]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
Take fs_struct handling to new file (fs/fs_struct.c)
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49
50 #include <asm/atomic.h>
51
52 static DEFINE_MUTEX(cgroup_mutex);
53
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
56
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
59 };
60
61 /*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66 struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
87 /* A list running through the active hierarchies */
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
92
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
95 };
96
97
98 /*
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
102 */
103 static struct cgroupfs_root rootnode;
104
105 /* The list of hierarchy roots */
106
107 static LIST_HEAD(roots);
108 static int root_count;
109
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
112
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
117 */
118 static int need_forkexit_callback __read_mostly;
119
120 /* convenient tests for these bits */
121 inline int cgroup_is_removed(const struct cgroup *cgrp)
122 {
123 return test_bit(CGRP_REMOVED, &cgrp->flags);
124 }
125
126 /* bits in struct cgroupfs_root flags field */
127 enum {
128 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
129 };
130
131 static int cgroup_is_releasable(const struct cgroup *cgrp)
132 {
133 const int bits =
134 (1 << CGRP_RELEASABLE) |
135 (1 << CGRP_NOTIFY_ON_RELEASE);
136 return (cgrp->flags & bits) == bits;
137 }
138
139 static int notify_on_release(const struct cgroup *cgrp)
140 {
141 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
142 }
143
144 /*
145 * for_each_subsys() allows you to iterate on each subsystem attached to
146 * an active hierarchy
147 */
148 #define for_each_subsys(_root, _ss) \
149 list_for_each_entry(_ss, &_root->subsys_list, sibling)
150
151 /* for_each_active_root() allows you to iterate across the active hierarchies */
152 #define for_each_active_root(_root) \
153 list_for_each_entry(_root, &roots, root_list)
154
155 /* the list of cgroups eligible for automatic release. Protected by
156 * release_list_lock */
157 static LIST_HEAD(release_list);
158 static DEFINE_SPINLOCK(release_list_lock);
159 static void cgroup_release_agent(struct work_struct *work);
160 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161 static void check_for_release(struct cgroup *cgrp);
162
163 /* Link structure for associating css_set objects with cgroups */
164 struct cg_cgroup_link {
165 /*
166 * List running through cg_cgroup_links associated with a
167 * cgroup, anchored on cgroup->css_sets
168 */
169 struct list_head cgrp_link_list;
170 /*
171 * List running through cg_cgroup_links pointing at a
172 * single css_set object, anchored on css_set->cg_links
173 */
174 struct list_head cg_link_list;
175 struct css_set *cg;
176 };
177
178 /* The default css_set - used by init and its children prior to any
179 * hierarchies being mounted. It contains a pointer to the root state
180 * for each subsystem. Also used to anchor the list of css_sets. Not
181 * reference-counted, to improve performance when child cgroups
182 * haven't been created.
183 */
184
185 static struct css_set init_css_set;
186 static struct cg_cgroup_link init_css_set_link;
187
188 /* css_set_lock protects the list of css_set objects, and the
189 * chain of tasks off each css_set. Nests outside task->alloc_lock
190 * due to cgroup_iter_start() */
191 static DEFINE_RWLOCK(css_set_lock);
192 static int css_set_count;
193
194 /* hash table for cgroup groups. This improves the performance to
195 * find an existing css_set */
196 #define CSS_SET_HASH_BITS 7
197 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
198 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
199
200 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
201 {
202 int i;
203 int index;
204 unsigned long tmp = 0UL;
205
206 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
207 tmp += (unsigned long)css[i];
208 tmp = (tmp >> 16) ^ tmp;
209
210 index = hash_long(tmp, CSS_SET_HASH_BITS);
211
212 return &css_set_table[index];
213 }
214
215 /* We don't maintain the lists running through each css_set to its
216 * task until after the first call to cgroup_iter_start(). This
217 * reduces the fork()/exit() overhead for people who have cgroups
218 * compiled into their kernel but not actually in use */
219 static int use_task_css_set_links __read_mostly;
220
221 /* When we create or destroy a css_set, the operation simply
222 * takes/releases a reference count on all the cgroups referenced
223 * by subsystems in this css_set. This can end up multiple-counting
224 * some cgroups, but that's OK - the ref-count is just a
225 * busy/not-busy indicator; ensuring that we only count each cgroup
226 * once would require taking a global lock to ensure that no
227 * subsystems moved between hierarchies while we were doing so.
228 *
229 * Possible TODO: decide at boot time based on the number of
230 * registered subsystems and the number of CPUs or NUMA nodes whether
231 * it's better for performance to ref-count every subsystem, or to
232 * take a global lock and only add one ref count to each hierarchy.
233 */
234
235 /*
236 * unlink a css_set from the list and free it
237 */
238 static void unlink_css_set(struct css_set *cg)
239 {
240 struct cg_cgroup_link *link;
241 struct cg_cgroup_link *saved_link;
242
243 hlist_del(&cg->hlist);
244 css_set_count--;
245
246 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
247 cg_link_list) {
248 list_del(&link->cg_link_list);
249 list_del(&link->cgrp_link_list);
250 kfree(link);
251 }
252 }
253
254 static void __put_css_set(struct css_set *cg, int taskexit)
255 {
256 int i;
257 /*
258 * Ensure that the refcount doesn't hit zero while any readers
259 * can see it. Similar to atomic_dec_and_lock(), but for an
260 * rwlock
261 */
262 if (atomic_add_unless(&cg->refcount, -1, 1))
263 return;
264 write_lock(&css_set_lock);
265 if (!atomic_dec_and_test(&cg->refcount)) {
266 write_unlock(&css_set_lock);
267 return;
268 }
269 unlink_css_set(cg);
270 write_unlock(&css_set_lock);
271
272 rcu_read_lock();
273 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
275 if (atomic_dec_and_test(&cgrp->count) &&
276 notify_on_release(cgrp)) {
277 if (taskexit)
278 set_bit(CGRP_RELEASABLE, &cgrp->flags);
279 check_for_release(cgrp);
280 }
281 }
282 rcu_read_unlock();
283 kfree(cg);
284 }
285
286 /*
287 * refcounted get/put for css_set objects
288 */
289 static inline void get_css_set(struct css_set *cg)
290 {
291 atomic_inc(&cg->refcount);
292 }
293
294 static inline void put_css_set(struct css_set *cg)
295 {
296 __put_css_set(cg, 0);
297 }
298
299 static inline void put_css_set_taskexit(struct css_set *cg)
300 {
301 __put_css_set(cg, 1);
302 }
303
304 /*
305 * find_existing_css_set() is a helper for
306 * find_css_set(), and checks to see whether an existing
307 * css_set is suitable.
308 *
309 * oldcg: the cgroup group that we're using before the cgroup
310 * transition
311 *
312 * cgrp: the cgroup that we're moving into
313 *
314 * template: location in which to build the desired set of subsystem
315 * state objects for the new cgroup group
316 */
317 static struct css_set *find_existing_css_set(
318 struct css_set *oldcg,
319 struct cgroup *cgrp,
320 struct cgroup_subsys_state *template[])
321 {
322 int i;
323 struct cgroupfs_root *root = cgrp->root;
324 struct hlist_head *hhead;
325 struct hlist_node *node;
326 struct css_set *cg;
327
328 /* Built the set of subsystem state objects that we want to
329 * see in the new css_set */
330 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
331 if (root->subsys_bits & (1UL << i)) {
332 /* Subsystem is in this hierarchy. So we want
333 * the subsystem state from the new
334 * cgroup */
335 template[i] = cgrp->subsys[i];
336 } else {
337 /* Subsystem is not in this hierarchy, so we
338 * don't want to change the subsystem state */
339 template[i] = oldcg->subsys[i];
340 }
341 }
342
343 hhead = css_set_hash(template);
344 hlist_for_each_entry(cg, node, hhead, hlist) {
345 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
346 /* All subsystems matched */
347 return cg;
348 }
349 }
350
351 /* No existing cgroup group matched */
352 return NULL;
353 }
354
355 static void free_cg_links(struct list_head *tmp)
356 {
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
359
360 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
361 list_del(&link->cgrp_link_list);
362 kfree(link);
363 }
364 }
365
366 /*
367 * allocate_cg_links() allocates "count" cg_cgroup_link structures
368 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
369 * success or a negative error
370 */
371 static int allocate_cg_links(int count, struct list_head *tmp)
372 {
373 struct cg_cgroup_link *link;
374 int i;
375 INIT_LIST_HEAD(tmp);
376 for (i = 0; i < count; i++) {
377 link = kmalloc(sizeof(*link), GFP_KERNEL);
378 if (!link) {
379 free_cg_links(tmp);
380 return -ENOMEM;
381 }
382 list_add(&link->cgrp_link_list, tmp);
383 }
384 return 0;
385 }
386
387 /**
388 * link_css_set - a helper function to link a css_set to a cgroup
389 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
390 * @cg: the css_set to be linked
391 * @cgrp: the destination cgroup
392 */
393 static void link_css_set(struct list_head *tmp_cg_links,
394 struct css_set *cg, struct cgroup *cgrp)
395 {
396 struct cg_cgroup_link *link;
397
398 BUG_ON(list_empty(tmp_cg_links));
399 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
400 cgrp_link_list);
401 link->cg = cg;
402 list_move(&link->cgrp_link_list, &cgrp->css_sets);
403 list_add(&link->cg_link_list, &cg->cg_links);
404 }
405
406 /*
407 * find_css_set() takes an existing cgroup group and a
408 * cgroup object, and returns a css_set object that's
409 * equivalent to the old group, but with the given cgroup
410 * substituted into the appropriate hierarchy. Must be called with
411 * cgroup_mutex held
412 */
413 static struct css_set *find_css_set(
414 struct css_set *oldcg, struct cgroup *cgrp)
415 {
416 struct css_set *res;
417 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
418 int i;
419
420 struct list_head tmp_cg_links;
421
422 struct hlist_head *hhead;
423
424 /* First see if we already have a cgroup group that matches
425 * the desired set */
426 read_lock(&css_set_lock);
427 res = find_existing_css_set(oldcg, cgrp, template);
428 if (res)
429 get_css_set(res);
430 read_unlock(&css_set_lock);
431
432 if (res)
433 return res;
434
435 res = kmalloc(sizeof(*res), GFP_KERNEL);
436 if (!res)
437 return NULL;
438
439 /* Allocate all the cg_cgroup_link objects that we'll need */
440 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
441 kfree(res);
442 return NULL;
443 }
444
445 atomic_set(&res->refcount, 1);
446 INIT_LIST_HEAD(&res->cg_links);
447 INIT_LIST_HEAD(&res->tasks);
448 INIT_HLIST_NODE(&res->hlist);
449
450 /* Copy the set of subsystem state objects generated in
451 * find_existing_css_set() */
452 memcpy(res->subsys, template, sizeof(res->subsys));
453
454 write_lock(&css_set_lock);
455 /* Add reference counts and links from the new css_set. */
456 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
457 struct cgroup *cgrp = res->subsys[i]->cgroup;
458 struct cgroup_subsys *ss = subsys[i];
459 atomic_inc(&cgrp->count);
460 /*
461 * We want to add a link once per cgroup, so we
462 * only do it for the first subsystem in each
463 * hierarchy
464 */
465 if (ss->root->subsys_list.next == &ss->sibling)
466 link_css_set(&tmp_cg_links, res, cgrp);
467 }
468 if (list_empty(&rootnode.subsys_list))
469 link_css_set(&tmp_cg_links, res, dummytop);
470
471 BUG_ON(!list_empty(&tmp_cg_links));
472
473 css_set_count++;
474
475 /* Add this cgroup group to the hash table */
476 hhead = css_set_hash(res->subsys);
477 hlist_add_head(&res->hlist, hhead);
478
479 write_unlock(&css_set_lock);
480
481 return res;
482 }
483
484 /*
485 * There is one global cgroup mutex. We also require taking
486 * task_lock() when dereferencing a task's cgroup subsys pointers.
487 * See "The task_lock() exception", at the end of this comment.
488 *
489 * A task must hold cgroup_mutex to modify cgroups.
490 *
491 * Any task can increment and decrement the count field without lock.
492 * So in general, code holding cgroup_mutex can't rely on the count
493 * field not changing. However, if the count goes to zero, then only
494 * cgroup_attach_task() can increment it again. Because a count of zero
495 * means that no tasks are currently attached, therefore there is no
496 * way a task attached to that cgroup can fork (the other way to
497 * increment the count). So code holding cgroup_mutex can safely
498 * assume that if the count is zero, it will stay zero. Similarly, if
499 * a task holds cgroup_mutex on a cgroup with zero count, it
500 * knows that the cgroup won't be removed, as cgroup_rmdir()
501 * needs that mutex.
502 *
503 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
504 * (usually) take cgroup_mutex. These are the two most performance
505 * critical pieces of code here. The exception occurs on cgroup_exit(),
506 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
507 * is taken, and if the cgroup count is zero, a usermode call made
508 * to the release agent with the name of the cgroup (path relative to
509 * the root of cgroup file system) as the argument.
510 *
511 * A cgroup can only be deleted if both its 'count' of using tasks
512 * is zero, and its list of 'children' cgroups is empty. Since all
513 * tasks in the system use _some_ cgroup, and since there is always at
514 * least one task in the system (init, pid == 1), therefore, top_cgroup
515 * always has either children cgroups and/or using tasks. So we don't
516 * need a special hack to ensure that top_cgroup cannot be deleted.
517 *
518 * The task_lock() exception
519 *
520 * The need for this exception arises from the action of
521 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
522 * another. It does so using cgroup_mutex, however there are
523 * several performance critical places that need to reference
524 * task->cgroup without the expense of grabbing a system global
525 * mutex. Therefore except as noted below, when dereferencing or, as
526 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
527 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
528 * the task_struct routinely used for such matters.
529 *
530 * P.S. One more locking exception. RCU is used to guard the
531 * update of a tasks cgroup pointer by cgroup_attach_task()
532 */
533
534 /**
535 * cgroup_lock - lock out any changes to cgroup structures
536 *
537 */
538 void cgroup_lock(void)
539 {
540 mutex_lock(&cgroup_mutex);
541 }
542
543 /**
544 * cgroup_unlock - release lock on cgroup changes
545 *
546 * Undo the lock taken in a previous cgroup_lock() call.
547 */
548 void cgroup_unlock(void)
549 {
550 mutex_unlock(&cgroup_mutex);
551 }
552
553 /*
554 * A couple of forward declarations required, due to cyclic reference loop:
555 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
556 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
557 * -> cgroup_mkdir.
558 */
559
560 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
561 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
562 static int cgroup_populate_dir(struct cgroup *cgrp);
563 static struct inode_operations cgroup_dir_inode_operations;
564 static struct file_operations proc_cgroupstats_operations;
565
566 static struct backing_dev_info cgroup_backing_dev_info = {
567 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
568 };
569
570 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
571 {
572 struct inode *inode = new_inode(sb);
573
574 if (inode) {
575 inode->i_mode = mode;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
579 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
580 }
581 return inode;
582 }
583
584 /*
585 * Call subsys's pre_destroy handler.
586 * This is called before css refcnt check.
587 */
588 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
589 {
590 struct cgroup_subsys *ss;
591 for_each_subsys(cgrp->root, ss)
592 if (ss->pre_destroy)
593 ss->pre_destroy(ss, cgrp);
594 return;
595 }
596
597 static void free_cgroup_rcu(struct rcu_head *obj)
598 {
599 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
600
601 kfree(cgrp);
602 }
603
604 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
605 {
606 /* is dentry a directory ? if so, kfree() associated cgroup */
607 if (S_ISDIR(inode->i_mode)) {
608 struct cgroup *cgrp = dentry->d_fsdata;
609 struct cgroup_subsys *ss;
610 BUG_ON(!(cgroup_is_removed(cgrp)));
611 /* It's possible for external users to be holding css
612 * reference counts on a cgroup; css_put() needs to
613 * be able to access the cgroup after decrementing
614 * the reference count in order to know if it needs to
615 * queue the cgroup to be handled by the release
616 * agent */
617 synchronize_rcu();
618
619 mutex_lock(&cgroup_mutex);
620 /*
621 * Release the subsystem state objects.
622 */
623 for_each_subsys(cgrp->root, ss)
624 ss->destroy(ss, cgrp);
625
626 cgrp->root->number_of_cgroups--;
627 mutex_unlock(&cgroup_mutex);
628
629 /*
630 * Drop the active superblock reference that we took when we
631 * created the cgroup
632 */
633 deactivate_super(cgrp->root->sb);
634
635 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
636 }
637 iput(inode);
638 }
639
640 static void remove_dir(struct dentry *d)
641 {
642 struct dentry *parent = dget(d->d_parent);
643
644 d_delete(d);
645 simple_rmdir(parent->d_inode, d);
646 dput(parent);
647 }
648
649 static void cgroup_clear_directory(struct dentry *dentry)
650 {
651 struct list_head *node;
652
653 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
654 spin_lock(&dcache_lock);
655 node = dentry->d_subdirs.next;
656 while (node != &dentry->d_subdirs) {
657 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
658 list_del_init(node);
659 if (d->d_inode) {
660 /* This should never be called on a cgroup
661 * directory with child cgroups */
662 BUG_ON(d->d_inode->i_mode & S_IFDIR);
663 d = dget_locked(d);
664 spin_unlock(&dcache_lock);
665 d_delete(d);
666 simple_unlink(dentry->d_inode, d);
667 dput(d);
668 spin_lock(&dcache_lock);
669 }
670 node = dentry->d_subdirs.next;
671 }
672 spin_unlock(&dcache_lock);
673 }
674
675 /*
676 * NOTE : the dentry must have been dget()'ed
677 */
678 static void cgroup_d_remove_dir(struct dentry *dentry)
679 {
680 cgroup_clear_directory(dentry);
681
682 spin_lock(&dcache_lock);
683 list_del_init(&dentry->d_u.d_child);
684 spin_unlock(&dcache_lock);
685 remove_dir(dentry);
686 }
687
688 static int rebind_subsystems(struct cgroupfs_root *root,
689 unsigned long final_bits)
690 {
691 unsigned long added_bits, removed_bits;
692 struct cgroup *cgrp = &root->top_cgroup;
693 int i;
694
695 removed_bits = root->actual_subsys_bits & ~final_bits;
696 added_bits = final_bits & ~root->actual_subsys_bits;
697 /* Check that any added subsystems are currently free */
698 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
699 unsigned long bit = 1UL << i;
700 struct cgroup_subsys *ss = subsys[i];
701 if (!(bit & added_bits))
702 continue;
703 if (ss->root != &rootnode) {
704 /* Subsystem isn't free */
705 return -EBUSY;
706 }
707 }
708
709 /* Currently we don't handle adding/removing subsystems when
710 * any child cgroups exist. This is theoretically supportable
711 * but involves complex error handling, so it's being left until
712 * later */
713 if (root->number_of_cgroups > 1)
714 return -EBUSY;
715
716 /* Process each subsystem */
717 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
718 struct cgroup_subsys *ss = subsys[i];
719 unsigned long bit = 1UL << i;
720 if (bit & added_bits) {
721 /* We're binding this subsystem to this hierarchy */
722 BUG_ON(cgrp->subsys[i]);
723 BUG_ON(!dummytop->subsys[i]);
724 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
725 mutex_lock(&ss->hierarchy_mutex);
726 cgrp->subsys[i] = dummytop->subsys[i];
727 cgrp->subsys[i]->cgroup = cgrp;
728 list_move(&ss->sibling, &root->subsys_list);
729 ss->root = root;
730 if (ss->bind)
731 ss->bind(ss, cgrp);
732 mutex_unlock(&ss->hierarchy_mutex);
733 } else if (bit & removed_bits) {
734 /* We're removing this subsystem */
735 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
736 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
737 mutex_lock(&ss->hierarchy_mutex);
738 if (ss->bind)
739 ss->bind(ss, dummytop);
740 dummytop->subsys[i]->cgroup = dummytop;
741 cgrp->subsys[i] = NULL;
742 subsys[i]->root = &rootnode;
743 list_move(&ss->sibling, &rootnode.subsys_list);
744 mutex_unlock(&ss->hierarchy_mutex);
745 } else if (bit & final_bits) {
746 /* Subsystem state should already exist */
747 BUG_ON(!cgrp->subsys[i]);
748 } else {
749 /* Subsystem state shouldn't exist */
750 BUG_ON(cgrp->subsys[i]);
751 }
752 }
753 root->subsys_bits = root->actual_subsys_bits = final_bits;
754 synchronize_rcu();
755
756 return 0;
757 }
758
759 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
760 {
761 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
762 struct cgroup_subsys *ss;
763
764 mutex_lock(&cgroup_mutex);
765 for_each_subsys(root, ss)
766 seq_printf(seq, ",%s", ss->name);
767 if (test_bit(ROOT_NOPREFIX, &root->flags))
768 seq_puts(seq, ",noprefix");
769 if (strlen(root->release_agent_path))
770 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
771 mutex_unlock(&cgroup_mutex);
772 return 0;
773 }
774
775 struct cgroup_sb_opts {
776 unsigned long subsys_bits;
777 unsigned long flags;
778 char *release_agent;
779 };
780
781 /* Convert a hierarchy specifier into a bitmask of subsystems and
782 * flags. */
783 static int parse_cgroupfs_options(char *data,
784 struct cgroup_sb_opts *opts)
785 {
786 char *token, *o = data ?: "all";
787
788 opts->subsys_bits = 0;
789 opts->flags = 0;
790 opts->release_agent = NULL;
791
792 while ((token = strsep(&o, ",")) != NULL) {
793 if (!*token)
794 return -EINVAL;
795 if (!strcmp(token, "all")) {
796 /* Add all non-disabled subsystems */
797 int i;
798 opts->subsys_bits = 0;
799 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
800 struct cgroup_subsys *ss = subsys[i];
801 if (!ss->disabled)
802 opts->subsys_bits |= 1ul << i;
803 }
804 } else if (!strcmp(token, "noprefix")) {
805 set_bit(ROOT_NOPREFIX, &opts->flags);
806 } else if (!strncmp(token, "release_agent=", 14)) {
807 /* Specifying two release agents is forbidden */
808 if (opts->release_agent)
809 return -EINVAL;
810 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
811 if (!opts->release_agent)
812 return -ENOMEM;
813 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
814 opts->release_agent[PATH_MAX - 1] = 0;
815 } else {
816 struct cgroup_subsys *ss;
817 int i;
818 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
819 ss = subsys[i];
820 if (!strcmp(token, ss->name)) {
821 if (!ss->disabled)
822 set_bit(i, &opts->subsys_bits);
823 break;
824 }
825 }
826 if (i == CGROUP_SUBSYS_COUNT)
827 return -ENOENT;
828 }
829 }
830
831 /* We can't have an empty hierarchy */
832 if (!opts->subsys_bits)
833 return -EINVAL;
834
835 return 0;
836 }
837
838 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
839 {
840 int ret = 0;
841 struct cgroupfs_root *root = sb->s_fs_info;
842 struct cgroup *cgrp = &root->top_cgroup;
843 struct cgroup_sb_opts opts;
844
845 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
846 mutex_lock(&cgroup_mutex);
847
848 /* See what subsystems are wanted */
849 ret = parse_cgroupfs_options(data, &opts);
850 if (ret)
851 goto out_unlock;
852
853 /* Don't allow flags to change at remount */
854 if (opts.flags != root->flags) {
855 ret = -EINVAL;
856 goto out_unlock;
857 }
858
859 ret = rebind_subsystems(root, opts.subsys_bits);
860
861 /* (re)populate subsystem files */
862 if (!ret)
863 cgroup_populate_dir(cgrp);
864
865 if (opts.release_agent)
866 strcpy(root->release_agent_path, opts.release_agent);
867 out_unlock:
868 if (opts.release_agent)
869 kfree(opts.release_agent);
870 mutex_unlock(&cgroup_mutex);
871 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
872 return ret;
873 }
874
875 static struct super_operations cgroup_ops = {
876 .statfs = simple_statfs,
877 .drop_inode = generic_delete_inode,
878 .show_options = cgroup_show_options,
879 .remount_fs = cgroup_remount,
880 };
881
882 static void init_cgroup_housekeeping(struct cgroup *cgrp)
883 {
884 INIT_LIST_HEAD(&cgrp->sibling);
885 INIT_LIST_HEAD(&cgrp->children);
886 INIT_LIST_HEAD(&cgrp->css_sets);
887 INIT_LIST_HEAD(&cgrp->release_list);
888 init_rwsem(&cgrp->pids_mutex);
889 }
890 static void init_cgroup_root(struct cgroupfs_root *root)
891 {
892 struct cgroup *cgrp = &root->top_cgroup;
893 INIT_LIST_HEAD(&root->subsys_list);
894 INIT_LIST_HEAD(&root->root_list);
895 root->number_of_cgroups = 1;
896 cgrp->root = root;
897 cgrp->top_cgroup = cgrp;
898 init_cgroup_housekeeping(cgrp);
899 }
900
901 static int cgroup_test_super(struct super_block *sb, void *data)
902 {
903 struct cgroupfs_root *new = data;
904 struct cgroupfs_root *root = sb->s_fs_info;
905
906 /* First check subsystems */
907 if (new->subsys_bits != root->subsys_bits)
908 return 0;
909
910 /* Next check flags */
911 if (new->flags != root->flags)
912 return 0;
913
914 return 1;
915 }
916
917 static int cgroup_set_super(struct super_block *sb, void *data)
918 {
919 int ret;
920 struct cgroupfs_root *root = data;
921
922 ret = set_anon_super(sb, NULL);
923 if (ret)
924 return ret;
925
926 sb->s_fs_info = root;
927 root->sb = sb;
928
929 sb->s_blocksize = PAGE_CACHE_SIZE;
930 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
931 sb->s_magic = CGROUP_SUPER_MAGIC;
932 sb->s_op = &cgroup_ops;
933
934 return 0;
935 }
936
937 static int cgroup_get_rootdir(struct super_block *sb)
938 {
939 struct inode *inode =
940 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
941 struct dentry *dentry;
942
943 if (!inode)
944 return -ENOMEM;
945
946 inode->i_fop = &simple_dir_operations;
947 inode->i_op = &cgroup_dir_inode_operations;
948 /* directories start off with i_nlink == 2 (for "." entry) */
949 inc_nlink(inode);
950 dentry = d_alloc_root(inode);
951 if (!dentry) {
952 iput(inode);
953 return -ENOMEM;
954 }
955 sb->s_root = dentry;
956 return 0;
957 }
958
959 static int cgroup_get_sb(struct file_system_type *fs_type,
960 int flags, const char *unused_dev_name,
961 void *data, struct vfsmount *mnt)
962 {
963 struct cgroup_sb_opts opts;
964 int ret = 0;
965 struct super_block *sb;
966 struct cgroupfs_root *root;
967 struct list_head tmp_cg_links;
968
969 /* First find the desired set of subsystems */
970 ret = parse_cgroupfs_options(data, &opts);
971 if (ret) {
972 if (opts.release_agent)
973 kfree(opts.release_agent);
974 return ret;
975 }
976
977 root = kzalloc(sizeof(*root), GFP_KERNEL);
978 if (!root) {
979 if (opts.release_agent)
980 kfree(opts.release_agent);
981 return -ENOMEM;
982 }
983
984 init_cgroup_root(root);
985 root->subsys_bits = opts.subsys_bits;
986 root->flags = opts.flags;
987 if (opts.release_agent) {
988 strcpy(root->release_agent_path, opts.release_agent);
989 kfree(opts.release_agent);
990 }
991
992 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
993
994 if (IS_ERR(sb)) {
995 kfree(root);
996 return PTR_ERR(sb);
997 }
998
999 if (sb->s_fs_info != root) {
1000 /* Reusing an existing superblock */
1001 BUG_ON(sb->s_root == NULL);
1002 kfree(root);
1003 root = NULL;
1004 } else {
1005 /* New superblock */
1006 struct cgroup *root_cgrp = &root->top_cgroup;
1007 struct inode *inode;
1008 int i;
1009
1010 BUG_ON(sb->s_root != NULL);
1011
1012 ret = cgroup_get_rootdir(sb);
1013 if (ret)
1014 goto drop_new_super;
1015 inode = sb->s_root->d_inode;
1016
1017 mutex_lock(&inode->i_mutex);
1018 mutex_lock(&cgroup_mutex);
1019
1020 /*
1021 * We're accessing css_set_count without locking
1022 * css_set_lock here, but that's OK - it can only be
1023 * increased by someone holding cgroup_lock, and
1024 * that's us. The worst that can happen is that we
1025 * have some link structures left over
1026 */
1027 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1028 if (ret) {
1029 mutex_unlock(&cgroup_mutex);
1030 mutex_unlock(&inode->i_mutex);
1031 goto drop_new_super;
1032 }
1033
1034 ret = rebind_subsystems(root, root->subsys_bits);
1035 if (ret == -EBUSY) {
1036 mutex_unlock(&cgroup_mutex);
1037 mutex_unlock(&inode->i_mutex);
1038 goto free_cg_links;
1039 }
1040
1041 /* EBUSY should be the only error here */
1042 BUG_ON(ret);
1043
1044 list_add(&root->root_list, &roots);
1045 root_count++;
1046
1047 sb->s_root->d_fsdata = root_cgrp;
1048 root->top_cgroup.dentry = sb->s_root;
1049
1050 /* Link the top cgroup in this hierarchy into all
1051 * the css_set objects */
1052 write_lock(&css_set_lock);
1053 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1054 struct hlist_head *hhead = &css_set_table[i];
1055 struct hlist_node *node;
1056 struct css_set *cg;
1057
1058 hlist_for_each_entry(cg, node, hhead, hlist)
1059 link_css_set(&tmp_cg_links, cg, root_cgrp);
1060 }
1061 write_unlock(&css_set_lock);
1062
1063 free_cg_links(&tmp_cg_links);
1064
1065 BUG_ON(!list_empty(&root_cgrp->sibling));
1066 BUG_ON(!list_empty(&root_cgrp->children));
1067 BUG_ON(root->number_of_cgroups != 1);
1068
1069 cgroup_populate_dir(root_cgrp);
1070 mutex_unlock(&inode->i_mutex);
1071 mutex_unlock(&cgroup_mutex);
1072 }
1073
1074 simple_set_mnt(mnt, sb);
1075 return 0;
1076
1077 free_cg_links:
1078 free_cg_links(&tmp_cg_links);
1079 drop_new_super:
1080 up_write(&sb->s_umount);
1081 deactivate_super(sb);
1082 return ret;
1083 }
1084
1085 static void cgroup_kill_sb(struct super_block *sb) {
1086 struct cgroupfs_root *root = sb->s_fs_info;
1087 struct cgroup *cgrp = &root->top_cgroup;
1088 int ret;
1089 struct cg_cgroup_link *link;
1090 struct cg_cgroup_link *saved_link;
1091
1092 BUG_ON(!root);
1093
1094 BUG_ON(root->number_of_cgroups != 1);
1095 BUG_ON(!list_empty(&cgrp->children));
1096 BUG_ON(!list_empty(&cgrp->sibling));
1097
1098 mutex_lock(&cgroup_mutex);
1099
1100 /* Rebind all subsystems back to the default hierarchy */
1101 ret = rebind_subsystems(root, 0);
1102 /* Shouldn't be able to fail ... */
1103 BUG_ON(ret);
1104
1105 /*
1106 * Release all the links from css_sets to this hierarchy's
1107 * root cgroup
1108 */
1109 write_lock(&css_set_lock);
1110
1111 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1112 cgrp_link_list) {
1113 list_del(&link->cg_link_list);
1114 list_del(&link->cgrp_link_list);
1115 kfree(link);
1116 }
1117 write_unlock(&css_set_lock);
1118
1119 if (!list_empty(&root->root_list)) {
1120 list_del(&root->root_list);
1121 root_count--;
1122 }
1123
1124 mutex_unlock(&cgroup_mutex);
1125
1126 kill_litter_super(sb);
1127 kfree(root);
1128 }
1129
1130 static struct file_system_type cgroup_fs_type = {
1131 .name = "cgroup",
1132 .get_sb = cgroup_get_sb,
1133 .kill_sb = cgroup_kill_sb,
1134 };
1135
1136 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1137 {
1138 return dentry->d_fsdata;
1139 }
1140
1141 static inline struct cftype *__d_cft(struct dentry *dentry)
1142 {
1143 return dentry->d_fsdata;
1144 }
1145
1146 /**
1147 * cgroup_path - generate the path of a cgroup
1148 * @cgrp: the cgroup in question
1149 * @buf: the buffer to write the path into
1150 * @buflen: the length of the buffer
1151 *
1152 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1153 * reference. Writes path of cgroup into buf. Returns 0 on success,
1154 * -errno on error.
1155 */
1156 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1157 {
1158 char *start;
1159 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1160
1161 if (!dentry || cgrp == dummytop) {
1162 /*
1163 * Inactive subsystems have no dentry for their root
1164 * cgroup
1165 */
1166 strcpy(buf, "/");
1167 return 0;
1168 }
1169
1170 start = buf + buflen;
1171
1172 *--start = '\0';
1173 for (;;) {
1174 int len = dentry->d_name.len;
1175 if ((start -= len) < buf)
1176 return -ENAMETOOLONG;
1177 memcpy(start, cgrp->dentry->d_name.name, len);
1178 cgrp = cgrp->parent;
1179 if (!cgrp)
1180 break;
1181 dentry = rcu_dereference(cgrp->dentry);
1182 if (!cgrp->parent)
1183 continue;
1184 if (--start < buf)
1185 return -ENAMETOOLONG;
1186 *start = '/';
1187 }
1188 memmove(buf, start, buf + buflen - start);
1189 return 0;
1190 }
1191
1192 /*
1193 * Return the first subsystem attached to a cgroup's hierarchy, and
1194 * its subsystem id.
1195 */
1196
1197 static void get_first_subsys(const struct cgroup *cgrp,
1198 struct cgroup_subsys_state **css, int *subsys_id)
1199 {
1200 const struct cgroupfs_root *root = cgrp->root;
1201 const struct cgroup_subsys *test_ss;
1202 BUG_ON(list_empty(&root->subsys_list));
1203 test_ss = list_entry(root->subsys_list.next,
1204 struct cgroup_subsys, sibling);
1205 if (css) {
1206 *css = cgrp->subsys[test_ss->subsys_id];
1207 BUG_ON(!*css);
1208 }
1209 if (subsys_id)
1210 *subsys_id = test_ss->subsys_id;
1211 }
1212
1213 /**
1214 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1215 * @cgrp: the cgroup the task is attaching to
1216 * @tsk: the task to be attached
1217 *
1218 * Call holding cgroup_mutex. May take task_lock of
1219 * the task 'tsk' during call.
1220 */
1221 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1222 {
1223 int retval = 0;
1224 struct cgroup_subsys *ss;
1225 struct cgroup *oldcgrp;
1226 struct css_set *cg;
1227 struct css_set *newcg;
1228 struct cgroupfs_root *root = cgrp->root;
1229 int subsys_id;
1230
1231 get_first_subsys(cgrp, NULL, &subsys_id);
1232
1233 /* Nothing to do if the task is already in that cgroup */
1234 oldcgrp = task_cgroup(tsk, subsys_id);
1235 if (cgrp == oldcgrp)
1236 return 0;
1237
1238 for_each_subsys(root, ss) {
1239 if (ss->can_attach) {
1240 retval = ss->can_attach(ss, cgrp, tsk);
1241 if (retval)
1242 return retval;
1243 }
1244 }
1245
1246 task_lock(tsk);
1247 cg = tsk->cgroups;
1248 get_css_set(cg);
1249 task_unlock(tsk);
1250 /*
1251 * Locate or allocate a new css_set for this task,
1252 * based on its final set of cgroups
1253 */
1254 newcg = find_css_set(cg, cgrp);
1255 put_css_set(cg);
1256 if (!newcg)
1257 return -ENOMEM;
1258
1259 task_lock(tsk);
1260 if (tsk->flags & PF_EXITING) {
1261 task_unlock(tsk);
1262 put_css_set(newcg);
1263 return -ESRCH;
1264 }
1265 rcu_assign_pointer(tsk->cgroups, newcg);
1266 task_unlock(tsk);
1267
1268 /* Update the css_set linked lists if we're using them */
1269 write_lock(&css_set_lock);
1270 if (!list_empty(&tsk->cg_list)) {
1271 list_del(&tsk->cg_list);
1272 list_add(&tsk->cg_list, &newcg->tasks);
1273 }
1274 write_unlock(&css_set_lock);
1275
1276 for_each_subsys(root, ss) {
1277 if (ss->attach)
1278 ss->attach(ss, cgrp, oldcgrp, tsk);
1279 }
1280 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1281 synchronize_rcu();
1282 put_css_set(cg);
1283 return 0;
1284 }
1285
1286 /*
1287 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1288 * held. May take task_lock of task
1289 */
1290 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1291 {
1292 struct task_struct *tsk;
1293 const struct cred *cred = current_cred(), *tcred;
1294 int ret;
1295
1296 if (pid) {
1297 rcu_read_lock();
1298 tsk = find_task_by_vpid(pid);
1299 if (!tsk || tsk->flags & PF_EXITING) {
1300 rcu_read_unlock();
1301 return -ESRCH;
1302 }
1303
1304 tcred = __task_cred(tsk);
1305 if (cred->euid &&
1306 cred->euid != tcred->uid &&
1307 cred->euid != tcred->suid) {
1308 rcu_read_unlock();
1309 return -EACCES;
1310 }
1311 get_task_struct(tsk);
1312 rcu_read_unlock();
1313 } else {
1314 tsk = current;
1315 get_task_struct(tsk);
1316 }
1317
1318 ret = cgroup_attach_task(cgrp, tsk);
1319 put_task_struct(tsk);
1320 return ret;
1321 }
1322
1323 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1324 {
1325 int ret;
1326 if (!cgroup_lock_live_group(cgrp))
1327 return -ENODEV;
1328 ret = attach_task_by_pid(cgrp, pid);
1329 cgroup_unlock();
1330 return ret;
1331 }
1332
1333 /* The various types of files and directories in a cgroup file system */
1334 enum cgroup_filetype {
1335 FILE_ROOT,
1336 FILE_DIR,
1337 FILE_TASKLIST,
1338 FILE_NOTIFY_ON_RELEASE,
1339 FILE_RELEASE_AGENT,
1340 };
1341
1342 /**
1343 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1344 * @cgrp: the cgroup to be checked for liveness
1345 *
1346 * On success, returns true; the lock should be later released with
1347 * cgroup_unlock(). On failure returns false with no lock held.
1348 */
1349 bool cgroup_lock_live_group(struct cgroup *cgrp)
1350 {
1351 mutex_lock(&cgroup_mutex);
1352 if (cgroup_is_removed(cgrp)) {
1353 mutex_unlock(&cgroup_mutex);
1354 return false;
1355 }
1356 return true;
1357 }
1358
1359 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1360 const char *buffer)
1361 {
1362 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1363 if (!cgroup_lock_live_group(cgrp))
1364 return -ENODEV;
1365 strcpy(cgrp->root->release_agent_path, buffer);
1366 cgroup_unlock();
1367 return 0;
1368 }
1369
1370 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1371 struct seq_file *seq)
1372 {
1373 if (!cgroup_lock_live_group(cgrp))
1374 return -ENODEV;
1375 seq_puts(seq, cgrp->root->release_agent_path);
1376 seq_putc(seq, '\n');
1377 cgroup_unlock();
1378 return 0;
1379 }
1380
1381 /* A buffer size big enough for numbers or short strings */
1382 #define CGROUP_LOCAL_BUFFER_SIZE 64
1383
1384 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1385 struct file *file,
1386 const char __user *userbuf,
1387 size_t nbytes, loff_t *unused_ppos)
1388 {
1389 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1390 int retval = 0;
1391 char *end;
1392
1393 if (!nbytes)
1394 return -EINVAL;
1395 if (nbytes >= sizeof(buffer))
1396 return -E2BIG;
1397 if (copy_from_user(buffer, userbuf, nbytes))
1398 return -EFAULT;
1399
1400 buffer[nbytes] = 0; /* nul-terminate */
1401 strstrip(buffer);
1402 if (cft->write_u64) {
1403 u64 val = simple_strtoull(buffer, &end, 0);
1404 if (*end)
1405 return -EINVAL;
1406 retval = cft->write_u64(cgrp, cft, val);
1407 } else {
1408 s64 val = simple_strtoll(buffer, &end, 0);
1409 if (*end)
1410 return -EINVAL;
1411 retval = cft->write_s64(cgrp, cft, val);
1412 }
1413 if (!retval)
1414 retval = nbytes;
1415 return retval;
1416 }
1417
1418 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1419 struct file *file,
1420 const char __user *userbuf,
1421 size_t nbytes, loff_t *unused_ppos)
1422 {
1423 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1424 int retval = 0;
1425 size_t max_bytes = cft->max_write_len;
1426 char *buffer = local_buffer;
1427
1428 if (!max_bytes)
1429 max_bytes = sizeof(local_buffer) - 1;
1430 if (nbytes >= max_bytes)
1431 return -E2BIG;
1432 /* Allocate a dynamic buffer if we need one */
1433 if (nbytes >= sizeof(local_buffer)) {
1434 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1435 if (buffer == NULL)
1436 return -ENOMEM;
1437 }
1438 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1439 retval = -EFAULT;
1440 goto out;
1441 }
1442
1443 buffer[nbytes] = 0; /* nul-terminate */
1444 strstrip(buffer);
1445 retval = cft->write_string(cgrp, cft, buffer);
1446 if (!retval)
1447 retval = nbytes;
1448 out:
1449 if (buffer != local_buffer)
1450 kfree(buffer);
1451 return retval;
1452 }
1453
1454 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1455 size_t nbytes, loff_t *ppos)
1456 {
1457 struct cftype *cft = __d_cft(file->f_dentry);
1458 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1459
1460 if (cgroup_is_removed(cgrp))
1461 return -ENODEV;
1462 if (cft->write)
1463 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1464 if (cft->write_u64 || cft->write_s64)
1465 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1466 if (cft->write_string)
1467 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1468 if (cft->trigger) {
1469 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1470 return ret ? ret : nbytes;
1471 }
1472 return -EINVAL;
1473 }
1474
1475 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1476 struct file *file,
1477 char __user *buf, size_t nbytes,
1478 loff_t *ppos)
1479 {
1480 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1481 u64 val = cft->read_u64(cgrp, cft);
1482 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1483
1484 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1485 }
1486
1487 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1488 struct file *file,
1489 char __user *buf, size_t nbytes,
1490 loff_t *ppos)
1491 {
1492 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1493 s64 val = cft->read_s64(cgrp, cft);
1494 int len = sprintf(tmp, "%lld\n", (long long) val);
1495
1496 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1497 }
1498
1499 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1500 size_t nbytes, loff_t *ppos)
1501 {
1502 struct cftype *cft = __d_cft(file->f_dentry);
1503 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1504
1505 if (cgroup_is_removed(cgrp))
1506 return -ENODEV;
1507
1508 if (cft->read)
1509 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1510 if (cft->read_u64)
1511 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1512 if (cft->read_s64)
1513 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1514 return -EINVAL;
1515 }
1516
1517 /*
1518 * seqfile ops/methods for returning structured data. Currently just
1519 * supports string->u64 maps, but can be extended in future.
1520 */
1521
1522 struct cgroup_seqfile_state {
1523 struct cftype *cft;
1524 struct cgroup *cgroup;
1525 };
1526
1527 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1528 {
1529 struct seq_file *sf = cb->state;
1530 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1531 }
1532
1533 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1534 {
1535 struct cgroup_seqfile_state *state = m->private;
1536 struct cftype *cft = state->cft;
1537 if (cft->read_map) {
1538 struct cgroup_map_cb cb = {
1539 .fill = cgroup_map_add,
1540 .state = m,
1541 };
1542 return cft->read_map(state->cgroup, cft, &cb);
1543 }
1544 return cft->read_seq_string(state->cgroup, cft, m);
1545 }
1546
1547 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1548 {
1549 struct seq_file *seq = file->private_data;
1550 kfree(seq->private);
1551 return single_release(inode, file);
1552 }
1553
1554 static struct file_operations cgroup_seqfile_operations = {
1555 .read = seq_read,
1556 .write = cgroup_file_write,
1557 .llseek = seq_lseek,
1558 .release = cgroup_seqfile_release,
1559 };
1560
1561 static int cgroup_file_open(struct inode *inode, struct file *file)
1562 {
1563 int err;
1564 struct cftype *cft;
1565
1566 err = generic_file_open(inode, file);
1567 if (err)
1568 return err;
1569 cft = __d_cft(file->f_dentry);
1570
1571 if (cft->read_map || cft->read_seq_string) {
1572 struct cgroup_seqfile_state *state =
1573 kzalloc(sizeof(*state), GFP_USER);
1574 if (!state)
1575 return -ENOMEM;
1576 state->cft = cft;
1577 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1578 file->f_op = &cgroup_seqfile_operations;
1579 err = single_open(file, cgroup_seqfile_show, state);
1580 if (err < 0)
1581 kfree(state);
1582 } else if (cft->open)
1583 err = cft->open(inode, file);
1584 else
1585 err = 0;
1586
1587 return err;
1588 }
1589
1590 static int cgroup_file_release(struct inode *inode, struct file *file)
1591 {
1592 struct cftype *cft = __d_cft(file->f_dentry);
1593 if (cft->release)
1594 return cft->release(inode, file);
1595 return 0;
1596 }
1597
1598 /*
1599 * cgroup_rename - Only allow simple rename of directories in place.
1600 */
1601 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1602 struct inode *new_dir, struct dentry *new_dentry)
1603 {
1604 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1605 return -ENOTDIR;
1606 if (new_dentry->d_inode)
1607 return -EEXIST;
1608 if (old_dir != new_dir)
1609 return -EIO;
1610 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1611 }
1612
1613 static struct file_operations cgroup_file_operations = {
1614 .read = cgroup_file_read,
1615 .write = cgroup_file_write,
1616 .llseek = generic_file_llseek,
1617 .open = cgroup_file_open,
1618 .release = cgroup_file_release,
1619 };
1620
1621 static struct inode_operations cgroup_dir_inode_operations = {
1622 .lookup = simple_lookup,
1623 .mkdir = cgroup_mkdir,
1624 .rmdir = cgroup_rmdir,
1625 .rename = cgroup_rename,
1626 };
1627
1628 static int cgroup_create_file(struct dentry *dentry, int mode,
1629 struct super_block *sb)
1630 {
1631 static const struct dentry_operations cgroup_dops = {
1632 .d_iput = cgroup_diput,
1633 };
1634
1635 struct inode *inode;
1636
1637 if (!dentry)
1638 return -ENOENT;
1639 if (dentry->d_inode)
1640 return -EEXIST;
1641
1642 inode = cgroup_new_inode(mode, sb);
1643 if (!inode)
1644 return -ENOMEM;
1645
1646 if (S_ISDIR(mode)) {
1647 inode->i_op = &cgroup_dir_inode_operations;
1648 inode->i_fop = &simple_dir_operations;
1649
1650 /* start off with i_nlink == 2 (for "." entry) */
1651 inc_nlink(inode);
1652
1653 /* start with the directory inode held, so that we can
1654 * populate it without racing with another mkdir */
1655 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1656 } else if (S_ISREG(mode)) {
1657 inode->i_size = 0;
1658 inode->i_fop = &cgroup_file_operations;
1659 }
1660 dentry->d_op = &cgroup_dops;
1661 d_instantiate(dentry, inode);
1662 dget(dentry); /* Extra count - pin the dentry in core */
1663 return 0;
1664 }
1665
1666 /*
1667 * cgroup_create_dir - create a directory for an object.
1668 * @cgrp: the cgroup we create the directory for. It must have a valid
1669 * ->parent field. And we are going to fill its ->dentry field.
1670 * @dentry: dentry of the new cgroup
1671 * @mode: mode to set on new directory.
1672 */
1673 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1674 int mode)
1675 {
1676 struct dentry *parent;
1677 int error = 0;
1678
1679 parent = cgrp->parent->dentry;
1680 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1681 if (!error) {
1682 dentry->d_fsdata = cgrp;
1683 inc_nlink(parent->d_inode);
1684 rcu_assign_pointer(cgrp->dentry, dentry);
1685 dget(dentry);
1686 }
1687 dput(dentry);
1688
1689 return error;
1690 }
1691
1692 int cgroup_add_file(struct cgroup *cgrp,
1693 struct cgroup_subsys *subsys,
1694 const struct cftype *cft)
1695 {
1696 struct dentry *dir = cgrp->dentry;
1697 struct dentry *dentry;
1698 int error;
1699
1700 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1701 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1702 strcpy(name, subsys->name);
1703 strcat(name, ".");
1704 }
1705 strcat(name, cft->name);
1706 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1707 dentry = lookup_one_len(name, dir, strlen(name));
1708 if (!IS_ERR(dentry)) {
1709 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1710 cgrp->root->sb);
1711 if (!error)
1712 dentry->d_fsdata = (void *)cft;
1713 dput(dentry);
1714 } else
1715 error = PTR_ERR(dentry);
1716 return error;
1717 }
1718
1719 int cgroup_add_files(struct cgroup *cgrp,
1720 struct cgroup_subsys *subsys,
1721 const struct cftype cft[],
1722 int count)
1723 {
1724 int i, err;
1725 for (i = 0; i < count; i++) {
1726 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1727 if (err)
1728 return err;
1729 }
1730 return 0;
1731 }
1732
1733 /**
1734 * cgroup_task_count - count the number of tasks in a cgroup.
1735 * @cgrp: the cgroup in question
1736 *
1737 * Return the number of tasks in the cgroup.
1738 */
1739 int cgroup_task_count(const struct cgroup *cgrp)
1740 {
1741 int count = 0;
1742 struct cg_cgroup_link *link;
1743
1744 read_lock(&css_set_lock);
1745 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1746 count += atomic_read(&link->cg->refcount);
1747 }
1748 read_unlock(&css_set_lock);
1749 return count;
1750 }
1751
1752 /*
1753 * Advance a list_head iterator. The iterator should be positioned at
1754 * the start of a css_set
1755 */
1756 static void cgroup_advance_iter(struct cgroup *cgrp,
1757 struct cgroup_iter *it)
1758 {
1759 struct list_head *l = it->cg_link;
1760 struct cg_cgroup_link *link;
1761 struct css_set *cg;
1762
1763 /* Advance to the next non-empty css_set */
1764 do {
1765 l = l->next;
1766 if (l == &cgrp->css_sets) {
1767 it->cg_link = NULL;
1768 return;
1769 }
1770 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1771 cg = link->cg;
1772 } while (list_empty(&cg->tasks));
1773 it->cg_link = l;
1774 it->task = cg->tasks.next;
1775 }
1776
1777 /*
1778 * To reduce the fork() overhead for systems that are not actually
1779 * using their cgroups capability, we don't maintain the lists running
1780 * through each css_set to its tasks until we see the list actually
1781 * used - in other words after the first call to cgroup_iter_start().
1782 *
1783 * The tasklist_lock is not held here, as do_each_thread() and
1784 * while_each_thread() are protected by RCU.
1785 */
1786 static void cgroup_enable_task_cg_lists(void)
1787 {
1788 struct task_struct *p, *g;
1789 write_lock(&css_set_lock);
1790 use_task_css_set_links = 1;
1791 do_each_thread(g, p) {
1792 task_lock(p);
1793 /*
1794 * We should check if the process is exiting, otherwise
1795 * it will race with cgroup_exit() in that the list
1796 * entry won't be deleted though the process has exited.
1797 */
1798 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1799 list_add(&p->cg_list, &p->cgroups->tasks);
1800 task_unlock(p);
1801 } while_each_thread(g, p);
1802 write_unlock(&css_set_lock);
1803 }
1804
1805 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1806 {
1807 /*
1808 * The first time anyone tries to iterate across a cgroup,
1809 * we need to enable the list linking each css_set to its
1810 * tasks, and fix up all existing tasks.
1811 */
1812 if (!use_task_css_set_links)
1813 cgroup_enable_task_cg_lists();
1814
1815 read_lock(&css_set_lock);
1816 it->cg_link = &cgrp->css_sets;
1817 cgroup_advance_iter(cgrp, it);
1818 }
1819
1820 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1821 struct cgroup_iter *it)
1822 {
1823 struct task_struct *res;
1824 struct list_head *l = it->task;
1825 struct cg_cgroup_link *link;
1826
1827 /* If the iterator cg is NULL, we have no tasks */
1828 if (!it->cg_link)
1829 return NULL;
1830 res = list_entry(l, struct task_struct, cg_list);
1831 /* Advance iterator to find next entry */
1832 l = l->next;
1833 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1834 if (l == &link->cg->tasks) {
1835 /* We reached the end of this task list - move on to
1836 * the next cg_cgroup_link */
1837 cgroup_advance_iter(cgrp, it);
1838 } else {
1839 it->task = l;
1840 }
1841 return res;
1842 }
1843
1844 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1845 {
1846 read_unlock(&css_set_lock);
1847 }
1848
1849 static inline int started_after_time(struct task_struct *t1,
1850 struct timespec *time,
1851 struct task_struct *t2)
1852 {
1853 int start_diff = timespec_compare(&t1->start_time, time);
1854 if (start_diff > 0) {
1855 return 1;
1856 } else if (start_diff < 0) {
1857 return 0;
1858 } else {
1859 /*
1860 * Arbitrarily, if two processes started at the same
1861 * time, we'll say that the lower pointer value
1862 * started first. Note that t2 may have exited by now
1863 * so this may not be a valid pointer any longer, but
1864 * that's fine - it still serves to distinguish
1865 * between two tasks started (effectively) simultaneously.
1866 */
1867 return t1 > t2;
1868 }
1869 }
1870
1871 /*
1872 * This function is a callback from heap_insert() and is used to order
1873 * the heap.
1874 * In this case we order the heap in descending task start time.
1875 */
1876 static inline int started_after(void *p1, void *p2)
1877 {
1878 struct task_struct *t1 = p1;
1879 struct task_struct *t2 = p2;
1880 return started_after_time(t1, &t2->start_time, t2);
1881 }
1882
1883 /**
1884 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1885 * @scan: struct cgroup_scanner containing arguments for the scan
1886 *
1887 * Arguments include pointers to callback functions test_task() and
1888 * process_task().
1889 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1890 * and if it returns true, call process_task() for it also.
1891 * The test_task pointer may be NULL, meaning always true (select all tasks).
1892 * Effectively duplicates cgroup_iter_{start,next,end}()
1893 * but does not lock css_set_lock for the call to process_task().
1894 * The struct cgroup_scanner may be embedded in any structure of the caller's
1895 * creation.
1896 * It is guaranteed that process_task() will act on every task that
1897 * is a member of the cgroup for the duration of this call. This
1898 * function may or may not call process_task() for tasks that exit
1899 * or move to a different cgroup during the call, or are forked or
1900 * move into the cgroup during the call.
1901 *
1902 * Note that test_task() may be called with locks held, and may in some
1903 * situations be called multiple times for the same task, so it should
1904 * be cheap.
1905 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1906 * pre-allocated and will be used for heap operations (and its "gt" member will
1907 * be overwritten), else a temporary heap will be used (allocation of which
1908 * may cause this function to fail).
1909 */
1910 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1911 {
1912 int retval, i;
1913 struct cgroup_iter it;
1914 struct task_struct *p, *dropped;
1915 /* Never dereference latest_task, since it's not refcounted */
1916 struct task_struct *latest_task = NULL;
1917 struct ptr_heap tmp_heap;
1918 struct ptr_heap *heap;
1919 struct timespec latest_time = { 0, 0 };
1920
1921 if (scan->heap) {
1922 /* The caller supplied our heap and pre-allocated its memory */
1923 heap = scan->heap;
1924 heap->gt = &started_after;
1925 } else {
1926 /* We need to allocate our own heap memory */
1927 heap = &tmp_heap;
1928 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1929 if (retval)
1930 /* cannot allocate the heap */
1931 return retval;
1932 }
1933
1934 again:
1935 /*
1936 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1937 * to determine which are of interest, and using the scanner's
1938 * "process_task" callback to process any of them that need an update.
1939 * Since we don't want to hold any locks during the task updates,
1940 * gather tasks to be processed in a heap structure.
1941 * The heap is sorted by descending task start time.
1942 * If the statically-sized heap fills up, we overflow tasks that
1943 * started later, and in future iterations only consider tasks that
1944 * started after the latest task in the previous pass. This
1945 * guarantees forward progress and that we don't miss any tasks.
1946 */
1947 heap->size = 0;
1948 cgroup_iter_start(scan->cg, &it);
1949 while ((p = cgroup_iter_next(scan->cg, &it))) {
1950 /*
1951 * Only affect tasks that qualify per the caller's callback,
1952 * if he provided one
1953 */
1954 if (scan->test_task && !scan->test_task(p, scan))
1955 continue;
1956 /*
1957 * Only process tasks that started after the last task
1958 * we processed
1959 */
1960 if (!started_after_time(p, &latest_time, latest_task))
1961 continue;
1962 dropped = heap_insert(heap, p);
1963 if (dropped == NULL) {
1964 /*
1965 * The new task was inserted; the heap wasn't
1966 * previously full
1967 */
1968 get_task_struct(p);
1969 } else if (dropped != p) {
1970 /*
1971 * The new task was inserted, and pushed out a
1972 * different task
1973 */
1974 get_task_struct(p);
1975 put_task_struct(dropped);
1976 }
1977 /*
1978 * Else the new task was newer than anything already in
1979 * the heap and wasn't inserted
1980 */
1981 }
1982 cgroup_iter_end(scan->cg, &it);
1983
1984 if (heap->size) {
1985 for (i = 0; i < heap->size; i++) {
1986 struct task_struct *q = heap->ptrs[i];
1987 if (i == 0) {
1988 latest_time = q->start_time;
1989 latest_task = q;
1990 }
1991 /* Process the task per the caller's callback */
1992 scan->process_task(q, scan);
1993 put_task_struct(q);
1994 }
1995 /*
1996 * If we had to process any tasks at all, scan again
1997 * in case some of them were in the middle of forking
1998 * children that didn't get processed.
1999 * Not the most efficient way to do it, but it avoids
2000 * having to take callback_mutex in the fork path
2001 */
2002 goto again;
2003 }
2004 if (heap == &tmp_heap)
2005 heap_free(&tmp_heap);
2006 return 0;
2007 }
2008
2009 /*
2010 * Stuff for reading the 'tasks' file.
2011 *
2012 * Reading this file can return large amounts of data if a cgroup has
2013 * *lots* of attached tasks. So it may need several calls to read(),
2014 * but we cannot guarantee that the information we produce is correct
2015 * unless we produce it entirely atomically.
2016 *
2017 */
2018
2019 /*
2020 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2021 * 'cgrp'. Return actual number of pids loaded. No need to
2022 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2023 * read section, so the css_set can't go away, and is
2024 * immutable after creation.
2025 */
2026 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2027 {
2028 int n = 0, pid;
2029 struct cgroup_iter it;
2030 struct task_struct *tsk;
2031 cgroup_iter_start(cgrp, &it);
2032 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2033 if (unlikely(n == npids))
2034 break;
2035 pid = task_pid_vnr(tsk);
2036 if (pid > 0)
2037 pidarray[n++] = pid;
2038 }
2039 cgroup_iter_end(cgrp, &it);
2040 return n;
2041 }
2042
2043 /**
2044 * cgroupstats_build - build and fill cgroupstats
2045 * @stats: cgroupstats to fill information into
2046 * @dentry: A dentry entry belonging to the cgroup for which stats have
2047 * been requested.
2048 *
2049 * Build and fill cgroupstats so that taskstats can export it to user
2050 * space.
2051 */
2052 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2053 {
2054 int ret = -EINVAL;
2055 struct cgroup *cgrp;
2056 struct cgroup_iter it;
2057 struct task_struct *tsk;
2058
2059 /*
2060 * Validate dentry by checking the superblock operations,
2061 * and make sure it's a directory.
2062 */
2063 if (dentry->d_sb->s_op != &cgroup_ops ||
2064 !S_ISDIR(dentry->d_inode->i_mode))
2065 goto err;
2066
2067 ret = 0;
2068 cgrp = dentry->d_fsdata;
2069
2070 cgroup_iter_start(cgrp, &it);
2071 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2072 switch (tsk->state) {
2073 case TASK_RUNNING:
2074 stats->nr_running++;
2075 break;
2076 case TASK_INTERRUPTIBLE:
2077 stats->nr_sleeping++;
2078 break;
2079 case TASK_UNINTERRUPTIBLE:
2080 stats->nr_uninterruptible++;
2081 break;
2082 case TASK_STOPPED:
2083 stats->nr_stopped++;
2084 break;
2085 default:
2086 if (delayacct_is_task_waiting_on_io(tsk))
2087 stats->nr_io_wait++;
2088 break;
2089 }
2090 }
2091 cgroup_iter_end(cgrp, &it);
2092
2093 err:
2094 return ret;
2095 }
2096
2097 static int cmppid(const void *a, const void *b)
2098 {
2099 return *(pid_t *)a - *(pid_t *)b;
2100 }
2101
2102
2103 /*
2104 * seq_file methods for the "tasks" file. The seq_file position is the
2105 * next pid to display; the seq_file iterator is a pointer to the pid
2106 * in the cgroup->tasks_pids array.
2107 */
2108
2109 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2110 {
2111 /*
2112 * Initially we receive a position value that corresponds to
2113 * one more than the last pid shown (or 0 on the first call or
2114 * after a seek to the start). Use a binary-search to find the
2115 * next pid to display, if any
2116 */
2117 struct cgroup *cgrp = s->private;
2118 int index = 0, pid = *pos;
2119 int *iter;
2120
2121 down_read(&cgrp->pids_mutex);
2122 if (pid) {
2123 int end = cgrp->pids_length;
2124
2125 while (index < end) {
2126 int mid = (index + end) / 2;
2127 if (cgrp->tasks_pids[mid] == pid) {
2128 index = mid;
2129 break;
2130 } else if (cgrp->tasks_pids[mid] <= pid)
2131 index = mid + 1;
2132 else
2133 end = mid;
2134 }
2135 }
2136 /* If we're off the end of the array, we're done */
2137 if (index >= cgrp->pids_length)
2138 return NULL;
2139 /* Update the abstract position to be the actual pid that we found */
2140 iter = cgrp->tasks_pids + index;
2141 *pos = *iter;
2142 return iter;
2143 }
2144
2145 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2146 {
2147 struct cgroup *cgrp = s->private;
2148 up_read(&cgrp->pids_mutex);
2149 }
2150
2151 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2152 {
2153 struct cgroup *cgrp = s->private;
2154 int *p = v;
2155 int *end = cgrp->tasks_pids + cgrp->pids_length;
2156
2157 /*
2158 * Advance to the next pid in the array. If this goes off the
2159 * end, we're done
2160 */
2161 p++;
2162 if (p >= end) {
2163 return NULL;
2164 } else {
2165 *pos = *p;
2166 return p;
2167 }
2168 }
2169
2170 static int cgroup_tasks_show(struct seq_file *s, void *v)
2171 {
2172 return seq_printf(s, "%d\n", *(int *)v);
2173 }
2174
2175 static struct seq_operations cgroup_tasks_seq_operations = {
2176 .start = cgroup_tasks_start,
2177 .stop = cgroup_tasks_stop,
2178 .next = cgroup_tasks_next,
2179 .show = cgroup_tasks_show,
2180 };
2181
2182 static void release_cgroup_pid_array(struct cgroup *cgrp)
2183 {
2184 down_write(&cgrp->pids_mutex);
2185 BUG_ON(!cgrp->pids_use_count);
2186 if (!--cgrp->pids_use_count) {
2187 kfree(cgrp->tasks_pids);
2188 cgrp->tasks_pids = NULL;
2189 cgrp->pids_length = 0;
2190 }
2191 up_write(&cgrp->pids_mutex);
2192 }
2193
2194 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2195 {
2196 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2197
2198 if (!(file->f_mode & FMODE_READ))
2199 return 0;
2200
2201 release_cgroup_pid_array(cgrp);
2202 return seq_release(inode, file);
2203 }
2204
2205 static struct file_operations cgroup_tasks_operations = {
2206 .read = seq_read,
2207 .llseek = seq_lseek,
2208 .write = cgroup_file_write,
2209 .release = cgroup_tasks_release,
2210 };
2211
2212 /*
2213 * Handle an open on 'tasks' file. Prepare an array containing the
2214 * process id's of tasks currently attached to the cgroup being opened.
2215 */
2216
2217 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2218 {
2219 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2220 pid_t *pidarray;
2221 int npids;
2222 int retval;
2223
2224 /* Nothing to do for write-only files */
2225 if (!(file->f_mode & FMODE_READ))
2226 return 0;
2227
2228 /*
2229 * If cgroup gets more users after we read count, we won't have
2230 * enough space - tough. This race is indistinguishable to the
2231 * caller from the case that the additional cgroup users didn't
2232 * show up until sometime later on.
2233 */
2234 npids = cgroup_task_count(cgrp);
2235 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2236 if (!pidarray)
2237 return -ENOMEM;
2238 npids = pid_array_load(pidarray, npids, cgrp);
2239 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2240
2241 /*
2242 * Store the array in the cgroup, freeing the old
2243 * array if necessary
2244 */
2245 down_write(&cgrp->pids_mutex);
2246 kfree(cgrp->tasks_pids);
2247 cgrp->tasks_pids = pidarray;
2248 cgrp->pids_length = npids;
2249 cgrp->pids_use_count++;
2250 up_write(&cgrp->pids_mutex);
2251
2252 file->f_op = &cgroup_tasks_operations;
2253
2254 retval = seq_open(file, &cgroup_tasks_seq_operations);
2255 if (retval) {
2256 release_cgroup_pid_array(cgrp);
2257 return retval;
2258 }
2259 ((struct seq_file *)file->private_data)->private = cgrp;
2260 return 0;
2261 }
2262
2263 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2264 struct cftype *cft)
2265 {
2266 return notify_on_release(cgrp);
2267 }
2268
2269 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2270 struct cftype *cft,
2271 u64 val)
2272 {
2273 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2274 if (val)
2275 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2276 else
2277 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2278 return 0;
2279 }
2280
2281 /*
2282 * for the common functions, 'private' gives the type of file
2283 */
2284 static struct cftype files[] = {
2285 {
2286 .name = "tasks",
2287 .open = cgroup_tasks_open,
2288 .write_u64 = cgroup_tasks_write,
2289 .release = cgroup_tasks_release,
2290 .private = FILE_TASKLIST,
2291 },
2292
2293 {
2294 .name = "notify_on_release",
2295 .read_u64 = cgroup_read_notify_on_release,
2296 .write_u64 = cgroup_write_notify_on_release,
2297 .private = FILE_NOTIFY_ON_RELEASE,
2298 },
2299 };
2300
2301 static struct cftype cft_release_agent = {
2302 .name = "release_agent",
2303 .read_seq_string = cgroup_release_agent_show,
2304 .write_string = cgroup_release_agent_write,
2305 .max_write_len = PATH_MAX,
2306 .private = FILE_RELEASE_AGENT,
2307 };
2308
2309 static int cgroup_populate_dir(struct cgroup *cgrp)
2310 {
2311 int err;
2312 struct cgroup_subsys *ss;
2313
2314 /* First clear out any existing files */
2315 cgroup_clear_directory(cgrp->dentry);
2316
2317 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2318 if (err < 0)
2319 return err;
2320
2321 if (cgrp == cgrp->top_cgroup) {
2322 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2323 return err;
2324 }
2325
2326 for_each_subsys(cgrp->root, ss) {
2327 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2328 return err;
2329 }
2330
2331 return 0;
2332 }
2333
2334 static void init_cgroup_css(struct cgroup_subsys_state *css,
2335 struct cgroup_subsys *ss,
2336 struct cgroup *cgrp)
2337 {
2338 css->cgroup = cgrp;
2339 atomic_set(&css->refcnt, 1);
2340 css->flags = 0;
2341 if (cgrp == dummytop)
2342 set_bit(CSS_ROOT, &css->flags);
2343 BUG_ON(cgrp->subsys[ss->subsys_id]);
2344 cgrp->subsys[ss->subsys_id] = css;
2345 }
2346
2347 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2348 {
2349 /* We need to take each hierarchy_mutex in a consistent order */
2350 int i;
2351
2352 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2353 struct cgroup_subsys *ss = subsys[i];
2354 if (ss->root == root)
2355 mutex_lock(&ss->hierarchy_mutex);
2356 }
2357 }
2358
2359 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2360 {
2361 int i;
2362
2363 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2364 struct cgroup_subsys *ss = subsys[i];
2365 if (ss->root == root)
2366 mutex_unlock(&ss->hierarchy_mutex);
2367 }
2368 }
2369
2370 /*
2371 * cgroup_create - create a cgroup
2372 * @parent: cgroup that will be parent of the new cgroup
2373 * @dentry: dentry of the new cgroup
2374 * @mode: mode to set on new inode
2375 *
2376 * Must be called with the mutex on the parent inode held
2377 */
2378 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2379 int mode)
2380 {
2381 struct cgroup *cgrp;
2382 struct cgroupfs_root *root = parent->root;
2383 int err = 0;
2384 struct cgroup_subsys *ss;
2385 struct super_block *sb = root->sb;
2386
2387 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2388 if (!cgrp)
2389 return -ENOMEM;
2390
2391 /* Grab a reference on the superblock so the hierarchy doesn't
2392 * get deleted on unmount if there are child cgroups. This
2393 * can be done outside cgroup_mutex, since the sb can't
2394 * disappear while someone has an open control file on the
2395 * fs */
2396 atomic_inc(&sb->s_active);
2397
2398 mutex_lock(&cgroup_mutex);
2399
2400 init_cgroup_housekeeping(cgrp);
2401
2402 cgrp->parent = parent;
2403 cgrp->root = parent->root;
2404 cgrp->top_cgroup = parent->top_cgroup;
2405
2406 if (notify_on_release(parent))
2407 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2408
2409 for_each_subsys(root, ss) {
2410 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2411 if (IS_ERR(css)) {
2412 err = PTR_ERR(css);
2413 goto err_destroy;
2414 }
2415 init_cgroup_css(css, ss, cgrp);
2416 }
2417
2418 cgroup_lock_hierarchy(root);
2419 list_add(&cgrp->sibling, &cgrp->parent->children);
2420 cgroup_unlock_hierarchy(root);
2421 root->number_of_cgroups++;
2422
2423 err = cgroup_create_dir(cgrp, dentry, mode);
2424 if (err < 0)
2425 goto err_remove;
2426
2427 /* The cgroup directory was pre-locked for us */
2428 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2429
2430 err = cgroup_populate_dir(cgrp);
2431 /* If err < 0, we have a half-filled directory - oh well ;) */
2432
2433 mutex_unlock(&cgroup_mutex);
2434 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2435
2436 return 0;
2437
2438 err_remove:
2439
2440 cgroup_lock_hierarchy(root);
2441 list_del(&cgrp->sibling);
2442 cgroup_unlock_hierarchy(root);
2443 root->number_of_cgroups--;
2444
2445 err_destroy:
2446
2447 for_each_subsys(root, ss) {
2448 if (cgrp->subsys[ss->subsys_id])
2449 ss->destroy(ss, cgrp);
2450 }
2451
2452 mutex_unlock(&cgroup_mutex);
2453
2454 /* Release the reference count that we took on the superblock */
2455 deactivate_super(sb);
2456
2457 kfree(cgrp);
2458 return err;
2459 }
2460
2461 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2462 {
2463 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2464
2465 /* the vfs holds inode->i_mutex already */
2466 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2467 }
2468
2469 static int cgroup_has_css_refs(struct cgroup *cgrp)
2470 {
2471 /* Check the reference count on each subsystem. Since we
2472 * already established that there are no tasks in the
2473 * cgroup, if the css refcount is also 1, then there should
2474 * be no outstanding references, so the subsystem is safe to
2475 * destroy. We scan across all subsystems rather than using
2476 * the per-hierarchy linked list of mounted subsystems since
2477 * we can be called via check_for_release() with no
2478 * synchronization other than RCU, and the subsystem linked
2479 * list isn't RCU-safe */
2480 int i;
2481 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2482 struct cgroup_subsys *ss = subsys[i];
2483 struct cgroup_subsys_state *css;
2484 /* Skip subsystems not in this hierarchy */
2485 if (ss->root != cgrp->root)
2486 continue;
2487 css = cgrp->subsys[ss->subsys_id];
2488 /* When called from check_for_release() it's possible
2489 * that by this point the cgroup has been removed
2490 * and the css deleted. But a false-positive doesn't
2491 * matter, since it can only happen if the cgroup
2492 * has been deleted and hence no longer needs the
2493 * release agent to be called anyway. */
2494 if (css && (atomic_read(&css->refcnt) > 1))
2495 return 1;
2496 }
2497 return 0;
2498 }
2499
2500 /*
2501 * Atomically mark all (or else none) of the cgroup's CSS objects as
2502 * CSS_REMOVED. Return true on success, or false if the cgroup has
2503 * busy subsystems. Call with cgroup_mutex held
2504 */
2505
2506 static int cgroup_clear_css_refs(struct cgroup *cgrp)
2507 {
2508 struct cgroup_subsys *ss;
2509 unsigned long flags;
2510 bool failed = false;
2511 local_irq_save(flags);
2512 for_each_subsys(cgrp->root, ss) {
2513 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2514 int refcnt;
2515 while (1) {
2516 /* We can only remove a CSS with a refcnt==1 */
2517 refcnt = atomic_read(&css->refcnt);
2518 if (refcnt > 1) {
2519 failed = true;
2520 goto done;
2521 }
2522 BUG_ON(!refcnt);
2523 /*
2524 * Drop the refcnt to 0 while we check other
2525 * subsystems. This will cause any racing
2526 * css_tryget() to spin until we set the
2527 * CSS_REMOVED bits or abort
2528 */
2529 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2530 break;
2531 cpu_relax();
2532 }
2533 }
2534 done:
2535 for_each_subsys(cgrp->root, ss) {
2536 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2537 if (failed) {
2538 /*
2539 * Restore old refcnt if we previously managed
2540 * to clear it from 1 to 0
2541 */
2542 if (!atomic_read(&css->refcnt))
2543 atomic_set(&css->refcnt, 1);
2544 } else {
2545 /* Commit the fact that the CSS is removed */
2546 set_bit(CSS_REMOVED, &css->flags);
2547 }
2548 }
2549 local_irq_restore(flags);
2550 return !failed;
2551 }
2552
2553 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2554 {
2555 struct cgroup *cgrp = dentry->d_fsdata;
2556 struct dentry *d;
2557 struct cgroup *parent;
2558
2559 /* the vfs holds both inode->i_mutex already */
2560
2561 mutex_lock(&cgroup_mutex);
2562 if (atomic_read(&cgrp->count) != 0) {
2563 mutex_unlock(&cgroup_mutex);
2564 return -EBUSY;
2565 }
2566 if (!list_empty(&cgrp->children)) {
2567 mutex_unlock(&cgroup_mutex);
2568 return -EBUSY;
2569 }
2570 mutex_unlock(&cgroup_mutex);
2571
2572 /*
2573 * Call pre_destroy handlers of subsys. Notify subsystems
2574 * that rmdir() request comes.
2575 */
2576 cgroup_call_pre_destroy(cgrp);
2577
2578 mutex_lock(&cgroup_mutex);
2579 parent = cgrp->parent;
2580
2581 if (atomic_read(&cgrp->count)
2582 || !list_empty(&cgrp->children)
2583 || !cgroup_clear_css_refs(cgrp)) {
2584 mutex_unlock(&cgroup_mutex);
2585 return -EBUSY;
2586 }
2587
2588 spin_lock(&release_list_lock);
2589 set_bit(CGRP_REMOVED, &cgrp->flags);
2590 if (!list_empty(&cgrp->release_list))
2591 list_del(&cgrp->release_list);
2592 spin_unlock(&release_list_lock);
2593
2594 cgroup_lock_hierarchy(cgrp->root);
2595 /* delete this cgroup from parent->children */
2596 list_del(&cgrp->sibling);
2597 cgroup_unlock_hierarchy(cgrp->root);
2598
2599 spin_lock(&cgrp->dentry->d_lock);
2600 d = dget(cgrp->dentry);
2601 spin_unlock(&d->d_lock);
2602
2603 cgroup_d_remove_dir(d);
2604 dput(d);
2605
2606 set_bit(CGRP_RELEASABLE, &parent->flags);
2607 check_for_release(parent);
2608
2609 mutex_unlock(&cgroup_mutex);
2610 return 0;
2611 }
2612
2613 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2614 {
2615 struct cgroup_subsys_state *css;
2616
2617 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2618
2619 /* Create the top cgroup state for this subsystem */
2620 list_add(&ss->sibling, &rootnode.subsys_list);
2621 ss->root = &rootnode;
2622 css = ss->create(ss, dummytop);
2623 /* We don't handle early failures gracefully */
2624 BUG_ON(IS_ERR(css));
2625 init_cgroup_css(css, ss, dummytop);
2626
2627 /* Update the init_css_set to contain a subsys
2628 * pointer to this state - since the subsystem is
2629 * newly registered, all tasks and hence the
2630 * init_css_set is in the subsystem's top cgroup. */
2631 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2632
2633 need_forkexit_callback |= ss->fork || ss->exit;
2634
2635 /* At system boot, before all subsystems have been
2636 * registered, no tasks have been forked, so we don't
2637 * need to invoke fork callbacks here. */
2638 BUG_ON(!list_empty(&init_task.tasks));
2639
2640 mutex_init(&ss->hierarchy_mutex);
2641 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2642 ss->active = 1;
2643 }
2644
2645 /**
2646 * cgroup_init_early - cgroup initialization at system boot
2647 *
2648 * Initialize cgroups at system boot, and initialize any
2649 * subsystems that request early init.
2650 */
2651 int __init cgroup_init_early(void)
2652 {
2653 int i;
2654 atomic_set(&init_css_set.refcount, 1);
2655 INIT_LIST_HEAD(&init_css_set.cg_links);
2656 INIT_LIST_HEAD(&init_css_set.tasks);
2657 INIT_HLIST_NODE(&init_css_set.hlist);
2658 css_set_count = 1;
2659 init_cgroup_root(&rootnode);
2660 root_count = 1;
2661 init_task.cgroups = &init_css_set;
2662
2663 init_css_set_link.cg = &init_css_set;
2664 list_add(&init_css_set_link.cgrp_link_list,
2665 &rootnode.top_cgroup.css_sets);
2666 list_add(&init_css_set_link.cg_link_list,
2667 &init_css_set.cg_links);
2668
2669 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2670 INIT_HLIST_HEAD(&css_set_table[i]);
2671
2672 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2673 struct cgroup_subsys *ss = subsys[i];
2674
2675 BUG_ON(!ss->name);
2676 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2677 BUG_ON(!ss->create);
2678 BUG_ON(!ss->destroy);
2679 if (ss->subsys_id != i) {
2680 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2681 ss->name, ss->subsys_id);
2682 BUG();
2683 }
2684
2685 if (ss->early_init)
2686 cgroup_init_subsys(ss);
2687 }
2688 return 0;
2689 }
2690
2691 /**
2692 * cgroup_init - cgroup initialization
2693 *
2694 * Register cgroup filesystem and /proc file, and initialize
2695 * any subsystems that didn't request early init.
2696 */
2697 int __init cgroup_init(void)
2698 {
2699 int err;
2700 int i;
2701 struct hlist_head *hhead;
2702
2703 err = bdi_init(&cgroup_backing_dev_info);
2704 if (err)
2705 return err;
2706
2707 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2708 struct cgroup_subsys *ss = subsys[i];
2709 if (!ss->early_init)
2710 cgroup_init_subsys(ss);
2711 }
2712
2713 /* Add init_css_set to the hash table */
2714 hhead = css_set_hash(init_css_set.subsys);
2715 hlist_add_head(&init_css_set.hlist, hhead);
2716
2717 err = register_filesystem(&cgroup_fs_type);
2718 if (err < 0)
2719 goto out;
2720
2721 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2722
2723 out:
2724 if (err)
2725 bdi_destroy(&cgroup_backing_dev_info);
2726
2727 return err;
2728 }
2729
2730 /*
2731 * proc_cgroup_show()
2732 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2733 * - Used for /proc/<pid>/cgroup.
2734 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2735 * doesn't really matter if tsk->cgroup changes after we read it,
2736 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2737 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2738 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2739 * cgroup to top_cgroup.
2740 */
2741
2742 /* TODO: Use a proper seq_file iterator */
2743 static int proc_cgroup_show(struct seq_file *m, void *v)
2744 {
2745 struct pid *pid;
2746 struct task_struct *tsk;
2747 char *buf;
2748 int retval;
2749 struct cgroupfs_root *root;
2750
2751 retval = -ENOMEM;
2752 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2753 if (!buf)
2754 goto out;
2755
2756 retval = -ESRCH;
2757 pid = m->private;
2758 tsk = get_pid_task(pid, PIDTYPE_PID);
2759 if (!tsk)
2760 goto out_free;
2761
2762 retval = 0;
2763
2764 mutex_lock(&cgroup_mutex);
2765
2766 for_each_active_root(root) {
2767 struct cgroup_subsys *ss;
2768 struct cgroup *cgrp;
2769 int subsys_id;
2770 int count = 0;
2771
2772 seq_printf(m, "%lu:", root->subsys_bits);
2773 for_each_subsys(root, ss)
2774 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2775 seq_putc(m, ':');
2776 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2777 cgrp = task_cgroup(tsk, subsys_id);
2778 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2779 if (retval < 0)
2780 goto out_unlock;
2781 seq_puts(m, buf);
2782 seq_putc(m, '\n');
2783 }
2784
2785 out_unlock:
2786 mutex_unlock(&cgroup_mutex);
2787 put_task_struct(tsk);
2788 out_free:
2789 kfree(buf);
2790 out:
2791 return retval;
2792 }
2793
2794 static int cgroup_open(struct inode *inode, struct file *file)
2795 {
2796 struct pid *pid = PROC_I(inode)->pid;
2797 return single_open(file, proc_cgroup_show, pid);
2798 }
2799
2800 struct file_operations proc_cgroup_operations = {
2801 .open = cgroup_open,
2802 .read = seq_read,
2803 .llseek = seq_lseek,
2804 .release = single_release,
2805 };
2806
2807 /* Display information about each subsystem and each hierarchy */
2808 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2809 {
2810 int i;
2811
2812 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2813 mutex_lock(&cgroup_mutex);
2814 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2815 struct cgroup_subsys *ss = subsys[i];
2816 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2817 ss->name, ss->root->subsys_bits,
2818 ss->root->number_of_cgroups, !ss->disabled);
2819 }
2820 mutex_unlock(&cgroup_mutex);
2821 return 0;
2822 }
2823
2824 static int cgroupstats_open(struct inode *inode, struct file *file)
2825 {
2826 return single_open(file, proc_cgroupstats_show, NULL);
2827 }
2828
2829 static struct file_operations proc_cgroupstats_operations = {
2830 .open = cgroupstats_open,
2831 .read = seq_read,
2832 .llseek = seq_lseek,
2833 .release = single_release,
2834 };
2835
2836 /**
2837 * cgroup_fork - attach newly forked task to its parents cgroup.
2838 * @child: pointer to task_struct of forking parent process.
2839 *
2840 * Description: A task inherits its parent's cgroup at fork().
2841 *
2842 * A pointer to the shared css_set was automatically copied in
2843 * fork.c by dup_task_struct(). However, we ignore that copy, since
2844 * it was not made under the protection of RCU or cgroup_mutex, so
2845 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2846 * have already changed current->cgroups, allowing the previously
2847 * referenced cgroup group to be removed and freed.
2848 *
2849 * At the point that cgroup_fork() is called, 'current' is the parent
2850 * task, and the passed argument 'child' points to the child task.
2851 */
2852 void cgroup_fork(struct task_struct *child)
2853 {
2854 task_lock(current);
2855 child->cgroups = current->cgroups;
2856 get_css_set(child->cgroups);
2857 task_unlock(current);
2858 INIT_LIST_HEAD(&child->cg_list);
2859 }
2860
2861 /**
2862 * cgroup_fork_callbacks - run fork callbacks
2863 * @child: the new task
2864 *
2865 * Called on a new task very soon before adding it to the
2866 * tasklist. No need to take any locks since no-one can
2867 * be operating on this task.
2868 */
2869 void cgroup_fork_callbacks(struct task_struct *child)
2870 {
2871 if (need_forkexit_callback) {
2872 int i;
2873 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2874 struct cgroup_subsys *ss = subsys[i];
2875 if (ss->fork)
2876 ss->fork(ss, child);
2877 }
2878 }
2879 }
2880
2881 /**
2882 * cgroup_post_fork - called on a new task after adding it to the task list
2883 * @child: the task in question
2884 *
2885 * Adds the task to the list running through its css_set if necessary.
2886 * Has to be after the task is visible on the task list in case we race
2887 * with the first call to cgroup_iter_start() - to guarantee that the
2888 * new task ends up on its list.
2889 */
2890 void cgroup_post_fork(struct task_struct *child)
2891 {
2892 if (use_task_css_set_links) {
2893 write_lock(&css_set_lock);
2894 task_lock(child);
2895 if (list_empty(&child->cg_list))
2896 list_add(&child->cg_list, &child->cgroups->tasks);
2897 task_unlock(child);
2898 write_unlock(&css_set_lock);
2899 }
2900 }
2901 /**
2902 * cgroup_exit - detach cgroup from exiting task
2903 * @tsk: pointer to task_struct of exiting process
2904 * @run_callback: run exit callbacks?
2905 *
2906 * Description: Detach cgroup from @tsk and release it.
2907 *
2908 * Note that cgroups marked notify_on_release force every task in
2909 * them to take the global cgroup_mutex mutex when exiting.
2910 * This could impact scaling on very large systems. Be reluctant to
2911 * use notify_on_release cgroups where very high task exit scaling
2912 * is required on large systems.
2913 *
2914 * the_top_cgroup_hack:
2915 *
2916 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2917 *
2918 * We call cgroup_exit() while the task is still competent to
2919 * handle notify_on_release(), then leave the task attached to the
2920 * root cgroup in each hierarchy for the remainder of its exit.
2921 *
2922 * To do this properly, we would increment the reference count on
2923 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2924 * code we would add a second cgroup function call, to drop that
2925 * reference. This would just create an unnecessary hot spot on
2926 * the top_cgroup reference count, to no avail.
2927 *
2928 * Normally, holding a reference to a cgroup without bumping its
2929 * count is unsafe. The cgroup could go away, or someone could
2930 * attach us to a different cgroup, decrementing the count on
2931 * the first cgroup that we never incremented. But in this case,
2932 * top_cgroup isn't going away, and either task has PF_EXITING set,
2933 * which wards off any cgroup_attach_task() attempts, or task is a failed
2934 * fork, never visible to cgroup_attach_task.
2935 */
2936 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2937 {
2938 int i;
2939 struct css_set *cg;
2940
2941 if (run_callbacks && need_forkexit_callback) {
2942 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2943 struct cgroup_subsys *ss = subsys[i];
2944 if (ss->exit)
2945 ss->exit(ss, tsk);
2946 }
2947 }
2948
2949 /*
2950 * Unlink from the css_set task list if necessary.
2951 * Optimistically check cg_list before taking
2952 * css_set_lock
2953 */
2954 if (!list_empty(&tsk->cg_list)) {
2955 write_lock(&css_set_lock);
2956 if (!list_empty(&tsk->cg_list))
2957 list_del(&tsk->cg_list);
2958 write_unlock(&css_set_lock);
2959 }
2960
2961 /* Reassign the task to the init_css_set. */
2962 task_lock(tsk);
2963 cg = tsk->cgroups;
2964 tsk->cgroups = &init_css_set;
2965 task_unlock(tsk);
2966 if (cg)
2967 put_css_set_taskexit(cg);
2968 }
2969
2970 /**
2971 * cgroup_clone - clone the cgroup the given subsystem is attached to
2972 * @tsk: the task to be moved
2973 * @subsys: the given subsystem
2974 * @nodename: the name for the new cgroup
2975 *
2976 * Duplicate the current cgroup in the hierarchy that the given
2977 * subsystem is attached to, and move this task into the new
2978 * child.
2979 */
2980 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2981 char *nodename)
2982 {
2983 struct dentry *dentry;
2984 int ret = 0;
2985 struct cgroup *parent, *child;
2986 struct inode *inode;
2987 struct css_set *cg;
2988 struct cgroupfs_root *root;
2989 struct cgroup_subsys *ss;
2990
2991 /* We shouldn't be called by an unregistered subsystem */
2992 BUG_ON(!subsys->active);
2993
2994 /* First figure out what hierarchy and cgroup we're dealing
2995 * with, and pin them so we can drop cgroup_mutex */
2996 mutex_lock(&cgroup_mutex);
2997 again:
2998 root = subsys->root;
2999 if (root == &rootnode) {
3000 mutex_unlock(&cgroup_mutex);
3001 return 0;
3002 }
3003
3004 /* Pin the hierarchy */
3005 if (!atomic_inc_not_zero(&root->sb->s_active)) {
3006 /* We race with the final deactivate_super() */
3007 mutex_unlock(&cgroup_mutex);
3008 return 0;
3009 }
3010
3011 /* Keep the cgroup alive */
3012 task_lock(tsk);
3013 parent = task_cgroup(tsk, subsys->subsys_id);
3014 cg = tsk->cgroups;
3015 get_css_set(cg);
3016 task_unlock(tsk);
3017
3018 mutex_unlock(&cgroup_mutex);
3019
3020 /* Now do the VFS work to create a cgroup */
3021 inode = parent->dentry->d_inode;
3022
3023 /* Hold the parent directory mutex across this operation to
3024 * stop anyone else deleting the new cgroup */
3025 mutex_lock(&inode->i_mutex);
3026 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3027 if (IS_ERR(dentry)) {
3028 printk(KERN_INFO
3029 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3030 PTR_ERR(dentry));
3031 ret = PTR_ERR(dentry);
3032 goto out_release;
3033 }
3034
3035 /* Create the cgroup directory, which also creates the cgroup */
3036 ret = vfs_mkdir(inode, dentry, 0755);
3037 child = __d_cgrp(dentry);
3038 dput(dentry);
3039 if (ret) {
3040 printk(KERN_INFO
3041 "Failed to create cgroup %s: %d\n", nodename,
3042 ret);
3043 goto out_release;
3044 }
3045
3046 /* The cgroup now exists. Retake cgroup_mutex and check
3047 * that we're still in the same state that we thought we
3048 * were. */
3049 mutex_lock(&cgroup_mutex);
3050 if ((root != subsys->root) ||
3051 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3052 /* Aargh, we raced ... */
3053 mutex_unlock(&inode->i_mutex);
3054 put_css_set(cg);
3055
3056 deactivate_super(root->sb);
3057 /* The cgroup is still accessible in the VFS, but
3058 * we're not going to try to rmdir() it at this
3059 * point. */
3060 printk(KERN_INFO
3061 "Race in cgroup_clone() - leaking cgroup %s\n",
3062 nodename);
3063 goto again;
3064 }
3065
3066 /* do any required auto-setup */
3067 for_each_subsys(root, ss) {
3068 if (ss->post_clone)
3069 ss->post_clone(ss, child);
3070 }
3071
3072 /* All seems fine. Finish by moving the task into the new cgroup */
3073 ret = cgroup_attach_task(child, tsk);
3074 mutex_unlock(&cgroup_mutex);
3075
3076 out_release:
3077 mutex_unlock(&inode->i_mutex);
3078
3079 mutex_lock(&cgroup_mutex);
3080 put_css_set(cg);
3081 mutex_unlock(&cgroup_mutex);
3082 deactivate_super(root->sb);
3083 return ret;
3084 }
3085
3086 /**
3087 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
3088 * @cgrp: the cgroup in question
3089 *
3090 * See if @cgrp is a descendant of the current task's cgroup in
3091 * the appropriate hierarchy.
3092 *
3093 * If we are sending in dummytop, then presumably we are creating
3094 * the top cgroup in the subsystem.
3095 *
3096 * Called only by the ns (nsproxy) cgroup.
3097 */
3098 int cgroup_is_descendant(const struct cgroup *cgrp)
3099 {
3100 int ret;
3101 struct cgroup *target;
3102 int subsys_id;
3103
3104 if (cgrp == dummytop)
3105 return 1;
3106
3107 get_first_subsys(cgrp, NULL, &subsys_id);
3108 target = task_cgroup(current, subsys_id);
3109 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3110 cgrp = cgrp->parent;
3111 ret = (cgrp == target);
3112 return ret;
3113 }
3114
3115 static void check_for_release(struct cgroup *cgrp)
3116 {
3117 /* All of these checks rely on RCU to keep the cgroup
3118 * structure alive */
3119 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3120 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3121 /* Control Group is currently removeable. If it's not
3122 * already queued for a userspace notification, queue
3123 * it now */
3124 int need_schedule_work = 0;
3125 spin_lock(&release_list_lock);
3126 if (!cgroup_is_removed(cgrp) &&
3127 list_empty(&cgrp->release_list)) {
3128 list_add(&cgrp->release_list, &release_list);
3129 need_schedule_work = 1;
3130 }
3131 spin_unlock(&release_list_lock);
3132 if (need_schedule_work)
3133 schedule_work(&release_agent_work);
3134 }
3135 }
3136
3137 void __css_put(struct cgroup_subsys_state *css)
3138 {
3139 struct cgroup *cgrp = css->cgroup;
3140 rcu_read_lock();
3141 if ((atomic_dec_return(&css->refcnt) == 1) &&
3142 notify_on_release(cgrp)) {
3143 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3144 check_for_release(cgrp);
3145 }
3146 rcu_read_unlock();
3147 }
3148
3149 /*
3150 * Notify userspace when a cgroup is released, by running the
3151 * configured release agent with the name of the cgroup (path
3152 * relative to the root of cgroup file system) as the argument.
3153 *
3154 * Most likely, this user command will try to rmdir this cgroup.
3155 *
3156 * This races with the possibility that some other task will be
3157 * attached to this cgroup before it is removed, or that some other
3158 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3159 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3160 * unused, and this cgroup will be reprieved from its death sentence,
3161 * to continue to serve a useful existence. Next time it's released,
3162 * we will get notified again, if it still has 'notify_on_release' set.
3163 *
3164 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3165 * means only wait until the task is successfully execve()'d. The
3166 * separate release agent task is forked by call_usermodehelper(),
3167 * then control in this thread returns here, without waiting for the
3168 * release agent task. We don't bother to wait because the caller of
3169 * this routine has no use for the exit status of the release agent
3170 * task, so no sense holding our caller up for that.
3171 */
3172 static void cgroup_release_agent(struct work_struct *work)
3173 {
3174 BUG_ON(work != &release_agent_work);
3175 mutex_lock(&cgroup_mutex);
3176 spin_lock(&release_list_lock);
3177 while (!list_empty(&release_list)) {
3178 char *argv[3], *envp[3];
3179 int i;
3180 char *pathbuf = NULL, *agentbuf = NULL;
3181 struct cgroup *cgrp = list_entry(release_list.next,
3182 struct cgroup,
3183 release_list);
3184 list_del_init(&cgrp->release_list);
3185 spin_unlock(&release_list_lock);
3186 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3187 if (!pathbuf)
3188 goto continue_free;
3189 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3190 goto continue_free;
3191 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3192 if (!agentbuf)
3193 goto continue_free;
3194
3195 i = 0;
3196 argv[i++] = agentbuf;
3197 argv[i++] = pathbuf;
3198 argv[i] = NULL;
3199
3200 i = 0;
3201 /* minimal command environment */
3202 envp[i++] = "HOME=/";
3203 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3204 envp[i] = NULL;
3205
3206 /* Drop the lock while we invoke the usermode helper,
3207 * since the exec could involve hitting disk and hence
3208 * be a slow process */
3209 mutex_unlock(&cgroup_mutex);
3210 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3211 mutex_lock(&cgroup_mutex);
3212 continue_free:
3213 kfree(pathbuf);
3214 kfree(agentbuf);
3215 spin_lock(&release_list_lock);
3216 }
3217 spin_unlock(&release_list_lock);
3218 mutex_unlock(&cgroup_mutex);
3219 }
3220
3221 static int __init cgroup_disable(char *str)
3222 {
3223 int i;
3224 char *token;
3225
3226 while ((token = strsep(&str, ",")) != NULL) {
3227 if (!*token)
3228 continue;
3229
3230 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3231 struct cgroup_subsys *ss = subsys[i];
3232
3233 if (!strcmp(token, ss->name)) {
3234 ss->disabled = 1;
3235 printk(KERN_INFO "Disabling %s control group"
3236 " subsystem\n", ss->name);
3237 break;
3238 }
3239 }
3240 }
3241 return 1;
3242 }
3243 __setup("cgroup_disable=", cgroup_disable);