5885
5886 for_each_subsys(ss, i)
5887 if (ss->cancel_fork)
5888 ss->cancel_fork(child);
5889 }
5890
5891 /**
5892 * cgroup_post_fork - called on a new task after adding it to the task list
5893 * @child: the task in question
5894 *
5895 * Adds the task to the list running through its css_set if necessary and
5896 * call the subsystem fork() callbacks. Has to be after the task is
5897 * visible on the task list in case we race with the first call to
5898 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5899 * list.
5900 */
5901 void cgroup_post_fork(struct task_struct *child)
5902 {
5903 struct cgroup_subsys *ss;
5904 int i;
5905
5906 /*
5907 * This may race against cgroup_enable_task_cg_lists(). As that
5908 * function sets use_task_css_set_links before grabbing
5909 * tasklist_lock and we just went through tasklist_lock to add
5910 * @child, it's guaranteed that either we see the set
5911 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5912 * @child during its iteration.
5913 *
5914 * If we won the race, @child is associated with %current's
5915 * css_set. Grabbing css_set_lock guarantees both that the
5916 * association is stable, and, on completion of the parent's
5917 * migration, @child is visible in the source of migration or
5918 * already in the destination cgroup. This guarantee is necessary
5919 * when implementing operations which need to migrate all tasks of
5920 * a cgroup to another.
5921 *
5922 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5923 * will remain in init_css_set. This is safe because all tasks are
5924 * in the init_css_set before cg_links is enabled and there's no
5925 * operation which transfers all tasks out of init_css_set.
5926 */
5927 if (use_task_css_set_links) {
5928 struct css_set *cset;
5929
5930 spin_lock_irq(&css_set_lock);
5931 cset = task_css_set(current);
5932 if (list_empty(&child->cg_list)) {
5933 get_css_set(cset);
5934 css_set_move_task(child, NULL, cset, false);
5935 }
5936 spin_unlock_irq(&css_set_lock);
5937 }
5938
5939 /*
5940 * Call ss->fork(). This must happen after @child is linked on
5941 * css_set; otherwise, @child might change state between ->fork()
5942 * and addition to css_set.
5943 */
5944 do_each_subsys_mask(ss, i, have_fork_callback) {
5945 ss->fork(child);
5946 } while_each_subsys_mask();
5947 }
5948
5949 /**
5950 * cgroup_exit - detach cgroup from exiting task
5951 * @tsk: pointer to task_struct of exiting process
5952 *
5953 * Description: Detach cgroup from @tsk and release it.
5954 *
5955 * Note that cgroups marked notify_on_release force every task in
5956 * them to take the global cgroup_mutex mutex when exiting.
5957 * This could impact scaling on very large systems. Be reluctant to
5958 * use notify_on_release cgroups where very high task exit scaling
5959 * is required on large systems.
5960 *
5961 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5962 * call cgroup_exit() while the task is still competent to handle
5963 * notify_on_release(), then leave the task attached to the root cgroup in
5964 * each hierarchy for the remainder of its exit. No need to bother with
5965 * init_css_set refcnting. init_css_set never goes away and we can't race
5966 * with migration path - PF_EXITING is visible to migration path.
5967 */
5968 void cgroup_exit(struct task_struct *tsk)
5969 {
5970 struct cgroup_subsys *ss;
5971 struct css_set *cset;
5972 int i;
5973
5974 /*
5975 * Unlink from @tsk from its css_set. As migration path can't race
5976 * with us, we can check css_set and cg_list without synchronization.
5977 */
5978 cset = task_css_set(tsk);
5979
5980 if (!list_empty(&tsk->cg_list)) {
5981 spin_lock_irq(&css_set_lock);
5982 css_set_move_task(tsk, cset, NULL, false);
5983 spin_unlock_irq(&css_set_lock);
5984 } else {
5985 get_css_set(cset);
5986 }
5987
5988 /* see cgroup_post_fork() for details */
5989 do_each_subsys_mask(ss, i, have_exit_callback) {
5990 ss->exit(tsk);
5991 } while_each_subsys_mask();
5992 }
5993
5994 void cgroup_free(struct task_struct *task)
5995 {
5996 struct css_set *cset = task_css_set(task);
5997 struct cgroup_subsys *ss;
5998 int ssid;
5999
6000 do_each_subsys_mask(ss, ssid, have_free_callback) {
6001 ss->free(task);
6002 } while_each_subsys_mask();
6003
6004 put_css_set(cset);
6005 }
6006
6007 static void check_for_release(struct cgroup *cgrp)
6008 {
6009 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6010 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6011 schedule_work(&cgrp->release_agent_work);
6012 }
6013
6014 /*
6015 * Notify userspace when a cgroup is released, by running the
6016 * configured release agent with the name of the cgroup (path
6017 * relative to the root of cgroup file system) as the argument.
6018 *
6019 * Most likely, this user command will try to rmdir this cgroup.
6020 *
6021 * This races with the possibility that some other task will be
6022 * attached to this cgroup before it is removed, or that some other
6023 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6024 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6025 * unused, and this cgroup will be reprieved from its death sentence,
6026 * to continue to serve a useful existence. Next time it's released,
6027 * we will get notified again, if it still has 'notify_on_release' set.
6028 *
6029 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6030 * means only wait until the task is successfully execve()'d. The
6031 * separate release agent task is forked by call_usermodehelper(),
6032 * then control in this thread returns here, without waiting for the
6033 * release agent task. We don't bother to wait because the caller of
6034 * this routine has no use for the exit status of the release agent
6035 * task, so no sense holding our caller up for that.
6036 */
6037 static void cgroup_release_agent(struct work_struct *work)
6038 {
6039 struct cgroup *cgrp =
6040 container_of(work, struct cgroup, release_agent_work);
6041 char *pathbuf = NULL, *agentbuf = NULL, *path;
6042 char *argv[3], *envp[3];
6043
6044 mutex_lock(&cgroup_mutex);
6045
6046 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6047 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6048 if (!pathbuf || !agentbuf)
6049 goto out;
6050
6051 spin_lock_irq(&css_set_lock);
6052 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6053 spin_unlock_irq(&css_set_lock);
6054 if (!path)
6055 goto out;
6056
6057 argv[0] = agentbuf;
6058 argv[1] = path;
6059 argv[2] = NULL;
6060
6061 /* minimal command environment */
6062 envp[0] = "HOME=/";
6063 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6064 envp[2] = NULL;
6065
6066 mutex_unlock(&cgroup_mutex);
6067 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6068 goto out_free;
6069 out:
6070 mutex_unlock(&cgroup_mutex);
6071 out_free:
6072 kfree(agentbuf);
6073 kfree(pathbuf);
6074 }
6075
6076 static int __init cgroup_disable(char *str)
6077 {
6078 struct cgroup_subsys *ss;
6079 char *token;
6080 int i;
6081
6082 while ((token = strsep(&str, ",")) != NULL) {
6083 if (!*token)
6084 continue;
6085
6086 for_each_subsys(ss, i) {
6087 if (strcmp(token, ss->name) &&
6088 strcmp(token, ss->legacy_name))
6089 continue;
6090 cgroup_disable_mask |= 1 << i;
6091 }
6092 }
6093 return 1;
6094 }
6095 __setup("cgroup_disable=", cgroup_disable);
6096
6097 static int __init cgroup_no_v1(char *str)
6098 {
6099 struct cgroup_subsys *ss;
6100 char *token;
6101 int i;
6102
6103 while ((token = strsep(&str, ",")) != NULL) {
6104 if (!*token)
6105 continue;
6106
6107 if (!strcmp(token, "all")) {
6108 cgroup_no_v1_mask = U16_MAX;
6109 break;
6110 }
6111
6112 for_each_subsys(ss, i) {
6113 if (strcmp(token, ss->name) &&
6114 strcmp(token, ss->legacy_name))
6115 continue;
6116
6117 cgroup_no_v1_mask |= 1 << i;
6118 }
6119 }
6120 return 1;
6121 }
6122 __setup("cgroup_no_v1=", cgroup_no_v1);
6123
6124 /**
6125 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6126 * @dentry: directory dentry of interest
6127 * @ss: subsystem of interest
6128 *
6129 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6130 * to get the corresponding css and return it. If such css doesn't exist
6131 * or can't be pinned, an ERR_PTR value is returned.
6132 */
6133 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6134 struct cgroup_subsys *ss)
6135 {
6136 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6137 struct file_system_type *s_type = dentry->d_sb->s_type;
6138 struct cgroup_subsys_state *css = NULL;
6139 struct cgroup *cgrp;
6140
6141 /* is @dentry a cgroup dir? */
6142 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6143 !kn || kernfs_type(kn) != KERNFS_DIR)
6144 return ERR_PTR(-EBADF);
6145
6146 rcu_read_lock();
6147
6148 /*
6149 * This path doesn't originate from kernfs and @kn could already
6150 * have been or be removed at any point. @kn->priv is RCU
6151 * protected for this access. See css_release_work_fn() for details.
6152 */
6153 cgrp = rcu_dereference(kn->priv);
6154 if (cgrp)
6155 css = cgroup_css(cgrp, ss);
6156
6157 if (!css || !css_tryget_online(css))
6158 css = ERR_PTR(-ENOENT);
6159
6160 rcu_read_unlock();
6161 return css;
6162 }
6163
6164 /**
6165 * css_from_id - lookup css by id
6166 * @id: the cgroup id
6167 * @ss: cgroup subsys to be looked into
6168 *
6169 * Returns the css if there's valid one with @id, otherwise returns NULL.
6170 * Should be called under rcu_read_lock().
6171 */
6172 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6173 {
6174 WARN_ON_ONCE(!rcu_read_lock_held());
6175 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
6176 }
6177
6178 /**
6179 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6180 * @path: path on the default hierarchy
6181 *
6182 * Find the cgroup at @path on the default hierarchy, increment its
6183 * reference count and return it. Returns pointer to the found cgroup on
6184 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6185 * if @path points to a non-directory.
6186 */
6187 struct cgroup *cgroup_get_from_path(const char *path)
6188 {
6189 struct kernfs_node *kn;
6190 struct cgroup *cgrp;
6191
6192 mutex_lock(&cgroup_mutex);
6193
6194 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6195 if (kn) {
6196 if (kernfs_type(kn) == KERNFS_DIR) {
6197 cgrp = kn->priv;
6198 cgroup_get(cgrp);
6199 } else {
6200 cgrp = ERR_PTR(-ENOTDIR);
6201 }
6202 kernfs_put(kn);
6203 } else {
6204 cgrp = ERR_PTR(-ENOENT);
6205 }
6206
6207 mutex_unlock(&cgroup_mutex);
6208 return cgrp;
6209 }
6210 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6211
6212 /*
6213 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6214 * definition in cgroup-defs.h.
6215 */
6216 #ifdef CONFIG_SOCK_CGROUP_DATA
6217
6218 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6219
6220 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6221 static bool cgroup_sk_alloc_disabled __read_mostly;
6222
6223 void cgroup_sk_alloc_disable(void)
6224 {
6225 if (cgroup_sk_alloc_disabled)
6226 return;
6227 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6228 cgroup_sk_alloc_disabled = true;
6229 }
6230
6231 #else
6232
6233 #define cgroup_sk_alloc_disabled false
6234
6235 #endif
6236
6237 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6238 {
6239 if (cgroup_sk_alloc_disabled)
6240 return;
6241
6242 rcu_read_lock();
6243
6244 while (true) {
6245 struct css_set *cset;
6246
6247 cset = task_css_set(current);
6248 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6249 skcd->val = (unsigned long)cset->dfl_cgrp;
6250 break;
6251 }
6252 cpu_relax();
6253 }
6254
6255 rcu_read_unlock();
6256 }
6257
6258 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6259 {
6260 cgroup_put(sock_cgroup_ptr(skcd));
6261 }
6262
6263 #endif /* CONFIG_SOCK_CGROUP_DATA */
6264
6265 /* cgroup namespaces */
6266
6267 static struct cgroup_namespace *alloc_cgroup_ns(void)
6268 {
6269 struct cgroup_namespace *new_ns;
6270 int ret;
6271
6272 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6273 if (!new_ns)
6274 return ERR_PTR(-ENOMEM);
6275 ret = ns_alloc_inum(&new_ns->ns);
6276 if (ret) {
6277 kfree(new_ns);
6278 return ERR_PTR(ret);
6279 }
6280 atomic_set(&new_ns->count, 1);
6281 new_ns->ns.ops = &cgroupns_operations;
6282 return new_ns;
6283 }
6284
6285 void free_cgroup_ns(struct cgroup_namespace *ns)
6286 {
6287 put_css_set(ns->root_cset);
6288 put_user_ns(ns->user_ns);
6289 ns_free_inum(&ns->ns);
6290 kfree(ns);
6291 }
6292 EXPORT_SYMBOL(free_cgroup_ns);
6293
6294 struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6295 struct user_namespace *user_ns,
6296 struct cgroup_namespace *old_ns)
6297 {
6298 struct cgroup_namespace *new_ns;
6299 struct css_set *cset;
6300
6301 BUG_ON(!old_ns);
6302
6303 if (!(flags & CLONE_NEWCGROUP)) {
6304 get_cgroup_ns(old_ns);
6305 return old_ns;
6306 }
6307
6308 /* Allow only sysadmin to create cgroup namespace. */
6309 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6310 return ERR_PTR(-EPERM);
6311
6312 mutex_lock(&cgroup_mutex);
6313 spin_lock_irq(&css_set_lock);
6314
6315 cset = task_css_set(current);
6316 get_css_set(cset);
6317
6318 spin_unlock_irq(&css_set_lock);
6319 mutex_unlock(&cgroup_mutex);
6320
6321 new_ns = alloc_cgroup_ns();
6322 if (IS_ERR(new_ns)) {
6323 put_css_set(cset);
6324 return new_ns;
6325 }
6326
6327 new_ns->user_ns = get_user_ns(user_ns);
6328 new_ns->root_cset = cset;
6329
6330 return new_ns;
6331 }
6332
6333 static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6334 {
6335 return container_of(ns, struct cgroup_namespace, ns);
6336 }
6337
6338 static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6339 {
6340 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6341
6342 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6343 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6344 return -EPERM;
6345
6346 /* Don't need to do anything if we are attaching to our own cgroupns. */
6347 if (cgroup_ns == nsproxy->cgroup_ns)
6348 return 0;
6349
6350 get_cgroup_ns(cgroup_ns);
6351 put_cgroup_ns(nsproxy->cgroup_ns);
6352 nsproxy->cgroup_ns = cgroup_ns;
6353
6354 return 0;
6355 }
6356
6357 static struct ns_common *cgroupns_get(struct task_struct *task)
6358 {
6359 struct cgroup_namespace *ns = NULL;
6360 struct nsproxy *nsproxy;
6361
6362 task_lock(task);
6363 nsproxy = task->nsproxy;
6364 if (nsproxy) {
6365 ns = nsproxy->cgroup_ns;
6366 get_cgroup_ns(ns);
6367 }
6368 task_unlock(task);
6369
6370 return ns ? &ns->ns : NULL;
6371 }
6372
6373 static void cgroupns_put(struct ns_common *ns)
6374 {
6375 put_cgroup_ns(to_cg_ns(ns));
6376 }
6377
6378 const struct proc_ns_operations cgroupns_operations = {
6379 .name = "cgroup",
6380 .type = CLONE_NEWCGROUP,
6381 .get = cgroupns_get,
6382 .put = cgroupns_put,
6383 .install = cgroupns_install,
6384 };
6385
6386 static __init int cgroup_namespaces_init(void)
6387 {
6388 return 0;
6389 }
6390 subsys_initcall(cgroup_namespaces_init);
6391
6392 #ifdef CONFIG_CGROUP_DEBUG
6393 static struct cgroup_subsys_state *
6394 debug_css_alloc(struct cgroup_subsys_state *parent_css)
6395 {
6396 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6397
6398 if (!css)
6399 return ERR_PTR(-ENOMEM);
6400
6401 return css;
6402 }
6403
6404 static void debug_css_free(struct cgroup_subsys_state *css)
6405 {
6406 kfree(css);
6407 }
6408
6409 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6410 struct cftype *cft)
6411 {
6412 return cgroup_task_count(css->cgroup);
6413 }
6414
6415 static u64 current_css_set_read(struct cgroup_subsys_state *css,
6416 struct cftype *cft)
6417 {
6418 return (u64)(unsigned long)current->cgroups;
6419 }
6420
6421 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6422 struct cftype *cft)
6423 {
6424 u64 count;
6425
6426 rcu_read_lock();
6427 count = atomic_read(&task_css_set(current)->refcount);
6428 rcu_read_unlock();
6429 return count;
6430 }
6431
6432 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6433 {
6434 struct cgrp_cset_link *link;
6435 struct css_set *cset;
6436 char *name_buf;
6437
6438 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6439 if (!name_buf)
6440 return -ENOMEM;
6441
6442 spin_lock_irq(&css_set_lock);
6443 rcu_read_lock();
6444 cset = rcu_dereference(current->cgroups);
6445 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6446 struct cgroup *c = link->cgrp;
6447
6448 cgroup_name(c, name_buf, NAME_MAX + 1);
6449 seq_printf(seq, "Root %d group %s\n",
6450 c->root->hierarchy_id, name_buf);
6451 }
6452 rcu_read_unlock();
6453 spin_unlock_irq(&css_set_lock);
6454 kfree(name_buf);
6455 return 0;
6456 }
6457
6458 #define MAX_TASKS_SHOWN_PER_CSS 25
6459 static int cgroup_css_links_read(struct seq_file *seq, void *v)
6460 {
6461 struct cgroup_subsys_state *css = seq_css(seq);
6462 struct cgrp_cset_link *link;
6463
6464 spin_lock_irq(&css_set_lock);
6465 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6466 struct css_set *cset = link->cset;
6467 struct task_struct *task;
6468 int count = 0;
6469
6470 seq_printf(seq, "css_set %p\n", cset);
6471
6472 list_for_each_entry(task, &cset->tasks, cg_list) {
6473 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6474 goto overflow;
6475 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6476 }
6477
6478 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6479 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6480 goto overflow;
6481 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6482 }
6483 continue;
6484 overflow:
6485 seq_puts(seq, " ...\n");
6486 }
6487 spin_unlock_irq(&css_set_lock);
6488 return 0;
6489 }
6490
6491 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6492 {
6493 return (!cgroup_is_populated(css->cgroup) &&
6494 !css_has_online_children(&css->cgroup->self));
6495 }
6496
6497 static struct cftype debug_files[] = {
6498 {
6499 .name = "taskcount",
6500 .read_u64 = debug_taskcount_read,
6501 },
6502
6503 {
6504 .name = "current_css_set",
6505 .read_u64 = current_css_set_read,
6506 },
6507
6508 {
6509 .name = "current_css_set_refcount",
6510 .read_u64 = current_css_set_refcount_read,
6511 },
6512
6513 {
6514 .name = "current_css_set_cg_links",
6515 .seq_show = current_css_set_cg_links_read,
6516 },
6517
6518 {
6519 .name = "cgroup_css_links",
6520 .seq_show = cgroup_css_links_read,
6521 },
6522
6523 {
6524 .name = "releasable",
6525 .read_u64 = releasable_read,
6526 },
6527
6528 { } /* terminate */
6529 };
6530
6531 struct cgroup_subsys debug_cgrp_subsys = {
6532 .css_alloc = debug_css_alloc,
6533 .css_free = debug_css_free,
6534 .legacy_cftypes = debug_files,
6535 };
6536 #endif /* CONFIG_CGROUP_DEBUG */