]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cgroup.c
cgroupfs: use init_cred when populating new cgroupfs mount
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
64 #include <asm/atomic.h>
65
66 static DEFINE_MUTEX(cgroup_mutex);
67
68 /*
69 * Generate an array of cgroup subsystem pointers. At boot time, this is
70 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
71 * registered after that. The mutable section of this array is protected by
72 * cgroup_mutex.
73 */
74 #define SUBSYS(_x) &_x ## _subsys,
75 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
76 #include <linux/cgroup_subsys.h>
77 };
78
79 #define MAX_CGROUP_ROOT_NAMELEN 64
80
81 /*
82 * A cgroupfs_root represents the root of a cgroup hierarchy,
83 * and may be associated with a superblock to form an active
84 * hierarchy
85 */
86 struct cgroupfs_root {
87 struct super_block *sb;
88
89 /*
90 * The bitmask of subsystems intended to be attached to this
91 * hierarchy
92 */
93 unsigned long subsys_bits;
94
95 /* Unique id for this hierarchy. */
96 int hierarchy_id;
97
98 /* The bitmask of subsystems currently attached to this hierarchy */
99 unsigned long actual_subsys_bits;
100
101 /* A list running through the attached subsystems */
102 struct list_head subsys_list;
103
104 /* The root cgroup for this hierarchy */
105 struct cgroup top_cgroup;
106
107 /* Tracks how many cgroups are currently defined in hierarchy.*/
108 int number_of_cgroups;
109
110 /* A list running through the active hierarchies */
111 struct list_head root_list;
112
113 /* Hierarchy-specific flags */
114 unsigned long flags;
115
116 /* The path to use for release notifications. */
117 char release_agent_path[PATH_MAX];
118
119 /* The name for this hierarchy - may be empty */
120 char name[MAX_CGROUP_ROOT_NAMELEN];
121 };
122
123 /*
124 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
125 * subsystems that are otherwise unattached - it never has more than a
126 * single cgroup, and all tasks are part of that cgroup.
127 */
128 static struct cgroupfs_root rootnode;
129
130 /*
131 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
132 * cgroup_subsys->use_id != 0.
133 */
134 #define CSS_ID_MAX (65535)
135 struct css_id {
136 /*
137 * The css to which this ID points. This pointer is set to valid value
138 * after cgroup is populated. If cgroup is removed, this will be NULL.
139 * This pointer is expected to be RCU-safe because destroy()
140 * is called after synchronize_rcu(). But for safe use, css_is_removed()
141 * css_tryget() should be used for avoiding race.
142 */
143 struct cgroup_subsys_state __rcu *css;
144 /*
145 * ID of this css.
146 */
147 unsigned short id;
148 /*
149 * Depth in hierarchy which this ID belongs to.
150 */
151 unsigned short depth;
152 /*
153 * ID is freed by RCU. (and lookup routine is RCU safe.)
154 */
155 struct rcu_head rcu_head;
156 /*
157 * Hierarchy of CSS ID belongs to.
158 */
159 unsigned short stack[0]; /* Array of Length (depth+1) */
160 };
161
162 /*
163 * cgroup_event represents events which userspace want to receive.
164 */
165 struct cgroup_event {
166 /*
167 * Cgroup which the event belongs to.
168 */
169 struct cgroup *cgrp;
170 /*
171 * Control file which the event associated.
172 */
173 struct cftype *cft;
174 /*
175 * eventfd to signal userspace about the event.
176 */
177 struct eventfd_ctx *eventfd;
178 /*
179 * Each of these stored in a list by the cgroup.
180 */
181 struct list_head list;
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 /* The list of hierarchy roots */
193
194 static LIST_HEAD(roots);
195 static int root_count;
196
197 static DEFINE_IDA(hierarchy_ida);
198 static int next_hierarchy_id;
199 static DEFINE_SPINLOCK(hierarchy_id_lock);
200
201 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
202 #define dummytop (&rootnode.top_cgroup)
203
204 /* This flag indicates whether tasks in the fork and exit paths should
205 * check for fork/exit handlers to call. This avoids us having to do
206 * extra work in the fork/exit path if none of the subsystems need to
207 * be called.
208 */
209 static int need_forkexit_callback __read_mostly;
210
211 #ifdef CONFIG_PROVE_LOCKING
212 int cgroup_lock_is_held(void)
213 {
214 return lockdep_is_held(&cgroup_mutex);
215 }
216 #else /* #ifdef CONFIG_PROVE_LOCKING */
217 int cgroup_lock_is_held(void)
218 {
219 return mutex_is_locked(&cgroup_mutex);
220 }
221 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
222
223 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
224
225 /* convenient tests for these bits */
226 inline int cgroup_is_removed(const struct cgroup *cgrp)
227 {
228 return test_bit(CGRP_REMOVED, &cgrp->flags);
229 }
230
231 /* bits in struct cgroupfs_root flags field */
232 enum {
233 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
234 };
235
236 static int cgroup_is_releasable(const struct cgroup *cgrp)
237 {
238 const int bits =
239 (1 << CGRP_RELEASABLE) |
240 (1 << CGRP_NOTIFY_ON_RELEASE);
241 return (cgrp->flags & bits) == bits;
242 }
243
244 static int notify_on_release(const struct cgroup *cgrp)
245 {
246 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
247 }
248
249 static int clone_children(const struct cgroup *cgrp)
250 {
251 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
252 }
253
254 /*
255 * for_each_subsys() allows you to iterate on each subsystem attached to
256 * an active hierarchy
257 */
258 #define for_each_subsys(_root, _ss) \
259 list_for_each_entry(_ss, &_root->subsys_list, sibling)
260
261 /* for_each_active_root() allows you to iterate across the active hierarchies */
262 #define for_each_active_root(_root) \
263 list_for_each_entry(_root, &roots, root_list)
264
265 /* the list of cgroups eligible for automatic release. Protected by
266 * release_list_lock */
267 static LIST_HEAD(release_list);
268 static DEFINE_SPINLOCK(release_list_lock);
269 static void cgroup_release_agent(struct work_struct *work);
270 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
271 static void check_for_release(struct cgroup *cgrp);
272
273 /* Link structure for associating css_set objects with cgroups */
274 struct cg_cgroup_link {
275 /*
276 * List running through cg_cgroup_links associated with a
277 * cgroup, anchored on cgroup->css_sets
278 */
279 struct list_head cgrp_link_list;
280 struct cgroup *cgrp;
281 /*
282 * List running through cg_cgroup_links pointing at a
283 * single css_set object, anchored on css_set->cg_links
284 */
285 struct list_head cg_link_list;
286 struct css_set *cg;
287 };
288
289 /* The default css_set - used by init and its children prior to any
290 * hierarchies being mounted. It contains a pointer to the root state
291 * for each subsystem. Also used to anchor the list of css_sets. Not
292 * reference-counted, to improve performance when child cgroups
293 * haven't been created.
294 */
295
296 static struct css_set init_css_set;
297 static struct cg_cgroup_link init_css_set_link;
298
299 static int cgroup_init_idr(struct cgroup_subsys *ss,
300 struct cgroup_subsys_state *css);
301
302 /* css_set_lock protects the list of css_set objects, and the
303 * chain of tasks off each css_set. Nests outside task->alloc_lock
304 * due to cgroup_iter_start() */
305 static DEFINE_RWLOCK(css_set_lock);
306 static int css_set_count;
307
308 /*
309 * hash table for cgroup groups. This improves the performance to find
310 * an existing css_set. This hash doesn't (currently) take into
311 * account cgroups in empty hierarchies.
312 */
313 #define CSS_SET_HASH_BITS 7
314 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
315 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
316
317 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
318 {
319 int i;
320 int index;
321 unsigned long tmp = 0UL;
322
323 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
324 tmp += (unsigned long)css[i];
325 tmp = (tmp >> 16) ^ tmp;
326
327 index = hash_long(tmp, CSS_SET_HASH_BITS);
328
329 return &css_set_table[index];
330 }
331
332 /* We don't maintain the lists running through each css_set to its
333 * task until after the first call to cgroup_iter_start(). This
334 * reduces the fork()/exit() overhead for people who have cgroups
335 * compiled into their kernel but not actually in use */
336 static int use_task_css_set_links __read_mostly;
337
338 static void __put_css_set(struct css_set *cg, int taskexit)
339 {
340 struct cg_cgroup_link *link;
341 struct cg_cgroup_link *saved_link;
342 /*
343 * Ensure that the refcount doesn't hit zero while any readers
344 * can see it. Similar to atomic_dec_and_lock(), but for an
345 * rwlock
346 */
347 if (atomic_add_unless(&cg->refcount, -1, 1))
348 return;
349 write_lock(&css_set_lock);
350 if (!atomic_dec_and_test(&cg->refcount)) {
351 write_unlock(&css_set_lock);
352 return;
353 }
354
355 /* This css_set is dead. unlink it and release cgroup refcounts */
356 hlist_del(&cg->hlist);
357 css_set_count--;
358
359 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
360 cg_link_list) {
361 struct cgroup *cgrp = link->cgrp;
362 list_del(&link->cg_link_list);
363 list_del(&link->cgrp_link_list);
364 if (atomic_dec_and_test(&cgrp->count) &&
365 notify_on_release(cgrp)) {
366 if (taskexit)
367 set_bit(CGRP_RELEASABLE, &cgrp->flags);
368 check_for_release(cgrp);
369 }
370
371 kfree(link);
372 }
373
374 write_unlock(&css_set_lock);
375 kfree_rcu(cg, rcu_head);
376 }
377
378 /*
379 * refcounted get/put for css_set objects
380 */
381 static inline void get_css_set(struct css_set *cg)
382 {
383 atomic_inc(&cg->refcount);
384 }
385
386 static inline void put_css_set(struct css_set *cg)
387 {
388 __put_css_set(cg, 0);
389 }
390
391 static inline void put_css_set_taskexit(struct css_set *cg)
392 {
393 __put_css_set(cg, 1);
394 }
395
396 /*
397 * compare_css_sets - helper function for find_existing_css_set().
398 * @cg: candidate css_set being tested
399 * @old_cg: existing css_set for a task
400 * @new_cgrp: cgroup that's being entered by the task
401 * @template: desired set of css pointers in css_set (pre-calculated)
402 *
403 * Returns true if "cg" matches "old_cg" except for the hierarchy
404 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
405 */
406 static bool compare_css_sets(struct css_set *cg,
407 struct css_set *old_cg,
408 struct cgroup *new_cgrp,
409 struct cgroup_subsys_state *template[])
410 {
411 struct list_head *l1, *l2;
412
413 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
414 /* Not all subsystems matched */
415 return false;
416 }
417
418 /*
419 * Compare cgroup pointers in order to distinguish between
420 * different cgroups in heirarchies with no subsystems. We
421 * could get by with just this check alone (and skip the
422 * memcmp above) but on most setups the memcmp check will
423 * avoid the need for this more expensive check on almost all
424 * candidates.
425 */
426
427 l1 = &cg->cg_links;
428 l2 = &old_cg->cg_links;
429 while (1) {
430 struct cg_cgroup_link *cgl1, *cgl2;
431 struct cgroup *cg1, *cg2;
432
433 l1 = l1->next;
434 l2 = l2->next;
435 /* See if we reached the end - both lists are equal length. */
436 if (l1 == &cg->cg_links) {
437 BUG_ON(l2 != &old_cg->cg_links);
438 break;
439 } else {
440 BUG_ON(l2 == &old_cg->cg_links);
441 }
442 /* Locate the cgroups associated with these links. */
443 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
444 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
445 cg1 = cgl1->cgrp;
446 cg2 = cgl2->cgrp;
447 /* Hierarchies should be linked in the same order. */
448 BUG_ON(cg1->root != cg2->root);
449
450 /*
451 * If this hierarchy is the hierarchy of the cgroup
452 * that's changing, then we need to check that this
453 * css_set points to the new cgroup; if it's any other
454 * hierarchy, then this css_set should point to the
455 * same cgroup as the old css_set.
456 */
457 if (cg1->root == new_cgrp->root) {
458 if (cg1 != new_cgrp)
459 return false;
460 } else {
461 if (cg1 != cg2)
462 return false;
463 }
464 }
465 return true;
466 }
467
468 /*
469 * find_existing_css_set() is a helper for
470 * find_css_set(), and checks to see whether an existing
471 * css_set is suitable.
472 *
473 * oldcg: the cgroup group that we're using before the cgroup
474 * transition
475 *
476 * cgrp: the cgroup that we're moving into
477 *
478 * template: location in which to build the desired set of subsystem
479 * state objects for the new cgroup group
480 */
481 static struct css_set *find_existing_css_set(
482 struct css_set *oldcg,
483 struct cgroup *cgrp,
484 struct cgroup_subsys_state *template[])
485 {
486 int i;
487 struct cgroupfs_root *root = cgrp->root;
488 struct hlist_head *hhead;
489 struct hlist_node *node;
490 struct css_set *cg;
491
492 /*
493 * Build the set of subsystem state objects that we want to see in the
494 * new css_set. while subsystems can change globally, the entries here
495 * won't change, so no need for locking.
496 */
497 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
498 if (root->subsys_bits & (1UL << i)) {
499 /* Subsystem is in this hierarchy. So we want
500 * the subsystem state from the new
501 * cgroup */
502 template[i] = cgrp->subsys[i];
503 } else {
504 /* Subsystem is not in this hierarchy, so we
505 * don't want to change the subsystem state */
506 template[i] = oldcg->subsys[i];
507 }
508 }
509
510 hhead = css_set_hash(template);
511 hlist_for_each_entry(cg, node, hhead, hlist) {
512 if (!compare_css_sets(cg, oldcg, cgrp, template))
513 continue;
514
515 /* This css_set matches what we need */
516 return cg;
517 }
518
519 /* No existing cgroup group matched */
520 return NULL;
521 }
522
523 static void free_cg_links(struct list_head *tmp)
524 {
525 struct cg_cgroup_link *link;
526 struct cg_cgroup_link *saved_link;
527
528 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
529 list_del(&link->cgrp_link_list);
530 kfree(link);
531 }
532 }
533
534 /*
535 * allocate_cg_links() allocates "count" cg_cgroup_link structures
536 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
537 * success or a negative error
538 */
539 static int allocate_cg_links(int count, struct list_head *tmp)
540 {
541 struct cg_cgroup_link *link;
542 int i;
543 INIT_LIST_HEAD(tmp);
544 for (i = 0; i < count; i++) {
545 link = kmalloc(sizeof(*link), GFP_KERNEL);
546 if (!link) {
547 free_cg_links(tmp);
548 return -ENOMEM;
549 }
550 list_add(&link->cgrp_link_list, tmp);
551 }
552 return 0;
553 }
554
555 /**
556 * link_css_set - a helper function to link a css_set to a cgroup
557 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
558 * @cg: the css_set to be linked
559 * @cgrp: the destination cgroup
560 */
561 static void link_css_set(struct list_head *tmp_cg_links,
562 struct css_set *cg, struct cgroup *cgrp)
563 {
564 struct cg_cgroup_link *link;
565
566 BUG_ON(list_empty(tmp_cg_links));
567 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
568 cgrp_link_list);
569 link->cg = cg;
570 link->cgrp = cgrp;
571 atomic_inc(&cgrp->count);
572 list_move(&link->cgrp_link_list, &cgrp->css_sets);
573 /*
574 * Always add links to the tail of the list so that the list
575 * is sorted by order of hierarchy creation
576 */
577 list_add_tail(&link->cg_link_list, &cg->cg_links);
578 }
579
580 /*
581 * find_css_set() takes an existing cgroup group and a
582 * cgroup object, and returns a css_set object that's
583 * equivalent to the old group, but with the given cgroup
584 * substituted into the appropriate hierarchy. Must be called with
585 * cgroup_mutex held
586 */
587 static struct css_set *find_css_set(
588 struct css_set *oldcg, struct cgroup *cgrp)
589 {
590 struct css_set *res;
591 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
592
593 struct list_head tmp_cg_links;
594
595 struct hlist_head *hhead;
596 struct cg_cgroup_link *link;
597
598 /* First see if we already have a cgroup group that matches
599 * the desired set */
600 read_lock(&css_set_lock);
601 res = find_existing_css_set(oldcg, cgrp, template);
602 if (res)
603 get_css_set(res);
604 read_unlock(&css_set_lock);
605
606 if (res)
607 return res;
608
609 res = kmalloc(sizeof(*res), GFP_KERNEL);
610 if (!res)
611 return NULL;
612
613 /* Allocate all the cg_cgroup_link objects that we'll need */
614 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
615 kfree(res);
616 return NULL;
617 }
618
619 atomic_set(&res->refcount, 1);
620 INIT_LIST_HEAD(&res->cg_links);
621 INIT_LIST_HEAD(&res->tasks);
622 INIT_HLIST_NODE(&res->hlist);
623
624 /* Copy the set of subsystem state objects generated in
625 * find_existing_css_set() */
626 memcpy(res->subsys, template, sizeof(res->subsys));
627
628 write_lock(&css_set_lock);
629 /* Add reference counts and links from the new css_set. */
630 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
631 struct cgroup *c = link->cgrp;
632 if (c->root == cgrp->root)
633 c = cgrp;
634 link_css_set(&tmp_cg_links, res, c);
635 }
636
637 BUG_ON(!list_empty(&tmp_cg_links));
638
639 css_set_count++;
640
641 /* Add this cgroup group to the hash table */
642 hhead = css_set_hash(res->subsys);
643 hlist_add_head(&res->hlist, hhead);
644
645 write_unlock(&css_set_lock);
646
647 return res;
648 }
649
650 /*
651 * Return the cgroup for "task" from the given hierarchy. Must be
652 * called with cgroup_mutex held.
653 */
654 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
655 struct cgroupfs_root *root)
656 {
657 struct css_set *css;
658 struct cgroup *res = NULL;
659
660 BUG_ON(!mutex_is_locked(&cgroup_mutex));
661 read_lock(&css_set_lock);
662 /*
663 * No need to lock the task - since we hold cgroup_mutex the
664 * task can't change groups, so the only thing that can happen
665 * is that it exits and its css is set back to init_css_set.
666 */
667 css = task->cgroups;
668 if (css == &init_css_set) {
669 res = &root->top_cgroup;
670 } else {
671 struct cg_cgroup_link *link;
672 list_for_each_entry(link, &css->cg_links, cg_link_list) {
673 struct cgroup *c = link->cgrp;
674 if (c->root == root) {
675 res = c;
676 break;
677 }
678 }
679 }
680 read_unlock(&css_set_lock);
681 BUG_ON(!res);
682 return res;
683 }
684
685 /*
686 * There is one global cgroup mutex. We also require taking
687 * task_lock() when dereferencing a task's cgroup subsys pointers.
688 * See "The task_lock() exception", at the end of this comment.
689 *
690 * A task must hold cgroup_mutex to modify cgroups.
691 *
692 * Any task can increment and decrement the count field without lock.
693 * So in general, code holding cgroup_mutex can't rely on the count
694 * field not changing. However, if the count goes to zero, then only
695 * cgroup_attach_task() can increment it again. Because a count of zero
696 * means that no tasks are currently attached, therefore there is no
697 * way a task attached to that cgroup can fork (the other way to
698 * increment the count). So code holding cgroup_mutex can safely
699 * assume that if the count is zero, it will stay zero. Similarly, if
700 * a task holds cgroup_mutex on a cgroup with zero count, it
701 * knows that the cgroup won't be removed, as cgroup_rmdir()
702 * needs that mutex.
703 *
704 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
705 * (usually) take cgroup_mutex. These are the two most performance
706 * critical pieces of code here. The exception occurs on cgroup_exit(),
707 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
708 * is taken, and if the cgroup count is zero, a usermode call made
709 * to the release agent with the name of the cgroup (path relative to
710 * the root of cgroup file system) as the argument.
711 *
712 * A cgroup can only be deleted if both its 'count' of using tasks
713 * is zero, and its list of 'children' cgroups is empty. Since all
714 * tasks in the system use _some_ cgroup, and since there is always at
715 * least one task in the system (init, pid == 1), therefore, top_cgroup
716 * always has either children cgroups and/or using tasks. So we don't
717 * need a special hack to ensure that top_cgroup cannot be deleted.
718 *
719 * The task_lock() exception
720 *
721 * The need for this exception arises from the action of
722 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
723 * another. It does so using cgroup_mutex, however there are
724 * several performance critical places that need to reference
725 * task->cgroup without the expense of grabbing a system global
726 * mutex. Therefore except as noted below, when dereferencing or, as
727 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
728 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
729 * the task_struct routinely used for such matters.
730 *
731 * P.S. One more locking exception. RCU is used to guard the
732 * update of a tasks cgroup pointer by cgroup_attach_task()
733 */
734
735 /**
736 * cgroup_lock - lock out any changes to cgroup structures
737 *
738 */
739 void cgroup_lock(void)
740 {
741 mutex_lock(&cgroup_mutex);
742 }
743 EXPORT_SYMBOL_GPL(cgroup_lock);
744
745 /**
746 * cgroup_unlock - release lock on cgroup changes
747 *
748 * Undo the lock taken in a previous cgroup_lock() call.
749 */
750 void cgroup_unlock(void)
751 {
752 mutex_unlock(&cgroup_mutex);
753 }
754 EXPORT_SYMBOL_GPL(cgroup_unlock);
755
756 /*
757 * A couple of forward declarations required, due to cyclic reference loop:
758 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
759 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
760 * -> cgroup_mkdir.
761 */
762
763 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
764 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
765 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
766 static int cgroup_populate_dir(struct cgroup *cgrp);
767 static const struct inode_operations cgroup_dir_inode_operations;
768 static const struct file_operations proc_cgroupstats_operations;
769
770 static struct backing_dev_info cgroup_backing_dev_info = {
771 .name = "cgroup",
772 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
773 };
774
775 static int alloc_css_id(struct cgroup_subsys *ss,
776 struct cgroup *parent, struct cgroup *child);
777
778 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
779 {
780 struct inode *inode = new_inode(sb);
781
782 if (inode) {
783 inode->i_ino = get_next_ino();
784 inode->i_mode = mode;
785 inode->i_uid = current_fsuid();
786 inode->i_gid = current_fsgid();
787 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
788 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
789 }
790 return inode;
791 }
792
793 /*
794 * Call subsys's pre_destroy handler.
795 * This is called before css refcnt check.
796 */
797 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
798 {
799 struct cgroup_subsys *ss;
800 int ret = 0;
801
802 for_each_subsys(cgrp->root, ss)
803 if (ss->pre_destroy) {
804 ret = ss->pre_destroy(ss, cgrp);
805 if (ret)
806 break;
807 }
808
809 return ret;
810 }
811
812 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
813 {
814 /* is dentry a directory ? if so, kfree() associated cgroup */
815 if (S_ISDIR(inode->i_mode)) {
816 struct cgroup *cgrp = dentry->d_fsdata;
817 struct cgroup_subsys *ss;
818 BUG_ON(!(cgroup_is_removed(cgrp)));
819 /* It's possible for external users to be holding css
820 * reference counts on a cgroup; css_put() needs to
821 * be able to access the cgroup after decrementing
822 * the reference count in order to know if it needs to
823 * queue the cgroup to be handled by the release
824 * agent */
825 synchronize_rcu();
826
827 mutex_lock(&cgroup_mutex);
828 /*
829 * Release the subsystem state objects.
830 */
831 for_each_subsys(cgrp->root, ss)
832 ss->destroy(ss, cgrp);
833
834 cgrp->root->number_of_cgroups--;
835 mutex_unlock(&cgroup_mutex);
836
837 /*
838 * Drop the active superblock reference that we took when we
839 * created the cgroup
840 */
841 deactivate_super(cgrp->root->sb);
842
843 /*
844 * if we're getting rid of the cgroup, refcount should ensure
845 * that there are no pidlists left.
846 */
847 BUG_ON(!list_empty(&cgrp->pidlists));
848
849 kfree_rcu(cgrp, rcu_head);
850 }
851 iput(inode);
852 }
853
854 static int cgroup_delete(const struct dentry *d)
855 {
856 return 1;
857 }
858
859 static void remove_dir(struct dentry *d)
860 {
861 struct dentry *parent = dget(d->d_parent);
862
863 d_delete(d);
864 simple_rmdir(parent->d_inode, d);
865 dput(parent);
866 }
867
868 static void cgroup_clear_directory(struct dentry *dentry)
869 {
870 struct list_head *node;
871
872 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
873 spin_lock(&dentry->d_lock);
874 node = dentry->d_subdirs.next;
875 while (node != &dentry->d_subdirs) {
876 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
877
878 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
879 list_del_init(node);
880 if (d->d_inode) {
881 /* This should never be called on a cgroup
882 * directory with child cgroups */
883 BUG_ON(d->d_inode->i_mode & S_IFDIR);
884 dget_dlock(d);
885 spin_unlock(&d->d_lock);
886 spin_unlock(&dentry->d_lock);
887 d_delete(d);
888 simple_unlink(dentry->d_inode, d);
889 dput(d);
890 spin_lock(&dentry->d_lock);
891 } else
892 spin_unlock(&d->d_lock);
893 node = dentry->d_subdirs.next;
894 }
895 spin_unlock(&dentry->d_lock);
896 }
897
898 /*
899 * NOTE : the dentry must have been dget()'ed
900 */
901 static void cgroup_d_remove_dir(struct dentry *dentry)
902 {
903 struct dentry *parent;
904
905 cgroup_clear_directory(dentry);
906
907 parent = dentry->d_parent;
908 spin_lock(&parent->d_lock);
909 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
910 list_del_init(&dentry->d_u.d_child);
911 spin_unlock(&dentry->d_lock);
912 spin_unlock(&parent->d_lock);
913 remove_dir(dentry);
914 }
915
916 /*
917 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
918 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
919 * reference to css->refcnt. In general, this refcnt is expected to goes down
920 * to zero, soon.
921 *
922 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
923 */
924 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
925
926 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
927 {
928 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
929 wake_up_all(&cgroup_rmdir_waitq);
930 }
931
932 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
933 {
934 css_get(css);
935 }
936
937 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
938 {
939 cgroup_wakeup_rmdir_waiter(css->cgroup);
940 css_put(css);
941 }
942
943 /*
944 * Call with cgroup_mutex held. Drops reference counts on modules, including
945 * any duplicate ones that parse_cgroupfs_options took. If this function
946 * returns an error, no reference counts are touched.
947 */
948 static int rebind_subsystems(struct cgroupfs_root *root,
949 unsigned long final_bits)
950 {
951 unsigned long added_bits, removed_bits;
952 struct cgroup *cgrp = &root->top_cgroup;
953 int i;
954
955 BUG_ON(!mutex_is_locked(&cgroup_mutex));
956
957 removed_bits = root->actual_subsys_bits & ~final_bits;
958 added_bits = final_bits & ~root->actual_subsys_bits;
959 /* Check that any added subsystems are currently free */
960 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
961 unsigned long bit = 1UL << i;
962 struct cgroup_subsys *ss = subsys[i];
963 if (!(bit & added_bits))
964 continue;
965 /*
966 * Nobody should tell us to do a subsys that doesn't exist:
967 * parse_cgroupfs_options should catch that case and refcounts
968 * ensure that subsystems won't disappear once selected.
969 */
970 BUG_ON(ss == NULL);
971 if (ss->root != &rootnode) {
972 /* Subsystem isn't free */
973 return -EBUSY;
974 }
975 }
976
977 /* Currently we don't handle adding/removing subsystems when
978 * any child cgroups exist. This is theoretically supportable
979 * but involves complex error handling, so it's being left until
980 * later */
981 if (root->number_of_cgroups > 1)
982 return -EBUSY;
983
984 /* Process each subsystem */
985 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
986 struct cgroup_subsys *ss = subsys[i];
987 unsigned long bit = 1UL << i;
988 if (bit & added_bits) {
989 /* We're binding this subsystem to this hierarchy */
990 BUG_ON(ss == NULL);
991 BUG_ON(cgrp->subsys[i]);
992 BUG_ON(!dummytop->subsys[i]);
993 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
994 mutex_lock(&ss->hierarchy_mutex);
995 cgrp->subsys[i] = dummytop->subsys[i];
996 cgrp->subsys[i]->cgroup = cgrp;
997 list_move(&ss->sibling, &root->subsys_list);
998 ss->root = root;
999 if (ss->bind)
1000 ss->bind(ss, cgrp);
1001 mutex_unlock(&ss->hierarchy_mutex);
1002 /* refcount was already taken, and we're keeping it */
1003 } else if (bit & removed_bits) {
1004 /* We're removing this subsystem */
1005 BUG_ON(ss == NULL);
1006 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1007 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1008 mutex_lock(&ss->hierarchy_mutex);
1009 if (ss->bind)
1010 ss->bind(ss, dummytop);
1011 dummytop->subsys[i]->cgroup = dummytop;
1012 cgrp->subsys[i] = NULL;
1013 subsys[i]->root = &rootnode;
1014 list_move(&ss->sibling, &rootnode.subsys_list);
1015 mutex_unlock(&ss->hierarchy_mutex);
1016 /* subsystem is now free - drop reference on module */
1017 module_put(ss->module);
1018 } else if (bit & final_bits) {
1019 /* Subsystem state should already exist */
1020 BUG_ON(ss == NULL);
1021 BUG_ON(!cgrp->subsys[i]);
1022 /*
1023 * a refcount was taken, but we already had one, so
1024 * drop the extra reference.
1025 */
1026 module_put(ss->module);
1027 #ifdef CONFIG_MODULE_UNLOAD
1028 BUG_ON(ss->module && !module_refcount(ss->module));
1029 #endif
1030 } else {
1031 /* Subsystem state shouldn't exist */
1032 BUG_ON(cgrp->subsys[i]);
1033 }
1034 }
1035 root->subsys_bits = root->actual_subsys_bits = final_bits;
1036 synchronize_rcu();
1037
1038 return 0;
1039 }
1040
1041 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1042 {
1043 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1044 struct cgroup_subsys *ss;
1045
1046 mutex_lock(&cgroup_mutex);
1047 for_each_subsys(root, ss)
1048 seq_printf(seq, ",%s", ss->name);
1049 if (test_bit(ROOT_NOPREFIX, &root->flags))
1050 seq_puts(seq, ",noprefix");
1051 if (strlen(root->release_agent_path))
1052 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1053 if (clone_children(&root->top_cgroup))
1054 seq_puts(seq, ",clone_children");
1055 if (strlen(root->name))
1056 seq_printf(seq, ",name=%s", root->name);
1057 mutex_unlock(&cgroup_mutex);
1058 return 0;
1059 }
1060
1061 struct cgroup_sb_opts {
1062 unsigned long subsys_bits;
1063 unsigned long flags;
1064 char *release_agent;
1065 bool clone_children;
1066 char *name;
1067 /* User explicitly requested empty subsystem */
1068 bool none;
1069
1070 struct cgroupfs_root *new_root;
1071
1072 };
1073
1074 /*
1075 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1076 * with cgroup_mutex held to protect the subsys[] array. This function takes
1077 * refcounts on subsystems to be used, unless it returns error, in which case
1078 * no refcounts are taken.
1079 */
1080 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1081 {
1082 char *token, *o = data;
1083 bool all_ss = false, one_ss = false;
1084 unsigned long mask = (unsigned long)-1;
1085 int i;
1086 bool module_pin_failed = false;
1087
1088 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1089
1090 #ifdef CONFIG_CPUSETS
1091 mask = ~(1UL << cpuset_subsys_id);
1092 #endif
1093
1094 memset(opts, 0, sizeof(*opts));
1095
1096 while ((token = strsep(&o, ",")) != NULL) {
1097 if (!*token)
1098 return -EINVAL;
1099 if (!strcmp(token, "none")) {
1100 /* Explicitly have no subsystems */
1101 opts->none = true;
1102 continue;
1103 }
1104 if (!strcmp(token, "all")) {
1105 /* Mutually exclusive option 'all' + subsystem name */
1106 if (one_ss)
1107 return -EINVAL;
1108 all_ss = true;
1109 continue;
1110 }
1111 if (!strcmp(token, "noprefix")) {
1112 set_bit(ROOT_NOPREFIX, &opts->flags);
1113 continue;
1114 }
1115 if (!strcmp(token, "clone_children")) {
1116 opts->clone_children = true;
1117 continue;
1118 }
1119 if (!strncmp(token, "release_agent=", 14)) {
1120 /* Specifying two release agents is forbidden */
1121 if (opts->release_agent)
1122 return -EINVAL;
1123 opts->release_agent =
1124 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1125 if (!opts->release_agent)
1126 return -ENOMEM;
1127 continue;
1128 }
1129 if (!strncmp(token, "name=", 5)) {
1130 const char *name = token + 5;
1131 /* Can't specify an empty name */
1132 if (!strlen(name))
1133 return -EINVAL;
1134 /* Must match [\w.-]+ */
1135 for (i = 0; i < strlen(name); i++) {
1136 char c = name[i];
1137 if (isalnum(c))
1138 continue;
1139 if ((c == '.') || (c == '-') || (c == '_'))
1140 continue;
1141 return -EINVAL;
1142 }
1143 /* Specifying two names is forbidden */
1144 if (opts->name)
1145 return -EINVAL;
1146 opts->name = kstrndup(name,
1147 MAX_CGROUP_ROOT_NAMELEN - 1,
1148 GFP_KERNEL);
1149 if (!opts->name)
1150 return -ENOMEM;
1151
1152 continue;
1153 }
1154
1155 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1156 struct cgroup_subsys *ss = subsys[i];
1157 if (ss == NULL)
1158 continue;
1159 if (strcmp(token, ss->name))
1160 continue;
1161 if (ss->disabled)
1162 continue;
1163
1164 /* Mutually exclusive option 'all' + subsystem name */
1165 if (all_ss)
1166 return -EINVAL;
1167 set_bit(i, &opts->subsys_bits);
1168 one_ss = true;
1169
1170 break;
1171 }
1172 if (i == CGROUP_SUBSYS_COUNT)
1173 return -ENOENT;
1174 }
1175
1176 /*
1177 * If the 'all' option was specified select all the subsystems,
1178 * otherwise 'all, 'none' and a subsystem name options were not
1179 * specified, let's default to 'all'
1180 */
1181 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1182 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1183 struct cgroup_subsys *ss = subsys[i];
1184 if (ss == NULL)
1185 continue;
1186 if (ss->disabled)
1187 continue;
1188 set_bit(i, &opts->subsys_bits);
1189 }
1190 }
1191
1192 /* Consistency checks */
1193
1194 /*
1195 * Option noprefix was introduced just for backward compatibility
1196 * with the old cpuset, so we allow noprefix only if mounting just
1197 * the cpuset subsystem.
1198 */
1199 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1200 (opts->subsys_bits & mask))
1201 return -EINVAL;
1202
1203
1204 /* Can't specify "none" and some subsystems */
1205 if (opts->subsys_bits && opts->none)
1206 return -EINVAL;
1207
1208 /*
1209 * We either have to specify by name or by subsystems. (So all
1210 * empty hierarchies must have a name).
1211 */
1212 if (!opts->subsys_bits && !opts->name)
1213 return -EINVAL;
1214
1215 /*
1216 * Grab references on all the modules we'll need, so the subsystems
1217 * don't dance around before rebind_subsystems attaches them. This may
1218 * take duplicate reference counts on a subsystem that's already used,
1219 * but rebind_subsystems handles this case.
1220 */
1221 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1222 unsigned long bit = 1UL << i;
1223
1224 if (!(bit & opts->subsys_bits))
1225 continue;
1226 if (!try_module_get(subsys[i]->module)) {
1227 module_pin_failed = true;
1228 break;
1229 }
1230 }
1231 if (module_pin_failed) {
1232 /*
1233 * oops, one of the modules was going away. this means that we
1234 * raced with a module_delete call, and to the user this is
1235 * essentially a "subsystem doesn't exist" case.
1236 */
1237 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1238 /* drop refcounts only on the ones we took */
1239 unsigned long bit = 1UL << i;
1240
1241 if (!(bit & opts->subsys_bits))
1242 continue;
1243 module_put(subsys[i]->module);
1244 }
1245 return -ENOENT;
1246 }
1247
1248 return 0;
1249 }
1250
1251 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1252 {
1253 int i;
1254 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1255 unsigned long bit = 1UL << i;
1256
1257 if (!(bit & subsys_bits))
1258 continue;
1259 module_put(subsys[i]->module);
1260 }
1261 }
1262
1263 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1264 {
1265 int ret = 0;
1266 struct cgroupfs_root *root = sb->s_fs_info;
1267 struct cgroup *cgrp = &root->top_cgroup;
1268 struct cgroup_sb_opts opts;
1269
1270 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1271 mutex_lock(&cgroup_mutex);
1272
1273 /* See what subsystems are wanted */
1274 ret = parse_cgroupfs_options(data, &opts);
1275 if (ret)
1276 goto out_unlock;
1277
1278 /* Don't allow flags or name to change at remount */
1279 if (opts.flags != root->flags ||
1280 (opts.name && strcmp(opts.name, root->name))) {
1281 ret = -EINVAL;
1282 drop_parsed_module_refcounts(opts.subsys_bits);
1283 goto out_unlock;
1284 }
1285
1286 ret = rebind_subsystems(root, opts.subsys_bits);
1287 if (ret) {
1288 drop_parsed_module_refcounts(opts.subsys_bits);
1289 goto out_unlock;
1290 }
1291
1292 /* (re)populate subsystem files */
1293 cgroup_populate_dir(cgrp);
1294
1295 if (opts.release_agent)
1296 strcpy(root->release_agent_path, opts.release_agent);
1297 out_unlock:
1298 kfree(opts.release_agent);
1299 kfree(opts.name);
1300 mutex_unlock(&cgroup_mutex);
1301 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1302 return ret;
1303 }
1304
1305 static const struct super_operations cgroup_ops = {
1306 .statfs = simple_statfs,
1307 .drop_inode = generic_delete_inode,
1308 .show_options = cgroup_show_options,
1309 .remount_fs = cgroup_remount,
1310 };
1311
1312 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1313 {
1314 INIT_LIST_HEAD(&cgrp->sibling);
1315 INIT_LIST_HEAD(&cgrp->children);
1316 INIT_LIST_HEAD(&cgrp->css_sets);
1317 INIT_LIST_HEAD(&cgrp->release_list);
1318 INIT_LIST_HEAD(&cgrp->pidlists);
1319 mutex_init(&cgrp->pidlist_mutex);
1320 INIT_LIST_HEAD(&cgrp->event_list);
1321 spin_lock_init(&cgrp->event_list_lock);
1322 }
1323
1324 static void init_cgroup_root(struct cgroupfs_root *root)
1325 {
1326 struct cgroup *cgrp = &root->top_cgroup;
1327 INIT_LIST_HEAD(&root->subsys_list);
1328 INIT_LIST_HEAD(&root->root_list);
1329 root->number_of_cgroups = 1;
1330 cgrp->root = root;
1331 cgrp->top_cgroup = cgrp;
1332 init_cgroup_housekeeping(cgrp);
1333 }
1334
1335 static bool init_root_id(struct cgroupfs_root *root)
1336 {
1337 int ret = 0;
1338
1339 do {
1340 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1341 return false;
1342 spin_lock(&hierarchy_id_lock);
1343 /* Try to allocate the next unused ID */
1344 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1345 &root->hierarchy_id);
1346 if (ret == -ENOSPC)
1347 /* Try again starting from 0 */
1348 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1349 if (!ret) {
1350 next_hierarchy_id = root->hierarchy_id + 1;
1351 } else if (ret != -EAGAIN) {
1352 /* Can only get here if the 31-bit IDR is full ... */
1353 BUG_ON(ret);
1354 }
1355 spin_unlock(&hierarchy_id_lock);
1356 } while (ret);
1357 return true;
1358 }
1359
1360 static int cgroup_test_super(struct super_block *sb, void *data)
1361 {
1362 struct cgroup_sb_opts *opts = data;
1363 struct cgroupfs_root *root = sb->s_fs_info;
1364
1365 /* If we asked for a name then it must match */
1366 if (opts->name && strcmp(opts->name, root->name))
1367 return 0;
1368
1369 /*
1370 * If we asked for subsystems (or explicitly for no
1371 * subsystems) then they must match
1372 */
1373 if ((opts->subsys_bits || opts->none)
1374 && (opts->subsys_bits != root->subsys_bits))
1375 return 0;
1376
1377 return 1;
1378 }
1379
1380 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1381 {
1382 struct cgroupfs_root *root;
1383
1384 if (!opts->subsys_bits && !opts->none)
1385 return NULL;
1386
1387 root = kzalloc(sizeof(*root), GFP_KERNEL);
1388 if (!root)
1389 return ERR_PTR(-ENOMEM);
1390
1391 if (!init_root_id(root)) {
1392 kfree(root);
1393 return ERR_PTR(-ENOMEM);
1394 }
1395 init_cgroup_root(root);
1396
1397 root->subsys_bits = opts->subsys_bits;
1398 root->flags = opts->flags;
1399 if (opts->release_agent)
1400 strcpy(root->release_agent_path, opts->release_agent);
1401 if (opts->name)
1402 strcpy(root->name, opts->name);
1403 if (opts->clone_children)
1404 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1405 return root;
1406 }
1407
1408 static void cgroup_drop_root(struct cgroupfs_root *root)
1409 {
1410 if (!root)
1411 return;
1412
1413 BUG_ON(!root->hierarchy_id);
1414 spin_lock(&hierarchy_id_lock);
1415 ida_remove(&hierarchy_ida, root->hierarchy_id);
1416 spin_unlock(&hierarchy_id_lock);
1417 kfree(root);
1418 }
1419
1420 static int cgroup_set_super(struct super_block *sb, void *data)
1421 {
1422 int ret;
1423 struct cgroup_sb_opts *opts = data;
1424
1425 /* If we don't have a new root, we can't set up a new sb */
1426 if (!opts->new_root)
1427 return -EINVAL;
1428
1429 BUG_ON(!opts->subsys_bits && !opts->none);
1430
1431 ret = set_anon_super(sb, NULL);
1432 if (ret)
1433 return ret;
1434
1435 sb->s_fs_info = opts->new_root;
1436 opts->new_root->sb = sb;
1437
1438 sb->s_blocksize = PAGE_CACHE_SIZE;
1439 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1440 sb->s_magic = CGROUP_SUPER_MAGIC;
1441 sb->s_op = &cgroup_ops;
1442
1443 return 0;
1444 }
1445
1446 static int cgroup_get_rootdir(struct super_block *sb)
1447 {
1448 static const struct dentry_operations cgroup_dops = {
1449 .d_iput = cgroup_diput,
1450 .d_delete = cgroup_delete,
1451 };
1452
1453 struct inode *inode =
1454 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1455 struct dentry *dentry;
1456
1457 if (!inode)
1458 return -ENOMEM;
1459
1460 inode->i_fop = &simple_dir_operations;
1461 inode->i_op = &cgroup_dir_inode_operations;
1462 /* directories start off with i_nlink == 2 (for "." entry) */
1463 inc_nlink(inode);
1464 dentry = d_alloc_root(inode);
1465 if (!dentry) {
1466 iput(inode);
1467 return -ENOMEM;
1468 }
1469 sb->s_root = dentry;
1470 /* for everything else we want ->d_op set */
1471 sb->s_d_op = &cgroup_dops;
1472 return 0;
1473 }
1474
1475 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1476 int flags, const char *unused_dev_name,
1477 void *data)
1478 {
1479 struct cgroup_sb_opts opts;
1480 struct cgroupfs_root *root;
1481 int ret = 0;
1482 struct super_block *sb;
1483 struct cgroupfs_root *new_root;
1484
1485 /* First find the desired set of subsystems */
1486 mutex_lock(&cgroup_mutex);
1487 ret = parse_cgroupfs_options(data, &opts);
1488 mutex_unlock(&cgroup_mutex);
1489 if (ret)
1490 goto out_err;
1491
1492 /*
1493 * Allocate a new cgroup root. We may not need it if we're
1494 * reusing an existing hierarchy.
1495 */
1496 new_root = cgroup_root_from_opts(&opts);
1497 if (IS_ERR(new_root)) {
1498 ret = PTR_ERR(new_root);
1499 goto drop_modules;
1500 }
1501 opts.new_root = new_root;
1502
1503 /* Locate an existing or new sb for this hierarchy */
1504 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1505 if (IS_ERR(sb)) {
1506 ret = PTR_ERR(sb);
1507 cgroup_drop_root(opts.new_root);
1508 goto drop_modules;
1509 }
1510
1511 root = sb->s_fs_info;
1512 BUG_ON(!root);
1513 if (root == opts.new_root) {
1514 /* We used the new root structure, so this is a new hierarchy */
1515 struct list_head tmp_cg_links;
1516 struct cgroup *root_cgrp = &root->top_cgroup;
1517 struct inode *inode;
1518 struct cgroupfs_root *existing_root;
1519 const struct cred *cred;
1520 int i;
1521
1522 BUG_ON(sb->s_root != NULL);
1523
1524 ret = cgroup_get_rootdir(sb);
1525 if (ret)
1526 goto drop_new_super;
1527 inode = sb->s_root->d_inode;
1528
1529 mutex_lock(&inode->i_mutex);
1530 mutex_lock(&cgroup_mutex);
1531
1532 if (strlen(root->name)) {
1533 /* Check for name clashes with existing mounts */
1534 for_each_active_root(existing_root) {
1535 if (!strcmp(existing_root->name, root->name)) {
1536 ret = -EBUSY;
1537 mutex_unlock(&cgroup_mutex);
1538 mutex_unlock(&inode->i_mutex);
1539 goto drop_new_super;
1540 }
1541 }
1542 }
1543
1544 /*
1545 * We're accessing css_set_count without locking
1546 * css_set_lock here, but that's OK - it can only be
1547 * increased by someone holding cgroup_lock, and
1548 * that's us. The worst that can happen is that we
1549 * have some link structures left over
1550 */
1551 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1552 if (ret) {
1553 mutex_unlock(&cgroup_mutex);
1554 mutex_unlock(&inode->i_mutex);
1555 goto drop_new_super;
1556 }
1557
1558 ret = rebind_subsystems(root, root->subsys_bits);
1559 if (ret == -EBUSY) {
1560 mutex_unlock(&cgroup_mutex);
1561 mutex_unlock(&inode->i_mutex);
1562 free_cg_links(&tmp_cg_links);
1563 goto drop_new_super;
1564 }
1565 /*
1566 * There must be no failure case after here, since rebinding
1567 * takes care of subsystems' refcounts, which are explicitly
1568 * dropped in the failure exit path.
1569 */
1570
1571 /* EBUSY should be the only error here */
1572 BUG_ON(ret);
1573
1574 list_add(&root->root_list, &roots);
1575 root_count++;
1576
1577 sb->s_root->d_fsdata = root_cgrp;
1578 root->top_cgroup.dentry = sb->s_root;
1579
1580 /* Link the top cgroup in this hierarchy into all
1581 * the css_set objects */
1582 write_lock(&css_set_lock);
1583 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1584 struct hlist_head *hhead = &css_set_table[i];
1585 struct hlist_node *node;
1586 struct css_set *cg;
1587
1588 hlist_for_each_entry(cg, node, hhead, hlist)
1589 link_css_set(&tmp_cg_links, cg, root_cgrp);
1590 }
1591 write_unlock(&css_set_lock);
1592
1593 free_cg_links(&tmp_cg_links);
1594
1595 BUG_ON(!list_empty(&root_cgrp->sibling));
1596 BUG_ON(!list_empty(&root_cgrp->children));
1597 BUG_ON(root->number_of_cgroups != 1);
1598
1599 cred = override_creds(&init_cred);
1600 cgroup_populate_dir(root_cgrp);
1601 revert_creds(cred);
1602 mutex_unlock(&cgroup_mutex);
1603 mutex_unlock(&inode->i_mutex);
1604 } else {
1605 /*
1606 * We re-used an existing hierarchy - the new root (if
1607 * any) is not needed
1608 */
1609 cgroup_drop_root(opts.new_root);
1610 /* no subsys rebinding, so refcounts don't change */
1611 drop_parsed_module_refcounts(opts.subsys_bits);
1612 }
1613
1614 kfree(opts.release_agent);
1615 kfree(opts.name);
1616 return dget(sb->s_root);
1617
1618 drop_new_super:
1619 deactivate_locked_super(sb);
1620 drop_modules:
1621 drop_parsed_module_refcounts(opts.subsys_bits);
1622 out_err:
1623 kfree(opts.release_agent);
1624 kfree(opts.name);
1625 return ERR_PTR(ret);
1626 }
1627
1628 static void cgroup_kill_sb(struct super_block *sb) {
1629 struct cgroupfs_root *root = sb->s_fs_info;
1630 struct cgroup *cgrp = &root->top_cgroup;
1631 int ret;
1632 struct cg_cgroup_link *link;
1633 struct cg_cgroup_link *saved_link;
1634
1635 BUG_ON(!root);
1636
1637 BUG_ON(root->number_of_cgroups != 1);
1638 BUG_ON(!list_empty(&cgrp->children));
1639 BUG_ON(!list_empty(&cgrp->sibling));
1640
1641 mutex_lock(&cgroup_mutex);
1642
1643 /* Rebind all subsystems back to the default hierarchy */
1644 ret = rebind_subsystems(root, 0);
1645 /* Shouldn't be able to fail ... */
1646 BUG_ON(ret);
1647
1648 /*
1649 * Release all the links from css_sets to this hierarchy's
1650 * root cgroup
1651 */
1652 write_lock(&css_set_lock);
1653
1654 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1655 cgrp_link_list) {
1656 list_del(&link->cg_link_list);
1657 list_del(&link->cgrp_link_list);
1658 kfree(link);
1659 }
1660 write_unlock(&css_set_lock);
1661
1662 if (!list_empty(&root->root_list)) {
1663 list_del(&root->root_list);
1664 root_count--;
1665 }
1666
1667 mutex_unlock(&cgroup_mutex);
1668
1669 kill_litter_super(sb);
1670 cgroup_drop_root(root);
1671 }
1672
1673 static struct file_system_type cgroup_fs_type = {
1674 .name = "cgroup",
1675 .mount = cgroup_mount,
1676 .kill_sb = cgroup_kill_sb,
1677 };
1678
1679 static struct kobject *cgroup_kobj;
1680
1681 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1682 {
1683 return dentry->d_fsdata;
1684 }
1685
1686 static inline struct cftype *__d_cft(struct dentry *dentry)
1687 {
1688 return dentry->d_fsdata;
1689 }
1690
1691 /**
1692 * cgroup_path - generate the path of a cgroup
1693 * @cgrp: the cgroup in question
1694 * @buf: the buffer to write the path into
1695 * @buflen: the length of the buffer
1696 *
1697 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1698 * reference. Writes path of cgroup into buf. Returns 0 on success,
1699 * -errno on error.
1700 */
1701 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1702 {
1703 char *start;
1704 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1705 rcu_read_lock_held() ||
1706 cgroup_lock_is_held());
1707
1708 if (!dentry || cgrp == dummytop) {
1709 /*
1710 * Inactive subsystems have no dentry for their root
1711 * cgroup
1712 */
1713 strcpy(buf, "/");
1714 return 0;
1715 }
1716
1717 start = buf + buflen;
1718
1719 *--start = '\0';
1720 for (;;) {
1721 int len = dentry->d_name.len;
1722
1723 if ((start -= len) < buf)
1724 return -ENAMETOOLONG;
1725 memcpy(start, dentry->d_name.name, len);
1726 cgrp = cgrp->parent;
1727 if (!cgrp)
1728 break;
1729
1730 dentry = rcu_dereference_check(cgrp->dentry,
1731 rcu_read_lock_held() ||
1732 cgroup_lock_is_held());
1733 if (!cgrp->parent)
1734 continue;
1735 if (--start < buf)
1736 return -ENAMETOOLONG;
1737 *start = '/';
1738 }
1739 memmove(buf, start, buf + buflen - start);
1740 return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(cgroup_path);
1743
1744 /*
1745 * cgroup_task_migrate - move a task from one cgroup to another.
1746 *
1747 * 'guarantee' is set if the caller promises that a new css_set for the task
1748 * will already exist. If not set, this function might sleep, and can fail with
1749 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1750 */
1751 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1752 struct task_struct *tsk, bool guarantee)
1753 {
1754 struct css_set *oldcg;
1755 struct css_set *newcg;
1756
1757 /*
1758 * get old css_set. we need to take task_lock and refcount it, because
1759 * an exiting task can change its css_set to init_css_set and drop its
1760 * old one without taking cgroup_mutex.
1761 */
1762 task_lock(tsk);
1763 oldcg = tsk->cgroups;
1764 get_css_set(oldcg);
1765 task_unlock(tsk);
1766
1767 /* locate or allocate a new css_set for this task. */
1768 if (guarantee) {
1769 /* we know the css_set we want already exists. */
1770 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1771 read_lock(&css_set_lock);
1772 newcg = find_existing_css_set(oldcg, cgrp, template);
1773 BUG_ON(!newcg);
1774 get_css_set(newcg);
1775 read_unlock(&css_set_lock);
1776 } else {
1777 might_sleep();
1778 /* find_css_set will give us newcg already referenced. */
1779 newcg = find_css_set(oldcg, cgrp);
1780 if (!newcg) {
1781 put_css_set(oldcg);
1782 return -ENOMEM;
1783 }
1784 }
1785 put_css_set(oldcg);
1786
1787 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1788 task_lock(tsk);
1789 if (tsk->flags & PF_EXITING) {
1790 task_unlock(tsk);
1791 put_css_set(newcg);
1792 return -ESRCH;
1793 }
1794 rcu_assign_pointer(tsk->cgroups, newcg);
1795 task_unlock(tsk);
1796
1797 /* Update the css_set linked lists if we're using them */
1798 write_lock(&css_set_lock);
1799 if (!list_empty(&tsk->cg_list))
1800 list_move(&tsk->cg_list, &newcg->tasks);
1801 write_unlock(&css_set_lock);
1802
1803 /*
1804 * We just gained a reference on oldcg by taking it from the task. As
1805 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1806 * it here; it will be freed under RCU.
1807 */
1808 put_css_set(oldcg);
1809
1810 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1811 return 0;
1812 }
1813
1814 /**
1815 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1816 * @cgrp: the cgroup the task is attaching to
1817 * @tsk: the task to be attached
1818 *
1819 * Call holding cgroup_mutex. May take task_lock of
1820 * the task 'tsk' during call.
1821 */
1822 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1823 {
1824 int retval;
1825 struct cgroup_subsys *ss, *failed_ss = NULL;
1826 struct cgroup *oldcgrp;
1827 struct cgroupfs_root *root = cgrp->root;
1828
1829 /* Nothing to do if the task is already in that cgroup */
1830 oldcgrp = task_cgroup_from_root(tsk, root);
1831 if (cgrp == oldcgrp)
1832 return 0;
1833
1834 for_each_subsys(root, ss) {
1835 if (ss->can_attach) {
1836 retval = ss->can_attach(ss, cgrp, tsk);
1837 if (retval) {
1838 /*
1839 * Remember on which subsystem the can_attach()
1840 * failed, so that we only call cancel_attach()
1841 * against the subsystems whose can_attach()
1842 * succeeded. (See below)
1843 */
1844 failed_ss = ss;
1845 goto out;
1846 }
1847 }
1848 if (ss->can_attach_task) {
1849 retval = ss->can_attach_task(cgrp, tsk);
1850 if (retval) {
1851 failed_ss = ss;
1852 goto out;
1853 }
1854 }
1855 }
1856
1857 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1858 if (retval)
1859 goto out;
1860
1861 for_each_subsys(root, ss) {
1862 if (ss->pre_attach)
1863 ss->pre_attach(cgrp);
1864 if (ss->attach_task)
1865 ss->attach_task(cgrp, tsk);
1866 if (ss->attach)
1867 ss->attach(ss, cgrp, oldcgrp, tsk);
1868 }
1869
1870 synchronize_rcu();
1871
1872 /*
1873 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1874 * is no longer empty.
1875 */
1876 cgroup_wakeup_rmdir_waiter(cgrp);
1877 out:
1878 if (retval) {
1879 for_each_subsys(root, ss) {
1880 if (ss == failed_ss)
1881 /*
1882 * This subsystem was the one that failed the
1883 * can_attach() check earlier, so we don't need
1884 * to call cancel_attach() against it or any
1885 * remaining subsystems.
1886 */
1887 break;
1888 if (ss->cancel_attach)
1889 ss->cancel_attach(ss, cgrp, tsk);
1890 }
1891 }
1892 return retval;
1893 }
1894
1895 /**
1896 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1897 * @from: attach to all cgroups of a given task
1898 * @tsk: the task to be attached
1899 */
1900 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1901 {
1902 struct cgroupfs_root *root;
1903 int retval = 0;
1904
1905 cgroup_lock();
1906 for_each_active_root(root) {
1907 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1908
1909 retval = cgroup_attach_task(from_cg, tsk);
1910 if (retval)
1911 break;
1912 }
1913 cgroup_unlock();
1914
1915 return retval;
1916 }
1917 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1918
1919 /*
1920 * cgroup_attach_proc works in two stages, the first of which prefetches all
1921 * new css_sets needed (to make sure we have enough memory before committing
1922 * to the move) and stores them in a list of entries of the following type.
1923 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1924 */
1925 struct cg_list_entry {
1926 struct css_set *cg;
1927 struct list_head links;
1928 };
1929
1930 static bool css_set_check_fetched(struct cgroup *cgrp,
1931 struct task_struct *tsk, struct css_set *cg,
1932 struct list_head *newcg_list)
1933 {
1934 struct css_set *newcg;
1935 struct cg_list_entry *cg_entry;
1936 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1937
1938 read_lock(&css_set_lock);
1939 newcg = find_existing_css_set(cg, cgrp, template);
1940 if (newcg)
1941 get_css_set(newcg);
1942 read_unlock(&css_set_lock);
1943
1944 /* doesn't exist at all? */
1945 if (!newcg)
1946 return false;
1947 /* see if it's already in the list */
1948 list_for_each_entry(cg_entry, newcg_list, links) {
1949 if (cg_entry->cg == newcg) {
1950 put_css_set(newcg);
1951 return true;
1952 }
1953 }
1954
1955 /* not found */
1956 put_css_set(newcg);
1957 return false;
1958 }
1959
1960 /*
1961 * Find the new css_set and store it in the list in preparation for moving the
1962 * given task to the given cgroup. Returns 0 or -ENOMEM.
1963 */
1964 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1965 struct list_head *newcg_list)
1966 {
1967 struct css_set *newcg;
1968 struct cg_list_entry *cg_entry;
1969
1970 /* ensure a new css_set will exist for this thread */
1971 newcg = find_css_set(cg, cgrp);
1972 if (!newcg)
1973 return -ENOMEM;
1974 /* add it to the list */
1975 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1976 if (!cg_entry) {
1977 put_css_set(newcg);
1978 return -ENOMEM;
1979 }
1980 cg_entry->cg = newcg;
1981 list_add(&cg_entry->links, newcg_list);
1982 return 0;
1983 }
1984
1985 /**
1986 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1987 * @cgrp: the cgroup to attach to
1988 * @leader: the threadgroup leader task_struct of the group to be attached
1989 *
1990 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1991 * take task_lock of each thread in leader's threadgroup individually in turn.
1992 */
1993 int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1994 {
1995 int retval, i, group_size;
1996 struct cgroup_subsys *ss, *failed_ss = NULL;
1997 bool cancel_failed_ss = false;
1998 /* guaranteed to be initialized later, but the compiler needs this */
1999 struct cgroup *oldcgrp = NULL;
2000 struct css_set *oldcg;
2001 struct cgroupfs_root *root = cgrp->root;
2002 /* threadgroup list cursor and array */
2003 struct task_struct *tsk;
2004 struct flex_array *group;
2005 /*
2006 * we need to make sure we have css_sets for all the tasks we're
2007 * going to move -before- we actually start moving them, so that in
2008 * case we get an ENOMEM we can bail out before making any changes.
2009 */
2010 struct list_head newcg_list;
2011 struct cg_list_entry *cg_entry, *temp_nobe;
2012
2013 /*
2014 * step 0: in order to do expensive, possibly blocking operations for
2015 * every thread, we cannot iterate the thread group list, since it needs
2016 * rcu or tasklist locked. instead, build an array of all threads in the
2017 * group - threadgroup_fork_lock prevents new threads from appearing,
2018 * and if threads exit, this will just be an over-estimate.
2019 */
2020 group_size = get_nr_threads(leader);
2021 /* flex_array supports very large thread-groups better than kmalloc. */
2022 group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2023 GFP_KERNEL);
2024 if (!group)
2025 return -ENOMEM;
2026 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2027 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2028 if (retval)
2029 goto out_free_group_list;
2030
2031 /* prevent changes to the threadgroup list while we take a snapshot. */
2032 rcu_read_lock();
2033 if (!thread_group_leader(leader)) {
2034 /*
2035 * a race with de_thread from another thread's exec() may strip
2036 * us of our leadership, making while_each_thread unsafe to use
2037 * on this task. if this happens, there is no choice but to
2038 * throw this task away and try again (from cgroup_procs_write);
2039 * this is "double-double-toil-and-trouble-check locking".
2040 */
2041 rcu_read_unlock();
2042 retval = -EAGAIN;
2043 goto out_free_group_list;
2044 }
2045 /* take a reference on each task in the group to go in the array. */
2046 tsk = leader;
2047 i = 0;
2048 do {
2049 /* as per above, nr_threads may decrease, but not increase. */
2050 BUG_ON(i >= group_size);
2051 get_task_struct(tsk);
2052 /*
2053 * saying GFP_ATOMIC has no effect here because we did prealloc
2054 * earlier, but it's good form to communicate our expectations.
2055 */
2056 retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2057 BUG_ON(retval != 0);
2058 i++;
2059 } while_each_thread(leader, tsk);
2060 /* remember the number of threads in the array for later. */
2061 group_size = i;
2062 rcu_read_unlock();
2063
2064 /*
2065 * step 1: check that we can legitimately attach to the cgroup.
2066 */
2067 for_each_subsys(root, ss) {
2068 if (ss->can_attach) {
2069 retval = ss->can_attach(ss, cgrp, leader);
2070 if (retval) {
2071 failed_ss = ss;
2072 goto out_cancel_attach;
2073 }
2074 }
2075 /* a callback to be run on every thread in the threadgroup. */
2076 if (ss->can_attach_task) {
2077 /* run on each task in the threadgroup. */
2078 for (i = 0; i < group_size; i++) {
2079 tsk = flex_array_get_ptr(group, i);
2080 retval = ss->can_attach_task(cgrp, tsk);
2081 if (retval) {
2082 failed_ss = ss;
2083 cancel_failed_ss = true;
2084 goto out_cancel_attach;
2085 }
2086 }
2087 }
2088 }
2089
2090 /*
2091 * step 2: make sure css_sets exist for all threads to be migrated.
2092 * we use find_css_set, which allocates a new one if necessary.
2093 */
2094 INIT_LIST_HEAD(&newcg_list);
2095 for (i = 0; i < group_size; i++) {
2096 tsk = flex_array_get_ptr(group, i);
2097 /* nothing to do if this task is already in the cgroup */
2098 oldcgrp = task_cgroup_from_root(tsk, root);
2099 if (cgrp == oldcgrp)
2100 continue;
2101 /* get old css_set pointer */
2102 task_lock(tsk);
2103 if (tsk->flags & PF_EXITING) {
2104 /* ignore this task if it's going away */
2105 task_unlock(tsk);
2106 continue;
2107 }
2108 oldcg = tsk->cgroups;
2109 get_css_set(oldcg);
2110 task_unlock(tsk);
2111 /* see if the new one for us is already in the list? */
2112 if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2113 /* was already there, nothing to do. */
2114 put_css_set(oldcg);
2115 } else {
2116 /* we don't already have it. get new one. */
2117 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2118 put_css_set(oldcg);
2119 if (retval)
2120 goto out_list_teardown;
2121 }
2122 }
2123
2124 /*
2125 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2126 * to move all tasks to the new cgroup, calling ss->attach_task for each
2127 * one along the way. there are no failure cases after here, so this is
2128 * the commit point.
2129 */
2130 for_each_subsys(root, ss) {
2131 if (ss->pre_attach)
2132 ss->pre_attach(cgrp);
2133 }
2134 for (i = 0; i < group_size; i++) {
2135 tsk = flex_array_get_ptr(group, i);
2136 /* leave current thread as it is if it's already there */
2137 oldcgrp = task_cgroup_from_root(tsk, root);
2138 if (cgrp == oldcgrp)
2139 continue;
2140 /* attach each task to each subsystem */
2141 for_each_subsys(root, ss) {
2142 if (ss->attach_task)
2143 ss->attach_task(cgrp, tsk);
2144 }
2145 /* if the thread is PF_EXITING, it can just get skipped. */
2146 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2147 BUG_ON(retval != 0 && retval != -ESRCH);
2148 }
2149 /* nothing is sensitive to fork() after this point. */
2150
2151 /*
2152 * step 4: do expensive, non-thread-specific subsystem callbacks.
2153 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2154 * being moved, this call will need to be reworked to communicate that.
2155 */
2156 for_each_subsys(root, ss) {
2157 if (ss->attach)
2158 ss->attach(ss, cgrp, oldcgrp, leader);
2159 }
2160
2161 /*
2162 * step 5: success! and cleanup
2163 */
2164 synchronize_rcu();
2165 cgroup_wakeup_rmdir_waiter(cgrp);
2166 retval = 0;
2167 out_list_teardown:
2168 /* clean up the list of prefetched css_sets. */
2169 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2170 list_del(&cg_entry->links);
2171 put_css_set(cg_entry->cg);
2172 kfree(cg_entry);
2173 }
2174 out_cancel_attach:
2175 /* same deal as in cgroup_attach_task */
2176 if (retval) {
2177 for_each_subsys(root, ss) {
2178 if (ss == failed_ss) {
2179 if (cancel_failed_ss && ss->cancel_attach)
2180 ss->cancel_attach(ss, cgrp, leader);
2181 break;
2182 }
2183 if (ss->cancel_attach)
2184 ss->cancel_attach(ss, cgrp, leader);
2185 }
2186 }
2187 /* clean up the array of referenced threads in the group. */
2188 for (i = 0; i < group_size; i++) {
2189 tsk = flex_array_get_ptr(group, i);
2190 put_task_struct(tsk);
2191 }
2192 out_free_group_list:
2193 flex_array_free(group);
2194 return retval;
2195 }
2196
2197 /*
2198 * Find the task_struct of the task to attach by vpid and pass it along to the
2199 * function to attach either it or all tasks in its threadgroup. Will take
2200 * cgroup_mutex; may take task_lock of task.
2201 */
2202 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2203 {
2204 struct task_struct *tsk;
2205 const struct cred *cred = current_cred(), *tcred;
2206 int ret;
2207
2208 if (!cgroup_lock_live_group(cgrp))
2209 return -ENODEV;
2210
2211 if (pid) {
2212 rcu_read_lock();
2213 tsk = find_task_by_vpid(pid);
2214 if (!tsk) {
2215 rcu_read_unlock();
2216 cgroup_unlock();
2217 return -ESRCH;
2218 }
2219 if (threadgroup) {
2220 /*
2221 * RCU protects this access, since tsk was found in the
2222 * tid map. a race with de_thread may cause group_leader
2223 * to stop being the leader, but cgroup_attach_proc will
2224 * detect it later.
2225 */
2226 tsk = tsk->group_leader;
2227 } else if (tsk->flags & PF_EXITING) {
2228 /* optimization for the single-task-only case */
2229 rcu_read_unlock();
2230 cgroup_unlock();
2231 return -ESRCH;
2232 }
2233
2234 /*
2235 * even if we're attaching all tasks in the thread group, we
2236 * only need to check permissions on one of them.
2237 */
2238 tcred = __task_cred(tsk);
2239 if (cred->euid &&
2240 cred->euid != tcred->uid &&
2241 cred->euid != tcred->suid) {
2242 rcu_read_unlock();
2243 cgroup_unlock();
2244 return -EACCES;
2245 }
2246 get_task_struct(tsk);
2247 rcu_read_unlock();
2248 } else {
2249 if (threadgroup)
2250 tsk = current->group_leader;
2251 else
2252 tsk = current;
2253 get_task_struct(tsk);
2254 }
2255
2256 if (threadgroup) {
2257 threadgroup_fork_write_lock(tsk);
2258 ret = cgroup_attach_proc(cgrp, tsk);
2259 threadgroup_fork_write_unlock(tsk);
2260 } else {
2261 ret = cgroup_attach_task(cgrp, tsk);
2262 }
2263 put_task_struct(tsk);
2264 cgroup_unlock();
2265 return ret;
2266 }
2267
2268 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2269 {
2270 return attach_task_by_pid(cgrp, pid, false);
2271 }
2272
2273 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2274 {
2275 int ret;
2276 do {
2277 /*
2278 * attach_proc fails with -EAGAIN if threadgroup leadership
2279 * changes in the middle of the operation, in which case we need
2280 * to find the task_struct for the new leader and start over.
2281 */
2282 ret = attach_task_by_pid(cgrp, tgid, true);
2283 } while (ret == -EAGAIN);
2284 return ret;
2285 }
2286
2287 /**
2288 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2289 * @cgrp: the cgroup to be checked for liveness
2290 *
2291 * On success, returns true; the lock should be later released with
2292 * cgroup_unlock(). On failure returns false with no lock held.
2293 */
2294 bool cgroup_lock_live_group(struct cgroup *cgrp)
2295 {
2296 mutex_lock(&cgroup_mutex);
2297 if (cgroup_is_removed(cgrp)) {
2298 mutex_unlock(&cgroup_mutex);
2299 return false;
2300 }
2301 return true;
2302 }
2303 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2304
2305 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2306 const char *buffer)
2307 {
2308 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2309 if (strlen(buffer) >= PATH_MAX)
2310 return -EINVAL;
2311 if (!cgroup_lock_live_group(cgrp))
2312 return -ENODEV;
2313 strcpy(cgrp->root->release_agent_path, buffer);
2314 cgroup_unlock();
2315 return 0;
2316 }
2317
2318 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2319 struct seq_file *seq)
2320 {
2321 if (!cgroup_lock_live_group(cgrp))
2322 return -ENODEV;
2323 seq_puts(seq, cgrp->root->release_agent_path);
2324 seq_putc(seq, '\n');
2325 cgroup_unlock();
2326 return 0;
2327 }
2328
2329 /* A buffer size big enough for numbers or short strings */
2330 #define CGROUP_LOCAL_BUFFER_SIZE 64
2331
2332 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2333 struct file *file,
2334 const char __user *userbuf,
2335 size_t nbytes, loff_t *unused_ppos)
2336 {
2337 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2338 int retval = 0;
2339 char *end;
2340
2341 if (!nbytes)
2342 return -EINVAL;
2343 if (nbytes >= sizeof(buffer))
2344 return -E2BIG;
2345 if (copy_from_user(buffer, userbuf, nbytes))
2346 return -EFAULT;
2347
2348 buffer[nbytes] = 0; /* nul-terminate */
2349 if (cft->write_u64) {
2350 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2351 if (*end)
2352 return -EINVAL;
2353 retval = cft->write_u64(cgrp, cft, val);
2354 } else {
2355 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2356 if (*end)
2357 return -EINVAL;
2358 retval = cft->write_s64(cgrp, cft, val);
2359 }
2360 if (!retval)
2361 retval = nbytes;
2362 return retval;
2363 }
2364
2365 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2366 struct file *file,
2367 const char __user *userbuf,
2368 size_t nbytes, loff_t *unused_ppos)
2369 {
2370 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2371 int retval = 0;
2372 size_t max_bytes = cft->max_write_len;
2373 char *buffer = local_buffer;
2374
2375 if (!max_bytes)
2376 max_bytes = sizeof(local_buffer) - 1;
2377 if (nbytes >= max_bytes)
2378 return -E2BIG;
2379 /* Allocate a dynamic buffer if we need one */
2380 if (nbytes >= sizeof(local_buffer)) {
2381 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2382 if (buffer == NULL)
2383 return -ENOMEM;
2384 }
2385 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2386 retval = -EFAULT;
2387 goto out;
2388 }
2389
2390 buffer[nbytes] = 0; /* nul-terminate */
2391 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2392 if (!retval)
2393 retval = nbytes;
2394 out:
2395 if (buffer != local_buffer)
2396 kfree(buffer);
2397 return retval;
2398 }
2399
2400 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2401 size_t nbytes, loff_t *ppos)
2402 {
2403 struct cftype *cft = __d_cft(file->f_dentry);
2404 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2405
2406 if (cgroup_is_removed(cgrp))
2407 return -ENODEV;
2408 if (cft->write)
2409 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2410 if (cft->write_u64 || cft->write_s64)
2411 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2412 if (cft->write_string)
2413 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2414 if (cft->trigger) {
2415 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2416 return ret ? ret : nbytes;
2417 }
2418 return -EINVAL;
2419 }
2420
2421 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2422 struct file *file,
2423 char __user *buf, size_t nbytes,
2424 loff_t *ppos)
2425 {
2426 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2427 u64 val = cft->read_u64(cgrp, cft);
2428 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2429
2430 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2431 }
2432
2433 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2434 struct file *file,
2435 char __user *buf, size_t nbytes,
2436 loff_t *ppos)
2437 {
2438 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2439 s64 val = cft->read_s64(cgrp, cft);
2440 int len = sprintf(tmp, "%lld\n", (long long) val);
2441
2442 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2443 }
2444
2445 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2446 size_t nbytes, loff_t *ppos)
2447 {
2448 struct cftype *cft = __d_cft(file->f_dentry);
2449 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2450
2451 if (cgroup_is_removed(cgrp))
2452 return -ENODEV;
2453
2454 if (cft->read)
2455 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2456 if (cft->read_u64)
2457 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2458 if (cft->read_s64)
2459 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2460 return -EINVAL;
2461 }
2462
2463 /*
2464 * seqfile ops/methods for returning structured data. Currently just
2465 * supports string->u64 maps, but can be extended in future.
2466 */
2467
2468 struct cgroup_seqfile_state {
2469 struct cftype *cft;
2470 struct cgroup *cgroup;
2471 };
2472
2473 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2474 {
2475 struct seq_file *sf = cb->state;
2476 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2477 }
2478
2479 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2480 {
2481 struct cgroup_seqfile_state *state = m->private;
2482 struct cftype *cft = state->cft;
2483 if (cft->read_map) {
2484 struct cgroup_map_cb cb = {
2485 .fill = cgroup_map_add,
2486 .state = m,
2487 };
2488 return cft->read_map(state->cgroup, cft, &cb);
2489 }
2490 return cft->read_seq_string(state->cgroup, cft, m);
2491 }
2492
2493 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2494 {
2495 struct seq_file *seq = file->private_data;
2496 kfree(seq->private);
2497 return single_release(inode, file);
2498 }
2499
2500 static const struct file_operations cgroup_seqfile_operations = {
2501 .read = seq_read,
2502 .write = cgroup_file_write,
2503 .llseek = seq_lseek,
2504 .release = cgroup_seqfile_release,
2505 };
2506
2507 static int cgroup_file_open(struct inode *inode, struct file *file)
2508 {
2509 int err;
2510 struct cftype *cft;
2511
2512 err = generic_file_open(inode, file);
2513 if (err)
2514 return err;
2515 cft = __d_cft(file->f_dentry);
2516
2517 if (cft->read_map || cft->read_seq_string) {
2518 struct cgroup_seqfile_state *state =
2519 kzalloc(sizeof(*state), GFP_USER);
2520 if (!state)
2521 return -ENOMEM;
2522 state->cft = cft;
2523 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2524 file->f_op = &cgroup_seqfile_operations;
2525 err = single_open(file, cgroup_seqfile_show, state);
2526 if (err < 0)
2527 kfree(state);
2528 } else if (cft->open)
2529 err = cft->open(inode, file);
2530 else
2531 err = 0;
2532
2533 return err;
2534 }
2535
2536 static int cgroup_file_release(struct inode *inode, struct file *file)
2537 {
2538 struct cftype *cft = __d_cft(file->f_dentry);
2539 if (cft->release)
2540 return cft->release(inode, file);
2541 return 0;
2542 }
2543
2544 /*
2545 * cgroup_rename - Only allow simple rename of directories in place.
2546 */
2547 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2548 struct inode *new_dir, struct dentry *new_dentry)
2549 {
2550 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2551 return -ENOTDIR;
2552 if (new_dentry->d_inode)
2553 return -EEXIST;
2554 if (old_dir != new_dir)
2555 return -EIO;
2556 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2557 }
2558
2559 static const struct file_operations cgroup_file_operations = {
2560 .read = cgroup_file_read,
2561 .write = cgroup_file_write,
2562 .llseek = generic_file_llseek,
2563 .open = cgroup_file_open,
2564 .release = cgroup_file_release,
2565 };
2566
2567 static const struct inode_operations cgroup_dir_inode_operations = {
2568 .lookup = cgroup_lookup,
2569 .mkdir = cgroup_mkdir,
2570 .rmdir = cgroup_rmdir,
2571 .rename = cgroup_rename,
2572 };
2573
2574 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2575 {
2576 if (dentry->d_name.len > NAME_MAX)
2577 return ERR_PTR(-ENAMETOOLONG);
2578 d_add(dentry, NULL);
2579 return NULL;
2580 }
2581
2582 /*
2583 * Check if a file is a control file
2584 */
2585 static inline struct cftype *__file_cft(struct file *file)
2586 {
2587 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2588 return ERR_PTR(-EINVAL);
2589 return __d_cft(file->f_dentry);
2590 }
2591
2592 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2593 struct super_block *sb)
2594 {
2595 struct inode *inode;
2596
2597 if (!dentry)
2598 return -ENOENT;
2599 if (dentry->d_inode)
2600 return -EEXIST;
2601
2602 inode = cgroup_new_inode(mode, sb);
2603 if (!inode)
2604 return -ENOMEM;
2605
2606 if (S_ISDIR(mode)) {
2607 inode->i_op = &cgroup_dir_inode_operations;
2608 inode->i_fop = &simple_dir_operations;
2609
2610 /* start off with i_nlink == 2 (for "." entry) */
2611 inc_nlink(inode);
2612
2613 /* start with the directory inode held, so that we can
2614 * populate it without racing with another mkdir */
2615 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2616 } else if (S_ISREG(mode)) {
2617 inode->i_size = 0;
2618 inode->i_fop = &cgroup_file_operations;
2619 }
2620 d_instantiate(dentry, inode);
2621 dget(dentry); /* Extra count - pin the dentry in core */
2622 return 0;
2623 }
2624
2625 /*
2626 * cgroup_create_dir - create a directory for an object.
2627 * @cgrp: the cgroup we create the directory for. It must have a valid
2628 * ->parent field. And we are going to fill its ->dentry field.
2629 * @dentry: dentry of the new cgroup
2630 * @mode: mode to set on new directory.
2631 */
2632 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2633 mode_t mode)
2634 {
2635 struct dentry *parent;
2636 int error = 0;
2637
2638 parent = cgrp->parent->dentry;
2639 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2640 if (!error) {
2641 dentry->d_fsdata = cgrp;
2642 inc_nlink(parent->d_inode);
2643 rcu_assign_pointer(cgrp->dentry, dentry);
2644 dget(dentry);
2645 }
2646 dput(dentry);
2647
2648 return error;
2649 }
2650
2651 /**
2652 * cgroup_file_mode - deduce file mode of a control file
2653 * @cft: the control file in question
2654 *
2655 * returns cft->mode if ->mode is not 0
2656 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2657 * returns S_IRUGO if it has only a read handler
2658 * returns S_IWUSR if it has only a write hander
2659 */
2660 static mode_t cgroup_file_mode(const struct cftype *cft)
2661 {
2662 mode_t mode = 0;
2663
2664 if (cft->mode)
2665 return cft->mode;
2666
2667 if (cft->read || cft->read_u64 || cft->read_s64 ||
2668 cft->read_map || cft->read_seq_string)
2669 mode |= S_IRUGO;
2670
2671 if (cft->write || cft->write_u64 || cft->write_s64 ||
2672 cft->write_string || cft->trigger)
2673 mode |= S_IWUSR;
2674
2675 return mode;
2676 }
2677
2678 int cgroup_add_file(struct cgroup *cgrp,
2679 struct cgroup_subsys *subsys,
2680 const struct cftype *cft)
2681 {
2682 struct dentry *dir = cgrp->dentry;
2683 struct dentry *dentry;
2684 int error;
2685 mode_t mode;
2686
2687 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2688 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2689 strcpy(name, subsys->name);
2690 strcat(name, ".");
2691 }
2692 strcat(name, cft->name);
2693 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2694 dentry = lookup_one_len(name, dir, strlen(name));
2695 if (!IS_ERR(dentry)) {
2696 mode = cgroup_file_mode(cft);
2697 error = cgroup_create_file(dentry, mode | S_IFREG,
2698 cgrp->root->sb);
2699 if (!error)
2700 dentry->d_fsdata = (void *)cft;
2701 dput(dentry);
2702 } else
2703 error = PTR_ERR(dentry);
2704 return error;
2705 }
2706 EXPORT_SYMBOL_GPL(cgroup_add_file);
2707
2708 int cgroup_add_files(struct cgroup *cgrp,
2709 struct cgroup_subsys *subsys,
2710 const struct cftype cft[],
2711 int count)
2712 {
2713 int i, err;
2714 for (i = 0; i < count; i++) {
2715 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2716 if (err)
2717 return err;
2718 }
2719 return 0;
2720 }
2721 EXPORT_SYMBOL_GPL(cgroup_add_files);
2722
2723 /**
2724 * cgroup_task_count - count the number of tasks in a cgroup.
2725 * @cgrp: the cgroup in question
2726 *
2727 * Return the number of tasks in the cgroup.
2728 */
2729 int cgroup_task_count(const struct cgroup *cgrp)
2730 {
2731 int count = 0;
2732 struct cg_cgroup_link *link;
2733
2734 read_lock(&css_set_lock);
2735 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2736 count += atomic_read(&link->cg->refcount);
2737 }
2738 read_unlock(&css_set_lock);
2739 return count;
2740 }
2741
2742 /*
2743 * Advance a list_head iterator. The iterator should be positioned at
2744 * the start of a css_set
2745 */
2746 static void cgroup_advance_iter(struct cgroup *cgrp,
2747 struct cgroup_iter *it)
2748 {
2749 struct list_head *l = it->cg_link;
2750 struct cg_cgroup_link *link;
2751 struct css_set *cg;
2752
2753 /* Advance to the next non-empty css_set */
2754 do {
2755 l = l->next;
2756 if (l == &cgrp->css_sets) {
2757 it->cg_link = NULL;
2758 return;
2759 }
2760 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2761 cg = link->cg;
2762 } while (list_empty(&cg->tasks));
2763 it->cg_link = l;
2764 it->task = cg->tasks.next;
2765 }
2766
2767 /*
2768 * To reduce the fork() overhead for systems that are not actually
2769 * using their cgroups capability, we don't maintain the lists running
2770 * through each css_set to its tasks until we see the list actually
2771 * used - in other words after the first call to cgroup_iter_start().
2772 *
2773 * The tasklist_lock is not held here, as do_each_thread() and
2774 * while_each_thread() are protected by RCU.
2775 */
2776 static void cgroup_enable_task_cg_lists(void)
2777 {
2778 struct task_struct *p, *g;
2779 write_lock(&css_set_lock);
2780 use_task_css_set_links = 1;
2781 do_each_thread(g, p) {
2782 task_lock(p);
2783 /*
2784 * We should check if the process is exiting, otherwise
2785 * it will race with cgroup_exit() in that the list
2786 * entry won't be deleted though the process has exited.
2787 */
2788 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2789 list_add(&p->cg_list, &p->cgroups->tasks);
2790 task_unlock(p);
2791 } while_each_thread(g, p);
2792 write_unlock(&css_set_lock);
2793 }
2794
2795 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2796 {
2797 /*
2798 * The first time anyone tries to iterate across a cgroup,
2799 * we need to enable the list linking each css_set to its
2800 * tasks, and fix up all existing tasks.
2801 */
2802 if (!use_task_css_set_links)
2803 cgroup_enable_task_cg_lists();
2804
2805 read_lock(&css_set_lock);
2806 it->cg_link = &cgrp->css_sets;
2807 cgroup_advance_iter(cgrp, it);
2808 }
2809
2810 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2811 struct cgroup_iter *it)
2812 {
2813 struct task_struct *res;
2814 struct list_head *l = it->task;
2815 struct cg_cgroup_link *link;
2816
2817 /* If the iterator cg is NULL, we have no tasks */
2818 if (!it->cg_link)
2819 return NULL;
2820 res = list_entry(l, struct task_struct, cg_list);
2821 /* Advance iterator to find next entry */
2822 l = l->next;
2823 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2824 if (l == &link->cg->tasks) {
2825 /* We reached the end of this task list - move on to
2826 * the next cg_cgroup_link */
2827 cgroup_advance_iter(cgrp, it);
2828 } else {
2829 it->task = l;
2830 }
2831 return res;
2832 }
2833
2834 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2835 {
2836 read_unlock(&css_set_lock);
2837 }
2838
2839 static inline int started_after_time(struct task_struct *t1,
2840 struct timespec *time,
2841 struct task_struct *t2)
2842 {
2843 int start_diff = timespec_compare(&t1->start_time, time);
2844 if (start_diff > 0) {
2845 return 1;
2846 } else if (start_diff < 0) {
2847 return 0;
2848 } else {
2849 /*
2850 * Arbitrarily, if two processes started at the same
2851 * time, we'll say that the lower pointer value
2852 * started first. Note that t2 may have exited by now
2853 * so this may not be a valid pointer any longer, but
2854 * that's fine - it still serves to distinguish
2855 * between two tasks started (effectively) simultaneously.
2856 */
2857 return t1 > t2;
2858 }
2859 }
2860
2861 /*
2862 * This function is a callback from heap_insert() and is used to order
2863 * the heap.
2864 * In this case we order the heap in descending task start time.
2865 */
2866 static inline int started_after(void *p1, void *p2)
2867 {
2868 struct task_struct *t1 = p1;
2869 struct task_struct *t2 = p2;
2870 return started_after_time(t1, &t2->start_time, t2);
2871 }
2872
2873 /**
2874 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2875 * @scan: struct cgroup_scanner containing arguments for the scan
2876 *
2877 * Arguments include pointers to callback functions test_task() and
2878 * process_task().
2879 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2880 * and if it returns true, call process_task() for it also.
2881 * The test_task pointer may be NULL, meaning always true (select all tasks).
2882 * Effectively duplicates cgroup_iter_{start,next,end}()
2883 * but does not lock css_set_lock for the call to process_task().
2884 * The struct cgroup_scanner may be embedded in any structure of the caller's
2885 * creation.
2886 * It is guaranteed that process_task() will act on every task that
2887 * is a member of the cgroup for the duration of this call. This
2888 * function may or may not call process_task() for tasks that exit
2889 * or move to a different cgroup during the call, or are forked or
2890 * move into the cgroup during the call.
2891 *
2892 * Note that test_task() may be called with locks held, and may in some
2893 * situations be called multiple times for the same task, so it should
2894 * be cheap.
2895 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2896 * pre-allocated and will be used for heap operations (and its "gt" member will
2897 * be overwritten), else a temporary heap will be used (allocation of which
2898 * may cause this function to fail).
2899 */
2900 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2901 {
2902 int retval, i;
2903 struct cgroup_iter it;
2904 struct task_struct *p, *dropped;
2905 /* Never dereference latest_task, since it's not refcounted */
2906 struct task_struct *latest_task = NULL;
2907 struct ptr_heap tmp_heap;
2908 struct ptr_heap *heap;
2909 struct timespec latest_time = { 0, 0 };
2910
2911 if (scan->heap) {
2912 /* The caller supplied our heap and pre-allocated its memory */
2913 heap = scan->heap;
2914 heap->gt = &started_after;
2915 } else {
2916 /* We need to allocate our own heap memory */
2917 heap = &tmp_heap;
2918 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2919 if (retval)
2920 /* cannot allocate the heap */
2921 return retval;
2922 }
2923
2924 again:
2925 /*
2926 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2927 * to determine which are of interest, and using the scanner's
2928 * "process_task" callback to process any of them that need an update.
2929 * Since we don't want to hold any locks during the task updates,
2930 * gather tasks to be processed in a heap structure.
2931 * The heap is sorted by descending task start time.
2932 * If the statically-sized heap fills up, we overflow tasks that
2933 * started later, and in future iterations only consider tasks that
2934 * started after the latest task in the previous pass. This
2935 * guarantees forward progress and that we don't miss any tasks.
2936 */
2937 heap->size = 0;
2938 cgroup_iter_start(scan->cg, &it);
2939 while ((p = cgroup_iter_next(scan->cg, &it))) {
2940 /*
2941 * Only affect tasks that qualify per the caller's callback,
2942 * if he provided one
2943 */
2944 if (scan->test_task && !scan->test_task(p, scan))
2945 continue;
2946 /*
2947 * Only process tasks that started after the last task
2948 * we processed
2949 */
2950 if (!started_after_time(p, &latest_time, latest_task))
2951 continue;
2952 dropped = heap_insert(heap, p);
2953 if (dropped == NULL) {
2954 /*
2955 * The new task was inserted; the heap wasn't
2956 * previously full
2957 */
2958 get_task_struct(p);
2959 } else if (dropped != p) {
2960 /*
2961 * The new task was inserted, and pushed out a
2962 * different task
2963 */
2964 get_task_struct(p);
2965 put_task_struct(dropped);
2966 }
2967 /*
2968 * Else the new task was newer than anything already in
2969 * the heap and wasn't inserted
2970 */
2971 }
2972 cgroup_iter_end(scan->cg, &it);
2973
2974 if (heap->size) {
2975 for (i = 0; i < heap->size; i++) {
2976 struct task_struct *q = heap->ptrs[i];
2977 if (i == 0) {
2978 latest_time = q->start_time;
2979 latest_task = q;
2980 }
2981 /* Process the task per the caller's callback */
2982 scan->process_task(q, scan);
2983 put_task_struct(q);
2984 }
2985 /*
2986 * If we had to process any tasks at all, scan again
2987 * in case some of them were in the middle of forking
2988 * children that didn't get processed.
2989 * Not the most efficient way to do it, but it avoids
2990 * having to take callback_mutex in the fork path
2991 */
2992 goto again;
2993 }
2994 if (heap == &tmp_heap)
2995 heap_free(&tmp_heap);
2996 return 0;
2997 }
2998
2999 /*
3000 * Stuff for reading the 'tasks'/'procs' files.
3001 *
3002 * Reading this file can return large amounts of data if a cgroup has
3003 * *lots* of attached tasks. So it may need several calls to read(),
3004 * but we cannot guarantee that the information we produce is correct
3005 * unless we produce it entirely atomically.
3006 *
3007 */
3008
3009 /*
3010 * The following two functions "fix" the issue where there are more pids
3011 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3012 * TODO: replace with a kernel-wide solution to this problem
3013 */
3014 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3015 static void *pidlist_allocate(int count)
3016 {
3017 if (PIDLIST_TOO_LARGE(count))
3018 return vmalloc(count * sizeof(pid_t));
3019 else
3020 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3021 }
3022 static void pidlist_free(void *p)
3023 {
3024 if (is_vmalloc_addr(p))
3025 vfree(p);
3026 else
3027 kfree(p);
3028 }
3029 static void *pidlist_resize(void *p, int newcount)
3030 {
3031 void *newlist;
3032 /* note: if new alloc fails, old p will still be valid either way */
3033 if (is_vmalloc_addr(p)) {
3034 newlist = vmalloc(newcount * sizeof(pid_t));
3035 if (!newlist)
3036 return NULL;
3037 memcpy(newlist, p, newcount * sizeof(pid_t));
3038 vfree(p);
3039 } else {
3040 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3041 }
3042 return newlist;
3043 }
3044
3045 /*
3046 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3047 * If the new stripped list is sufficiently smaller and there's enough memory
3048 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3049 * number of unique elements.
3050 */
3051 /* is the size difference enough that we should re-allocate the array? */
3052 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3053 static int pidlist_uniq(pid_t **p, int length)
3054 {
3055 int src, dest = 1;
3056 pid_t *list = *p;
3057 pid_t *newlist;
3058
3059 /*
3060 * we presume the 0th element is unique, so i starts at 1. trivial
3061 * edge cases first; no work needs to be done for either
3062 */
3063 if (length == 0 || length == 1)
3064 return length;
3065 /* src and dest walk down the list; dest counts unique elements */
3066 for (src = 1; src < length; src++) {
3067 /* find next unique element */
3068 while (list[src] == list[src-1]) {
3069 src++;
3070 if (src == length)
3071 goto after;
3072 }
3073 /* dest always points to where the next unique element goes */
3074 list[dest] = list[src];
3075 dest++;
3076 }
3077 after:
3078 /*
3079 * if the length difference is large enough, we want to allocate a
3080 * smaller buffer to save memory. if this fails due to out of memory,
3081 * we'll just stay with what we've got.
3082 */
3083 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3084 newlist = pidlist_resize(list, dest);
3085 if (newlist)
3086 *p = newlist;
3087 }
3088 return dest;
3089 }
3090
3091 static int cmppid(const void *a, const void *b)
3092 {
3093 return *(pid_t *)a - *(pid_t *)b;
3094 }
3095
3096 /*
3097 * find the appropriate pidlist for our purpose (given procs vs tasks)
3098 * returns with the lock on that pidlist already held, and takes care
3099 * of the use count, or returns NULL with no locks held if we're out of
3100 * memory.
3101 */
3102 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3103 enum cgroup_filetype type)
3104 {
3105 struct cgroup_pidlist *l;
3106 /* don't need task_nsproxy() if we're looking at ourself */
3107 struct pid_namespace *ns = current->nsproxy->pid_ns;
3108
3109 /*
3110 * We can't drop the pidlist_mutex before taking the l->mutex in case
3111 * the last ref-holder is trying to remove l from the list at the same
3112 * time. Holding the pidlist_mutex precludes somebody taking whichever
3113 * list we find out from under us - compare release_pid_array().
3114 */
3115 mutex_lock(&cgrp->pidlist_mutex);
3116 list_for_each_entry(l, &cgrp->pidlists, links) {
3117 if (l->key.type == type && l->key.ns == ns) {
3118 /* make sure l doesn't vanish out from under us */
3119 down_write(&l->mutex);
3120 mutex_unlock(&cgrp->pidlist_mutex);
3121 return l;
3122 }
3123 }
3124 /* entry not found; create a new one */
3125 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3126 if (!l) {
3127 mutex_unlock(&cgrp->pidlist_mutex);
3128 return l;
3129 }
3130 init_rwsem(&l->mutex);
3131 down_write(&l->mutex);
3132 l->key.type = type;
3133 l->key.ns = get_pid_ns(ns);
3134 l->use_count = 0; /* don't increment here */
3135 l->list = NULL;
3136 l->owner = cgrp;
3137 list_add(&l->links, &cgrp->pidlists);
3138 mutex_unlock(&cgrp->pidlist_mutex);
3139 return l;
3140 }
3141
3142 /*
3143 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3144 */
3145 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3146 struct cgroup_pidlist **lp)
3147 {
3148 pid_t *array;
3149 int length;
3150 int pid, n = 0; /* used for populating the array */
3151 struct cgroup_iter it;
3152 struct task_struct *tsk;
3153 struct cgroup_pidlist *l;
3154
3155 /*
3156 * If cgroup gets more users after we read count, we won't have
3157 * enough space - tough. This race is indistinguishable to the
3158 * caller from the case that the additional cgroup users didn't
3159 * show up until sometime later on.
3160 */
3161 length = cgroup_task_count(cgrp);
3162 array = pidlist_allocate(length);
3163 if (!array)
3164 return -ENOMEM;
3165 /* now, populate the array */
3166 cgroup_iter_start(cgrp, &it);
3167 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3168 if (unlikely(n == length))
3169 break;
3170 /* get tgid or pid for procs or tasks file respectively */
3171 if (type == CGROUP_FILE_PROCS)
3172 pid = task_tgid_vnr(tsk);
3173 else
3174 pid = task_pid_vnr(tsk);
3175 if (pid > 0) /* make sure to only use valid results */
3176 array[n++] = pid;
3177 }
3178 cgroup_iter_end(cgrp, &it);
3179 length = n;
3180 /* now sort & (if procs) strip out duplicates */
3181 sort(array, length, sizeof(pid_t), cmppid, NULL);
3182 if (type == CGROUP_FILE_PROCS)
3183 length = pidlist_uniq(&array, length);
3184 l = cgroup_pidlist_find(cgrp, type);
3185 if (!l) {
3186 pidlist_free(array);
3187 return -ENOMEM;
3188 }
3189 /* store array, freeing old if necessary - lock already held */
3190 pidlist_free(l->list);
3191 l->list = array;
3192 l->length = length;
3193 l->use_count++;
3194 up_write(&l->mutex);
3195 *lp = l;
3196 return 0;
3197 }
3198
3199 /**
3200 * cgroupstats_build - build and fill cgroupstats
3201 * @stats: cgroupstats to fill information into
3202 * @dentry: A dentry entry belonging to the cgroup for which stats have
3203 * been requested.
3204 *
3205 * Build and fill cgroupstats so that taskstats can export it to user
3206 * space.
3207 */
3208 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3209 {
3210 int ret = -EINVAL;
3211 struct cgroup *cgrp;
3212 struct cgroup_iter it;
3213 struct task_struct *tsk;
3214
3215 /*
3216 * Validate dentry by checking the superblock operations,
3217 * and make sure it's a directory.
3218 */
3219 if (dentry->d_sb->s_op != &cgroup_ops ||
3220 !S_ISDIR(dentry->d_inode->i_mode))
3221 goto err;
3222
3223 ret = 0;
3224 cgrp = dentry->d_fsdata;
3225
3226 cgroup_iter_start(cgrp, &it);
3227 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3228 switch (tsk->state) {
3229 case TASK_RUNNING:
3230 stats->nr_running++;
3231 break;
3232 case TASK_INTERRUPTIBLE:
3233 stats->nr_sleeping++;
3234 break;
3235 case TASK_UNINTERRUPTIBLE:
3236 stats->nr_uninterruptible++;
3237 break;
3238 case TASK_STOPPED:
3239 stats->nr_stopped++;
3240 break;
3241 default:
3242 if (delayacct_is_task_waiting_on_io(tsk))
3243 stats->nr_io_wait++;
3244 break;
3245 }
3246 }
3247 cgroup_iter_end(cgrp, &it);
3248
3249 err:
3250 return ret;
3251 }
3252
3253
3254 /*
3255 * seq_file methods for the tasks/procs files. The seq_file position is the
3256 * next pid to display; the seq_file iterator is a pointer to the pid
3257 * in the cgroup->l->list array.
3258 */
3259
3260 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3261 {
3262 /*
3263 * Initially we receive a position value that corresponds to
3264 * one more than the last pid shown (or 0 on the first call or
3265 * after a seek to the start). Use a binary-search to find the
3266 * next pid to display, if any
3267 */
3268 struct cgroup_pidlist *l = s->private;
3269 int index = 0, pid = *pos;
3270 int *iter;
3271
3272 down_read(&l->mutex);
3273 if (pid) {
3274 int end = l->length;
3275
3276 while (index < end) {
3277 int mid = (index + end) / 2;
3278 if (l->list[mid] == pid) {
3279 index = mid;
3280 break;
3281 } else if (l->list[mid] <= pid)
3282 index = mid + 1;
3283 else
3284 end = mid;
3285 }
3286 }
3287 /* If we're off the end of the array, we're done */
3288 if (index >= l->length)
3289 return NULL;
3290 /* Update the abstract position to be the actual pid that we found */
3291 iter = l->list + index;
3292 *pos = *iter;
3293 return iter;
3294 }
3295
3296 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3297 {
3298 struct cgroup_pidlist *l = s->private;
3299 up_read(&l->mutex);
3300 }
3301
3302 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3303 {
3304 struct cgroup_pidlist *l = s->private;
3305 pid_t *p = v;
3306 pid_t *end = l->list + l->length;
3307 /*
3308 * Advance to the next pid in the array. If this goes off the
3309 * end, we're done
3310 */
3311 p++;
3312 if (p >= end) {
3313 return NULL;
3314 } else {
3315 *pos = *p;
3316 return p;
3317 }
3318 }
3319
3320 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3321 {
3322 return seq_printf(s, "%d\n", *(int *)v);
3323 }
3324
3325 /*
3326 * seq_operations functions for iterating on pidlists through seq_file -
3327 * independent of whether it's tasks or procs
3328 */
3329 static const struct seq_operations cgroup_pidlist_seq_operations = {
3330 .start = cgroup_pidlist_start,
3331 .stop = cgroup_pidlist_stop,
3332 .next = cgroup_pidlist_next,
3333 .show = cgroup_pidlist_show,
3334 };
3335
3336 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3337 {
3338 /*
3339 * the case where we're the last user of this particular pidlist will
3340 * have us remove it from the cgroup's list, which entails taking the
3341 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3342 * pidlist_mutex, we have to take pidlist_mutex first.
3343 */
3344 mutex_lock(&l->owner->pidlist_mutex);
3345 down_write(&l->mutex);
3346 BUG_ON(!l->use_count);
3347 if (!--l->use_count) {
3348 /* we're the last user if refcount is 0; remove and free */
3349 list_del(&l->links);
3350 mutex_unlock(&l->owner->pidlist_mutex);
3351 pidlist_free(l->list);
3352 put_pid_ns(l->key.ns);
3353 up_write(&l->mutex);
3354 kfree(l);
3355 return;
3356 }
3357 mutex_unlock(&l->owner->pidlist_mutex);
3358 up_write(&l->mutex);
3359 }
3360
3361 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3362 {
3363 struct cgroup_pidlist *l;
3364 if (!(file->f_mode & FMODE_READ))
3365 return 0;
3366 /*
3367 * the seq_file will only be initialized if the file was opened for
3368 * reading; hence we check if it's not null only in that case.
3369 */
3370 l = ((struct seq_file *)file->private_data)->private;
3371 cgroup_release_pid_array(l);
3372 return seq_release(inode, file);
3373 }
3374
3375 static const struct file_operations cgroup_pidlist_operations = {
3376 .read = seq_read,
3377 .llseek = seq_lseek,
3378 .write = cgroup_file_write,
3379 .release = cgroup_pidlist_release,
3380 };
3381
3382 /*
3383 * The following functions handle opens on a file that displays a pidlist
3384 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3385 * in the cgroup.
3386 */
3387 /* helper function for the two below it */
3388 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3389 {
3390 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3391 struct cgroup_pidlist *l;
3392 int retval;
3393
3394 /* Nothing to do for write-only files */
3395 if (!(file->f_mode & FMODE_READ))
3396 return 0;
3397
3398 /* have the array populated */
3399 retval = pidlist_array_load(cgrp, type, &l);
3400 if (retval)
3401 return retval;
3402 /* configure file information */
3403 file->f_op = &cgroup_pidlist_operations;
3404
3405 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3406 if (retval) {
3407 cgroup_release_pid_array(l);
3408 return retval;
3409 }
3410 ((struct seq_file *)file->private_data)->private = l;
3411 return 0;
3412 }
3413 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3414 {
3415 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3416 }
3417 static int cgroup_procs_open(struct inode *unused, struct file *file)
3418 {
3419 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3420 }
3421
3422 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3423 struct cftype *cft)
3424 {
3425 return notify_on_release(cgrp);
3426 }
3427
3428 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3429 struct cftype *cft,
3430 u64 val)
3431 {
3432 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3433 if (val)
3434 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3435 else
3436 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3437 return 0;
3438 }
3439
3440 /*
3441 * Unregister event and free resources.
3442 *
3443 * Gets called from workqueue.
3444 */
3445 static void cgroup_event_remove(struct work_struct *work)
3446 {
3447 struct cgroup_event *event = container_of(work, struct cgroup_event,
3448 remove);
3449 struct cgroup *cgrp = event->cgrp;
3450
3451 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3452
3453 eventfd_ctx_put(event->eventfd);
3454 kfree(event);
3455 dput(cgrp->dentry);
3456 }
3457
3458 /*
3459 * Gets called on POLLHUP on eventfd when user closes it.
3460 *
3461 * Called with wqh->lock held and interrupts disabled.
3462 */
3463 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3464 int sync, void *key)
3465 {
3466 struct cgroup_event *event = container_of(wait,
3467 struct cgroup_event, wait);
3468 struct cgroup *cgrp = event->cgrp;
3469 unsigned long flags = (unsigned long)key;
3470
3471 if (flags & POLLHUP) {
3472 __remove_wait_queue(event->wqh, &event->wait);
3473 spin_lock(&cgrp->event_list_lock);
3474 list_del(&event->list);
3475 spin_unlock(&cgrp->event_list_lock);
3476 /*
3477 * We are in atomic context, but cgroup_event_remove() may
3478 * sleep, so we have to call it in workqueue.
3479 */
3480 schedule_work(&event->remove);
3481 }
3482
3483 return 0;
3484 }
3485
3486 static void cgroup_event_ptable_queue_proc(struct file *file,
3487 wait_queue_head_t *wqh, poll_table *pt)
3488 {
3489 struct cgroup_event *event = container_of(pt,
3490 struct cgroup_event, pt);
3491
3492 event->wqh = wqh;
3493 add_wait_queue(wqh, &event->wait);
3494 }
3495
3496 /*
3497 * Parse input and register new cgroup event handler.
3498 *
3499 * Input must be in format '<event_fd> <control_fd> <args>'.
3500 * Interpretation of args is defined by control file implementation.
3501 */
3502 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3503 const char *buffer)
3504 {
3505 struct cgroup_event *event = NULL;
3506 unsigned int efd, cfd;
3507 struct file *efile = NULL;
3508 struct file *cfile = NULL;
3509 char *endp;
3510 int ret;
3511
3512 efd = simple_strtoul(buffer, &endp, 10);
3513 if (*endp != ' ')
3514 return -EINVAL;
3515 buffer = endp + 1;
3516
3517 cfd = simple_strtoul(buffer, &endp, 10);
3518 if ((*endp != ' ') && (*endp != '\0'))
3519 return -EINVAL;
3520 buffer = endp + 1;
3521
3522 event = kzalloc(sizeof(*event), GFP_KERNEL);
3523 if (!event)
3524 return -ENOMEM;
3525 event->cgrp = cgrp;
3526 INIT_LIST_HEAD(&event->list);
3527 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3528 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3529 INIT_WORK(&event->remove, cgroup_event_remove);
3530
3531 efile = eventfd_fget(efd);
3532 if (IS_ERR(efile)) {
3533 ret = PTR_ERR(efile);
3534 goto fail;
3535 }
3536
3537 event->eventfd = eventfd_ctx_fileget(efile);
3538 if (IS_ERR(event->eventfd)) {
3539 ret = PTR_ERR(event->eventfd);
3540 goto fail;
3541 }
3542
3543 cfile = fget(cfd);
3544 if (!cfile) {
3545 ret = -EBADF;
3546 goto fail;
3547 }
3548
3549 /* the process need read permission on control file */
3550 ret = file_permission(cfile, MAY_READ);
3551 if (ret < 0)
3552 goto fail;
3553
3554 event->cft = __file_cft(cfile);
3555 if (IS_ERR(event->cft)) {
3556 ret = PTR_ERR(event->cft);
3557 goto fail;
3558 }
3559
3560 if (!event->cft->register_event || !event->cft->unregister_event) {
3561 ret = -EINVAL;
3562 goto fail;
3563 }
3564
3565 ret = event->cft->register_event(cgrp, event->cft,
3566 event->eventfd, buffer);
3567 if (ret)
3568 goto fail;
3569
3570 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3571 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3572 ret = 0;
3573 goto fail;
3574 }
3575
3576 /*
3577 * Events should be removed after rmdir of cgroup directory, but before
3578 * destroying subsystem state objects. Let's take reference to cgroup
3579 * directory dentry to do that.
3580 */
3581 dget(cgrp->dentry);
3582
3583 spin_lock(&cgrp->event_list_lock);
3584 list_add(&event->list, &cgrp->event_list);
3585 spin_unlock(&cgrp->event_list_lock);
3586
3587 fput(cfile);
3588 fput(efile);
3589
3590 return 0;
3591
3592 fail:
3593 if (cfile)
3594 fput(cfile);
3595
3596 if (event && event->eventfd && !IS_ERR(event->eventfd))
3597 eventfd_ctx_put(event->eventfd);
3598
3599 if (!IS_ERR_OR_NULL(efile))
3600 fput(efile);
3601
3602 kfree(event);
3603
3604 return ret;
3605 }
3606
3607 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3608 struct cftype *cft)
3609 {
3610 return clone_children(cgrp);
3611 }
3612
3613 static int cgroup_clone_children_write(struct cgroup *cgrp,
3614 struct cftype *cft,
3615 u64 val)
3616 {
3617 if (val)
3618 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3619 else
3620 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3621 return 0;
3622 }
3623
3624 /*
3625 * for the common functions, 'private' gives the type of file
3626 */
3627 /* for hysterical raisins, we can't put this on the older files */
3628 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3629 static struct cftype files[] = {
3630 {
3631 .name = "tasks",
3632 .open = cgroup_tasks_open,
3633 .write_u64 = cgroup_tasks_write,
3634 .release = cgroup_pidlist_release,
3635 .mode = S_IRUGO | S_IWUSR,
3636 },
3637 {
3638 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3639 .open = cgroup_procs_open,
3640 .write_u64 = cgroup_procs_write,
3641 .release = cgroup_pidlist_release,
3642 .mode = S_IRUGO | S_IWUSR,
3643 },
3644 {
3645 .name = "notify_on_release",
3646 .read_u64 = cgroup_read_notify_on_release,
3647 .write_u64 = cgroup_write_notify_on_release,
3648 },
3649 {
3650 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3651 .write_string = cgroup_write_event_control,
3652 .mode = S_IWUGO,
3653 },
3654 {
3655 .name = "cgroup.clone_children",
3656 .read_u64 = cgroup_clone_children_read,
3657 .write_u64 = cgroup_clone_children_write,
3658 },
3659 };
3660
3661 static struct cftype cft_release_agent = {
3662 .name = "release_agent",
3663 .read_seq_string = cgroup_release_agent_show,
3664 .write_string = cgroup_release_agent_write,
3665 .max_write_len = PATH_MAX,
3666 };
3667
3668 static int cgroup_populate_dir(struct cgroup *cgrp)
3669 {
3670 int err;
3671 struct cgroup_subsys *ss;
3672
3673 /* First clear out any existing files */
3674 cgroup_clear_directory(cgrp->dentry);
3675
3676 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3677 if (err < 0)
3678 return err;
3679
3680 if (cgrp == cgrp->top_cgroup) {
3681 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3682 return err;
3683 }
3684
3685 for_each_subsys(cgrp->root, ss) {
3686 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3687 return err;
3688 }
3689 /* This cgroup is ready now */
3690 for_each_subsys(cgrp->root, ss) {
3691 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3692 /*
3693 * Update id->css pointer and make this css visible from
3694 * CSS ID functions. This pointer will be dereferened
3695 * from RCU-read-side without locks.
3696 */
3697 if (css->id)
3698 rcu_assign_pointer(css->id->css, css);
3699 }
3700
3701 return 0;
3702 }
3703
3704 static void init_cgroup_css(struct cgroup_subsys_state *css,
3705 struct cgroup_subsys *ss,
3706 struct cgroup *cgrp)
3707 {
3708 css->cgroup = cgrp;
3709 atomic_set(&css->refcnt, 1);
3710 css->flags = 0;
3711 css->id = NULL;
3712 if (cgrp == dummytop)
3713 set_bit(CSS_ROOT, &css->flags);
3714 BUG_ON(cgrp->subsys[ss->subsys_id]);
3715 cgrp->subsys[ss->subsys_id] = css;
3716 }
3717
3718 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3719 {
3720 /* We need to take each hierarchy_mutex in a consistent order */
3721 int i;
3722
3723 /*
3724 * No worry about a race with rebind_subsystems that might mess up the
3725 * locking order, since both parties are under cgroup_mutex.
3726 */
3727 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3728 struct cgroup_subsys *ss = subsys[i];
3729 if (ss == NULL)
3730 continue;
3731 if (ss->root == root)
3732 mutex_lock(&ss->hierarchy_mutex);
3733 }
3734 }
3735
3736 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3737 {
3738 int i;
3739
3740 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3741 struct cgroup_subsys *ss = subsys[i];
3742 if (ss == NULL)
3743 continue;
3744 if (ss->root == root)
3745 mutex_unlock(&ss->hierarchy_mutex);
3746 }
3747 }
3748
3749 /*
3750 * cgroup_create - create a cgroup
3751 * @parent: cgroup that will be parent of the new cgroup
3752 * @dentry: dentry of the new cgroup
3753 * @mode: mode to set on new inode
3754 *
3755 * Must be called with the mutex on the parent inode held
3756 */
3757 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3758 mode_t mode)
3759 {
3760 struct cgroup *cgrp;
3761 struct cgroupfs_root *root = parent->root;
3762 int err = 0;
3763 struct cgroup_subsys *ss;
3764 struct super_block *sb = root->sb;
3765
3766 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3767 if (!cgrp)
3768 return -ENOMEM;
3769
3770 /* Grab a reference on the superblock so the hierarchy doesn't
3771 * get deleted on unmount if there are child cgroups. This
3772 * can be done outside cgroup_mutex, since the sb can't
3773 * disappear while someone has an open control file on the
3774 * fs */
3775 atomic_inc(&sb->s_active);
3776
3777 mutex_lock(&cgroup_mutex);
3778
3779 init_cgroup_housekeeping(cgrp);
3780
3781 cgrp->parent = parent;
3782 cgrp->root = parent->root;
3783 cgrp->top_cgroup = parent->top_cgroup;
3784
3785 if (notify_on_release(parent))
3786 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3787
3788 if (clone_children(parent))
3789 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3790
3791 for_each_subsys(root, ss) {
3792 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3793
3794 if (IS_ERR(css)) {
3795 err = PTR_ERR(css);
3796 goto err_destroy;
3797 }
3798 init_cgroup_css(css, ss, cgrp);
3799 if (ss->use_id) {
3800 err = alloc_css_id(ss, parent, cgrp);
3801 if (err)
3802 goto err_destroy;
3803 }
3804 /* At error, ->destroy() callback has to free assigned ID. */
3805 if (clone_children(parent) && ss->post_clone)
3806 ss->post_clone(ss, cgrp);
3807 }
3808
3809 cgroup_lock_hierarchy(root);
3810 list_add(&cgrp->sibling, &cgrp->parent->children);
3811 cgroup_unlock_hierarchy(root);
3812 root->number_of_cgroups++;
3813
3814 err = cgroup_create_dir(cgrp, dentry, mode);
3815 if (err < 0)
3816 goto err_remove;
3817
3818 /* The cgroup directory was pre-locked for us */
3819 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3820
3821 err = cgroup_populate_dir(cgrp);
3822 /* If err < 0, we have a half-filled directory - oh well ;) */
3823
3824 mutex_unlock(&cgroup_mutex);
3825 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3826
3827 return 0;
3828
3829 err_remove:
3830
3831 cgroup_lock_hierarchy(root);
3832 list_del(&cgrp->sibling);
3833 cgroup_unlock_hierarchy(root);
3834 root->number_of_cgroups--;
3835
3836 err_destroy:
3837
3838 for_each_subsys(root, ss) {
3839 if (cgrp->subsys[ss->subsys_id])
3840 ss->destroy(ss, cgrp);
3841 }
3842
3843 mutex_unlock(&cgroup_mutex);
3844
3845 /* Release the reference count that we took on the superblock */
3846 deactivate_super(sb);
3847
3848 kfree(cgrp);
3849 return err;
3850 }
3851
3852 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3853 {
3854 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3855
3856 /* the vfs holds inode->i_mutex already */
3857 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3858 }
3859
3860 static int cgroup_has_css_refs(struct cgroup *cgrp)
3861 {
3862 /* Check the reference count on each subsystem. Since we
3863 * already established that there are no tasks in the
3864 * cgroup, if the css refcount is also 1, then there should
3865 * be no outstanding references, so the subsystem is safe to
3866 * destroy. We scan across all subsystems rather than using
3867 * the per-hierarchy linked list of mounted subsystems since
3868 * we can be called via check_for_release() with no
3869 * synchronization other than RCU, and the subsystem linked
3870 * list isn't RCU-safe */
3871 int i;
3872 /*
3873 * We won't need to lock the subsys array, because the subsystems
3874 * we're concerned about aren't going anywhere since our cgroup root
3875 * has a reference on them.
3876 */
3877 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3878 struct cgroup_subsys *ss = subsys[i];
3879 struct cgroup_subsys_state *css;
3880 /* Skip subsystems not present or not in this hierarchy */
3881 if (ss == NULL || ss->root != cgrp->root)
3882 continue;
3883 css = cgrp->subsys[ss->subsys_id];
3884 /* When called from check_for_release() it's possible
3885 * that by this point the cgroup has been removed
3886 * and the css deleted. But a false-positive doesn't
3887 * matter, since it can only happen if the cgroup
3888 * has been deleted and hence no longer needs the
3889 * release agent to be called anyway. */
3890 if (css && (atomic_read(&css->refcnt) > 1))
3891 return 1;
3892 }
3893 return 0;
3894 }
3895
3896 /*
3897 * Atomically mark all (or else none) of the cgroup's CSS objects as
3898 * CSS_REMOVED. Return true on success, or false if the cgroup has
3899 * busy subsystems. Call with cgroup_mutex held
3900 */
3901
3902 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3903 {
3904 struct cgroup_subsys *ss;
3905 unsigned long flags;
3906 bool failed = false;
3907 local_irq_save(flags);
3908 for_each_subsys(cgrp->root, ss) {
3909 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3910 int refcnt;
3911 while (1) {
3912 /* We can only remove a CSS with a refcnt==1 */
3913 refcnt = atomic_read(&css->refcnt);
3914 if (refcnt > 1) {
3915 failed = true;
3916 goto done;
3917 }
3918 BUG_ON(!refcnt);
3919 /*
3920 * Drop the refcnt to 0 while we check other
3921 * subsystems. This will cause any racing
3922 * css_tryget() to spin until we set the
3923 * CSS_REMOVED bits or abort
3924 */
3925 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3926 break;
3927 cpu_relax();
3928 }
3929 }
3930 done:
3931 for_each_subsys(cgrp->root, ss) {
3932 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3933 if (failed) {
3934 /*
3935 * Restore old refcnt if we previously managed
3936 * to clear it from 1 to 0
3937 */
3938 if (!atomic_read(&css->refcnt))
3939 atomic_set(&css->refcnt, 1);
3940 } else {
3941 /* Commit the fact that the CSS is removed */
3942 set_bit(CSS_REMOVED, &css->flags);
3943 }
3944 }
3945 local_irq_restore(flags);
3946 return !failed;
3947 }
3948
3949 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3950 {
3951 struct cgroup *cgrp = dentry->d_fsdata;
3952 struct dentry *d;
3953 struct cgroup *parent;
3954 DEFINE_WAIT(wait);
3955 struct cgroup_event *event, *tmp;
3956 int ret;
3957
3958 /* the vfs holds both inode->i_mutex already */
3959 again:
3960 mutex_lock(&cgroup_mutex);
3961 if (atomic_read(&cgrp->count) != 0) {
3962 mutex_unlock(&cgroup_mutex);
3963 return -EBUSY;
3964 }
3965 if (!list_empty(&cgrp->children)) {
3966 mutex_unlock(&cgroup_mutex);
3967 return -EBUSY;
3968 }
3969 mutex_unlock(&cgroup_mutex);
3970
3971 /*
3972 * In general, subsystem has no css->refcnt after pre_destroy(). But
3973 * in racy cases, subsystem may have to get css->refcnt after
3974 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3975 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3976 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3977 * and subsystem's reference count handling. Please see css_get/put
3978 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3979 */
3980 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3981
3982 /*
3983 * Call pre_destroy handlers of subsys. Notify subsystems
3984 * that rmdir() request comes.
3985 */
3986 ret = cgroup_call_pre_destroy(cgrp);
3987 if (ret) {
3988 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3989 return ret;
3990 }
3991
3992 mutex_lock(&cgroup_mutex);
3993 parent = cgrp->parent;
3994 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3995 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3996 mutex_unlock(&cgroup_mutex);
3997 return -EBUSY;
3998 }
3999 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4000 if (!cgroup_clear_css_refs(cgrp)) {
4001 mutex_unlock(&cgroup_mutex);
4002 /*
4003 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4004 * prepare_to_wait(), we need to check this flag.
4005 */
4006 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4007 schedule();
4008 finish_wait(&cgroup_rmdir_waitq, &wait);
4009 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4010 if (signal_pending(current))
4011 return -EINTR;
4012 goto again;
4013 }
4014 /* NO css_tryget() can success after here. */
4015 finish_wait(&cgroup_rmdir_waitq, &wait);
4016 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4017
4018 spin_lock(&release_list_lock);
4019 set_bit(CGRP_REMOVED, &cgrp->flags);
4020 if (!list_empty(&cgrp->release_list))
4021 list_del_init(&cgrp->release_list);
4022 spin_unlock(&release_list_lock);
4023
4024 cgroup_lock_hierarchy(cgrp->root);
4025 /* delete this cgroup from parent->children */
4026 list_del_init(&cgrp->sibling);
4027 cgroup_unlock_hierarchy(cgrp->root);
4028
4029 d = dget(cgrp->dentry);
4030
4031 cgroup_d_remove_dir(d);
4032 dput(d);
4033
4034 set_bit(CGRP_RELEASABLE, &parent->flags);
4035 check_for_release(parent);
4036
4037 /*
4038 * Unregister events and notify userspace.
4039 * Notify userspace about cgroup removing only after rmdir of cgroup
4040 * directory to avoid race between userspace and kernelspace
4041 */
4042 spin_lock(&cgrp->event_list_lock);
4043 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4044 list_del(&event->list);
4045 remove_wait_queue(event->wqh, &event->wait);
4046 eventfd_signal(event->eventfd, 1);
4047 schedule_work(&event->remove);
4048 }
4049 spin_unlock(&cgrp->event_list_lock);
4050
4051 mutex_unlock(&cgroup_mutex);
4052 return 0;
4053 }
4054
4055 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4056 {
4057 struct cgroup_subsys_state *css;
4058
4059 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4060
4061 /* Create the top cgroup state for this subsystem */
4062 list_add(&ss->sibling, &rootnode.subsys_list);
4063 ss->root = &rootnode;
4064 css = ss->create(ss, dummytop);
4065 /* We don't handle early failures gracefully */
4066 BUG_ON(IS_ERR(css));
4067 init_cgroup_css(css, ss, dummytop);
4068
4069 /* Update the init_css_set to contain a subsys
4070 * pointer to this state - since the subsystem is
4071 * newly registered, all tasks and hence the
4072 * init_css_set is in the subsystem's top cgroup. */
4073 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4074
4075 need_forkexit_callback |= ss->fork || ss->exit;
4076
4077 /* At system boot, before all subsystems have been
4078 * registered, no tasks have been forked, so we don't
4079 * need to invoke fork callbacks here. */
4080 BUG_ON(!list_empty(&init_task.tasks));
4081
4082 mutex_init(&ss->hierarchy_mutex);
4083 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4084 ss->active = 1;
4085
4086 /* this function shouldn't be used with modular subsystems, since they
4087 * need to register a subsys_id, among other things */
4088 BUG_ON(ss->module);
4089 }
4090
4091 /**
4092 * cgroup_load_subsys: load and register a modular subsystem at runtime
4093 * @ss: the subsystem to load
4094 *
4095 * This function should be called in a modular subsystem's initcall. If the
4096 * subsystem is built as a module, it will be assigned a new subsys_id and set
4097 * up for use. If the subsystem is built-in anyway, work is delegated to the
4098 * simpler cgroup_init_subsys.
4099 */
4100 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4101 {
4102 int i;
4103 struct cgroup_subsys_state *css;
4104
4105 /* check name and function validity */
4106 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4107 ss->create == NULL || ss->destroy == NULL)
4108 return -EINVAL;
4109
4110 /*
4111 * we don't support callbacks in modular subsystems. this check is
4112 * before the ss->module check for consistency; a subsystem that could
4113 * be a module should still have no callbacks even if the user isn't
4114 * compiling it as one.
4115 */
4116 if (ss->fork || ss->exit)
4117 return -EINVAL;
4118
4119 /*
4120 * an optionally modular subsystem is built-in: we want to do nothing,
4121 * since cgroup_init_subsys will have already taken care of it.
4122 */
4123 if (ss->module == NULL) {
4124 /* a few sanity checks */
4125 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4126 BUG_ON(subsys[ss->subsys_id] != ss);
4127 return 0;
4128 }
4129
4130 /*
4131 * need to register a subsys id before anything else - for example,
4132 * init_cgroup_css needs it.
4133 */
4134 mutex_lock(&cgroup_mutex);
4135 /* find the first empty slot in the array */
4136 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4137 if (subsys[i] == NULL)
4138 break;
4139 }
4140 if (i == CGROUP_SUBSYS_COUNT) {
4141 /* maximum number of subsystems already registered! */
4142 mutex_unlock(&cgroup_mutex);
4143 return -EBUSY;
4144 }
4145 /* assign ourselves the subsys_id */
4146 ss->subsys_id = i;
4147 subsys[i] = ss;
4148
4149 /*
4150 * no ss->create seems to need anything important in the ss struct, so
4151 * this can happen first (i.e. before the rootnode attachment).
4152 */
4153 css = ss->create(ss, dummytop);
4154 if (IS_ERR(css)) {
4155 /* failure case - need to deassign the subsys[] slot. */
4156 subsys[i] = NULL;
4157 mutex_unlock(&cgroup_mutex);
4158 return PTR_ERR(css);
4159 }
4160
4161 list_add(&ss->sibling, &rootnode.subsys_list);
4162 ss->root = &rootnode;
4163
4164 /* our new subsystem will be attached to the dummy hierarchy. */
4165 init_cgroup_css(css, ss, dummytop);
4166 /* init_idr must be after init_cgroup_css because it sets css->id. */
4167 if (ss->use_id) {
4168 int ret = cgroup_init_idr(ss, css);
4169 if (ret) {
4170 dummytop->subsys[ss->subsys_id] = NULL;
4171 ss->destroy(ss, dummytop);
4172 subsys[i] = NULL;
4173 mutex_unlock(&cgroup_mutex);
4174 return ret;
4175 }
4176 }
4177
4178 /*
4179 * Now we need to entangle the css into the existing css_sets. unlike
4180 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4181 * will need a new pointer to it; done by iterating the css_set_table.
4182 * furthermore, modifying the existing css_sets will corrupt the hash
4183 * table state, so each changed css_set will need its hash recomputed.
4184 * this is all done under the css_set_lock.
4185 */
4186 write_lock(&css_set_lock);
4187 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4188 struct css_set *cg;
4189 struct hlist_node *node, *tmp;
4190 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4191
4192 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4193 /* skip entries that we already rehashed */
4194 if (cg->subsys[ss->subsys_id])
4195 continue;
4196 /* remove existing entry */
4197 hlist_del(&cg->hlist);
4198 /* set new value */
4199 cg->subsys[ss->subsys_id] = css;
4200 /* recompute hash and restore entry */
4201 new_bucket = css_set_hash(cg->subsys);
4202 hlist_add_head(&cg->hlist, new_bucket);
4203 }
4204 }
4205 write_unlock(&css_set_lock);
4206
4207 mutex_init(&ss->hierarchy_mutex);
4208 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4209 ss->active = 1;
4210
4211 /* success! */
4212 mutex_unlock(&cgroup_mutex);
4213 return 0;
4214 }
4215 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4216
4217 /**
4218 * cgroup_unload_subsys: unload a modular subsystem
4219 * @ss: the subsystem to unload
4220 *
4221 * This function should be called in a modular subsystem's exitcall. When this
4222 * function is invoked, the refcount on the subsystem's module will be 0, so
4223 * the subsystem will not be attached to any hierarchy.
4224 */
4225 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4226 {
4227 struct cg_cgroup_link *link;
4228 struct hlist_head *hhead;
4229
4230 BUG_ON(ss->module == NULL);
4231
4232 /*
4233 * we shouldn't be called if the subsystem is in use, and the use of
4234 * try_module_get in parse_cgroupfs_options should ensure that it
4235 * doesn't start being used while we're killing it off.
4236 */
4237 BUG_ON(ss->root != &rootnode);
4238
4239 mutex_lock(&cgroup_mutex);
4240 /* deassign the subsys_id */
4241 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4242 subsys[ss->subsys_id] = NULL;
4243
4244 /* remove subsystem from rootnode's list of subsystems */
4245 list_del_init(&ss->sibling);
4246
4247 /*
4248 * disentangle the css from all css_sets attached to the dummytop. as
4249 * in loading, we need to pay our respects to the hashtable gods.
4250 */
4251 write_lock(&css_set_lock);
4252 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4253 struct css_set *cg = link->cg;
4254
4255 hlist_del(&cg->hlist);
4256 BUG_ON(!cg->subsys[ss->subsys_id]);
4257 cg->subsys[ss->subsys_id] = NULL;
4258 hhead = css_set_hash(cg->subsys);
4259 hlist_add_head(&cg->hlist, hhead);
4260 }
4261 write_unlock(&css_set_lock);
4262
4263 /*
4264 * remove subsystem's css from the dummytop and free it - need to free
4265 * before marking as null because ss->destroy needs the cgrp->subsys
4266 * pointer to find their state. note that this also takes care of
4267 * freeing the css_id.
4268 */
4269 ss->destroy(ss, dummytop);
4270 dummytop->subsys[ss->subsys_id] = NULL;
4271
4272 mutex_unlock(&cgroup_mutex);
4273 }
4274 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4275
4276 /**
4277 * cgroup_init_early - cgroup initialization at system boot
4278 *
4279 * Initialize cgroups at system boot, and initialize any
4280 * subsystems that request early init.
4281 */
4282 int __init cgroup_init_early(void)
4283 {
4284 int i;
4285 atomic_set(&init_css_set.refcount, 1);
4286 INIT_LIST_HEAD(&init_css_set.cg_links);
4287 INIT_LIST_HEAD(&init_css_set.tasks);
4288 INIT_HLIST_NODE(&init_css_set.hlist);
4289 css_set_count = 1;
4290 init_cgroup_root(&rootnode);
4291 root_count = 1;
4292 init_task.cgroups = &init_css_set;
4293
4294 init_css_set_link.cg = &init_css_set;
4295 init_css_set_link.cgrp = dummytop;
4296 list_add(&init_css_set_link.cgrp_link_list,
4297 &rootnode.top_cgroup.css_sets);
4298 list_add(&init_css_set_link.cg_link_list,
4299 &init_css_set.cg_links);
4300
4301 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4302 INIT_HLIST_HEAD(&css_set_table[i]);
4303
4304 /* at bootup time, we don't worry about modular subsystems */
4305 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4306 struct cgroup_subsys *ss = subsys[i];
4307
4308 BUG_ON(!ss->name);
4309 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4310 BUG_ON(!ss->create);
4311 BUG_ON(!ss->destroy);
4312 if (ss->subsys_id != i) {
4313 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4314 ss->name, ss->subsys_id);
4315 BUG();
4316 }
4317
4318 if (ss->early_init)
4319 cgroup_init_subsys(ss);
4320 }
4321 return 0;
4322 }
4323
4324 /**
4325 * cgroup_init - cgroup initialization
4326 *
4327 * Register cgroup filesystem and /proc file, and initialize
4328 * any subsystems that didn't request early init.
4329 */
4330 int __init cgroup_init(void)
4331 {
4332 int err;
4333 int i;
4334 struct hlist_head *hhead;
4335
4336 err = bdi_init(&cgroup_backing_dev_info);
4337 if (err)
4338 return err;
4339
4340 /* at bootup time, we don't worry about modular subsystems */
4341 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4342 struct cgroup_subsys *ss = subsys[i];
4343 if (!ss->early_init)
4344 cgroup_init_subsys(ss);
4345 if (ss->use_id)
4346 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4347 }
4348
4349 /* Add init_css_set to the hash table */
4350 hhead = css_set_hash(init_css_set.subsys);
4351 hlist_add_head(&init_css_set.hlist, hhead);
4352 BUG_ON(!init_root_id(&rootnode));
4353
4354 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4355 if (!cgroup_kobj) {
4356 err = -ENOMEM;
4357 goto out;
4358 }
4359
4360 err = register_filesystem(&cgroup_fs_type);
4361 if (err < 0) {
4362 kobject_put(cgroup_kobj);
4363 goto out;
4364 }
4365
4366 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4367
4368 out:
4369 if (err)
4370 bdi_destroy(&cgroup_backing_dev_info);
4371
4372 return err;
4373 }
4374
4375 /*
4376 * proc_cgroup_show()
4377 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4378 * - Used for /proc/<pid>/cgroup.
4379 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4380 * doesn't really matter if tsk->cgroup changes after we read it,
4381 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4382 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4383 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4384 * cgroup to top_cgroup.
4385 */
4386
4387 /* TODO: Use a proper seq_file iterator */
4388 static int proc_cgroup_show(struct seq_file *m, void *v)
4389 {
4390 struct pid *pid;
4391 struct task_struct *tsk;
4392 char *buf;
4393 int retval;
4394 struct cgroupfs_root *root;
4395
4396 retval = -ENOMEM;
4397 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4398 if (!buf)
4399 goto out;
4400
4401 retval = -ESRCH;
4402 pid = m->private;
4403 tsk = get_pid_task(pid, PIDTYPE_PID);
4404 if (!tsk)
4405 goto out_free;
4406
4407 retval = 0;
4408
4409 mutex_lock(&cgroup_mutex);
4410
4411 for_each_active_root(root) {
4412 struct cgroup_subsys *ss;
4413 struct cgroup *cgrp;
4414 int count = 0;
4415
4416 seq_printf(m, "%d:", root->hierarchy_id);
4417 for_each_subsys(root, ss)
4418 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4419 if (strlen(root->name))
4420 seq_printf(m, "%sname=%s", count ? "," : "",
4421 root->name);
4422 seq_putc(m, ':');
4423 cgrp = task_cgroup_from_root(tsk, root);
4424 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4425 if (retval < 0)
4426 goto out_unlock;
4427 seq_puts(m, buf);
4428 seq_putc(m, '\n');
4429 }
4430
4431 out_unlock:
4432 mutex_unlock(&cgroup_mutex);
4433 put_task_struct(tsk);
4434 out_free:
4435 kfree(buf);
4436 out:
4437 return retval;
4438 }
4439
4440 static int cgroup_open(struct inode *inode, struct file *file)
4441 {
4442 struct pid *pid = PROC_I(inode)->pid;
4443 return single_open(file, proc_cgroup_show, pid);
4444 }
4445
4446 const struct file_operations proc_cgroup_operations = {
4447 .open = cgroup_open,
4448 .read = seq_read,
4449 .llseek = seq_lseek,
4450 .release = single_release,
4451 };
4452
4453 /* Display information about each subsystem and each hierarchy */
4454 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4455 {
4456 int i;
4457
4458 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4459 /*
4460 * ideally we don't want subsystems moving around while we do this.
4461 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4462 * subsys/hierarchy state.
4463 */
4464 mutex_lock(&cgroup_mutex);
4465 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4466 struct cgroup_subsys *ss = subsys[i];
4467 if (ss == NULL)
4468 continue;
4469 seq_printf(m, "%s\t%d\t%d\t%d\n",
4470 ss->name, ss->root->hierarchy_id,
4471 ss->root->number_of_cgroups, !ss->disabled);
4472 }
4473 mutex_unlock(&cgroup_mutex);
4474 return 0;
4475 }
4476
4477 static int cgroupstats_open(struct inode *inode, struct file *file)
4478 {
4479 return single_open(file, proc_cgroupstats_show, NULL);
4480 }
4481
4482 static const struct file_operations proc_cgroupstats_operations = {
4483 .open = cgroupstats_open,
4484 .read = seq_read,
4485 .llseek = seq_lseek,
4486 .release = single_release,
4487 };
4488
4489 /**
4490 * cgroup_fork - attach newly forked task to its parents cgroup.
4491 * @child: pointer to task_struct of forking parent process.
4492 *
4493 * Description: A task inherits its parent's cgroup at fork().
4494 *
4495 * A pointer to the shared css_set was automatically copied in
4496 * fork.c by dup_task_struct(). However, we ignore that copy, since
4497 * it was not made under the protection of RCU or cgroup_mutex, so
4498 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4499 * have already changed current->cgroups, allowing the previously
4500 * referenced cgroup group to be removed and freed.
4501 *
4502 * At the point that cgroup_fork() is called, 'current' is the parent
4503 * task, and the passed argument 'child' points to the child task.
4504 */
4505 void cgroup_fork(struct task_struct *child)
4506 {
4507 task_lock(current);
4508 child->cgroups = current->cgroups;
4509 get_css_set(child->cgroups);
4510 task_unlock(current);
4511 INIT_LIST_HEAD(&child->cg_list);
4512 }
4513
4514 /**
4515 * cgroup_fork_callbacks - run fork callbacks
4516 * @child: the new task
4517 *
4518 * Called on a new task very soon before adding it to the
4519 * tasklist. No need to take any locks since no-one can
4520 * be operating on this task.
4521 */
4522 void cgroup_fork_callbacks(struct task_struct *child)
4523 {
4524 if (need_forkexit_callback) {
4525 int i;
4526 /*
4527 * forkexit callbacks are only supported for builtin
4528 * subsystems, and the builtin section of the subsys array is
4529 * immutable, so we don't need to lock the subsys array here.
4530 */
4531 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4532 struct cgroup_subsys *ss = subsys[i];
4533 if (ss->fork)
4534 ss->fork(ss, child);
4535 }
4536 }
4537 }
4538
4539 /**
4540 * cgroup_post_fork - called on a new task after adding it to the task list
4541 * @child: the task in question
4542 *
4543 * Adds the task to the list running through its css_set if necessary.
4544 * Has to be after the task is visible on the task list in case we race
4545 * with the first call to cgroup_iter_start() - to guarantee that the
4546 * new task ends up on its list.
4547 */
4548 void cgroup_post_fork(struct task_struct *child)
4549 {
4550 if (use_task_css_set_links) {
4551 write_lock(&css_set_lock);
4552 task_lock(child);
4553 if (list_empty(&child->cg_list))
4554 list_add(&child->cg_list, &child->cgroups->tasks);
4555 task_unlock(child);
4556 write_unlock(&css_set_lock);
4557 }
4558 }
4559 /**
4560 * cgroup_exit - detach cgroup from exiting task
4561 * @tsk: pointer to task_struct of exiting process
4562 * @run_callback: run exit callbacks?
4563 *
4564 * Description: Detach cgroup from @tsk and release it.
4565 *
4566 * Note that cgroups marked notify_on_release force every task in
4567 * them to take the global cgroup_mutex mutex when exiting.
4568 * This could impact scaling on very large systems. Be reluctant to
4569 * use notify_on_release cgroups where very high task exit scaling
4570 * is required on large systems.
4571 *
4572 * the_top_cgroup_hack:
4573 *
4574 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4575 *
4576 * We call cgroup_exit() while the task is still competent to
4577 * handle notify_on_release(), then leave the task attached to the
4578 * root cgroup in each hierarchy for the remainder of its exit.
4579 *
4580 * To do this properly, we would increment the reference count on
4581 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4582 * code we would add a second cgroup function call, to drop that
4583 * reference. This would just create an unnecessary hot spot on
4584 * the top_cgroup reference count, to no avail.
4585 *
4586 * Normally, holding a reference to a cgroup without bumping its
4587 * count is unsafe. The cgroup could go away, or someone could
4588 * attach us to a different cgroup, decrementing the count on
4589 * the first cgroup that we never incremented. But in this case,
4590 * top_cgroup isn't going away, and either task has PF_EXITING set,
4591 * which wards off any cgroup_attach_task() attempts, or task is a failed
4592 * fork, never visible to cgroup_attach_task.
4593 */
4594 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4595 {
4596 struct css_set *cg;
4597 int i;
4598
4599 /*
4600 * Unlink from the css_set task list if necessary.
4601 * Optimistically check cg_list before taking
4602 * css_set_lock
4603 */
4604 if (!list_empty(&tsk->cg_list)) {
4605 write_lock(&css_set_lock);
4606 if (!list_empty(&tsk->cg_list))
4607 list_del_init(&tsk->cg_list);
4608 write_unlock(&css_set_lock);
4609 }
4610
4611 /* Reassign the task to the init_css_set. */
4612 task_lock(tsk);
4613 cg = tsk->cgroups;
4614 tsk->cgroups = &init_css_set;
4615
4616 if (run_callbacks && need_forkexit_callback) {
4617 /*
4618 * modular subsystems can't use callbacks, so no need to lock
4619 * the subsys array
4620 */
4621 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4622 struct cgroup_subsys *ss = subsys[i];
4623 if (ss->exit) {
4624 struct cgroup *old_cgrp =
4625 rcu_dereference_raw(cg->subsys[i])->cgroup;
4626 struct cgroup *cgrp = task_cgroup(tsk, i);
4627 ss->exit(ss, cgrp, old_cgrp, tsk);
4628 }
4629 }
4630 }
4631 task_unlock(tsk);
4632
4633 if (cg)
4634 put_css_set_taskexit(cg);
4635 }
4636
4637 /**
4638 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4639 * @cgrp: the cgroup in question
4640 * @task: the task in question
4641 *
4642 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4643 * hierarchy.
4644 *
4645 * If we are sending in dummytop, then presumably we are creating
4646 * the top cgroup in the subsystem.
4647 *
4648 * Called only by the ns (nsproxy) cgroup.
4649 */
4650 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4651 {
4652 int ret;
4653 struct cgroup *target;
4654
4655 if (cgrp == dummytop)
4656 return 1;
4657
4658 target = task_cgroup_from_root(task, cgrp->root);
4659 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4660 cgrp = cgrp->parent;
4661 ret = (cgrp == target);
4662 return ret;
4663 }
4664
4665 static void check_for_release(struct cgroup *cgrp)
4666 {
4667 /* All of these checks rely on RCU to keep the cgroup
4668 * structure alive */
4669 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4670 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4671 /* Control Group is currently removeable. If it's not
4672 * already queued for a userspace notification, queue
4673 * it now */
4674 int need_schedule_work = 0;
4675 spin_lock(&release_list_lock);
4676 if (!cgroup_is_removed(cgrp) &&
4677 list_empty(&cgrp->release_list)) {
4678 list_add(&cgrp->release_list, &release_list);
4679 need_schedule_work = 1;
4680 }
4681 spin_unlock(&release_list_lock);
4682 if (need_schedule_work)
4683 schedule_work(&release_agent_work);
4684 }
4685 }
4686
4687 /* Caller must verify that the css is not for root cgroup */
4688 void __css_put(struct cgroup_subsys_state *css, int count)
4689 {
4690 struct cgroup *cgrp = css->cgroup;
4691 int val;
4692 rcu_read_lock();
4693 val = atomic_sub_return(count, &css->refcnt);
4694 if (val == 1) {
4695 if (notify_on_release(cgrp)) {
4696 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4697 check_for_release(cgrp);
4698 }
4699 cgroup_wakeup_rmdir_waiter(cgrp);
4700 }
4701 rcu_read_unlock();
4702 WARN_ON_ONCE(val < 1);
4703 }
4704 EXPORT_SYMBOL_GPL(__css_put);
4705
4706 /*
4707 * Notify userspace when a cgroup is released, by running the
4708 * configured release agent with the name of the cgroup (path
4709 * relative to the root of cgroup file system) as the argument.
4710 *
4711 * Most likely, this user command will try to rmdir this cgroup.
4712 *
4713 * This races with the possibility that some other task will be
4714 * attached to this cgroup before it is removed, or that some other
4715 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4716 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4717 * unused, and this cgroup will be reprieved from its death sentence,
4718 * to continue to serve a useful existence. Next time it's released,
4719 * we will get notified again, if it still has 'notify_on_release' set.
4720 *
4721 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4722 * means only wait until the task is successfully execve()'d. The
4723 * separate release agent task is forked by call_usermodehelper(),
4724 * then control in this thread returns here, without waiting for the
4725 * release agent task. We don't bother to wait because the caller of
4726 * this routine has no use for the exit status of the release agent
4727 * task, so no sense holding our caller up for that.
4728 */
4729 static void cgroup_release_agent(struct work_struct *work)
4730 {
4731 BUG_ON(work != &release_agent_work);
4732 mutex_lock(&cgroup_mutex);
4733 spin_lock(&release_list_lock);
4734 while (!list_empty(&release_list)) {
4735 char *argv[3], *envp[3];
4736 int i;
4737 char *pathbuf = NULL, *agentbuf = NULL;
4738 struct cgroup *cgrp = list_entry(release_list.next,
4739 struct cgroup,
4740 release_list);
4741 list_del_init(&cgrp->release_list);
4742 spin_unlock(&release_list_lock);
4743 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4744 if (!pathbuf)
4745 goto continue_free;
4746 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4747 goto continue_free;
4748 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4749 if (!agentbuf)
4750 goto continue_free;
4751
4752 i = 0;
4753 argv[i++] = agentbuf;
4754 argv[i++] = pathbuf;
4755 argv[i] = NULL;
4756
4757 i = 0;
4758 /* minimal command environment */
4759 envp[i++] = "HOME=/";
4760 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4761 envp[i] = NULL;
4762
4763 /* Drop the lock while we invoke the usermode helper,
4764 * since the exec could involve hitting disk and hence
4765 * be a slow process */
4766 mutex_unlock(&cgroup_mutex);
4767 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4768 mutex_lock(&cgroup_mutex);
4769 continue_free:
4770 kfree(pathbuf);
4771 kfree(agentbuf);
4772 spin_lock(&release_list_lock);
4773 }
4774 spin_unlock(&release_list_lock);
4775 mutex_unlock(&cgroup_mutex);
4776 }
4777
4778 static int __init cgroup_disable(char *str)
4779 {
4780 int i;
4781 char *token;
4782
4783 while ((token = strsep(&str, ",")) != NULL) {
4784 if (!*token)
4785 continue;
4786 /*
4787 * cgroup_disable, being at boot time, can't know about module
4788 * subsystems, so we don't worry about them.
4789 */
4790 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4791 struct cgroup_subsys *ss = subsys[i];
4792
4793 if (!strcmp(token, ss->name)) {
4794 ss->disabled = 1;
4795 printk(KERN_INFO "Disabling %s control group"
4796 " subsystem\n", ss->name);
4797 break;
4798 }
4799 }
4800 }
4801 return 1;
4802 }
4803 __setup("cgroup_disable=", cgroup_disable);
4804
4805 /*
4806 * Functons for CSS ID.
4807 */
4808
4809 /*
4810 *To get ID other than 0, this should be called when !cgroup_is_removed().
4811 */
4812 unsigned short css_id(struct cgroup_subsys_state *css)
4813 {
4814 struct css_id *cssid;
4815
4816 /*
4817 * This css_id() can return correct value when somone has refcnt
4818 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4819 * it's unchanged until freed.
4820 */
4821 cssid = rcu_dereference_check(css->id,
4822 rcu_read_lock_held() || atomic_read(&css->refcnt));
4823
4824 if (cssid)
4825 return cssid->id;
4826 return 0;
4827 }
4828 EXPORT_SYMBOL_GPL(css_id);
4829
4830 unsigned short css_depth(struct cgroup_subsys_state *css)
4831 {
4832 struct css_id *cssid;
4833
4834 cssid = rcu_dereference_check(css->id,
4835 rcu_read_lock_held() || atomic_read(&css->refcnt));
4836
4837 if (cssid)
4838 return cssid->depth;
4839 return 0;
4840 }
4841 EXPORT_SYMBOL_GPL(css_depth);
4842
4843 /**
4844 * css_is_ancestor - test "root" css is an ancestor of "child"
4845 * @child: the css to be tested.
4846 * @root: the css supporsed to be an ancestor of the child.
4847 *
4848 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4849 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4850 * But, considering usual usage, the csses should be valid objects after test.
4851 * Assuming that the caller will do some action to the child if this returns
4852 * returns true, the caller must take "child";s reference count.
4853 * If "child" is valid object and this returns true, "root" is valid, too.
4854 */
4855
4856 bool css_is_ancestor(struct cgroup_subsys_state *child,
4857 const struct cgroup_subsys_state *root)
4858 {
4859 struct css_id *child_id;
4860 struct css_id *root_id;
4861 bool ret = true;
4862
4863 rcu_read_lock();
4864 child_id = rcu_dereference(child->id);
4865 root_id = rcu_dereference(root->id);
4866 if (!child_id
4867 || !root_id
4868 || (child_id->depth < root_id->depth)
4869 || (child_id->stack[root_id->depth] != root_id->id))
4870 ret = false;
4871 rcu_read_unlock();
4872 return ret;
4873 }
4874
4875 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4876 {
4877 struct css_id *id = css->id;
4878 /* When this is called before css_id initialization, id can be NULL */
4879 if (!id)
4880 return;
4881
4882 BUG_ON(!ss->use_id);
4883
4884 rcu_assign_pointer(id->css, NULL);
4885 rcu_assign_pointer(css->id, NULL);
4886 spin_lock(&ss->id_lock);
4887 idr_remove(&ss->idr, id->id);
4888 spin_unlock(&ss->id_lock);
4889 kfree_rcu(id, rcu_head);
4890 }
4891 EXPORT_SYMBOL_GPL(free_css_id);
4892
4893 /*
4894 * This is called by init or create(). Then, calls to this function are
4895 * always serialized (By cgroup_mutex() at create()).
4896 */
4897
4898 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4899 {
4900 struct css_id *newid;
4901 int myid, error, size;
4902
4903 BUG_ON(!ss->use_id);
4904
4905 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4906 newid = kzalloc(size, GFP_KERNEL);
4907 if (!newid)
4908 return ERR_PTR(-ENOMEM);
4909 /* get id */
4910 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4911 error = -ENOMEM;
4912 goto err_out;
4913 }
4914 spin_lock(&ss->id_lock);
4915 /* Don't use 0. allocates an ID of 1-65535 */
4916 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4917 spin_unlock(&ss->id_lock);
4918
4919 /* Returns error when there are no free spaces for new ID.*/
4920 if (error) {
4921 error = -ENOSPC;
4922 goto err_out;
4923 }
4924 if (myid > CSS_ID_MAX)
4925 goto remove_idr;
4926
4927 newid->id = myid;
4928 newid->depth = depth;
4929 return newid;
4930 remove_idr:
4931 error = -ENOSPC;
4932 spin_lock(&ss->id_lock);
4933 idr_remove(&ss->idr, myid);
4934 spin_unlock(&ss->id_lock);
4935 err_out:
4936 kfree(newid);
4937 return ERR_PTR(error);
4938
4939 }
4940
4941 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4942 struct cgroup_subsys_state *rootcss)
4943 {
4944 struct css_id *newid;
4945
4946 spin_lock_init(&ss->id_lock);
4947 idr_init(&ss->idr);
4948
4949 newid = get_new_cssid(ss, 0);
4950 if (IS_ERR(newid))
4951 return PTR_ERR(newid);
4952
4953 newid->stack[0] = newid->id;
4954 newid->css = rootcss;
4955 rootcss->id = newid;
4956 return 0;
4957 }
4958
4959 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4960 struct cgroup *child)
4961 {
4962 int subsys_id, i, depth = 0;
4963 struct cgroup_subsys_state *parent_css, *child_css;
4964 struct css_id *child_id, *parent_id;
4965
4966 subsys_id = ss->subsys_id;
4967 parent_css = parent->subsys[subsys_id];
4968 child_css = child->subsys[subsys_id];
4969 parent_id = parent_css->id;
4970 depth = parent_id->depth + 1;
4971
4972 child_id = get_new_cssid(ss, depth);
4973 if (IS_ERR(child_id))
4974 return PTR_ERR(child_id);
4975
4976 for (i = 0; i < depth; i++)
4977 child_id->stack[i] = parent_id->stack[i];
4978 child_id->stack[depth] = child_id->id;
4979 /*
4980 * child_id->css pointer will be set after this cgroup is available
4981 * see cgroup_populate_dir()
4982 */
4983 rcu_assign_pointer(child_css->id, child_id);
4984
4985 return 0;
4986 }
4987
4988 /**
4989 * css_lookup - lookup css by id
4990 * @ss: cgroup subsys to be looked into.
4991 * @id: the id
4992 *
4993 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4994 * NULL if not. Should be called under rcu_read_lock()
4995 */
4996 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4997 {
4998 struct css_id *cssid = NULL;
4999
5000 BUG_ON(!ss->use_id);
5001 cssid = idr_find(&ss->idr, id);
5002
5003 if (unlikely(!cssid))
5004 return NULL;
5005
5006 return rcu_dereference(cssid->css);
5007 }
5008 EXPORT_SYMBOL_GPL(css_lookup);
5009
5010 /**
5011 * css_get_next - lookup next cgroup under specified hierarchy.
5012 * @ss: pointer to subsystem
5013 * @id: current position of iteration.
5014 * @root: pointer to css. search tree under this.
5015 * @foundid: position of found object.
5016 *
5017 * Search next css under the specified hierarchy of rootid. Calling under
5018 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5019 */
5020 struct cgroup_subsys_state *
5021 css_get_next(struct cgroup_subsys *ss, int id,
5022 struct cgroup_subsys_state *root, int *foundid)
5023 {
5024 struct cgroup_subsys_state *ret = NULL;
5025 struct css_id *tmp;
5026 int tmpid;
5027 int rootid = css_id(root);
5028 int depth = css_depth(root);
5029
5030 if (!rootid)
5031 return NULL;
5032
5033 BUG_ON(!ss->use_id);
5034 /* fill start point for scan */
5035 tmpid = id;
5036 while (1) {
5037 /*
5038 * scan next entry from bitmap(tree), tmpid is updated after
5039 * idr_get_next().
5040 */
5041 spin_lock(&ss->id_lock);
5042 tmp = idr_get_next(&ss->idr, &tmpid);
5043 spin_unlock(&ss->id_lock);
5044
5045 if (!tmp)
5046 break;
5047 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5048 ret = rcu_dereference(tmp->css);
5049 if (ret) {
5050 *foundid = tmpid;
5051 break;
5052 }
5053 }
5054 /* continue to scan from next id */
5055 tmpid = tmpid + 1;
5056 }
5057 return ret;
5058 }
5059
5060 /*
5061 * get corresponding css from file open on cgroupfs directory
5062 */
5063 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5064 {
5065 struct cgroup *cgrp;
5066 struct inode *inode;
5067 struct cgroup_subsys_state *css;
5068
5069 inode = f->f_dentry->d_inode;
5070 /* check in cgroup filesystem dir */
5071 if (inode->i_op != &cgroup_dir_inode_operations)
5072 return ERR_PTR(-EBADF);
5073
5074 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5075 return ERR_PTR(-EINVAL);
5076
5077 /* get cgroup */
5078 cgrp = __d_cgrp(f->f_dentry);
5079 css = cgrp->subsys[id];
5080 return css ? css : ERR_PTR(-ENOENT);
5081 }
5082
5083 #ifdef CONFIG_CGROUP_DEBUG
5084 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5085 struct cgroup *cont)
5086 {
5087 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5088
5089 if (!css)
5090 return ERR_PTR(-ENOMEM);
5091
5092 return css;
5093 }
5094
5095 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5096 {
5097 kfree(cont->subsys[debug_subsys_id]);
5098 }
5099
5100 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5101 {
5102 return atomic_read(&cont->count);
5103 }
5104
5105 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5106 {
5107 return cgroup_task_count(cont);
5108 }
5109
5110 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5111 {
5112 return (u64)(unsigned long)current->cgroups;
5113 }
5114
5115 static u64 current_css_set_refcount_read(struct cgroup *cont,
5116 struct cftype *cft)
5117 {
5118 u64 count;
5119
5120 rcu_read_lock();
5121 count = atomic_read(&current->cgroups->refcount);
5122 rcu_read_unlock();
5123 return count;
5124 }
5125
5126 static int current_css_set_cg_links_read(struct cgroup *cont,
5127 struct cftype *cft,
5128 struct seq_file *seq)
5129 {
5130 struct cg_cgroup_link *link;
5131 struct css_set *cg;
5132
5133 read_lock(&css_set_lock);
5134 rcu_read_lock();
5135 cg = rcu_dereference(current->cgroups);
5136 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5137 struct cgroup *c = link->cgrp;
5138 const char *name;
5139
5140 if (c->dentry)
5141 name = c->dentry->d_name.name;
5142 else
5143 name = "?";
5144 seq_printf(seq, "Root %d group %s\n",
5145 c->root->hierarchy_id, name);
5146 }
5147 rcu_read_unlock();
5148 read_unlock(&css_set_lock);
5149 return 0;
5150 }
5151
5152 #define MAX_TASKS_SHOWN_PER_CSS 25
5153 static int cgroup_css_links_read(struct cgroup *cont,
5154 struct cftype *cft,
5155 struct seq_file *seq)
5156 {
5157 struct cg_cgroup_link *link;
5158
5159 read_lock(&css_set_lock);
5160 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5161 struct css_set *cg = link->cg;
5162 struct task_struct *task;
5163 int count = 0;
5164 seq_printf(seq, "css_set %p\n", cg);
5165 list_for_each_entry(task, &cg->tasks, cg_list) {
5166 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5167 seq_puts(seq, " ...\n");
5168 break;
5169 } else {
5170 seq_printf(seq, " task %d\n",
5171 task_pid_vnr(task));
5172 }
5173 }
5174 }
5175 read_unlock(&css_set_lock);
5176 return 0;
5177 }
5178
5179 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5180 {
5181 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5182 }
5183
5184 static struct cftype debug_files[] = {
5185 {
5186 .name = "cgroup_refcount",
5187 .read_u64 = cgroup_refcount_read,
5188 },
5189 {
5190 .name = "taskcount",
5191 .read_u64 = debug_taskcount_read,
5192 },
5193
5194 {
5195 .name = "current_css_set",
5196 .read_u64 = current_css_set_read,
5197 },
5198
5199 {
5200 .name = "current_css_set_refcount",
5201 .read_u64 = current_css_set_refcount_read,
5202 },
5203
5204 {
5205 .name = "current_css_set_cg_links",
5206 .read_seq_string = current_css_set_cg_links_read,
5207 },
5208
5209 {
5210 .name = "cgroup_css_links",
5211 .read_seq_string = cgroup_css_links_read,
5212 },
5213
5214 {
5215 .name = "releasable",
5216 .read_u64 = releasable_read,
5217 },
5218 };
5219
5220 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5221 {
5222 return cgroup_add_files(cont, ss, debug_files,
5223 ARRAY_SIZE(debug_files));
5224 }
5225
5226 struct cgroup_subsys debug_subsys = {
5227 .name = "debug",
5228 .create = debug_create,
5229 .destroy = debug_destroy,
5230 .populate = debug_populate,
5231 .subsys_id = debug_subsys_id,
5232 };
5233 #endif /* CONFIG_CGROUP_DEBUG */