]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cgroup.c
Merge tag 'drm-vc4-fixes-2016-02-17' of github.com:anholt/linux into drm-fixes
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <net/sock.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_lock protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DEFINE_SPINLOCK(css_set_lock);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_lock);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DEFINE_SPINLOCK(css_set_lock);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
107 /*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111 static DEFINE_SPINLOCK(release_agent_path_lock);
112
113 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
115 #define cgroup_assert_mutex_or_rcu_locked() \
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
118 "cgroup_mutex or RCU read lock required");
119
120 /*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126 static struct workqueue_struct *cgroup_destroy_wq;
127
128 /*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
134 /* generate an array of cgroup subsystem pointers */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
136 static struct cgroup_subsys *cgroup_subsys[] = {
137 #include <linux/cgroup_subsys.h>
138 };
139 #undef SUBSYS
140
141 /* array of cgroup subsystem names */
142 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143 static const char *cgroup_subsys_name[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149 #define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154 #include <linux/cgroup_subsys.h>
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158 static struct static_key_true *cgroup_subsys_enabled_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165 #include <linux/cgroup_subsys.h>
166 };
167 #undef SUBSYS
168
169 /*
170 * The default hierarchy, reserved for the subsystems that are otherwise
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
173 */
174 struct cgroup_root cgrp_dfl_root;
175 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
176
177 /*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
181 static bool cgrp_dfl_root_visible;
182
183 /* some controllers are not supported in the default hierarchy */
184 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
185
186 /* The list of hierarchy roots */
187
188 static LIST_HEAD(cgroup_roots);
189 static int cgroup_root_count;
190
191 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
192 static DEFINE_IDR(cgroup_hierarchy_idr);
193
194 /*
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
200 */
201 static u64 css_serial_nr_next = 1;
202
203 /*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
207 */
208 static unsigned long have_fork_callback __read_mostly;
209 static unsigned long have_exit_callback __read_mostly;
210 static unsigned long have_free_callback __read_mostly;
211
212 /* Ditto for the can_fork callback. */
213 static unsigned long have_canfork_callback __read_mostly;
214
215 static struct file_system_type cgroup2_fs_type;
216 static struct cftype cgroup_dfl_base_files[];
217 static struct cftype cgroup_legacy_base_files[];
218
219 static int rebind_subsystems(struct cgroup_root *dst_root,
220 unsigned long ss_mask);
221 static void css_task_iter_advance(struct css_task_iter *it);
222 static int cgroup_destroy_locked(struct cgroup *cgrp);
223 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
224 bool visible);
225 static void css_release(struct percpu_ref *ref);
226 static void kill_css(struct cgroup_subsys_state *css);
227 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
228 struct cgroup *cgrp, struct cftype cfts[],
229 bool is_add);
230
231 /**
232 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
233 * @ssid: subsys ID of interest
234 *
235 * cgroup_subsys_enabled() can only be used with literal subsys names which
236 * is fine for individual subsystems but unsuitable for cgroup core. This
237 * is slower static_key_enabled() based test indexed by @ssid.
238 */
239 static bool cgroup_ssid_enabled(int ssid)
240 {
241 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
242 }
243
244 /**
245 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
246 * @cgrp: the cgroup of interest
247 *
248 * The default hierarchy is the v2 interface of cgroup and this function
249 * can be used to test whether a cgroup is on the default hierarchy for
250 * cases where a subsystem should behave differnetly depending on the
251 * interface version.
252 *
253 * The set of behaviors which change on the default hierarchy are still
254 * being determined and the mount option is prefixed with __DEVEL__.
255 *
256 * List of changed behaviors:
257 *
258 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
259 * and "name" are disallowed.
260 *
261 * - When mounting an existing superblock, mount options should match.
262 *
263 * - Remount is disallowed.
264 *
265 * - rename(2) is disallowed.
266 *
267 * - "tasks" is removed. Everything should be at process granularity. Use
268 * "cgroup.procs" instead.
269 *
270 * - "cgroup.procs" is not sorted. pids will be unique unless they got
271 * recycled inbetween reads.
272 *
273 * - "release_agent" and "notify_on_release" are removed. Replacement
274 * notification mechanism will be implemented.
275 *
276 * - "cgroup.clone_children" is removed.
277 *
278 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
279 * and its descendants contain no task; otherwise, 1. The file also
280 * generates kernfs notification which can be monitored through poll and
281 * [di]notify when the value of the file changes.
282 *
283 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
284 * take masks of ancestors with non-empty cpus/mems, instead of being
285 * moved to an ancestor.
286 *
287 * - cpuset: a task can be moved into an empty cpuset, and again it takes
288 * masks of ancestors.
289 *
290 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
291 * is not created.
292 *
293 * - blkcg: blk-throttle becomes properly hierarchical.
294 *
295 * - debug: disallowed on the default hierarchy.
296 */
297 static bool cgroup_on_dfl(const struct cgroup *cgrp)
298 {
299 return cgrp->root == &cgrp_dfl_root;
300 }
301
302 /* IDR wrappers which synchronize using cgroup_idr_lock */
303 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
304 gfp_t gfp_mask)
305 {
306 int ret;
307
308 idr_preload(gfp_mask);
309 spin_lock_bh(&cgroup_idr_lock);
310 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
311 spin_unlock_bh(&cgroup_idr_lock);
312 idr_preload_end();
313 return ret;
314 }
315
316 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
317 {
318 void *ret;
319
320 spin_lock_bh(&cgroup_idr_lock);
321 ret = idr_replace(idr, ptr, id);
322 spin_unlock_bh(&cgroup_idr_lock);
323 return ret;
324 }
325
326 static void cgroup_idr_remove(struct idr *idr, int id)
327 {
328 spin_lock_bh(&cgroup_idr_lock);
329 idr_remove(idr, id);
330 spin_unlock_bh(&cgroup_idr_lock);
331 }
332
333 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
334 {
335 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
336
337 if (parent_css)
338 return container_of(parent_css, struct cgroup, self);
339 return NULL;
340 }
341
342 /**
343 * cgroup_css - obtain a cgroup's css for the specified subsystem
344 * @cgrp: the cgroup of interest
345 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
346 *
347 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
348 * function must be called either under cgroup_mutex or rcu_read_lock() and
349 * the caller is responsible for pinning the returned css if it wants to
350 * keep accessing it outside the said locks. This function may return
351 * %NULL if @cgrp doesn't have @subsys_id enabled.
352 */
353 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
354 struct cgroup_subsys *ss)
355 {
356 if (ss)
357 return rcu_dereference_check(cgrp->subsys[ss->id],
358 lockdep_is_held(&cgroup_mutex));
359 else
360 return &cgrp->self;
361 }
362
363 /**
364 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
365 * @cgrp: the cgroup of interest
366 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
367 *
368 * Similar to cgroup_css() but returns the effective css, which is defined
369 * as the matching css of the nearest ancestor including self which has @ss
370 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
371 * function is guaranteed to return non-NULL css.
372 */
373 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
374 struct cgroup_subsys *ss)
375 {
376 lockdep_assert_held(&cgroup_mutex);
377
378 if (!ss)
379 return &cgrp->self;
380
381 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
382 return NULL;
383
384 /*
385 * This function is used while updating css associations and thus
386 * can't test the csses directly. Use ->child_subsys_mask.
387 */
388 while (cgroup_parent(cgrp) &&
389 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
390 cgrp = cgroup_parent(cgrp);
391
392 return cgroup_css(cgrp, ss);
393 }
394
395 /**
396 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
397 * @cgrp: the cgroup of interest
398 * @ss: the subsystem of interest
399 *
400 * Find and get the effective css of @cgrp for @ss. The effective css is
401 * defined as the matching css of the nearest ancestor including self which
402 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
403 * the root css is returned, so this function always returns a valid css.
404 * The returned css must be put using css_put().
405 */
406 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
407 struct cgroup_subsys *ss)
408 {
409 struct cgroup_subsys_state *css;
410
411 rcu_read_lock();
412
413 do {
414 css = cgroup_css(cgrp, ss);
415
416 if (css && css_tryget_online(css))
417 goto out_unlock;
418 cgrp = cgroup_parent(cgrp);
419 } while (cgrp);
420
421 css = init_css_set.subsys[ss->id];
422 css_get(css);
423 out_unlock:
424 rcu_read_unlock();
425 return css;
426 }
427
428 /* convenient tests for these bits */
429 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
430 {
431 return !(cgrp->self.flags & CSS_ONLINE);
432 }
433
434 static void cgroup_get(struct cgroup *cgrp)
435 {
436 WARN_ON_ONCE(cgroup_is_dead(cgrp));
437 css_get(&cgrp->self);
438 }
439
440 static bool cgroup_tryget(struct cgroup *cgrp)
441 {
442 return css_tryget(&cgrp->self);
443 }
444
445 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
446 {
447 struct cgroup *cgrp = of->kn->parent->priv;
448 struct cftype *cft = of_cft(of);
449
450 /*
451 * This is open and unprotected implementation of cgroup_css().
452 * seq_css() is only called from a kernfs file operation which has
453 * an active reference on the file. Because all the subsystem
454 * files are drained before a css is disassociated with a cgroup,
455 * the matching css from the cgroup's subsys table is guaranteed to
456 * be and stay valid until the enclosing operation is complete.
457 */
458 if (cft->ss)
459 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
460 else
461 return &cgrp->self;
462 }
463 EXPORT_SYMBOL_GPL(of_css);
464
465 static int notify_on_release(const struct cgroup *cgrp)
466 {
467 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
468 }
469
470 /**
471 * for_each_css - iterate all css's of a cgroup
472 * @css: the iteration cursor
473 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
474 * @cgrp: the target cgroup to iterate css's of
475 *
476 * Should be called under cgroup_[tree_]mutex.
477 */
478 #define for_each_css(css, ssid, cgrp) \
479 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
480 if (!((css) = rcu_dereference_check( \
481 (cgrp)->subsys[(ssid)], \
482 lockdep_is_held(&cgroup_mutex)))) { } \
483 else
484
485 /**
486 * for_each_e_css - iterate all effective css's of a cgroup
487 * @css: the iteration cursor
488 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
489 * @cgrp: the target cgroup to iterate css's of
490 *
491 * Should be called under cgroup_[tree_]mutex.
492 */
493 #define for_each_e_css(css, ssid, cgrp) \
494 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
495 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
496 ; \
497 else
498
499 /**
500 * for_each_subsys - iterate all enabled cgroup subsystems
501 * @ss: the iteration cursor
502 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
503 */
504 #define for_each_subsys(ss, ssid) \
505 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
506 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
507
508 /**
509 * for_each_subsys_which - filter for_each_subsys with a bitmask
510 * @ss: the iteration cursor
511 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
512 * @ss_maskp: a pointer to the bitmask
513 *
514 * The block will only run for cases where the ssid-th bit (1 << ssid) of
515 * mask is set to 1.
516 */
517 #define for_each_subsys_which(ss, ssid, ss_maskp) \
518 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
519 (ssid) = 0; \
520 else \
521 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
522 if (((ss) = cgroup_subsys[ssid]) && false) \
523 break; \
524 else
525
526 /* iterate across the hierarchies */
527 #define for_each_root(root) \
528 list_for_each_entry((root), &cgroup_roots, root_list)
529
530 /* iterate over child cgrps, lock should be held throughout iteration */
531 #define cgroup_for_each_live_child(child, cgrp) \
532 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
533 if (({ lockdep_assert_held(&cgroup_mutex); \
534 cgroup_is_dead(child); })) \
535 ; \
536 else
537
538 static void cgroup_release_agent(struct work_struct *work);
539 static void check_for_release(struct cgroup *cgrp);
540
541 /*
542 * A cgroup can be associated with multiple css_sets as different tasks may
543 * belong to different cgroups on different hierarchies. In the other
544 * direction, a css_set is naturally associated with multiple cgroups.
545 * This M:N relationship is represented by the following link structure
546 * which exists for each association and allows traversing the associations
547 * from both sides.
548 */
549 struct cgrp_cset_link {
550 /* the cgroup and css_set this link associates */
551 struct cgroup *cgrp;
552 struct css_set *cset;
553
554 /* list of cgrp_cset_links anchored at cgrp->cset_links */
555 struct list_head cset_link;
556
557 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
558 struct list_head cgrp_link;
559 };
560
561 /*
562 * The default css_set - used by init and its children prior to any
563 * hierarchies being mounted. It contains a pointer to the root state
564 * for each subsystem. Also used to anchor the list of css_sets. Not
565 * reference-counted, to improve performance when child cgroups
566 * haven't been created.
567 */
568 struct css_set init_css_set = {
569 .refcount = ATOMIC_INIT(1),
570 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
571 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
572 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
573 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
574 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
575 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
576 };
577
578 static int css_set_count = 1; /* 1 for init_css_set */
579
580 /**
581 * css_set_populated - does a css_set contain any tasks?
582 * @cset: target css_set
583 */
584 static bool css_set_populated(struct css_set *cset)
585 {
586 lockdep_assert_held(&css_set_lock);
587
588 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
589 }
590
591 /**
592 * cgroup_update_populated - updated populated count of a cgroup
593 * @cgrp: the target cgroup
594 * @populated: inc or dec populated count
595 *
596 * One of the css_sets associated with @cgrp is either getting its first
597 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
598 * count is propagated towards root so that a given cgroup's populated_cnt
599 * is zero iff the cgroup and all its descendants don't contain any tasks.
600 *
601 * @cgrp's interface file "cgroup.populated" is zero if
602 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
603 * changes from or to zero, userland is notified that the content of the
604 * interface file has changed. This can be used to detect when @cgrp and
605 * its descendants become populated or empty.
606 */
607 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
608 {
609 lockdep_assert_held(&css_set_lock);
610
611 do {
612 bool trigger;
613
614 if (populated)
615 trigger = !cgrp->populated_cnt++;
616 else
617 trigger = !--cgrp->populated_cnt;
618
619 if (!trigger)
620 break;
621
622 check_for_release(cgrp);
623 cgroup_file_notify(&cgrp->events_file);
624
625 cgrp = cgroup_parent(cgrp);
626 } while (cgrp);
627 }
628
629 /**
630 * css_set_update_populated - update populated state of a css_set
631 * @cset: target css_set
632 * @populated: whether @cset is populated or depopulated
633 *
634 * @cset is either getting the first task or losing the last. Update the
635 * ->populated_cnt of all associated cgroups accordingly.
636 */
637 static void css_set_update_populated(struct css_set *cset, bool populated)
638 {
639 struct cgrp_cset_link *link;
640
641 lockdep_assert_held(&css_set_lock);
642
643 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
644 cgroup_update_populated(link->cgrp, populated);
645 }
646
647 /**
648 * css_set_move_task - move a task from one css_set to another
649 * @task: task being moved
650 * @from_cset: css_set @task currently belongs to (may be NULL)
651 * @to_cset: new css_set @task is being moved to (may be NULL)
652 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
653 *
654 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
655 * css_set, @from_cset can be NULL. If @task is being disassociated
656 * instead of moved, @to_cset can be NULL.
657 *
658 * This function automatically handles populated_cnt updates and
659 * css_task_iter adjustments but the caller is responsible for managing
660 * @from_cset and @to_cset's reference counts.
661 */
662 static void css_set_move_task(struct task_struct *task,
663 struct css_set *from_cset, struct css_set *to_cset,
664 bool use_mg_tasks)
665 {
666 lockdep_assert_held(&css_set_lock);
667
668 if (from_cset) {
669 struct css_task_iter *it, *pos;
670
671 WARN_ON_ONCE(list_empty(&task->cg_list));
672
673 /*
674 * @task is leaving, advance task iterators which are
675 * pointing to it so that they can resume at the next
676 * position. Advancing an iterator might remove it from
677 * the list, use safe walk. See css_task_iter_advance*()
678 * for details.
679 */
680 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
681 iters_node)
682 if (it->task_pos == &task->cg_list)
683 css_task_iter_advance(it);
684
685 list_del_init(&task->cg_list);
686 if (!css_set_populated(from_cset))
687 css_set_update_populated(from_cset, false);
688 } else {
689 WARN_ON_ONCE(!list_empty(&task->cg_list));
690 }
691
692 if (to_cset) {
693 /*
694 * We are synchronized through cgroup_threadgroup_rwsem
695 * against PF_EXITING setting such that we can't race
696 * against cgroup_exit() changing the css_set to
697 * init_css_set and dropping the old one.
698 */
699 WARN_ON_ONCE(task->flags & PF_EXITING);
700
701 if (!css_set_populated(to_cset))
702 css_set_update_populated(to_cset, true);
703 rcu_assign_pointer(task->cgroups, to_cset);
704 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
705 &to_cset->tasks);
706 }
707 }
708
709 /*
710 * hash table for cgroup groups. This improves the performance to find
711 * an existing css_set. This hash doesn't (currently) take into
712 * account cgroups in empty hierarchies.
713 */
714 #define CSS_SET_HASH_BITS 7
715 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
716
717 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
718 {
719 unsigned long key = 0UL;
720 struct cgroup_subsys *ss;
721 int i;
722
723 for_each_subsys(ss, i)
724 key += (unsigned long)css[i];
725 key = (key >> 16) ^ key;
726
727 return key;
728 }
729
730 static void put_css_set_locked(struct css_set *cset)
731 {
732 struct cgrp_cset_link *link, *tmp_link;
733 struct cgroup_subsys *ss;
734 int ssid;
735
736 lockdep_assert_held(&css_set_lock);
737
738 if (!atomic_dec_and_test(&cset->refcount))
739 return;
740
741 /* This css_set is dead. unlink it and release cgroup and css refs */
742 for_each_subsys(ss, ssid) {
743 list_del(&cset->e_cset_node[ssid]);
744 css_put(cset->subsys[ssid]);
745 }
746 hash_del(&cset->hlist);
747 css_set_count--;
748
749 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
750 list_del(&link->cset_link);
751 list_del(&link->cgrp_link);
752 if (cgroup_parent(link->cgrp))
753 cgroup_put(link->cgrp);
754 kfree(link);
755 }
756
757 kfree_rcu(cset, rcu_head);
758 }
759
760 static void put_css_set(struct css_set *cset)
761 {
762 /*
763 * Ensure that the refcount doesn't hit zero while any readers
764 * can see it. Similar to atomic_dec_and_lock(), but for an
765 * rwlock
766 */
767 if (atomic_add_unless(&cset->refcount, -1, 1))
768 return;
769
770 spin_lock_bh(&css_set_lock);
771 put_css_set_locked(cset);
772 spin_unlock_bh(&css_set_lock);
773 }
774
775 /*
776 * refcounted get/put for css_set objects
777 */
778 static inline void get_css_set(struct css_set *cset)
779 {
780 atomic_inc(&cset->refcount);
781 }
782
783 /**
784 * compare_css_sets - helper function for find_existing_css_set().
785 * @cset: candidate css_set being tested
786 * @old_cset: existing css_set for a task
787 * @new_cgrp: cgroup that's being entered by the task
788 * @template: desired set of css pointers in css_set (pre-calculated)
789 *
790 * Returns true if "cset" matches "old_cset" except for the hierarchy
791 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
792 */
793 static bool compare_css_sets(struct css_set *cset,
794 struct css_set *old_cset,
795 struct cgroup *new_cgrp,
796 struct cgroup_subsys_state *template[])
797 {
798 struct list_head *l1, *l2;
799
800 /*
801 * On the default hierarchy, there can be csets which are
802 * associated with the same set of cgroups but different csses.
803 * Let's first ensure that csses match.
804 */
805 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
806 return false;
807
808 /*
809 * Compare cgroup pointers in order to distinguish between
810 * different cgroups in hierarchies. As different cgroups may
811 * share the same effective css, this comparison is always
812 * necessary.
813 */
814 l1 = &cset->cgrp_links;
815 l2 = &old_cset->cgrp_links;
816 while (1) {
817 struct cgrp_cset_link *link1, *link2;
818 struct cgroup *cgrp1, *cgrp2;
819
820 l1 = l1->next;
821 l2 = l2->next;
822 /* See if we reached the end - both lists are equal length. */
823 if (l1 == &cset->cgrp_links) {
824 BUG_ON(l2 != &old_cset->cgrp_links);
825 break;
826 } else {
827 BUG_ON(l2 == &old_cset->cgrp_links);
828 }
829 /* Locate the cgroups associated with these links. */
830 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
831 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
832 cgrp1 = link1->cgrp;
833 cgrp2 = link2->cgrp;
834 /* Hierarchies should be linked in the same order. */
835 BUG_ON(cgrp1->root != cgrp2->root);
836
837 /*
838 * If this hierarchy is the hierarchy of the cgroup
839 * that's changing, then we need to check that this
840 * css_set points to the new cgroup; if it's any other
841 * hierarchy, then this css_set should point to the
842 * same cgroup as the old css_set.
843 */
844 if (cgrp1->root == new_cgrp->root) {
845 if (cgrp1 != new_cgrp)
846 return false;
847 } else {
848 if (cgrp1 != cgrp2)
849 return false;
850 }
851 }
852 return true;
853 }
854
855 /**
856 * find_existing_css_set - init css array and find the matching css_set
857 * @old_cset: the css_set that we're using before the cgroup transition
858 * @cgrp: the cgroup that we're moving into
859 * @template: out param for the new set of csses, should be clear on entry
860 */
861 static struct css_set *find_existing_css_set(struct css_set *old_cset,
862 struct cgroup *cgrp,
863 struct cgroup_subsys_state *template[])
864 {
865 struct cgroup_root *root = cgrp->root;
866 struct cgroup_subsys *ss;
867 struct css_set *cset;
868 unsigned long key;
869 int i;
870
871 /*
872 * Build the set of subsystem state objects that we want to see in the
873 * new css_set. while subsystems can change globally, the entries here
874 * won't change, so no need for locking.
875 */
876 for_each_subsys(ss, i) {
877 if (root->subsys_mask & (1UL << i)) {
878 /*
879 * @ss is in this hierarchy, so we want the
880 * effective css from @cgrp.
881 */
882 template[i] = cgroup_e_css(cgrp, ss);
883 } else {
884 /*
885 * @ss is not in this hierarchy, so we don't want
886 * to change the css.
887 */
888 template[i] = old_cset->subsys[i];
889 }
890 }
891
892 key = css_set_hash(template);
893 hash_for_each_possible(css_set_table, cset, hlist, key) {
894 if (!compare_css_sets(cset, old_cset, cgrp, template))
895 continue;
896
897 /* This css_set matches what we need */
898 return cset;
899 }
900
901 /* No existing cgroup group matched */
902 return NULL;
903 }
904
905 static void free_cgrp_cset_links(struct list_head *links_to_free)
906 {
907 struct cgrp_cset_link *link, *tmp_link;
908
909 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
910 list_del(&link->cset_link);
911 kfree(link);
912 }
913 }
914
915 /**
916 * allocate_cgrp_cset_links - allocate cgrp_cset_links
917 * @count: the number of links to allocate
918 * @tmp_links: list_head the allocated links are put on
919 *
920 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
921 * through ->cset_link. Returns 0 on success or -errno.
922 */
923 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
924 {
925 struct cgrp_cset_link *link;
926 int i;
927
928 INIT_LIST_HEAD(tmp_links);
929
930 for (i = 0; i < count; i++) {
931 link = kzalloc(sizeof(*link), GFP_KERNEL);
932 if (!link) {
933 free_cgrp_cset_links(tmp_links);
934 return -ENOMEM;
935 }
936 list_add(&link->cset_link, tmp_links);
937 }
938 return 0;
939 }
940
941 /**
942 * link_css_set - a helper function to link a css_set to a cgroup
943 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
944 * @cset: the css_set to be linked
945 * @cgrp: the destination cgroup
946 */
947 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
948 struct cgroup *cgrp)
949 {
950 struct cgrp_cset_link *link;
951
952 BUG_ON(list_empty(tmp_links));
953
954 if (cgroup_on_dfl(cgrp))
955 cset->dfl_cgrp = cgrp;
956
957 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
958 link->cset = cset;
959 link->cgrp = cgrp;
960
961 /*
962 * Always add links to the tail of the lists so that the lists are
963 * in choronological order.
964 */
965 list_move_tail(&link->cset_link, &cgrp->cset_links);
966 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
967
968 if (cgroup_parent(cgrp))
969 cgroup_get(cgrp);
970 }
971
972 /**
973 * find_css_set - return a new css_set with one cgroup updated
974 * @old_cset: the baseline css_set
975 * @cgrp: the cgroup to be updated
976 *
977 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
978 * substituted into the appropriate hierarchy.
979 */
980 static struct css_set *find_css_set(struct css_set *old_cset,
981 struct cgroup *cgrp)
982 {
983 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
984 struct css_set *cset;
985 struct list_head tmp_links;
986 struct cgrp_cset_link *link;
987 struct cgroup_subsys *ss;
988 unsigned long key;
989 int ssid;
990
991 lockdep_assert_held(&cgroup_mutex);
992
993 /* First see if we already have a cgroup group that matches
994 * the desired set */
995 spin_lock_bh(&css_set_lock);
996 cset = find_existing_css_set(old_cset, cgrp, template);
997 if (cset)
998 get_css_set(cset);
999 spin_unlock_bh(&css_set_lock);
1000
1001 if (cset)
1002 return cset;
1003
1004 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1005 if (!cset)
1006 return NULL;
1007
1008 /* Allocate all the cgrp_cset_link objects that we'll need */
1009 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1010 kfree(cset);
1011 return NULL;
1012 }
1013
1014 atomic_set(&cset->refcount, 1);
1015 INIT_LIST_HEAD(&cset->cgrp_links);
1016 INIT_LIST_HEAD(&cset->tasks);
1017 INIT_LIST_HEAD(&cset->mg_tasks);
1018 INIT_LIST_HEAD(&cset->mg_preload_node);
1019 INIT_LIST_HEAD(&cset->mg_node);
1020 INIT_LIST_HEAD(&cset->task_iters);
1021 INIT_HLIST_NODE(&cset->hlist);
1022
1023 /* Copy the set of subsystem state objects generated in
1024 * find_existing_css_set() */
1025 memcpy(cset->subsys, template, sizeof(cset->subsys));
1026
1027 spin_lock_bh(&css_set_lock);
1028 /* Add reference counts and links from the new css_set. */
1029 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1030 struct cgroup *c = link->cgrp;
1031
1032 if (c->root == cgrp->root)
1033 c = cgrp;
1034 link_css_set(&tmp_links, cset, c);
1035 }
1036
1037 BUG_ON(!list_empty(&tmp_links));
1038
1039 css_set_count++;
1040
1041 /* Add @cset to the hash table */
1042 key = css_set_hash(cset->subsys);
1043 hash_add(css_set_table, &cset->hlist, key);
1044
1045 for_each_subsys(ss, ssid) {
1046 struct cgroup_subsys_state *css = cset->subsys[ssid];
1047
1048 list_add_tail(&cset->e_cset_node[ssid],
1049 &css->cgroup->e_csets[ssid]);
1050 css_get(css);
1051 }
1052
1053 spin_unlock_bh(&css_set_lock);
1054
1055 return cset;
1056 }
1057
1058 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1059 {
1060 struct cgroup *root_cgrp = kf_root->kn->priv;
1061
1062 return root_cgrp->root;
1063 }
1064
1065 static int cgroup_init_root_id(struct cgroup_root *root)
1066 {
1067 int id;
1068
1069 lockdep_assert_held(&cgroup_mutex);
1070
1071 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1072 if (id < 0)
1073 return id;
1074
1075 root->hierarchy_id = id;
1076 return 0;
1077 }
1078
1079 static void cgroup_exit_root_id(struct cgroup_root *root)
1080 {
1081 lockdep_assert_held(&cgroup_mutex);
1082
1083 if (root->hierarchy_id) {
1084 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1085 root->hierarchy_id = 0;
1086 }
1087 }
1088
1089 static void cgroup_free_root(struct cgroup_root *root)
1090 {
1091 if (root) {
1092 /* hierarchy ID should already have been released */
1093 WARN_ON_ONCE(root->hierarchy_id);
1094
1095 idr_destroy(&root->cgroup_idr);
1096 kfree(root);
1097 }
1098 }
1099
1100 static void cgroup_destroy_root(struct cgroup_root *root)
1101 {
1102 struct cgroup *cgrp = &root->cgrp;
1103 struct cgrp_cset_link *link, *tmp_link;
1104
1105 mutex_lock(&cgroup_mutex);
1106
1107 BUG_ON(atomic_read(&root->nr_cgrps));
1108 BUG_ON(!list_empty(&cgrp->self.children));
1109
1110 /* Rebind all subsystems back to the default hierarchy */
1111 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1112
1113 /*
1114 * Release all the links from cset_links to this hierarchy's
1115 * root cgroup
1116 */
1117 spin_lock_bh(&css_set_lock);
1118
1119 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1120 list_del(&link->cset_link);
1121 list_del(&link->cgrp_link);
1122 kfree(link);
1123 }
1124
1125 spin_unlock_bh(&css_set_lock);
1126
1127 if (!list_empty(&root->root_list)) {
1128 list_del(&root->root_list);
1129 cgroup_root_count--;
1130 }
1131
1132 cgroup_exit_root_id(root);
1133
1134 mutex_unlock(&cgroup_mutex);
1135
1136 kernfs_destroy_root(root->kf_root);
1137 cgroup_free_root(root);
1138 }
1139
1140 /* look up cgroup associated with given css_set on the specified hierarchy */
1141 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1142 struct cgroup_root *root)
1143 {
1144 struct cgroup *res = NULL;
1145
1146 lockdep_assert_held(&cgroup_mutex);
1147 lockdep_assert_held(&css_set_lock);
1148
1149 if (cset == &init_css_set) {
1150 res = &root->cgrp;
1151 } else {
1152 struct cgrp_cset_link *link;
1153
1154 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1155 struct cgroup *c = link->cgrp;
1156
1157 if (c->root == root) {
1158 res = c;
1159 break;
1160 }
1161 }
1162 }
1163
1164 BUG_ON(!res);
1165 return res;
1166 }
1167
1168 /*
1169 * Return the cgroup for "task" from the given hierarchy. Must be
1170 * called with cgroup_mutex and css_set_lock held.
1171 */
1172 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1173 struct cgroup_root *root)
1174 {
1175 /*
1176 * No need to lock the task - since we hold cgroup_mutex the
1177 * task can't change groups, so the only thing that can happen
1178 * is that it exits and its css is set back to init_css_set.
1179 */
1180 return cset_cgroup_from_root(task_css_set(task), root);
1181 }
1182
1183 /*
1184 * A task must hold cgroup_mutex to modify cgroups.
1185 *
1186 * Any task can increment and decrement the count field without lock.
1187 * So in general, code holding cgroup_mutex can't rely on the count
1188 * field not changing. However, if the count goes to zero, then only
1189 * cgroup_attach_task() can increment it again. Because a count of zero
1190 * means that no tasks are currently attached, therefore there is no
1191 * way a task attached to that cgroup can fork (the other way to
1192 * increment the count). So code holding cgroup_mutex can safely
1193 * assume that if the count is zero, it will stay zero. Similarly, if
1194 * a task holds cgroup_mutex on a cgroup with zero count, it
1195 * knows that the cgroup won't be removed, as cgroup_rmdir()
1196 * needs that mutex.
1197 *
1198 * A cgroup can only be deleted if both its 'count' of using tasks
1199 * is zero, and its list of 'children' cgroups is empty. Since all
1200 * tasks in the system use _some_ cgroup, and since there is always at
1201 * least one task in the system (init, pid == 1), therefore, root cgroup
1202 * always has either children cgroups and/or using tasks. So we don't
1203 * need a special hack to ensure that root cgroup cannot be deleted.
1204 *
1205 * P.S. One more locking exception. RCU is used to guard the
1206 * update of a tasks cgroup pointer by cgroup_attach_task()
1207 */
1208
1209 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1210 static const struct file_operations proc_cgroupstats_operations;
1211
1212 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1213 char *buf)
1214 {
1215 struct cgroup_subsys *ss = cft->ss;
1216
1217 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1218 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1219 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1220 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1221 cft->name);
1222 else
1223 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1224 return buf;
1225 }
1226
1227 /**
1228 * cgroup_file_mode - deduce file mode of a control file
1229 * @cft: the control file in question
1230 *
1231 * S_IRUGO for read, S_IWUSR for write.
1232 */
1233 static umode_t cgroup_file_mode(const struct cftype *cft)
1234 {
1235 umode_t mode = 0;
1236
1237 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1238 mode |= S_IRUGO;
1239
1240 if (cft->write_u64 || cft->write_s64 || cft->write) {
1241 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1242 mode |= S_IWUGO;
1243 else
1244 mode |= S_IWUSR;
1245 }
1246
1247 return mode;
1248 }
1249
1250 /**
1251 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1252 * @cgrp: the target cgroup
1253 * @subtree_control: the new subtree_control mask to consider
1254 *
1255 * On the default hierarchy, a subsystem may request other subsystems to be
1256 * enabled together through its ->depends_on mask. In such cases, more
1257 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1258 *
1259 * This function calculates which subsystems need to be enabled if
1260 * @subtree_control is to be applied to @cgrp. The returned mask is always
1261 * a superset of @subtree_control and follows the usual hierarchy rules.
1262 */
1263 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1264 unsigned long subtree_control)
1265 {
1266 struct cgroup *parent = cgroup_parent(cgrp);
1267 unsigned long cur_ss_mask = subtree_control;
1268 struct cgroup_subsys *ss;
1269 int ssid;
1270
1271 lockdep_assert_held(&cgroup_mutex);
1272
1273 if (!cgroup_on_dfl(cgrp))
1274 return cur_ss_mask;
1275
1276 while (true) {
1277 unsigned long new_ss_mask = cur_ss_mask;
1278
1279 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1280 new_ss_mask |= ss->depends_on;
1281
1282 /*
1283 * Mask out subsystems which aren't available. This can
1284 * happen only if some depended-upon subsystems were bound
1285 * to non-default hierarchies.
1286 */
1287 if (parent)
1288 new_ss_mask &= parent->child_subsys_mask;
1289 else
1290 new_ss_mask &= cgrp->root->subsys_mask;
1291
1292 if (new_ss_mask == cur_ss_mask)
1293 break;
1294 cur_ss_mask = new_ss_mask;
1295 }
1296
1297 return cur_ss_mask;
1298 }
1299
1300 /**
1301 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1302 * @cgrp: the target cgroup
1303 *
1304 * Update @cgrp->child_subsys_mask according to the current
1305 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1306 */
1307 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1308 {
1309 cgrp->child_subsys_mask =
1310 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1311 }
1312
1313 /**
1314 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1315 * @kn: the kernfs_node being serviced
1316 *
1317 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1318 * the method finishes if locking succeeded. Note that once this function
1319 * returns the cgroup returned by cgroup_kn_lock_live() may become
1320 * inaccessible any time. If the caller intends to continue to access the
1321 * cgroup, it should pin it before invoking this function.
1322 */
1323 static void cgroup_kn_unlock(struct kernfs_node *kn)
1324 {
1325 struct cgroup *cgrp;
1326
1327 if (kernfs_type(kn) == KERNFS_DIR)
1328 cgrp = kn->priv;
1329 else
1330 cgrp = kn->parent->priv;
1331
1332 mutex_unlock(&cgroup_mutex);
1333
1334 kernfs_unbreak_active_protection(kn);
1335 cgroup_put(cgrp);
1336 }
1337
1338 /**
1339 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1340 * @kn: the kernfs_node being serviced
1341 *
1342 * This helper is to be used by a cgroup kernfs method currently servicing
1343 * @kn. It breaks the active protection, performs cgroup locking and
1344 * verifies that the associated cgroup is alive. Returns the cgroup if
1345 * alive; otherwise, %NULL. A successful return should be undone by a
1346 * matching cgroup_kn_unlock() invocation.
1347 *
1348 * Any cgroup kernfs method implementation which requires locking the
1349 * associated cgroup should use this helper. It avoids nesting cgroup
1350 * locking under kernfs active protection and allows all kernfs operations
1351 * including self-removal.
1352 */
1353 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1354 {
1355 struct cgroup *cgrp;
1356
1357 if (kernfs_type(kn) == KERNFS_DIR)
1358 cgrp = kn->priv;
1359 else
1360 cgrp = kn->parent->priv;
1361
1362 /*
1363 * We're gonna grab cgroup_mutex which nests outside kernfs
1364 * active_ref. cgroup liveliness check alone provides enough
1365 * protection against removal. Ensure @cgrp stays accessible and
1366 * break the active_ref protection.
1367 */
1368 if (!cgroup_tryget(cgrp))
1369 return NULL;
1370 kernfs_break_active_protection(kn);
1371
1372 mutex_lock(&cgroup_mutex);
1373
1374 if (!cgroup_is_dead(cgrp))
1375 return cgrp;
1376
1377 cgroup_kn_unlock(kn);
1378 return NULL;
1379 }
1380
1381 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1382 {
1383 char name[CGROUP_FILE_NAME_MAX];
1384
1385 lockdep_assert_held(&cgroup_mutex);
1386
1387 if (cft->file_offset) {
1388 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1389 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1390
1391 spin_lock_irq(&cgroup_file_kn_lock);
1392 cfile->kn = NULL;
1393 spin_unlock_irq(&cgroup_file_kn_lock);
1394 }
1395
1396 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1397 }
1398
1399 /**
1400 * css_clear_dir - remove subsys files in a cgroup directory
1401 * @css: taget css
1402 * @cgrp_override: specify if target cgroup is different from css->cgroup
1403 */
1404 static void css_clear_dir(struct cgroup_subsys_state *css,
1405 struct cgroup *cgrp_override)
1406 {
1407 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1408 struct cftype *cfts;
1409
1410 list_for_each_entry(cfts, &css->ss->cfts, node)
1411 cgroup_addrm_files(css, cgrp, cfts, false);
1412 }
1413
1414 /**
1415 * css_populate_dir - create subsys files in a cgroup directory
1416 * @css: target css
1417 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1418 *
1419 * On failure, no file is added.
1420 */
1421 static int css_populate_dir(struct cgroup_subsys_state *css,
1422 struct cgroup *cgrp_override)
1423 {
1424 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1425 struct cftype *cfts, *failed_cfts;
1426 int ret;
1427
1428 if (!css->ss) {
1429 if (cgroup_on_dfl(cgrp))
1430 cfts = cgroup_dfl_base_files;
1431 else
1432 cfts = cgroup_legacy_base_files;
1433
1434 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1435 }
1436
1437 list_for_each_entry(cfts, &css->ss->cfts, node) {
1438 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1439 if (ret < 0) {
1440 failed_cfts = cfts;
1441 goto err;
1442 }
1443 }
1444 return 0;
1445 err:
1446 list_for_each_entry(cfts, &css->ss->cfts, node) {
1447 if (cfts == failed_cfts)
1448 break;
1449 cgroup_addrm_files(css, cgrp, cfts, false);
1450 }
1451 return ret;
1452 }
1453
1454 static int rebind_subsystems(struct cgroup_root *dst_root,
1455 unsigned long ss_mask)
1456 {
1457 struct cgroup *dcgrp = &dst_root->cgrp;
1458 struct cgroup_subsys *ss;
1459 unsigned long tmp_ss_mask;
1460 int ssid, i, ret;
1461
1462 lockdep_assert_held(&cgroup_mutex);
1463
1464 for_each_subsys_which(ss, ssid, &ss_mask) {
1465 /* if @ss has non-root csses attached to it, can't move */
1466 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1467 return -EBUSY;
1468
1469 /* can't move between two non-dummy roots either */
1470 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1471 return -EBUSY;
1472 }
1473
1474 /* skip creating root files on dfl_root for inhibited subsystems */
1475 tmp_ss_mask = ss_mask;
1476 if (dst_root == &cgrp_dfl_root)
1477 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1478
1479 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1480 struct cgroup *scgrp = &ss->root->cgrp;
1481 int tssid;
1482
1483 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1484 if (!ret)
1485 continue;
1486
1487 /*
1488 * Rebinding back to the default root is not allowed to
1489 * fail. Using both default and non-default roots should
1490 * be rare. Moving subsystems back and forth even more so.
1491 * Just warn about it and continue.
1492 */
1493 if (dst_root == &cgrp_dfl_root) {
1494 if (cgrp_dfl_root_visible) {
1495 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1496 ret, ss_mask);
1497 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1498 }
1499 continue;
1500 }
1501
1502 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1503 if (tssid == ssid)
1504 break;
1505 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1506 }
1507 return ret;
1508 }
1509
1510 /*
1511 * Nothing can fail from this point on. Remove files for the
1512 * removed subsystems and rebind each subsystem.
1513 */
1514 for_each_subsys_which(ss, ssid, &ss_mask) {
1515 struct cgroup_root *src_root = ss->root;
1516 struct cgroup *scgrp = &src_root->cgrp;
1517 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1518 struct css_set *cset;
1519
1520 WARN_ON(!css || cgroup_css(dcgrp, ss));
1521
1522 css_clear_dir(css, NULL);
1523
1524 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1525 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1526 ss->root = dst_root;
1527 css->cgroup = dcgrp;
1528
1529 spin_lock_bh(&css_set_lock);
1530 hash_for_each(css_set_table, i, cset, hlist)
1531 list_move_tail(&cset->e_cset_node[ss->id],
1532 &dcgrp->e_csets[ss->id]);
1533 spin_unlock_bh(&css_set_lock);
1534
1535 src_root->subsys_mask &= ~(1 << ssid);
1536 scgrp->subtree_control &= ~(1 << ssid);
1537 cgroup_refresh_child_subsys_mask(scgrp);
1538
1539 /* default hierarchy doesn't enable controllers by default */
1540 dst_root->subsys_mask |= 1 << ssid;
1541 if (dst_root == &cgrp_dfl_root) {
1542 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1543 } else {
1544 dcgrp->subtree_control |= 1 << ssid;
1545 cgroup_refresh_child_subsys_mask(dcgrp);
1546 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1547 }
1548
1549 if (ss->bind)
1550 ss->bind(css);
1551 }
1552
1553 kernfs_activate(dcgrp->kn);
1554 return 0;
1555 }
1556
1557 static int cgroup_show_options(struct seq_file *seq,
1558 struct kernfs_root *kf_root)
1559 {
1560 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1561 struct cgroup_subsys *ss;
1562 int ssid;
1563
1564 if (root != &cgrp_dfl_root)
1565 for_each_subsys(ss, ssid)
1566 if (root->subsys_mask & (1 << ssid))
1567 seq_show_option(seq, ss->legacy_name, NULL);
1568 if (root->flags & CGRP_ROOT_NOPREFIX)
1569 seq_puts(seq, ",noprefix");
1570 if (root->flags & CGRP_ROOT_XATTR)
1571 seq_puts(seq, ",xattr");
1572
1573 spin_lock(&release_agent_path_lock);
1574 if (strlen(root->release_agent_path))
1575 seq_show_option(seq, "release_agent",
1576 root->release_agent_path);
1577 spin_unlock(&release_agent_path_lock);
1578
1579 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1580 seq_puts(seq, ",clone_children");
1581 if (strlen(root->name))
1582 seq_show_option(seq, "name", root->name);
1583 return 0;
1584 }
1585
1586 struct cgroup_sb_opts {
1587 unsigned long subsys_mask;
1588 unsigned int flags;
1589 char *release_agent;
1590 bool cpuset_clone_children;
1591 char *name;
1592 /* User explicitly requested empty subsystem */
1593 bool none;
1594 };
1595
1596 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1597 {
1598 char *token, *o = data;
1599 bool all_ss = false, one_ss = false;
1600 unsigned long mask = -1UL;
1601 struct cgroup_subsys *ss;
1602 int nr_opts = 0;
1603 int i;
1604
1605 #ifdef CONFIG_CPUSETS
1606 mask = ~(1U << cpuset_cgrp_id);
1607 #endif
1608
1609 memset(opts, 0, sizeof(*opts));
1610
1611 while ((token = strsep(&o, ",")) != NULL) {
1612 nr_opts++;
1613
1614 if (!*token)
1615 return -EINVAL;
1616 if (!strcmp(token, "none")) {
1617 /* Explicitly have no subsystems */
1618 opts->none = true;
1619 continue;
1620 }
1621 if (!strcmp(token, "all")) {
1622 /* Mutually exclusive option 'all' + subsystem name */
1623 if (one_ss)
1624 return -EINVAL;
1625 all_ss = true;
1626 continue;
1627 }
1628 if (!strcmp(token, "noprefix")) {
1629 opts->flags |= CGRP_ROOT_NOPREFIX;
1630 continue;
1631 }
1632 if (!strcmp(token, "clone_children")) {
1633 opts->cpuset_clone_children = true;
1634 continue;
1635 }
1636 if (!strcmp(token, "xattr")) {
1637 opts->flags |= CGRP_ROOT_XATTR;
1638 continue;
1639 }
1640 if (!strncmp(token, "release_agent=", 14)) {
1641 /* Specifying two release agents is forbidden */
1642 if (opts->release_agent)
1643 return -EINVAL;
1644 opts->release_agent =
1645 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1646 if (!opts->release_agent)
1647 return -ENOMEM;
1648 continue;
1649 }
1650 if (!strncmp(token, "name=", 5)) {
1651 const char *name = token + 5;
1652 /* Can't specify an empty name */
1653 if (!strlen(name))
1654 return -EINVAL;
1655 /* Must match [\w.-]+ */
1656 for (i = 0; i < strlen(name); i++) {
1657 char c = name[i];
1658 if (isalnum(c))
1659 continue;
1660 if ((c == '.') || (c == '-') || (c == '_'))
1661 continue;
1662 return -EINVAL;
1663 }
1664 /* Specifying two names is forbidden */
1665 if (opts->name)
1666 return -EINVAL;
1667 opts->name = kstrndup(name,
1668 MAX_CGROUP_ROOT_NAMELEN - 1,
1669 GFP_KERNEL);
1670 if (!opts->name)
1671 return -ENOMEM;
1672
1673 continue;
1674 }
1675
1676 for_each_subsys(ss, i) {
1677 if (strcmp(token, ss->legacy_name))
1678 continue;
1679 if (!cgroup_ssid_enabled(i))
1680 continue;
1681
1682 /* Mutually exclusive option 'all' + subsystem name */
1683 if (all_ss)
1684 return -EINVAL;
1685 opts->subsys_mask |= (1 << i);
1686 one_ss = true;
1687
1688 break;
1689 }
1690 if (i == CGROUP_SUBSYS_COUNT)
1691 return -ENOENT;
1692 }
1693
1694 /*
1695 * If the 'all' option was specified select all the subsystems,
1696 * otherwise if 'none', 'name=' and a subsystem name options were
1697 * not specified, let's default to 'all'
1698 */
1699 if (all_ss || (!one_ss && !opts->none && !opts->name))
1700 for_each_subsys(ss, i)
1701 if (cgroup_ssid_enabled(i))
1702 opts->subsys_mask |= (1 << i);
1703
1704 /*
1705 * We either have to specify by name or by subsystems. (So all
1706 * empty hierarchies must have a name).
1707 */
1708 if (!opts->subsys_mask && !opts->name)
1709 return -EINVAL;
1710
1711 /*
1712 * Option noprefix was introduced just for backward compatibility
1713 * with the old cpuset, so we allow noprefix only if mounting just
1714 * the cpuset subsystem.
1715 */
1716 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1717 return -EINVAL;
1718
1719 /* Can't specify "none" and some subsystems */
1720 if (opts->subsys_mask && opts->none)
1721 return -EINVAL;
1722
1723 return 0;
1724 }
1725
1726 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1727 {
1728 int ret = 0;
1729 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1730 struct cgroup_sb_opts opts;
1731 unsigned long added_mask, removed_mask;
1732
1733 if (root == &cgrp_dfl_root) {
1734 pr_err("remount is not allowed\n");
1735 return -EINVAL;
1736 }
1737
1738 mutex_lock(&cgroup_mutex);
1739
1740 /* See what subsystems are wanted */
1741 ret = parse_cgroupfs_options(data, &opts);
1742 if (ret)
1743 goto out_unlock;
1744
1745 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1746 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1747 task_tgid_nr(current), current->comm);
1748
1749 added_mask = opts.subsys_mask & ~root->subsys_mask;
1750 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1751
1752 /* Don't allow flags or name to change at remount */
1753 if ((opts.flags ^ root->flags) ||
1754 (opts.name && strcmp(opts.name, root->name))) {
1755 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1756 opts.flags, opts.name ?: "", root->flags, root->name);
1757 ret = -EINVAL;
1758 goto out_unlock;
1759 }
1760
1761 /* remounting is not allowed for populated hierarchies */
1762 if (!list_empty(&root->cgrp.self.children)) {
1763 ret = -EBUSY;
1764 goto out_unlock;
1765 }
1766
1767 ret = rebind_subsystems(root, added_mask);
1768 if (ret)
1769 goto out_unlock;
1770
1771 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1772
1773 if (opts.release_agent) {
1774 spin_lock(&release_agent_path_lock);
1775 strcpy(root->release_agent_path, opts.release_agent);
1776 spin_unlock(&release_agent_path_lock);
1777 }
1778 out_unlock:
1779 kfree(opts.release_agent);
1780 kfree(opts.name);
1781 mutex_unlock(&cgroup_mutex);
1782 return ret;
1783 }
1784
1785 /*
1786 * To reduce the fork() overhead for systems that are not actually using
1787 * their cgroups capability, we don't maintain the lists running through
1788 * each css_set to its tasks until we see the list actually used - in other
1789 * words after the first mount.
1790 */
1791 static bool use_task_css_set_links __read_mostly;
1792
1793 static void cgroup_enable_task_cg_lists(void)
1794 {
1795 struct task_struct *p, *g;
1796
1797 spin_lock_bh(&css_set_lock);
1798
1799 if (use_task_css_set_links)
1800 goto out_unlock;
1801
1802 use_task_css_set_links = true;
1803
1804 /*
1805 * We need tasklist_lock because RCU is not safe against
1806 * while_each_thread(). Besides, a forking task that has passed
1807 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1808 * is not guaranteed to have its child immediately visible in the
1809 * tasklist if we walk through it with RCU.
1810 */
1811 read_lock(&tasklist_lock);
1812 do_each_thread(g, p) {
1813 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1814 task_css_set(p) != &init_css_set);
1815
1816 /*
1817 * We should check if the process is exiting, otherwise
1818 * it will race with cgroup_exit() in that the list
1819 * entry won't be deleted though the process has exited.
1820 * Do it while holding siglock so that we don't end up
1821 * racing against cgroup_exit().
1822 */
1823 spin_lock_irq(&p->sighand->siglock);
1824 if (!(p->flags & PF_EXITING)) {
1825 struct css_set *cset = task_css_set(p);
1826
1827 if (!css_set_populated(cset))
1828 css_set_update_populated(cset, true);
1829 list_add_tail(&p->cg_list, &cset->tasks);
1830 get_css_set(cset);
1831 }
1832 spin_unlock_irq(&p->sighand->siglock);
1833 } while_each_thread(g, p);
1834 read_unlock(&tasklist_lock);
1835 out_unlock:
1836 spin_unlock_bh(&css_set_lock);
1837 }
1838
1839 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1840 {
1841 struct cgroup_subsys *ss;
1842 int ssid;
1843
1844 INIT_LIST_HEAD(&cgrp->self.sibling);
1845 INIT_LIST_HEAD(&cgrp->self.children);
1846 INIT_LIST_HEAD(&cgrp->cset_links);
1847 INIT_LIST_HEAD(&cgrp->pidlists);
1848 mutex_init(&cgrp->pidlist_mutex);
1849 cgrp->self.cgroup = cgrp;
1850 cgrp->self.flags |= CSS_ONLINE;
1851
1852 for_each_subsys(ss, ssid)
1853 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1854
1855 init_waitqueue_head(&cgrp->offline_waitq);
1856 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1857 }
1858
1859 static void init_cgroup_root(struct cgroup_root *root,
1860 struct cgroup_sb_opts *opts)
1861 {
1862 struct cgroup *cgrp = &root->cgrp;
1863
1864 INIT_LIST_HEAD(&root->root_list);
1865 atomic_set(&root->nr_cgrps, 1);
1866 cgrp->root = root;
1867 init_cgroup_housekeeping(cgrp);
1868 idr_init(&root->cgroup_idr);
1869
1870 root->flags = opts->flags;
1871 if (opts->release_agent)
1872 strcpy(root->release_agent_path, opts->release_agent);
1873 if (opts->name)
1874 strcpy(root->name, opts->name);
1875 if (opts->cpuset_clone_children)
1876 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1877 }
1878
1879 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1880 {
1881 LIST_HEAD(tmp_links);
1882 struct cgroup *root_cgrp = &root->cgrp;
1883 struct css_set *cset;
1884 int i, ret;
1885
1886 lockdep_assert_held(&cgroup_mutex);
1887
1888 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1889 if (ret < 0)
1890 goto out;
1891 root_cgrp->id = ret;
1892 root_cgrp->ancestor_ids[0] = ret;
1893
1894 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1895 GFP_KERNEL);
1896 if (ret)
1897 goto out;
1898
1899 /*
1900 * We're accessing css_set_count without locking css_set_lock here,
1901 * but that's OK - it can only be increased by someone holding
1902 * cgroup_lock, and that's us. The worst that can happen is that we
1903 * have some link structures left over
1904 */
1905 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1906 if (ret)
1907 goto cancel_ref;
1908
1909 ret = cgroup_init_root_id(root);
1910 if (ret)
1911 goto cancel_ref;
1912
1913 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1914 KERNFS_ROOT_CREATE_DEACTIVATED,
1915 root_cgrp);
1916 if (IS_ERR(root->kf_root)) {
1917 ret = PTR_ERR(root->kf_root);
1918 goto exit_root_id;
1919 }
1920 root_cgrp->kn = root->kf_root->kn;
1921
1922 ret = css_populate_dir(&root_cgrp->self, NULL);
1923 if (ret)
1924 goto destroy_root;
1925
1926 ret = rebind_subsystems(root, ss_mask);
1927 if (ret)
1928 goto destroy_root;
1929
1930 /*
1931 * There must be no failure case after here, since rebinding takes
1932 * care of subsystems' refcounts, which are explicitly dropped in
1933 * the failure exit path.
1934 */
1935 list_add(&root->root_list, &cgroup_roots);
1936 cgroup_root_count++;
1937
1938 /*
1939 * Link the root cgroup in this hierarchy into all the css_set
1940 * objects.
1941 */
1942 spin_lock_bh(&css_set_lock);
1943 hash_for_each(css_set_table, i, cset, hlist) {
1944 link_css_set(&tmp_links, cset, root_cgrp);
1945 if (css_set_populated(cset))
1946 cgroup_update_populated(root_cgrp, true);
1947 }
1948 spin_unlock_bh(&css_set_lock);
1949
1950 BUG_ON(!list_empty(&root_cgrp->self.children));
1951 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1952
1953 kernfs_activate(root_cgrp->kn);
1954 ret = 0;
1955 goto out;
1956
1957 destroy_root:
1958 kernfs_destroy_root(root->kf_root);
1959 root->kf_root = NULL;
1960 exit_root_id:
1961 cgroup_exit_root_id(root);
1962 cancel_ref:
1963 percpu_ref_exit(&root_cgrp->self.refcnt);
1964 out:
1965 free_cgrp_cset_links(&tmp_links);
1966 return ret;
1967 }
1968
1969 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1970 int flags, const char *unused_dev_name,
1971 void *data)
1972 {
1973 bool is_v2 = fs_type == &cgroup2_fs_type;
1974 struct super_block *pinned_sb = NULL;
1975 struct cgroup_subsys *ss;
1976 struct cgroup_root *root;
1977 struct cgroup_sb_opts opts;
1978 struct dentry *dentry;
1979 int ret;
1980 int i;
1981 bool new_sb;
1982
1983 /*
1984 * The first time anyone tries to mount a cgroup, enable the list
1985 * linking each css_set to its tasks and fix up all existing tasks.
1986 */
1987 if (!use_task_css_set_links)
1988 cgroup_enable_task_cg_lists();
1989
1990 if (is_v2) {
1991 if (data) {
1992 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
1993 return ERR_PTR(-EINVAL);
1994 }
1995 cgrp_dfl_root_visible = true;
1996 root = &cgrp_dfl_root;
1997 cgroup_get(&root->cgrp);
1998 goto out_mount;
1999 }
2000
2001 mutex_lock(&cgroup_mutex);
2002
2003 /* First find the desired set of subsystems */
2004 ret = parse_cgroupfs_options(data, &opts);
2005 if (ret)
2006 goto out_unlock;
2007
2008 /*
2009 * Destruction of cgroup root is asynchronous, so subsystems may
2010 * still be dying after the previous unmount. Let's drain the
2011 * dying subsystems. We just need to ensure that the ones
2012 * unmounted previously finish dying and don't care about new ones
2013 * starting. Testing ref liveliness is good enough.
2014 */
2015 for_each_subsys(ss, i) {
2016 if (!(opts.subsys_mask & (1 << i)) ||
2017 ss->root == &cgrp_dfl_root)
2018 continue;
2019
2020 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2021 mutex_unlock(&cgroup_mutex);
2022 msleep(10);
2023 ret = restart_syscall();
2024 goto out_free;
2025 }
2026 cgroup_put(&ss->root->cgrp);
2027 }
2028
2029 for_each_root(root) {
2030 bool name_match = false;
2031
2032 if (root == &cgrp_dfl_root)
2033 continue;
2034
2035 /*
2036 * If we asked for a name then it must match. Also, if
2037 * name matches but sybsys_mask doesn't, we should fail.
2038 * Remember whether name matched.
2039 */
2040 if (opts.name) {
2041 if (strcmp(opts.name, root->name))
2042 continue;
2043 name_match = true;
2044 }
2045
2046 /*
2047 * If we asked for subsystems (or explicitly for no
2048 * subsystems) then they must match.
2049 */
2050 if ((opts.subsys_mask || opts.none) &&
2051 (opts.subsys_mask != root->subsys_mask)) {
2052 if (!name_match)
2053 continue;
2054 ret = -EBUSY;
2055 goto out_unlock;
2056 }
2057
2058 if (root->flags ^ opts.flags)
2059 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2060
2061 /*
2062 * We want to reuse @root whose lifetime is governed by its
2063 * ->cgrp. Let's check whether @root is alive and keep it
2064 * that way. As cgroup_kill_sb() can happen anytime, we
2065 * want to block it by pinning the sb so that @root doesn't
2066 * get killed before mount is complete.
2067 *
2068 * With the sb pinned, tryget_live can reliably indicate
2069 * whether @root can be reused. If it's being killed,
2070 * drain it. We can use wait_queue for the wait but this
2071 * path is super cold. Let's just sleep a bit and retry.
2072 */
2073 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2074 if (IS_ERR(pinned_sb) ||
2075 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2076 mutex_unlock(&cgroup_mutex);
2077 if (!IS_ERR_OR_NULL(pinned_sb))
2078 deactivate_super(pinned_sb);
2079 msleep(10);
2080 ret = restart_syscall();
2081 goto out_free;
2082 }
2083
2084 ret = 0;
2085 goto out_unlock;
2086 }
2087
2088 /*
2089 * No such thing, create a new one. name= matching without subsys
2090 * specification is allowed for already existing hierarchies but we
2091 * can't create new one without subsys specification.
2092 */
2093 if (!opts.subsys_mask && !opts.none) {
2094 ret = -EINVAL;
2095 goto out_unlock;
2096 }
2097
2098 root = kzalloc(sizeof(*root), GFP_KERNEL);
2099 if (!root) {
2100 ret = -ENOMEM;
2101 goto out_unlock;
2102 }
2103
2104 init_cgroup_root(root, &opts);
2105
2106 ret = cgroup_setup_root(root, opts.subsys_mask);
2107 if (ret)
2108 cgroup_free_root(root);
2109
2110 out_unlock:
2111 mutex_unlock(&cgroup_mutex);
2112 out_free:
2113 kfree(opts.release_agent);
2114 kfree(opts.name);
2115
2116 if (ret)
2117 return ERR_PTR(ret);
2118 out_mount:
2119 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2120 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2121 &new_sb);
2122 if (IS_ERR(dentry) || !new_sb)
2123 cgroup_put(&root->cgrp);
2124
2125 /*
2126 * If @pinned_sb, we're reusing an existing root and holding an
2127 * extra ref on its sb. Mount is complete. Put the extra ref.
2128 */
2129 if (pinned_sb) {
2130 WARN_ON(new_sb);
2131 deactivate_super(pinned_sb);
2132 }
2133
2134 return dentry;
2135 }
2136
2137 static void cgroup_kill_sb(struct super_block *sb)
2138 {
2139 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2140 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2141
2142 /*
2143 * If @root doesn't have any mounts or children, start killing it.
2144 * This prevents new mounts by disabling percpu_ref_tryget_live().
2145 * cgroup_mount() may wait for @root's release.
2146 *
2147 * And don't kill the default root.
2148 */
2149 if (!list_empty(&root->cgrp.self.children) ||
2150 root == &cgrp_dfl_root)
2151 cgroup_put(&root->cgrp);
2152 else
2153 percpu_ref_kill(&root->cgrp.self.refcnt);
2154
2155 kernfs_kill_sb(sb);
2156 }
2157
2158 static struct file_system_type cgroup_fs_type = {
2159 .name = "cgroup",
2160 .mount = cgroup_mount,
2161 .kill_sb = cgroup_kill_sb,
2162 };
2163
2164 static struct file_system_type cgroup2_fs_type = {
2165 .name = "cgroup2",
2166 .mount = cgroup_mount,
2167 .kill_sb = cgroup_kill_sb,
2168 };
2169
2170 /**
2171 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2172 * @task: target task
2173 * @buf: the buffer to write the path into
2174 * @buflen: the length of the buffer
2175 *
2176 * Determine @task's cgroup on the first (the one with the lowest non-zero
2177 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2178 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2179 * cgroup controller callbacks.
2180 *
2181 * Return value is the same as kernfs_path().
2182 */
2183 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2184 {
2185 struct cgroup_root *root;
2186 struct cgroup *cgrp;
2187 int hierarchy_id = 1;
2188 char *path = NULL;
2189
2190 mutex_lock(&cgroup_mutex);
2191 spin_lock_bh(&css_set_lock);
2192
2193 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2194
2195 if (root) {
2196 cgrp = task_cgroup_from_root(task, root);
2197 path = cgroup_path(cgrp, buf, buflen);
2198 } else {
2199 /* if no hierarchy exists, everyone is in "/" */
2200 if (strlcpy(buf, "/", buflen) < buflen)
2201 path = buf;
2202 }
2203
2204 spin_unlock_bh(&css_set_lock);
2205 mutex_unlock(&cgroup_mutex);
2206 return path;
2207 }
2208 EXPORT_SYMBOL_GPL(task_cgroup_path);
2209
2210 /* used to track tasks and other necessary states during migration */
2211 struct cgroup_taskset {
2212 /* the src and dst cset list running through cset->mg_node */
2213 struct list_head src_csets;
2214 struct list_head dst_csets;
2215
2216 /* the subsys currently being processed */
2217 int ssid;
2218
2219 /*
2220 * Fields for cgroup_taskset_*() iteration.
2221 *
2222 * Before migration is committed, the target migration tasks are on
2223 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2224 * the csets on ->dst_csets. ->csets point to either ->src_csets
2225 * or ->dst_csets depending on whether migration is committed.
2226 *
2227 * ->cur_csets and ->cur_task point to the current task position
2228 * during iteration.
2229 */
2230 struct list_head *csets;
2231 struct css_set *cur_cset;
2232 struct task_struct *cur_task;
2233 };
2234
2235 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2236 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2237 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2238 .csets = &tset.src_csets, \
2239 }
2240
2241 /**
2242 * cgroup_taskset_add - try to add a migration target task to a taskset
2243 * @task: target task
2244 * @tset: target taskset
2245 *
2246 * Add @task, which is a migration target, to @tset. This function becomes
2247 * noop if @task doesn't need to be migrated. @task's css_set should have
2248 * been added as a migration source and @task->cg_list will be moved from
2249 * the css_set's tasks list to mg_tasks one.
2250 */
2251 static void cgroup_taskset_add(struct task_struct *task,
2252 struct cgroup_taskset *tset)
2253 {
2254 struct css_set *cset;
2255
2256 lockdep_assert_held(&css_set_lock);
2257
2258 /* @task either already exited or can't exit until the end */
2259 if (task->flags & PF_EXITING)
2260 return;
2261
2262 /* leave @task alone if post_fork() hasn't linked it yet */
2263 if (list_empty(&task->cg_list))
2264 return;
2265
2266 cset = task_css_set(task);
2267 if (!cset->mg_src_cgrp)
2268 return;
2269
2270 list_move_tail(&task->cg_list, &cset->mg_tasks);
2271 if (list_empty(&cset->mg_node))
2272 list_add_tail(&cset->mg_node, &tset->src_csets);
2273 if (list_empty(&cset->mg_dst_cset->mg_node))
2274 list_move_tail(&cset->mg_dst_cset->mg_node,
2275 &tset->dst_csets);
2276 }
2277
2278 /**
2279 * cgroup_taskset_first - reset taskset and return the first task
2280 * @tset: taskset of interest
2281 * @dst_cssp: output variable for the destination css
2282 *
2283 * @tset iteration is initialized and the first task is returned.
2284 */
2285 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2286 struct cgroup_subsys_state **dst_cssp)
2287 {
2288 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2289 tset->cur_task = NULL;
2290
2291 return cgroup_taskset_next(tset, dst_cssp);
2292 }
2293
2294 /**
2295 * cgroup_taskset_next - iterate to the next task in taskset
2296 * @tset: taskset of interest
2297 * @dst_cssp: output variable for the destination css
2298 *
2299 * Return the next task in @tset. Iteration must have been initialized
2300 * with cgroup_taskset_first().
2301 */
2302 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2303 struct cgroup_subsys_state **dst_cssp)
2304 {
2305 struct css_set *cset = tset->cur_cset;
2306 struct task_struct *task = tset->cur_task;
2307
2308 while (&cset->mg_node != tset->csets) {
2309 if (!task)
2310 task = list_first_entry(&cset->mg_tasks,
2311 struct task_struct, cg_list);
2312 else
2313 task = list_next_entry(task, cg_list);
2314
2315 if (&task->cg_list != &cset->mg_tasks) {
2316 tset->cur_cset = cset;
2317 tset->cur_task = task;
2318
2319 /*
2320 * This function may be called both before and
2321 * after cgroup_taskset_migrate(). The two cases
2322 * can be distinguished by looking at whether @cset
2323 * has its ->mg_dst_cset set.
2324 */
2325 if (cset->mg_dst_cset)
2326 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2327 else
2328 *dst_cssp = cset->subsys[tset->ssid];
2329
2330 return task;
2331 }
2332
2333 cset = list_next_entry(cset, mg_node);
2334 task = NULL;
2335 }
2336
2337 return NULL;
2338 }
2339
2340 /**
2341 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2342 * @tset: taget taskset
2343 * @dst_cgrp: destination cgroup
2344 *
2345 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2346 * ->can_attach callbacks fails and guarantees that either all or none of
2347 * the tasks in @tset are migrated. @tset is consumed regardless of
2348 * success.
2349 */
2350 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2351 struct cgroup *dst_cgrp)
2352 {
2353 struct cgroup_subsys_state *css, *failed_css = NULL;
2354 struct task_struct *task, *tmp_task;
2355 struct css_set *cset, *tmp_cset;
2356 int i, ret;
2357
2358 /* methods shouldn't be called if no task is actually migrating */
2359 if (list_empty(&tset->src_csets))
2360 return 0;
2361
2362 /* check that we can legitimately attach to the cgroup */
2363 for_each_e_css(css, i, dst_cgrp) {
2364 if (css->ss->can_attach) {
2365 tset->ssid = i;
2366 ret = css->ss->can_attach(tset);
2367 if (ret) {
2368 failed_css = css;
2369 goto out_cancel_attach;
2370 }
2371 }
2372 }
2373
2374 /*
2375 * Now that we're guaranteed success, proceed to move all tasks to
2376 * the new cgroup. There are no failure cases after here, so this
2377 * is the commit point.
2378 */
2379 spin_lock_bh(&css_set_lock);
2380 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2381 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2382 struct css_set *from_cset = task_css_set(task);
2383 struct css_set *to_cset = cset->mg_dst_cset;
2384
2385 get_css_set(to_cset);
2386 css_set_move_task(task, from_cset, to_cset, true);
2387 put_css_set_locked(from_cset);
2388 }
2389 }
2390 spin_unlock_bh(&css_set_lock);
2391
2392 /*
2393 * Migration is committed, all target tasks are now on dst_csets.
2394 * Nothing is sensitive to fork() after this point. Notify
2395 * controllers that migration is complete.
2396 */
2397 tset->csets = &tset->dst_csets;
2398
2399 for_each_e_css(css, i, dst_cgrp) {
2400 if (css->ss->attach) {
2401 tset->ssid = i;
2402 css->ss->attach(tset);
2403 }
2404 }
2405
2406 ret = 0;
2407 goto out_release_tset;
2408
2409 out_cancel_attach:
2410 for_each_e_css(css, i, dst_cgrp) {
2411 if (css == failed_css)
2412 break;
2413 if (css->ss->cancel_attach) {
2414 tset->ssid = i;
2415 css->ss->cancel_attach(tset);
2416 }
2417 }
2418 out_release_tset:
2419 spin_lock_bh(&css_set_lock);
2420 list_splice_init(&tset->dst_csets, &tset->src_csets);
2421 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2422 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2423 list_del_init(&cset->mg_node);
2424 }
2425 spin_unlock_bh(&css_set_lock);
2426 return ret;
2427 }
2428
2429 /**
2430 * cgroup_migrate_finish - cleanup after attach
2431 * @preloaded_csets: list of preloaded css_sets
2432 *
2433 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2434 * those functions for details.
2435 */
2436 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2437 {
2438 struct css_set *cset, *tmp_cset;
2439
2440 lockdep_assert_held(&cgroup_mutex);
2441
2442 spin_lock_bh(&css_set_lock);
2443 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2444 cset->mg_src_cgrp = NULL;
2445 cset->mg_dst_cset = NULL;
2446 list_del_init(&cset->mg_preload_node);
2447 put_css_set_locked(cset);
2448 }
2449 spin_unlock_bh(&css_set_lock);
2450 }
2451
2452 /**
2453 * cgroup_migrate_add_src - add a migration source css_set
2454 * @src_cset: the source css_set to add
2455 * @dst_cgrp: the destination cgroup
2456 * @preloaded_csets: list of preloaded css_sets
2457 *
2458 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2459 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2460 * up by cgroup_migrate_finish().
2461 *
2462 * This function may be called without holding cgroup_threadgroup_rwsem
2463 * even if the target is a process. Threads may be created and destroyed
2464 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2465 * into play and the preloaded css_sets are guaranteed to cover all
2466 * migrations.
2467 */
2468 static void cgroup_migrate_add_src(struct css_set *src_cset,
2469 struct cgroup *dst_cgrp,
2470 struct list_head *preloaded_csets)
2471 {
2472 struct cgroup *src_cgrp;
2473
2474 lockdep_assert_held(&cgroup_mutex);
2475 lockdep_assert_held(&css_set_lock);
2476
2477 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2478
2479 if (!list_empty(&src_cset->mg_preload_node))
2480 return;
2481
2482 WARN_ON(src_cset->mg_src_cgrp);
2483 WARN_ON(!list_empty(&src_cset->mg_tasks));
2484 WARN_ON(!list_empty(&src_cset->mg_node));
2485
2486 src_cset->mg_src_cgrp = src_cgrp;
2487 get_css_set(src_cset);
2488 list_add(&src_cset->mg_preload_node, preloaded_csets);
2489 }
2490
2491 /**
2492 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2493 * @dst_cgrp: the destination cgroup (may be %NULL)
2494 * @preloaded_csets: list of preloaded source css_sets
2495 *
2496 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2497 * have been preloaded to @preloaded_csets. This function looks up and
2498 * pins all destination css_sets, links each to its source, and append them
2499 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2500 * source css_set is assumed to be its cgroup on the default hierarchy.
2501 *
2502 * This function must be called after cgroup_migrate_add_src() has been
2503 * called on each migration source css_set. After migration is performed
2504 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2505 * @preloaded_csets.
2506 */
2507 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2508 struct list_head *preloaded_csets)
2509 {
2510 LIST_HEAD(csets);
2511 struct css_set *src_cset, *tmp_cset;
2512
2513 lockdep_assert_held(&cgroup_mutex);
2514
2515 /*
2516 * Except for the root, child_subsys_mask must be zero for a cgroup
2517 * with tasks so that child cgroups don't compete against tasks.
2518 */
2519 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2520 dst_cgrp->child_subsys_mask)
2521 return -EBUSY;
2522
2523 /* look up the dst cset for each src cset and link it to src */
2524 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2525 struct css_set *dst_cset;
2526
2527 dst_cset = find_css_set(src_cset,
2528 dst_cgrp ?: src_cset->dfl_cgrp);
2529 if (!dst_cset)
2530 goto err;
2531
2532 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2533
2534 /*
2535 * If src cset equals dst, it's noop. Drop the src.
2536 * cgroup_migrate() will skip the cset too. Note that we
2537 * can't handle src == dst as some nodes are used by both.
2538 */
2539 if (src_cset == dst_cset) {
2540 src_cset->mg_src_cgrp = NULL;
2541 list_del_init(&src_cset->mg_preload_node);
2542 put_css_set(src_cset);
2543 put_css_set(dst_cset);
2544 continue;
2545 }
2546
2547 src_cset->mg_dst_cset = dst_cset;
2548
2549 if (list_empty(&dst_cset->mg_preload_node))
2550 list_add(&dst_cset->mg_preload_node, &csets);
2551 else
2552 put_css_set(dst_cset);
2553 }
2554
2555 list_splice_tail(&csets, preloaded_csets);
2556 return 0;
2557 err:
2558 cgroup_migrate_finish(&csets);
2559 return -ENOMEM;
2560 }
2561
2562 /**
2563 * cgroup_migrate - migrate a process or task to a cgroup
2564 * @leader: the leader of the process or the task to migrate
2565 * @threadgroup: whether @leader points to the whole process or a single task
2566 * @cgrp: the destination cgroup
2567 *
2568 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2569 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2570 * caller is also responsible for invoking cgroup_migrate_add_src() and
2571 * cgroup_migrate_prepare_dst() on the targets before invoking this
2572 * function and following up with cgroup_migrate_finish().
2573 *
2574 * As long as a controller's ->can_attach() doesn't fail, this function is
2575 * guaranteed to succeed. This means that, excluding ->can_attach()
2576 * failure, when migrating multiple targets, the success or failure can be
2577 * decided for all targets by invoking group_migrate_prepare_dst() before
2578 * actually starting migrating.
2579 */
2580 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2581 struct cgroup *cgrp)
2582 {
2583 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2584 struct task_struct *task;
2585
2586 /*
2587 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2588 * already PF_EXITING could be freed from underneath us unless we
2589 * take an rcu_read_lock.
2590 */
2591 spin_lock_bh(&css_set_lock);
2592 rcu_read_lock();
2593 task = leader;
2594 do {
2595 cgroup_taskset_add(task, &tset);
2596 if (!threadgroup)
2597 break;
2598 } while_each_thread(leader, task);
2599 rcu_read_unlock();
2600 spin_unlock_bh(&css_set_lock);
2601
2602 return cgroup_taskset_migrate(&tset, cgrp);
2603 }
2604
2605 /**
2606 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2607 * @dst_cgrp: the cgroup to attach to
2608 * @leader: the task or the leader of the threadgroup to be attached
2609 * @threadgroup: attach the whole threadgroup?
2610 *
2611 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2612 */
2613 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2614 struct task_struct *leader, bool threadgroup)
2615 {
2616 LIST_HEAD(preloaded_csets);
2617 struct task_struct *task;
2618 int ret;
2619
2620 /* look up all src csets */
2621 spin_lock_bh(&css_set_lock);
2622 rcu_read_lock();
2623 task = leader;
2624 do {
2625 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2626 &preloaded_csets);
2627 if (!threadgroup)
2628 break;
2629 } while_each_thread(leader, task);
2630 rcu_read_unlock();
2631 spin_unlock_bh(&css_set_lock);
2632
2633 /* prepare dst csets and commit */
2634 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2635 if (!ret)
2636 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2637
2638 cgroup_migrate_finish(&preloaded_csets);
2639 return ret;
2640 }
2641
2642 static int cgroup_procs_write_permission(struct task_struct *task,
2643 struct cgroup *dst_cgrp,
2644 struct kernfs_open_file *of)
2645 {
2646 const struct cred *cred = current_cred();
2647 const struct cred *tcred = get_task_cred(task);
2648 int ret = 0;
2649
2650 /*
2651 * even if we're attaching all tasks in the thread group, we only
2652 * need to check permissions on one of them.
2653 */
2654 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2655 !uid_eq(cred->euid, tcred->uid) &&
2656 !uid_eq(cred->euid, tcred->suid))
2657 ret = -EACCES;
2658
2659 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2660 struct super_block *sb = of->file->f_path.dentry->d_sb;
2661 struct cgroup *cgrp;
2662 struct inode *inode;
2663
2664 spin_lock_bh(&css_set_lock);
2665 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2666 spin_unlock_bh(&css_set_lock);
2667
2668 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2669 cgrp = cgroup_parent(cgrp);
2670
2671 ret = -ENOMEM;
2672 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2673 if (inode) {
2674 ret = inode_permission(inode, MAY_WRITE);
2675 iput(inode);
2676 }
2677 }
2678
2679 put_cred(tcred);
2680 return ret;
2681 }
2682
2683 /*
2684 * Find the task_struct of the task to attach by vpid and pass it along to the
2685 * function to attach either it or all tasks in its threadgroup. Will lock
2686 * cgroup_mutex and threadgroup.
2687 */
2688 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2689 size_t nbytes, loff_t off, bool threadgroup)
2690 {
2691 struct task_struct *tsk;
2692 struct cgroup *cgrp;
2693 pid_t pid;
2694 int ret;
2695
2696 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2697 return -EINVAL;
2698
2699 cgrp = cgroup_kn_lock_live(of->kn);
2700 if (!cgrp)
2701 return -ENODEV;
2702
2703 percpu_down_write(&cgroup_threadgroup_rwsem);
2704 rcu_read_lock();
2705 if (pid) {
2706 tsk = find_task_by_vpid(pid);
2707 if (!tsk) {
2708 ret = -ESRCH;
2709 goto out_unlock_rcu;
2710 }
2711 } else {
2712 tsk = current;
2713 }
2714
2715 if (threadgroup)
2716 tsk = tsk->group_leader;
2717
2718 /*
2719 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2720 * trapped in a cpuset, or RT worker may be born in a cgroup
2721 * with no rt_runtime allocated. Just say no.
2722 */
2723 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2724 ret = -EINVAL;
2725 goto out_unlock_rcu;
2726 }
2727
2728 get_task_struct(tsk);
2729 rcu_read_unlock();
2730
2731 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2732 if (!ret)
2733 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2734
2735 put_task_struct(tsk);
2736 goto out_unlock_threadgroup;
2737
2738 out_unlock_rcu:
2739 rcu_read_unlock();
2740 out_unlock_threadgroup:
2741 percpu_up_write(&cgroup_threadgroup_rwsem);
2742 cgroup_kn_unlock(of->kn);
2743 cpuset_post_attach_flush();
2744 return ret ?: nbytes;
2745 }
2746
2747 /**
2748 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2749 * @from: attach to all cgroups of a given task
2750 * @tsk: the task to be attached
2751 */
2752 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2753 {
2754 struct cgroup_root *root;
2755 int retval = 0;
2756
2757 mutex_lock(&cgroup_mutex);
2758 for_each_root(root) {
2759 struct cgroup *from_cgrp;
2760
2761 if (root == &cgrp_dfl_root)
2762 continue;
2763
2764 spin_lock_bh(&css_set_lock);
2765 from_cgrp = task_cgroup_from_root(from, root);
2766 spin_unlock_bh(&css_set_lock);
2767
2768 retval = cgroup_attach_task(from_cgrp, tsk, false);
2769 if (retval)
2770 break;
2771 }
2772 mutex_unlock(&cgroup_mutex);
2773
2774 return retval;
2775 }
2776 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2777
2778 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2779 char *buf, size_t nbytes, loff_t off)
2780 {
2781 return __cgroup_procs_write(of, buf, nbytes, off, false);
2782 }
2783
2784 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2785 char *buf, size_t nbytes, loff_t off)
2786 {
2787 return __cgroup_procs_write(of, buf, nbytes, off, true);
2788 }
2789
2790 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2791 char *buf, size_t nbytes, loff_t off)
2792 {
2793 struct cgroup *cgrp;
2794
2795 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2796
2797 cgrp = cgroup_kn_lock_live(of->kn);
2798 if (!cgrp)
2799 return -ENODEV;
2800 spin_lock(&release_agent_path_lock);
2801 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2802 sizeof(cgrp->root->release_agent_path));
2803 spin_unlock(&release_agent_path_lock);
2804 cgroup_kn_unlock(of->kn);
2805 return nbytes;
2806 }
2807
2808 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2809 {
2810 struct cgroup *cgrp = seq_css(seq)->cgroup;
2811
2812 spin_lock(&release_agent_path_lock);
2813 seq_puts(seq, cgrp->root->release_agent_path);
2814 spin_unlock(&release_agent_path_lock);
2815 seq_putc(seq, '\n');
2816 return 0;
2817 }
2818
2819 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2820 {
2821 seq_puts(seq, "0\n");
2822 return 0;
2823 }
2824
2825 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2826 {
2827 struct cgroup_subsys *ss;
2828 bool printed = false;
2829 int ssid;
2830
2831 for_each_subsys_which(ss, ssid, &ss_mask) {
2832 if (printed)
2833 seq_putc(seq, ' ');
2834 seq_printf(seq, "%s", ss->name);
2835 printed = true;
2836 }
2837 if (printed)
2838 seq_putc(seq, '\n');
2839 }
2840
2841 /* show controllers which are currently attached to the default hierarchy */
2842 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2843 {
2844 struct cgroup *cgrp = seq_css(seq)->cgroup;
2845
2846 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2847 ~cgrp_dfl_root_inhibit_ss_mask);
2848 return 0;
2849 }
2850
2851 /* show controllers which are enabled from the parent */
2852 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2853 {
2854 struct cgroup *cgrp = seq_css(seq)->cgroup;
2855
2856 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2857 return 0;
2858 }
2859
2860 /* show controllers which are enabled for a given cgroup's children */
2861 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2862 {
2863 struct cgroup *cgrp = seq_css(seq)->cgroup;
2864
2865 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2866 return 0;
2867 }
2868
2869 /**
2870 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2871 * @cgrp: root of the subtree to update csses for
2872 *
2873 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2874 * css associations need to be updated accordingly. This function looks up
2875 * all css_sets which are attached to the subtree, creates the matching
2876 * updated css_sets and migrates the tasks to the new ones.
2877 */
2878 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2879 {
2880 LIST_HEAD(preloaded_csets);
2881 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2882 struct cgroup_subsys_state *css;
2883 struct css_set *src_cset;
2884 int ret;
2885
2886 lockdep_assert_held(&cgroup_mutex);
2887
2888 percpu_down_write(&cgroup_threadgroup_rwsem);
2889
2890 /* look up all csses currently attached to @cgrp's subtree */
2891 spin_lock_bh(&css_set_lock);
2892 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2893 struct cgrp_cset_link *link;
2894
2895 /* self is not affected by child_subsys_mask change */
2896 if (css->cgroup == cgrp)
2897 continue;
2898
2899 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2900 cgroup_migrate_add_src(link->cset, cgrp,
2901 &preloaded_csets);
2902 }
2903 spin_unlock_bh(&css_set_lock);
2904
2905 /* NULL dst indicates self on default hierarchy */
2906 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2907 if (ret)
2908 goto out_finish;
2909
2910 spin_lock_bh(&css_set_lock);
2911 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2912 struct task_struct *task, *ntask;
2913
2914 /* src_csets precede dst_csets, break on the first dst_cset */
2915 if (!src_cset->mg_src_cgrp)
2916 break;
2917
2918 /* all tasks in src_csets need to be migrated */
2919 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2920 cgroup_taskset_add(task, &tset);
2921 }
2922 spin_unlock_bh(&css_set_lock);
2923
2924 ret = cgroup_taskset_migrate(&tset, cgrp);
2925 out_finish:
2926 cgroup_migrate_finish(&preloaded_csets);
2927 percpu_up_write(&cgroup_threadgroup_rwsem);
2928 return ret;
2929 }
2930
2931 /* change the enabled child controllers for a cgroup in the default hierarchy */
2932 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2933 char *buf, size_t nbytes,
2934 loff_t off)
2935 {
2936 unsigned long enable = 0, disable = 0;
2937 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2938 struct cgroup *cgrp, *child;
2939 struct cgroup_subsys *ss;
2940 char *tok;
2941 int ssid, ret;
2942
2943 /*
2944 * Parse input - space separated list of subsystem names prefixed
2945 * with either + or -.
2946 */
2947 buf = strstrip(buf);
2948 while ((tok = strsep(&buf, " "))) {
2949 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2950
2951 if (tok[0] == '\0')
2952 continue;
2953 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2954 if (!cgroup_ssid_enabled(ssid) ||
2955 strcmp(tok + 1, ss->name))
2956 continue;
2957
2958 if (*tok == '+') {
2959 enable |= 1 << ssid;
2960 disable &= ~(1 << ssid);
2961 } else if (*tok == '-') {
2962 disable |= 1 << ssid;
2963 enable &= ~(1 << ssid);
2964 } else {
2965 return -EINVAL;
2966 }
2967 break;
2968 }
2969 if (ssid == CGROUP_SUBSYS_COUNT)
2970 return -EINVAL;
2971 }
2972
2973 cgrp = cgroup_kn_lock_live(of->kn);
2974 if (!cgrp)
2975 return -ENODEV;
2976
2977 for_each_subsys(ss, ssid) {
2978 if (enable & (1 << ssid)) {
2979 if (cgrp->subtree_control & (1 << ssid)) {
2980 enable &= ~(1 << ssid);
2981 continue;
2982 }
2983
2984 /* unavailable or not enabled on the parent? */
2985 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2986 (cgroup_parent(cgrp) &&
2987 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2988 ret = -ENOENT;
2989 goto out_unlock;
2990 }
2991 } else if (disable & (1 << ssid)) {
2992 if (!(cgrp->subtree_control & (1 << ssid))) {
2993 disable &= ~(1 << ssid);
2994 continue;
2995 }
2996
2997 /* a child has it enabled? */
2998 cgroup_for_each_live_child(child, cgrp) {
2999 if (child->subtree_control & (1 << ssid)) {
3000 ret = -EBUSY;
3001 goto out_unlock;
3002 }
3003 }
3004 }
3005 }
3006
3007 if (!enable && !disable) {
3008 ret = 0;
3009 goto out_unlock;
3010 }
3011
3012 /*
3013 * Except for the root, subtree_control must be zero for a cgroup
3014 * with tasks so that child cgroups don't compete against tasks.
3015 */
3016 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3017 ret = -EBUSY;
3018 goto out_unlock;
3019 }
3020
3021 /*
3022 * Update subsys masks and calculate what needs to be done. More
3023 * subsystems than specified may need to be enabled or disabled
3024 * depending on subsystem dependencies.
3025 */
3026 old_sc = cgrp->subtree_control;
3027 old_ss = cgrp->child_subsys_mask;
3028 new_sc = (old_sc | enable) & ~disable;
3029 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3030
3031 css_enable = ~old_ss & new_ss;
3032 css_disable = old_ss & ~new_ss;
3033 enable |= css_enable;
3034 disable |= css_disable;
3035
3036 /*
3037 * Because css offlining is asynchronous, userland might try to
3038 * re-enable the same controller while the previous instance is
3039 * still around. In such cases, wait till it's gone using
3040 * offline_waitq.
3041 */
3042 for_each_subsys_which(ss, ssid, &css_enable) {
3043 cgroup_for_each_live_child(child, cgrp) {
3044 DEFINE_WAIT(wait);
3045
3046 if (!cgroup_css(child, ss))
3047 continue;
3048
3049 cgroup_get(child);
3050 prepare_to_wait(&child->offline_waitq, &wait,
3051 TASK_UNINTERRUPTIBLE);
3052 cgroup_kn_unlock(of->kn);
3053 schedule();
3054 finish_wait(&child->offline_waitq, &wait);
3055 cgroup_put(child);
3056
3057 return restart_syscall();
3058 }
3059 }
3060
3061 cgrp->subtree_control = new_sc;
3062 cgrp->child_subsys_mask = new_ss;
3063
3064 /*
3065 * Create new csses or make the existing ones visible. A css is
3066 * created invisible if it's being implicitly enabled through
3067 * dependency. An invisible css is made visible when the userland
3068 * explicitly enables it.
3069 */
3070 for_each_subsys(ss, ssid) {
3071 if (!(enable & (1 << ssid)))
3072 continue;
3073
3074 cgroup_for_each_live_child(child, cgrp) {
3075 if (css_enable & (1 << ssid))
3076 ret = create_css(child, ss,
3077 cgrp->subtree_control & (1 << ssid));
3078 else
3079 ret = css_populate_dir(cgroup_css(child, ss),
3080 NULL);
3081 if (ret)
3082 goto err_undo_css;
3083 }
3084 }
3085
3086 /*
3087 * At this point, cgroup_e_css() results reflect the new csses
3088 * making the following cgroup_update_dfl_csses() properly update
3089 * css associations of all tasks in the subtree.
3090 */
3091 ret = cgroup_update_dfl_csses(cgrp);
3092 if (ret)
3093 goto err_undo_css;
3094
3095 /*
3096 * All tasks are migrated out of disabled csses. Kill or hide
3097 * them. A css is hidden when the userland requests it to be
3098 * disabled while other subsystems are still depending on it. The
3099 * css must not actively control resources and be in the vanilla
3100 * state if it's made visible again later. Controllers which may
3101 * be depended upon should provide ->css_reset() for this purpose.
3102 */
3103 for_each_subsys(ss, ssid) {
3104 if (!(disable & (1 << ssid)))
3105 continue;
3106
3107 cgroup_for_each_live_child(child, cgrp) {
3108 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3109
3110 if (css_disable & (1 << ssid)) {
3111 kill_css(css);
3112 } else {
3113 css_clear_dir(css, NULL);
3114 if (ss->css_reset)
3115 ss->css_reset(css);
3116 }
3117 }
3118 }
3119
3120 /*
3121 * The effective csses of all the descendants (excluding @cgrp) may
3122 * have changed. Subsystems can optionally subscribe to this event
3123 * by implementing ->css_e_css_changed() which is invoked if any of
3124 * the effective csses seen from the css's cgroup may have changed.
3125 */
3126 for_each_subsys(ss, ssid) {
3127 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3128 struct cgroup_subsys_state *css;
3129
3130 if (!ss->css_e_css_changed || !this_css)
3131 continue;
3132
3133 css_for_each_descendant_pre(css, this_css)
3134 if (css != this_css)
3135 ss->css_e_css_changed(css);
3136 }
3137
3138 kernfs_activate(cgrp->kn);
3139 ret = 0;
3140 out_unlock:
3141 cgroup_kn_unlock(of->kn);
3142 return ret ?: nbytes;
3143
3144 err_undo_css:
3145 cgrp->subtree_control = old_sc;
3146 cgrp->child_subsys_mask = old_ss;
3147
3148 for_each_subsys(ss, ssid) {
3149 if (!(enable & (1 << ssid)))
3150 continue;
3151
3152 cgroup_for_each_live_child(child, cgrp) {
3153 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3154
3155 if (!css)
3156 continue;
3157
3158 if (css_enable & (1 << ssid))
3159 kill_css(css);
3160 else
3161 css_clear_dir(css, NULL);
3162 }
3163 }
3164 goto out_unlock;
3165 }
3166
3167 static int cgroup_events_show(struct seq_file *seq, void *v)
3168 {
3169 seq_printf(seq, "populated %d\n",
3170 cgroup_is_populated(seq_css(seq)->cgroup));
3171 return 0;
3172 }
3173
3174 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3175 size_t nbytes, loff_t off)
3176 {
3177 struct cgroup *cgrp = of->kn->parent->priv;
3178 struct cftype *cft = of->kn->priv;
3179 struct cgroup_subsys_state *css;
3180 int ret;
3181
3182 if (cft->write)
3183 return cft->write(of, buf, nbytes, off);
3184
3185 /*
3186 * kernfs guarantees that a file isn't deleted with operations in
3187 * flight, which means that the matching css is and stays alive and
3188 * doesn't need to be pinned. The RCU locking is not necessary
3189 * either. It's just for the convenience of using cgroup_css().
3190 */
3191 rcu_read_lock();
3192 css = cgroup_css(cgrp, cft->ss);
3193 rcu_read_unlock();
3194
3195 if (cft->write_u64) {
3196 unsigned long long v;
3197 ret = kstrtoull(buf, 0, &v);
3198 if (!ret)
3199 ret = cft->write_u64(css, cft, v);
3200 } else if (cft->write_s64) {
3201 long long v;
3202 ret = kstrtoll(buf, 0, &v);
3203 if (!ret)
3204 ret = cft->write_s64(css, cft, v);
3205 } else {
3206 ret = -EINVAL;
3207 }
3208
3209 return ret ?: nbytes;
3210 }
3211
3212 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3213 {
3214 return seq_cft(seq)->seq_start(seq, ppos);
3215 }
3216
3217 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3218 {
3219 return seq_cft(seq)->seq_next(seq, v, ppos);
3220 }
3221
3222 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3223 {
3224 seq_cft(seq)->seq_stop(seq, v);
3225 }
3226
3227 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3228 {
3229 struct cftype *cft = seq_cft(m);
3230 struct cgroup_subsys_state *css = seq_css(m);
3231
3232 if (cft->seq_show)
3233 return cft->seq_show(m, arg);
3234
3235 if (cft->read_u64)
3236 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3237 else if (cft->read_s64)
3238 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3239 else
3240 return -EINVAL;
3241 return 0;
3242 }
3243
3244 static struct kernfs_ops cgroup_kf_single_ops = {
3245 .atomic_write_len = PAGE_SIZE,
3246 .write = cgroup_file_write,
3247 .seq_show = cgroup_seqfile_show,
3248 };
3249
3250 static struct kernfs_ops cgroup_kf_ops = {
3251 .atomic_write_len = PAGE_SIZE,
3252 .write = cgroup_file_write,
3253 .seq_start = cgroup_seqfile_start,
3254 .seq_next = cgroup_seqfile_next,
3255 .seq_stop = cgroup_seqfile_stop,
3256 .seq_show = cgroup_seqfile_show,
3257 };
3258
3259 /*
3260 * cgroup_rename - Only allow simple rename of directories in place.
3261 */
3262 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3263 const char *new_name_str)
3264 {
3265 struct cgroup *cgrp = kn->priv;
3266 int ret;
3267
3268 if (kernfs_type(kn) != KERNFS_DIR)
3269 return -ENOTDIR;
3270 if (kn->parent != new_parent)
3271 return -EIO;
3272
3273 /*
3274 * This isn't a proper migration and its usefulness is very
3275 * limited. Disallow on the default hierarchy.
3276 */
3277 if (cgroup_on_dfl(cgrp))
3278 return -EPERM;
3279
3280 /*
3281 * We're gonna grab cgroup_mutex which nests outside kernfs
3282 * active_ref. kernfs_rename() doesn't require active_ref
3283 * protection. Break them before grabbing cgroup_mutex.
3284 */
3285 kernfs_break_active_protection(new_parent);
3286 kernfs_break_active_protection(kn);
3287
3288 mutex_lock(&cgroup_mutex);
3289
3290 ret = kernfs_rename(kn, new_parent, new_name_str);
3291
3292 mutex_unlock(&cgroup_mutex);
3293
3294 kernfs_unbreak_active_protection(kn);
3295 kernfs_unbreak_active_protection(new_parent);
3296 return ret;
3297 }
3298
3299 /* set uid and gid of cgroup dirs and files to that of the creator */
3300 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3301 {
3302 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3303 .ia_uid = current_fsuid(),
3304 .ia_gid = current_fsgid(), };
3305
3306 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3307 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3308 return 0;
3309
3310 return kernfs_setattr(kn, &iattr);
3311 }
3312
3313 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3314 struct cftype *cft)
3315 {
3316 char name[CGROUP_FILE_NAME_MAX];
3317 struct kernfs_node *kn;
3318 struct lock_class_key *key = NULL;
3319 int ret;
3320
3321 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3322 key = &cft->lockdep_key;
3323 #endif
3324 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3325 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3326 NULL, key);
3327 if (IS_ERR(kn))
3328 return PTR_ERR(kn);
3329
3330 ret = cgroup_kn_set_ugid(kn);
3331 if (ret) {
3332 kernfs_remove(kn);
3333 return ret;
3334 }
3335
3336 if (cft->file_offset) {
3337 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3338
3339 spin_lock_irq(&cgroup_file_kn_lock);
3340 cfile->kn = kn;
3341 spin_unlock_irq(&cgroup_file_kn_lock);
3342 }
3343
3344 return 0;
3345 }
3346
3347 /**
3348 * cgroup_addrm_files - add or remove files to a cgroup directory
3349 * @css: the target css
3350 * @cgrp: the target cgroup (usually css->cgroup)
3351 * @cfts: array of cftypes to be added
3352 * @is_add: whether to add or remove
3353 *
3354 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3355 * For removals, this function never fails.
3356 */
3357 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3358 struct cgroup *cgrp, struct cftype cfts[],
3359 bool is_add)
3360 {
3361 struct cftype *cft, *cft_end = NULL;
3362 int ret;
3363
3364 lockdep_assert_held(&cgroup_mutex);
3365
3366 restart:
3367 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3368 /* does cft->flags tell us to skip this file on @cgrp? */
3369 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3370 continue;
3371 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3372 continue;
3373 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3374 continue;
3375 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3376 continue;
3377
3378 if (is_add) {
3379 ret = cgroup_add_file(css, cgrp, cft);
3380 if (ret) {
3381 pr_warn("%s: failed to add %s, err=%d\n",
3382 __func__, cft->name, ret);
3383 cft_end = cft;
3384 is_add = false;
3385 goto restart;
3386 }
3387 } else {
3388 cgroup_rm_file(cgrp, cft);
3389 }
3390 }
3391 return 0;
3392 }
3393
3394 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3395 {
3396 LIST_HEAD(pending);
3397 struct cgroup_subsys *ss = cfts[0].ss;
3398 struct cgroup *root = &ss->root->cgrp;
3399 struct cgroup_subsys_state *css;
3400 int ret = 0;
3401
3402 lockdep_assert_held(&cgroup_mutex);
3403
3404 /* add/rm files for all cgroups created before */
3405 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3406 struct cgroup *cgrp = css->cgroup;
3407
3408 if (cgroup_is_dead(cgrp))
3409 continue;
3410
3411 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3412 if (ret)
3413 break;
3414 }
3415
3416 if (is_add && !ret)
3417 kernfs_activate(root->kn);
3418 return ret;
3419 }
3420
3421 static void cgroup_exit_cftypes(struct cftype *cfts)
3422 {
3423 struct cftype *cft;
3424
3425 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3426 /* free copy for custom atomic_write_len, see init_cftypes() */
3427 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3428 kfree(cft->kf_ops);
3429 cft->kf_ops = NULL;
3430 cft->ss = NULL;
3431
3432 /* revert flags set by cgroup core while adding @cfts */
3433 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3434 }
3435 }
3436
3437 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3438 {
3439 struct cftype *cft;
3440
3441 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3442 struct kernfs_ops *kf_ops;
3443
3444 WARN_ON(cft->ss || cft->kf_ops);
3445
3446 if (cft->seq_start)
3447 kf_ops = &cgroup_kf_ops;
3448 else
3449 kf_ops = &cgroup_kf_single_ops;
3450
3451 /*
3452 * Ugh... if @cft wants a custom max_write_len, we need to
3453 * make a copy of kf_ops to set its atomic_write_len.
3454 */
3455 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3456 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3457 if (!kf_ops) {
3458 cgroup_exit_cftypes(cfts);
3459 return -ENOMEM;
3460 }
3461 kf_ops->atomic_write_len = cft->max_write_len;
3462 }
3463
3464 cft->kf_ops = kf_ops;
3465 cft->ss = ss;
3466 }
3467
3468 return 0;
3469 }
3470
3471 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3472 {
3473 lockdep_assert_held(&cgroup_mutex);
3474
3475 if (!cfts || !cfts[0].ss)
3476 return -ENOENT;
3477
3478 list_del(&cfts->node);
3479 cgroup_apply_cftypes(cfts, false);
3480 cgroup_exit_cftypes(cfts);
3481 return 0;
3482 }
3483
3484 /**
3485 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3486 * @cfts: zero-length name terminated array of cftypes
3487 *
3488 * Unregister @cfts. Files described by @cfts are removed from all
3489 * existing cgroups and all future cgroups won't have them either. This
3490 * function can be called anytime whether @cfts' subsys is attached or not.
3491 *
3492 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3493 * registered.
3494 */
3495 int cgroup_rm_cftypes(struct cftype *cfts)
3496 {
3497 int ret;
3498
3499 mutex_lock(&cgroup_mutex);
3500 ret = cgroup_rm_cftypes_locked(cfts);
3501 mutex_unlock(&cgroup_mutex);
3502 return ret;
3503 }
3504
3505 /**
3506 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3507 * @ss: target cgroup subsystem
3508 * @cfts: zero-length name terminated array of cftypes
3509 *
3510 * Register @cfts to @ss. Files described by @cfts are created for all
3511 * existing cgroups to which @ss is attached and all future cgroups will
3512 * have them too. This function can be called anytime whether @ss is
3513 * attached or not.
3514 *
3515 * Returns 0 on successful registration, -errno on failure. Note that this
3516 * function currently returns 0 as long as @cfts registration is successful
3517 * even if some file creation attempts on existing cgroups fail.
3518 */
3519 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3520 {
3521 int ret;
3522
3523 if (!cgroup_ssid_enabled(ss->id))
3524 return 0;
3525
3526 if (!cfts || cfts[0].name[0] == '\0')
3527 return 0;
3528
3529 ret = cgroup_init_cftypes(ss, cfts);
3530 if (ret)
3531 return ret;
3532
3533 mutex_lock(&cgroup_mutex);
3534
3535 list_add_tail(&cfts->node, &ss->cfts);
3536 ret = cgroup_apply_cftypes(cfts, true);
3537 if (ret)
3538 cgroup_rm_cftypes_locked(cfts);
3539
3540 mutex_unlock(&cgroup_mutex);
3541 return ret;
3542 }
3543
3544 /**
3545 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3546 * @ss: target cgroup subsystem
3547 * @cfts: zero-length name terminated array of cftypes
3548 *
3549 * Similar to cgroup_add_cftypes() but the added files are only used for
3550 * the default hierarchy.
3551 */
3552 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3553 {
3554 struct cftype *cft;
3555
3556 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3557 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3558 return cgroup_add_cftypes(ss, cfts);
3559 }
3560
3561 /**
3562 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3563 * @ss: target cgroup subsystem
3564 * @cfts: zero-length name terminated array of cftypes
3565 *
3566 * Similar to cgroup_add_cftypes() but the added files are only used for
3567 * the legacy hierarchies.
3568 */
3569 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3570 {
3571 struct cftype *cft;
3572
3573 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3574 cft->flags |= __CFTYPE_NOT_ON_DFL;
3575 return cgroup_add_cftypes(ss, cfts);
3576 }
3577
3578 /**
3579 * cgroup_file_notify - generate a file modified event for a cgroup_file
3580 * @cfile: target cgroup_file
3581 *
3582 * @cfile must have been obtained by setting cftype->file_offset.
3583 */
3584 void cgroup_file_notify(struct cgroup_file *cfile)
3585 {
3586 unsigned long flags;
3587
3588 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3589 if (cfile->kn)
3590 kernfs_notify(cfile->kn);
3591 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3592 }
3593
3594 /**
3595 * cgroup_task_count - count the number of tasks in a cgroup.
3596 * @cgrp: the cgroup in question
3597 *
3598 * Return the number of tasks in the cgroup.
3599 */
3600 static int cgroup_task_count(const struct cgroup *cgrp)
3601 {
3602 int count = 0;
3603 struct cgrp_cset_link *link;
3604
3605 spin_lock_bh(&css_set_lock);
3606 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3607 count += atomic_read(&link->cset->refcount);
3608 spin_unlock_bh(&css_set_lock);
3609 return count;
3610 }
3611
3612 /**
3613 * css_next_child - find the next child of a given css
3614 * @pos: the current position (%NULL to initiate traversal)
3615 * @parent: css whose children to walk
3616 *
3617 * This function returns the next child of @parent and should be called
3618 * under either cgroup_mutex or RCU read lock. The only requirement is
3619 * that @parent and @pos are accessible. The next sibling is guaranteed to
3620 * be returned regardless of their states.
3621 *
3622 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3623 * css which finished ->css_online() is guaranteed to be visible in the
3624 * future iterations and will stay visible until the last reference is put.
3625 * A css which hasn't finished ->css_online() or already finished
3626 * ->css_offline() may show up during traversal. It's each subsystem's
3627 * responsibility to synchronize against on/offlining.
3628 */
3629 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3630 struct cgroup_subsys_state *parent)
3631 {
3632 struct cgroup_subsys_state *next;
3633
3634 cgroup_assert_mutex_or_rcu_locked();
3635
3636 /*
3637 * @pos could already have been unlinked from the sibling list.
3638 * Once a cgroup is removed, its ->sibling.next is no longer
3639 * updated when its next sibling changes. CSS_RELEASED is set when
3640 * @pos is taken off list, at which time its next pointer is valid,
3641 * and, as releases are serialized, the one pointed to by the next
3642 * pointer is guaranteed to not have started release yet. This
3643 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3644 * critical section, the one pointed to by its next pointer is
3645 * guaranteed to not have finished its RCU grace period even if we
3646 * have dropped rcu_read_lock() inbetween iterations.
3647 *
3648 * If @pos has CSS_RELEASED set, its next pointer can't be
3649 * dereferenced; however, as each css is given a monotonically
3650 * increasing unique serial number and always appended to the
3651 * sibling list, the next one can be found by walking the parent's
3652 * children until the first css with higher serial number than
3653 * @pos's. While this path can be slower, it happens iff iteration
3654 * races against release and the race window is very small.
3655 */
3656 if (!pos) {
3657 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3658 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3659 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3660 } else {
3661 list_for_each_entry_rcu(next, &parent->children, sibling)
3662 if (next->serial_nr > pos->serial_nr)
3663 break;
3664 }
3665
3666 /*
3667 * @next, if not pointing to the head, can be dereferenced and is
3668 * the next sibling.
3669 */
3670 if (&next->sibling != &parent->children)
3671 return next;
3672 return NULL;
3673 }
3674
3675 /**
3676 * css_next_descendant_pre - find the next descendant for pre-order walk
3677 * @pos: the current position (%NULL to initiate traversal)
3678 * @root: css whose descendants to walk
3679 *
3680 * To be used by css_for_each_descendant_pre(). Find the next descendant
3681 * to visit for pre-order traversal of @root's descendants. @root is
3682 * included in the iteration and the first node to be visited.
3683 *
3684 * While this function requires cgroup_mutex or RCU read locking, it
3685 * doesn't require the whole traversal to be contained in a single critical
3686 * section. This function will return the correct next descendant as long
3687 * as both @pos and @root are accessible and @pos is a descendant of @root.
3688 *
3689 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3690 * css which finished ->css_online() is guaranteed to be visible in the
3691 * future iterations and will stay visible until the last reference is put.
3692 * A css which hasn't finished ->css_online() or already finished
3693 * ->css_offline() may show up during traversal. It's each subsystem's
3694 * responsibility to synchronize against on/offlining.
3695 */
3696 struct cgroup_subsys_state *
3697 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3698 struct cgroup_subsys_state *root)
3699 {
3700 struct cgroup_subsys_state *next;
3701
3702 cgroup_assert_mutex_or_rcu_locked();
3703
3704 /* if first iteration, visit @root */
3705 if (!pos)
3706 return root;
3707
3708 /* visit the first child if exists */
3709 next = css_next_child(NULL, pos);
3710 if (next)
3711 return next;
3712
3713 /* no child, visit my or the closest ancestor's next sibling */
3714 while (pos != root) {
3715 next = css_next_child(pos, pos->parent);
3716 if (next)
3717 return next;
3718 pos = pos->parent;
3719 }
3720
3721 return NULL;
3722 }
3723
3724 /**
3725 * css_rightmost_descendant - return the rightmost descendant of a css
3726 * @pos: css of interest
3727 *
3728 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3729 * is returned. This can be used during pre-order traversal to skip
3730 * subtree of @pos.
3731 *
3732 * While this function requires cgroup_mutex or RCU read locking, it
3733 * doesn't require the whole traversal to be contained in a single critical
3734 * section. This function will return the correct rightmost descendant as
3735 * long as @pos is accessible.
3736 */
3737 struct cgroup_subsys_state *
3738 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3739 {
3740 struct cgroup_subsys_state *last, *tmp;
3741
3742 cgroup_assert_mutex_or_rcu_locked();
3743
3744 do {
3745 last = pos;
3746 /* ->prev isn't RCU safe, walk ->next till the end */
3747 pos = NULL;
3748 css_for_each_child(tmp, last)
3749 pos = tmp;
3750 } while (pos);
3751
3752 return last;
3753 }
3754
3755 static struct cgroup_subsys_state *
3756 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3757 {
3758 struct cgroup_subsys_state *last;
3759
3760 do {
3761 last = pos;
3762 pos = css_next_child(NULL, pos);
3763 } while (pos);
3764
3765 return last;
3766 }
3767
3768 /**
3769 * css_next_descendant_post - find the next descendant for post-order walk
3770 * @pos: the current position (%NULL to initiate traversal)
3771 * @root: css whose descendants to walk
3772 *
3773 * To be used by css_for_each_descendant_post(). Find the next descendant
3774 * to visit for post-order traversal of @root's descendants. @root is
3775 * included in the iteration and the last node to be visited.
3776 *
3777 * While this function requires cgroup_mutex or RCU read locking, it
3778 * doesn't require the whole traversal to be contained in a single critical
3779 * section. This function will return the correct next descendant as long
3780 * as both @pos and @cgroup are accessible and @pos is a descendant of
3781 * @cgroup.
3782 *
3783 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3784 * css which finished ->css_online() is guaranteed to be visible in the
3785 * future iterations and will stay visible until the last reference is put.
3786 * A css which hasn't finished ->css_online() or already finished
3787 * ->css_offline() may show up during traversal. It's each subsystem's
3788 * responsibility to synchronize against on/offlining.
3789 */
3790 struct cgroup_subsys_state *
3791 css_next_descendant_post(struct cgroup_subsys_state *pos,
3792 struct cgroup_subsys_state *root)
3793 {
3794 struct cgroup_subsys_state *next;
3795
3796 cgroup_assert_mutex_or_rcu_locked();
3797
3798 /* if first iteration, visit leftmost descendant which may be @root */
3799 if (!pos)
3800 return css_leftmost_descendant(root);
3801
3802 /* if we visited @root, we're done */
3803 if (pos == root)
3804 return NULL;
3805
3806 /* if there's an unvisited sibling, visit its leftmost descendant */
3807 next = css_next_child(pos, pos->parent);
3808 if (next)
3809 return css_leftmost_descendant(next);
3810
3811 /* no sibling left, visit parent */
3812 return pos->parent;
3813 }
3814
3815 /**
3816 * css_has_online_children - does a css have online children
3817 * @css: the target css
3818 *
3819 * Returns %true if @css has any online children; otherwise, %false. This
3820 * function can be called from any context but the caller is responsible
3821 * for synchronizing against on/offlining as necessary.
3822 */
3823 bool css_has_online_children(struct cgroup_subsys_state *css)
3824 {
3825 struct cgroup_subsys_state *child;
3826 bool ret = false;
3827
3828 rcu_read_lock();
3829 css_for_each_child(child, css) {
3830 if (child->flags & CSS_ONLINE) {
3831 ret = true;
3832 break;
3833 }
3834 }
3835 rcu_read_unlock();
3836 return ret;
3837 }
3838
3839 /**
3840 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3841 * @it: the iterator to advance
3842 *
3843 * Advance @it to the next css_set to walk.
3844 */
3845 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3846 {
3847 struct list_head *l = it->cset_pos;
3848 struct cgrp_cset_link *link;
3849 struct css_set *cset;
3850
3851 lockdep_assert_held(&css_set_lock);
3852
3853 /* Advance to the next non-empty css_set */
3854 do {
3855 l = l->next;
3856 if (l == it->cset_head) {
3857 it->cset_pos = NULL;
3858 it->task_pos = NULL;
3859 return;
3860 }
3861
3862 if (it->ss) {
3863 cset = container_of(l, struct css_set,
3864 e_cset_node[it->ss->id]);
3865 } else {
3866 link = list_entry(l, struct cgrp_cset_link, cset_link);
3867 cset = link->cset;
3868 }
3869 } while (!css_set_populated(cset));
3870
3871 it->cset_pos = l;
3872
3873 if (!list_empty(&cset->tasks))
3874 it->task_pos = cset->tasks.next;
3875 else
3876 it->task_pos = cset->mg_tasks.next;
3877
3878 it->tasks_head = &cset->tasks;
3879 it->mg_tasks_head = &cset->mg_tasks;
3880
3881 /*
3882 * We don't keep css_sets locked across iteration steps and thus
3883 * need to take steps to ensure that iteration can be resumed after
3884 * the lock is re-acquired. Iteration is performed at two levels -
3885 * css_sets and tasks in them.
3886 *
3887 * Once created, a css_set never leaves its cgroup lists, so a
3888 * pinned css_set is guaranteed to stay put and we can resume
3889 * iteration afterwards.
3890 *
3891 * Tasks may leave @cset across iteration steps. This is resolved
3892 * by registering each iterator with the css_set currently being
3893 * walked and making css_set_move_task() advance iterators whose
3894 * next task is leaving.
3895 */
3896 if (it->cur_cset) {
3897 list_del(&it->iters_node);
3898 put_css_set_locked(it->cur_cset);
3899 }
3900 get_css_set(cset);
3901 it->cur_cset = cset;
3902 list_add(&it->iters_node, &cset->task_iters);
3903 }
3904
3905 static void css_task_iter_advance(struct css_task_iter *it)
3906 {
3907 struct list_head *l = it->task_pos;
3908
3909 lockdep_assert_held(&css_set_lock);
3910 WARN_ON_ONCE(!l);
3911
3912 /*
3913 * Advance iterator to find next entry. cset->tasks is consumed
3914 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3915 * next cset.
3916 */
3917 l = l->next;
3918
3919 if (l == it->tasks_head)
3920 l = it->mg_tasks_head->next;
3921
3922 if (l == it->mg_tasks_head)
3923 css_task_iter_advance_css_set(it);
3924 else
3925 it->task_pos = l;
3926 }
3927
3928 /**
3929 * css_task_iter_start - initiate task iteration
3930 * @css: the css to walk tasks of
3931 * @it: the task iterator to use
3932 *
3933 * Initiate iteration through the tasks of @css. The caller can call
3934 * css_task_iter_next() to walk through the tasks until the function
3935 * returns NULL. On completion of iteration, css_task_iter_end() must be
3936 * called.
3937 */
3938 void css_task_iter_start(struct cgroup_subsys_state *css,
3939 struct css_task_iter *it)
3940 {
3941 /* no one should try to iterate before mounting cgroups */
3942 WARN_ON_ONCE(!use_task_css_set_links);
3943
3944 memset(it, 0, sizeof(*it));
3945
3946 spin_lock_bh(&css_set_lock);
3947
3948 it->ss = css->ss;
3949
3950 if (it->ss)
3951 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3952 else
3953 it->cset_pos = &css->cgroup->cset_links;
3954
3955 it->cset_head = it->cset_pos;
3956
3957 css_task_iter_advance_css_set(it);
3958
3959 spin_unlock_bh(&css_set_lock);
3960 }
3961
3962 /**
3963 * css_task_iter_next - return the next task for the iterator
3964 * @it: the task iterator being iterated
3965 *
3966 * The "next" function for task iteration. @it should have been
3967 * initialized via css_task_iter_start(). Returns NULL when the iteration
3968 * reaches the end.
3969 */
3970 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3971 {
3972 if (it->cur_task) {
3973 put_task_struct(it->cur_task);
3974 it->cur_task = NULL;
3975 }
3976
3977 spin_lock_bh(&css_set_lock);
3978
3979 if (it->task_pos) {
3980 it->cur_task = list_entry(it->task_pos, struct task_struct,
3981 cg_list);
3982 get_task_struct(it->cur_task);
3983 css_task_iter_advance(it);
3984 }
3985
3986 spin_unlock_bh(&css_set_lock);
3987
3988 return it->cur_task;
3989 }
3990
3991 /**
3992 * css_task_iter_end - finish task iteration
3993 * @it: the task iterator to finish
3994 *
3995 * Finish task iteration started by css_task_iter_start().
3996 */
3997 void css_task_iter_end(struct css_task_iter *it)
3998 {
3999 if (it->cur_cset) {
4000 spin_lock_bh(&css_set_lock);
4001 list_del(&it->iters_node);
4002 put_css_set_locked(it->cur_cset);
4003 spin_unlock_bh(&css_set_lock);
4004 }
4005
4006 if (it->cur_task)
4007 put_task_struct(it->cur_task);
4008 }
4009
4010 /**
4011 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4012 * @to: cgroup to which the tasks will be moved
4013 * @from: cgroup in which the tasks currently reside
4014 *
4015 * Locking rules between cgroup_post_fork() and the migration path
4016 * guarantee that, if a task is forking while being migrated, the new child
4017 * is guaranteed to be either visible in the source cgroup after the
4018 * parent's migration is complete or put into the target cgroup. No task
4019 * can slip out of migration through forking.
4020 */
4021 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4022 {
4023 LIST_HEAD(preloaded_csets);
4024 struct cgrp_cset_link *link;
4025 struct css_task_iter it;
4026 struct task_struct *task;
4027 int ret;
4028
4029 mutex_lock(&cgroup_mutex);
4030
4031 /* all tasks in @from are being moved, all csets are source */
4032 spin_lock_bh(&css_set_lock);
4033 list_for_each_entry(link, &from->cset_links, cset_link)
4034 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4035 spin_unlock_bh(&css_set_lock);
4036
4037 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4038 if (ret)
4039 goto out_err;
4040
4041 /*
4042 * Migrate tasks one-by-one until @from is empty. This fails iff
4043 * ->can_attach() fails.
4044 */
4045 do {
4046 css_task_iter_start(&from->self, &it);
4047 task = css_task_iter_next(&it);
4048 if (task)
4049 get_task_struct(task);
4050 css_task_iter_end(&it);
4051
4052 if (task) {
4053 ret = cgroup_migrate(task, false, to);
4054 put_task_struct(task);
4055 }
4056 } while (task && !ret);
4057 out_err:
4058 cgroup_migrate_finish(&preloaded_csets);
4059 mutex_unlock(&cgroup_mutex);
4060 return ret;
4061 }
4062
4063 /*
4064 * Stuff for reading the 'tasks'/'procs' files.
4065 *
4066 * Reading this file can return large amounts of data if a cgroup has
4067 * *lots* of attached tasks. So it may need several calls to read(),
4068 * but we cannot guarantee that the information we produce is correct
4069 * unless we produce it entirely atomically.
4070 *
4071 */
4072
4073 /* which pidlist file are we talking about? */
4074 enum cgroup_filetype {
4075 CGROUP_FILE_PROCS,
4076 CGROUP_FILE_TASKS,
4077 };
4078
4079 /*
4080 * A pidlist is a list of pids that virtually represents the contents of one
4081 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4082 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4083 * to the cgroup.
4084 */
4085 struct cgroup_pidlist {
4086 /*
4087 * used to find which pidlist is wanted. doesn't change as long as
4088 * this particular list stays in the list.
4089 */
4090 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4091 /* array of xids */
4092 pid_t *list;
4093 /* how many elements the above list has */
4094 int length;
4095 /* each of these stored in a list by its cgroup */
4096 struct list_head links;
4097 /* pointer to the cgroup we belong to, for list removal purposes */
4098 struct cgroup *owner;
4099 /* for delayed destruction */
4100 struct delayed_work destroy_dwork;
4101 };
4102
4103 /*
4104 * The following two functions "fix" the issue where there are more pids
4105 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4106 * TODO: replace with a kernel-wide solution to this problem
4107 */
4108 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4109 static void *pidlist_allocate(int count)
4110 {
4111 if (PIDLIST_TOO_LARGE(count))
4112 return vmalloc(count * sizeof(pid_t));
4113 else
4114 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4115 }
4116
4117 static void pidlist_free(void *p)
4118 {
4119 kvfree(p);
4120 }
4121
4122 /*
4123 * Used to destroy all pidlists lingering waiting for destroy timer. None
4124 * should be left afterwards.
4125 */
4126 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4127 {
4128 struct cgroup_pidlist *l, *tmp_l;
4129
4130 mutex_lock(&cgrp->pidlist_mutex);
4131 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4132 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4133 mutex_unlock(&cgrp->pidlist_mutex);
4134
4135 flush_workqueue(cgroup_pidlist_destroy_wq);
4136 BUG_ON(!list_empty(&cgrp->pidlists));
4137 }
4138
4139 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4140 {
4141 struct delayed_work *dwork = to_delayed_work(work);
4142 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4143 destroy_dwork);
4144 struct cgroup_pidlist *tofree = NULL;
4145
4146 mutex_lock(&l->owner->pidlist_mutex);
4147
4148 /*
4149 * Destroy iff we didn't get queued again. The state won't change
4150 * as destroy_dwork can only be queued while locked.
4151 */
4152 if (!delayed_work_pending(dwork)) {
4153 list_del(&l->links);
4154 pidlist_free(l->list);
4155 put_pid_ns(l->key.ns);
4156 tofree = l;
4157 }
4158
4159 mutex_unlock(&l->owner->pidlist_mutex);
4160 kfree(tofree);
4161 }
4162
4163 /*
4164 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4165 * Returns the number of unique elements.
4166 */
4167 static int pidlist_uniq(pid_t *list, int length)
4168 {
4169 int src, dest = 1;
4170
4171 /*
4172 * we presume the 0th element is unique, so i starts at 1. trivial
4173 * edge cases first; no work needs to be done for either
4174 */
4175 if (length == 0 || length == 1)
4176 return length;
4177 /* src and dest walk down the list; dest counts unique elements */
4178 for (src = 1; src < length; src++) {
4179 /* find next unique element */
4180 while (list[src] == list[src-1]) {
4181 src++;
4182 if (src == length)
4183 goto after;
4184 }
4185 /* dest always points to where the next unique element goes */
4186 list[dest] = list[src];
4187 dest++;
4188 }
4189 after:
4190 return dest;
4191 }
4192
4193 /*
4194 * The two pid files - task and cgroup.procs - guaranteed that the result
4195 * is sorted, which forced this whole pidlist fiasco. As pid order is
4196 * different per namespace, each namespace needs differently sorted list,
4197 * making it impossible to use, for example, single rbtree of member tasks
4198 * sorted by task pointer. As pidlists can be fairly large, allocating one
4199 * per open file is dangerous, so cgroup had to implement shared pool of
4200 * pidlists keyed by cgroup and namespace.
4201 *
4202 * All this extra complexity was caused by the original implementation
4203 * committing to an entirely unnecessary property. In the long term, we
4204 * want to do away with it. Explicitly scramble sort order if on the
4205 * default hierarchy so that no such expectation exists in the new
4206 * interface.
4207 *
4208 * Scrambling is done by swapping every two consecutive bits, which is
4209 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4210 */
4211 static pid_t pid_fry(pid_t pid)
4212 {
4213 unsigned a = pid & 0x55555555;
4214 unsigned b = pid & 0xAAAAAAAA;
4215
4216 return (a << 1) | (b >> 1);
4217 }
4218
4219 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4220 {
4221 if (cgroup_on_dfl(cgrp))
4222 return pid_fry(pid);
4223 else
4224 return pid;
4225 }
4226
4227 static int cmppid(const void *a, const void *b)
4228 {
4229 return *(pid_t *)a - *(pid_t *)b;
4230 }
4231
4232 static int fried_cmppid(const void *a, const void *b)
4233 {
4234 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4235 }
4236
4237 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4238 enum cgroup_filetype type)
4239 {
4240 struct cgroup_pidlist *l;
4241 /* don't need task_nsproxy() if we're looking at ourself */
4242 struct pid_namespace *ns = task_active_pid_ns(current);
4243
4244 lockdep_assert_held(&cgrp->pidlist_mutex);
4245
4246 list_for_each_entry(l, &cgrp->pidlists, links)
4247 if (l->key.type == type && l->key.ns == ns)
4248 return l;
4249 return NULL;
4250 }
4251
4252 /*
4253 * find the appropriate pidlist for our purpose (given procs vs tasks)
4254 * returns with the lock on that pidlist already held, and takes care
4255 * of the use count, or returns NULL with no locks held if we're out of
4256 * memory.
4257 */
4258 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4259 enum cgroup_filetype type)
4260 {
4261 struct cgroup_pidlist *l;
4262
4263 lockdep_assert_held(&cgrp->pidlist_mutex);
4264
4265 l = cgroup_pidlist_find(cgrp, type);
4266 if (l)
4267 return l;
4268
4269 /* entry not found; create a new one */
4270 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4271 if (!l)
4272 return l;
4273
4274 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4275 l->key.type = type;
4276 /* don't need task_nsproxy() if we're looking at ourself */
4277 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4278 l->owner = cgrp;
4279 list_add(&l->links, &cgrp->pidlists);
4280 return l;
4281 }
4282
4283 /*
4284 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4285 */
4286 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4287 struct cgroup_pidlist **lp)
4288 {
4289 pid_t *array;
4290 int length;
4291 int pid, n = 0; /* used for populating the array */
4292 struct css_task_iter it;
4293 struct task_struct *tsk;
4294 struct cgroup_pidlist *l;
4295
4296 lockdep_assert_held(&cgrp->pidlist_mutex);
4297
4298 /*
4299 * If cgroup gets more users after we read count, we won't have
4300 * enough space - tough. This race is indistinguishable to the
4301 * caller from the case that the additional cgroup users didn't
4302 * show up until sometime later on.
4303 */
4304 length = cgroup_task_count(cgrp);
4305 array = pidlist_allocate(length);
4306 if (!array)
4307 return -ENOMEM;
4308 /* now, populate the array */
4309 css_task_iter_start(&cgrp->self, &it);
4310 while ((tsk = css_task_iter_next(&it))) {
4311 if (unlikely(n == length))
4312 break;
4313 /* get tgid or pid for procs or tasks file respectively */
4314 if (type == CGROUP_FILE_PROCS)
4315 pid = task_tgid_vnr(tsk);
4316 else
4317 pid = task_pid_vnr(tsk);
4318 if (pid > 0) /* make sure to only use valid results */
4319 array[n++] = pid;
4320 }
4321 css_task_iter_end(&it);
4322 length = n;
4323 /* now sort & (if procs) strip out duplicates */
4324 if (cgroup_on_dfl(cgrp))
4325 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4326 else
4327 sort(array, length, sizeof(pid_t), cmppid, NULL);
4328 if (type == CGROUP_FILE_PROCS)
4329 length = pidlist_uniq(array, length);
4330
4331 l = cgroup_pidlist_find_create(cgrp, type);
4332 if (!l) {
4333 pidlist_free(array);
4334 return -ENOMEM;
4335 }
4336
4337 /* store array, freeing old if necessary */
4338 pidlist_free(l->list);
4339 l->list = array;
4340 l->length = length;
4341 *lp = l;
4342 return 0;
4343 }
4344
4345 /**
4346 * cgroupstats_build - build and fill cgroupstats
4347 * @stats: cgroupstats to fill information into
4348 * @dentry: A dentry entry belonging to the cgroup for which stats have
4349 * been requested.
4350 *
4351 * Build and fill cgroupstats so that taskstats can export it to user
4352 * space.
4353 */
4354 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4355 {
4356 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4357 struct cgroup *cgrp;
4358 struct css_task_iter it;
4359 struct task_struct *tsk;
4360
4361 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4362 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4363 kernfs_type(kn) != KERNFS_DIR)
4364 return -EINVAL;
4365
4366 mutex_lock(&cgroup_mutex);
4367
4368 /*
4369 * We aren't being called from kernfs and there's no guarantee on
4370 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4371 * @kn->priv is RCU safe. Let's do the RCU dancing.
4372 */
4373 rcu_read_lock();
4374 cgrp = rcu_dereference(kn->priv);
4375 if (!cgrp || cgroup_is_dead(cgrp)) {
4376 rcu_read_unlock();
4377 mutex_unlock(&cgroup_mutex);
4378 return -ENOENT;
4379 }
4380 rcu_read_unlock();
4381
4382 css_task_iter_start(&cgrp->self, &it);
4383 while ((tsk = css_task_iter_next(&it))) {
4384 switch (tsk->state) {
4385 case TASK_RUNNING:
4386 stats->nr_running++;
4387 break;
4388 case TASK_INTERRUPTIBLE:
4389 stats->nr_sleeping++;
4390 break;
4391 case TASK_UNINTERRUPTIBLE:
4392 stats->nr_uninterruptible++;
4393 break;
4394 case TASK_STOPPED:
4395 stats->nr_stopped++;
4396 break;
4397 default:
4398 if (delayacct_is_task_waiting_on_io(tsk))
4399 stats->nr_io_wait++;
4400 break;
4401 }
4402 }
4403 css_task_iter_end(&it);
4404
4405 mutex_unlock(&cgroup_mutex);
4406 return 0;
4407 }
4408
4409
4410 /*
4411 * seq_file methods for the tasks/procs files. The seq_file position is the
4412 * next pid to display; the seq_file iterator is a pointer to the pid
4413 * in the cgroup->l->list array.
4414 */
4415
4416 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4417 {
4418 /*
4419 * Initially we receive a position value that corresponds to
4420 * one more than the last pid shown (or 0 on the first call or
4421 * after a seek to the start). Use a binary-search to find the
4422 * next pid to display, if any
4423 */
4424 struct kernfs_open_file *of = s->private;
4425 struct cgroup *cgrp = seq_css(s)->cgroup;
4426 struct cgroup_pidlist *l;
4427 enum cgroup_filetype type = seq_cft(s)->private;
4428 int index = 0, pid = *pos;
4429 int *iter, ret;
4430
4431 mutex_lock(&cgrp->pidlist_mutex);
4432
4433 /*
4434 * !NULL @of->priv indicates that this isn't the first start()
4435 * after open. If the matching pidlist is around, we can use that.
4436 * Look for it. Note that @of->priv can't be used directly. It
4437 * could already have been destroyed.
4438 */
4439 if (of->priv)
4440 of->priv = cgroup_pidlist_find(cgrp, type);
4441
4442 /*
4443 * Either this is the first start() after open or the matching
4444 * pidlist has been destroyed inbetween. Create a new one.
4445 */
4446 if (!of->priv) {
4447 ret = pidlist_array_load(cgrp, type,
4448 (struct cgroup_pidlist **)&of->priv);
4449 if (ret)
4450 return ERR_PTR(ret);
4451 }
4452 l = of->priv;
4453
4454 if (pid) {
4455 int end = l->length;
4456
4457 while (index < end) {
4458 int mid = (index + end) / 2;
4459 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4460 index = mid;
4461 break;
4462 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4463 index = mid + 1;
4464 else
4465 end = mid;
4466 }
4467 }
4468 /* If we're off the end of the array, we're done */
4469 if (index >= l->length)
4470 return NULL;
4471 /* Update the abstract position to be the actual pid that we found */
4472 iter = l->list + index;
4473 *pos = cgroup_pid_fry(cgrp, *iter);
4474 return iter;
4475 }
4476
4477 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4478 {
4479 struct kernfs_open_file *of = s->private;
4480 struct cgroup_pidlist *l = of->priv;
4481
4482 if (l)
4483 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4484 CGROUP_PIDLIST_DESTROY_DELAY);
4485 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4486 }
4487
4488 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4489 {
4490 struct kernfs_open_file *of = s->private;
4491 struct cgroup_pidlist *l = of->priv;
4492 pid_t *p = v;
4493 pid_t *end = l->list + l->length;
4494 /*
4495 * Advance to the next pid in the array. If this goes off the
4496 * end, we're done
4497 */
4498 p++;
4499 if (p >= end) {
4500 return NULL;
4501 } else {
4502 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4503 return p;
4504 }
4505 }
4506
4507 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4508 {
4509 seq_printf(s, "%d\n", *(int *)v);
4510
4511 return 0;
4512 }
4513
4514 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4515 struct cftype *cft)
4516 {
4517 return notify_on_release(css->cgroup);
4518 }
4519
4520 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4521 struct cftype *cft, u64 val)
4522 {
4523 if (val)
4524 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4525 else
4526 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4527 return 0;
4528 }
4529
4530 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4531 struct cftype *cft)
4532 {
4533 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4534 }
4535
4536 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4537 struct cftype *cft, u64 val)
4538 {
4539 if (val)
4540 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4541 else
4542 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4543 return 0;
4544 }
4545
4546 /* cgroup core interface files for the default hierarchy */
4547 static struct cftype cgroup_dfl_base_files[] = {
4548 {
4549 .name = "cgroup.procs",
4550 .file_offset = offsetof(struct cgroup, procs_file),
4551 .seq_start = cgroup_pidlist_start,
4552 .seq_next = cgroup_pidlist_next,
4553 .seq_stop = cgroup_pidlist_stop,
4554 .seq_show = cgroup_pidlist_show,
4555 .private = CGROUP_FILE_PROCS,
4556 .write = cgroup_procs_write,
4557 },
4558 {
4559 .name = "cgroup.controllers",
4560 .flags = CFTYPE_ONLY_ON_ROOT,
4561 .seq_show = cgroup_root_controllers_show,
4562 },
4563 {
4564 .name = "cgroup.controllers",
4565 .flags = CFTYPE_NOT_ON_ROOT,
4566 .seq_show = cgroup_controllers_show,
4567 },
4568 {
4569 .name = "cgroup.subtree_control",
4570 .seq_show = cgroup_subtree_control_show,
4571 .write = cgroup_subtree_control_write,
4572 },
4573 {
4574 .name = "cgroup.events",
4575 .flags = CFTYPE_NOT_ON_ROOT,
4576 .file_offset = offsetof(struct cgroup, events_file),
4577 .seq_show = cgroup_events_show,
4578 },
4579 { } /* terminate */
4580 };
4581
4582 /* cgroup core interface files for the legacy hierarchies */
4583 static struct cftype cgroup_legacy_base_files[] = {
4584 {
4585 .name = "cgroup.procs",
4586 .seq_start = cgroup_pidlist_start,
4587 .seq_next = cgroup_pidlist_next,
4588 .seq_stop = cgroup_pidlist_stop,
4589 .seq_show = cgroup_pidlist_show,
4590 .private = CGROUP_FILE_PROCS,
4591 .write = cgroup_procs_write,
4592 },
4593 {
4594 .name = "cgroup.clone_children",
4595 .read_u64 = cgroup_clone_children_read,
4596 .write_u64 = cgroup_clone_children_write,
4597 },
4598 {
4599 .name = "cgroup.sane_behavior",
4600 .flags = CFTYPE_ONLY_ON_ROOT,
4601 .seq_show = cgroup_sane_behavior_show,
4602 },
4603 {
4604 .name = "tasks",
4605 .seq_start = cgroup_pidlist_start,
4606 .seq_next = cgroup_pidlist_next,
4607 .seq_stop = cgroup_pidlist_stop,
4608 .seq_show = cgroup_pidlist_show,
4609 .private = CGROUP_FILE_TASKS,
4610 .write = cgroup_tasks_write,
4611 },
4612 {
4613 .name = "notify_on_release",
4614 .read_u64 = cgroup_read_notify_on_release,
4615 .write_u64 = cgroup_write_notify_on_release,
4616 },
4617 {
4618 .name = "release_agent",
4619 .flags = CFTYPE_ONLY_ON_ROOT,
4620 .seq_show = cgroup_release_agent_show,
4621 .write = cgroup_release_agent_write,
4622 .max_write_len = PATH_MAX - 1,
4623 },
4624 { } /* terminate */
4625 };
4626
4627 /*
4628 * css destruction is four-stage process.
4629 *
4630 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4631 * Implemented in kill_css().
4632 *
4633 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4634 * and thus css_tryget_online() is guaranteed to fail, the css can be
4635 * offlined by invoking offline_css(). After offlining, the base ref is
4636 * put. Implemented in css_killed_work_fn().
4637 *
4638 * 3. When the percpu_ref reaches zero, the only possible remaining
4639 * accessors are inside RCU read sections. css_release() schedules the
4640 * RCU callback.
4641 *
4642 * 4. After the grace period, the css can be freed. Implemented in
4643 * css_free_work_fn().
4644 *
4645 * It is actually hairier because both step 2 and 4 require process context
4646 * and thus involve punting to css->destroy_work adding two additional
4647 * steps to the already complex sequence.
4648 */
4649 static void css_free_work_fn(struct work_struct *work)
4650 {
4651 struct cgroup_subsys_state *css =
4652 container_of(work, struct cgroup_subsys_state, destroy_work);
4653 struct cgroup_subsys *ss = css->ss;
4654 struct cgroup *cgrp = css->cgroup;
4655
4656 percpu_ref_exit(&css->refcnt);
4657
4658 if (ss) {
4659 /* css free path */
4660 struct cgroup_subsys_state *parent = css->parent;
4661 int id = css->id;
4662
4663 ss->css_free(css);
4664 cgroup_idr_remove(&ss->css_idr, id);
4665 cgroup_put(cgrp);
4666
4667 if (parent)
4668 css_put(parent);
4669 } else {
4670 /* cgroup free path */
4671 atomic_dec(&cgrp->root->nr_cgrps);
4672 cgroup_pidlist_destroy_all(cgrp);
4673 cancel_work_sync(&cgrp->release_agent_work);
4674
4675 if (cgroup_parent(cgrp)) {
4676 /*
4677 * We get a ref to the parent, and put the ref when
4678 * this cgroup is being freed, so it's guaranteed
4679 * that the parent won't be destroyed before its
4680 * children.
4681 */
4682 cgroup_put(cgroup_parent(cgrp));
4683 kernfs_put(cgrp->kn);
4684 kfree(cgrp);
4685 } else {
4686 /*
4687 * This is root cgroup's refcnt reaching zero,
4688 * which indicates that the root should be
4689 * released.
4690 */
4691 cgroup_destroy_root(cgrp->root);
4692 }
4693 }
4694 }
4695
4696 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4697 {
4698 struct cgroup_subsys_state *css =
4699 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4700
4701 INIT_WORK(&css->destroy_work, css_free_work_fn);
4702 queue_work(cgroup_destroy_wq, &css->destroy_work);
4703 }
4704
4705 static void css_release_work_fn(struct work_struct *work)
4706 {
4707 struct cgroup_subsys_state *css =
4708 container_of(work, struct cgroup_subsys_state, destroy_work);
4709 struct cgroup_subsys *ss = css->ss;
4710 struct cgroup *cgrp = css->cgroup;
4711
4712 mutex_lock(&cgroup_mutex);
4713
4714 css->flags |= CSS_RELEASED;
4715 list_del_rcu(&css->sibling);
4716
4717 if (ss) {
4718 /* css release path */
4719 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4720 if (ss->css_released)
4721 ss->css_released(css);
4722 } else {
4723 /* cgroup release path */
4724 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4725 cgrp->id = -1;
4726
4727 /*
4728 * There are two control paths which try to determine
4729 * cgroup from dentry without going through kernfs -
4730 * cgroupstats_build() and css_tryget_online_from_dir().
4731 * Those are supported by RCU protecting clearing of
4732 * cgrp->kn->priv backpointer.
4733 */
4734 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4735 }
4736
4737 mutex_unlock(&cgroup_mutex);
4738
4739 call_rcu(&css->rcu_head, css_free_rcu_fn);
4740 }
4741
4742 static void css_release(struct percpu_ref *ref)
4743 {
4744 struct cgroup_subsys_state *css =
4745 container_of(ref, struct cgroup_subsys_state, refcnt);
4746
4747 INIT_WORK(&css->destroy_work, css_release_work_fn);
4748 queue_work(cgroup_destroy_wq, &css->destroy_work);
4749 }
4750
4751 static void init_and_link_css(struct cgroup_subsys_state *css,
4752 struct cgroup_subsys *ss, struct cgroup *cgrp)
4753 {
4754 lockdep_assert_held(&cgroup_mutex);
4755
4756 cgroup_get(cgrp);
4757
4758 memset(css, 0, sizeof(*css));
4759 css->cgroup = cgrp;
4760 css->ss = ss;
4761 INIT_LIST_HEAD(&css->sibling);
4762 INIT_LIST_HEAD(&css->children);
4763 css->serial_nr = css_serial_nr_next++;
4764 atomic_set(&css->online_cnt, 0);
4765
4766 if (cgroup_parent(cgrp)) {
4767 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4768 css_get(css->parent);
4769 }
4770
4771 BUG_ON(cgroup_css(cgrp, ss));
4772 }
4773
4774 /* invoke ->css_online() on a new CSS and mark it online if successful */
4775 static int online_css(struct cgroup_subsys_state *css)
4776 {
4777 struct cgroup_subsys *ss = css->ss;
4778 int ret = 0;
4779
4780 lockdep_assert_held(&cgroup_mutex);
4781
4782 if (ss->css_online)
4783 ret = ss->css_online(css);
4784 if (!ret) {
4785 css->flags |= CSS_ONLINE;
4786 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4787
4788 atomic_inc(&css->online_cnt);
4789 if (css->parent)
4790 atomic_inc(&css->parent->online_cnt);
4791 }
4792 return ret;
4793 }
4794
4795 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4796 static void offline_css(struct cgroup_subsys_state *css)
4797 {
4798 struct cgroup_subsys *ss = css->ss;
4799
4800 lockdep_assert_held(&cgroup_mutex);
4801
4802 if (!(css->flags & CSS_ONLINE))
4803 return;
4804
4805 if (ss->css_offline)
4806 ss->css_offline(css);
4807
4808 css->flags &= ~CSS_ONLINE;
4809 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4810
4811 wake_up_all(&css->cgroup->offline_waitq);
4812 }
4813
4814 /**
4815 * create_css - create a cgroup_subsys_state
4816 * @cgrp: the cgroup new css will be associated with
4817 * @ss: the subsys of new css
4818 * @visible: whether to create control knobs for the new css or not
4819 *
4820 * Create a new css associated with @cgrp - @ss pair. On success, the new
4821 * css is online and installed in @cgrp with all interface files created if
4822 * @visible. Returns 0 on success, -errno on failure.
4823 */
4824 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4825 bool visible)
4826 {
4827 struct cgroup *parent = cgroup_parent(cgrp);
4828 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4829 struct cgroup_subsys_state *css;
4830 int err;
4831
4832 lockdep_assert_held(&cgroup_mutex);
4833
4834 css = ss->css_alloc(parent_css);
4835 if (IS_ERR(css))
4836 return PTR_ERR(css);
4837
4838 init_and_link_css(css, ss, cgrp);
4839
4840 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4841 if (err)
4842 goto err_free_css;
4843
4844 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4845 if (err < 0)
4846 goto err_free_percpu_ref;
4847 css->id = err;
4848
4849 if (visible) {
4850 err = css_populate_dir(css, NULL);
4851 if (err)
4852 goto err_free_id;
4853 }
4854
4855 /* @css is ready to be brought online now, make it visible */
4856 list_add_tail_rcu(&css->sibling, &parent_css->children);
4857 cgroup_idr_replace(&ss->css_idr, css, css->id);
4858
4859 err = online_css(css);
4860 if (err)
4861 goto err_list_del;
4862
4863 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4864 cgroup_parent(parent)) {
4865 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4866 current->comm, current->pid, ss->name);
4867 if (!strcmp(ss->name, "memory"))
4868 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4869 ss->warned_broken_hierarchy = true;
4870 }
4871
4872 return 0;
4873
4874 err_list_del:
4875 list_del_rcu(&css->sibling);
4876 css_clear_dir(css, NULL);
4877 err_free_id:
4878 cgroup_idr_remove(&ss->css_idr, css->id);
4879 err_free_percpu_ref:
4880 percpu_ref_exit(&css->refcnt);
4881 err_free_css:
4882 call_rcu(&css->rcu_head, css_free_rcu_fn);
4883 return err;
4884 }
4885
4886 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4887 umode_t mode)
4888 {
4889 struct cgroup *parent, *cgrp, *tcgrp;
4890 struct cgroup_root *root;
4891 struct cgroup_subsys *ss;
4892 struct kernfs_node *kn;
4893 int level, ssid, ret;
4894
4895 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4896 */
4897 if (strchr(name, '\n'))
4898 return -EINVAL;
4899
4900 parent = cgroup_kn_lock_live(parent_kn);
4901 if (!parent)
4902 return -ENODEV;
4903 root = parent->root;
4904 level = parent->level + 1;
4905
4906 /* allocate the cgroup and its ID, 0 is reserved for the root */
4907 cgrp = kzalloc(sizeof(*cgrp) +
4908 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4909 if (!cgrp) {
4910 ret = -ENOMEM;
4911 goto out_unlock;
4912 }
4913
4914 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4915 if (ret)
4916 goto out_free_cgrp;
4917
4918 /*
4919 * Temporarily set the pointer to NULL, so idr_find() won't return
4920 * a half-baked cgroup.
4921 */
4922 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4923 if (cgrp->id < 0) {
4924 ret = -ENOMEM;
4925 goto out_cancel_ref;
4926 }
4927
4928 init_cgroup_housekeeping(cgrp);
4929
4930 cgrp->self.parent = &parent->self;
4931 cgrp->root = root;
4932 cgrp->level = level;
4933
4934 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4935 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4936
4937 if (notify_on_release(parent))
4938 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4939
4940 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4941 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4942
4943 /* create the directory */
4944 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4945 if (IS_ERR(kn)) {
4946 ret = PTR_ERR(kn);
4947 goto out_free_id;
4948 }
4949 cgrp->kn = kn;
4950
4951 /*
4952 * This extra ref will be put in cgroup_free_fn() and guarantees
4953 * that @cgrp->kn is always accessible.
4954 */
4955 kernfs_get(kn);
4956
4957 cgrp->self.serial_nr = css_serial_nr_next++;
4958
4959 /* allocation complete, commit to creation */
4960 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4961 atomic_inc(&root->nr_cgrps);
4962 cgroup_get(parent);
4963
4964 /*
4965 * @cgrp is now fully operational. If something fails after this
4966 * point, it'll be released via the normal destruction path.
4967 */
4968 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4969
4970 ret = cgroup_kn_set_ugid(kn);
4971 if (ret)
4972 goto out_destroy;
4973
4974 ret = css_populate_dir(&cgrp->self, NULL);
4975 if (ret)
4976 goto out_destroy;
4977
4978 /* let's create and online css's */
4979 for_each_subsys(ss, ssid) {
4980 if (parent->child_subsys_mask & (1 << ssid)) {
4981 ret = create_css(cgrp, ss,
4982 parent->subtree_control & (1 << ssid));
4983 if (ret)
4984 goto out_destroy;
4985 }
4986 }
4987
4988 /*
4989 * On the default hierarchy, a child doesn't automatically inherit
4990 * subtree_control from the parent. Each is configured manually.
4991 */
4992 if (!cgroup_on_dfl(cgrp)) {
4993 cgrp->subtree_control = parent->subtree_control;
4994 cgroup_refresh_child_subsys_mask(cgrp);
4995 }
4996
4997 kernfs_activate(kn);
4998
4999 ret = 0;
5000 goto out_unlock;
5001
5002 out_free_id:
5003 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5004 out_cancel_ref:
5005 percpu_ref_exit(&cgrp->self.refcnt);
5006 out_free_cgrp:
5007 kfree(cgrp);
5008 out_unlock:
5009 cgroup_kn_unlock(parent_kn);
5010 return ret;
5011
5012 out_destroy:
5013 cgroup_destroy_locked(cgrp);
5014 goto out_unlock;
5015 }
5016
5017 /*
5018 * This is called when the refcnt of a css is confirmed to be killed.
5019 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5020 * initate destruction and put the css ref from kill_css().
5021 */
5022 static void css_killed_work_fn(struct work_struct *work)
5023 {
5024 struct cgroup_subsys_state *css =
5025 container_of(work, struct cgroup_subsys_state, destroy_work);
5026
5027 mutex_lock(&cgroup_mutex);
5028
5029 do {
5030 offline_css(css);
5031 css_put(css);
5032 /* @css can't go away while we're holding cgroup_mutex */
5033 css = css->parent;
5034 } while (css && atomic_dec_and_test(&css->online_cnt));
5035
5036 mutex_unlock(&cgroup_mutex);
5037 }
5038
5039 /* css kill confirmation processing requires process context, bounce */
5040 static void css_killed_ref_fn(struct percpu_ref *ref)
5041 {
5042 struct cgroup_subsys_state *css =
5043 container_of(ref, struct cgroup_subsys_state, refcnt);
5044
5045 if (atomic_dec_and_test(&css->online_cnt)) {
5046 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5047 queue_work(cgroup_destroy_wq, &css->destroy_work);
5048 }
5049 }
5050
5051 /**
5052 * kill_css - destroy a css
5053 * @css: css to destroy
5054 *
5055 * This function initiates destruction of @css by removing cgroup interface
5056 * files and putting its base reference. ->css_offline() will be invoked
5057 * asynchronously once css_tryget_online() is guaranteed to fail and when
5058 * the reference count reaches zero, @css will be released.
5059 */
5060 static void kill_css(struct cgroup_subsys_state *css)
5061 {
5062 lockdep_assert_held(&cgroup_mutex);
5063
5064 /*
5065 * This must happen before css is disassociated with its cgroup.
5066 * See seq_css() for details.
5067 */
5068 css_clear_dir(css, NULL);
5069
5070 /*
5071 * Killing would put the base ref, but we need to keep it alive
5072 * until after ->css_offline().
5073 */
5074 css_get(css);
5075
5076 /*
5077 * cgroup core guarantees that, by the time ->css_offline() is
5078 * invoked, no new css reference will be given out via
5079 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5080 * proceed to offlining css's because percpu_ref_kill() doesn't
5081 * guarantee that the ref is seen as killed on all CPUs on return.
5082 *
5083 * Use percpu_ref_kill_and_confirm() to get notifications as each
5084 * css is confirmed to be seen as killed on all CPUs.
5085 */
5086 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5087 }
5088
5089 /**
5090 * cgroup_destroy_locked - the first stage of cgroup destruction
5091 * @cgrp: cgroup to be destroyed
5092 *
5093 * css's make use of percpu refcnts whose killing latency shouldn't be
5094 * exposed to userland and are RCU protected. Also, cgroup core needs to
5095 * guarantee that css_tryget_online() won't succeed by the time
5096 * ->css_offline() is invoked. To satisfy all the requirements,
5097 * destruction is implemented in the following two steps.
5098 *
5099 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5100 * userland visible parts and start killing the percpu refcnts of
5101 * css's. Set up so that the next stage will be kicked off once all
5102 * the percpu refcnts are confirmed to be killed.
5103 *
5104 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5105 * rest of destruction. Once all cgroup references are gone, the
5106 * cgroup is RCU-freed.
5107 *
5108 * This function implements s1. After this step, @cgrp is gone as far as
5109 * the userland is concerned and a new cgroup with the same name may be
5110 * created. As cgroup doesn't care about the names internally, this
5111 * doesn't cause any problem.
5112 */
5113 static int cgroup_destroy_locked(struct cgroup *cgrp)
5114 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5115 {
5116 struct cgroup_subsys_state *css;
5117 int ssid;
5118
5119 lockdep_assert_held(&cgroup_mutex);
5120
5121 /*
5122 * Only migration can raise populated from zero and we're already
5123 * holding cgroup_mutex.
5124 */
5125 if (cgroup_is_populated(cgrp))
5126 return -EBUSY;
5127
5128 /*
5129 * Make sure there's no live children. We can't test emptiness of
5130 * ->self.children as dead children linger on it while being
5131 * drained; otherwise, "rmdir parent/child parent" may fail.
5132 */
5133 if (css_has_online_children(&cgrp->self))
5134 return -EBUSY;
5135
5136 /*
5137 * Mark @cgrp dead. This prevents further task migration and child
5138 * creation by disabling cgroup_lock_live_group().
5139 */
5140 cgrp->self.flags &= ~CSS_ONLINE;
5141
5142 /* initiate massacre of all css's */
5143 for_each_css(css, ssid, cgrp)
5144 kill_css(css);
5145
5146 /*
5147 * Remove @cgrp directory along with the base files. @cgrp has an
5148 * extra ref on its kn.
5149 */
5150 kernfs_remove(cgrp->kn);
5151
5152 check_for_release(cgroup_parent(cgrp));
5153
5154 /* put the base reference */
5155 percpu_ref_kill(&cgrp->self.refcnt);
5156
5157 return 0;
5158 };
5159
5160 static int cgroup_rmdir(struct kernfs_node *kn)
5161 {
5162 struct cgroup *cgrp;
5163 int ret = 0;
5164
5165 cgrp = cgroup_kn_lock_live(kn);
5166 if (!cgrp)
5167 return 0;
5168
5169 ret = cgroup_destroy_locked(cgrp);
5170
5171 cgroup_kn_unlock(kn);
5172 return ret;
5173 }
5174
5175 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5176 .remount_fs = cgroup_remount,
5177 .show_options = cgroup_show_options,
5178 .mkdir = cgroup_mkdir,
5179 .rmdir = cgroup_rmdir,
5180 .rename = cgroup_rename,
5181 };
5182
5183 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5184 {
5185 struct cgroup_subsys_state *css;
5186
5187 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5188
5189 mutex_lock(&cgroup_mutex);
5190
5191 idr_init(&ss->css_idr);
5192 INIT_LIST_HEAD(&ss->cfts);
5193
5194 /* Create the root cgroup state for this subsystem */
5195 ss->root = &cgrp_dfl_root;
5196 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5197 /* We don't handle early failures gracefully */
5198 BUG_ON(IS_ERR(css));
5199 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5200
5201 /*
5202 * Root csses are never destroyed and we can't initialize
5203 * percpu_ref during early init. Disable refcnting.
5204 */
5205 css->flags |= CSS_NO_REF;
5206
5207 if (early) {
5208 /* allocation can't be done safely during early init */
5209 css->id = 1;
5210 } else {
5211 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5212 BUG_ON(css->id < 0);
5213 }
5214
5215 /* Update the init_css_set to contain a subsys
5216 * pointer to this state - since the subsystem is
5217 * newly registered, all tasks and hence the
5218 * init_css_set is in the subsystem's root cgroup. */
5219 init_css_set.subsys[ss->id] = css;
5220
5221 have_fork_callback |= (bool)ss->fork << ss->id;
5222 have_exit_callback |= (bool)ss->exit << ss->id;
5223 have_free_callback |= (bool)ss->free << ss->id;
5224 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5225
5226 /* At system boot, before all subsystems have been
5227 * registered, no tasks have been forked, so we don't
5228 * need to invoke fork callbacks here. */
5229 BUG_ON(!list_empty(&init_task.tasks));
5230
5231 BUG_ON(online_css(css));
5232
5233 mutex_unlock(&cgroup_mutex);
5234 }
5235
5236 /**
5237 * cgroup_init_early - cgroup initialization at system boot
5238 *
5239 * Initialize cgroups at system boot, and initialize any
5240 * subsystems that request early init.
5241 */
5242 int __init cgroup_init_early(void)
5243 {
5244 static struct cgroup_sb_opts __initdata opts;
5245 struct cgroup_subsys *ss;
5246 int i;
5247
5248 init_cgroup_root(&cgrp_dfl_root, &opts);
5249 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5250
5251 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5252
5253 for_each_subsys(ss, i) {
5254 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5255 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5256 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5257 ss->id, ss->name);
5258 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5259 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5260
5261 ss->id = i;
5262 ss->name = cgroup_subsys_name[i];
5263 if (!ss->legacy_name)
5264 ss->legacy_name = cgroup_subsys_name[i];
5265
5266 if (ss->early_init)
5267 cgroup_init_subsys(ss, true);
5268 }
5269 return 0;
5270 }
5271
5272 static unsigned long cgroup_disable_mask __initdata;
5273
5274 /**
5275 * cgroup_init - cgroup initialization
5276 *
5277 * Register cgroup filesystem and /proc file, and initialize
5278 * any subsystems that didn't request early init.
5279 */
5280 int __init cgroup_init(void)
5281 {
5282 struct cgroup_subsys *ss;
5283 unsigned long key;
5284 int ssid;
5285
5286 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5287 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5288 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5289
5290 mutex_lock(&cgroup_mutex);
5291
5292 /* Add init_css_set to the hash table */
5293 key = css_set_hash(init_css_set.subsys);
5294 hash_add(css_set_table, &init_css_set.hlist, key);
5295
5296 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5297
5298 mutex_unlock(&cgroup_mutex);
5299
5300 for_each_subsys(ss, ssid) {
5301 if (ss->early_init) {
5302 struct cgroup_subsys_state *css =
5303 init_css_set.subsys[ss->id];
5304
5305 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5306 GFP_KERNEL);
5307 BUG_ON(css->id < 0);
5308 } else {
5309 cgroup_init_subsys(ss, false);
5310 }
5311
5312 list_add_tail(&init_css_set.e_cset_node[ssid],
5313 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5314
5315 /*
5316 * Setting dfl_root subsys_mask needs to consider the
5317 * disabled flag and cftype registration needs kmalloc,
5318 * both of which aren't available during early_init.
5319 */
5320 if (cgroup_disable_mask & (1 << ssid)) {
5321 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5322 printk(KERN_INFO "Disabling %s control group subsystem\n",
5323 ss->name);
5324 continue;
5325 }
5326
5327 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5328
5329 if (!ss->dfl_cftypes)
5330 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5331
5332 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5333 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5334 } else {
5335 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5336 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5337 }
5338
5339 if (ss->bind)
5340 ss->bind(init_css_set.subsys[ssid]);
5341 }
5342
5343 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5344 WARN_ON(register_filesystem(&cgroup_fs_type));
5345 WARN_ON(register_filesystem(&cgroup2_fs_type));
5346 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5347
5348 return 0;
5349 }
5350
5351 static int __init cgroup_wq_init(void)
5352 {
5353 /*
5354 * There isn't much point in executing destruction path in
5355 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5356 * Use 1 for @max_active.
5357 *
5358 * We would prefer to do this in cgroup_init() above, but that
5359 * is called before init_workqueues(): so leave this until after.
5360 */
5361 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5362 BUG_ON(!cgroup_destroy_wq);
5363
5364 /*
5365 * Used to destroy pidlists and separate to serve as flush domain.
5366 * Cap @max_active to 1 too.
5367 */
5368 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5369 0, 1);
5370 BUG_ON(!cgroup_pidlist_destroy_wq);
5371
5372 return 0;
5373 }
5374 core_initcall(cgroup_wq_init);
5375
5376 /*
5377 * proc_cgroup_show()
5378 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5379 * - Used for /proc/<pid>/cgroup.
5380 */
5381 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5382 struct pid *pid, struct task_struct *tsk)
5383 {
5384 char *buf, *path;
5385 int retval;
5386 struct cgroup_root *root;
5387
5388 retval = -ENOMEM;
5389 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5390 if (!buf)
5391 goto out;
5392
5393 mutex_lock(&cgroup_mutex);
5394 spin_lock_bh(&css_set_lock);
5395
5396 for_each_root(root) {
5397 struct cgroup_subsys *ss;
5398 struct cgroup *cgrp;
5399 int ssid, count = 0;
5400
5401 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5402 continue;
5403
5404 seq_printf(m, "%d:", root->hierarchy_id);
5405 if (root != &cgrp_dfl_root)
5406 for_each_subsys(ss, ssid)
5407 if (root->subsys_mask & (1 << ssid))
5408 seq_printf(m, "%s%s", count++ ? "," : "",
5409 ss->legacy_name);
5410 if (strlen(root->name))
5411 seq_printf(m, "%sname=%s", count ? "," : "",
5412 root->name);
5413 seq_putc(m, ':');
5414
5415 cgrp = task_cgroup_from_root(tsk, root);
5416
5417 /*
5418 * On traditional hierarchies, all zombie tasks show up as
5419 * belonging to the root cgroup. On the default hierarchy,
5420 * while a zombie doesn't show up in "cgroup.procs" and
5421 * thus can't be migrated, its /proc/PID/cgroup keeps
5422 * reporting the cgroup it belonged to before exiting. If
5423 * the cgroup is removed before the zombie is reaped,
5424 * " (deleted)" is appended to the cgroup path.
5425 */
5426 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5427 path = cgroup_path(cgrp, buf, PATH_MAX);
5428 if (!path) {
5429 retval = -ENAMETOOLONG;
5430 goto out_unlock;
5431 }
5432 } else {
5433 path = "/";
5434 }
5435
5436 seq_puts(m, path);
5437
5438 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5439 seq_puts(m, " (deleted)\n");
5440 else
5441 seq_putc(m, '\n');
5442 }
5443
5444 retval = 0;
5445 out_unlock:
5446 spin_unlock_bh(&css_set_lock);
5447 mutex_unlock(&cgroup_mutex);
5448 kfree(buf);
5449 out:
5450 return retval;
5451 }
5452
5453 /* Display information about each subsystem and each hierarchy */
5454 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5455 {
5456 struct cgroup_subsys *ss;
5457 int i;
5458
5459 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5460 /*
5461 * ideally we don't want subsystems moving around while we do this.
5462 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5463 * subsys/hierarchy state.
5464 */
5465 mutex_lock(&cgroup_mutex);
5466
5467 for_each_subsys(ss, i)
5468 seq_printf(m, "%s\t%d\t%d\t%d\n",
5469 ss->legacy_name, ss->root->hierarchy_id,
5470 atomic_read(&ss->root->nr_cgrps),
5471 cgroup_ssid_enabled(i));
5472
5473 mutex_unlock(&cgroup_mutex);
5474 return 0;
5475 }
5476
5477 static int cgroupstats_open(struct inode *inode, struct file *file)
5478 {
5479 return single_open(file, proc_cgroupstats_show, NULL);
5480 }
5481
5482 static const struct file_operations proc_cgroupstats_operations = {
5483 .open = cgroupstats_open,
5484 .read = seq_read,
5485 .llseek = seq_lseek,
5486 .release = single_release,
5487 };
5488
5489 /**
5490 * cgroup_fork - initialize cgroup related fields during copy_process()
5491 * @child: pointer to task_struct of forking parent process.
5492 *
5493 * A task is associated with the init_css_set until cgroup_post_fork()
5494 * attaches it to the parent's css_set. Empty cg_list indicates that
5495 * @child isn't holding reference to its css_set.
5496 */
5497 void cgroup_fork(struct task_struct *child)
5498 {
5499 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5500 INIT_LIST_HEAD(&child->cg_list);
5501 }
5502
5503 /**
5504 * cgroup_can_fork - called on a new task before the process is exposed
5505 * @child: the task in question.
5506 *
5507 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5508 * returns an error, the fork aborts with that error code. This allows for
5509 * a cgroup subsystem to conditionally allow or deny new forks.
5510 */
5511 int cgroup_can_fork(struct task_struct *child)
5512 {
5513 struct cgroup_subsys *ss;
5514 int i, j, ret;
5515
5516 for_each_subsys_which(ss, i, &have_canfork_callback) {
5517 ret = ss->can_fork(child);
5518 if (ret)
5519 goto out_revert;
5520 }
5521
5522 return 0;
5523
5524 out_revert:
5525 for_each_subsys(ss, j) {
5526 if (j >= i)
5527 break;
5528 if (ss->cancel_fork)
5529 ss->cancel_fork(child);
5530 }
5531
5532 return ret;
5533 }
5534
5535 /**
5536 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5537 * @child: the task in question
5538 *
5539 * This calls the cancel_fork() callbacks if a fork failed *after*
5540 * cgroup_can_fork() succeded.
5541 */
5542 void cgroup_cancel_fork(struct task_struct *child)
5543 {
5544 struct cgroup_subsys *ss;
5545 int i;
5546
5547 for_each_subsys(ss, i)
5548 if (ss->cancel_fork)
5549 ss->cancel_fork(child);
5550 }
5551
5552 /**
5553 * cgroup_post_fork - called on a new task after adding it to the task list
5554 * @child: the task in question
5555 *
5556 * Adds the task to the list running through its css_set if necessary and
5557 * call the subsystem fork() callbacks. Has to be after the task is
5558 * visible on the task list in case we race with the first call to
5559 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5560 * list.
5561 */
5562 void cgroup_post_fork(struct task_struct *child)
5563 {
5564 struct cgroup_subsys *ss;
5565 int i;
5566
5567 /*
5568 * This may race against cgroup_enable_task_cg_lists(). As that
5569 * function sets use_task_css_set_links before grabbing
5570 * tasklist_lock and we just went through tasklist_lock to add
5571 * @child, it's guaranteed that either we see the set
5572 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5573 * @child during its iteration.
5574 *
5575 * If we won the race, @child is associated with %current's
5576 * css_set. Grabbing css_set_lock guarantees both that the
5577 * association is stable, and, on completion of the parent's
5578 * migration, @child is visible in the source of migration or
5579 * already in the destination cgroup. This guarantee is necessary
5580 * when implementing operations which need to migrate all tasks of
5581 * a cgroup to another.
5582 *
5583 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5584 * will remain in init_css_set. This is safe because all tasks are
5585 * in the init_css_set before cg_links is enabled and there's no
5586 * operation which transfers all tasks out of init_css_set.
5587 */
5588 if (use_task_css_set_links) {
5589 struct css_set *cset;
5590
5591 spin_lock_bh(&css_set_lock);
5592 cset = task_css_set(current);
5593 if (list_empty(&child->cg_list)) {
5594 get_css_set(cset);
5595 css_set_move_task(child, NULL, cset, false);
5596 }
5597 spin_unlock_bh(&css_set_lock);
5598 }
5599
5600 /*
5601 * Call ss->fork(). This must happen after @child is linked on
5602 * css_set; otherwise, @child might change state between ->fork()
5603 * and addition to css_set.
5604 */
5605 for_each_subsys_which(ss, i, &have_fork_callback)
5606 ss->fork(child);
5607 }
5608
5609 /**
5610 * cgroup_exit - detach cgroup from exiting task
5611 * @tsk: pointer to task_struct of exiting process
5612 *
5613 * Description: Detach cgroup from @tsk and release it.
5614 *
5615 * Note that cgroups marked notify_on_release force every task in
5616 * them to take the global cgroup_mutex mutex when exiting.
5617 * This could impact scaling on very large systems. Be reluctant to
5618 * use notify_on_release cgroups where very high task exit scaling
5619 * is required on large systems.
5620 *
5621 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5622 * call cgroup_exit() while the task is still competent to handle
5623 * notify_on_release(), then leave the task attached to the root cgroup in
5624 * each hierarchy for the remainder of its exit. No need to bother with
5625 * init_css_set refcnting. init_css_set never goes away and we can't race
5626 * with migration path - PF_EXITING is visible to migration path.
5627 */
5628 void cgroup_exit(struct task_struct *tsk)
5629 {
5630 struct cgroup_subsys *ss;
5631 struct css_set *cset;
5632 int i;
5633
5634 /*
5635 * Unlink from @tsk from its css_set. As migration path can't race
5636 * with us, we can check css_set and cg_list without synchronization.
5637 */
5638 cset = task_css_set(tsk);
5639
5640 if (!list_empty(&tsk->cg_list)) {
5641 spin_lock_bh(&css_set_lock);
5642 css_set_move_task(tsk, cset, NULL, false);
5643 spin_unlock_bh(&css_set_lock);
5644 } else {
5645 get_css_set(cset);
5646 }
5647
5648 /* see cgroup_post_fork() for details */
5649 for_each_subsys_which(ss, i, &have_exit_callback)
5650 ss->exit(tsk);
5651 }
5652
5653 void cgroup_free(struct task_struct *task)
5654 {
5655 struct css_set *cset = task_css_set(task);
5656 struct cgroup_subsys *ss;
5657 int ssid;
5658
5659 for_each_subsys_which(ss, ssid, &have_free_callback)
5660 ss->free(task);
5661
5662 put_css_set(cset);
5663 }
5664
5665 static void check_for_release(struct cgroup *cgrp)
5666 {
5667 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5668 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5669 schedule_work(&cgrp->release_agent_work);
5670 }
5671
5672 /*
5673 * Notify userspace when a cgroup is released, by running the
5674 * configured release agent with the name of the cgroup (path
5675 * relative to the root of cgroup file system) as the argument.
5676 *
5677 * Most likely, this user command will try to rmdir this cgroup.
5678 *
5679 * This races with the possibility that some other task will be
5680 * attached to this cgroup before it is removed, or that some other
5681 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5682 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5683 * unused, and this cgroup will be reprieved from its death sentence,
5684 * to continue to serve a useful existence. Next time it's released,
5685 * we will get notified again, if it still has 'notify_on_release' set.
5686 *
5687 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5688 * means only wait until the task is successfully execve()'d. The
5689 * separate release agent task is forked by call_usermodehelper(),
5690 * then control in this thread returns here, without waiting for the
5691 * release agent task. We don't bother to wait because the caller of
5692 * this routine has no use for the exit status of the release agent
5693 * task, so no sense holding our caller up for that.
5694 */
5695 static void cgroup_release_agent(struct work_struct *work)
5696 {
5697 struct cgroup *cgrp =
5698 container_of(work, struct cgroup, release_agent_work);
5699 char *pathbuf = NULL, *agentbuf = NULL, *path;
5700 char *argv[3], *envp[3];
5701
5702 mutex_lock(&cgroup_mutex);
5703
5704 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5705 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5706 if (!pathbuf || !agentbuf)
5707 goto out;
5708
5709 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5710 if (!path)
5711 goto out;
5712
5713 argv[0] = agentbuf;
5714 argv[1] = path;
5715 argv[2] = NULL;
5716
5717 /* minimal command environment */
5718 envp[0] = "HOME=/";
5719 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5720 envp[2] = NULL;
5721
5722 mutex_unlock(&cgroup_mutex);
5723 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5724 goto out_free;
5725 out:
5726 mutex_unlock(&cgroup_mutex);
5727 out_free:
5728 kfree(agentbuf);
5729 kfree(pathbuf);
5730 }
5731
5732 static int __init cgroup_disable(char *str)
5733 {
5734 struct cgroup_subsys *ss;
5735 char *token;
5736 int i;
5737
5738 while ((token = strsep(&str, ",")) != NULL) {
5739 if (!*token)
5740 continue;
5741
5742 for_each_subsys(ss, i) {
5743 if (strcmp(token, ss->name) &&
5744 strcmp(token, ss->legacy_name))
5745 continue;
5746 cgroup_disable_mask |= 1 << i;
5747 }
5748 }
5749 return 1;
5750 }
5751 __setup("cgroup_disable=", cgroup_disable);
5752
5753 /**
5754 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5755 * @dentry: directory dentry of interest
5756 * @ss: subsystem of interest
5757 *
5758 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5759 * to get the corresponding css and return it. If such css doesn't exist
5760 * or can't be pinned, an ERR_PTR value is returned.
5761 */
5762 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5763 struct cgroup_subsys *ss)
5764 {
5765 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5766 struct cgroup_subsys_state *css = NULL;
5767 struct cgroup *cgrp;
5768
5769 /* is @dentry a cgroup dir? */
5770 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5771 kernfs_type(kn) != KERNFS_DIR)
5772 return ERR_PTR(-EBADF);
5773
5774 rcu_read_lock();
5775
5776 /*
5777 * This path doesn't originate from kernfs and @kn could already
5778 * have been or be removed at any point. @kn->priv is RCU
5779 * protected for this access. See css_release_work_fn() for details.
5780 */
5781 cgrp = rcu_dereference(kn->priv);
5782 if (cgrp)
5783 css = cgroup_css(cgrp, ss);
5784
5785 if (!css || !css_tryget_online(css))
5786 css = ERR_PTR(-ENOENT);
5787
5788 rcu_read_unlock();
5789 return css;
5790 }
5791
5792 /**
5793 * css_from_id - lookup css by id
5794 * @id: the cgroup id
5795 * @ss: cgroup subsys to be looked into
5796 *
5797 * Returns the css if there's valid one with @id, otherwise returns NULL.
5798 * Should be called under rcu_read_lock().
5799 */
5800 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5801 {
5802 WARN_ON_ONCE(!rcu_read_lock_held());
5803 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5804 }
5805
5806 /**
5807 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5808 * @path: path on the default hierarchy
5809 *
5810 * Find the cgroup at @path on the default hierarchy, increment its
5811 * reference count and return it. Returns pointer to the found cgroup on
5812 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5813 * if @path points to a non-directory.
5814 */
5815 struct cgroup *cgroup_get_from_path(const char *path)
5816 {
5817 struct kernfs_node *kn;
5818 struct cgroup *cgrp;
5819
5820 mutex_lock(&cgroup_mutex);
5821
5822 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5823 if (kn) {
5824 if (kernfs_type(kn) == KERNFS_DIR) {
5825 cgrp = kn->priv;
5826 cgroup_get(cgrp);
5827 } else {
5828 cgrp = ERR_PTR(-ENOTDIR);
5829 }
5830 kernfs_put(kn);
5831 } else {
5832 cgrp = ERR_PTR(-ENOENT);
5833 }
5834
5835 mutex_unlock(&cgroup_mutex);
5836 return cgrp;
5837 }
5838 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5839
5840 /*
5841 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5842 * definition in cgroup-defs.h.
5843 */
5844 #ifdef CONFIG_SOCK_CGROUP_DATA
5845
5846 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5847
5848 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5849 static bool cgroup_sk_alloc_disabled __read_mostly;
5850
5851 void cgroup_sk_alloc_disable(void)
5852 {
5853 if (cgroup_sk_alloc_disabled)
5854 return;
5855 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5856 cgroup_sk_alloc_disabled = true;
5857 }
5858
5859 #else
5860
5861 #define cgroup_sk_alloc_disabled false
5862
5863 #endif
5864
5865 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5866 {
5867 if (cgroup_sk_alloc_disabled)
5868 return;
5869
5870 rcu_read_lock();
5871
5872 while (true) {
5873 struct css_set *cset;
5874
5875 cset = task_css_set(current);
5876 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5877 skcd->val = (unsigned long)cset->dfl_cgrp;
5878 break;
5879 }
5880 cpu_relax();
5881 }
5882
5883 rcu_read_unlock();
5884 }
5885
5886 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5887 {
5888 cgroup_put(sock_cgroup_ptr(skcd));
5889 }
5890
5891 #endif /* CONFIG_SOCK_CGROUP_DATA */
5892
5893 #ifdef CONFIG_CGROUP_DEBUG
5894 static struct cgroup_subsys_state *
5895 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5896 {
5897 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5898
5899 if (!css)
5900 return ERR_PTR(-ENOMEM);
5901
5902 return css;
5903 }
5904
5905 static void debug_css_free(struct cgroup_subsys_state *css)
5906 {
5907 kfree(css);
5908 }
5909
5910 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5911 struct cftype *cft)
5912 {
5913 return cgroup_task_count(css->cgroup);
5914 }
5915
5916 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5917 struct cftype *cft)
5918 {
5919 return (u64)(unsigned long)current->cgroups;
5920 }
5921
5922 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5923 struct cftype *cft)
5924 {
5925 u64 count;
5926
5927 rcu_read_lock();
5928 count = atomic_read(&task_css_set(current)->refcount);
5929 rcu_read_unlock();
5930 return count;
5931 }
5932
5933 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5934 {
5935 struct cgrp_cset_link *link;
5936 struct css_set *cset;
5937 char *name_buf;
5938
5939 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5940 if (!name_buf)
5941 return -ENOMEM;
5942
5943 spin_lock_bh(&css_set_lock);
5944 rcu_read_lock();
5945 cset = rcu_dereference(current->cgroups);
5946 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5947 struct cgroup *c = link->cgrp;
5948
5949 cgroup_name(c, name_buf, NAME_MAX + 1);
5950 seq_printf(seq, "Root %d group %s\n",
5951 c->root->hierarchy_id, name_buf);
5952 }
5953 rcu_read_unlock();
5954 spin_unlock_bh(&css_set_lock);
5955 kfree(name_buf);
5956 return 0;
5957 }
5958
5959 #define MAX_TASKS_SHOWN_PER_CSS 25
5960 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5961 {
5962 struct cgroup_subsys_state *css = seq_css(seq);
5963 struct cgrp_cset_link *link;
5964
5965 spin_lock_bh(&css_set_lock);
5966 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5967 struct css_set *cset = link->cset;
5968 struct task_struct *task;
5969 int count = 0;
5970
5971 seq_printf(seq, "css_set %p\n", cset);
5972
5973 list_for_each_entry(task, &cset->tasks, cg_list) {
5974 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5975 goto overflow;
5976 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5977 }
5978
5979 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5980 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5981 goto overflow;
5982 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5983 }
5984 continue;
5985 overflow:
5986 seq_puts(seq, " ...\n");
5987 }
5988 spin_unlock_bh(&css_set_lock);
5989 return 0;
5990 }
5991
5992 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5993 {
5994 return (!cgroup_is_populated(css->cgroup) &&
5995 !css_has_online_children(&css->cgroup->self));
5996 }
5997
5998 static struct cftype debug_files[] = {
5999 {
6000 .name = "taskcount",
6001 .read_u64 = debug_taskcount_read,
6002 },
6003
6004 {
6005 .name = "current_css_set",
6006 .read_u64 = current_css_set_read,
6007 },
6008
6009 {
6010 .name = "current_css_set_refcount",
6011 .read_u64 = current_css_set_refcount_read,
6012 },
6013
6014 {
6015 .name = "current_css_set_cg_links",
6016 .seq_show = current_css_set_cg_links_read,
6017 },
6018
6019 {
6020 .name = "cgroup_css_links",
6021 .seq_show = cgroup_css_links_read,
6022 },
6023
6024 {
6025 .name = "releasable",
6026 .read_u64 = releasable_read,
6027 },
6028
6029 { } /* terminate */
6030 };
6031
6032 struct cgroup_subsys debug_cgrp_subsys = {
6033 .css_alloc = debug_css_alloc,
6034 .css_free = debug_css_free,
6035 .legacy_cftypes = debug_files,
6036 };
6037 #endif /* CONFIG_CGROUP_DEBUG */