]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cgroup.c
cgroup: make task iterators deal with cgroup_subsys_state instead of cgroup
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 #ifdef CONFIG_PROVE_RCU
83 DEFINE_MUTEX(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
85 #else
86 static DEFINE_MUTEX(cgroup_mutex);
87 #endif
88
89 static DEFINE_MUTEX(cgroup_root_mutex);
90
91 /*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
93 * populated with the built in subsystems, and modular subsystems are
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
97 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 #include <linux/cgroup_subsys.h>
101 };
102
103 /*
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
107 */
108 static struct cgroupfs_root cgroup_dummy_root;
109
110 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
112
113 /*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
123 };
124
125 /*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129 #define CSS_ID_MAX (65535)
130 struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
137 */
138 struct cgroup_subsys_state __rcu *css;
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155 };
156
157 /*
158 * cgroup_event represents events which userspace want to receive.
159 */
160 struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185 };
186
187 /* The list of hierarchy roots */
188
189 static LIST_HEAD(cgroup_roots);
190 static int cgroup_root_count;
191
192 /*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
197 static DEFINE_IDR(cgroup_hierarchy_idr);
198
199 static struct cgroup_name root_cgroup_name = { .name = "/" };
200
201 /*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
208 */
209 static u64 cgroup_serial_nr_next = 1;
210
211 /* This flag indicates whether tasks in the fork and exit paths should
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
215 */
216 static int need_forkexit_callback __read_mostly;
217
218 static struct cftype cgroup_base_files[];
219
220 static void cgroup_offline_fn(struct work_struct *work);
221 static int cgroup_destroy_locked(struct cgroup *cgrp);
222 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
224
225 /* convenient tests for these bits */
226 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
227 {
228 return test_bit(CGRP_DEAD, &cgrp->flags);
229 }
230
231 /**
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
235 *
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
239 */
240 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
241 {
242 while (cgrp) {
243 if (cgrp == ancestor)
244 return true;
245 cgrp = cgrp->parent;
246 }
247 return false;
248 }
249 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
250
251 static int cgroup_is_releasable(const struct cgroup *cgrp)
252 {
253 const int bits =
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
257 }
258
259 static int notify_on_release(const struct cgroup *cgrp)
260 {
261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
262 }
263
264 /**
265 * for_each_subsys - iterate all loaded cgroup subsystems
266 * @ss: the iteration cursor
267 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
268 *
269 * Should be called under cgroup_mutex.
270 */
271 #define for_each_subsys(ss, i) \
272 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
273 if (({ lockdep_assert_held(&cgroup_mutex); \
274 !((ss) = cgroup_subsys[i]); })) { } \
275 else
276
277 /**
278 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
279 * @ss: the iteration cursor
280 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
281 *
282 * Bulit-in subsystems are always present and iteration itself doesn't
283 * require any synchronization.
284 */
285 #define for_each_builtin_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[i]) || true); (i)++)
288
289 /* iterate each subsystem attached to a hierarchy */
290 #define for_each_root_subsys(root, ss) \
291 list_for_each_entry((ss), &(root)->subsys_list, sibling)
292
293 /* iterate across the active hierarchies */
294 #define for_each_active_root(root) \
295 list_for_each_entry((root), &cgroup_roots, root_list)
296
297 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
298 {
299 return dentry->d_fsdata;
300 }
301
302 static inline struct cfent *__d_cfe(struct dentry *dentry)
303 {
304 return dentry->d_fsdata;
305 }
306
307 static inline struct cftype *__d_cft(struct dentry *dentry)
308 {
309 return __d_cfe(dentry)->type;
310 }
311
312 /**
313 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
314 * @cgrp: the cgroup to be checked for liveness
315 *
316 * On success, returns true; the mutex should be later unlocked. On
317 * failure returns false with no lock held.
318 */
319 static bool cgroup_lock_live_group(struct cgroup *cgrp)
320 {
321 mutex_lock(&cgroup_mutex);
322 if (cgroup_is_dead(cgrp)) {
323 mutex_unlock(&cgroup_mutex);
324 return false;
325 }
326 return true;
327 }
328
329 /* the list of cgroups eligible for automatic release. Protected by
330 * release_list_lock */
331 static LIST_HEAD(release_list);
332 static DEFINE_RAW_SPINLOCK(release_list_lock);
333 static void cgroup_release_agent(struct work_struct *work);
334 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
335 static void check_for_release(struct cgroup *cgrp);
336
337 /*
338 * A cgroup can be associated with multiple css_sets as different tasks may
339 * belong to different cgroups on different hierarchies. In the other
340 * direction, a css_set is naturally associated with multiple cgroups.
341 * This M:N relationship is represented by the following link structure
342 * which exists for each association and allows traversing the associations
343 * from both sides.
344 */
345 struct cgrp_cset_link {
346 /* the cgroup and css_set this link associates */
347 struct cgroup *cgrp;
348 struct css_set *cset;
349
350 /* list of cgrp_cset_links anchored at cgrp->cset_links */
351 struct list_head cset_link;
352
353 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
354 struct list_head cgrp_link;
355 };
356
357 /* The default css_set - used by init and its children prior to any
358 * hierarchies being mounted. It contains a pointer to the root state
359 * for each subsystem. Also used to anchor the list of css_sets. Not
360 * reference-counted, to improve performance when child cgroups
361 * haven't been created.
362 */
363
364 static struct css_set init_css_set;
365 static struct cgrp_cset_link init_cgrp_cset_link;
366
367 static int cgroup_init_idr(struct cgroup_subsys *ss,
368 struct cgroup_subsys_state *css);
369
370 /*
371 * css_set_lock protects the list of css_set objects, and the chain of
372 * tasks off each css_set. Nests outside task->alloc_lock due to
373 * css_task_iter_start().
374 */
375 static DEFINE_RWLOCK(css_set_lock);
376 static int css_set_count;
377
378 /*
379 * hash table for cgroup groups. This improves the performance to find
380 * an existing css_set. This hash doesn't (currently) take into
381 * account cgroups in empty hierarchies.
382 */
383 #define CSS_SET_HASH_BITS 7
384 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
385
386 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
387 {
388 unsigned long key = 0UL;
389 struct cgroup_subsys *ss;
390 int i;
391
392 for_each_subsys(ss, i)
393 key += (unsigned long)css[i];
394 key = (key >> 16) ^ key;
395
396 return key;
397 }
398
399 /*
400 * We don't maintain the lists running through each css_set to its task
401 * until after the first call to css_task_iter_start(). This reduces the
402 * fork()/exit() overhead for people who have cgroups compiled into their
403 * kernel but not actually in use.
404 */
405 static int use_task_css_set_links __read_mostly;
406
407 static void __put_css_set(struct css_set *cset, int taskexit)
408 {
409 struct cgrp_cset_link *link, *tmp_link;
410
411 /*
412 * Ensure that the refcount doesn't hit zero while any readers
413 * can see it. Similar to atomic_dec_and_lock(), but for an
414 * rwlock
415 */
416 if (atomic_add_unless(&cset->refcount, -1, 1))
417 return;
418 write_lock(&css_set_lock);
419 if (!atomic_dec_and_test(&cset->refcount)) {
420 write_unlock(&css_set_lock);
421 return;
422 }
423
424 /* This css_set is dead. unlink it and release cgroup refcounts */
425 hash_del(&cset->hlist);
426 css_set_count--;
427
428 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
429 struct cgroup *cgrp = link->cgrp;
430
431 list_del(&link->cset_link);
432 list_del(&link->cgrp_link);
433
434 /* @cgrp can't go away while we're holding css_set_lock */
435 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
436 if (taskexit)
437 set_bit(CGRP_RELEASABLE, &cgrp->flags);
438 check_for_release(cgrp);
439 }
440
441 kfree(link);
442 }
443
444 write_unlock(&css_set_lock);
445 kfree_rcu(cset, rcu_head);
446 }
447
448 /*
449 * refcounted get/put for css_set objects
450 */
451 static inline void get_css_set(struct css_set *cset)
452 {
453 atomic_inc(&cset->refcount);
454 }
455
456 static inline void put_css_set(struct css_set *cset)
457 {
458 __put_css_set(cset, 0);
459 }
460
461 static inline void put_css_set_taskexit(struct css_set *cset)
462 {
463 __put_css_set(cset, 1);
464 }
465
466 /**
467 * compare_css_sets - helper function for find_existing_css_set().
468 * @cset: candidate css_set being tested
469 * @old_cset: existing css_set for a task
470 * @new_cgrp: cgroup that's being entered by the task
471 * @template: desired set of css pointers in css_set (pre-calculated)
472 *
473 * Returns true if "cset" matches "old_cset" except for the hierarchy
474 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
475 */
476 static bool compare_css_sets(struct css_set *cset,
477 struct css_set *old_cset,
478 struct cgroup *new_cgrp,
479 struct cgroup_subsys_state *template[])
480 {
481 struct list_head *l1, *l2;
482
483 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
484 /* Not all subsystems matched */
485 return false;
486 }
487
488 /*
489 * Compare cgroup pointers in order to distinguish between
490 * different cgroups in heirarchies with no subsystems. We
491 * could get by with just this check alone (and skip the
492 * memcmp above) but on most setups the memcmp check will
493 * avoid the need for this more expensive check on almost all
494 * candidates.
495 */
496
497 l1 = &cset->cgrp_links;
498 l2 = &old_cset->cgrp_links;
499 while (1) {
500 struct cgrp_cset_link *link1, *link2;
501 struct cgroup *cgrp1, *cgrp2;
502
503 l1 = l1->next;
504 l2 = l2->next;
505 /* See if we reached the end - both lists are equal length. */
506 if (l1 == &cset->cgrp_links) {
507 BUG_ON(l2 != &old_cset->cgrp_links);
508 break;
509 } else {
510 BUG_ON(l2 == &old_cset->cgrp_links);
511 }
512 /* Locate the cgroups associated with these links. */
513 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
514 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
515 cgrp1 = link1->cgrp;
516 cgrp2 = link2->cgrp;
517 /* Hierarchies should be linked in the same order. */
518 BUG_ON(cgrp1->root != cgrp2->root);
519
520 /*
521 * If this hierarchy is the hierarchy of the cgroup
522 * that's changing, then we need to check that this
523 * css_set points to the new cgroup; if it's any other
524 * hierarchy, then this css_set should point to the
525 * same cgroup as the old css_set.
526 */
527 if (cgrp1->root == new_cgrp->root) {
528 if (cgrp1 != new_cgrp)
529 return false;
530 } else {
531 if (cgrp1 != cgrp2)
532 return false;
533 }
534 }
535 return true;
536 }
537
538 /**
539 * find_existing_css_set - init css array and find the matching css_set
540 * @old_cset: the css_set that we're using before the cgroup transition
541 * @cgrp: the cgroup that we're moving into
542 * @template: out param for the new set of csses, should be clear on entry
543 */
544 static struct css_set *find_existing_css_set(struct css_set *old_cset,
545 struct cgroup *cgrp,
546 struct cgroup_subsys_state *template[])
547 {
548 struct cgroupfs_root *root = cgrp->root;
549 struct cgroup_subsys *ss;
550 struct css_set *cset;
551 unsigned long key;
552 int i;
553
554 /*
555 * Build the set of subsystem state objects that we want to see in the
556 * new css_set. while subsystems can change globally, the entries here
557 * won't change, so no need for locking.
558 */
559 for_each_subsys(ss, i) {
560 if (root->subsys_mask & (1UL << i)) {
561 /* Subsystem is in this hierarchy. So we want
562 * the subsystem state from the new
563 * cgroup */
564 template[i] = cgrp->subsys[i];
565 } else {
566 /* Subsystem is not in this hierarchy, so we
567 * don't want to change the subsystem state */
568 template[i] = old_cset->subsys[i];
569 }
570 }
571
572 key = css_set_hash(template);
573 hash_for_each_possible(css_set_table, cset, hlist, key) {
574 if (!compare_css_sets(cset, old_cset, cgrp, template))
575 continue;
576
577 /* This css_set matches what we need */
578 return cset;
579 }
580
581 /* No existing cgroup group matched */
582 return NULL;
583 }
584
585 static void free_cgrp_cset_links(struct list_head *links_to_free)
586 {
587 struct cgrp_cset_link *link, *tmp_link;
588
589 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
590 list_del(&link->cset_link);
591 kfree(link);
592 }
593 }
594
595 /**
596 * allocate_cgrp_cset_links - allocate cgrp_cset_links
597 * @count: the number of links to allocate
598 * @tmp_links: list_head the allocated links are put on
599 *
600 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
601 * through ->cset_link. Returns 0 on success or -errno.
602 */
603 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
604 {
605 struct cgrp_cset_link *link;
606 int i;
607
608 INIT_LIST_HEAD(tmp_links);
609
610 for (i = 0; i < count; i++) {
611 link = kzalloc(sizeof(*link), GFP_KERNEL);
612 if (!link) {
613 free_cgrp_cset_links(tmp_links);
614 return -ENOMEM;
615 }
616 list_add(&link->cset_link, tmp_links);
617 }
618 return 0;
619 }
620
621 /**
622 * link_css_set - a helper function to link a css_set to a cgroup
623 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
624 * @cset: the css_set to be linked
625 * @cgrp: the destination cgroup
626 */
627 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
628 struct cgroup *cgrp)
629 {
630 struct cgrp_cset_link *link;
631
632 BUG_ON(list_empty(tmp_links));
633 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
634 link->cset = cset;
635 link->cgrp = cgrp;
636 list_move(&link->cset_link, &cgrp->cset_links);
637 /*
638 * Always add links to the tail of the list so that the list
639 * is sorted by order of hierarchy creation
640 */
641 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
642 }
643
644 /**
645 * find_css_set - return a new css_set with one cgroup updated
646 * @old_cset: the baseline css_set
647 * @cgrp: the cgroup to be updated
648 *
649 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
650 * substituted into the appropriate hierarchy.
651 */
652 static struct css_set *find_css_set(struct css_set *old_cset,
653 struct cgroup *cgrp)
654 {
655 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
656 struct css_set *cset;
657 struct list_head tmp_links;
658 struct cgrp_cset_link *link;
659 unsigned long key;
660
661 lockdep_assert_held(&cgroup_mutex);
662
663 /* First see if we already have a cgroup group that matches
664 * the desired set */
665 read_lock(&css_set_lock);
666 cset = find_existing_css_set(old_cset, cgrp, template);
667 if (cset)
668 get_css_set(cset);
669 read_unlock(&css_set_lock);
670
671 if (cset)
672 return cset;
673
674 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
675 if (!cset)
676 return NULL;
677
678 /* Allocate all the cgrp_cset_link objects that we'll need */
679 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
680 kfree(cset);
681 return NULL;
682 }
683
684 atomic_set(&cset->refcount, 1);
685 INIT_LIST_HEAD(&cset->cgrp_links);
686 INIT_LIST_HEAD(&cset->tasks);
687 INIT_HLIST_NODE(&cset->hlist);
688
689 /* Copy the set of subsystem state objects generated in
690 * find_existing_css_set() */
691 memcpy(cset->subsys, template, sizeof(cset->subsys));
692
693 write_lock(&css_set_lock);
694 /* Add reference counts and links from the new css_set. */
695 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
696 struct cgroup *c = link->cgrp;
697
698 if (c->root == cgrp->root)
699 c = cgrp;
700 link_css_set(&tmp_links, cset, c);
701 }
702
703 BUG_ON(!list_empty(&tmp_links));
704
705 css_set_count++;
706
707 /* Add this cgroup group to the hash table */
708 key = css_set_hash(cset->subsys);
709 hash_add(css_set_table, &cset->hlist, key);
710
711 write_unlock(&css_set_lock);
712
713 return cset;
714 }
715
716 /*
717 * Return the cgroup for "task" from the given hierarchy. Must be
718 * called with cgroup_mutex held.
719 */
720 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
721 struct cgroupfs_root *root)
722 {
723 struct css_set *cset;
724 struct cgroup *res = NULL;
725
726 BUG_ON(!mutex_is_locked(&cgroup_mutex));
727 read_lock(&css_set_lock);
728 /*
729 * No need to lock the task - since we hold cgroup_mutex the
730 * task can't change groups, so the only thing that can happen
731 * is that it exits and its css is set back to init_css_set.
732 */
733 cset = task_css_set(task);
734 if (cset == &init_css_set) {
735 res = &root->top_cgroup;
736 } else {
737 struct cgrp_cset_link *link;
738
739 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
740 struct cgroup *c = link->cgrp;
741
742 if (c->root == root) {
743 res = c;
744 break;
745 }
746 }
747 }
748 read_unlock(&css_set_lock);
749 BUG_ON(!res);
750 return res;
751 }
752
753 /*
754 * There is one global cgroup mutex. We also require taking
755 * task_lock() when dereferencing a task's cgroup subsys pointers.
756 * See "The task_lock() exception", at the end of this comment.
757 *
758 * A task must hold cgroup_mutex to modify cgroups.
759 *
760 * Any task can increment and decrement the count field without lock.
761 * So in general, code holding cgroup_mutex can't rely on the count
762 * field not changing. However, if the count goes to zero, then only
763 * cgroup_attach_task() can increment it again. Because a count of zero
764 * means that no tasks are currently attached, therefore there is no
765 * way a task attached to that cgroup can fork (the other way to
766 * increment the count). So code holding cgroup_mutex can safely
767 * assume that if the count is zero, it will stay zero. Similarly, if
768 * a task holds cgroup_mutex on a cgroup with zero count, it
769 * knows that the cgroup won't be removed, as cgroup_rmdir()
770 * needs that mutex.
771 *
772 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
773 * (usually) take cgroup_mutex. These are the two most performance
774 * critical pieces of code here. The exception occurs on cgroup_exit(),
775 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
776 * is taken, and if the cgroup count is zero, a usermode call made
777 * to the release agent with the name of the cgroup (path relative to
778 * the root of cgroup file system) as the argument.
779 *
780 * A cgroup can only be deleted if both its 'count' of using tasks
781 * is zero, and its list of 'children' cgroups is empty. Since all
782 * tasks in the system use _some_ cgroup, and since there is always at
783 * least one task in the system (init, pid == 1), therefore, top_cgroup
784 * always has either children cgroups and/or using tasks. So we don't
785 * need a special hack to ensure that top_cgroup cannot be deleted.
786 *
787 * The task_lock() exception
788 *
789 * The need for this exception arises from the action of
790 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
791 * another. It does so using cgroup_mutex, however there are
792 * several performance critical places that need to reference
793 * task->cgroup without the expense of grabbing a system global
794 * mutex. Therefore except as noted below, when dereferencing or, as
795 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
796 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
797 * the task_struct routinely used for such matters.
798 *
799 * P.S. One more locking exception. RCU is used to guard the
800 * update of a tasks cgroup pointer by cgroup_attach_task()
801 */
802
803 /*
804 * A couple of forward declarations required, due to cyclic reference loop:
805 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
806 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
807 * -> cgroup_mkdir.
808 */
809
810 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
811 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
812 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
813 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
814 static const struct inode_operations cgroup_dir_inode_operations;
815 static const struct file_operations proc_cgroupstats_operations;
816
817 static struct backing_dev_info cgroup_backing_dev_info = {
818 .name = "cgroup",
819 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
820 };
821
822 static int alloc_css_id(struct cgroup_subsys *ss,
823 struct cgroup *parent, struct cgroup *child);
824
825 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
826 {
827 struct inode *inode = new_inode(sb);
828
829 if (inode) {
830 inode->i_ino = get_next_ino();
831 inode->i_mode = mode;
832 inode->i_uid = current_fsuid();
833 inode->i_gid = current_fsgid();
834 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
835 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
836 }
837 return inode;
838 }
839
840 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
841 {
842 struct cgroup_name *name;
843
844 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
845 if (!name)
846 return NULL;
847 strcpy(name->name, dentry->d_name.name);
848 return name;
849 }
850
851 static void cgroup_free_fn(struct work_struct *work)
852 {
853 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
854 struct cgroup_subsys *ss;
855
856 mutex_lock(&cgroup_mutex);
857 /*
858 * Release the subsystem state objects.
859 */
860 for_each_root_subsys(cgrp->root, ss) {
861 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
862
863 ss->css_free(css);
864 }
865
866 cgrp->root->number_of_cgroups--;
867 mutex_unlock(&cgroup_mutex);
868
869 /*
870 * We get a ref to the parent's dentry, and put the ref when
871 * this cgroup is being freed, so it's guaranteed that the
872 * parent won't be destroyed before its children.
873 */
874 dput(cgrp->parent->dentry);
875
876 /*
877 * Drop the active superblock reference that we took when we
878 * created the cgroup. This will free cgrp->root, if we are
879 * holding the last reference to @sb.
880 */
881 deactivate_super(cgrp->root->sb);
882
883 /*
884 * if we're getting rid of the cgroup, refcount should ensure
885 * that there are no pidlists left.
886 */
887 BUG_ON(!list_empty(&cgrp->pidlists));
888
889 simple_xattrs_free(&cgrp->xattrs);
890
891 kfree(rcu_dereference_raw(cgrp->name));
892 kfree(cgrp);
893 }
894
895 static void cgroup_free_rcu(struct rcu_head *head)
896 {
897 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
898
899 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
900 schedule_work(&cgrp->destroy_work);
901 }
902
903 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
904 {
905 /* is dentry a directory ? if so, kfree() associated cgroup */
906 if (S_ISDIR(inode->i_mode)) {
907 struct cgroup *cgrp = dentry->d_fsdata;
908
909 BUG_ON(!(cgroup_is_dead(cgrp)));
910 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
911 } else {
912 struct cfent *cfe = __d_cfe(dentry);
913 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
914
915 WARN_ONCE(!list_empty(&cfe->node) &&
916 cgrp != &cgrp->root->top_cgroup,
917 "cfe still linked for %s\n", cfe->type->name);
918 simple_xattrs_free(&cfe->xattrs);
919 kfree(cfe);
920 }
921 iput(inode);
922 }
923
924 static int cgroup_delete(const struct dentry *d)
925 {
926 return 1;
927 }
928
929 static void remove_dir(struct dentry *d)
930 {
931 struct dentry *parent = dget(d->d_parent);
932
933 d_delete(d);
934 simple_rmdir(parent->d_inode, d);
935 dput(parent);
936 }
937
938 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
939 {
940 struct cfent *cfe;
941
942 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
943 lockdep_assert_held(&cgroup_mutex);
944
945 /*
946 * If we're doing cleanup due to failure of cgroup_create(),
947 * the corresponding @cfe may not exist.
948 */
949 list_for_each_entry(cfe, &cgrp->files, node) {
950 struct dentry *d = cfe->dentry;
951
952 if (cft && cfe->type != cft)
953 continue;
954
955 dget(d);
956 d_delete(d);
957 simple_unlink(cgrp->dentry->d_inode, d);
958 list_del_init(&cfe->node);
959 dput(d);
960
961 break;
962 }
963 }
964
965 /**
966 * cgroup_clear_dir - remove subsys files in a cgroup directory
967 * @cgrp: target cgroup
968 * @subsys_mask: mask of the subsystem ids whose files should be removed
969 */
970 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
971 {
972 struct cgroup_subsys *ss;
973 int i;
974
975 for_each_subsys(ss, i) {
976 struct cftype_set *set;
977
978 if (!test_bit(i, &subsys_mask))
979 continue;
980 list_for_each_entry(set, &ss->cftsets, node)
981 cgroup_addrm_files(cgrp, set->cfts, false);
982 }
983 }
984
985 /*
986 * NOTE : the dentry must have been dget()'ed
987 */
988 static void cgroup_d_remove_dir(struct dentry *dentry)
989 {
990 struct dentry *parent;
991
992 parent = dentry->d_parent;
993 spin_lock(&parent->d_lock);
994 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
995 list_del_init(&dentry->d_u.d_child);
996 spin_unlock(&dentry->d_lock);
997 spin_unlock(&parent->d_lock);
998 remove_dir(dentry);
999 }
1000
1001 /*
1002 * Call with cgroup_mutex held. Drops reference counts on modules, including
1003 * any duplicate ones that parse_cgroupfs_options took. If this function
1004 * returns an error, no reference counts are touched.
1005 */
1006 static int rebind_subsystems(struct cgroupfs_root *root,
1007 unsigned long added_mask, unsigned removed_mask)
1008 {
1009 struct cgroup *cgrp = &root->top_cgroup;
1010 struct cgroup_subsys *ss;
1011 unsigned long pinned = 0;
1012 int i, ret;
1013
1014 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1015 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1016
1017 /* Check that any added subsystems are currently free */
1018 for_each_subsys(ss, i) {
1019 if (!(added_mask & (1 << i)))
1020 continue;
1021
1022 /* is the subsystem mounted elsewhere? */
1023 if (ss->root != &cgroup_dummy_root) {
1024 ret = -EBUSY;
1025 goto out_put;
1026 }
1027
1028 /* pin the module */
1029 if (!try_module_get(ss->module)) {
1030 ret = -ENOENT;
1031 goto out_put;
1032 }
1033 pinned |= 1 << i;
1034 }
1035
1036 /* subsys could be missing if unloaded between parsing and here */
1037 if (added_mask != pinned) {
1038 ret = -ENOENT;
1039 goto out_put;
1040 }
1041
1042 ret = cgroup_populate_dir(cgrp, added_mask);
1043 if (ret)
1044 goto out_put;
1045
1046 /*
1047 * Nothing can fail from this point on. Remove files for the
1048 * removed subsystems and rebind each subsystem.
1049 */
1050 cgroup_clear_dir(cgrp, removed_mask);
1051
1052 for_each_subsys(ss, i) {
1053 unsigned long bit = 1UL << i;
1054
1055 if (bit & added_mask) {
1056 /* We're binding this subsystem to this hierarchy */
1057 BUG_ON(cgrp->subsys[i]);
1058 BUG_ON(!cgroup_dummy_top->subsys[i]);
1059 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
1060
1061 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
1062 cgrp->subsys[i]->cgroup = cgrp;
1063 list_move(&ss->sibling, &root->subsys_list);
1064 ss->root = root;
1065 if (ss->bind)
1066 ss->bind(cgrp->subsys[i]);
1067
1068 /* refcount was already taken, and we're keeping it */
1069 root->subsys_mask |= bit;
1070 } else if (bit & removed_mask) {
1071 /* We're removing this subsystem */
1072 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
1073 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1074
1075 if (ss->bind)
1076 ss->bind(cgroup_dummy_top->subsys[i]);
1077 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
1078 cgrp->subsys[i] = NULL;
1079 cgroup_subsys[i]->root = &cgroup_dummy_root;
1080 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1081
1082 /* subsystem is now free - drop reference on module */
1083 module_put(ss->module);
1084 root->subsys_mask &= ~bit;
1085 }
1086 }
1087
1088 /*
1089 * Mark @root has finished binding subsystems. @root->subsys_mask
1090 * now matches the bound subsystems.
1091 */
1092 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1093
1094 return 0;
1095
1096 out_put:
1097 for_each_subsys(ss, i)
1098 if (pinned & (1 << i))
1099 module_put(ss->module);
1100 return ret;
1101 }
1102
1103 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1104 {
1105 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1106 struct cgroup_subsys *ss;
1107
1108 mutex_lock(&cgroup_root_mutex);
1109 for_each_root_subsys(root, ss)
1110 seq_printf(seq, ",%s", ss->name);
1111 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1112 seq_puts(seq, ",sane_behavior");
1113 if (root->flags & CGRP_ROOT_NOPREFIX)
1114 seq_puts(seq, ",noprefix");
1115 if (root->flags & CGRP_ROOT_XATTR)
1116 seq_puts(seq, ",xattr");
1117 if (strlen(root->release_agent_path))
1118 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1119 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1120 seq_puts(seq, ",clone_children");
1121 if (strlen(root->name))
1122 seq_printf(seq, ",name=%s", root->name);
1123 mutex_unlock(&cgroup_root_mutex);
1124 return 0;
1125 }
1126
1127 struct cgroup_sb_opts {
1128 unsigned long subsys_mask;
1129 unsigned long flags;
1130 char *release_agent;
1131 bool cpuset_clone_children;
1132 char *name;
1133 /* User explicitly requested empty subsystem */
1134 bool none;
1135
1136 struct cgroupfs_root *new_root;
1137
1138 };
1139
1140 /*
1141 * Convert a hierarchy specifier into a bitmask of subsystems and
1142 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1143 * array. This function takes refcounts on subsystems to be used, unless it
1144 * returns error, in which case no refcounts are taken.
1145 */
1146 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1147 {
1148 char *token, *o = data;
1149 bool all_ss = false, one_ss = false;
1150 unsigned long mask = (unsigned long)-1;
1151 struct cgroup_subsys *ss;
1152 int i;
1153
1154 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1155
1156 #ifdef CONFIG_CPUSETS
1157 mask = ~(1UL << cpuset_subsys_id);
1158 #endif
1159
1160 memset(opts, 0, sizeof(*opts));
1161
1162 while ((token = strsep(&o, ",")) != NULL) {
1163 if (!*token)
1164 return -EINVAL;
1165 if (!strcmp(token, "none")) {
1166 /* Explicitly have no subsystems */
1167 opts->none = true;
1168 continue;
1169 }
1170 if (!strcmp(token, "all")) {
1171 /* Mutually exclusive option 'all' + subsystem name */
1172 if (one_ss)
1173 return -EINVAL;
1174 all_ss = true;
1175 continue;
1176 }
1177 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1178 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1179 continue;
1180 }
1181 if (!strcmp(token, "noprefix")) {
1182 opts->flags |= CGRP_ROOT_NOPREFIX;
1183 continue;
1184 }
1185 if (!strcmp(token, "clone_children")) {
1186 opts->cpuset_clone_children = true;
1187 continue;
1188 }
1189 if (!strcmp(token, "xattr")) {
1190 opts->flags |= CGRP_ROOT_XATTR;
1191 continue;
1192 }
1193 if (!strncmp(token, "release_agent=", 14)) {
1194 /* Specifying two release agents is forbidden */
1195 if (opts->release_agent)
1196 return -EINVAL;
1197 opts->release_agent =
1198 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1199 if (!opts->release_agent)
1200 return -ENOMEM;
1201 continue;
1202 }
1203 if (!strncmp(token, "name=", 5)) {
1204 const char *name = token + 5;
1205 /* Can't specify an empty name */
1206 if (!strlen(name))
1207 return -EINVAL;
1208 /* Must match [\w.-]+ */
1209 for (i = 0; i < strlen(name); i++) {
1210 char c = name[i];
1211 if (isalnum(c))
1212 continue;
1213 if ((c == '.') || (c == '-') || (c == '_'))
1214 continue;
1215 return -EINVAL;
1216 }
1217 /* Specifying two names is forbidden */
1218 if (opts->name)
1219 return -EINVAL;
1220 opts->name = kstrndup(name,
1221 MAX_CGROUP_ROOT_NAMELEN - 1,
1222 GFP_KERNEL);
1223 if (!opts->name)
1224 return -ENOMEM;
1225
1226 continue;
1227 }
1228
1229 for_each_subsys(ss, i) {
1230 if (strcmp(token, ss->name))
1231 continue;
1232 if (ss->disabled)
1233 continue;
1234
1235 /* Mutually exclusive option 'all' + subsystem name */
1236 if (all_ss)
1237 return -EINVAL;
1238 set_bit(i, &opts->subsys_mask);
1239 one_ss = true;
1240
1241 break;
1242 }
1243 if (i == CGROUP_SUBSYS_COUNT)
1244 return -ENOENT;
1245 }
1246
1247 /*
1248 * If the 'all' option was specified select all the subsystems,
1249 * otherwise if 'none', 'name=' and a subsystem name options
1250 * were not specified, let's default to 'all'
1251 */
1252 if (all_ss || (!one_ss && !opts->none && !opts->name))
1253 for_each_subsys(ss, i)
1254 if (!ss->disabled)
1255 set_bit(i, &opts->subsys_mask);
1256
1257 /* Consistency checks */
1258
1259 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1260 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1261
1262 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1263 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1264 return -EINVAL;
1265 }
1266
1267 if (opts->cpuset_clone_children) {
1268 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1269 return -EINVAL;
1270 }
1271 }
1272
1273 /*
1274 * Option noprefix was introduced just for backward compatibility
1275 * with the old cpuset, so we allow noprefix only if mounting just
1276 * the cpuset subsystem.
1277 */
1278 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1279 return -EINVAL;
1280
1281
1282 /* Can't specify "none" and some subsystems */
1283 if (opts->subsys_mask && opts->none)
1284 return -EINVAL;
1285
1286 /*
1287 * We either have to specify by name or by subsystems. (So all
1288 * empty hierarchies must have a name).
1289 */
1290 if (!opts->subsys_mask && !opts->name)
1291 return -EINVAL;
1292
1293 return 0;
1294 }
1295
1296 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1297 {
1298 int ret = 0;
1299 struct cgroupfs_root *root = sb->s_fs_info;
1300 struct cgroup *cgrp = &root->top_cgroup;
1301 struct cgroup_sb_opts opts;
1302 unsigned long added_mask, removed_mask;
1303
1304 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1305 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1306 return -EINVAL;
1307 }
1308
1309 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1310 mutex_lock(&cgroup_mutex);
1311 mutex_lock(&cgroup_root_mutex);
1312
1313 /* See what subsystems are wanted */
1314 ret = parse_cgroupfs_options(data, &opts);
1315 if (ret)
1316 goto out_unlock;
1317
1318 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1319 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1320 task_tgid_nr(current), current->comm);
1321
1322 added_mask = opts.subsys_mask & ~root->subsys_mask;
1323 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1324
1325 /* Don't allow flags or name to change at remount */
1326 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1327 (opts.name && strcmp(opts.name, root->name))) {
1328 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1329 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1330 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1331 ret = -EINVAL;
1332 goto out_unlock;
1333 }
1334
1335 /* remounting is not allowed for populated hierarchies */
1336 if (root->number_of_cgroups > 1) {
1337 ret = -EBUSY;
1338 goto out_unlock;
1339 }
1340
1341 ret = rebind_subsystems(root, added_mask, removed_mask);
1342 if (ret)
1343 goto out_unlock;
1344
1345 if (opts.release_agent)
1346 strcpy(root->release_agent_path, opts.release_agent);
1347 out_unlock:
1348 kfree(opts.release_agent);
1349 kfree(opts.name);
1350 mutex_unlock(&cgroup_root_mutex);
1351 mutex_unlock(&cgroup_mutex);
1352 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1353 return ret;
1354 }
1355
1356 static const struct super_operations cgroup_ops = {
1357 .statfs = simple_statfs,
1358 .drop_inode = generic_delete_inode,
1359 .show_options = cgroup_show_options,
1360 .remount_fs = cgroup_remount,
1361 };
1362
1363 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1364 {
1365 INIT_LIST_HEAD(&cgrp->sibling);
1366 INIT_LIST_HEAD(&cgrp->children);
1367 INIT_LIST_HEAD(&cgrp->files);
1368 INIT_LIST_HEAD(&cgrp->cset_links);
1369 INIT_LIST_HEAD(&cgrp->release_list);
1370 INIT_LIST_HEAD(&cgrp->pidlists);
1371 mutex_init(&cgrp->pidlist_mutex);
1372 cgrp->dummy_css.cgroup = cgrp;
1373 INIT_LIST_HEAD(&cgrp->event_list);
1374 spin_lock_init(&cgrp->event_list_lock);
1375 simple_xattrs_init(&cgrp->xattrs);
1376 }
1377
1378 static void init_cgroup_root(struct cgroupfs_root *root)
1379 {
1380 struct cgroup *cgrp = &root->top_cgroup;
1381
1382 INIT_LIST_HEAD(&root->subsys_list);
1383 INIT_LIST_HEAD(&root->root_list);
1384 root->number_of_cgroups = 1;
1385 cgrp->root = root;
1386 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1387 init_cgroup_housekeeping(cgrp);
1388 idr_init(&root->cgroup_idr);
1389 }
1390
1391 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1392 {
1393 int id;
1394
1395 lockdep_assert_held(&cgroup_mutex);
1396 lockdep_assert_held(&cgroup_root_mutex);
1397
1398 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1399 GFP_KERNEL);
1400 if (id < 0)
1401 return id;
1402
1403 root->hierarchy_id = id;
1404 return 0;
1405 }
1406
1407 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1408 {
1409 lockdep_assert_held(&cgroup_mutex);
1410 lockdep_assert_held(&cgroup_root_mutex);
1411
1412 if (root->hierarchy_id) {
1413 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1414 root->hierarchy_id = 0;
1415 }
1416 }
1417
1418 static int cgroup_test_super(struct super_block *sb, void *data)
1419 {
1420 struct cgroup_sb_opts *opts = data;
1421 struct cgroupfs_root *root = sb->s_fs_info;
1422
1423 /* If we asked for a name then it must match */
1424 if (opts->name && strcmp(opts->name, root->name))
1425 return 0;
1426
1427 /*
1428 * If we asked for subsystems (or explicitly for no
1429 * subsystems) then they must match
1430 */
1431 if ((opts->subsys_mask || opts->none)
1432 && (opts->subsys_mask != root->subsys_mask))
1433 return 0;
1434
1435 return 1;
1436 }
1437
1438 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1439 {
1440 struct cgroupfs_root *root;
1441
1442 if (!opts->subsys_mask && !opts->none)
1443 return NULL;
1444
1445 root = kzalloc(sizeof(*root), GFP_KERNEL);
1446 if (!root)
1447 return ERR_PTR(-ENOMEM);
1448
1449 init_cgroup_root(root);
1450
1451 /*
1452 * We need to set @root->subsys_mask now so that @root can be
1453 * matched by cgroup_test_super() before it finishes
1454 * initialization; otherwise, competing mounts with the same
1455 * options may try to bind the same subsystems instead of waiting
1456 * for the first one leading to unexpected mount errors.
1457 * SUBSYS_BOUND will be set once actual binding is complete.
1458 */
1459 root->subsys_mask = opts->subsys_mask;
1460 root->flags = opts->flags;
1461 if (opts->release_agent)
1462 strcpy(root->release_agent_path, opts->release_agent);
1463 if (opts->name)
1464 strcpy(root->name, opts->name);
1465 if (opts->cpuset_clone_children)
1466 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1467 return root;
1468 }
1469
1470 static void cgroup_free_root(struct cgroupfs_root *root)
1471 {
1472 if (root) {
1473 /* hierarhcy ID shoulid already have been released */
1474 WARN_ON_ONCE(root->hierarchy_id);
1475
1476 idr_destroy(&root->cgroup_idr);
1477 kfree(root);
1478 }
1479 }
1480
1481 static int cgroup_set_super(struct super_block *sb, void *data)
1482 {
1483 int ret;
1484 struct cgroup_sb_opts *opts = data;
1485
1486 /* If we don't have a new root, we can't set up a new sb */
1487 if (!opts->new_root)
1488 return -EINVAL;
1489
1490 BUG_ON(!opts->subsys_mask && !opts->none);
1491
1492 ret = set_anon_super(sb, NULL);
1493 if (ret)
1494 return ret;
1495
1496 sb->s_fs_info = opts->new_root;
1497 opts->new_root->sb = sb;
1498
1499 sb->s_blocksize = PAGE_CACHE_SIZE;
1500 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1501 sb->s_magic = CGROUP_SUPER_MAGIC;
1502 sb->s_op = &cgroup_ops;
1503
1504 return 0;
1505 }
1506
1507 static int cgroup_get_rootdir(struct super_block *sb)
1508 {
1509 static const struct dentry_operations cgroup_dops = {
1510 .d_iput = cgroup_diput,
1511 .d_delete = cgroup_delete,
1512 };
1513
1514 struct inode *inode =
1515 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1516
1517 if (!inode)
1518 return -ENOMEM;
1519
1520 inode->i_fop = &simple_dir_operations;
1521 inode->i_op = &cgroup_dir_inode_operations;
1522 /* directories start off with i_nlink == 2 (for "." entry) */
1523 inc_nlink(inode);
1524 sb->s_root = d_make_root(inode);
1525 if (!sb->s_root)
1526 return -ENOMEM;
1527 /* for everything else we want ->d_op set */
1528 sb->s_d_op = &cgroup_dops;
1529 return 0;
1530 }
1531
1532 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1533 int flags, const char *unused_dev_name,
1534 void *data)
1535 {
1536 struct cgroup_sb_opts opts;
1537 struct cgroupfs_root *root;
1538 int ret = 0;
1539 struct super_block *sb;
1540 struct cgroupfs_root *new_root;
1541 struct list_head tmp_links;
1542 struct inode *inode;
1543 const struct cred *cred;
1544
1545 /* First find the desired set of subsystems */
1546 mutex_lock(&cgroup_mutex);
1547 ret = parse_cgroupfs_options(data, &opts);
1548 mutex_unlock(&cgroup_mutex);
1549 if (ret)
1550 goto out_err;
1551
1552 /*
1553 * Allocate a new cgroup root. We may not need it if we're
1554 * reusing an existing hierarchy.
1555 */
1556 new_root = cgroup_root_from_opts(&opts);
1557 if (IS_ERR(new_root)) {
1558 ret = PTR_ERR(new_root);
1559 goto out_err;
1560 }
1561 opts.new_root = new_root;
1562
1563 /* Locate an existing or new sb for this hierarchy */
1564 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1565 if (IS_ERR(sb)) {
1566 ret = PTR_ERR(sb);
1567 cgroup_free_root(opts.new_root);
1568 goto out_err;
1569 }
1570
1571 root = sb->s_fs_info;
1572 BUG_ON(!root);
1573 if (root == opts.new_root) {
1574 /* We used the new root structure, so this is a new hierarchy */
1575 struct cgroup *root_cgrp = &root->top_cgroup;
1576 struct cgroupfs_root *existing_root;
1577 int i;
1578 struct css_set *cset;
1579
1580 BUG_ON(sb->s_root != NULL);
1581
1582 ret = cgroup_get_rootdir(sb);
1583 if (ret)
1584 goto drop_new_super;
1585 inode = sb->s_root->d_inode;
1586
1587 mutex_lock(&inode->i_mutex);
1588 mutex_lock(&cgroup_mutex);
1589 mutex_lock(&cgroup_root_mutex);
1590
1591 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1592 0, 1, GFP_KERNEL);
1593 if (root_cgrp->id < 0)
1594 goto unlock_drop;
1595
1596 /* Check for name clashes with existing mounts */
1597 ret = -EBUSY;
1598 if (strlen(root->name))
1599 for_each_active_root(existing_root)
1600 if (!strcmp(existing_root->name, root->name))
1601 goto unlock_drop;
1602
1603 /*
1604 * We're accessing css_set_count without locking
1605 * css_set_lock here, but that's OK - it can only be
1606 * increased by someone holding cgroup_lock, and
1607 * that's us. The worst that can happen is that we
1608 * have some link structures left over
1609 */
1610 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1611 if (ret)
1612 goto unlock_drop;
1613
1614 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1615 ret = cgroup_init_root_id(root, 2, 0);
1616 if (ret)
1617 goto unlock_drop;
1618
1619 sb->s_root->d_fsdata = root_cgrp;
1620 root_cgrp->dentry = sb->s_root;
1621
1622 /*
1623 * We're inside get_sb() and will call lookup_one_len() to
1624 * create the root files, which doesn't work if SELinux is
1625 * in use. The following cred dancing somehow works around
1626 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1627 * populating new cgroupfs mount") for more details.
1628 */
1629 cred = override_creds(&init_cred);
1630
1631 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1632 if (ret)
1633 goto rm_base_files;
1634
1635 ret = rebind_subsystems(root, root->subsys_mask, 0);
1636 if (ret)
1637 goto rm_base_files;
1638
1639 revert_creds(cred);
1640
1641 /*
1642 * There must be no failure case after here, since rebinding
1643 * takes care of subsystems' refcounts, which are explicitly
1644 * dropped in the failure exit path.
1645 */
1646
1647 list_add(&root->root_list, &cgroup_roots);
1648 cgroup_root_count++;
1649
1650 /* Link the top cgroup in this hierarchy into all
1651 * the css_set objects */
1652 write_lock(&css_set_lock);
1653 hash_for_each(css_set_table, i, cset, hlist)
1654 link_css_set(&tmp_links, cset, root_cgrp);
1655 write_unlock(&css_set_lock);
1656
1657 free_cgrp_cset_links(&tmp_links);
1658
1659 BUG_ON(!list_empty(&root_cgrp->children));
1660 BUG_ON(root->number_of_cgroups != 1);
1661
1662 mutex_unlock(&cgroup_root_mutex);
1663 mutex_unlock(&cgroup_mutex);
1664 mutex_unlock(&inode->i_mutex);
1665 } else {
1666 /*
1667 * We re-used an existing hierarchy - the new root (if
1668 * any) is not needed
1669 */
1670 cgroup_free_root(opts.new_root);
1671
1672 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1673 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1674 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1675 ret = -EINVAL;
1676 goto drop_new_super;
1677 } else {
1678 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1679 }
1680 }
1681 }
1682
1683 kfree(opts.release_agent);
1684 kfree(opts.name);
1685 return dget(sb->s_root);
1686
1687 rm_base_files:
1688 free_cgrp_cset_links(&tmp_links);
1689 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
1690 revert_creds(cred);
1691 unlock_drop:
1692 cgroup_exit_root_id(root);
1693 mutex_unlock(&cgroup_root_mutex);
1694 mutex_unlock(&cgroup_mutex);
1695 mutex_unlock(&inode->i_mutex);
1696 drop_new_super:
1697 deactivate_locked_super(sb);
1698 out_err:
1699 kfree(opts.release_agent);
1700 kfree(opts.name);
1701 return ERR_PTR(ret);
1702 }
1703
1704 static void cgroup_kill_sb(struct super_block *sb) {
1705 struct cgroupfs_root *root = sb->s_fs_info;
1706 struct cgroup *cgrp = &root->top_cgroup;
1707 struct cgrp_cset_link *link, *tmp_link;
1708 int ret;
1709
1710 BUG_ON(!root);
1711
1712 BUG_ON(root->number_of_cgroups != 1);
1713 BUG_ON(!list_empty(&cgrp->children));
1714
1715 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1716 mutex_lock(&cgroup_mutex);
1717 mutex_lock(&cgroup_root_mutex);
1718
1719 /* Rebind all subsystems back to the default hierarchy */
1720 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1721 ret = rebind_subsystems(root, 0, root->subsys_mask);
1722 /* Shouldn't be able to fail ... */
1723 BUG_ON(ret);
1724 }
1725
1726 /*
1727 * Release all the links from cset_links to this hierarchy's
1728 * root cgroup
1729 */
1730 write_lock(&css_set_lock);
1731
1732 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1733 list_del(&link->cset_link);
1734 list_del(&link->cgrp_link);
1735 kfree(link);
1736 }
1737 write_unlock(&css_set_lock);
1738
1739 if (!list_empty(&root->root_list)) {
1740 list_del(&root->root_list);
1741 cgroup_root_count--;
1742 }
1743
1744 cgroup_exit_root_id(root);
1745
1746 mutex_unlock(&cgroup_root_mutex);
1747 mutex_unlock(&cgroup_mutex);
1748 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1749
1750 simple_xattrs_free(&cgrp->xattrs);
1751
1752 kill_litter_super(sb);
1753 cgroup_free_root(root);
1754 }
1755
1756 static struct file_system_type cgroup_fs_type = {
1757 .name = "cgroup",
1758 .mount = cgroup_mount,
1759 .kill_sb = cgroup_kill_sb,
1760 };
1761
1762 static struct kobject *cgroup_kobj;
1763
1764 /**
1765 * cgroup_path - generate the path of a cgroup
1766 * @cgrp: the cgroup in question
1767 * @buf: the buffer to write the path into
1768 * @buflen: the length of the buffer
1769 *
1770 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1771 *
1772 * We can't generate cgroup path using dentry->d_name, as accessing
1773 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1774 * inode's i_mutex, while on the other hand cgroup_path() can be called
1775 * with some irq-safe spinlocks held.
1776 */
1777 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1778 {
1779 int ret = -ENAMETOOLONG;
1780 char *start;
1781
1782 if (!cgrp->parent) {
1783 if (strlcpy(buf, "/", buflen) >= buflen)
1784 return -ENAMETOOLONG;
1785 return 0;
1786 }
1787
1788 start = buf + buflen - 1;
1789 *start = '\0';
1790
1791 rcu_read_lock();
1792 do {
1793 const char *name = cgroup_name(cgrp);
1794 int len;
1795
1796 len = strlen(name);
1797 if ((start -= len) < buf)
1798 goto out;
1799 memcpy(start, name, len);
1800
1801 if (--start < buf)
1802 goto out;
1803 *start = '/';
1804
1805 cgrp = cgrp->parent;
1806 } while (cgrp->parent);
1807 ret = 0;
1808 memmove(buf, start, buf + buflen - start);
1809 out:
1810 rcu_read_unlock();
1811 return ret;
1812 }
1813 EXPORT_SYMBOL_GPL(cgroup_path);
1814
1815 /**
1816 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1817 * @task: target task
1818 * @buf: the buffer to write the path into
1819 * @buflen: the length of the buffer
1820 *
1821 * Determine @task's cgroup on the first (the one with the lowest non-zero
1822 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1823 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1824 * cgroup controller callbacks.
1825 *
1826 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1827 */
1828 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1829 {
1830 struct cgroupfs_root *root;
1831 struct cgroup *cgrp;
1832 int hierarchy_id = 1, ret = 0;
1833
1834 if (buflen < 2)
1835 return -ENAMETOOLONG;
1836
1837 mutex_lock(&cgroup_mutex);
1838
1839 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1840
1841 if (root) {
1842 cgrp = task_cgroup_from_root(task, root);
1843 ret = cgroup_path(cgrp, buf, buflen);
1844 } else {
1845 /* if no hierarchy exists, everyone is in "/" */
1846 memcpy(buf, "/", 2);
1847 }
1848
1849 mutex_unlock(&cgroup_mutex);
1850 return ret;
1851 }
1852 EXPORT_SYMBOL_GPL(task_cgroup_path);
1853
1854 /*
1855 * Control Group taskset
1856 */
1857 struct task_and_cgroup {
1858 struct task_struct *task;
1859 struct cgroup *cgrp;
1860 struct css_set *cset;
1861 };
1862
1863 struct cgroup_taskset {
1864 struct task_and_cgroup single;
1865 struct flex_array *tc_array;
1866 int tc_array_len;
1867 int idx;
1868 struct cgroup *cur_cgrp;
1869 };
1870
1871 /**
1872 * cgroup_taskset_first - reset taskset and return the first task
1873 * @tset: taskset of interest
1874 *
1875 * @tset iteration is initialized and the first task is returned.
1876 */
1877 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1878 {
1879 if (tset->tc_array) {
1880 tset->idx = 0;
1881 return cgroup_taskset_next(tset);
1882 } else {
1883 tset->cur_cgrp = tset->single.cgrp;
1884 return tset->single.task;
1885 }
1886 }
1887 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1888
1889 /**
1890 * cgroup_taskset_next - iterate to the next task in taskset
1891 * @tset: taskset of interest
1892 *
1893 * Return the next task in @tset. Iteration must have been initialized
1894 * with cgroup_taskset_first().
1895 */
1896 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1897 {
1898 struct task_and_cgroup *tc;
1899
1900 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1901 return NULL;
1902
1903 tc = flex_array_get(tset->tc_array, tset->idx++);
1904 tset->cur_cgrp = tc->cgrp;
1905 return tc->task;
1906 }
1907 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1908
1909 /**
1910 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1911 * @tset: taskset of interest
1912 *
1913 * Return the cgroup for the current (last returned) task of @tset. This
1914 * function must be preceded by either cgroup_taskset_first() or
1915 * cgroup_taskset_next().
1916 */
1917 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1918 {
1919 return tset->cur_cgrp;
1920 }
1921 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1922
1923 /**
1924 * cgroup_taskset_size - return the number of tasks in taskset
1925 * @tset: taskset of interest
1926 */
1927 int cgroup_taskset_size(struct cgroup_taskset *tset)
1928 {
1929 return tset->tc_array ? tset->tc_array_len : 1;
1930 }
1931 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1932
1933
1934 /*
1935 * cgroup_task_migrate - move a task from one cgroup to another.
1936 *
1937 * Must be called with cgroup_mutex and threadgroup locked.
1938 */
1939 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1940 struct task_struct *tsk,
1941 struct css_set *new_cset)
1942 {
1943 struct css_set *old_cset;
1944
1945 /*
1946 * We are synchronized through threadgroup_lock() against PF_EXITING
1947 * setting such that we can't race against cgroup_exit() changing the
1948 * css_set to init_css_set and dropping the old one.
1949 */
1950 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1951 old_cset = task_css_set(tsk);
1952
1953 task_lock(tsk);
1954 rcu_assign_pointer(tsk->cgroups, new_cset);
1955 task_unlock(tsk);
1956
1957 /* Update the css_set linked lists if we're using them */
1958 write_lock(&css_set_lock);
1959 if (!list_empty(&tsk->cg_list))
1960 list_move(&tsk->cg_list, &new_cset->tasks);
1961 write_unlock(&css_set_lock);
1962
1963 /*
1964 * We just gained a reference on old_cset by taking it from the
1965 * task. As trading it for new_cset is protected by cgroup_mutex,
1966 * we're safe to drop it here; it will be freed under RCU.
1967 */
1968 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1969 put_css_set(old_cset);
1970 }
1971
1972 /**
1973 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1974 * @cgrp: the cgroup to attach to
1975 * @tsk: the task or the leader of the threadgroup to be attached
1976 * @threadgroup: attach the whole threadgroup?
1977 *
1978 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1979 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1980 */
1981 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1982 bool threadgroup)
1983 {
1984 int retval, i, group_size;
1985 struct cgroup_subsys *ss, *failed_ss = NULL;
1986 struct cgroupfs_root *root = cgrp->root;
1987 /* threadgroup list cursor and array */
1988 struct task_struct *leader = tsk;
1989 struct task_and_cgroup *tc;
1990 struct flex_array *group;
1991 struct cgroup_taskset tset = { };
1992
1993 /*
1994 * step 0: in order to do expensive, possibly blocking operations for
1995 * every thread, we cannot iterate the thread group list, since it needs
1996 * rcu or tasklist locked. instead, build an array of all threads in the
1997 * group - group_rwsem prevents new threads from appearing, and if
1998 * threads exit, this will just be an over-estimate.
1999 */
2000 if (threadgroup)
2001 group_size = get_nr_threads(tsk);
2002 else
2003 group_size = 1;
2004 /* flex_array supports very large thread-groups better than kmalloc. */
2005 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2006 if (!group)
2007 return -ENOMEM;
2008 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2009 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2010 if (retval)
2011 goto out_free_group_list;
2012
2013 i = 0;
2014 /*
2015 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2016 * already PF_EXITING could be freed from underneath us unless we
2017 * take an rcu_read_lock.
2018 */
2019 rcu_read_lock();
2020 do {
2021 struct task_and_cgroup ent;
2022
2023 /* @tsk either already exited or can't exit until the end */
2024 if (tsk->flags & PF_EXITING)
2025 continue;
2026
2027 /* as per above, nr_threads may decrease, but not increase. */
2028 BUG_ON(i >= group_size);
2029 ent.task = tsk;
2030 ent.cgrp = task_cgroup_from_root(tsk, root);
2031 /* nothing to do if this task is already in the cgroup */
2032 if (ent.cgrp == cgrp)
2033 continue;
2034 /*
2035 * saying GFP_ATOMIC has no effect here because we did prealloc
2036 * earlier, but it's good form to communicate our expectations.
2037 */
2038 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2039 BUG_ON(retval != 0);
2040 i++;
2041
2042 if (!threadgroup)
2043 break;
2044 } while_each_thread(leader, tsk);
2045 rcu_read_unlock();
2046 /* remember the number of threads in the array for later. */
2047 group_size = i;
2048 tset.tc_array = group;
2049 tset.tc_array_len = group_size;
2050
2051 /* methods shouldn't be called if no task is actually migrating */
2052 retval = 0;
2053 if (!group_size)
2054 goto out_free_group_list;
2055
2056 /*
2057 * step 1: check that we can legitimately attach to the cgroup.
2058 */
2059 for_each_root_subsys(root, ss) {
2060 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2061
2062 if (ss->can_attach) {
2063 retval = ss->can_attach(css, &tset);
2064 if (retval) {
2065 failed_ss = ss;
2066 goto out_cancel_attach;
2067 }
2068 }
2069 }
2070
2071 /*
2072 * step 2: make sure css_sets exist for all threads to be migrated.
2073 * we use find_css_set, which allocates a new one if necessary.
2074 */
2075 for (i = 0; i < group_size; i++) {
2076 struct css_set *old_cset;
2077
2078 tc = flex_array_get(group, i);
2079 old_cset = task_css_set(tc->task);
2080 tc->cset = find_css_set(old_cset, cgrp);
2081 if (!tc->cset) {
2082 retval = -ENOMEM;
2083 goto out_put_css_set_refs;
2084 }
2085 }
2086
2087 /*
2088 * step 3: now that we're guaranteed success wrt the css_sets,
2089 * proceed to move all tasks to the new cgroup. There are no
2090 * failure cases after here, so this is the commit point.
2091 */
2092 for (i = 0; i < group_size; i++) {
2093 tc = flex_array_get(group, i);
2094 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
2095 }
2096 /* nothing is sensitive to fork() after this point. */
2097
2098 /*
2099 * step 4: do subsystem attach callbacks.
2100 */
2101 for_each_root_subsys(root, ss) {
2102 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2103
2104 if (ss->attach)
2105 ss->attach(css, &tset);
2106 }
2107
2108 /*
2109 * step 5: success! and cleanup
2110 */
2111 retval = 0;
2112 out_put_css_set_refs:
2113 if (retval) {
2114 for (i = 0; i < group_size; i++) {
2115 tc = flex_array_get(group, i);
2116 if (!tc->cset)
2117 break;
2118 put_css_set(tc->cset);
2119 }
2120 }
2121 out_cancel_attach:
2122 if (retval) {
2123 for_each_root_subsys(root, ss) {
2124 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2125
2126 if (ss == failed_ss)
2127 break;
2128 if (ss->cancel_attach)
2129 ss->cancel_attach(css, &tset);
2130 }
2131 }
2132 out_free_group_list:
2133 flex_array_free(group);
2134 return retval;
2135 }
2136
2137 /*
2138 * Find the task_struct of the task to attach by vpid and pass it along to the
2139 * function to attach either it or all tasks in its threadgroup. Will lock
2140 * cgroup_mutex and threadgroup; may take task_lock of task.
2141 */
2142 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2143 {
2144 struct task_struct *tsk;
2145 const struct cred *cred = current_cred(), *tcred;
2146 int ret;
2147
2148 if (!cgroup_lock_live_group(cgrp))
2149 return -ENODEV;
2150
2151 retry_find_task:
2152 rcu_read_lock();
2153 if (pid) {
2154 tsk = find_task_by_vpid(pid);
2155 if (!tsk) {
2156 rcu_read_unlock();
2157 ret= -ESRCH;
2158 goto out_unlock_cgroup;
2159 }
2160 /*
2161 * even if we're attaching all tasks in the thread group, we
2162 * only need to check permissions on one of them.
2163 */
2164 tcred = __task_cred(tsk);
2165 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2166 !uid_eq(cred->euid, tcred->uid) &&
2167 !uid_eq(cred->euid, tcred->suid)) {
2168 rcu_read_unlock();
2169 ret = -EACCES;
2170 goto out_unlock_cgroup;
2171 }
2172 } else
2173 tsk = current;
2174
2175 if (threadgroup)
2176 tsk = tsk->group_leader;
2177
2178 /*
2179 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2180 * trapped in a cpuset, or RT worker may be born in a cgroup
2181 * with no rt_runtime allocated. Just say no.
2182 */
2183 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2184 ret = -EINVAL;
2185 rcu_read_unlock();
2186 goto out_unlock_cgroup;
2187 }
2188
2189 get_task_struct(tsk);
2190 rcu_read_unlock();
2191
2192 threadgroup_lock(tsk);
2193 if (threadgroup) {
2194 if (!thread_group_leader(tsk)) {
2195 /*
2196 * a race with de_thread from another thread's exec()
2197 * may strip us of our leadership, if this happens,
2198 * there is no choice but to throw this task away and
2199 * try again; this is
2200 * "double-double-toil-and-trouble-check locking".
2201 */
2202 threadgroup_unlock(tsk);
2203 put_task_struct(tsk);
2204 goto retry_find_task;
2205 }
2206 }
2207
2208 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2209
2210 threadgroup_unlock(tsk);
2211
2212 put_task_struct(tsk);
2213 out_unlock_cgroup:
2214 mutex_unlock(&cgroup_mutex);
2215 return ret;
2216 }
2217
2218 /**
2219 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2220 * @from: attach to all cgroups of a given task
2221 * @tsk: the task to be attached
2222 */
2223 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2224 {
2225 struct cgroupfs_root *root;
2226 int retval = 0;
2227
2228 mutex_lock(&cgroup_mutex);
2229 for_each_active_root(root) {
2230 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2231
2232 retval = cgroup_attach_task(from_cgrp, tsk, false);
2233 if (retval)
2234 break;
2235 }
2236 mutex_unlock(&cgroup_mutex);
2237
2238 return retval;
2239 }
2240 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2241
2242 static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2243 struct cftype *cft, u64 pid)
2244 {
2245 return attach_task_by_pid(css->cgroup, pid, false);
2246 }
2247
2248 static int cgroup_procs_write(struct cgroup_subsys_state *css,
2249 struct cftype *cft, u64 tgid)
2250 {
2251 return attach_task_by_pid(css->cgroup, tgid, true);
2252 }
2253
2254 static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2255 struct cftype *cft, const char *buffer)
2256 {
2257 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
2258 if (strlen(buffer) >= PATH_MAX)
2259 return -EINVAL;
2260 if (!cgroup_lock_live_group(css->cgroup))
2261 return -ENODEV;
2262 mutex_lock(&cgroup_root_mutex);
2263 strcpy(css->cgroup->root->release_agent_path, buffer);
2264 mutex_unlock(&cgroup_root_mutex);
2265 mutex_unlock(&cgroup_mutex);
2266 return 0;
2267 }
2268
2269 static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2270 struct cftype *cft, struct seq_file *seq)
2271 {
2272 struct cgroup *cgrp = css->cgroup;
2273
2274 if (!cgroup_lock_live_group(cgrp))
2275 return -ENODEV;
2276 seq_puts(seq, cgrp->root->release_agent_path);
2277 seq_putc(seq, '\n');
2278 mutex_unlock(&cgroup_mutex);
2279 return 0;
2280 }
2281
2282 static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2283 struct cftype *cft, struct seq_file *seq)
2284 {
2285 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
2286 return 0;
2287 }
2288
2289 /* return the css for the given cgroup file */
2290 static struct cgroup_subsys_state *cgroup_file_css(struct cfent *cfe)
2291 {
2292 struct cftype *cft = cfe->type;
2293 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2294
2295 if (cft->ss)
2296 return cgrp->subsys[cft->ss->subsys_id];
2297 return &cgrp->dummy_css;
2298 }
2299
2300 /* A buffer size big enough for numbers or short strings */
2301 #define CGROUP_LOCAL_BUFFER_SIZE 64
2302
2303 static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2304 struct cftype *cft, struct file *file,
2305 const char __user *userbuf, size_t nbytes,
2306 loff_t *unused_ppos)
2307 {
2308 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2309 int retval = 0;
2310 char *end;
2311
2312 if (!nbytes)
2313 return -EINVAL;
2314 if (nbytes >= sizeof(buffer))
2315 return -E2BIG;
2316 if (copy_from_user(buffer, userbuf, nbytes))
2317 return -EFAULT;
2318
2319 buffer[nbytes] = 0; /* nul-terminate */
2320 if (cft->write_u64) {
2321 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2322 if (*end)
2323 return -EINVAL;
2324 retval = cft->write_u64(css, cft, val);
2325 } else {
2326 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2327 if (*end)
2328 return -EINVAL;
2329 retval = cft->write_s64(css, cft, val);
2330 }
2331 if (!retval)
2332 retval = nbytes;
2333 return retval;
2334 }
2335
2336 static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2337 struct cftype *cft, struct file *file,
2338 const char __user *userbuf, size_t nbytes,
2339 loff_t *unused_ppos)
2340 {
2341 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2342 int retval = 0;
2343 size_t max_bytes = cft->max_write_len;
2344 char *buffer = local_buffer;
2345
2346 if (!max_bytes)
2347 max_bytes = sizeof(local_buffer) - 1;
2348 if (nbytes >= max_bytes)
2349 return -E2BIG;
2350 /* Allocate a dynamic buffer if we need one */
2351 if (nbytes >= sizeof(local_buffer)) {
2352 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2353 if (buffer == NULL)
2354 return -ENOMEM;
2355 }
2356 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2357 retval = -EFAULT;
2358 goto out;
2359 }
2360
2361 buffer[nbytes] = 0; /* nul-terminate */
2362 retval = cft->write_string(css, cft, strstrip(buffer));
2363 if (!retval)
2364 retval = nbytes;
2365 out:
2366 if (buffer != local_buffer)
2367 kfree(buffer);
2368 return retval;
2369 }
2370
2371 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2372 size_t nbytes, loff_t *ppos)
2373 {
2374 struct cfent *cfe = __d_cfe(file->f_dentry);
2375 struct cftype *cft = __d_cft(file->f_dentry);
2376 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
2377
2378 if (cft->write)
2379 return cft->write(css, cft, file, buf, nbytes, ppos);
2380 if (cft->write_u64 || cft->write_s64)
2381 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
2382 if (cft->write_string)
2383 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
2384 if (cft->trigger) {
2385 int ret = cft->trigger(css, (unsigned int)cft->private);
2386 return ret ? ret : nbytes;
2387 }
2388 return -EINVAL;
2389 }
2390
2391 static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2392 struct cftype *cft, struct file *file,
2393 char __user *buf, size_t nbytes, loff_t *ppos)
2394 {
2395 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2396 u64 val = cft->read_u64(css, cft);
2397 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2398
2399 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2400 }
2401
2402 static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2403 struct cftype *cft, struct file *file,
2404 char __user *buf, size_t nbytes, loff_t *ppos)
2405 {
2406 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2407 s64 val = cft->read_s64(css, cft);
2408 int len = sprintf(tmp, "%lld\n", (long long) val);
2409
2410 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2411 }
2412
2413 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2414 size_t nbytes, loff_t *ppos)
2415 {
2416 struct cfent *cfe = __d_cfe(file->f_dentry);
2417 struct cftype *cft = __d_cft(file->f_dentry);
2418 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
2419
2420 if (cft->read)
2421 return cft->read(css, cft, file, buf, nbytes, ppos);
2422 if (cft->read_u64)
2423 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
2424 if (cft->read_s64)
2425 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
2426 return -EINVAL;
2427 }
2428
2429 /*
2430 * seqfile ops/methods for returning structured data. Currently just
2431 * supports string->u64 maps, but can be extended in future.
2432 */
2433
2434 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2435 {
2436 struct seq_file *sf = cb->state;
2437 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2438 }
2439
2440 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2441 {
2442 struct cfent *cfe = m->private;
2443 struct cftype *cft = cfe->type;
2444 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
2445
2446 if (cft->read_map) {
2447 struct cgroup_map_cb cb = {
2448 .fill = cgroup_map_add,
2449 .state = m,
2450 };
2451 return cft->read_map(css, cft, &cb);
2452 }
2453 return cft->read_seq_string(css, cft, m);
2454 }
2455
2456 static const struct file_operations cgroup_seqfile_operations = {
2457 .read = seq_read,
2458 .write = cgroup_file_write,
2459 .llseek = seq_lseek,
2460 .release = single_release,
2461 };
2462
2463 static int cgroup_file_open(struct inode *inode, struct file *file)
2464 {
2465 struct cfent *cfe = __d_cfe(file->f_dentry);
2466 struct cftype *cft = __d_cft(file->f_dentry);
2467 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
2468 int err;
2469
2470 err = generic_file_open(inode, file);
2471 if (err)
2472 return err;
2473
2474 /*
2475 * If the file belongs to a subsystem, pin the css. Will be
2476 * unpinned either on open failure or release. This ensures that
2477 * @css stays alive for all file operations.
2478 */
2479 if (css->ss && !css_tryget(css))
2480 return -ENODEV;
2481
2482 if (cft->read_map || cft->read_seq_string) {
2483 file->f_op = &cgroup_seqfile_operations;
2484 err = single_open(file, cgroup_seqfile_show, cfe);
2485 } else if (cft->open) {
2486 err = cft->open(inode, file);
2487 }
2488
2489 if (css->ss && err)
2490 css_put(css);
2491 return err;
2492 }
2493
2494 static int cgroup_file_release(struct inode *inode, struct file *file)
2495 {
2496 struct cfent *cfe = __d_cfe(file->f_dentry);
2497 struct cftype *cft = __d_cft(file->f_dentry);
2498 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
2499 int ret = 0;
2500
2501 if (cft->release)
2502 ret = cft->release(inode, file);
2503 if (css->ss)
2504 css_put(css);
2505 return ret;
2506 }
2507
2508 /*
2509 * cgroup_rename - Only allow simple rename of directories in place.
2510 */
2511 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2512 struct inode *new_dir, struct dentry *new_dentry)
2513 {
2514 int ret;
2515 struct cgroup_name *name, *old_name;
2516 struct cgroup *cgrp;
2517
2518 /*
2519 * It's convinient to use parent dir's i_mutex to protected
2520 * cgrp->name.
2521 */
2522 lockdep_assert_held(&old_dir->i_mutex);
2523
2524 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2525 return -ENOTDIR;
2526 if (new_dentry->d_inode)
2527 return -EEXIST;
2528 if (old_dir != new_dir)
2529 return -EIO;
2530
2531 cgrp = __d_cgrp(old_dentry);
2532
2533 /*
2534 * This isn't a proper migration and its usefulness is very
2535 * limited. Disallow if sane_behavior.
2536 */
2537 if (cgroup_sane_behavior(cgrp))
2538 return -EPERM;
2539
2540 name = cgroup_alloc_name(new_dentry);
2541 if (!name)
2542 return -ENOMEM;
2543
2544 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2545 if (ret) {
2546 kfree(name);
2547 return ret;
2548 }
2549
2550 old_name = rcu_dereference_protected(cgrp->name, true);
2551 rcu_assign_pointer(cgrp->name, name);
2552
2553 kfree_rcu(old_name, rcu_head);
2554 return 0;
2555 }
2556
2557 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2558 {
2559 if (S_ISDIR(dentry->d_inode->i_mode))
2560 return &__d_cgrp(dentry)->xattrs;
2561 else
2562 return &__d_cfe(dentry)->xattrs;
2563 }
2564
2565 static inline int xattr_enabled(struct dentry *dentry)
2566 {
2567 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2568 return root->flags & CGRP_ROOT_XATTR;
2569 }
2570
2571 static bool is_valid_xattr(const char *name)
2572 {
2573 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2574 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2575 return true;
2576 return false;
2577 }
2578
2579 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2580 const void *val, size_t size, int flags)
2581 {
2582 if (!xattr_enabled(dentry))
2583 return -EOPNOTSUPP;
2584 if (!is_valid_xattr(name))
2585 return -EINVAL;
2586 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2587 }
2588
2589 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2590 {
2591 if (!xattr_enabled(dentry))
2592 return -EOPNOTSUPP;
2593 if (!is_valid_xattr(name))
2594 return -EINVAL;
2595 return simple_xattr_remove(__d_xattrs(dentry), name);
2596 }
2597
2598 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2599 void *buf, size_t size)
2600 {
2601 if (!xattr_enabled(dentry))
2602 return -EOPNOTSUPP;
2603 if (!is_valid_xattr(name))
2604 return -EINVAL;
2605 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2606 }
2607
2608 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2609 {
2610 if (!xattr_enabled(dentry))
2611 return -EOPNOTSUPP;
2612 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2613 }
2614
2615 static const struct file_operations cgroup_file_operations = {
2616 .read = cgroup_file_read,
2617 .write = cgroup_file_write,
2618 .llseek = generic_file_llseek,
2619 .open = cgroup_file_open,
2620 .release = cgroup_file_release,
2621 };
2622
2623 static const struct inode_operations cgroup_file_inode_operations = {
2624 .setxattr = cgroup_setxattr,
2625 .getxattr = cgroup_getxattr,
2626 .listxattr = cgroup_listxattr,
2627 .removexattr = cgroup_removexattr,
2628 };
2629
2630 static const struct inode_operations cgroup_dir_inode_operations = {
2631 .lookup = cgroup_lookup,
2632 .mkdir = cgroup_mkdir,
2633 .rmdir = cgroup_rmdir,
2634 .rename = cgroup_rename,
2635 .setxattr = cgroup_setxattr,
2636 .getxattr = cgroup_getxattr,
2637 .listxattr = cgroup_listxattr,
2638 .removexattr = cgroup_removexattr,
2639 };
2640
2641 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2642 {
2643 if (dentry->d_name.len > NAME_MAX)
2644 return ERR_PTR(-ENAMETOOLONG);
2645 d_add(dentry, NULL);
2646 return NULL;
2647 }
2648
2649 /*
2650 * Check if a file is a control file
2651 */
2652 static inline struct cftype *__file_cft(struct file *file)
2653 {
2654 if (file_inode(file)->i_fop != &cgroup_file_operations)
2655 return ERR_PTR(-EINVAL);
2656 return __d_cft(file->f_dentry);
2657 }
2658
2659 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2660 struct super_block *sb)
2661 {
2662 struct inode *inode;
2663
2664 if (!dentry)
2665 return -ENOENT;
2666 if (dentry->d_inode)
2667 return -EEXIST;
2668
2669 inode = cgroup_new_inode(mode, sb);
2670 if (!inode)
2671 return -ENOMEM;
2672
2673 if (S_ISDIR(mode)) {
2674 inode->i_op = &cgroup_dir_inode_operations;
2675 inode->i_fop = &simple_dir_operations;
2676
2677 /* start off with i_nlink == 2 (for "." entry) */
2678 inc_nlink(inode);
2679 inc_nlink(dentry->d_parent->d_inode);
2680
2681 /*
2682 * Control reaches here with cgroup_mutex held.
2683 * @inode->i_mutex should nest outside cgroup_mutex but we
2684 * want to populate it immediately without releasing
2685 * cgroup_mutex. As @inode isn't visible to anyone else
2686 * yet, trylock will always succeed without affecting
2687 * lockdep checks.
2688 */
2689 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2690 } else if (S_ISREG(mode)) {
2691 inode->i_size = 0;
2692 inode->i_fop = &cgroup_file_operations;
2693 inode->i_op = &cgroup_file_inode_operations;
2694 }
2695 d_instantiate(dentry, inode);
2696 dget(dentry); /* Extra count - pin the dentry in core */
2697 return 0;
2698 }
2699
2700 /**
2701 * cgroup_file_mode - deduce file mode of a control file
2702 * @cft: the control file in question
2703 *
2704 * returns cft->mode if ->mode is not 0
2705 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2706 * returns S_IRUGO if it has only a read handler
2707 * returns S_IWUSR if it has only a write hander
2708 */
2709 static umode_t cgroup_file_mode(const struct cftype *cft)
2710 {
2711 umode_t mode = 0;
2712
2713 if (cft->mode)
2714 return cft->mode;
2715
2716 if (cft->read || cft->read_u64 || cft->read_s64 ||
2717 cft->read_map || cft->read_seq_string)
2718 mode |= S_IRUGO;
2719
2720 if (cft->write || cft->write_u64 || cft->write_s64 ||
2721 cft->write_string || cft->trigger)
2722 mode |= S_IWUSR;
2723
2724 return mode;
2725 }
2726
2727 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2728 {
2729 struct dentry *dir = cgrp->dentry;
2730 struct cgroup *parent = __d_cgrp(dir);
2731 struct dentry *dentry;
2732 struct cfent *cfe;
2733 int error;
2734 umode_t mode;
2735 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2736
2737 if (cft->ss && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2738 strcpy(name, cft->ss->name);
2739 strcat(name, ".");
2740 }
2741 strcat(name, cft->name);
2742
2743 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2744
2745 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2746 if (!cfe)
2747 return -ENOMEM;
2748
2749 dentry = lookup_one_len(name, dir, strlen(name));
2750 if (IS_ERR(dentry)) {
2751 error = PTR_ERR(dentry);
2752 goto out;
2753 }
2754
2755 cfe->type = (void *)cft;
2756 cfe->dentry = dentry;
2757 dentry->d_fsdata = cfe;
2758 simple_xattrs_init(&cfe->xattrs);
2759
2760 mode = cgroup_file_mode(cft);
2761 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2762 if (!error) {
2763 list_add_tail(&cfe->node, &parent->files);
2764 cfe = NULL;
2765 }
2766 dput(dentry);
2767 out:
2768 kfree(cfe);
2769 return error;
2770 }
2771
2772 /**
2773 * cgroup_addrm_files - add or remove files to a cgroup directory
2774 * @cgrp: the target cgroup
2775 * @cfts: array of cftypes to be added
2776 * @is_add: whether to add or remove
2777 *
2778 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2779 * For removals, this function never fails. If addition fails, this
2780 * function doesn't remove files already added. The caller is responsible
2781 * for cleaning up.
2782 */
2783 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2784 bool is_add)
2785 {
2786 struct cftype *cft;
2787 int ret;
2788
2789 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2790 lockdep_assert_held(&cgroup_mutex);
2791
2792 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2793 /* does cft->flags tell us to skip this file on @cgrp? */
2794 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2795 continue;
2796 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2797 continue;
2798 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2799 continue;
2800
2801 if (is_add) {
2802 ret = cgroup_add_file(cgrp, cft);
2803 if (ret) {
2804 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2805 cft->name, ret);
2806 return ret;
2807 }
2808 } else {
2809 cgroup_rm_file(cgrp, cft);
2810 }
2811 }
2812 return 0;
2813 }
2814
2815 static void cgroup_cfts_prepare(void)
2816 __acquires(&cgroup_mutex)
2817 {
2818 /*
2819 * Thanks to the entanglement with vfs inode locking, we can't walk
2820 * the existing cgroups under cgroup_mutex and create files.
2821 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2822 * lock before calling cgroup_addrm_files().
2823 */
2824 mutex_lock(&cgroup_mutex);
2825 }
2826
2827 static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
2828 __releases(&cgroup_mutex)
2829 {
2830 LIST_HEAD(pending);
2831 struct cgroup_subsys *ss = cfts[0].ss;
2832 struct cgroup *root = &ss->root->top_cgroup;
2833 struct super_block *sb = ss->root->sb;
2834 struct dentry *prev = NULL;
2835 struct inode *inode;
2836 struct cgroup_subsys_state *css;
2837 u64 update_before;
2838 int ret = 0;
2839
2840 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2841 if (!cfts || ss->root == &cgroup_dummy_root ||
2842 !atomic_inc_not_zero(&sb->s_active)) {
2843 mutex_unlock(&cgroup_mutex);
2844 return 0;
2845 }
2846
2847 /*
2848 * All cgroups which are created after we drop cgroup_mutex will
2849 * have the updated set of files, so we only need to update the
2850 * cgroups created before the current @cgroup_serial_nr_next.
2851 */
2852 update_before = cgroup_serial_nr_next;
2853
2854 mutex_unlock(&cgroup_mutex);
2855
2856 /* @root always needs to be updated */
2857 inode = root->dentry->d_inode;
2858 mutex_lock(&inode->i_mutex);
2859 mutex_lock(&cgroup_mutex);
2860 ret = cgroup_addrm_files(root, cfts, is_add);
2861 mutex_unlock(&cgroup_mutex);
2862 mutex_unlock(&inode->i_mutex);
2863
2864 if (ret)
2865 goto out_deact;
2866
2867 /* add/rm files for all cgroups created before */
2868 rcu_read_lock();
2869 css_for_each_descendant_pre(css, cgroup_css(root, ss->subsys_id)) {
2870 struct cgroup *cgrp = css->cgroup;
2871
2872 if (cgroup_is_dead(cgrp))
2873 continue;
2874
2875 inode = cgrp->dentry->d_inode;
2876 dget(cgrp->dentry);
2877 rcu_read_unlock();
2878
2879 dput(prev);
2880 prev = cgrp->dentry;
2881
2882 mutex_lock(&inode->i_mutex);
2883 mutex_lock(&cgroup_mutex);
2884 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2885 ret = cgroup_addrm_files(cgrp, cfts, is_add);
2886 mutex_unlock(&cgroup_mutex);
2887 mutex_unlock(&inode->i_mutex);
2888
2889 rcu_read_lock();
2890 if (ret)
2891 break;
2892 }
2893 rcu_read_unlock();
2894 dput(prev);
2895 out_deact:
2896 deactivate_super(sb);
2897 return ret;
2898 }
2899
2900 /**
2901 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2902 * @ss: target cgroup subsystem
2903 * @cfts: zero-length name terminated array of cftypes
2904 *
2905 * Register @cfts to @ss. Files described by @cfts are created for all
2906 * existing cgroups to which @ss is attached and all future cgroups will
2907 * have them too. This function can be called anytime whether @ss is
2908 * attached or not.
2909 *
2910 * Returns 0 on successful registration, -errno on failure. Note that this
2911 * function currently returns 0 as long as @cfts registration is successful
2912 * even if some file creation attempts on existing cgroups fail.
2913 */
2914 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2915 {
2916 struct cftype_set *set;
2917 struct cftype *cft;
2918 int ret;
2919
2920 set = kzalloc(sizeof(*set), GFP_KERNEL);
2921 if (!set)
2922 return -ENOMEM;
2923
2924 for (cft = cfts; cft->name[0] != '\0'; cft++)
2925 cft->ss = ss;
2926
2927 cgroup_cfts_prepare();
2928 set->cfts = cfts;
2929 list_add_tail(&set->node, &ss->cftsets);
2930 ret = cgroup_cfts_commit(cfts, true);
2931 if (ret)
2932 cgroup_rm_cftypes(cfts);
2933 return ret;
2934 }
2935 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2936
2937 /**
2938 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2939 * @cfts: zero-length name terminated array of cftypes
2940 *
2941 * Unregister @cfts. Files described by @cfts are removed from all
2942 * existing cgroups and all future cgroups won't have them either. This
2943 * function can be called anytime whether @cfts' subsys is attached or not.
2944 *
2945 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2946 * registered.
2947 */
2948 int cgroup_rm_cftypes(struct cftype *cfts)
2949 {
2950 struct cftype_set *set;
2951
2952 if (!cfts || !cfts[0].ss)
2953 return -ENOENT;
2954
2955 cgroup_cfts_prepare();
2956
2957 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
2958 if (set->cfts == cfts) {
2959 list_del(&set->node);
2960 kfree(set);
2961 cgroup_cfts_commit(cfts, false);
2962 return 0;
2963 }
2964 }
2965
2966 cgroup_cfts_commit(NULL, false);
2967 return -ENOENT;
2968 }
2969
2970 /**
2971 * cgroup_task_count - count the number of tasks in a cgroup.
2972 * @cgrp: the cgroup in question
2973 *
2974 * Return the number of tasks in the cgroup.
2975 */
2976 int cgroup_task_count(const struct cgroup *cgrp)
2977 {
2978 int count = 0;
2979 struct cgrp_cset_link *link;
2980
2981 read_lock(&css_set_lock);
2982 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2983 count += atomic_read(&link->cset->refcount);
2984 read_unlock(&css_set_lock);
2985 return count;
2986 }
2987
2988 /*
2989 * To reduce the fork() overhead for systems that are not actually using
2990 * their cgroups capability, we don't maintain the lists running through
2991 * each css_set to its tasks until we see the list actually used - in other
2992 * words after the first call to css_task_iter_start().
2993 */
2994 static void cgroup_enable_task_cg_lists(void)
2995 {
2996 struct task_struct *p, *g;
2997 write_lock(&css_set_lock);
2998 use_task_css_set_links = 1;
2999 /*
3000 * We need tasklist_lock because RCU is not safe against
3001 * while_each_thread(). Besides, a forking task that has passed
3002 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3003 * is not guaranteed to have its child immediately visible in the
3004 * tasklist if we walk through it with RCU.
3005 */
3006 read_lock(&tasklist_lock);
3007 do_each_thread(g, p) {
3008 task_lock(p);
3009 /*
3010 * We should check if the process is exiting, otherwise
3011 * it will race with cgroup_exit() in that the list
3012 * entry won't be deleted though the process has exited.
3013 */
3014 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
3015 list_add(&p->cg_list, &task_css_set(p)->tasks);
3016 task_unlock(p);
3017 } while_each_thread(g, p);
3018 read_unlock(&tasklist_lock);
3019 write_unlock(&css_set_lock);
3020 }
3021
3022 /**
3023 * css_next_child - find the next child of a given css
3024 * @pos_css: the current position (%NULL to initiate traversal)
3025 * @parent_css: css whose children to walk
3026 *
3027 * This function returns the next child of @parent_css and should be called
3028 * under RCU read lock. The only requirement is that @parent_css and
3029 * @pos_css are accessible. The next sibling is guaranteed to be returned
3030 * regardless of their states.
3031 */
3032 struct cgroup_subsys_state *
3033 css_next_child(struct cgroup_subsys_state *pos_css,
3034 struct cgroup_subsys_state *parent_css)
3035 {
3036 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3037 struct cgroup *cgrp = parent_css->cgroup;
3038 struct cgroup *next;
3039
3040 WARN_ON_ONCE(!rcu_read_lock_held());
3041
3042 /*
3043 * @pos could already have been removed. Once a cgroup is removed,
3044 * its ->sibling.next is no longer updated when its next sibling
3045 * changes. As CGRP_DEAD assertion is serialized and happens
3046 * before the cgroup is taken off the ->sibling list, if we see it
3047 * unasserted, it's guaranteed that the next sibling hasn't
3048 * finished its grace period even if it's already removed, and thus
3049 * safe to dereference from this RCU critical section. If
3050 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3051 * to be visible as %true here.
3052 *
3053 * If @pos is dead, its next pointer can't be dereferenced;
3054 * however, as each cgroup is given a monotonically increasing
3055 * unique serial number and always appended to the sibling list,
3056 * the next one can be found by walking the parent's children until
3057 * we see a cgroup with higher serial number than @pos's. While
3058 * this path can be slower, it's taken only when either the current
3059 * cgroup is removed or iteration and removal race.
3060 */
3061 if (!pos) {
3062 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3063 } else if (likely(!cgroup_is_dead(pos))) {
3064 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3065 } else {
3066 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3067 if (next->serial_nr > pos->serial_nr)
3068 break;
3069 }
3070
3071 if (&next->sibling == &cgrp->children)
3072 return NULL;
3073
3074 if (parent_css->ss)
3075 return cgroup_css(next, parent_css->ss->subsys_id);
3076 else
3077 return &next->dummy_css;
3078 }
3079 EXPORT_SYMBOL_GPL(css_next_child);
3080
3081 /**
3082 * css_next_descendant_pre - find the next descendant for pre-order walk
3083 * @pos: the current position (%NULL to initiate traversal)
3084 * @root: css whose descendants to walk
3085 *
3086 * To be used by css_for_each_descendant_pre(). Find the next descendant
3087 * to visit for pre-order traversal of @root's descendants.
3088 *
3089 * While this function requires RCU read locking, it doesn't require the
3090 * whole traversal to be contained in a single RCU critical section. This
3091 * function will return the correct next descendant as long as both @pos
3092 * and @root are accessible and @pos is a descendant of @root.
3093 */
3094 struct cgroup_subsys_state *
3095 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3096 struct cgroup_subsys_state *root)
3097 {
3098 struct cgroup_subsys_state *next;
3099
3100 WARN_ON_ONCE(!rcu_read_lock_held());
3101
3102 /* if first iteration, pretend we just visited @root */
3103 if (!pos)
3104 pos = root;
3105
3106 /* visit the first child if exists */
3107 next = css_next_child(NULL, pos);
3108 if (next)
3109 return next;
3110
3111 /* no child, visit my or the closest ancestor's next sibling */
3112 while (pos != root) {
3113 next = css_next_child(pos, css_parent(pos));
3114 if (next)
3115 return next;
3116 pos = css_parent(pos);
3117 }
3118
3119 return NULL;
3120 }
3121 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
3122
3123 /**
3124 * css_rightmost_descendant - return the rightmost descendant of a css
3125 * @pos: css of interest
3126 *
3127 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3128 * is returned. This can be used during pre-order traversal to skip
3129 * subtree of @pos.
3130 *
3131 * While this function requires RCU read locking, it doesn't require the
3132 * whole traversal to be contained in a single RCU critical section. This
3133 * function will return the correct rightmost descendant as long as @pos is
3134 * accessible.
3135 */
3136 struct cgroup_subsys_state *
3137 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3138 {
3139 struct cgroup_subsys_state *last, *tmp;
3140
3141 WARN_ON_ONCE(!rcu_read_lock_held());
3142
3143 do {
3144 last = pos;
3145 /* ->prev isn't RCU safe, walk ->next till the end */
3146 pos = NULL;
3147 css_for_each_child(tmp, last)
3148 pos = tmp;
3149 } while (pos);
3150
3151 return last;
3152 }
3153 EXPORT_SYMBOL_GPL(css_rightmost_descendant);
3154
3155 static struct cgroup_subsys_state *
3156 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3157 {
3158 struct cgroup_subsys_state *last;
3159
3160 do {
3161 last = pos;
3162 pos = css_next_child(NULL, pos);
3163 } while (pos);
3164
3165 return last;
3166 }
3167
3168 /**
3169 * css_next_descendant_post - find the next descendant for post-order walk
3170 * @pos: the current position (%NULL to initiate traversal)
3171 * @root: css whose descendants to walk
3172 *
3173 * To be used by css_for_each_descendant_post(). Find the next descendant
3174 * to visit for post-order traversal of @root's descendants.
3175 *
3176 * While this function requires RCU read locking, it doesn't require the
3177 * whole traversal to be contained in a single RCU critical section. This
3178 * function will return the correct next descendant as long as both @pos
3179 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3180 */
3181 struct cgroup_subsys_state *
3182 css_next_descendant_post(struct cgroup_subsys_state *pos,
3183 struct cgroup_subsys_state *root)
3184 {
3185 struct cgroup_subsys_state *next;
3186
3187 WARN_ON_ONCE(!rcu_read_lock_held());
3188
3189 /* if first iteration, visit the leftmost descendant */
3190 if (!pos) {
3191 next = css_leftmost_descendant(root);
3192 return next != root ? next : NULL;
3193 }
3194
3195 /* if there's an unvisited sibling, visit its leftmost descendant */
3196 next = css_next_child(pos, css_parent(pos));
3197 if (next)
3198 return css_leftmost_descendant(next);
3199
3200 /* no sibling left, visit parent */
3201 next = css_parent(pos);
3202 return next != root ? next : NULL;
3203 }
3204 EXPORT_SYMBOL_GPL(css_next_descendant_post);
3205
3206 /**
3207 * css_advance_task_iter - advance a task itererator to the next css_set
3208 * @it: the iterator to advance
3209 *
3210 * Advance @it to the next css_set to walk.
3211 */
3212 static void css_advance_task_iter(struct css_task_iter *it)
3213 {
3214 struct list_head *l = it->cset_link;
3215 struct cgrp_cset_link *link;
3216 struct css_set *cset;
3217
3218 /* Advance to the next non-empty css_set */
3219 do {
3220 l = l->next;
3221 if (l == &it->origin_css->cgroup->cset_links) {
3222 it->cset_link = NULL;
3223 return;
3224 }
3225 link = list_entry(l, struct cgrp_cset_link, cset_link);
3226 cset = link->cset;
3227 } while (list_empty(&cset->tasks));
3228 it->cset_link = l;
3229 it->task = cset->tasks.next;
3230 }
3231
3232 /**
3233 * css_task_iter_start - initiate task iteration
3234 * @css: the css to walk tasks of
3235 * @it: the task iterator to use
3236 *
3237 * Initiate iteration through the tasks of @css. The caller can call
3238 * css_task_iter_next() to walk through the tasks until the function
3239 * returns NULL. On completion of iteration, css_task_iter_end() must be
3240 * called.
3241 *
3242 * Note that this function acquires a lock which is released when the
3243 * iteration finishes. The caller can't sleep while iteration is in
3244 * progress.
3245 */
3246 void css_task_iter_start(struct cgroup_subsys_state *css,
3247 struct css_task_iter *it)
3248 __acquires(css_set_lock)
3249 {
3250 /*
3251 * The first time anyone tries to iterate across a css, we need to
3252 * enable the list linking each css_set to its tasks, and fix up
3253 * all existing tasks.
3254 */
3255 if (!use_task_css_set_links)
3256 cgroup_enable_task_cg_lists();
3257
3258 read_lock(&css_set_lock);
3259
3260 it->origin_css = css;
3261 it->cset_link = &css->cgroup->cset_links;
3262
3263 css_advance_task_iter(it);
3264 }
3265
3266 /**
3267 * css_task_iter_next - return the next task for the iterator
3268 * @it: the task iterator being iterated
3269 *
3270 * The "next" function for task iteration. @it should have been
3271 * initialized via css_task_iter_start(). Returns NULL when the iteration
3272 * reaches the end.
3273 */
3274 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3275 {
3276 struct task_struct *res;
3277 struct list_head *l = it->task;
3278 struct cgrp_cset_link *link;
3279
3280 /* If the iterator cg is NULL, we have no tasks */
3281 if (!it->cset_link)
3282 return NULL;
3283 res = list_entry(l, struct task_struct, cg_list);
3284 /* Advance iterator to find next entry */
3285 l = l->next;
3286 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3287 if (l == &link->cset->tasks) {
3288 /*
3289 * We reached the end of this task list - move on to the
3290 * next cgrp_cset_link.
3291 */
3292 css_advance_task_iter(it);
3293 } else {
3294 it->task = l;
3295 }
3296 return res;
3297 }
3298
3299 /**
3300 * css_task_iter_end - finish task iteration
3301 * @it: the task iterator to finish
3302 *
3303 * Finish task iteration started by css_task_iter_start().
3304 */
3305 void css_task_iter_end(struct css_task_iter *it)
3306 __releases(css_set_lock)
3307 {
3308 read_unlock(&css_set_lock);
3309 }
3310
3311 static inline int started_after_time(struct task_struct *t1,
3312 struct timespec *time,
3313 struct task_struct *t2)
3314 {
3315 int start_diff = timespec_compare(&t1->start_time, time);
3316 if (start_diff > 0) {
3317 return 1;
3318 } else if (start_diff < 0) {
3319 return 0;
3320 } else {
3321 /*
3322 * Arbitrarily, if two processes started at the same
3323 * time, we'll say that the lower pointer value
3324 * started first. Note that t2 may have exited by now
3325 * so this may not be a valid pointer any longer, but
3326 * that's fine - it still serves to distinguish
3327 * between two tasks started (effectively) simultaneously.
3328 */
3329 return t1 > t2;
3330 }
3331 }
3332
3333 /*
3334 * This function is a callback from heap_insert() and is used to order
3335 * the heap.
3336 * In this case we order the heap in descending task start time.
3337 */
3338 static inline int started_after(void *p1, void *p2)
3339 {
3340 struct task_struct *t1 = p1;
3341 struct task_struct *t2 = p2;
3342 return started_after_time(t1, &t2->start_time, t2);
3343 }
3344
3345 /**
3346 * css_scan_tasks - iterate though all the tasks in a css
3347 * @css: the css to iterate tasks of
3348 * @test: optional test callback
3349 * @process: process callback
3350 * @data: data passed to @test and @process
3351 * @heap: optional pre-allocated heap used for task iteration
3352 *
3353 * Iterate through all the tasks in @css, calling @test for each, and if it
3354 * returns %true, call @process for it also.
3355 *
3356 * @test may be NULL, meaning always true (select all tasks), which
3357 * effectively duplicates css_task_iter_{start,next,end}() but does not
3358 * lock css_set_lock for the call to @process.
3359 *
3360 * It is guaranteed that @process will act on every task that is a member
3361 * of @css for the duration of this call. This function may or may not
3362 * call @process for tasks that exit or move to a different css during the
3363 * call, or are forked or move into the css during the call.
3364 *
3365 * Note that @test may be called with locks held, and may in some
3366 * situations be called multiple times for the same task, so it should be
3367 * cheap.
3368 *
3369 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3370 * heap operations (and its "gt" member will be overwritten), else a
3371 * temporary heap will be used (allocation of which may cause this function
3372 * to fail).
3373 */
3374 int css_scan_tasks(struct cgroup_subsys_state *css,
3375 bool (*test)(struct task_struct *, void *),
3376 void (*process)(struct task_struct *, void *),
3377 void *data, struct ptr_heap *heap)
3378 {
3379 int retval, i;
3380 struct css_task_iter it;
3381 struct task_struct *p, *dropped;
3382 /* Never dereference latest_task, since it's not refcounted */
3383 struct task_struct *latest_task = NULL;
3384 struct ptr_heap tmp_heap;
3385 struct timespec latest_time = { 0, 0 };
3386
3387 if (heap) {
3388 /* The caller supplied our heap and pre-allocated its memory */
3389 heap->gt = &started_after;
3390 } else {
3391 /* We need to allocate our own heap memory */
3392 heap = &tmp_heap;
3393 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3394 if (retval)
3395 /* cannot allocate the heap */
3396 return retval;
3397 }
3398
3399 again:
3400 /*
3401 * Scan tasks in the css, using the @test callback to determine
3402 * which are of interest, and invoking @process callback on the
3403 * ones which need an update. Since we don't want to hold any
3404 * locks during the task updates, gather tasks to be processed in a
3405 * heap structure. The heap is sorted by descending task start
3406 * time. If the statically-sized heap fills up, we overflow tasks
3407 * that started later, and in future iterations only consider tasks
3408 * that started after the latest task in the previous pass. This
3409 * guarantees forward progress and that we don't miss any tasks.
3410 */
3411 heap->size = 0;
3412 css_task_iter_start(css, &it);
3413 while ((p = css_task_iter_next(&it))) {
3414 /*
3415 * Only affect tasks that qualify per the caller's callback,
3416 * if he provided one
3417 */
3418 if (test && !test(p, data))
3419 continue;
3420 /*
3421 * Only process tasks that started after the last task
3422 * we processed
3423 */
3424 if (!started_after_time(p, &latest_time, latest_task))
3425 continue;
3426 dropped = heap_insert(heap, p);
3427 if (dropped == NULL) {
3428 /*
3429 * The new task was inserted; the heap wasn't
3430 * previously full
3431 */
3432 get_task_struct(p);
3433 } else if (dropped != p) {
3434 /*
3435 * The new task was inserted, and pushed out a
3436 * different task
3437 */
3438 get_task_struct(p);
3439 put_task_struct(dropped);
3440 }
3441 /*
3442 * Else the new task was newer than anything already in
3443 * the heap and wasn't inserted
3444 */
3445 }
3446 css_task_iter_end(&it);
3447
3448 if (heap->size) {
3449 for (i = 0; i < heap->size; i++) {
3450 struct task_struct *q = heap->ptrs[i];
3451 if (i == 0) {
3452 latest_time = q->start_time;
3453 latest_task = q;
3454 }
3455 /* Process the task per the caller's callback */
3456 process(q, data);
3457 put_task_struct(q);
3458 }
3459 /*
3460 * If we had to process any tasks at all, scan again
3461 * in case some of them were in the middle of forking
3462 * children that didn't get processed.
3463 * Not the most efficient way to do it, but it avoids
3464 * having to take callback_mutex in the fork path
3465 */
3466 goto again;
3467 }
3468 if (heap == &tmp_heap)
3469 heap_free(&tmp_heap);
3470 return 0;
3471 }
3472
3473 static void cgroup_transfer_one_task(struct task_struct *task, void *data)
3474 {
3475 struct cgroup *new_cgroup = data;
3476
3477 mutex_lock(&cgroup_mutex);
3478 cgroup_attach_task(new_cgroup, task, false);
3479 mutex_unlock(&cgroup_mutex);
3480 }
3481
3482 /**
3483 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3484 * @to: cgroup to which the tasks will be moved
3485 * @from: cgroup in which the tasks currently reside
3486 */
3487 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3488 {
3489 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3490 to, NULL);
3491 }
3492
3493 /*
3494 * Stuff for reading the 'tasks'/'procs' files.
3495 *
3496 * Reading this file can return large amounts of data if a cgroup has
3497 * *lots* of attached tasks. So it may need several calls to read(),
3498 * but we cannot guarantee that the information we produce is correct
3499 * unless we produce it entirely atomically.
3500 *
3501 */
3502
3503 /* which pidlist file are we talking about? */
3504 enum cgroup_filetype {
3505 CGROUP_FILE_PROCS,
3506 CGROUP_FILE_TASKS,
3507 };
3508
3509 /*
3510 * A pidlist is a list of pids that virtually represents the contents of one
3511 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3512 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3513 * to the cgroup.
3514 */
3515 struct cgroup_pidlist {
3516 /*
3517 * used to find which pidlist is wanted. doesn't change as long as
3518 * this particular list stays in the list.
3519 */
3520 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3521 /* array of xids */
3522 pid_t *list;
3523 /* how many elements the above list has */
3524 int length;
3525 /* how many files are using the current array */
3526 int use_count;
3527 /* each of these stored in a list by its cgroup */
3528 struct list_head links;
3529 /* pointer to the cgroup we belong to, for list removal purposes */
3530 struct cgroup *owner;
3531 /* protects the other fields */
3532 struct rw_semaphore rwsem;
3533 };
3534
3535 /*
3536 * The following two functions "fix" the issue where there are more pids
3537 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3538 * TODO: replace with a kernel-wide solution to this problem
3539 */
3540 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3541 static void *pidlist_allocate(int count)
3542 {
3543 if (PIDLIST_TOO_LARGE(count))
3544 return vmalloc(count * sizeof(pid_t));
3545 else
3546 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3547 }
3548 static void pidlist_free(void *p)
3549 {
3550 if (is_vmalloc_addr(p))
3551 vfree(p);
3552 else
3553 kfree(p);
3554 }
3555
3556 /*
3557 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3558 * Returns the number of unique elements.
3559 */
3560 static int pidlist_uniq(pid_t *list, int length)
3561 {
3562 int src, dest = 1;
3563
3564 /*
3565 * we presume the 0th element is unique, so i starts at 1. trivial
3566 * edge cases first; no work needs to be done for either
3567 */
3568 if (length == 0 || length == 1)
3569 return length;
3570 /* src and dest walk down the list; dest counts unique elements */
3571 for (src = 1; src < length; src++) {
3572 /* find next unique element */
3573 while (list[src] == list[src-1]) {
3574 src++;
3575 if (src == length)
3576 goto after;
3577 }
3578 /* dest always points to where the next unique element goes */
3579 list[dest] = list[src];
3580 dest++;
3581 }
3582 after:
3583 return dest;
3584 }
3585
3586 static int cmppid(const void *a, const void *b)
3587 {
3588 return *(pid_t *)a - *(pid_t *)b;
3589 }
3590
3591 /*
3592 * find the appropriate pidlist for our purpose (given procs vs tasks)
3593 * returns with the lock on that pidlist already held, and takes care
3594 * of the use count, or returns NULL with no locks held if we're out of
3595 * memory.
3596 */
3597 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3598 enum cgroup_filetype type)
3599 {
3600 struct cgroup_pidlist *l;
3601 /* don't need task_nsproxy() if we're looking at ourself */
3602 struct pid_namespace *ns = task_active_pid_ns(current);
3603
3604 /*
3605 * We can't drop the pidlist_mutex before taking the l->rwsem in case
3606 * the last ref-holder is trying to remove l from the list at the same
3607 * time. Holding the pidlist_mutex precludes somebody taking whichever
3608 * list we find out from under us - compare release_pid_array().
3609 */
3610 mutex_lock(&cgrp->pidlist_mutex);
3611 list_for_each_entry(l, &cgrp->pidlists, links) {
3612 if (l->key.type == type && l->key.ns == ns) {
3613 /* make sure l doesn't vanish out from under us */
3614 down_write(&l->rwsem);
3615 mutex_unlock(&cgrp->pidlist_mutex);
3616 return l;
3617 }
3618 }
3619 /* entry not found; create a new one */
3620 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3621 if (!l) {
3622 mutex_unlock(&cgrp->pidlist_mutex);
3623 return l;
3624 }
3625 init_rwsem(&l->rwsem);
3626 down_write(&l->rwsem);
3627 l->key.type = type;
3628 l->key.ns = get_pid_ns(ns);
3629 l->owner = cgrp;
3630 list_add(&l->links, &cgrp->pidlists);
3631 mutex_unlock(&cgrp->pidlist_mutex);
3632 return l;
3633 }
3634
3635 /*
3636 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3637 */
3638 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3639 struct cgroup_pidlist **lp)
3640 {
3641 pid_t *array;
3642 int length;
3643 int pid, n = 0; /* used for populating the array */
3644 struct css_task_iter it;
3645 struct task_struct *tsk;
3646 struct cgroup_pidlist *l;
3647
3648 /*
3649 * If cgroup gets more users after we read count, we won't have
3650 * enough space - tough. This race is indistinguishable to the
3651 * caller from the case that the additional cgroup users didn't
3652 * show up until sometime later on.
3653 */
3654 length = cgroup_task_count(cgrp);
3655 array = pidlist_allocate(length);
3656 if (!array)
3657 return -ENOMEM;
3658 /* now, populate the array */
3659 css_task_iter_start(&cgrp->dummy_css, &it);
3660 while ((tsk = css_task_iter_next(&it))) {
3661 if (unlikely(n == length))
3662 break;
3663 /* get tgid or pid for procs or tasks file respectively */
3664 if (type == CGROUP_FILE_PROCS)
3665 pid = task_tgid_vnr(tsk);
3666 else
3667 pid = task_pid_vnr(tsk);
3668 if (pid > 0) /* make sure to only use valid results */
3669 array[n++] = pid;
3670 }
3671 css_task_iter_end(&it);
3672 length = n;
3673 /* now sort & (if procs) strip out duplicates */
3674 sort(array, length, sizeof(pid_t), cmppid, NULL);
3675 if (type == CGROUP_FILE_PROCS)
3676 length = pidlist_uniq(array, length);
3677 l = cgroup_pidlist_find(cgrp, type);
3678 if (!l) {
3679 pidlist_free(array);
3680 return -ENOMEM;
3681 }
3682 /* store array, freeing old if necessary - lock already held */
3683 pidlist_free(l->list);
3684 l->list = array;
3685 l->length = length;
3686 l->use_count++;
3687 up_write(&l->rwsem);
3688 *lp = l;
3689 return 0;
3690 }
3691
3692 /**
3693 * cgroupstats_build - build and fill cgroupstats
3694 * @stats: cgroupstats to fill information into
3695 * @dentry: A dentry entry belonging to the cgroup for which stats have
3696 * been requested.
3697 *
3698 * Build and fill cgroupstats so that taskstats can export it to user
3699 * space.
3700 */
3701 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3702 {
3703 int ret = -EINVAL;
3704 struct cgroup *cgrp;
3705 struct css_task_iter it;
3706 struct task_struct *tsk;
3707
3708 /*
3709 * Validate dentry by checking the superblock operations,
3710 * and make sure it's a directory.
3711 */
3712 if (dentry->d_sb->s_op != &cgroup_ops ||
3713 !S_ISDIR(dentry->d_inode->i_mode))
3714 goto err;
3715
3716 ret = 0;
3717 cgrp = dentry->d_fsdata;
3718
3719 css_task_iter_start(&cgrp->dummy_css, &it);
3720 while ((tsk = css_task_iter_next(&it))) {
3721 switch (tsk->state) {
3722 case TASK_RUNNING:
3723 stats->nr_running++;
3724 break;
3725 case TASK_INTERRUPTIBLE:
3726 stats->nr_sleeping++;
3727 break;
3728 case TASK_UNINTERRUPTIBLE:
3729 stats->nr_uninterruptible++;
3730 break;
3731 case TASK_STOPPED:
3732 stats->nr_stopped++;
3733 break;
3734 default:
3735 if (delayacct_is_task_waiting_on_io(tsk))
3736 stats->nr_io_wait++;
3737 break;
3738 }
3739 }
3740 css_task_iter_end(&it);
3741
3742 err:
3743 return ret;
3744 }
3745
3746
3747 /*
3748 * seq_file methods for the tasks/procs files. The seq_file position is the
3749 * next pid to display; the seq_file iterator is a pointer to the pid
3750 * in the cgroup->l->list array.
3751 */
3752
3753 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3754 {
3755 /*
3756 * Initially we receive a position value that corresponds to
3757 * one more than the last pid shown (or 0 on the first call or
3758 * after a seek to the start). Use a binary-search to find the
3759 * next pid to display, if any
3760 */
3761 struct cgroup_pidlist *l = s->private;
3762 int index = 0, pid = *pos;
3763 int *iter;
3764
3765 down_read(&l->rwsem);
3766 if (pid) {
3767 int end = l->length;
3768
3769 while (index < end) {
3770 int mid = (index + end) / 2;
3771 if (l->list[mid] == pid) {
3772 index = mid;
3773 break;
3774 } else if (l->list[mid] <= pid)
3775 index = mid + 1;
3776 else
3777 end = mid;
3778 }
3779 }
3780 /* If we're off the end of the array, we're done */
3781 if (index >= l->length)
3782 return NULL;
3783 /* Update the abstract position to be the actual pid that we found */
3784 iter = l->list + index;
3785 *pos = *iter;
3786 return iter;
3787 }
3788
3789 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3790 {
3791 struct cgroup_pidlist *l = s->private;
3792 up_read(&l->rwsem);
3793 }
3794
3795 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3796 {
3797 struct cgroup_pidlist *l = s->private;
3798 pid_t *p = v;
3799 pid_t *end = l->list + l->length;
3800 /*
3801 * Advance to the next pid in the array. If this goes off the
3802 * end, we're done
3803 */
3804 p++;
3805 if (p >= end) {
3806 return NULL;
3807 } else {
3808 *pos = *p;
3809 return p;
3810 }
3811 }
3812
3813 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3814 {
3815 return seq_printf(s, "%d\n", *(int *)v);
3816 }
3817
3818 /*
3819 * seq_operations functions for iterating on pidlists through seq_file -
3820 * independent of whether it's tasks or procs
3821 */
3822 static const struct seq_operations cgroup_pidlist_seq_operations = {
3823 .start = cgroup_pidlist_start,
3824 .stop = cgroup_pidlist_stop,
3825 .next = cgroup_pidlist_next,
3826 .show = cgroup_pidlist_show,
3827 };
3828
3829 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3830 {
3831 /*
3832 * the case where we're the last user of this particular pidlist will
3833 * have us remove it from the cgroup's list, which entails taking the
3834 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3835 * pidlist_mutex, we have to take pidlist_mutex first.
3836 */
3837 mutex_lock(&l->owner->pidlist_mutex);
3838 down_write(&l->rwsem);
3839 BUG_ON(!l->use_count);
3840 if (!--l->use_count) {
3841 /* we're the last user if refcount is 0; remove and free */
3842 list_del(&l->links);
3843 mutex_unlock(&l->owner->pidlist_mutex);
3844 pidlist_free(l->list);
3845 put_pid_ns(l->key.ns);
3846 up_write(&l->rwsem);
3847 kfree(l);
3848 return;
3849 }
3850 mutex_unlock(&l->owner->pidlist_mutex);
3851 up_write(&l->rwsem);
3852 }
3853
3854 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3855 {
3856 struct cgroup_pidlist *l;
3857 if (!(file->f_mode & FMODE_READ))
3858 return 0;
3859 /*
3860 * the seq_file will only be initialized if the file was opened for
3861 * reading; hence we check if it's not null only in that case.
3862 */
3863 l = ((struct seq_file *)file->private_data)->private;
3864 cgroup_release_pid_array(l);
3865 return seq_release(inode, file);
3866 }
3867
3868 static const struct file_operations cgroup_pidlist_operations = {
3869 .read = seq_read,
3870 .llseek = seq_lseek,
3871 .write = cgroup_file_write,
3872 .release = cgroup_pidlist_release,
3873 };
3874
3875 /*
3876 * The following functions handle opens on a file that displays a pidlist
3877 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3878 * in the cgroup.
3879 */
3880 /* helper function for the two below it */
3881 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3882 {
3883 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3884 struct cgroup_pidlist *l;
3885 int retval;
3886
3887 /* Nothing to do for write-only files */
3888 if (!(file->f_mode & FMODE_READ))
3889 return 0;
3890
3891 /* have the array populated */
3892 retval = pidlist_array_load(cgrp, type, &l);
3893 if (retval)
3894 return retval;
3895 /* configure file information */
3896 file->f_op = &cgroup_pidlist_operations;
3897
3898 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3899 if (retval) {
3900 cgroup_release_pid_array(l);
3901 return retval;
3902 }
3903 ((struct seq_file *)file->private_data)->private = l;
3904 return 0;
3905 }
3906 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3907 {
3908 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3909 }
3910 static int cgroup_procs_open(struct inode *unused, struct file *file)
3911 {
3912 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3913 }
3914
3915 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3916 struct cftype *cft)
3917 {
3918 return notify_on_release(css->cgroup);
3919 }
3920
3921 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3922 struct cftype *cft, u64 val)
3923 {
3924 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3925 if (val)
3926 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3927 else
3928 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3929 return 0;
3930 }
3931
3932 /*
3933 * When dput() is called asynchronously, if umount has been done and
3934 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3935 * there's a small window that vfs will see the root dentry with non-zero
3936 * refcnt and trigger BUG().
3937 *
3938 * That's why we hold a reference before dput() and drop it right after.
3939 */
3940 static void cgroup_dput(struct cgroup *cgrp)
3941 {
3942 struct super_block *sb = cgrp->root->sb;
3943
3944 atomic_inc(&sb->s_active);
3945 dput(cgrp->dentry);
3946 deactivate_super(sb);
3947 }
3948
3949 /*
3950 * Unregister event and free resources.
3951 *
3952 * Gets called from workqueue.
3953 */
3954 static void cgroup_event_remove(struct work_struct *work)
3955 {
3956 struct cgroup_event *event = container_of(work, struct cgroup_event,
3957 remove);
3958 struct cgroup *cgrp = event->cgrp;
3959
3960 remove_wait_queue(event->wqh, &event->wait);
3961
3962 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3963
3964 /* Notify userspace the event is going away. */
3965 eventfd_signal(event->eventfd, 1);
3966
3967 eventfd_ctx_put(event->eventfd);
3968 kfree(event);
3969 cgroup_dput(cgrp);
3970 }
3971
3972 /*
3973 * Gets called on POLLHUP on eventfd when user closes it.
3974 *
3975 * Called with wqh->lock held and interrupts disabled.
3976 */
3977 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3978 int sync, void *key)
3979 {
3980 struct cgroup_event *event = container_of(wait,
3981 struct cgroup_event, wait);
3982 struct cgroup *cgrp = event->cgrp;
3983 unsigned long flags = (unsigned long)key;
3984
3985 if (flags & POLLHUP) {
3986 /*
3987 * If the event has been detached at cgroup removal, we
3988 * can simply return knowing the other side will cleanup
3989 * for us.
3990 *
3991 * We can't race against event freeing since the other
3992 * side will require wqh->lock via remove_wait_queue(),
3993 * which we hold.
3994 */
3995 spin_lock(&cgrp->event_list_lock);
3996 if (!list_empty(&event->list)) {
3997 list_del_init(&event->list);
3998 /*
3999 * We are in atomic context, but cgroup_event_remove()
4000 * may sleep, so we have to call it in workqueue.
4001 */
4002 schedule_work(&event->remove);
4003 }
4004 spin_unlock(&cgrp->event_list_lock);
4005 }
4006
4007 return 0;
4008 }
4009
4010 static void cgroup_event_ptable_queue_proc(struct file *file,
4011 wait_queue_head_t *wqh, poll_table *pt)
4012 {
4013 struct cgroup_event *event = container_of(pt,
4014 struct cgroup_event, pt);
4015
4016 event->wqh = wqh;
4017 add_wait_queue(wqh, &event->wait);
4018 }
4019
4020 /*
4021 * Parse input and register new cgroup event handler.
4022 *
4023 * Input must be in format '<event_fd> <control_fd> <args>'.
4024 * Interpretation of args is defined by control file implementation.
4025 */
4026 static int cgroup_write_event_control(struct cgroup_subsys_state *css,
4027 struct cftype *cft, const char *buffer)
4028 {
4029 struct cgroup *cgrp = css->cgroup;
4030 struct cgroup_event *event;
4031 struct cgroup *cgrp_cfile;
4032 unsigned int efd, cfd;
4033 struct file *efile;
4034 struct file *cfile;
4035 char *endp;
4036 int ret;
4037
4038 efd = simple_strtoul(buffer, &endp, 10);
4039 if (*endp != ' ')
4040 return -EINVAL;
4041 buffer = endp + 1;
4042
4043 cfd = simple_strtoul(buffer, &endp, 10);
4044 if ((*endp != ' ') && (*endp != '\0'))
4045 return -EINVAL;
4046 buffer = endp + 1;
4047
4048 event = kzalloc(sizeof(*event), GFP_KERNEL);
4049 if (!event)
4050 return -ENOMEM;
4051 event->cgrp = cgrp;
4052 INIT_LIST_HEAD(&event->list);
4053 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4054 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4055 INIT_WORK(&event->remove, cgroup_event_remove);
4056
4057 efile = eventfd_fget(efd);
4058 if (IS_ERR(efile)) {
4059 ret = PTR_ERR(efile);
4060 goto out_kfree;
4061 }
4062
4063 event->eventfd = eventfd_ctx_fileget(efile);
4064 if (IS_ERR(event->eventfd)) {
4065 ret = PTR_ERR(event->eventfd);
4066 goto out_put_efile;
4067 }
4068
4069 cfile = fget(cfd);
4070 if (!cfile) {
4071 ret = -EBADF;
4072 goto out_put_eventfd;
4073 }
4074
4075 /* the process need read permission on control file */
4076 /* AV: shouldn't we check that it's been opened for read instead? */
4077 ret = inode_permission(file_inode(cfile), MAY_READ);
4078 if (ret < 0)
4079 goto out_put_cfile;
4080
4081 event->cft = __file_cft(cfile);
4082 if (IS_ERR(event->cft)) {
4083 ret = PTR_ERR(event->cft);
4084 goto out_put_cfile;
4085 }
4086
4087 /*
4088 * The file to be monitored must be in the same cgroup as
4089 * cgroup.event_control is.
4090 */
4091 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4092 if (cgrp_cfile != cgrp) {
4093 ret = -EINVAL;
4094 goto out_put_cfile;
4095 }
4096
4097 if (!event->cft->register_event || !event->cft->unregister_event) {
4098 ret = -EINVAL;
4099 goto out_put_cfile;
4100 }
4101
4102 ret = event->cft->register_event(cgrp, event->cft,
4103 event->eventfd, buffer);
4104 if (ret)
4105 goto out_put_cfile;
4106
4107 efile->f_op->poll(efile, &event->pt);
4108
4109 /*
4110 * Events should be removed after rmdir of cgroup directory, but before
4111 * destroying subsystem state objects. Let's take reference to cgroup
4112 * directory dentry to do that.
4113 */
4114 dget(cgrp->dentry);
4115
4116 spin_lock(&cgrp->event_list_lock);
4117 list_add(&event->list, &cgrp->event_list);
4118 spin_unlock(&cgrp->event_list_lock);
4119
4120 fput(cfile);
4121 fput(efile);
4122
4123 return 0;
4124
4125 out_put_cfile:
4126 fput(cfile);
4127 out_put_eventfd:
4128 eventfd_ctx_put(event->eventfd);
4129 out_put_efile:
4130 fput(efile);
4131 out_kfree:
4132 kfree(event);
4133
4134 return ret;
4135 }
4136
4137 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4138 struct cftype *cft)
4139 {
4140 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4141 }
4142
4143 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4144 struct cftype *cft, u64 val)
4145 {
4146 if (val)
4147 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4148 else
4149 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4150 return 0;
4151 }
4152
4153 static struct cftype cgroup_base_files[] = {
4154 {
4155 .name = "cgroup.procs",
4156 .open = cgroup_procs_open,
4157 .write_u64 = cgroup_procs_write,
4158 .release = cgroup_pidlist_release,
4159 .mode = S_IRUGO | S_IWUSR,
4160 },
4161 {
4162 .name = "cgroup.event_control",
4163 .write_string = cgroup_write_event_control,
4164 .mode = S_IWUGO,
4165 },
4166 {
4167 .name = "cgroup.clone_children",
4168 .flags = CFTYPE_INSANE,
4169 .read_u64 = cgroup_clone_children_read,
4170 .write_u64 = cgroup_clone_children_write,
4171 },
4172 {
4173 .name = "cgroup.sane_behavior",
4174 .flags = CFTYPE_ONLY_ON_ROOT,
4175 .read_seq_string = cgroup_sane_behavior_show,
4176 },
4177
4178 /*
4179 * Historical crazy stuff. These don't have "cgroup." prefix and
4180 * don't exist if sane_behavior. If you're depending on these, be
4181 * prepared to be burned.
4182 */
4183 {
4184 .name = "tasks",
4185 .flags = CFTYPE_INSANE, /* use "procs" instead */
4186 .open = cgroup_tasks_open,
4187 .write_u64 = cgroup_tasks_write,
4188 .release = cgroup_pidlist_release,
4189 .mode = S_IRUGO | S_IWUSR,
4190 },
4191 {
4192 .name = "notify_on_release",
4193 .flags = CFTYPE_INSANE,
4194 .read_u64 = cgroup_read_notify_on_release,
4195 .write_u64 = cgroup_write_notify_on_release,
4196 },
4197 {
4198 .name = "release_agent",
4199 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4200 .read_seq_string = cgroup_release_agent_show,
4201 .write_string = cgroup_release_agent_write,
4202 .max_write_len = PATH_MAX,
4203 },
4204 { } /* terminate */
4205 };
4206
4207 /**
4208 * cgroup_populate_dir - create subsys files in a cgroup directory
4209 * @cgrp: target cgroup
4210 * @subsys_mask: mask of the subsystem ids whose files should be added
4211 *
4212 * On failure, no file is added.
4213 */
4214 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4215 {
4216 struct cgroup_subsys *ss;
4217 int i, ret = 0;
4218
4219 /* process cftsets of each subsystem */
4220 for_each_subsys(ss, i) {
4221 struct cftype_set *set;
4222
4223 if (!test_bit(i, &subsys_mask))
4224 continue;
4225
4226 list_for_each_entry(set, &ss->cftsets, node) {
4227 ret = cgroup_addrm_files(cgrp, set->cfts, true);
4228 if (ret < 0)
4229 goto err;
4230 }
4231 }
4232
4233 /* This cgroup is ready now */
4234 for_each_root_subsys(cgrp->root, ss) {
4235 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4236 struct css_id *id = rcu_dereference_protected(css->id, true);
4237
4238 /*
4239 * Update id->css pointer and make this css visible from
4240 * CSS ID functions. This pointer will be dereferened
4241 * from RCU-read-side without locks.
4242 */
4243 if (id)
4244 rcu_assign_pointer(id->css, css);
4245 }
4246
4247 return 0;
4248 err:
4249 cgroup_clear_dir(cgrp, subsys_mask);
4250 return ret;
4251 }
4252
4253 static void css_dput_fn(struct work_struct *work)
4254 {
4255 struct cgroup_subsys_state *css =
4256 container_of(work, struct cgroup_subsys_state, dput_work);
4257
4258 cgroup_dput(css->cgroup);
4259 }
4260
4261 static void css_release(struct percpu_ref *ref)
4262 {
4263 struct cgroup_subsys_state *css =
4264 container_of(ref, struct cgroup_subsys_state, refcnt);
4265
4266 schedule_work(&css->dput_work);
4267 }
4268
4269 static void init_cgroup_css(struct cgroup_subsys_state *css,
4270 struct cgroup_subsys *ss,
4271 struct cgroup *cgrp)
4272 {
4273 css->cgroup = cgrp;
4274 css->ss = ss;
4275 css->flags = 0;
4276 css->id = NULL;
4277 if (cgrp == cgroup_dummy_top)
4278 css->flags |= CSS_ROOT;
4279 BUG_ON(cgrp->subsys[ss->subsys_id]);
4280 cgrp->subsys[ss->subsys_id] = css;
4281
4282 /*
4283 * css holds an extra ref to @cgrp->dentry which is put on the last
4284 * css_put(). dput() requires process context, which css_put() may
4285 * be called without. @css->dput_work will be used to invoke
4286 * dput() asynchronously from css_put().
4287 */
4288 INIT_WORK(&css->dput_work, css_dput_fn);
4289 }
4290
4291 /* invoke ->css_online() on a new CSS and mark it online if successful */
4292 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4293 {
4294 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4295 int ret = 0;
4296
4297 lockdep_assert_held(&cgroup_mutex);
4298
4299 if (ss->css_online)
4300 ret = ss->css_online(css);
4301 if (!ret)
4302 css->flags |= CSS_ONLINE;
4303 return ret;
4304 }
4305
4306 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4307 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4308 {
4309 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4310
4311 lockdep_assert_held(&cgroup_mutex);
4312
4313 if (!(css->flags & CSS_ONLINE))
4314 return;
4315
4316 if (ss->css_offline)
4317 ss->css_offline(css);
4318
4319 css->flags &= ~CSS_ONLINE;
4320 }
4321
4322 /*
4323 * cgroup_create - create a cgroup
4324 * @parent: cgroup that will be parent of the new cgroup
4325 * @dentry: dentry of the new cgroup
4326 * @mode: mode to set on new inode
4327 *
4328 * Must be called with the mutex on the parent inode held
4329 */
4330 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4331 umode_t mode)
4332 {
4333 struct cgroup *cgrp;
4334 struct cgroup_name *name;
4335 struct cgroupfs_root *root = parent->root;
4336 int err = 0;
4337 struct cgroup_subsys *ss;
4338 struct super_block *sb = root->sb;
4339
4340 /* allocate the cgroup and its ID, 0 is reserved for the root */
4341 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4342 if (!cgrp)
4343 return -ENOMEM;
4344
4345 name = cgroup_alloc_name(dentry);
4346 if (!name)
4347 goto err_free_cgrp;
4348 rcu_assign_pointer(cgrp->name, name);
4349
4350 /*
4351 * Temporarily set the pointer to NULL, so idr_find() won't return
4352 * a half-baked cgroup.
4353 */
4354 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
4355 if (cgrp->id < 0)
4356 goto err_free_name;
4357
4358 /*
4359 * Only live parents can have children. Note that the liveliness
4360 * check isn't strictly necessary because cgroup_mkdir() and
4361 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4362 * anyway so that locking is contained inside cgroup proper and we
4363 * don't get nasty surprises if we ever grow another caller.
4364 */
4365 if (!cgroup_lock_live_group(parent)) {
4366 err = -ENODEV;
4367 goto err_free_id;
4368 }
4369
4370 /* Grab a reference on the superblock so the hierarchy doesn't
4371 * get deleted on unmount if there are child cgroups. This
4372 * can be done outside cgroup_mutex, since the sb can't
4373 * disappear while someone has an open control file on the
4374 * fs */
4375 atomic_inc(&sb->s_active);
4376
4377 init_cgroup_housekeeping(cgrp);
4378
4379 dentry->d_fsdata = cgrp;
4380 cgrp->dentry = dentry;
4381
4382 cgrp->parent = parent;
4383 cgrp->root = parent->root;
4384
4385 if (notify_on_release(parent))
4386 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4387
4388 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4389 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4390
4391 for_each_root_subsys(root, ss) {
4392 struct cgroup_subsys_state *css;
4393
4394 css = ss->css_alloc(parent->subsys[ss->subsys_id]);
4395 if (IS_ERR(css)) {
4396 err = PTR_ERR(css);
4397 goto err_free_all;
4398 }
4399
4400 err = percpu_ref_init(&css->refcnt, css_release);
4401 if (err) {
4402 ss->css_free(css);
4403 goto err_free_all;
4404 }
4405
4406 init_cgroup_css(css, ss, cgrp);
4407
4408 if (ss->use_id) {
4409 err = alloc_css_id(ss, parent, cgrp);
4410 if (err)
4411 goto err_free_all;
4412 }
4413 }
4414
4415 /*
4416 * Create directory. cgroup_create_file() returns with the new
4417 * directory locked on success so that it can be populated without
4418 * dropping cgroup_mutex.
4419 */
4420 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4421 if (err < 0)
4422 goto err_free_all;
4423 lockdep_assert_held(&dentry->d_inode->i_mutex);
4424
4425 cgrp->serial_nr = cgroup_serial_nr_next++;
4426
4427 /* allocation complete, commit to creation */
4428 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4429 root->number_of_cgroups++;
4430
4431 /* each css holds a ref to the cgroup's dentry */
4432 for_each_root_subsys(root, ss)
4433 dget(dentry);
4434
4435 /* hold a ref to the parent's dentry */
4436 dget(parent->dentry);
4437
4438 /* creation succeeded, notify subsystems */
4439 for_each_root_subsys(root, ss) {
4440 err = online_css(ss, cgrp);
4441 if (err)
4442 goto err_destroy;
4443
4444 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4445 parent->parent) {
4446 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4447 current->comm, current->pid, ss->name);
4448 if (!strcmp(ss->name, "memory"))
4449 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4450 ss->warned_broken_hierarchy = true;
4451 }
4452 }
4453
4454 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4455
4456 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4457 if (err)
4458 goto err_destroy;
4459
4460 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4461 if (err)
4462 goto err_destroy;
4463
4464 mutex_unlock(&cgroup_mutex);
4465 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4466
4467 return 0;
4468
4469 err_free_all:
4470 for_each_root_subsys(root, ss) {
4471 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4472
4473 if (css) {
4474 percpu_ref_cancel_init(&css->refcnt);
4475 ss->css_free(css);
4476 }
4477 }
4478 mutex_unlock(&cgroup_mutex);
4479 /* Release the reference count that we took on the superblock */
4480 deactivate_super(sb);
4481 err_free_id:
4482 idr_remove(&root->cgroup_idr, cgrp->id);
4483 err_free_name:
4484 kfree(rcu_dereference_raw(cgrp->name));
4485 err_free_cgrp:
4486 kfree(cgrp);
4487 return err;
4488
4489 err_destroy:
4490 cgroup_destroy_locked(cgrp);
4491 mutex_unlock(&cgroup_mutex);
4492 mutex_unlock(&dentry->d_inode->i_mutex);
4493 return err;
4494 }
4495
4496 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4497 {
4498 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4499
4500 /* the vfs holds inode->i_mutex already */
4501 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4502 }
4503
4504 static void cgroup_css_killed(struct cgroup *cgrp)
4505 {
4506 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4507 return;
4508
4509 /* percpu ref's of all css's are killed, kick off the next step */
4510 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4511 schedule_work(&cgrp->destroy_work);
4512 }
4513
4514 static void css_ref_killed_fn(struct percpu_ref *ref)
4515 {
4516 struct cgroup_subsys_state *css =
4517 container_of(ref, struct cgroup_subsys_state, refcnt);
4518
4519 cgroup_css_killed(css->cgroup);
4520 }
4521
4522 /**
4523 * cgroup_destroy_locked - the first stage of cgroup destruction
4524 * @cgrp: cgroup to be destroyed
4525 *
4526 * css's make use of percpu refcnts whose killing latency shouldn't be
4527 * exposed to userland and are RCU protected. Also, cgroup core needs to
4528 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4529 * invoked. To satisfy all the requirements, destruction is implemented in
4530 * the following two steps.
4531 *
4532 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4533 * userland visible parts and start killing the percpu refcnts of
4534 * css's. Set up so that the next stage will be kicked off once all
4535 * the percpu refcnts are confirmed to be killed.
4536 *
4537 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4538 * rest of destruction. Once all cgroup references are gone, the
4539 * cgroup is RCU-freed.
4540 *
4541 * This function implements s1. After this step, @cgrp is gone as far as
4542 * the userland is concerned and a new cgroup with the same name may be
4543 * created. As cgroup doesn't care about the names internally, this
4544 * doesn't cause any problem.
4545 */
4546 static int cgroup_destroy_locked(struct cgroup *cgrp)
4547 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4548 {
4549 struct dentry *d = cgrp->dentry;
4550 struct cgroup_event *event, *tmp;
4551 struct cgroup_subsys *ss;
4552 bool empty;
4553
4554 lockdep_assert_held(&d->d_inode->i_mutex);
4555 lockdep_assert_held(&cgroup_mutex);
4556
4557 /*
4558 * css_set_lock synchronizes access to ->cset_links and prevents
4559 * @cgrp from being removed while __put_css_set() is in progress.
4560 */
4561 read_lock(&css_set_lock);
4562 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
4563 read_unlock(&css_set_lock);
4564 if (!empty)
4565 return -EBUSY;
4566
4567 /*
4568 * Block new css_tryget() by killing css refcnts. cgroup core
4569 * guarantees that, by the time ->css_offline() is invoked, no new
4570 * css reference will be given out via css_tryget(). We can't
4571 * simply call percpu_ref_kill() and proceed to offlining css's
4572 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4573 * as killed on all CPUs on return.
4574 *
4575 * Use percpu_ref_kill_and_confirm() to get notifications as each
4576 * css is confirmed to be seen as killed on all CPUs. The
4577 * notification callback keeps track of the number of css's to be
4578 * killed and schedules cgroup_offline_fn() to perform the rest of
4579 * destruction once the percpu refs of all css's are confirmed to
4580 * be killed.
4581 */
4582 atomic_set(&cgrp->css_kill_cnt, 1);
4583 for_each_root_subsys(cgrp->root, ss) {
4584 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4585
4586 /*
4587 * Killing would put the base ref, but we need to keep it
4588 * alive until after ->css_offline.
4589 */
4590 percpu_ref_get(&css->refcnt);
4591
4592 atomic_inc(&cgrp->css_kill_cnt);
4593 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
4594 }
4595 cgroup_css_killed(cgrp);
4596
4597 /*
4598 * Mark @cgrp dead. This prevents further task migration and child
4599 * creation by disabling cgroup_lock_live_group(). Note that
4600 * CGRP_DEAD assertion is depended upon by css_next_child() to
4601 * resume iteration after dropping RCU read lock. See
4602 * css_next_child() for details.
4603 */
4604 set_bit(CGRP_DEAD, &cgrp->flags);
4605
4606 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4607 raw_spin_lock(&release_list_lock);
4608 if (!list_empty(&cgrp->release_list))
4609 list_del_init(&cgrp->release_list);
4610 raw_spin_unlock(&release_list_lock);
4611
4612 /*
4613 * Clear and remove @cgrp directory. The removal puts the base ref
4614 * but we aren't quite done with @cgrp yet, so hold onto it.
4615 */
4616 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
4617 cgroup_addrm_files(cgrp, cgroup_base_files, false);
4618 dget(d);
4619 cgroup_d_remove_dir(d);
4620
4621 /*
4622 * Unregister events and notify userspace.
4623 * Notify userspace about cgroup removing only after rmdir of cgroup
4624 * directory to avoid race between userspace and kernelspace.
4625 */
4626 spin_lock(&cgrp->event_list_lock);
4627 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4628 list_del_init(&event->list);
4629 schedule_work(&event->remove);
4630 }
4631 spin_unlock(&cgrp->event_list_lock);
4632
4633 return 0;
4634 };
4635
4636 /**
4637 * cgroup_offline_fn - the second step of cgroup destruction
4638 * @work: cgroup->destroy_free_work
4639 *
4640 * This function is invoked from a work item for a cgroup which is being
4641 * destroyed after the percpu refcnts of all css's are guaranteed to be
4642 * seen as killed on all CPUs, and performs the rest of destruction. This
4643 * is the second step of destruction described in the comment above
4644 * cgroup_destroy_locked().
4645 */
4646 static void cgroup_offline_fn(struct work_struct *work)
4647 {
4648 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4649 struct cgroup *parent = cgrp->parent;
4650 struct dentry *d = cgrp->dentry;
4651 struct cgroup_subsys *ss;
4652
4653 mutex_lock(&cgroup_mutex);
4654
4655 /*
4656 * css_tryget() is guaranteed to fail now. Tell subsystems to
4657 * initate destruction.
4658 */
4659 for_each_root_subsys(cgrp->root, ss)
4660 offline_css(ss, cgrp);
4661
4662 /*
4663 * Put the css refs from cgroup_destroy_locked(). Each css holds
4664 * an extra reference to the cgroup's dentry and cgroup removal
4665 * proceeds regardless of css refs. On the last put of each css,
4666 * whenever that may be, the extra dentry ref is put so that dentry
4667 * destruction happens only after all css's are released.
4668 */
4669 for_each_root_subsys(cgrp->root, ss)
4670 css_put(cgrp->subsys[ss->subsys_id]);
4671
4672 /* delete this cgroup from parent->children */
4673 list_del_rcu(&cgrp->sibling);
4674
4675 /*
4676 * We should remove the cgroup object from idr before its grace
4677 * period starts, so we won't be looking up a cgroup while the
4678 * cgroup is being freed.
4679 */
4680 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4681 cgrp->id = -1;
4682
4683 dput(d);
4684
4685 set_bit(CGRP_RELEASABLE, &parent->flags);
4686 check_for_release(parent);
4687
4688 mutex_unlock(&cgroup_mutex);
4689 }
4690
4691 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4692 {
4693 int ret;
4694
4695 mutex_lock(&cgroup_mutex);
4696 ret = cgroup_destroy_locked(dentry->d_fsdata);
4697 mutex_unlock(&cgroup_mutex);
4698
4699 return ret;
4700 }
4701
4702 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4703 {
4704 INIT_LIST_HEAD(&ss->cftsets);
4705
4706 /*
4707 * base_cftset is embedded in subsys itself, no need to worry about
4708 * deregistration.
4709 */
4710 if (ss->base_cftypes) {
4711 struct cftype *cft;
4712
4713 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4714 cft->ss = ss;
4715
4716 ss->base_cftset.cfts = ss->base_cftypes;
4717 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4718 }
4719 }
4720
4721 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4722 {
4723 struct cgroup_subsys_state *css;
4724
4725 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4726
4727 mutex_lock(&cgroup_mutex);
4728
4729 /* init base cftset */
4730 cgroup_init_cftsets(ss);
4731
4732 /* Create the top cgroup state for this subsystem */
4733 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4734 ss->root = &cgroup_dummy_root;
4735 css = ss->css_alloc(cgroup_dummy_top->subsys[ss->subsys_id]);
4736 /* We don't handle early failures gracefully */
4737 BUG_ON(IS_ERR(css));
4738 init_cgroup_css(css, ss, cgroup_dummy_top);
4739
4740 /* Update the init_css_set to contain a subsys
4741 * pointer to this state - since the subsystem is
4742 * newly registered, all tasks and hence the
4743 * init_css_set is in the subsystem's top cgroup. */
4744 init_css_set.subsys[ss->subsys_id] = css;
4745
4746 need_forkexit_callback |= ss->fork || ss->exit;
4747
4748 /* At system boot, before all subsystems have been
4749 * registered, no tasks have been forked, so we don't
4750 * need to invoke fork callbacks here. */
4751 BUG_ON(!list_empty(&init_task.tasks));
4752
4753 BUG_ON(online_css(ss, cgroup_dummy_top));
4754
4755 mutex_unlock(&cgroup_mutex);
4756
4757 /* this function shouldn't be used with modular subsystems, since they
4758 * need to register a subsys_id, among other things */
4759 BUG_ON(ss->module);
4760 }
4761
4762 /**
4763 * cgroup_load_subsys: load and register a modular subsystem at runtime
4764 * @ss: the subsystem to load
4765 *
4766 * This function should be called in a modular subsystem's initcall. If the
4767 * subsystem is built as a module, it will be assigned a new subsys_id and set
4768 * up for use. If the subsystem is built-in anyway, work is delegated to the
4769 * simpler cgroup_init_subsys.
4770 */
4771 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4772 {
4773 struct cgroup_subsys_state *css;
4774 int i, ret;
4775 struct hlist_node *tmp;
4776 struct css_set *cset;
4777 unsigned long key;
4778
4779 /* check name and function validity */
4780 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4781 ss->css_alloc == NULL || ss->css_free == NULL)
4782 return -EINVAL;
4783
4784 /*
4785 * we don't support callbacks in modular subsystems. this check is
4786 * before the ss->module check for consistency; a subsystem that could
4787 * be a module should still have no callbacks even if the user isn't
4788 * compiling it as one.
4789 */
4790 if (ss->fork || ss->exit)
4791 return -EINVAL;
4792
4793 /*
4794 * an optionally modular subsystem is built-in: we want to do nothing,
4795 * since cgroup_init_subsys will have already taken care of it.
4796 */
4797 if (ss->module == NULL) {
4798 /* a sanity check */
4799 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4800 return 0;
4801 }
4802
4803 /* init base cftset */
4804 cgroup_init_cftsets(ss);
4805
4806 mutex_lock(&cgroup_mutex);
4807 cgroup_subsys[ss->subsys_id] = ss;
4808
4809 /*
4810 * no ss->css_alloc seems to need anything important in the ss
4811 * struct, so this can happen first (i.e. before the dummy root
4812 * attachment).
4813 */
4814 css = ss->css_alloc(cgroup_dummy_top->subsys[ss->subsys_id]);
4815 if (IS_ERR(css)) {
4816 /* failure case - need to deassign the cgroup_subsys[] slot. */
4817 cgroup_subsys[ss->subsys_id] = NULL;
4818 mutex_unlock(&cgroup_mutex);
4819 return PTR_ERR(css);
4820 }
4821
4822 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4823 ss->root = &cgroup_dummy_root;
4824
4825 /* our new subsystem will be attached to the dummy hierarchy. */
4826 init_cgroup_css(css, ss, cgroup_dummy_top);
4827 /* init_idr must be after init_cgroup_css because it sets css->id. */
4828 if (ss->use_id) {
4829 ret = cgroup_init_idr(ss, css);
4830 if (ret)
4831 goto err_unload;
4832 }
4833
4834 /*
4835 * Now we need to entangle the css into the existing css_sets. unlike
4836 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4837 * will need a new pointer to it; done by iterating the css_set_table.
4838 * furthermore, modifying the existing css_sets will corrupt the hash
4839 * table state, so each changed css_set will need its hash recomputed.
4840 * this is all done under the css_set_lock.
4841 */
4842 write_lock(&css_set_lock);
4843 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4844 /* skip entries that we already rehashed */
4845 if (cset->subsys[ss->subsys_id])
4846 continue;
4847 /* remove existing entry */
4848 hash_del(&cset->hlist);
4849 /* set new value */
4850 cset->subsys[ss->subsys_id] = css;
4851 /* recompute hash and restore entry */
4852 key = css_set_hash(cset->subsys);
4853 hash_add(css_set_table, &cset->hlist, key);
4854 }
4855 write_unlock(&css_set_lock);
4856
4857 ret = online_css(ss, cgroup_dummy_top);
4858 if (ret)
4859 goto err_unload;
4860
4861 /* success! */
4862 mutex_unlock(&cgroup_mutex);
4863 return 0;
4864
4865 err_unload:
4866 mutex_unlock(&cgroup_mutex);
4867 /* @ss can't be mounted here as try_module_get() would fail */
4868 cgroup_unload_subsys(ss);
4869 return ret;
4870 }
4871 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4872
4873 /**
4874 * cgroup_unload_subsys: unload a modular subsystem
4875 * @ss: the subsystem to unload
4876 *
4877 * This function should be called in a modular subsystem's exitcall. When this
4878 * function is invoked, the refcount on the subsystem's module will be 0, so
4879 * the subsystem will not be attached to any hierarchy.
4880 */
4881 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4882 {
4883 struct cgrp_cset_link *link;
4884
4885 BUG_ON(ss->module == NULL);
4886
4887 /*
4888 * we shouldn't be called if the subsystem is in use, and the use of
4889 * try_module_get() in rebind_subsystems() should ensure that it
4890 * doesn't start being used while we're killing it off.
4891 */
4892 BUG_ON(ss->root != &cgroup_dummy_root);
4893
4894 mutex_lock(&cgroup_mutex);
4895
4896 offline_css(ss, cgroup_dummy_top);
4897
4898 if (ss->use_id)
4899 idr_destroy(&ss->idr);
4900
4901 /* deassign the subsys_id */
4902 cgroup_subsys[ss->subsys_id] = NULL;
4903
4904 /* remove subsystem from the dummy root's list of subsystems */
4905 list_del_init(&ss->sibling);
4906
4907 /*
4908 * disentangle the css from all css_sets attached to the dummy
4909 * top. as in loading, we need to pay our respects to the hashtable
4910 * gods.
4911 */
4912 write_lock(&css_set_lock);
4913 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4914 struct css_set *cset = link->cset;
4915 unsigned long key;
4916
4917 hash_del(&cset->hlist);
4918 cset->subsys[ss->subsys_id] = NULL;
4919 key = css_set_hash(cset->subsys);
4920 hash_add(css_set_table, &cset->hlist, key);
4921 }
4922 write_unlock(&css_set_lock);
4923
4924 /*
4925 * remove subsystem's css from the cgroup_dummy_top and free it -
4926 * need to free before marking as null because ss->css_free needs
4927 * the cgrp->subsys pointer to find their state. note that this
4928 * also takes care of freeing the css_id.
4929 */
4930 ss->css_free(cgroup_dummy_top->subsys[ss->subsys_id]);
4931 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
4932
4933 mutex_unlock(&cgroup_mutex);
4934 }
4935 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4936
4937 /**
4938 * cgroup_init_early - cgroup initialization at system boot
4939 *
4940 * Initialize cgroups at system boot, and initialize any
4941 * subsystems that request early init.
4942 */
4943 int __init cgroup_init_early(void)
4944 {
4945 struct cgroup_subsys *ss;
4946 int i;
4947
4948 atomic_set(&init_css_set.refcount, 1);
4949 INIT_LIST_HEAD(&init_css_set.cgrp_links);
4950 INIT_LIST_HEAD(&init_css_set.tasks);
4951 INIT_HLIST_NODE(&init_css_set.hlist);
4952 css_set_count = 1;
4953 init_cgroup_root(&cgroup_dummy_root);
4954 cgroup_root_count = 1;
4955 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4956
4957 init_cgrp_cset_link.cset = &init_css_set;
4958 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4959 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4960 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4961
4962 /* at bootup time, we don't worry about modular subsystems */
4963 for_each_builtin_subsys(ss, i) {
4964 BUG_ON(!ss->name);
4965 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4966 BUG_ON(!ss->css_alloc);
4967 BUG_ON(!ss->css_free);
4968 if (ss->subsys_id != i) {
4969 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4970 ss->name, ss->subsys_id);
4971 BUG();
4972 }
4973
4974 if (ss->early_init)
4975 cgroup_init_subsys(ss);
4976 }
4977 return 0;
4978 }
4979
4980 /**
4981 * cgroup_init - cgroup initialization
4982 *
4983 * Register cgroup filesystem and /proc file, and initialize
4984 * any subsystems that didn't request early init.
4985 */
4986 int __init cgroup_init(void)
4987 {
4988 struct cgroup_subsys *ss;
4989 unsigned long key;
4990 int i, err;
4991
4992 err = bdi_init(&cgroup_backing_dev_info);
4993 if (err)
4994 return err;
4995
4996 for_each_builtin_subsys(ss, i) {
4997 if (!ss->early_init)
4998 cgroup_init_subsys(ss);
4999 if (ss->use_id)
5000 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
5001 }
5002
5003 /* allocate id for the dummy hierarchy */
5004 mutex_lock(&cgroup_mutex);
5005 mutex_lock(&cgroup_root_mutex);
5006
5007 /* Add init_css_set to the hash table */
5008 key = css_set_hash(init_css_set.subsys);
5009 hash_add(css_set_table, &init_css_set.hlist, key);
5010
5011 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
5012
5013 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5014 0, 1, GFP_KERNEL);
5015 BUG_ON(err < 0);
5016
5017 mutex_unlock(&cgroup_root_mutex);
5018 mutex_unlock(&cgroup_mutex);
5019
5020 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5021 if (!cgroup_kobj) {
5022 err = -ENOMEM;
5023 goto out;
5024 }
5025
5026 err = register_filesystem(&cgroup_fs_type);
5027 if (err < 0) {
5028 kobject_put(cgroup_kobj);
5029 goto out;
5030 }
5031
5032 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5033
5034 out:
5035 if (err)
5036 bdi_destroy(&cgroup_backing_dev_info);
5037
5038 return err;
5039 }
5040
5041 /*
5042 * proc_cgroup_show()
5043 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5044 * - Used for /proc/<pid>/cgroup.
5045 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5046 * doesn't really matter if tsk->cgroup changes after we read it,
5047 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
5048 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5049 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5050 * cgroup to top_cgroup.
5051 */
5052
5053 /* TODO: Use a proper seq_file iterator */
5054 int proc_cgroup_show(struct seq_file *m, void *v)
5055 {
5056 struct pid *pid;
5057 struct task_struct *tsk;
5058 char *buf;
5059 int retval;
5060 struct cgroupfs_root *root;
5061
5062 retval = -ENOMEM;
5063 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5064 if (!buf)
5065 goto out;
5066
5067 retval = -ESRCH;
5068 pid = m->private;
5069 tsk = get_pid_task(pid, PIDTYPE_PID);
5070 if (!tsk)
5071 goto out_free;
5072
5073 retval = 0;
5074
5075 mutex_lock(&cgroup_mutex);
5076
5077 for_each_active_root(root) {
5078 struct cgroup_subsys *ss;
5079 struct cgroup *cgrp;
5080 int count = 0;
5081
5082 seq_printf(m, "%d:", root->hierarchy_id);
5083 for_each_root_subsys(root, ss)
5084 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5085 if (strlen(root->name))
5086 seq_printf(m, "%sname=%s", count ? "," : "",
5087 root->name);
5088 seq_putc(m, ':');
5089 cgrp = task_cgroup_from_root(tsk, root);
5090 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
5091 if (retval < 0)
5092 goto out_unlock;
5093 seq_puts(m, buf);
5094 seq_putc(m, '\n');
5095 }
5096
5097 out_unlock:
5098 mutex_unlock(&cgroup_mutex);
5099 put_task_struct(tsk);
5100 out_free:
5101 kfree(buf);
5102 out:
5103 return retval;
5104 }
5105
5106 /* Display information about each subsystem and each hierarchy */
5107 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5108 {
5109 struct cgroup_subsys *ss;
5110 int i;
5111
5112 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5113 /*
5114 * ideally we don't want subsystems moving around while we do this.
5115 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5116 * subsys/hierarchy state.
5117 */
5118 mutex_lock(&cgroup_mutex);
5119
5120 for_each_subsys(ss, i)
5121 seq_printf(m, "%s\t%d\t%d\t%d\n",
5122 ss->name, ss->root->hierarchy_id,
5123 ss->root->number_of_cgroups, !ss->disabled);
5124
5125 mutex_unlock(&cgroup_mutex);
5126 return 0;
5127 }
5128
5129 static int cgroupstats_open(struct inode *inode, struct file *file)
5130 {
5131 return single_open(file, proc_cgroupstats_show, NULL);
5132 }
5133
5134 static const struct file_operations proc_cgroupstats_operations = {
5135 .open = cgroupstats_open,
5136 .read = seq_read,
5137 .llseek = seq_lseek,
5138 .release = single_release,
5139 };
5140
5141 /**
5142 * cgroup_fork - attach newly forked task to its parents cgroup.
5143 * @child: pointer to task_struct of forking parent process.
5144 *
5145 * Description: A task inherits its parent's cgroup at fork().
5146 *
5147 * A pointer to the shared css_set was automatically copied in
5148 * fork.c by dup_task_struct(). However, we ignore that copy, since
5149 * it was not made under the protection of RCU or cgroup_mutex, so
5150 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5151 * have already changed current->cgroups, allowing the previously
5152 * referenced cgroup group to be removed and freed.
5153 *
5154 * At the point that cgroup_fork() is called, 'current' is the parent
5155 * task, and the passed argument 'child' points to the child task.
5156 */
5157 void cgroup_fork(struct task_struct *child)
5158 {
5159 task_lock(current);
5160 get_css_set(task_css_set(current));
5161 child->cgroups = current->cgroups;
5162 task_unlock(current);
5163 INIT_LIST_HEAD(&child->cg_list);
5164 }
5165
5166 /**
5167 * cgroup_post_fork - called on a new task after adding it to the task list
5168 * @child: the task in question
5169 *
5170 * Adds the task to the list running through its css_set if necessary and
5171 * call the subsystem fork() callbacks. Has to be after the task is
5172 * visible on the task list in case we race with the first call to
5173 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5174 * list.
5175 */
5176 void cgroup_post_fork(struct task_struct *child)
5177 {
5178 struct cgroup_subsys *ss;
5179 int i;
5180
5181 /*
5182 * use_task_css_set_links is set to 1 before we walk the tasklist
5183 * under the tasklist_lock and we read it here after we added the child
5184 * to the tasklist under the tasklist_lock as well. If the child wasn't
5185 * yet in the tasklist when we walked through it from
5186 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5187 * should be visible now due to the paired locking and barriers implied
5188 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5189 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5190 * lock on fork.
5191 */
5192 if (use_task_css_set_links) {
5193 write_lock(&css_set_lock);
5194 task_lock(child);
5195 if (list_empty(&child->cg_list))
5196 list_add(&child->cg_list, &task_css_set(child)->tasks);
5197 task_unlock(child);
5198 write_unlock(&css_set_lock);
5199 }
5200
5201 /*
5202 * Call ss->fork(). This must happen after @child is linked on
5203 * css_set; otherwise, @child might change state between ->fork()
5204 * and addition to css_set.
5205 */
5206 if (need_forkexit_callback) {
5207 /*
5208 * fork/exit callbacks are supported only for builtin
5209 * subsystems, and the builtin section of the subsys
5210 * array is immutable, so we don't need to lock the
5211 * subsys array here. On the other hand, modular section
5212 * of the array can be freed at module unload, so we
5213 * can't touch that.
5214 */
5215 for_each_builtin_subsys(ss, i)
5216 if (ss->fork)
5217 ss->fork(child);
5218 }
5219 }
5220
5221 /**
5222 * cgroup_exit - detach cgroup from exiting task
5223 * @tsk: pointer to task_struct of exiting process
5224 * @run_callback: run exit callbacks?
5225 *
5226 * Description: Detach cgroup from @tsk and release it.
5227 *
5228 * Note that cgroups marked notify_on_release force every task in
5229 * them to take the global cgroup_mutex mutex when exiting.
5230 * This could impact scaling on very large systems. Be reluctant to
5231 * use notify_on_release cgroups where very high task exit scaling
5232 * is required on large systems.
5233 *
5234 * the_top_cgroup_hack:
5235 *
5236 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5237 *
5238 * We call cgroup_exit() while the task is still competent to
5239 * handle notify_on_release(), then leave the task attached to the
5240 * root cgroup in each hierarchy for the remainder of its exit.
5241 *
5242 * To do this properly, we would increment the reference count on
5243 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5244 * code we would add a second cgroup function call, to drop that
5245 * reference. This would just create an unnecessary hot spot on
5246 * the top_cgroup reference count, to no avail.
5247 *
5248 * Normally, holding a reference to a cgroup without bumping its
5249 * count is unsafe. The cgroup could go away, or someone could
5250 * attach us to a different cgroup, decrementing the count on
5251 * the first cgroup that we never incremented. But in this case,
5252 * top_cgroup isn't going away, and either task has PF_EXITING set,
5253 * which wards off any cgroup_attach_task() attempts, or task is a failed
5254 * fork, never visible to cgroup_attach_task.
5255 */
5256 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5257 {
5258 struct cgroup_subsys *ss;
5259 struct css_set *cset;
5260 int i;
5261
5262 /*
5263 * Unlink from the css_set task list if necessary.
5264 * Optimistically check cg_list before taking
5265 * css_set_lock
5266 */
5267 if (!list_empty(&tsk->cg_list)) {
5268 write_lock(&css_set_lock);
5269 if (!list_empty(&tsk->cg_list))
5270 list_del_init(&tsk->cg_list);
5271 write_unlock(&css_set_lock);
5272 }
5273
5274 /* Reassign the task to the init_css_set. */
5275 task_lock(tsk);
5276 cset = task_css_set(tsk);
5277 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5278
5279 if (run_callbacks && need_forkexit_callback) {
5280 /*
5281 * fork/exit callbacks are supported only for builtin
5282 * subsystems, see cgroup_post_fork() for details.
5283 */
5284 for_each_builtin_subsys(ss, i) {
5285 if (ss->exit) {
5286 struct cgroup_subsys_state *old_css = cset->subsys[i];
5287 struct cgroup_subsys_state *css = task_css(tsk, i);
5288
5289 ss->exit(css, old_css, tsk);
5290 }
5291 }
5292 }
5293 task_unlock(tsk);
5294
5295 put_css_set_taskexit(cset);
5296 }
5297
5298 static void check_for_release(struct cgroup *cgrp)
5299 {
5300 if (cgroup_is_releasable(cgrp) &&
5301 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5302 /*
5303 * Control Group is currently removeable. If it's not
5304 * already queued for a userspace notification, queue
5305 * it now
5306 */
5307 int need_schedule_work = 0;
5308
5309 raw_spin_lock(&release_list_lock);
5310 if (!cgroup_is_dead(cgrp) &&
5311 list_empty(&cgrp->release_list)) {
5312 list_add(&cgrp->release_list, &release_list);
5313 need_schedule_work = 1;
5314 }
5315 raw_spin_unlock(&release_list_lock);
5316 if (need_schedule_work)
5317 schedule_work(&release_agent_work);
5318 }
5319 }
5320
5321 /*
5322 * Notify userspace when a cgroup is released, by running the
5323 * configured release agent with the name of the cgroup (path
5324 * relative to the root of cgroup file system) as the argument.
5325 *
5326 * Most likely, this user command will try to rmdir this cgroup.
5327 *
5328 * This races with the possibility that some other task will be
5329 * attached to this cgroup before it is removed, or that some other
5330 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5331 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5332 * unused, and this cgroup will be reprieved from its death sentence,
5333 * to continue to serve a useful existence. Next time it's released,
5334 * we will get notified again, if it still has 'notify_on_release' set.
5335 *
5336 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5337 * means only wait until the task is successfully execve()'d. The
5338 * separate release agent task is forked by call_usermodehelper(),
5339 * then control in this thread returns here, without waiting for the
5340 * release agent task. We don't bother to wait because the caller of
5341 * this routine has no use for the exit status of the release agent
5342 * task, so no sense holding our caller up for that.
5343 */
5344 static void cgroup_release_agent(struct work_struct *work)
5345 {
5346 BUG_ON(work != &release_agent_work);
5347 mutex_lock(&cgroup_mutex);
5348 raw_spin_lock(&release_list_lock);
5349 while (!list_empty(&release_list)) {
5350 char *argv[3], *envp[3];
5351 int i;
5352 char *pathbuf = NULL, *agentbuf = NULL;
5353 struct cgroup *cgrp = list_entry(release_list.next,
5354 struct cgroup,
5355 release_list);
5356 list_del_init(&cgrp->release_list);
5357 raw_spin_unlock(&release_list_lock);
5358 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5359 if (!pathbuf)
5360 goto continue_free;
5361 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5362 goto continue_free;
5363 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5364 if (!agentbuf)
5365 goto continue_free;
5366
5367 i = 0;
5368 argv[i++] = agentbuf;
5369 argv[i++] = pathbuf;
5370 argv[i] = NULL;
5371
5372 i = 0;
5373 /* minimal command environment */
5374 envp[i++] = "HOME=/";
5375 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5376 envp[i] = NULL;
5377
5378 /* Drop the lock while we invoke the usermode helper,
5379 * since the exec could involve hitting disk and hence
5380 * be a slow process */
5381 mutex_unlock(&cgroup_mutex);
5382 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5383 mutex_lock(&cgroup_mutex);
5384 continue_free:
5385 kfree(pathbuf);
5386 kfree(agentbuf);
5387 raw_spin_lock(&release_list_lock);
5388 }
5389 raw_spin_unlock(&release_list_lock);
5390 mutex_unlock(&cgroup_mutex);
5391 }
5392
5393 static int __init cgroup_disable(char *str)
5394 {
5395 struct cgroup_subsys *ss;
5396 char *token;
5397 int i;
5398
5399 while ((token = strsep(&str, ",")) != NULL) {
5400 if (!*token)
5401 continue;
5402
5403 /*
5404 * cgroup_disable, being at boot time, can't know about
5405 * module subsystems, so we don't worry about them.
5406 */
5407 for_each_builtin_subsys(ss, i) {
5408 if (!strcmp(token, ss->name)) {
5409 ss->disabled = 1;
5410 printk(KERN_INFO "Disabling %s control group"
5411 " subsystem\n", ss->name);
5412 break;
5413 }
5414 }
5415 }
5416 return 1;
5417 }
5418 __setup("cgroup_disable=", cgroup_disable);
5419
5420 /*
5421 * Functons for CSS ID.
5422 */
5423
5424 /* to get ID other than 0, this should be called when !cgroup_is_dead() */
5425 unsigned short css_id(struct cgroup_subsys_state *css)
5426 {
5427 struct css_id *cssid;
5428
5429 /*
5430 * This css_id() can return correct value when somone has refcnt
5431 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5432 * it's unchanged until freed.
5433 */
5434 cssid = rcu_dereference_raw(css->id);
5435
5436 if (cssid)
5437 return cssid->id;
5438 return 0;
5439 }
5440 EXPORT_SYMBOL_GPL(css_id);
5441
5442 /**
5443 * css_is_ancestor - test "root" css is an ancestor of "child"
5444 * @child: the css to be tested.
5445 * @root: the css supporsed to be an ancestor of the child.
5446 *
5447 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5448 * this function reads css->id, the caller must hold rcu_read_lock().
5449 * But, considering usual usage, the csses should be valid objects after test.
5450 * Assuming that the caller will do some action to the child if this returns
5451 * returns true, the caller must take "child";s reference count.
5452 * If "child" is valid object and this returns true, "root" is valid, too.
5453 */
5454
5455 bool css_is_ancestor(struct cgroup_subsys_state *child,
5456 const struct cgroup_subsys_state *root)
5457 {
5458 struct css_id *child_id;
5459 struct css_id *root_id;
5460
5461 child_id = rcu_dereference(child->id);
5462 if (!child_id)
5463 return false;
5464 root_id = rcu_dereference(root->id);
5465 if (!root_id)
5466 return false;
5467 if (child_id->depth < root_id->depth)
5468 return false;
5469 if (child_id->stack[root_id->depth] != root_id->id)
5470 return false;
5471 return true;
5472 }
5473
5474 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5475 {
5476 struct css_id *id = rcu_dereference_protected(css->id, true);
5477
5478 /* When this is called before css_id initialization, id can be NULL */
5479 if (!id)
5480 return;
5481
5482 BUG_ON(!ss->use_id);
5483
5484 rcu_assign_pointer(id->css, NULL);
5485 rcu_assign_pointer(css->id, NULL);
5486 spin_lock(&ss->id_lock);
5487 idr_remove(&ss->idr, id->id);
5488 spin_unlock(&ss->id_lock);
5489 kfree_rcu(id, rcu_head);
5490 }
5491 EXPORT_SYMBOL_GPL(free_css_id);
5492
5493 /*
5494 * This is called by init or create(). Then, calls to this function are
5495 * always serialized (By cgroup_mutex() at create()).
5496 */
5497
5498 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5499 {
5500 struct css_id *newid;
5501 int ret, size;
5502
5503 BUG_ON(!ss->use_id);
5504
5505 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5506 newid = kzalloc(size, GFP_KERNEL);
5507 if (!newid)
5508 return ERR_PTR(-ENOMEM);
5509
5510 idr_preload(GFP_KERNEL);
5511 spin_lock(&ss->id_lock);
5512 /* Don't use 0. allocates an ID of 1-65535 */
5513 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5514 spin_unlock(&ss->id_lock);
5515 idr_preload_end();
5516
5517 /* Returns error when there are no free spaces for new ID.*/
5518 if (ret < 0)
5519 goto err_out;
5520
5521 newid->id = ret;
5522 newid->depth = depth;
5523 return newid;
5524 err_out:
5525 kfree(newid);
5526 return ERR_PTR(ret);
5527
5528 }
5529
5530 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5531 struct cgroup_subsys_state *rootcss)
5532 {
5533 struct css_id *newid;
5534
5535 spin_lock_init(&ss->id_lock);
5536 idr_init(&ss->idr);
5537
5538 newid = get_new_cssid(ss, 0);
5539 if (IS_ERR(newid))
5540 return PTR_ERR(newid);
5541
5542 newid->stack[0] = newid->id;
5543 RCU_INIT_POINTER(newid->css, rootcss);
5544 RCU_INIT_POINTER(rootcss->id, newid);
5545 return 0;
5546 }
5547
5548 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5549 struct cgroup *child)
5550 {
5551 int subsys_id, i, depth = 0;
5552 struct cgroup_subsys_state *parent_css, *child_css;
5553 struct css_id *child_id, *parent_id;
5554
5555 subsys_id = ss->subsys_id;
5556 parent_css = parent->subsys[subsys_id];
5557 child_css = child->subsys[subsys_id];
5558 parent_id = rcu_dereference_protected(parent_css->id, true);
5559 depth = parent_id->depth + 1;
5560
5561 child_id = get_new_cssid(ss, depth);
5562 if (IS_ERR(child_id))
5563 return PTR_ERR(child_id);
5564
5565 for (i = 0; i < depth; i++)
5566 child_id->stack[i] = parent_id->stack[i];
5567 child_id->stack[depth] = child_id->id;
5568 /*
5569 * child_id->css pointer will be set after this cgroup is available
5570 * see cgroup_populate_dir()
5571 */
5572 rcu_assign_pointer(child_css->id, child_id);
5573
5574 return 0;
5575 }
5576
5577 /**
5578 * css_lookup - lookup css by id
5579 * @ss: cgroup subsys to be looked into.
5580 * @id: the id
5581 *
5582 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5583 * NULL if not. Should be called under rcu_read_lock()
5584 */
5585 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5586 {
5587 struct css_id *cssid = NULL;
5588
5589 BUG_ON(!ss->use_id);
5590 cssid = idr_find(&ss->idr, id);
5591
5592 if (unlikely(!cssid))
5593 return NULL;
5594
5595 return rcu_dereference(cssid->css);
5596 }
5597 EXPORT_SYMBOL_GPL(css_lookup);
5598
5599 /*
5600 * get corresponding css from file open on cgroupfs directory
5601 */
5602 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5603 {
5604 struct cgroup *cgrp;
5605 struct inode *inode;
5606 struct cgroup_subsys_state *css;
5607
5608 inode = file_inode(f);
5609 /* check in cgroup filesystem dir */
5610 if (inode->i_op != &cgroup_dir_inode_operations)
5611 return ERR_PTR(-EBADF);
5612
5613 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5614 return ERR_PTR(-EINVAL);
5615
5616 /* get cgroup */
5617 cgrp = __d_cgrp(f->f_dentry);
5618 css = cgrp->subsys[id];
5619 return css ? css : ERR_PTR(-ENOENT);
5620 }
5621
5622 #ifdef CONFIG_CGROUP_DEBUG
5623 static struct cgroup_subsys_state *
5624 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5625 {
5626 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5627
5628 if (!css)
5629 return ERR_PTR(-ENOMEM);
5630
5631 return css;
5632 }
5633
5634 static void debug_css_free(struct cgroup_subsys_state *css)
5635 {
5636 kfree(css);
5637 }
5638
5639 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5640 struct cftype *cft)
5641 {
5642 return cgroup_task_count(css->cgroup);
5643 }
5644
5645 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5646 struct cftype *cft)
5647 {
5648 return (u64)(unsigned long)current->cgroups;
5649 }
5650
5651 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5652 struct cftype *cft)
5653 {
5654 u64 count;
5655
5656 rcu_read_lock();
5657 count = atomic_read(&task_css_set(current)->refcount);
5658 rcu_read_unlock();
5659 return count;
5660 }
5661
5662 static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
5663 struct cftype *cft,
5664 struct seq_file *seq)
5665 {
5666 struct cgrp_cset_link *link;
5667 struct css_set *cset;
5668
5669 read_lock(&css_set_lock);
5670 rcu_read_lock();
5671 cset = rcu_dereference(current->cgroups);
5672 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5673 struct cgroup *c = link->cgrp;
5674 const char *name;
5675
5676 if (c->dentry)
5677 name = c->dentry->d_name.name;
5678 else
5679 name = "?";
5680 seq_printf(seq, "Root %d group %s\n",
5681 c->root->hierarchy_id, name);
5682 }
5683 rcu_read_unlock();
5684 read_unlock(&css_set_lock);
5685 return 0;
5686 }
5687
5688 #define MAX_TASKS_SHOWN_PER_CSS 25
5689 static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5690 struct cftype *cft, struct seq_file *seq)
5691 {
5692 struct cgrp_cset_link *link;
5693
5694 read_lock(&css_set_lock);
5695 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5696 struct css_set *cset = link->cset;
5697 struct task_struct *task;
5698 int count = 0;
5699 seq_printf(seq, "css_set %p\n", cset);
5700 list_for_each_entry(task, &cset->tasks, cg_list) {
5701 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5702 seq_puts(seq, " ...\n");
5703 break;
5704 } else {
5705 seq_printf(seq, " task %d\n",
5706 task_pid_vnr(task));
5707 }
5708 }
5709 }
5710 read_unlock(&css_set_lock);
5711 return 0;
5712 }
5713
5714 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5715 {
5716 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5717 }
5718
5719 static struct cftype debug_files[] = {
5720 {
5721 .name = "taskcount",
5722 .read_u64 = debug_taskcount_read,
5723 },
5724
5725 {
5726 .name = "current_css_set",
5727 .read_u64 = current_css_set_read,
5728 },
5729
5730 {
5731 .name = "current_css_set_refcount",
5732 .read_u64 = current_css_set_refcount_read,
5733 },
5734
5735 {
5736 .name = "current_css_set_cg_links",
5737 .read_seq_string = current_css_set_cg_links_read,
5738 },
5739
5740 {
5741 .name = "cgroup_css_links",
5742 .read_seq_string = cgroup_css_links_read,
5743 },
5744
5745 {
5746 .name = "releasable",
5747 .read_u64 = releasable_read,
5748 },
5749
5750 { } /* terminate */
5751 };
5752
5753 struct cgroup_subsys debug_subsys = {
5754 .name = "debug",
5755 .css_alloc = debug_css_alloc,
5756 .css_free = debug_css_free,
5757 .subsys_id = debug_subsys_id,
5758 .base_cftypes = debug_files,
5759 };
5760 #endif /* CONFIG_CGROUP_DEBUG */