]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cgroup.c
cgroup: implement cgroup_subsys->implicit_on_dfl
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <net/sock.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_lock protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DEFINE_SPINLOCK(css_set_lock);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_lock);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DEFINE_SPINLOCK(css_set_lock);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
107 /*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111 static DEFINE_SPINLOCK(release_agent_path_lock);
112
113 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
115 #define cgroup_assert_mutex_or_rcu_locked() \
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
118 "cgroup_mutex or RCU read lock required");
119
120 /*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126 static struct workqueue_struct *cgroup_destroy_wq;
127
128 /*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
134 /* generate an array of cgroup subsystem pointers */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
136 static struct cgroup_subsys *cgroup_subsys[] = {
137 #include <linux/cgroup_subsys.h>
138 };
139 #undef SUBSYS
140
141 /* array of cgroup subsystem names */
142 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143 static const char *cgroup_subsys_name[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149 #define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154 #include <linux/cgroup_subsys.h>
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158 static struct static_key_true *cgroup_subsys_enabled_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165 #include <linux/cgroup_subsys.h>
166 };
167 #undef SUBSYS
168
169 /*
170 * The default hierarchy, reserved for the subsystems that are otherwise
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
173 */
174 struct cgroup_root cgrp_dfl_root;
175 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
176
177 /*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
181 static bool cgrp_dfl_visible;
182
183 /* Controllers blocked by the commandline in v1 */
184 static u16 cgroup_no_v1_mask;
185
186 /* some controllers are not supported in the default hierarchy */
187 static u16 cgrp_dfl_inhibit_ss_mask;
188
189 /* some controllers are implicitly enabled on the default hierarchy */
190 static unsigned long cgrp_dfl_implicit_ss_mask;
191
192 /* The list of hierarchy roots */
193
194 static LIST_HEAD(cgroup_roots);
195 static int cgroup_root_count;
196
197 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
198 static DEFINE_IDR(cgroup_hierarchy_idr);
199
200 /*
201 * Assign a monotonically increasing serial number to csses. It guarantees
202 * cgroups with bigger numbers are newer than those with smaller numbers.
203 * Also, as csses are always appended to the parent's ->children list, it
204 * guarantees that sibling csses are always sorted in the ascending serial
205 * number order on the list. Protected by cgroup_mutex.
206 */
207 static u64 css_serial_nr_next = 1;
208
209 /*
210 * These bitmask flags indicate whether tasks in the fork and exit paths have
211 * fork/exit handlers to call. This avoids us having to do extra work in the
212 * fork/exit path to check which subsystems have fork/exit callbacks.
213 */
214 static u16 have_fork_callback __read_mostly;
215 static u16 have_exit_callback __read_mostly;
216 static u16 have_free_callback __read_mostly;
217
218 /* Ditto for the can_fork callback. */
219 static u16 have_canfork_callback __read_mostly;
220
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_dfl_base_files[];
223 static struct cftype cgroup_legacy_base_files[];
224
225 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
226 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
227 static int cgroup_apply_control(struct cgroup *cgrp);
228 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
229 static void css_task_iter_advance(struct css_task_iter *it);
230 static int cgroup_destroy_locked(struct cgroup *cgrp);
231 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
232 struct cgroup_subsys *ss);
233 static void css_release(struct percpu_ref *ref);
234 static void kill_css(struct cgroup_subsys_state *css);
235 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
236 struct cgroup *cgrp, struct cftype cfts[],
237 bool is_add);
238
239 /**
240 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
241 * @ssid: subsys ID of interest
242 *
243 * cgroup_subsys_enabled() can only be used with literal subsys names which
244 * is fine for individual subsystems but unsuitable for cgroup core. This
245 * is slower static_key_enabled() based test indexed by @ssid.
246 */
247 static bool cgroup_ssid_enabled(int ssid)
248 {
249 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
250 }
251
252 static bool cgroup_ssid_no_v1(int ssid)
253 {
254 return cgroup_no_v1_mask & (1 << ssid);
255 }
256
257 /**
258 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
259 * @cgrp: the cgroup of interest
260 *
261 * The default hierarchy is the v2 interface of cgroup and this function
262 * can be used to test whether a cgroup is on the default hierarchy for
263 * cases where a subsystem should behave differnetly depending on the
264 * interface version.
265 *
266 * The set of behaviors which change on the default hierarchy are still
267 * being determined and the mount option is prefixed with __DEVEL__.
268 *
269 * List of changed behaviors:
270 *
271 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
272 * and "name" are disallowed.
273 *
274 * - When mounting an existing superblock, mount options should match.
275 *
276 * - Remount is disallowed.
277 *
278 * - rename(2) is disallowed.
279 *
280 * - "tasks" is removed. Everything should be at process granularity. Use
281 * "cgroup.procs" instead.
282 *
283 * - "cgroup.procs" is not sorted. pids will be unique unless they got
284 * recycled inbetween reads.
285 *
286 * - "release_agent" and "notify_on_release" are removed. Replacement
287 * notification mechanism will be implemented.
288 *
289 * - "cgroup.clone_children" is removed.
290 *
291 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
292 * and its descendants contain no task; otherwise, 1. The file also
293 * generates kernfs notification which can be monitored through poll and
294 * [di]notify when the value of the file changes.
295 *
296 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
297 * take masks of ancestors with non-empty cpus/mems, instead of being
298 * moved to an ancestor.
299 *
300 * - cpuset: a task can be moved into an empty cpuset, and again it takes
301 * masks of ancestors.
302 *
303 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
304 * is not created.
305 *
306 * - blkcg: blk-throttle becomes properly hierarchical.
307 *
308 * - debug: disallowed on the default hierarchy.
309 */
310 static bool cgroup_on_dfl(const struct cgroup *cgrp)
311 {
312 return cgrp->root == &cgrp_dfl_root;
313 }
314
315 /* IDR wrappers which synchronize using cgroup_idr_lock */
316 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
317 gfp_t gfp_mask)
318 {
319 int ret;
320
321 idr_preload(gfp_mask);
322 spin_lock_bh(&cgroup_idr_lock);
323 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
324 spin_unlock_bh(&cgroup_idr_lock);
325 idr_preload_end();
326 return ret;
327 }
328
329 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
330 {
331 void *ret;
332
333 spin_lock_bh(&cgroup_idr_lock);
334 ret = idr_replace(idr, ptr, id);
335 spin_unlock_bh(&cgroup_idr_lock);
336 return ret;
337 }
338
339 static void cgroup_idr_remove(struct idr *idr, int id)
340 {
341 spin_lock_bh(&cgroup_idr_lock);
342 idr_remove(idr, id);
343 spin_unlock_bh(&cgroup_idr_lock);
344 }
345
346 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
347 {
348 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
349
350 if (parent_css)
351 return container_of(parent_css, struct cgroup, self);
352 return NULL;
353 }
354
355 /* subsystems visibly enabled on a cgroup */
356 static u16 cgroup_control(struct cgroup *cgrp)
357 {
358 struct cgroup *parent = cgroup_parent(cgrp);
359 u16 root_ss_mask = cgrp->root->subsys_mask;
360
361 if (parent)
362 return parent->subtree_control;
363
364 if (cgroup_on_dfl(cgrp))
365 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
366 cgrp_dfl_implicit_ss_mask);
367 return root_ss_mask;
368 }
369
370 /* subsystems enabled on a cgroup */
371 static u16 cgroup_ss_mask(struct cgroup *cgrp)
372 {
373 struct cgroup *parent = cgroup_parent(cgrp);
374
375 if (parent)
376 return parent->subtree_ss_mask;
377
378 return cgrp->root->subsys_mask;
379 }
380
381 /**
382 * cgroup_css - obtain a cgroup's css for the specified subsystem
383 * @cgrp: the cgroup of interest
384 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
385 *
386 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
387 * function must be called either under cgroup_mutex or rcu_read_lock() and
388 * the caller is responsible for pinning the returned css if it wants to
389 * keep accessing it outside the said locks. This function may return
390 * %NULL if @cgrp doesn't have @subsys_id enabled.
391 */
392 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
393 struct cgroup_subsys *ss)
394 {
395 if (ss)
396 return rcu_dereference_check(cgrp->subsys[ss->id],
397 lockdep_is_held(&cgroup_mutex));
398 else
399 return &cgrp->self;
400 }
401
402 /**
403 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
404 * @cgrp: the cgroup of interest
405 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
406 *
407 * Similar to cgroup_css() but returns the effective css, which is defined
408 * as the matching css of the nearest ancestor including self which has @ss
409 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
410 * function is guaranteed to return non-NULL css.
411 */
412 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
413 struct cgroup_subsys *ss)
414 {
415 lockdep_assert_held(&cgroup_mutex);
416
417 if (!ss)
418 return &cgrp->self;
419
420 /*
421 * This function is used while updating css associations and thus
422 * can't test the csses directly. Test ss_mask.
423 */
424 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
425 cgrp = cgroup_parent(cgrp);
426 if (!cgrp)
427 return NULL;
428 }
429
430 return cgroup_css(cgrp, ss);
431 }
432
433 /**
434 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
435 * @cgrp: the cgroup of interest
436 * @ss: the subsystem of interest
437 *
438 * Find and get the effective css of @cgrp for @ss. The effective css is
439 * defined as the matching css of the nearest ancestor including self which
440 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
441 * the root css is returned, so this function always returns a valid css.
442 * The returned css must be put using css_put().
443 */
444 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
445 struct cgroup_subsys *ss)
446 {
447 struct cgroup_subsys_state *css;
448
449 rcu_read_lock();
450
451 do {
452 css = cgroup_css(cgrp, ss);
453
454 if (css && css_tryget_online(css))
455 goto out_unlock;
456 cgrp = cgroup_parent(cgrp);
457 } while (cgrp);
458
459 css = init_css_set.subsys[ss->id];
460 css_get(css);
461 out_unlock:
462 rcu_read_unlock();
463 return css;
464 }
465
466 /* convenient tests for these bits */
467 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
468 {
469 return !(cgrp->self.flags & CSS_ONLINE);
470 }
471
472 static void cgroup_get(struct cgroup *cgrp)
473 {
474 WARN_ON_ONCE(cgroup_is_dead(cgrp));
475 css_get(&cgrp->self);
476 }
477
478 static bool cgroup_tryget(struct cgroup *cgrp)
479 {
480 return css_tryget(&cgrp->self);
481 }
482
483 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
484 {
485 struct cgroup *cgrp = of->kn->parent->priv;
486 struct cftype *cft = of_cft(of);
487
488 /*
489 * This is open and unprotected implementation of cgroup_css().
490 * seq_css() is only called from a kernfs file operation which has
491 * an active reference on the file. Because all the subsystem
492 * files are drained before a css is disassociated with a cgroup,
493 * the matching css from the cgroup's subsys table is guaranteed to
494 * be and stay valid until the enclosing operation is complete.
495 */
496 if (cft->ss)
497 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
498 else
499 return &cgrp->self;
500 }
501 EXPORT_SYMBOL_GPL(of_css);
502
503 static int notify_on_release(const struct cgroup *cgrp)
504 {
505 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
506 }
507
508 /**
509 * for_each_css - iterate all css's of a cgroup
510 * @css: the iteration cursor
511 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
512 * @cgrp: the target cgroup to iterate css's of
513 *
514 * Should be called under cgroup_[tree_]mutex.
515 */
516 #define for_each_css(css, ssid, cgrp) \
517 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
518 if (!((css) = rcu_dereference_check( \
519 (cgrp)->subsys[(ssid)], \
520 lockdep_is_held(&cgroup_mutex)))) { } \
521 else
522
523 /**
524 * for_each_e_css - iterate all effective css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
528 *
529 * Should be called under cgroup_[tree_]mutex.
530 */
531 #define for_each_e_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
534 ; \
535 else
536
537 /**
538 * for_each_subsys - iterate all enabled cgroup subsystems
539 * @ss: the iteration cursor
540 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
541 */
542 #define for_each_subsys(ss, ssid) \
543 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
544 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
545
546 /**
547 * do_each_subsys_mask - filter for_each_subsys with a bitmask
548 * @ss: the iteration cursor
549 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
550 * @ss_mask: the bitmask
551 *
552 * The block will only run for cases where the ssid-th bit (1 << ssid) of
553 * @ss_mask is set.
554 */
555 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
556 unsigned long __ss_mask = (ss_mask); \
557 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
558 (ssid) = 0; \
559 break; \
560 } \
561 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
562 (ss) = cgroup_subsys[ssid]; \
563 {
564
565 #define while_each_subsys_mask() \
566 } \
567 } \
568 } while (false)
569
570 /* iterate across the hierarchies */
571 #define for_each_root(root) \
572 list_for_each_entry((root), &cgroup_roots, root_list)
573
574 /* iterate over child cgrps, lock should be held throughout iteration */
575 #define cgroup_for_each_live_child(child, cgrp) \
576 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
577 if (({ lockdep_assert_held(&cgroup_mutex); \
578 cgroup_is_dead(child); })) \
579 ; \
580 else
581
582 /* walk live descendants in preorder */
583 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
584 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
585 if (({ lockdep_assert_held(&cgroup_mutex); \
586 (dsct) = (d_css)->cgroup; \
587 cgroup_is_dead(dsct); })) \
588 ; \
589 else
590
591 /* walk live descendants in postorder */
592 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
593 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
594 if (({ lockdep_assert_held(&cgroup_mutex); \
595 (dsct) = (d_css)->cgroup; \
596 cgroup_is_dead(dsct); })) \
597 ; \
598 else
599
600 static void cgroup_release_agent(struct work_struct *work);
601 static void check_for_release(struct cgroup *cgrp);
602
603 /*
604 * A cgroup can be associated with multiple css_sets as different tasks may
605 * belong to different cgroups on different hierarchies. In the other
606 * direction, a css_set is naturally associated with multiple cgroups.
607 * This M:N relationship is represented by the following link structure
608 * which exists for each association and allows traversing the associations
609 * from both sides.
610 */
611 struct cgrp_cset_link {
612 /* the cgroup and css_set this link associates */
613 struct cgroup *cgrp;
614 struct css_set *cset;
615
616 /* list of cgrp_cset_links anchored at cgrp->cset_links */
617 struct list_head cset_link;
618
619 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
620 struct list_head cgrp_link;
621 };
622
623 /*
624 * The default css_set - used by init and its children prior to any
625 * hierarchies being mounted. It contains a pointer to the root state
626 * for each subsystem. Also used to anchor the list of css_sets. Not
627 * reference-counted, to improve performance when child cgroups
628 * haven't been created.
629 */
630 struct css_set init_css_set = {
631 .refcount = ATOMIC_INIT(1),
632 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
633 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
634 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
635 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
636 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
637 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
638 };
639
640 static int css_set_count = 1; /* 1 for init_css_set */
641
642 /**
643 * css_set_populated - does a css_set contain any tasks?
644 * @cset: target css_set
645 */
646 static bool css_set_populated(struct css_set *cset)
647 {
648 lockdep_assert_held(&css_set_lock);
649
650 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
651 }
652
653 /**
654 * cgroup_update_populated - updated populated count of a cgroup
655 * @cgrp: the target cgroup
656 * @populated: inc or dec populated count
657 *
658 * One of the css_sets associated with @cgrp is either getting its first
659 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
660 * count is propagated towards root so that a given cgroup's populated_cnt
661 * is zero iff the cgroup and all its descendants don't contain any tasks.
662 *
663 * @cgrp's interface file "cgroup.populated" is zero if
664 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
665 * changes from or to zero, userland is notified that the content of the
666 * interface file has changed. This can be used to detect when @cgrp and
667 * its descendants become populated or empty.
668 */
669 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
670 {
671 lockdep_assert_held(&css_set_lock);
672
673 do {
674 bool trigger;
675
676 if (populated)
677 trigger = !cgrp->populated_cnt++;
678 else
679 trigger = !--cgrp->populated_cnt;
680
681 if (!trigger)
682 break;
683
684 check_for_release(cgrp);
685 cgroup_file_notify(&cgrp->events_file);
686
687 cgrp = cgroup_parent(cgrp);
688 } while (cgrp);
689 }
690
691 /**
692 * css_set_update_populated - update populated state of a css_set
693 * @cset: target css_set
694 * @populated: whether @cset is populated or depopulated
695 *
696 * @cset is either getting the first task or losing the last. Update the
697 * ->populated_cnt of all associated cgroups accordingly.
698 */
699 static void css_set_update_populated(struct css_set *cset, bool populated)
700 {
701 struct cgrp_cset_link *link;
702
703 lockdep_assert_held(&css_set_lock);
704
705 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
706 cgroup_update_populated(link->cgrp, populated);
707 }
708
709 /**
710 * css_set_move_task - move a task from one css_set to another
711 * @task: task being moved
712 * @from_cset: css_set @task currently belongs to (may be NULL)
713 * @to_cset: new css_set @task is being moved to (may be NULL)
714 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
715 *
716 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
717 * css_set, @from_cset can be NULL. If @task is being disassociated
718 * instead of moved, @to_cset can be NULL.
719 *
720 * This function automatically handles populated_cnt updates and
721 * css_task_iter adjustments but the caller is responsible for managing
722 * @from_cset and @to_cset's reference counts.
723 */
724 static void css_set_move_task(struct task_struct *task,
725 struct css_set *from_cset, struct css_set *to_cset,
726 bool use_mg_tasks)
727 {
728 lockdep_assert_held(&css_set_lock);
729
730 if (to_cset && !css_set_populated(to_cset))
731 css_set_update_populated(to_cset, true);
732
733 if (from_cset) {
734 struct css_task_iter *it, *pos;
735
736 WARN_ON_ONCE(list_empty(&task->cg_list));
737
738 /*
739 * @task is leaving, advance task iterators which are
740 * pointing to it so that they can resume at the next
741 * position. Advancing an iterator might remove it from
742 * the list, use safe walk. See css_task_iter_advance*()
743 * for details.
744 */
745 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
746 iters_node)
747 if (it->task_pos == &task->cg_list)
748 css_task_iter_advance(it);
749
750 list_del_init(&task->cg_list);
751 if (!css_set_populated(from_cset))
752 css_set_update_populated(from_cset, false);
753 } else {
754 WARN_ON_ONCE(!list_empty(&task->cg_list));
755 }
756
757 if (to_cset) {
758 /*
759 * We are synchronized through cgroup_threadgroup_rwsem
760 * against PF_EXITING setting such that we can't race
761 * against cgroup_exit() changing the css_set to
762 * init_css_set and dropping the old one.
763 */
764 WARN_ON_ONCE(task->flags & PF_EXITING);
765
766 rcu_assign_pointer(task->cgroups, to_cset);
767 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
768 &to_cset->tasks);
769 }
770 }
771
772 /*
773 * hash table for cgroup groups. This improves the performance to find
774 * an existing css_set. This hash doesn't (currently) take into
775 * account cgroups in empty hierarchies.
776 */
777 #define CSS_SET_HASH_BITS 7
778 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
779
780 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
781 {
782 unsigned long key = 0UL;
783 struct cgroup_subsys *ss;
784 int i;
785
786 for_each_subsys(ss, i)
787 key += (unsigned long)css[i];
788 key = (key >> 16) ^ key;
789
790 return key;
791 }
792
793 static void put_css_set_locked(struct css_set *cset)
794 {
795 struct cgrp_cset_link *link, *tmp_link;
796 struct cgroup_subsys *ss;
797 int ssid;
798
799 lockdep_assert_held(&css_set_lock);
800
801 if (!atomic_dec_and_test(&cset->refcount))
802 return;
803
804 /* This css_set is dead. unlink it and release cgroup and css refs */
805 for_each_subsys(ss, ssid) {
806 list_del(&cset->e_cset_node[ssid]);
807 css_put(cset->subsys[ssid]);
808 }
809 hash_del(&cset->hlist);
810 css_set_count--;
811
812 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
813 list_del(&link->cset_link);
814 list_del(&link->cgrp_link);
815 if (cgroup_parent(link->cgrp))
816 cgroup_put(link->cgrp);
817 kfree(link);
818 }
819
820 kfree_rcu(cset, rcu_head);
821 }
822
823 static void put_css_set(struct css_set *cset)
824 {
825 /*
826 * Ensure that the refcount doesn't hit zero while any readers
827 * can see it. Similar to atomic_dec_and_lock(), but for an
828 * rwlock
829 */
830 if (atomic_add_unless(&cset->refcount, -1, 1))
831 return;
832
833 spin_lock_bh(&css_set_lock);
834 put_css_set_locked(cset);
835 spin_unlock_bh(&css_set_lock);
836 }
837
838 /*
839 * refcounted get/put for css_set objects
840 */
841 static inline void get_css_set(struct css_set *cset)
842 {
843 atomic_inc(&cset->refcount);
844 }
845
846 /**
847 * compare_css_sets - helper function for find_existing_css_set().
848 * @cset: candidate css_set being tested
849 * @old_cset: existing css_set for a task
850 * @new_cgrp: cgroup that's being entered by the task
851 * @template: desired set of css pointers in css_set (pre-calculated)
852 *
853 * Returns true if "cset" matches "old_cset" except for the hierarchy
854 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
855 */
856 static bool compare_css_sets(struct css_set *cset,
857 struct css_set *old_cset,
858 struct cgroup *new_cgrp,
859 struct cgroup_subsys_state *template[])
860 {
861 struct list_head *l1, *l2;
862
863 /*
864 * On the default hierarchy, there can be csets which are
865 * associated with the same set of cgroups but different csses.
866 * Let's first ensure that csses match.
867 */
868 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
869 return false;
870
871 /*
872 * Compare cgroup pointers in order to distinguish between
873 * different cgroups in hierarchies. As different cgroups may
874 * share the same effective css, this comparison is always
875 * necessary.
876 */
877 l1 = &cset->cgrp_links;
878 l2 = &old_cset->cgrp_links;
879 while (1) {
880 struct cgrp_cset_link *link1, *link2;
881 struct cgroup *cgrp1, *cgrp2;
882
883 l1 = l1->next;
884 l2 = l2->next;
885 /* See if we reached the end - both lists are equal length. */
886 if (l1 == &cset->cgrp_links) {
887 BUG_ON(l2 != &old_cset->cgrp_links);
888 break;
889 } else {
890 BUG_ON(l2 == &old_cset->cgrp_links);
891 }
892 /* Locate the cgroups associated with these links. */
893 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
894 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
895 cgrp1 = link1->cgrp;
896 cgrp2 = link2->cgrp;
897 /* Hierarchies should be linked in the same order. */
898 BUG_ON(cgrp1->root != cgrp2->root);
899
900 /*
901 * If this hierarchy is the hierarchy of the cgroup
902 * that's changing, then we need to check that this
903 * css_set points to the new cgroup; if it's any other
904 * hierarchy, then this css_set should point to the
905 * same cgroup as the old css_set.
906 */
907 if (cgrp1->root == new_cgrp->root) {
908 if (cgrp1 != new_cgrp)
909 return false;
910 } else {
911 if (cgrp1 != cgrp2)
912 return false;
913 }
914 }
915 return true;
916 }
917
918 /**
919 * find_existing_css_set - init css array and find the matching css_set
920 * @old_cset: the css_set that we're using before the cgroup transition
921 * @cgrp: the cgroup that we're moving into
922 * @template: out param for the new set of csses, should be clear on entry
923 */
924 static struct css_set *find_existing_css_set(struct css_set *old_cset,
925 struct cgroup *cgrp,
926 struct cgroup_subsys_state *template[])
927 {
928 struct cgroup_root *root = cgrp->root;
929 struct cgroup_subsys *ss;
930 struct css_set *cset;
931 unsigned long key;
932 int i;
933
934 /*
935 * Build the set of subsystem state objects that we want to see in the
936 * new css_set. while subsystems can change globally, the entries here
937 * won't change, so no need for locking.
938 */
939 for_each_subsys(ss, i) {
940 if (root->subsys_mask & (1UL << i)) {
941 /*
942 * @ss is in this hierarchy, so we want the
943 * effective css from @cgrp.
944 */
945 template[i] = cgroup_e_css(cgrp, ss);
946 } else {
947 /*
948 * @ss is not in this hierarchy, so we don't want
949 * to change the css.
950 */
951 template[i] = old_cset->subsys[i];
952 }
953 }
954
955 key = css_set_hash(template);
956 hash_for_each_possible(css_set_table, cset, hlist, key) {
957 if (!compare_css_sets(cset, old_cset, cgrp, template))
958 continue;
959
960 /* This css_set matches what we need */
961 return cset;
962 }
963
964 /* No existing cgroup group matched */
965 return NULL;
966 }
967
968 static void free_cgrp_cset_links(struct list_head *links_to_free)
969 {
970 struct cgrp_cset_link *link, *tmp_link;
971
972 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
973 list_del(&link->cset_link);
974 kfree(link);
975 }
976 }
977
978 /**
979 * allocate_cgrp_cset_links - allocate cgrp_cset_links
980 * @count: the number of links to allocate
981 * @tmp_links: list_head the allocated links are put on
982 *
983 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
984 * through ->cset_link. Returns 0 on success or -errno.
985 */
986 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
987 {
988 struct cgrp_cset_link *link;
989 int i;
990
991 INIT_LIST_HEAD(tmp_links);
992
993 for (i = 0; i < count; i++) {
994 link = kzalloc(sizeof(*link), GFP_KERNEL);
995 if (!link) {
996 free_cgrp_cset_links(tmp_links);
997 return -ENOMEM;
998 }
999 list_add(&link->cset_link, tmp_links);
1000 }
1001 return 0;
1002 }
1003
1004 /**
1005 * link_css_set - a helper function to link a css_set to a cgroup
1006 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1007 * @cset: the css_set to be linked
1008 * @cgrp: the destination cgroup
1009 */
1010 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1011 struct cgroup *cgrp)
1012 {
1013 struct cgrp_cset_link *link;
1014
1015 BUG_ON(list_empty(tmp_links));
1016
1017 if (cgroup_on_dfl(cgrp))
1018 cset->dfl_cgrp = cgrp;
1019
1020 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1021 link->cset = cset;
1022 link->cgrp = cgrp;
1023
1024 /*
1025 * Always add links to the tail of the lists so that the lists are
1026 * in choronological order.
1027 */
1028 list_move_tail(&link->cset_link, &cgrp->cset_links);
1029 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1030
1031 if (cgroup_parent(cgrp))
1032 cgroup_get(cgrp);
1033 }
1034
1035 /**
1036 * find_css_set - return a new css_set with one cgroup updated
1037 * @old_cset: the baseline css_set
1038 * @cgrp: the cgroup to be updated
1039 *
1040 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1041 * substituted into the appropriate hierarchy.
1042 */
1043 static struct css_set *find_css_set(struct css_set *old_cset,
1044 struct cgroup *cgrp)
1045 {
1046 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1047 struct css_set *cset;
1048 struct list_head tmp_links;
1049 struct cgrp_cset_link *link;
1050 struct cgroup_subsys *ss;
1051 unsigned long key;
1052 int ssid;
1053
1054 lockdep_assert_held(&cgroup_mutex);
1055
1056 /* First see if we already have a cgroup group that matches
1057 * the desired set */
1058 spin_lock_bh(&css_set_lock);
1059 cset = find_existing_css_set(old_cset, cgrp, template);
1060 if (cset)
1061 get_css_set(cset);
1062 spin_unlock_bh(&css_set_lock);
1063
1064 if (cset)
1065 return cset;
1066
1067 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1068 if (!cset)
1069 return NULL;
1070
1071 /* Allocate all the cgrp_cset_link objects that we'll need */
1072 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1073 kfree(cset);
1074 return NULL;
1075 }
1076
1077 atomic_set(&cset->refcount, 1);
1078 INIT_LIST_HEAD(&cset->cgrp_links);
1079 INIT_LIST_HEAD(&cset->tasks);
1080 INIT_LIST_HEAD(&cset->mg_tasks);
1081 INIT_LIST_HEAD(&cset->mg_preload_node);
1082 INIT_LIST_HEAD(&cset->mg_node);
1083 INIT_LIST_HEAD(&cset->task_iters);
1084 INIT_HLIST_NODE(&cset->hlist);
1085
1086 /* Copy the set of subsystem state objects generated in
1087 * find_existing_css_set() */
1088 memcpy(cset->subsys, template, sizeof(cset->subsys));
1089
1090 spin_lock_bh(&css_set_lock);
1091 /* Add reference counts and links from the new css_set. */
1092 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1093 struct cgroup *c = link->cgrp;
1094
1095 if (c->root == cgrp->root)
1096 c = cgrp;
1097 link_css_set(&tmp_links, cset, c);
1098 }
1099
1100 BUG_ON(!list_empty(&tmp_links));
1101
1102 css_set_count++;
1103
1104 /* Add @cset to the hash table */
1105 key = css_set_hash(cset->subsys);
1106 hash_add(css_set_table, &cset->hlist, key);
1107
1108 for_each_subsys(ss, ssid) {
1109 struct cgroup_subsys_state *css = cset->subsys[ssid];
1110
1111 list_add_tail(&cset->e_cset_node[ssid],
1112 &css->cgroup->e_csets[ssid]);
1113 css_get(css);
1114 }
1115
1116 spin_unlock_bh(&css_set_lock);
1117
1118 return cset;
1119 }
1120
1121 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1122 {
1123 struct cgroup *root_cgrp = kf_root->kn->priv;
1124
1125 return root_cgrp->root;
1126 }
1127
1128 static int cgroup_init_root_id(struct cgroup_root *root)
1129 {
1130 int id;
1131
1132 lockdep_assert_held(&cgroup_mutex);
1133
1134 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1135 if (id < 0)
1136 return id;
1137
1138 root->hierarchy_id = id;
1139 return 0;
1140 }
1141
1142 static void cgroup_exit_root_id(struct cgroup_root *root)
1143 {
1144 lockdep_assert_held(&cgroup_mutex);
1145
1146 if (root->hierarchy_id) {
1147 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1148 root->hierarchy_id = 0;
1149 }
1150 }
1151
1152 static void cgroup_free_root(struct cgroup_root *root)
1153 {
1154 if (root) {
1155 /* hierarchy ID should already have been released */
1156 WARN_ON_ONCE(root->hierarchy_id);
1157
1158 idr_destroy(&root->cgroup_idr);
1159 kfree(root);
1160 }
1161 }
1162
1163 static void cgroup_destroy_root(struct cgroup_root *root)
1164 {
1165 struct cgroup *cgrp = &root->cgrp;
1166 struct cgrp_cset_link *link, *tmp_link;
1167
1168 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1169
1170 BUG_ON(atomic_read(&root->nr_cgrps));
1171 BUG_ON(!list_empty(&cgrp->self.children));
1172
1173 /* Rebind all subsystems back to the default hierarchy */
1174 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1175
1176 /*
1177 * Release all the links from cset_links to this hierarchy's
1178 * root cgroup
1179 */
1180 spin_lock_bh(&css_set_lock);
1181
1182 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1183 list_del(&link->cset_link);
1184 list_del(&link->cgrp_link);
1185 kfree(link);
1186 }
1187
1188 spin_unlock_bh(&css_set_lock);
1189
1190 if (!list_empty(&root->root_list)) {
1191 list_del(&root->root_list);
1192 cgroup_root_count--;
1193 }
1194
1195 cgroup_exit_root_id(root);
1196
1197 mutex_unlock(&cgroup_mutex);
1198
1199 kernfs_destroy_root(root->kf_root);
1200 cgroup_free_root(root);
1201 }
1202
1203 /* look up cgroup associated with given css_set on the specified hierarchy */
1204 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1205 struct cgroup_root *root)
1206 {
1207 struct cgroup *res = NULL;
1208
1209 lockdep_assert_held(&cgroup_mutex);
1210 lockdep_assert_held(&css_set_lock);
1211
1212 if (cset == &init_css_set) {
1213 res = &root->cgrp;
1214 } else {
1215 struct cgrp_cset_link *link;
1216
1217 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1218 struct cgroup *c = link->cgrp;
1219
1220 if (c->root == root) {
1221 res = c;
1222 break;
1223 }
1224 }
1225 }
1226
1227 BUG_ON(!res);
1228 return res;
1229 }
1230
1231 /*
1232 * Return the cgroup for "task" from the given hierarchy. Must be
1233 * called with cgroup_mutex and css_set_lock held.
1234 */
1235 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1236 struct cgroup_root *root)
1237 {
1238 /*
1239 * No need to lock the task - since we hold cgroup_mutex the
1240 * task can't change groups, so the only thing that can happen
1241 * is that it exits and its css is set back to init_css_set.
1242 */
1243 return cset_cgroup_from_root(task_css_set(task), root);
1244 }
1245
1246 /*
1247 * A task must hold cgroup_mutex to modify cgroups.
1248 *
1249 * Any task can increment and decrement the count field without lock.
1250 * So in general, code holding cgroup_mutex can't rely on the count
1251 * field not changing. However, if the count goes to zero, then only
1252 * cgroup_attach_task() can increment it again. Because a count of zero
1253 * means that no tasks are currently attached, therefore there is no
1254 * way a task attached to that cgroup can fork (the other way to
1255 * increment the count). So code holding cgroup_mutex can safely
1256 * assume that if the count is zero, it will stay zero. Similarly, if
1257 * a task holds cgroup_mutex on a cgroup with zero count, it
1258 * knows that the cgroup won't be removed, as cgroup_rmdir()
1259 * needs that mutex.
1260 *
1261 * A cgroup can only be deleted if both its 'count' of using tasks
1262 * is zero, and its list of 'children' cgroups is empty. Since all
1263 * tasks in the system use _some_ cgroup, and since there is always at
1264 * least one task in the system (init, pid == 1), therefore, root cgroup
1265 * always has either children cgroups and/or using tasks. So we don't
1266 * need a special hack to ensure that root cgroup cannot be deleted.
1267 *
1268 * P.S. One more locking exception. RCU is used to guard the
1269 * update of a tasks cgroup pointer by cgroup_attach_task()
1270 */
1271
1272 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1273 static const struct file_operations proc_cgroupstats_operations;
1274
1275 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1276 char *buf)
1277 {
1278 struct cgroup_subsys *ss = cft->ss;
1279
1280 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1281 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1282 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1283 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1284 cft->name);
1285 else
1286 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1287 return buf;
1288 }
1289
1290 /**
1291 * cgroup_file_mode - deduce file mode of a control file
1292 * @cft: the control file in question
1293 *
1294 * S_IRUGO for read, S_IWUSR for write.
1295 */
1296 static umode_t cgroup_file_mode(const struct cftype *cft)
1297 {
1298 umode_t mode = 0;
1299
1300 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1301 mode |= S_IRUGO;
1302
1303 if (cft->write_u64 || cft->write_s64 || cft->write) {
1304 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1305 mode |= S_IWUGO;
1306 else
1307 mode |= S_IWUSR;
1308 }
1309
1310 return mode;
1311 }
1312
1313 /**
1314 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1315 * @subtree_control: the new subtree_control mask to consider
1316 * @this_ss_mask: available subsystems
1317 *
1318 * On the default hierarchy, a subsystem may request other subsystems to be
1319 * enabled together through its ->depends_on mask. In such cases, more
1320 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1321 *
1322 * This function calculates which subsystems need to be enabled if
1323 * @subtree_control is to be applied while restricted to @this_ss_mask.
1324 */
1325 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1326 {
1327 u16 cur_ss_mask = subtree_control;
1328 struct cgroup_subsys *ss;
1329 int ssid;
1330
1331 lockdep_assert_held(&cgroup_mutex);
1332
1333 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1334
1335 while (true) {
1336 u16 new_ss_mask = cur_ss_mask;
1337
1338 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1339 new_ss_mask |= ss->depends_on;
1340 } while_each_subsys_mask();
1341
1342 /*
1343 * Mask out subsystems which aren't available. This can
1344 * happen only if some depended-upon subsystems were bound
1345 * to non-default hierarchies.
1346 */
1347 new_ss_mask &= this_ss_mask;
1348
1349 if (new_ss_mask == cur_ss_mask)
1350 break;
1351 cur_ss_mask = new_ss_mask;
1352 }
1353
1354 return cur_ss_mask;
1355 }
1356
1357 /**
1358 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1359 * @kn: the kernfs_node being serviced
1360 *
1361 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1362 * the method finishes if locking succeeded. Note that once this function
1363 * returns the cgroup returned by cgroup_kn_lock_live() may become
1364 * inaccessible any time. If the caller intends to continue to access the
1365 * cgroup, it should pin it before invoking this function.
1366 */
1367 static void cgroup_kn_unlock(struct kernfs_node *kn)
1368 {
1369 struct cgroup *cgrp;
1370
1371 if (kernfs_type(kn) == KERNFS_DIR)
1372 cgrp = kn->priv;
1373 else
1374 cgrp = kn->parent->priv;
1375
1376 mutex_unlock(&cgroup_mutex);
1377
1378 kernfs_unbreak_active_protection(kn);
1379 cgroup_put(cgrp);
1380 }
1381
1382 /**
1383 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1384 * @kn: the kernfs_node being serviced
1385 * @drain_offline: perform offline draining on the cgroup
1386 *
1387 * This helper is to be used by a cgroup kernfs method currently servicing
1388 * @kn. It breaks the active protection, performs cgroup locking and
1389 * verifies that the associated cgroup is alive. Returns the cgroup if
1390 * alive; otherwise, %NULL. A successful return should be undone by a
1391 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1392 * cgroup is drained of offlining csses before return.
1393 *
1394 * Any cgroup kernfs method implementation which requires locking the
1395 * associated cgroup should use this helper. It avoids nesting cgroup
1396 * locking under kernfs active protection and allows all kernfs operations
1397 * including self-removal.
1398 */
1399 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1400 bool drain_offline)
1401 {
1402 struct cgroup *cgrp;
1403
1404 if (kernfs_type(kn) == KERNFS_DIR)
1405 cgrp = kn->priv;
1406 else
1407 cgrp = kn->parent->priv;
1408
1409 /*
1410 * We're gonna grab cgroup_mutex which nests outside kernfs
1411 * active_ref. cgroup liveliness check alone provides enough
1412 * protection against removal. Ensure @cgrp stays accessible and
1413 * break the active_ref protection.
1414 */
1415 if (!cgroup_tryget(cgrp))
1416 return NULL;
1417 kernfs_break_active_protection(kn);
1418
1419 if (drain_offline)
1420 cgroup_lock_and_drain_offline(cgrp);
1421 else
1422 mutex_lock(&cgroup_mutex);
1423
1424 if (!cgroup_is_dead(cgrp))
1425 return cgrp;
1426
1427 cgroup_kn_unlock(kn);
1428 return NULL;
1429 }
1430
1431 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1432 {
1433 char name[CGROUP_FILE_NAME_MAX];
1434
1435 lockdep_assert_held(&cgroup_mutex);
1436
1437 if (cft->file_offset) {
1438 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1439 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1440
1441 spin_lock_irq(&cgroup_file_kn_lock);
1442 cfile->kn = NULL;
1443 spin_unlock_irq(&cgroup_file_kn_lock);
1444 }
1445
1446 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1447 }
1448
1449 /**
1450 * css_clear_dir - remove subsys files in a cgroup directory
1451 * @css: taget css
1452 */
1453 static void css_clear_dir(struct cgroup_subsys_state *css)
1454 {
1455 struct cgroup *cgrp = css->cgroup;
1456 struct cftype *cfts;
1457
1458 if (!(css->flags & CSS_VISIBLE))
1459 return;
1460
1461 css->flags &= ~CSS_VISIBLE;
1462
1463 list_for_each_entry(cfts, &css->ss->cfts, node)
1464 cgroup_addrm_files(css, cgrp, cfts, false);
1465 }
1466
1467 /**
1468 * css_populate_dir - create subsys files in a cgroup directory
1469 * @css: target css
1470 *
1471 * On failure, no file is added.
1472 */
1473 static int css_populate_dir(struct cgroup_subsys_state *css)
1474 {
1475 struct cgroup *cgrp = css->cgroup;
1476 struct cftype *cfts, *failed_cfts;
1477 int ret;
1478
1479 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1480 return 0;
1481
1482 if (!css->ss) {
1483 if (cgroup_on_dfl(cgrp))
1484 cfts = cgroup_dfl_base_files;
1485 else
1486 cfts = cgroup_legacy_base_files;
1487
1488 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1489 }
1490
1491 list_for_each_entry(cfts, &css->ss->cfts, node) {
1492 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1493 if (ret < 0) {
1494 failed_cfts = cfts;
1495 goto err;
1496 }
1497 }
1498
1499 css->flags |= CSS_VISIBLE;
1500
1501 return 0;
1502 err:
1503 list_for_each_entry(cfts, &css->ss->cfts, node) {
1504 if (cfts == failed_cfts)
1505 break;
1506 cgroup_addrm_files(css, cgrp, cfts, false);
1507 }
1508 return ret;
1509 }
1510
1511 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1512 {
1513 struct cgroup *dcgrp = &dst_root->cgrp;
1514 struct cgroup_subsys *ss;
1515 int ssid, i, ret;
1516
1517 lockdep_assert_held(&cgroup_mutex);
1518
1519 do_each_subsys_mask(ss, ssid, ss_mask) {
1520 /*
1521 * If @ss has non-root csses attached to it, can't move.
1522 * If @ss is an implicit controller, it is exempt from this
1523 * rule and can be stolen.
1524 */
1525 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1526 !ss->implicit_on_dfl)
1527 return -EBUSY;
1528
1529 /* can't move between two non-dummy roots either */
1530 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1531 return -EBUSY;
1532 } while_each_subsys_mask();
1533
1534 do_each_subsys_mask(ss, ssid, ss_mask) {
1535 struct cgroup_root *src_root = ss->root;
1536 struct cgroup *scgrp = &src_root->cgrp;
1537 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1538 struct css_set *cset;
1539
1540 WARN_ON(!css || cgroup_css(dcgrp, ss));
1541
1542 /* disable from the source */
1543 src_root->subsys_mask &= ~(1 << ssid);
1544 WARN_ON(cgroup_apply_control(scgrp));
1545 cgroup_finalize_control(scgrp, 0);
1546
1547 /* rebind */
1548 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1549 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1550 ss->root = dst_root;
1551 css->cgroup = dcgrp;
1552
1553 spin_lock_bh(&css_set_lock);
1554 hash_for_each(css_set_table, i, cset, hlist)
1555 list_move_tail(&cset->e_cset_node[ss->id],
1556 &dcgrp->e_csets[ss->id]);
1557 spin_unlock_bh(&css_set_lock);
1558
1559 /* default hierarchy doesn't enable controllers by default */
1560 dst_root->subsys_mask |= 1 << ssid;
1561 if (dst_root == &cgrp_dfl_root) {
1562 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1563 } else {
1564 dcgrp->subtree_control |= 1 << ssid;
1565 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1566 }
1567
1568 ret = cgroup_apply_control(dcgrp);
1569 if (ret)
1570 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1571 ss->name, ret);
1572
1573 if (ss->bind)
1574 ss->bind(css);
1575 } while_each_subsys_mask();
1576
1577 kernfs_activate(dcgrp->kn);
1578 return 0;
1579 }
1580
1581 static int cgroup_show_options(struct seq_file *seq,
1582 struct kernfs_root *kf_root)
1583 {
1584 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1585 struct cgroup_subsys *ss;
1586 int ssid;
1587
1588 if (root != &cgrp_dfl_root)
1589 for_each_subsys(ss, ssid)
1590 if (root->subsys_mask & (1 << ssid))
1591 seq_show_option(seq, ss->legacy_name, NULL);
1592 if (root->flags & CGRP_ROOT_NOPREFIX)
1593 seq_puts(seq, ",noprefix");
1594 if (root->flags & CGRP_ROOT_XATTR)
1595 seq_puts(seq, ",xattr");
1596
1597 spin_lock(&release_agent_path_lock);
1598 if (strlen(root->release_agent_path))
1599 seq_show_option(seq, "release_agent",
1600 root->release_agent_path);
1601 spin_unlock(&release_agent_path_lock);
1602
1603 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1604 seq_puts(seq, ",clone_children");
1605 if (strlen(root->name))
1606 seq_show_option(seq, "name", root->name);
1607 return 0;
1608 }
1609
1610 struct cgroup_sb_opts {
1611 u16 subsys_mask;
1612 unsigned int flags;
1613 char *release_agent;
1614 bool cpuset_clone_children;
1615 char *name;
1616 /* User explicitly requested empty subsystem */
1617 bool none;
1618 };
1619
1620 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1621 {
1622 char *token, *o = data;
1623 bool all_ss = false, one_ss = false;
1624 u16 mask = U16_MAX;
1625 struct cgroup_subsys *ss;
1626 int nr_opts = 0;
1627 int i;
1628
1629 #ifdef CONFIG_CPUSETS
1630 mask = ~((u16)1 << cpuset_cgrp_id);
1631 #endif
1632
1633 memset(opts, 0, sizeof(*opts));
1634
1635 while ((token = strsep(&o, ",")) != NULL) {
1636 nr_opts++;
1637
1638 if (!*token)
1639 return -EINVAL;
1640 if (!strcmp(token, "none")) {
1641 /* Explicitly have no subsystems */
1642 opts->none = true;
1643 continue;
1644 }
1645 if (!strcmp(token, "all")) {
1646 /* Mutually exclusive option 'all' + subsystem name */
1647 if (one_ss)
1648 return -EINVAL;
1649 all_ss = true;
1650 continue;
1651 }
1652 if (!strcmp(token, "noprefix")) {
1653 opts->flags |= CGRP_ROOT_NOPREFIX;
1654 continue;
1655 }
1656 if (!strcmp(token, "clone_children")) {
1657 opts->cpuset_clone_children = true;
1658 continue;
1659 }
1660 if (!strcmp(token, "xattr")) {
1661 opts->flags |= CGRP_ROOT_XATTR;
1662 continue;
1663 }
1664 if (!strncmp(token, "release_agent=", 14)) {
1665 /* Specifying two release agents is forbidden */
1666 if (opts->release_agent)
1667 return -EINVAL;
1668 opts->release_agent =
1669 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1670 if (!opts->release_agent)
1671 return -ENOMEM;
1672 continue;
1673 }
1674 if (!strncmp(token, "name=", 5)) {
1675 const char *name = token + 5;
1676 /* Can't specify an empty name */
1677 if (!strlen(name))
1678 return -EINVAL;
1679 /* Must match [\w.-]+ */
1680 for (i = 0; i < strlen(name); i++) {
1681 char c = name[i];
1682 if (isalnum(c))
1683 continue;
1684 if ((c == '.') || (c == '-') || (c == '_'))
1685 continue;
1686 return -EINVAL;
1687 }
1688 /* Specifying two names is forbidden */
1689 if (opts->name)
1690 return -EINVAL;
1691 opts->name = kstrndup(name,
1692 MAX_CGROUP_ROOT_NAMELEN - 1,
1693 GFP_KERNEL);
1694 if (!opts->name)
1695 return -ENOMEM;
1696
1697 continue;
1698 }
1699
1700 for_each_subsys(ss, i) {
1701 if (strcmp(token, ss->legacy_name))
1702 continue;
1703 if (!cgroup_ssid_enabled(i))
1704 continue;
1705 if (cgroup_ssid_no_v1(i))
1706 continue;
1707
1708 /* Mutually exclusive option 'all' + subsystem name */
1709 if (all_ss)
1710 return -EINVAL;
1711 opts->subsys_mask |= (1 << i);
1712 one_ss = true;
1713
1714 break;
1715 }
1716 if (i == CGROUP_SUBSYS_COUNT)
1717 return -ENOENT;
1718 }
1719
1720 /*
1721 * If the 'all' option was specified select all the subsystems,
1722 * otherwise if 'none', 'name=' and a subsystem name options were
1723 * not specified, let's default to 'all'
1724 */
1725 if (all_ss || (!one_ss && !opts->none && !opts->name))
1726 for_each_subsys(ss, i)
1727 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1728 opts->subsys_mask |= (1 << i);
1729
1730 /*
1731 * We either have to specify by name or by subsystems. (So all
1732 * empty hierarchies must have a name).
1733 */
1734 if (!opts->subsys_mask && !opts->name)
1735 return -EINVAL;
1736
1737 /*
1738 * Option noprefix was introduced just for backward compatibility
1739 * with the old cpuset, so we allow noprefix only if mounting just
1740 * the cpuset subsystem.
1741 */
1742 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1743 return -EINVAL;
1744
1745 /* Can't specify "none" and some subsystems */
1746 if (opts->subsys_mask && opts->none)
1747 return -EINVAL;
1748
1749 return 0;
1750 }
1751
1752 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1753 {
1754 int ret = 0;
1755 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1756 struct cgroup_sb_opts opts;
1757 u16 added_mask, removed_mask;
1758
1759 if (root == &cgrp_dfl_root) {
1760 pr_err("remount is not allowed\n");
1761 return -EINVAL;
1762 }
1763
1764 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1765
1766 /* See what subsystems are wanted */
1767 ret = parse_cgroupfs_options(data, &opts);
1768 if (ret)
1769 goto out_unlock;
1770
1771 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1772 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1773 task_tgid_nr(current), current->comm);
1774
1775 added_mask = opts.subsys_mask & ~root->subsys_mask;
1776 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1777
1778 /* Don't allow flags or name to change at remount */
1779 if ((opts.flags ^ root->flags) ||
1780 (opts.name && strcmp(opts.name, root->name))) {
1781 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1782 opts.flags, opts.name ?: "", root->flags, root->name);
1783 ret = -EINVAL;
1784 goto out_unlock;
1785 }
1786
1787 /* remounting is not allowed for populated hierarchies */
1788 if (!list_empty(&root->cgrp.self.children)) {
1789 ret = -EBUSY;
1790 goto out_unlock;
1791 }
1792
1793 ret = rebind_subsystems(root, added_mask);
1794 if (ret)
1795 goto out_unlock;
1796
1797 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1798
1799 if (opts.release_agent) {
1800 spin_lock(&release_agent_path_lock);
1801 strcpy(root->release_agent_path, opts.release_agent);
1802 spin_unlock(&release_agent_path_lock);
1803 }
1804 out_unlock:
1805 kfree(opts.release_agent);
1806 kfree(opts.name);
1807 mutex_unlock(&cgroup_mutex);
1808 return ret;
1809 }
1810
1811 /*
1812 * To reduce the fork() overhead for systems that are not actually using
1813 * their cgroups capability, we don't maintain the lists running through
1814 * each css_set to its tasks until we see the list actually used - in other
1815 * words after the first mount.
1816 */
1817 static bool use_task_css_set_links __read_mostly;
1818
1819 static void cgroup_enable_task_cg_lists(void)
1820 {
1821 struct task_struct *p, *g;
1822
1823 spin_lock_bh(&css_set_lock);
1824
1825 if (use_task_css_set_links)
1826 goto out_unlock;
1827
1828 use_task_css_set_links = true;
1829
1830 /*
1831 * We need tasklist_lock because RCU is not safe against
1832 * while_each_thread(). Besides, a forking task that has passed
1833 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1834 * is not guaranteed to have its child immediately visible in the
1835 * tasklist if we walk through it with RCU.
1836 */
1837 read_lock(&tasklist_lock);
1838 do_each_thread(g, p) {
1839 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1840 task_css_set(p) != &init_css_set);
1841
1842 /*
1843 * We should check if the process is exiting, otherwise
1844 * it will race with cgroup_exit() in that the list
1845 * entry won't be deleted though the process has exited.
1846 * Do it while holding siglock so that we don't end up
1847 * racing against cgroup_exit().
1848 */
1849 spin_lock_irq(&p->sighand->siglock);
1850 if (!(p->flags & PF_EXITING)) {
1851 struct css_set *cset = task_css_set(p);
1852
1853 if (!css_set_populated(cset))
1854 css_set_update_populated(cset, true);
1855 list_add_tail(&p->cg_list, &cset->tasks);
1856 get_css_set(cset);
1857 }
1858 spin_unlock_irq(&p->sighand->siglock);
1859 } while_each_thread(g, p);
1860 read_unlock(&tasklist_lock);
1861 out_unlock:
1862 spin_unlock_bh(&css_set_lock);
1863 }
1864
1865 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1866 {
1867 struct cgroup_subsys *ss;
1868 int ssid;
1869
1870 INIT_LIST_HEAD(&cgrp->self.sibling);
1871 INIT_LIST_HEAD(&cgrp->self.children);
1872 INIT_LIST_HEAD(&cgrp->cset_links);
1873 INIT_LIST_HEAD(&cgrp->pidlists);
1874 mutex_init(&cgrp->pidlist_mutex);
1875 cgrp->self.cgroup = cgrp;
1876 cgrp->self.flags |= CSS_ONLINE;
1877
1878 for_each_subsys(ss, ssid)
1879 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1880
1881 init_waitqueue_head(&cgrp->offline_waitq);
1882 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1883 }
1884
1885 static void init_cgroup_root(struct cgroup_root *root,
1886 struct cgroup_sb_opts *opts)
1887 {
1888 struct cgroup *cgrp = &root->cgrp;
1889
1890 INIT_LIST_HEAD(&root->root_list);
1891 atomic_set(&root->nr_cgrps, 1);
1892 cgrp->root = root;
1893 init_cgroup_housekeeping(cgrp);
1894 idr_init(&root->cgroup_idr);
1895
1896 root->flags = opts->flags;
1897 if (opts->release_agent)
1898 strcpy(root->release_agent_path, opts->release_agent);
1899 if (opts->name)
1900 strcpy(root->name, opts->name);
1901 if (opts->cpuset_clone_children)
1902 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1903 }
1904
1905 static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1906 {
1907 LIST_HEAD(tmp_links);
1908 struct cgroup *root_cgrp = &root->cgrp;
1909 struct css_set *cset;
1910 int i, ret;
1911
1912 lockdep_assert_held(&cgroup_mutex);
1913
1914 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1915 if (ret < 0)
1916 goto out;
1917 root_cgrp->id = ret;
1918 root_cgrp->ancestor_ids[0] = ret;
1919
1920 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1921 GFP_KERNEL);
1922 if (ret)
1923 goto out;
1924
1925 /*
1926 * We're accessing css_set_count without locking css_set_lock here,
1927 * but that's OK - it can only be increased by someone holding
1928 * cgroup_lock, and that's us. Later rebinding may disable
1929 * controllers on the default hierarchy and thus create new csets,
1930 * which can't be more than the existing ones. Allocate 2x.
1931 */
1932 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1933 if (ret)
1934 goto cancel_ref;
1935
1936 ret = cgroup_init_root_id(root);
1937 if (ret)
1938 goto cancel_ref;
1939
1940 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1941 KERNFS_ROOT_CREATE_DEACTIVATED,
1942 root_cgrp);
1943 if (IS_ERR(root->kf_root)) {
1944 ret = PTR_ERR(root->kf_root);
1945 goto exit_root_id;
1946 }
1947 root_cgrp->kn = root->kf_root->kn;
1948
1949 ret = css_populate_dir(&root_cgrp->self);
1950 if (ret)
1951 goto destroy_root;
1952
1953 ret = rebind_subsystems(root, ss_mask);
1954 if (ret)
1955 goto destroy_root;
1956
1957 /*
1958 * There must be no failure case after here, since rebinding takes
1959 * care of subsystems' refcounts, which are explicitly dropped in
1960 * the failure exit path.
1961 */
1962 list_add(&root->root_list, &cgroup_roots);
1963 cgroup_root_count++;
1964
1965 /*
1966 * Link the root cgroup in this hierarchy into all the css_set
1967 * objects.
1968 */
1969 spin_lock_bh(&css_set_lock);
1970 hash_for_each(css_set_table, i, cset, hlist) {
1971 link_css_set(&tmp_links, cset, root_cgrp);
1972 if (css_set_populated(cset))
1973 cgroup_update_populated(root_cgrp, true);
1974 }
1975 spin_unlock_bh(&css_set_lock);
1976
1977 BUG_ON(!list_empty(&root_cgrp->self.children));
1978 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1979
1980 kernfs_activate(root_cgrp->kn);
1981 ret = 0;
1982 goto out;
1983
1984 destroy_root:
1985 kernfs_destroy_root(root->kf_root);
1986 root->kf_root = NULL;
1987 exit_root_id:
1988 cgroup_exit_root_id(root);
1989 cancel_ref:
1990 percpu_ref_exit(&root_cgrp->self.refcnt);
1991 out:
1992 free_cgrp_cset_links(&tmp_links);
1993 return ret;
1994 }
1995
1996 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1997 int flags, const char *unused_dev_name,
1998 void *data)
1999 {
2000 bool is_v2 = fs_type == &cgroup2_fs_type;
2001 struct super_block *pinned_sb = NULL;
2002 struct cgroup_subsys *ss;
2003 struct cgroup_root *root;
2004 struct cgroup_sb_opts opts;
2005 struct dentry *dentry;
2006 int ret;
2007 int i;
2008 bool new_sb;
2009
2010 /*
2011 * The first time anyone tries to mount a cgroup, enable the list
2012 * linking each css_set to its tasks and fix up all existing tasks.
2013 */
2014 if (!use_task_css_set_links)
2015 cgroup_enable_task_cg_lists();
2016
2017 if (is_v2) {
2018 if (data) {
2019 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2020 return ERR_PTR(-EINVAL);
2021 }
2022 cgrp_dfl_visible = true;
2023 root = &cgrp_dfl_root;
2024 cgroup_get(&root->cgrp);
2025 goto out_mount;
2026 }
2027
2028 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2029
2030 /* First find the desired set of subsystems */
2031 ret = parse_cgroupfs_options(data, &opts);
2032 if (ret)
2033 goto out_unlock;
2034
2035 /*
2036 * Destruction of cgroup root is asynchronous, so subsystems may
2037 * still be dying after the previous unmount. Let's drain the
2038 * dying subsystems. We just need to ensure that the ones
2039 * unmounted previously finish dying and don't care about new ones
2040 * starting. Testing ref liveliness is good enough.
2041 */
2042 for_each_subsys(ss, i) {
2043 if (!(opts.subsys_mask & (1 << i)) ||
2044 ss->root == &cgrp_dfl_root)
2045 continue;
2046
2047 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2048 mutex_unlock(&cgroup_mutex);
2049 msleep(10);
2050 ret = restart_syscall();
2051 goto out_free;
2052 }
2053 cgroup_put(&ss->root->cgrp);
2054 }
2055
2056 for_each_root(root) {
2057 bool name_match = false;
2058
2059 if (root == &cgrp_dfl_root)
2060 continue;
2061
2062 /*
2063 * If we asked for a name then it must match. Also, if
2064 * name matches but sybsys_mask doesn't, we should fail.
2065 * Remember whether name matched.
2066 */
2067 if (opts.name) {
2068 if (strcmp(opts.name, root->name))
2069 continue;
2070 name_match = true;
2071 }
2072
2073 /*
2074 * If we asked for subsystems (or explicitly for no
2075 * subsystems) then they must match.
2076 */
2077 if ((opts.subsys_mask || opts.none) &&
2078 (opts.subsys_mask != root->subsys_mask)) {
2079 if (!name_match)
2080 continue;
2081 ret = -EBUSY;
2082 goto out_unlock;
2083 }
2084
2085 if (root->flags ^ opts.flags)
2086 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2087
2088 /*
2089 * We want to reuse @root whose lifetime is governed by its
2090 * ->cgrp. Let's check whether @root is alive and keep it
2091 * that way. As cgroup_kill_sb() can happen anytime, we
2092 * want to block it by pinning the sb so that @root doesn't
2093 * get killed before mount is complete.
2094 *
2095 * With the sb pinned, tryget_live can reliably indicate
2096 * whether @root can be reused. If it's being killed,
2097 * drain it. We can use wait_queue for the wait but this
2098 * path is super cold. Let's just sleep a bit and retry.
2099 */
2100 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2101 if (IS_ERR(pinned_sb) ||
2102 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2103 mutex_unlock(&cgroup_mutex);
2104 if (!IS_ERR_OR_NULL(pinned_sb))
2105 deactivate_super(pinned_sb);
2106 msleep(10);
2107 ret = restart_syscall();
2108 goto out_free;
2109 }
2110
2111 ret = 0;
2112 goto out_unlock;
2113 }
2114
2115 /*
2116 * No such thing, create a new one. name= matching without subsys
2117 * specification is allowed for already existing hierarchies but we
2118 * can't create new one without subsys specification.
2119 */
2120 if (!opts.subsys_mask && !opts.none) {
2121 ret = -EINVAL;
2122 goto out_unlock;
2123 }
2124
2125 root = kzalloc(sizeof(*root), GFP_KERNEL);
2126 if (!root) {
2127 ret = -ENOMEM;
2128 goto out_unlock;
2129 }
2130
2131 init_cgroup_root(root, &opts);
2132
2133 ret = cgroup_setup_root(root, opts.subsys_mask);
2134 if (ret)
2135 cgroup_free_root(root);
2136
2137 out_unlock:
2138 mutex_unlock(&cgroup_mutex);
2139 out_free:
2140 kfree(opts.release_agent);
2141 kfree(opts.name);
2142
2143 if (ret)
2144 return ERR_PTR(ret);
2145 out_mount:
2146 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2147 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2148 &new_sb);
2149 if (IS_ERR(dentry) || !new_sb)
2150 cgroup_put(&root->cgrp);
2151
2152 /*
2153 * If @pinned_sb, we're reusing an existing root and holding an
2154 * extra ref on its sb. Mount is complete. Put the extra ref.
2155 */
2156 if (pinned_sb) {
2157 WARN_ON(new_sb);
2158 deactivate_super(pinned_sb);
2159 }
2160
2161 return dentry;
2162 }
2163
2164 static void cgroup_kill_sb(struct super_block *sb)
2165 {
2166 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2167 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2168
2169 /*
2170 * If @root doesn't have any mounts or children, start killing it.
2171 * This prevents new mounts by disabling percpu_ref_tryget_live().
2172 * cgroup_mount() may wait for @root's release.
2173 *
2174 * And don't kill the default root.
2175 */
2176 if (!list_empty(&root->cgrp.self.children) ||
2177 root == &cgrp_dfl_root)
2178 cgroup_put(&root->cgrp);
2179 else
2180 percpu_ref_kill(&root->cgrp.self.refcnt);
2181
2182 kernfs_kill_sb(sb);
2183 }
2184
2185 static struct file_system_type cgroup_fs_type = {
2186 .name = "cgroup",
2187 .mount = cgroup_mount,
2188 .kill_sb = cgroup_kill_sb,
2189 };
2190
2191 static struct file_system_type cgroup2_fs_type = {
2192 .name = "cgroup2",
2193 .mount = cgroup_mount,
2194 .kill_sb = cgroup_kill_sb,
2195 };
2196
2197 /**
2198 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2199 * @task: target task
2200 * @buf: the buffer to write the path into
2201 * @buflen: the length of the buffer
2202 *
2203 * Determine @task's cgroup on the first (the one with the lowest non-zero
2204 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2205 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2206 * cgroup controller callbacks.
2207 *
2208 * Return value is the same as kernfs_path().
2209 */
2210 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2211 {
2212 struct cgroup_root *root;
2213 struct cgroup *cgrp;
2214 int hierarchy_id = 1;
2215 char *path = NULL;
2216
2217 mutex_lock(&cgroup_mutex);
2218 spin_lock_bh(&css_set_lock);
2219
2220 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2221
2222 if (root) {
2223 cgrp = task_cgroup_from_root(task, root);
2224 path = cgroup_path(cgrp, buf, buflen);
2225 } else {
2226 /* if no hierarchy exists, everyone is in "/" */
2227 if (strlcpy(buf, "/", buflen) < buflen)
2228 path = buf;
2229 }
2230
2231 spin_unlock_bh(&css_set_lock);
2232 mutex_unlock(&cgroup_mutex);
2233 return path;
2234 }
2235 EXPORT_SYMBOL_GPL(task_cgroup_path);
2236
2237 /* used to track tasks and other necessary states during migration */
2238 struct cgroup_taskset {
2239 /* the src and dst cset list running through cset->mg_node */
2240 struct list_head src_csets;
2241 struct list_head dst_csets;
2242
2243 /* the subsys currently being processed */
2244 int ssid;
2245
2246 /*
2247 * Fields for cgroup_taskset_*() iteration.
2248 *
2249 * Before migration is committed, the target migration tasks are on
2250 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2251 * the csets on ->dst_csets. ->csets point to either ->src_csets
2252 * or ->dst_csets depending on whether migration is committed.
2253 *
2254 * ->cur_csets and ->cur_task point to the current task position
2255 * during iteration.
2256 */
2257 struct list_head *csets;
2258 struct css_set *cur_cset;
2259 struct task_struct *cur_task;
2260 };
2261
2262 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2263 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2264 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2265 .csets = &tset.src_csets, \
2266 }
2267
2268 /**
2269 * cgroup_taskset_add - try to add a migration target task to a taskset
2270 * @task: target task
2271 * @tset: target taskset
2272 *
2273 * Add @task, which is a migration target, to @tset. This function becomes
2274 * noop if @task doesn't need to be migrated. @task's css_set should have
2275 * been added as a migration source and @task->cg_list will be moved from
2276 * the css_set's tasks list to mg_tasks one.
2277 */
2278 static void cgroup_taskset_add(struct task_struct *task,
2279 struct cgroup_taskset *tset)
2280 {
2281 struct css_set *cset;
2282
2283 lockdep_assert_held(&css_set_lock);
2284
2285 /* @task either already exited or can't exit until the end */
2286 if (task->flags & PF_EXITING)
2287 return;
2288
2289 /* leave @task alone if post_fork() hasn't linked it yet */
2290 if (list_empty(&task->cg_list))
2291 return;
2292
2293 cset = task_css_set(task);
2294 if (!cset->mg_src_cgrp)
2295 return;
2296
2297 list_move_tail(&task->cg_list, &cset->mg_tasks);
2298 if (list_empty(&cset->mg_node))
2299 list_add_tail(&cset->mg_node, &tset->src_csets);
2300 if (list_empty(&cset->mg_dst_cset->mg_node))
2301 list_move_tail(&cset->mg_dst_cset->mg_node,
2302 &tset->dst_csets);
2303 }
2304
2305 /**
2306 * cgroup_taskset_first - reset taskset and return the first task
2307 * @tset: taskset of interest
2308 * @dst_cssp: output variable for the destination css
2309 *
2310 * @tset iteration is initialized and the first task is returned.
2311 */
2312 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2313 struct cgroup_subsys_state **dst_cssp)
2314 {
2315 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2316 tset->cur_task = NULL;
2317
2318 return cgroup_taskset_next(tset, dst_cssp);
2319 }
2320
2321 /**
2322 * cgroup_taskset_next - iterate to the next task in taskset
2323 * @tset: taskset of interest
2324 * @dst_cssp: output variable for the destination css
2325 *
2326 * Return the next task in @tset. Iteration must have been initialized
2327 * with cgroup_taskset_first().
2328 */
2329 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2330 struct cgroup_subsys_state **dst_cssp)
2331 {
2332 struct css_set *cset = tset->cur_cset;
2333 struct task_struct *task = tset->cur_task;
2334
2335 while (&cset->mg_node != tset->csets) {
2336 if (!task)
2337 task = list_first_entry(&cset->mg_tasks,
2338 struct task_struct, cg_list);
2339 else
2340 task = list_next_entry(task, cg_list);
2341
2342 if (&task->cg_list != &cset->mg_tasks) {
2343 tset->cur_cset = cset;
2344 tset->cur_task = task;
2345
2346 /*
2347 * This function may be called both before and
2348 * after cgroup_taskset_migrate(). The two cases
2349 * can be distinguished by looking at whether @cset
2350 * has its ->mg_dst_cset set.
2351 */
2352 if (cset->mg_dst_cset)
2353 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2354 else
2355 *dst_cssp = cset->subsys[tset->ssid];
2356
2357 return task;
2358 }
2359
2360 cset = list_next_entry(cset, mg_node);
2361 task = NULL;
2362 }
2363
2364 return NULL;
2365 }
2366
2367 /**
2368 * cgroup_taskset_migrate - migrate a taskset
2369 * @tset: taget taskset
2370 * @root: cgroup root the migration is taking place on
2371 *
2372 * Migrate tasks in @tset as setup by migration preparation functions.
2373 * This function fails iff one of the ->can_attach callbacks fails and
2374 * guarantees that either all or none of the tasks in @tset are migrated.
2375 * @tset is consumed regardless of success.
2376 */
2377 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2378 struct cgroup_root *root)
2379 {
2380 struct cgroup_subsys *ss;
2381 struct task_struct *task, *tmp_task;
2382 struct css_set *cset, *tmp_cset;
2383 int ssid, failed_ssid, ret;
2384
2385 /* methods shouldn't be called if no task is actually migrating */
2386 if (list_empty(&tset->src_csets))
2387 return 0;
2388
2389 /* check that we can legitimately attach to the cgroup */
2390 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2391 if (ss->can_attach) {
2392 tset->ssid = ssid;
2393 ret = ss->can_attach(tset);
2394 if (ret) {
2395 failed_ssid = ssid;
2396 goto out_cancel_attach;
2397 }
2398 }
2399 } while_each_subsys_mask();
2400
2401 /*
2402 * Now that we're guaranteed success, proceed to move all tasks to
2403 * the new cgroup. There are no failure cases after here, so this
2404 * is the commit point.
2405 */
2406 spin_lock_bh(&css_set_lock);
2407 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2408 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2409 struct css_set *from_cset = task_css_set(task);
2410 struct css_set *to_cset = cset->mg_dst_cset;
2411
2412 get_css_set(to_cset);
2413 css_set_move_task(task, from_cset, to_cset, true);
2414 put_css_set_locked(from_cset);
2415 }
2416 }
2417 spin_unlock_bh(&css_set_lock);
2418
2419 /*
2420 * Migration is committed, all target tasks are now on dst_csets.
2421 * Nothing is sensitive to fork() after this point. Notify
2422 * controllers that migration is complete.
2423 */
2424 tset->csets = &tset->dst_csets;
2425
2426 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2427 if (ss->attach) {
2428 tset->ssid = ssid;
2429 ss->attach(tset);
2430 }
2431 } while_each_subsys_mask();
2432
2433 ret = 0;
2434 goto out_release_tset;
2435
2436 out_cancel_attach:
2437 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2438 if (ssid == failed_ssid)
2439 break;
2440 if (ss->cancel_attach) {
2441 tset->ssid = ssid;
2442 ss->cancel_attach(tset);
2443 }
2444 } while_each_subsys_mask();
2445 out_release_tset:
2446 spin_lock_bh(&css_set_lock);
2447 list_splice_init(&tset->dst_csets, &tset->src_csets);
2448 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2449 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2450 list_del_init(&cset->mg_node);
2451 }
2452 spin_unlock_bh(&css_set_lock);
2453 return ret;
2454 }
2455
2456 /**
2457 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2458 * @dst_cgrp: destination cgroup to test
2459 *
2460 * On the default hierarchy, except for the root, subtree_control must be
2461 * zero for migration destination cgroups with tasks so that child cgroups
2462 * don't compete against tasks.
2463 */
2464 static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2465 {
2466 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2467 !dst_cgrp->subtree_control;
2468 }
2469
2470 /**
2471 * cgroup_migrate_finish - cleanup after attach
2472 * @preloaded_csets: list of preloaded css_sets
2473 *
2474 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2475 * those functions for details.
2476 */
2477 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2478 {
2479 struct css_set *cset, *tmp_cset;
2480
2481 lockdep_assert_held(&cgroup_mutex);
2482
2483 spin_lock_bh(&css_set_lock);
2484 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2485 cset->mg_src_cgrp = NULL;
2486 cset->mg_dst_cgrp = NULL;
2487 cset->mg_dst_cset = NULL;
2488 list_del_init(&cset->mg_preload_node);
2489 put_css_set_locked(cset);
2490 }
2491 spin_unlock_bh(&css_set_lock);
2492 }
2493
2494 /**
2495 * cgroup_migrate_add_src - add a migration source css_set
2496 * @src_cset: the source css_set to add
2497 * @dst_cgrp: the destination cgroup
2498 * @preloaded_csets: list of preloaded css_sets
2499 *
2500 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2501 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2502 * up by cgroup_migrate_finish().
2503 *
2504 * This function may be called without holding cgroup_threadgroup_rwsem
2505 * even if the target is a process. Threads may be created and destroyed
2506 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2507 * into play and the preloaded css_sets are guaranteed to cover all
2508 * migrations.
2509 */
2510 static void cgroup_migrate_add_src(struct css_set *src_cset,
2511 struct cgroup *dst_cgrp,
2512 struct list_head *preloaded_csets)
2513 {
2514 struct cgroup *src_cgrp;
2515
2516 lockdep_assert_held(&cgroup_mutex);
2517 lockdep_assert_held(&css_set_lock);
2518
2519 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2520
2521 if (!list_empty(&src_cset->mg_preload_node))
2522 return;
2523
2524 WARN_ON(src_cset->mg_src_cgrp);
2525 WARN_ON(src_cset->mg_dst_cgrp);
2526 WARN_ON(!list_empty(&src_cset->mg_tasks));
2527 WARN_ON(!list_empty(&src_cset->mg_node));
2528
2529 src_cset->mg_src_cgrp = src_cgrp;
2530 src_cset->mg_dst_cgrp = dst_cgrp;
2531 get_css_set(src_cset);
2532 list_add(&src_cset->mg_preload_node, preloaded_csets);
2533 }
2534
2535 /**
2536 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2537 * @preloaded_csets: list of preloaded source css_sets
2538 *
2539 * Tasks are about to be moved and all the source css_sets have been
2540 * preloaded to @preloaded_csets. This function looks up and pins all
2541 * destination css_sets, links each to its source, and append them to
2542 * @preloaded_csets.
2543 *
2544 * This function must be called after cgroup_migrate_add_src() has been
2545 * called on each migration source css_set. After migration is performed
2546 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2547 * @preloaded_csets.
2548 */
2549 static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2550 {
2551 LIST_HEAD(csets);
2552 struct css_set *src_cset, *tmp_cset;
2553
2554 lockdep_assert_held(&cgroup_mutex);
2555
2556 /* look up the dst cset for each src cset and link it to src */
2557 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2558 struct css_set *dst_cset;
2559
2560 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2561 if (!dst_cset)
2562 goto err;
2563
2564 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2565
2566 /*
2567 * If src cset equals dst, it's noop. Drop the src.
2568 * cgroup_migrate() will skip the cset too. Note that we
2569 * can't handle src == dst as some nodes are used by both.
2570 */
2571 if (src_cset == dst_cset) {
2572 src_cset->mg_src_cgrp = NULL;
2573 src_cset->mg_dst_cgrp = NULL;
2574 list_del_init(&src_cset->mg_preload_node);
2575 put_css_set(src_cset);
2576 put_css_set(dst_cset);
2577 continue;
2578 }
2579
2580 src_cset->mg_dst_cset = dst_cset;
2581
2582 if (list_empty(&dst_cset->mg_preload_node))
2583 list_add(&dst_cset->mg_preload_node, &csets);
2584 else
2585 put_css_set(dst_cset);
2586 }
2587
2588 list_splice_tail(&csets, preloaded_csets);
2589 return 0;
2590 err:
2591 cgroup_migrate_finish(&csets);
2592 return -ENOMEM;
2593 }
2594
2595 /**
2596 * cgroup_migrate - migrate a process or task to a cgroup
2597 * @leader: the leader of the process or the task to migrate
2598 * @threadgroup: whether @leader points to the whole process or a single task
2599 * @root: cgroup root migration is taking place on
2600 *
2601 * Migrate a process or task denoted by @leader. If migrating a process,
2602 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2603 * responsible for invoking cgroup_migrate_add_src() and
2604 * cgroup_migrate_prepare_dst() on the targets before invoking this
2605 * function and following up with cgroup_migrate_finish().
2606 *
2607 * As long as a controller's ->can_attach() doesn't fail, this function is
2608 * guaranteed to succeed. This means that, excluding ->can_attach()
2609 * failure, when migrating multiple targets, the success or failure can be
2610 * decided for all targets by invoking group_migrate_prepare_dst() before
2611 * actually starting migrating.
2612 */
2613 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2614 struct cgroup_root *root)
2615 {
2616 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2617 struct task_struct *task;
2618
2619 /*
2620 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2621 * already PF_EXITING could be freed from underneath us unless we
2622 * take an rcu_read_lock.
2623 */
2624 spin_lock_bh(&css_set_lock);
2625 rcu_read_lock();
2626 task = leader;
2627 do {
2628 cgroup_taskset_add(task, &tset);
2629 if (!threadgroup)
2630 break;
2631 } while_each_thread(leader, task);
2632 rcu_read_unlock();
2633 spin_unlock_bh(&css_set_lock);
2634
2635 return cgroup_taskset_migrate(&tset, root);
2636 }
2637
2638 /**
2639 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2640 * @dst_cgrp: the cgroup to attach to
2641 * @leader: the task or the leader of the threadgroup to be attached
2642 * @threadgroup: attach the whole threadgroup?
2643 *
2644 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2645 */
2646 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2647 struct task_struct *leader, bool threadgroup)
2648 {
2649 LIST_HEAD(preloaded_csets);
2650 struct task_struct *task;
2651 int ret;
2652
2653 if (!cgroup_may_migrate_to(dst_cgrp))
2654 return -EBUSY;
2655
2656 /* look up all src csets */
2657 spin_lock_bh(&css_set_lock);
2658 rcu_read_lock();
2659 task = leader;
2660 do {
2661 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2662 &preloaded_csets);
2663 if (!threadgroup)
2664 break;
2665 } while_each_thread(leader, task);
2666 rcu_read_unlock();
2667 spin_unlock_bh(&css_set_lock);
2668
2669 /* prepare dst csets and commit */
2670 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2671 if (!ret)
2672 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2673
2674 cgroup_migrate_finish(&preloaded_csets);
2675 return ret;
2676 }
2677
2678 static int cgroup_procs_write_permission(struct task_struct *task,
2679 struct cgroup *dst_cgrp,
2680 struct kernfs_open_file *of)
2681 {
2682 const struct cred *cred = current_cred();
2683 const struct cred *tcred = get_task_cred(task);
2684 int ret = 0;
2685
2686 /*
2687 * even if we're attaching all tasks in the thread group, we only
2688 * need to check permissions on one of them.
2689 */
2690 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2691 !uid_eq(cred->euid, tcred->uid) &&
2692 !uid_eq(cred->euid, tcred->suid))
2693 ret = -EACCES;
2694
2695 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2696 struct super_block *sb = of->file->f_path.dentry->d_sb;
2697 struct cgroup *cgrp;
2698 struct inode *inode;
2699
2700 spin_lock_bh(&css_set_lock);
2701 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2702 spin_unlock_bh(&css_set_lock);
2703
2704 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2705 cgrp = cgroup_parent(cgrp);
2706
2707 ret = -ENOMEM;
2708 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2709 if (inode) {
2710 ret = inode_permission(inode, MAY_WRITE);
2711 iput(inode);
2712 }
2713 }
2714
2715 put_cred(tcred);
2716 return ret;
2717 }
2718
2719 /*
2720 * Find the task_struct of the task to attach by vpid and pass it along to the
2721 * function to attach either it or all tasks in its threadgroup. Will lock
2722 * cgroup_mutex and threadgroup.
2723 */
2724 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2725 size_t nbytes, loff_t off, bool threadgroup)
2726 {
2727 struct task_struct *tsk;
2728 struct cgroup *cgrp;
2729 pid_t pid;
2730 int ret;
2731
2732 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2733 return -EINVAL;
2734
2735 cgrp = cgroup_kn_lock_live(of->kn, false);
2736 if (!cgrp)
2737 return -ENODEV;
2738
2739 percpu_down_write(&cgroup_threadgroup_rwsem);
2740 rcu_read_lock();
2741 if (pid) {
2742 tsk = find_task_by_vpid(pid);
2743 if (!tsk) {
2744 ret = -ESRCH;
2745 goto out_unlock_rcu;
2746 }
2747 } else {
2748 tsk = current;
2749 }
2750
2751 if (threadgroup)
2752 tsk = tsk->group_leader;
2753
2754 /*
2755 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2756 * trapped in a cpuset, or RT worker may be born in a cgroup
2757 * with no rt_runtime allocated. Just say no.
2758 */
2759 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2760 ret = -EINVAL;
2761 goto out_unlock_rcu;
2762 }
2763
2764 get_task_struct(tsk);
2765 rcu_read_unlock();
2766
2767 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2768 if (!ret)
2769 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2770
2771 put_task_struct(tsk);
2772 goto out_unlock_threadgroup;
2773
2774 out_unlock_rcu:
2775 rcu_read_unlock();
2776 out_unlock_threadgroup:
2777 percpu_up_write(&cgroup_threadgroup_rwsem);
2778 cgroup_kn_unlock(of->kn);
2779 cpuset_post_attach_flush();
2780 return ret ?: nbytes;
2781 }
2782
2783 /**
2784 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2785 * @from: attach to all cgroups of a given task
2786 * @tsk: the task to be attached
2787 */
2788 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2789 {
2790 struct cgroup_root *root;
2791 int retval = 0;
2792
2793 mutex_lock(&cgroup_mutex);
2794 for_each_root(root) {
2795 struct cgroup *from_cgrp;
2796
2797 if (root == &cgrp_dfl_root)
2798 continue;
2799
2800 spin_lock_bh(&css_set_lock);
2801 from_cgrp = task_cgroup_from_root(from, root);
2802 spin_unlock_bh(&css_set_lock);
2803
2804 retval = cgroup_attach_task(from_cgrp, tsk, false);
2805 if (retval)
2806 break;
2807 }
2808 mutex_unlock(&cgroup_mutex);
2809
2810 return retval;
2811 }
2812 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2813
2814 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2815 char *buf, size_t nbytes, loff_t off)
2816 {
2817 return __cgroup_procs_write(of, buf, nbytes, off, false);
2818 }
2819
2820 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2821 char *buf, size_t nbytes, loff_t off)
2822 {
2823 return __cgroup_procs_write(of, buf, nbytes, off, true);
2824 }
2825
2826 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2827 char *buf, size_t nbytes, loff_t off)
2828 {
2829 struct cgroup *cgrp;
2830
2831 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2832
2833 cgrp = cgroup_kn_lock_live(of->kn, false);
2834 if (!cgrp)
2835 return -ENODEV;
2836 spin_lock(&release_agent_path_lock);
2837 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2838 sizeof(cgrp->root->release_agent_path));
2839 spin_unlock(&release_agent_path_lock);
2840 cgroup_kn_unlock(of->kn);
2841 return nbytes;
2842 }
2843
2844 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2845 {
2846 struct cgroup *cgrp = seq_css(seq)->cgroup;
2847
2848 spin_lock(&release_agent_path_lock);
2849 seq_puts(seq, cgrp->root->release_agent_path);
2850 spin_unlock(&release_agent_path_lock);
2851 seq_putc(seq, '\n');
2852 return 0;
2853 }
2854
2855 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2856 {
2857 seq_puts(seq, "0\n");
2858 return 0;
2859 }
2860
2861 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2862 {
2863 struct cgroup_subsys *ss;
2864 bool printed = false;
2865 int ssid;
2866
2867 do_each_subsys_mask(ss, ssid, ss_mask) {
2868 if (printed)
2869 seq_putc(seq, ' ');
2870 seq_printf(seq, "%s", ss->name);
2871 printed = true;
2872 } while_each_subsys_mask();
2873 if (printed)
2874 seq_putc(seq, '\n');
2875 }
2876
2877 /* show controllers which are enabled from the parent */
2878 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2879 {
2880 struct cgroup *cgrp = seq_css(seq)->cgroup;
2881
2882 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2883 return 0;
2884 }
2885
2886 /* show controllers which are enabled for a given cgroup's children */
2887 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2888 {
2889 struct cgroup *cgrp = seq_css(seq)->cgroup;
2890
2891 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2892 return 0;
2893 }
2894
2895 /**
2896 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2897 * @cgrp: root of the subtree to update csses for
2898 *
2899 * @cgrp's control masks have changed and its subtree's css associations
2900 * need to be updated accordingly. This function looks up all css_sets
2901 * which are attached to the subtree, creates the matching updated css_sets
2902 * and migrates the tasks to the new ones.
2903 */
2904 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2905 {
2906 LIST_HEAD(preloaded_csets);
2907 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2908 struct cgroup_subsys_state *d_css;
2909 struct cgroup *dsct;
2910 struct css_set *src_cset;
2911 int ret;
2912
2913 lockdep_assert_held(&cgroup_mutex);
2914
2915 percpu_down_write(&cgroup_threadgroup_rwsem);
2916
2917 /* look up all csses currently attached to @cgrp's subtree */
2918 spin_lock_bh(&css_set_lock);
2919 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2920 struct cgrp_cset_link *link;
2921
2922 list_for_each_entry(link, &dsct->cset_links, cset_link)
2923 cgroup_migrate_add_src(link->cset, dsct,
2924 &preloaded_csets);
2925 }
2926 spin_unlock_bh(&css_set_lock);
2927
2928 /* NULL dst indicates self on default hierarchy */
2929 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2930 if (ret)
2931 goto out_finish;
2932
2933 spin_lock_bh(&css_set_lock);
2934 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2935 struct task_struct *task, *ntask;
2936
2937 /* src_csets precede dst_csets, break on the first dst_cset */
2938 if (!src_cset->mg_src_cgrp)
2939 break;
2940
2941 /* all tasks in src_csets need to be migrated */
2942 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2943 cgroup_taskset_add(task, &tset);
2944 }
2945 spin_unlock_bh(&css_set_lock);
2946
2947 ret = cgroup_taskset_migrate(&tset, cgrp->root);
2948 out_finish:
2949 cgroup_migrate_finish(&preloaded_csets);
2950 percpu_up_write(&cgroup_threadgroup_rwsem);
2951 return ret;
2952 }
2953
2954 /**
2955 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2956 * @cgrp: root of the target subtree
2957 *
2958 * Because css offlining is asynchronous, userland may try to re-enable a
2959 * controller while the previous css is still around. This function grabs
2960 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2961 */
2962 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2963 __acquires(&cgroup_mutex)
2964 {
2965 struct cgroup *dsct;
2966 struct cgroup_subsys_state *d_css;
2967 struct cgroup_subsys *ss;
2968 int ssid;
2969
2970 restart:
2971 mutex_lock(&cgroup_mutex);
2972
2973 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2974 for_each_subsys(ss, ssid) {
2975 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2976 DEFINE_WAIT(wait);
2977
2978 if (!css || !percpu_ref_is_dying(&css->refcnt))
2979 continue;
2980
2981 cgroup_get(dsct);
2982 prepare_to_wait(&dsct->offline_waitq, &wait,
2983 TASK_UNINTERRUPTIBLE);
2984
2985 mutex_unlock(&cgroup_mutex);
2986 schedule();
2987 finish_wait(&dsct->offline_waitq, &wait);
2988
2989 cgroup_put(dsct);
2990 goto restart;
2991 }
2992 }
2993 }
2994
2995 /**
2996 * cgroup_save_control - save control masks of a subtree
2997 * @cgrp: root of the target subtree
2998 *
2999 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3000 * prefixed fields for @cgrp's subtree including @cgrp itself.
3001 */
3002 static void cgroup_save_control(struct cgroup *cgrp)
3003 {
3004 struct cgroup *dsct;
3005 struct cgroup_subsys_state *d_css;
3006
3007 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3008 dsct->old_subtree_control = dsct->subtree_control;
3009 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3010 }
3011 }
3012
3013 /**
3014 * cgroup_propagate_control - refresh control masks of a subtree
3015 * @cgrp: root of the target subtree
3016 *
3017 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3018 * ->subtree_control and propagate controller availability through the
3019 * subtree so that descendants don't have unavailable controllers enabled.
3020 */
3021 static void cgroup_propagate_control(struct cgroup *cgrp)
3022 {
3023 struct cgroup *dsct;
3024 struct cgroup_subsys_state *d_css;
3025
3026 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3027 dsct->subtree_control &= cgroup_control(dsct);
3028 dsct->subtree_ss_mask =
3029 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3030 cgroup_ss_mask(dsct));
3031 }
3032 }
3033
3034 /**
3035 * cgroup_restore_control - restore control masks of a subtree
3036 * @cgrp: root of the target subtree
3037 *
3038 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3039 * prefixed fields for @cgrp's subtree including @cgrp itself.
3040 */
3041 static void cgroup_restore_control(struct cgroup *cgrp)
3042 {
3043 struct cgroup *dsct;
3044 struct cgroup_subsys_state *d_css;
3045
3046 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3047 dsct->subtree_control = dsct->old_subtree_control;
3048 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3049 }
3050 }
3051
3052 static bool css_visible(struct cgroup_subsys_state *css)
3053 {
3054 struct cgroup_subsys *ss = css->ss;
3055 struct cgroup *cgrp = css->cgroup;
3056
3057 if (cgroup_control(cgrp) & (1 << ss->id))
3058 return true;
3059 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3060 return false;
3061 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3062 }
3063
3064 /**
3065 * cgroup_apply_control_enable - enable or show csses according to control
3066 * @cgrp: root of the target subtree
3067 *
3068 * Walk @cgrp's subtree and create new csses or make the existing ones
3069 * visible. A css is created invisible if it's being implicitly enabled
3070 * through dependency. An invisible css is made visible when the userland
3071 * explicitly enables it.
3072 *
3073 * Returns 0 on success, -errno on failure. On failure, csses which have
3074 * been processed already aren't cleaned up. The caller is responsible for
3075 * cleaning up with cgroup_apply_control_disble().
3076 */
3077 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3078 {
3079 struct cgroup *dsct;
3080 struct cgroup_subsys_state *d_css;
3081 struct cgroup_subsys *ss;
3082 int ssid, ret;
3083
3084 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3085 for_each_subsys(ss, ssid) {
3086 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3087
3088 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3089
3090 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3091 continue;
3092
3093 if (!css) {
3094 css = css_create(dsct, ss);
3095 if (IS_ERR(css))
3096 return PTR_ERR(css);
3097 }
3098
3099 if (css_visible(css)) {
3100 ret = css_populate_dir(css);
3101 if (ret)
3102 return ret;
3103 }
3104 }
3105 }
3106
3107 return 0;
3108 }
3109
3110 /**
3111 * cgroup_apply_control_disable - kill or hide csses according to control
3112 * @cgrp: root of the target subtree
3113 *
3114 * Walk @cgrp's subtree and kill and hide csses so that they match
3115 * cgroup_ss_mask() and cgroup_visible_mask().
3116 *
3117 * A css is hidden when the userland requests it to be disabled while other
3118 * subsystems are still depending on it. The css must not actively control
3119 * resources and be in the vanilla state if it's made visible again later.
3120 * Controllers which may be depended upon should provide ->css_reset() for
3121 * this purpose.
3122 */
3123 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3124 {
3125 struct cgroup *dsct;
3126 struct cgroup_subsys_state *d_css;
3127 struct cgroup_subsys *ss;
3128 int ssid;
3129
3130 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3131 for_each_subsys(ss, ssid) {
3132 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3133
3134 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3135
3136 if (!css)
3137 continue;
3138
3139 if (css->parent &&
3140 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3141 kill_css(css);
3142 } else if (!css_visible(css)) {
3143 css_clear_dir(css);
3144 if (ss->css_reset)
3145 ss->css_reset(css);
3146 }
3147 }
3148 }
3149 }
3150
3151 /**
3152 * cgroup_apply_control - apply control mask updates to the subtree
3153 * @cgrp: root of the target subtree
3154 *
3155 * subsystems can be enabled and disabled in a subtree using the following
3156 * steps.
3157 *
3158 * 1. Call cgroup_save_control() to stash the current state.
3159 * 2. Update ->subtree_control masks in the subtree as desired.
3160 * 3. Call cgroup_apply_control() to apply the changes.
3161 * 4. Optionally perform other related operations.
3162 * 5. Call cgroup_finalize_control() to finish up.
3163 *
3164 * This function implements step 3 and propagates the mask changes
3165 * throughout @cgrp's subtree, updates csses accordingly and perform
3166 * process migrations.
3167 */
3168 static int cgroup_apply_control(struct cgroup *cgrp)
3169 {
3170 int ret;
3171
3172 cgroup_propagate_control(cgrp);
3173
3174 ret = cgroup_apply_control_enable(cgrp);
3175 if (ret)
3176 return ret;
3177
3178 /*
3179 * At this point, cgroup_e_css() results reflect the new csses
3180 * making the following cgroup_update_dfl_csses() properly update
3181 * css associations of all tasks in the subtree.
3182 */
3183 ret = cgroup_update_dfl_csses(cgrp);
3184 if (ret)
3185 return ret;
3186
3187 return 0;
3188 }
3189
3190 /**
3191 * cgroup_finalize_control - finalize control mask update
3192 * @cgrp: root of the target subtree
3193 * @ret: the result of the update
3194 *
3195 * Finalize control mask update. See cgroup_apply_control() for more info.
3196 */
3197 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3198 {
3199 if (ret) {
3200 cgroup_restore_control(cgrp);
3201 cgroup_propagate_control(cgrp);
3202 }
3203
3204 cgroup_apply_control_disable(cgrp);
3205 }
3206
3207 /* change the enabled child controllers for a cgroup in the default hierarchy */
3208 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3209 char *buf, size_t nbytes,
3210 loff_t off)
3211 {
3212 u16 enable = 0, disable = 0;
3213 struct cgroup *cgrp, *child;
3214 struct cgroup_subsys *ss;
3215 char *tok;
3216 int ssid, ret;
3217
3218 /*
3219 * Parse input - space separated list of subsystem names prefixed
3220 * with either + or -.
3221 */
3222 buf = strstrip(buf);
3223 while ((tok = strsep(&buf, " "))) {
3224 if (tok[0] == '\0')
3225 continue;
3226 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3227 if (!cgroup_ssid_enabled(ssid) ||
3228 strcmp(tok + 1, ss->name))
3229 continue;
3230
3231 if (*tok == '+') {
3232 enable |= 1 << ssid;
3233 disable &= ~(1 << ssid);
3234 } else if (*tok == '-') {
3235 disable |= 1 << ssid;
3236 enable &= ~(1 << ssid);
3237 } else {
3238 return -EINVAL;
3239 }
3240 break;
3241 } while_each_subsys_mask();
3242 if (ssid == CGROUP_SUBSYS_COUNT)
3243 return -EINVAL;
3244 }
3245
3246 cgrp = cgroup_kn_lock_live(of->kn, true);
3247 if (!cgrp)
3248 return -ENODEV;
3249
3250 for_each_subsys(ss, ssid) {
3251 if (enable & (1 << ssid)) {
3252 if (cgrp->subtree_control & (1 << ssid)) {
3253 enable &= ~(1 << ssid);
3254 continue;
3255 }
3256
3257 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3258 ret = -ENOENT;
3259 goto out_unlock;
3260 }
3261 } else if (disable & (1 << ssid)) {
3262 if (!(cgrp->subtree_control & (1 << ssid))) {
3263 disable &= ~(1 << ssid);
3264 continue;
3265 }
3266
3267 /* a child has it enabled? */
3268 cgroup_for_each_live_child(child, cgrp) {
3269 if (child->subtree_control & (1 << ssid)) {
3270 ret = -EBUSY;
3271 goto out_unlock;
3272 }
3273 }
3274 }
3275 }
3276
3277 if (!enable && !disable) {
3278 ret = 0;
3279 goto out_unlock;
3280 }
3281
3282 /*
3283 * Except for the root, subtree_control must be zero for a cgroup
3284 * with tasks so that child cgroups don't compete against tasks.
3285 */
3286 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3287 ret = -EBUSY;
3288 goto out_unlock;
3289 }
3290
3291 /* save and update control masks and prepare csses */
3292 cgroup_save_control(cgrp);
3293
3294 cgrp->subtree_control |= enable;
3295 cgrp->subtree_control &= ~disable;
3296
3297 ret = cgroup_apply_control(cgrp);
3298
3299 cgroup_finalize_control(cgrp, ret);
3300
3301 kernfs_activate(cgrp->kn);
3302 ret = 0;
3303 out_unlock:
3304 cgroup_kn_unlock(of->kn);
3305 return ret ?: nbytes;
3306 }
3307
3308 static int cgroup_events_show(struct seq_file *seq, void *v)
3309 {
3310 seq_printf(seq, "populated %d\n",
3311 cgroup_is_populated(seq_css(seq)->cgroup));
3312 return 0;
3313 }
3314
3315 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3316 size_t nbytes, loff_t off)
3317 {
3318 struct cgroup *cgrp = of->kn->parent->priv;
3319 struct cftype *cft = of->kn->priv;
3320 struct cgroup_subsys_state *css;
3321 int ret;
3322
3323 if (cft->write)
3324 return cft->write(of, buf, nbytes, off);
3325
3326 /*
3327 * kernfs guarantees that a file isn't deleted with operations in
3328 * flight, which means that the matching css is and stays alive and
3329 * doesn't need to be pinned. The RCU locking is not necessary
3330 * either. It's just for the convenience of using cgroup_css().
3331 */
3332 rcu_read_lock();
3333 css = cgroup_css(cgrp, cft->ss);
3334 rcu_read_unlock();
3335
3336 if (cft->write_u64) {
3337 unsigned long long v;
3338 ret = kstrtoull(buf, 0, &v);
3339 if (!ret)
3340 ret = cft->write_u64(css, cft, v);
3341 } else if (cft->write_s64) {
3342 long long v;
3343 ret = kstrtoll(buf, 0, &v);
3344 if (!ret)
3345 ret = cft->write_s64(css, cft, v);
3346 } else {
3347 ret = -EINVAL;
3348 }
3349
3350 return ret ?: nbytes;
3351 }
3352
3353 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3354 {
3355 return seq_cft(seq)->seq_start(seq, ppos);
3356 }
3357
3358 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3359 {
3360 return seq_cft(seq)->seq_next(seq, v, ppos);
3361 }
3362
3363 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3364 {
3365 seq_cft(seq)->seq_stop(seq, v);
3366 }
3367
3368 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3369 {
3370 struct cftype *cft = seq_cft(m);
3371 struct cgroup_subsys_state *css = seq_css(m);
3372
3373 if (cft->seq_show)
3374 return cft->seq_show(m, arg);
3375
3376 if (cft->read_u64)
3377 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3378 else if (cft->read_s64)
3379 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3380 else
3381 return -EINVAL;
3382 return 0;
3383 }
3384
3385 static struct kernfs_ops cgroup_kf_single_ops = {
3386 .atomic_write_len = PAGE_SIZE,
3387 .write = cgroup_file_write,
3388 .seq_show = cgroup_seqfile_show,
3389 };
3390
3391 static struct kernfs_ops cgroup_kf_ops = {
3392 .atomic_write_len = PAGE_SIZE,
3393 .write = cgroup_file_write,
3394 .seq_start = cgroup_seqfile_start,
3395 .seq_next = cgroup_seqfile_next,
3396 .seq_stop = cgroup_seqfile_stop,
3397 .seq_show = cgroup_seqfile_show,
3398 };
3399
3400 /*
3401 * cgroup_rename - Only allow simple rename of directories in place.
3402 */
3403 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3404 const char *new_name_str)
3405 {
3406 struct cgroup *cgrp = kn->priv;
3407 int ret;
3408
3409 if (kernfs_type(kn) != KERNFS_DIR)
3410 return -ENOTDIR;
3411 if (kn->parent != new_parent)
3412 return -EIO;
3413
3414 /*
3415 * This isn't a proper migration and its usefulness is very
3416 * limited. Disallow on the default hierarchy.
3417 */
3418 if (cgroup_on_dfl(cgrp))
3419 return -EPERM;
3420
3421 /*
3422 * We're gonna grab cgroup_mutex which nests outside kernfs
3423 * active_ref. kernfs_rename() doesn't require active_ref
3424 * protection. Break them before grabbing cgroup_mutex.
3425 */
3426 kernfs_break_active_protection(new_parent);
3427 kernfs_break_active_protection(kn);
3428
3429 mutex_lock(&cgroup_mutex);
3430
3431 ret = kernfs_rename(kn, new_parent, new_name_str);
3432
3433 mutex_unlock(&cgroup_mutex);
3434
3435 kernfs_unbreak_active_protection(kn);
3436 kernfs_unbreak_active_protection(new_parent);
3437 return ret;
3438 }
3439
3440 /* set uid and gid of cgroup dirs and files to that of the creator */
3441 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3442 {
3443 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3444 .ia_uid = current_fsuid(),
3445 .ia_gid = current_fsgid(), };
3446
3447 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3448 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3449 return 0;
3450
3451 return kernfs_setattr(kn, &iattr);
3452 }
3453
3454 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3455 struct cftype *cft)
3456 {
3457 char name[CGROUP_FILE_NAME_MAX];
3458 struct kernfs_node *kn;
3459 struct lock_class_key *key = NULL;
3460 int ret;
3461
3462 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3463 key = &cft->lockdep_key;
3464 #endif
3465 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3466 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3467 NULL, key);
3468 if (IS_ERR(kn))
3469 return PTR_ERR(kn);
3470
3471 ret = cgroup_kn_set_ugid(kn);
3472 if (ret) {
3473 kernfs_remove(kn);
3474 return ret;
3475 }
3476
3477 if (cft->file_offset) {
3478 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3479
3480 spin_lock_irq(&cgroup_file_kn_lock);
3481 cfile->kn = kn;
3482 spin_unlock_irq(&cgroup_file_kn_lock);
3483 }
3484
3485 return 0;
3486 }
3487
3488 /**
3489 * cgroup_addrm_files - add or remove files to a cgroup directory
3490 * @css: the target css
3491 * @cgrp: the target cgroup (usually css->cgroup)
3492 * @cfts: array of cftypes to be added
3493 * @is_add: whether to add or remove
3494 *
3495 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3496 * For removals, this function never fails.
3497 */
3498 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3499 struct cgroup *cgrp, struct cftype cfts[],
3500 bool is_add)
3501 {
3502 struct cftype *cft, *cft_end = NULL;
3503 int ret = 0;
3504
3505 lockdep_assert_held(&cgroup_mutex);
3506
3507 restart:
3508 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3509 /* does cft->flags tell us to skip this file on @cgrp? */
3510 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3511 continue;
3512 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3513 continue;
3514 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3515 continue;
3516 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3517 continue;
3518
3519 if (is_add) {
3520 ret = cgroup_add_file(css, cgrp, cft);
3521 if (ret) {
3522 pr_warn("%s: failed to add %s, err=%d\n",
3523 __func__, cft->name, ret);
3524 cft_end = cft;
3525 is_add = false;
3526 goto restart;
3527 }
3528 } else {
3529 cgroup_rm_file(cgrp, cft);
3530 }
3531 }
3532 return ret;
3533 }
3534
3535 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3536 {
3537 LIST_HEAD(pending);
3538 struct cgroup_subsys *ss = cfts[0].ss;
3539 struct cgroup *root = &ss->root->cgrp;
3540 struct cgroup_subsys_state *css;
3541 int ret = 0;
3542
3543 lockdep_assert_held(&cgroup_mutex);
3544
3545 /* add/rm files for all cgroups created before */
3546 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3547 struct cgroup *cgrp = css->cgroup;
3548
3549 if (!(css->flags & CSS_VISIBLE))
3550 continue;
3551
3552 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3553 if (ret)
3554 break;
3555 }
3556
3557 if (is_add && !ret)
3558 kernfs_activate(root->kn);
3559 return ret;
3560 }
3561
3562 static void cgroup_exit_cftypes(struct cftype *cfts)
3563 {
3564 struct cftype *cft;
3565
3566 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3567 /* free copy for custom atomic_write_len, see init_cftypes() */
3568 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3569 kfree(cft->kf_ops);
3570 cft->kf_ops = NULL;
3571 cft->ss = NULL;
3572
3573 /* revert flags set by cgroup core while adding @cfts */
3574 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3575 }
3576 }
3577
3578 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3579 {
3580 struct cftype *cft;
3581
3582 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3583 struct kernfs_ops *kf_ops;
3584
3585 WARN_ON(cft->ss || cft->kf_ops);
3586
3587 if (cft->seq_start)
3588 kf_ops = &cgroup_kf_ops;
3589 else
3590 kf_ops = &cgroup_kf_single_ops;
3591
3592 /*
3593 * Ugh... if @cft wants a custom max_write_len, we need to
3594 * make a copy of kf_ops to set its atomic_write_len.
3595 */
3596 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3597 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3598 if (!kf_ops) {
3599 cgroup_exit_cftypes(cfts);
3600 return -ENOMEM;
3601 }
3602 kf_ops->atomic_write_len = cft->max_write_len;
3603 }
3604
3605 cft->kf_ops = kf_ops;
3606 cft->ss = ss;
3607 }
3608
3609 return 0;
3610 }
3611
3612 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3613 {
3614 lockdep_assert_held(&cgroup_mutex);
3615
3616 if (!cfts || !cfts[0].ss)
3617 return -ENOENT;
3618
3619 list_del(&cfts->node);
3620 cgroup_apply_cftypes(cfts, false);
3621 cgroup_exit_cftypes(cfts);
3622 return 0;
3623 }
3624
3625 /**
3626 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3627 * @cfts: zero-length name terminated array of cftypes
3628 *
3629 * Unregister @cfts. Files described by @cfts are removed from all
3630 * existing cgroups and all future cgroups won't have them either. This
3631 * function can be called anytime whether @cfts' subsys is attached or not.
3632 *
3633 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3634 * registered.
3635 */
3636 int cgroup_rm_cftypes(struct cftype *cfts)
3637 {
3638 int ret;
3639
3640 mutex_lock(&cgroup_mutex);
3641 ret = cgroup_rm_cftypes_locked(cfts);
3642 mutex_unlock(&cgroup_mutex);
3643 return ret;
3644 }
3645
3646 /**
3647 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3648 * @ss: target cgroup subsystem
3649 * @cfts: zero-length name terminated array of cftypes
3650 *
3651 * Register @cfts to @ss. Files described by @cfts are created for all
3652 * existing cgroups to which @ss is attached and all future cgroups will
3653 * have them too. This function can be called anytime whether @ss is
3654 * attached or not.
3655 *
3656 * Returns 0 on successful registration, -errno on failure. Note that this
3657 * function currently returns 0 as long as @cfts registration is successful
3658 * even if some file creation attempts on existing cgroups fail.
3659 */
3660 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3661 {
3662 int ret;
3663
3664 if (!cgroup_ssid_enabled(ss->id))
3665 return 0;
3666
3667 if (!cfts || cfts[0].name[0] == '\0')
3668 return 0;
3669
3670 ret = cgroup_init_cftypes(ss, cfts);
3671 if (ret)
3672 return ret;
3673
3674 mutex_lock(&cgroup_mutex);
3675
3676 list_add_tail(&cfts->node, &ss->cfts);
3677 ret = cgroup_apply_cftypes(cfts, true);
3678 if (ret)
3679 cgroup_rm_cftypes_locked(cfts);
3680
3681 mutex_unlock(&cgroup_mutex);
3682 return ret;
3683 }
3684
3685 /**
3686 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3687 * @ss: target cgroup subsystem
3688 * @cfts: zero-length name terminated array of cftypes
3689 *
3690 * Similar to cgroup_add_cftypes() but the added files are only used for
3691 * the default hierarchy.
3692 */
3693 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3694 {
3695 struct cftype *cft;
3696
3697 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3698 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3699 return cgroup_add_cftypes(ss, cfts);
3700 }
3701
3702 /**
3703 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3704 * @ss: target cgroup subsystem
3705 * @cfts: zero-length name terminated array of cftypes
3706 *
3707 * Similar to cgroup_add_cftypes() but the added files are only used for
3708 * the legacy hierarchies.
3709 */
3710 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3711 {
3712 struct cftype *cft;
3713
3714 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3715 cft->flags |= __CFTYPE_NOT_ON_DFL;
3716 return cgroup_add_cftypes(ss, cfts);
3717 }
3718
3719 /**
3720 * cgroup_file_notify - generate a file modified event for a cgroup_file
3721 * @cfile: target cgroup_file
3722 *
3723 * @cfile must have been obtained by setting cftype->file_offset.
3724 */
3725 void cgroup_file_notify(struct cgroup_file *cfile)
3726 {
3727 unsigned long flags;
3728
3729 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3730 if (cfile->kn)
3731 kernfs_notify(cfile->kn);
3732 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3733 }
3734
3735 /**
3736 * cgroup_task_count - count the number of tasks in a cgroup.
3737 * @cgrp: the cgroup in question
3738 *
3739 * Return the number of tasks in the cgroup.
3740 */
3741 static int cgroup_task_count(const struct cgroup *cgrp)
3742 {
3743 int count = 0;
3744 struct cgrp_cset_link *link;
3745
3746 spin_lock_bh(&css_set_lock);
3747 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3748 count += atomic_read(&link->cset->refcount);
3749 spin_unlock_bh(&css_set_lock);
3750 return count;
3751 }
3752
3753 /**
3754 * css_next_child - find the next child of a given css
3755 * @pos: the current position (%NULL to initiate traversal)
3756 * @parent: css whose children to walk
3757 *
3758 * This function returns the next child of @parent and should be called
3759 * under either cgroup_mutex or RCU read lock. The only requirement is
3760 * that @parent and @pos are accessible. The next sibling is guaranteed to
3761 * be returned regardless of their states.
3762 *
3763 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3764 * css which finished ->css_online() is guaranteed to be visible in the
3765 * future iterations and will stay visible until the last reference is put.
3766 * A css which hasn't finished ->css_online() or already finished
3767 * ->css_offline() may show up during traversal. It's each subsystem's
3768 * responsibility to synchronize against on/offlining.
3769 */
3770 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3771 struct cgroup_subsys_state *parent)
3772 {
3773 struct cgroup_subsys_state *next;
3774
3775 cgroup_assert_mutex_or_rcu_locked();
3776
3777 /*
3778 * @pos could already have been unlinked from the sibling list.
3779 * Once a cgroup is removed, its ->sibling.next is no longer
3780 * updated when its next sibling changes. CSS_RELEASED is set when
3781 * @pos is taken off list, at which time its next pointer is valid,
3782 * and, as releases are serialized, the one pointed to by the next
3783 * pointer is guaranteed to not have started release yet. This
3784 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3785 * critical section, the one pointed to by its next pointer is
3786 * guaranteed to not have finished its RCU grace period even if we
3787 * have dropped rcu_read_lock() inbetween iterations.
3788 *
3789 * If @pos has CSS_RELEASED set, its next pointer can't be
3790 * dereferenced; however, as each css is given a monotonically
3791 * increasing unique serial number and always appended to the
3792 * sibling list, the next one can be found by walking the parent's
3793 * children until the first css with higher serial number than
3794 * @pos's. While this path can be slower, it happens iff iteration
3795 * races against release and the race window is very small.
3796 */
3797 if (!pos) {
3798 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3799 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3800 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3801 } else {
3802 list_for_each_entry_rcu(next, &parent->children, sibling)
3803 if (next->serial_nr > pos->serial_nr)
3804 break;
3805 }
3806
3807 /*
3808 * @next, if not pointing to the head, can be dereferenced and is
3809 * the next sibling.
3810 */
3811 if (&next->sibling != &parent->children)
3812 return next;
3813 return NULL;
3814 }
3815
3816 /**
3817 * css_next_descendant_pre - find the next descendant for pre-order walk
3818 * @pos: the current position (%NULL to initiate traversal)
3819 * @root: css whose descendants to walk
3820 *
3821 * To be used by css_for_each_descendant_pre(). Find the next descendant
3822 * to visit for pre-order traversal of @root's descendants. @root is
3823 * included in the iteration and the first node to be visited.
3824 *
3825 * While this function requires cgroup_mutex or RCU read locking, it
3826 * doesn't require the whole traversal to be contained in a single critical
3827 * section. This function will return the correct next descendant as long
3828 * as both @pos and @root are accessible and @pos is a descendant of @root.
3829 *
3830 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3831 * css which finished ->css_online() is guaranteed to be visible in the
3832 * future iterations and will stay visible until the last reference is put.
3833 * A css which hasn't finished ->css_online() or already finished
3834 * ->css_offline() may show up during traversal. It's each subsystem's
3835 * responsibility to synchronize against on/offlining.
3836 */
3837 struct cgroup_subsys_state *
3838 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3839 struct cgroup_subsys_state *root)
3840 {
3841 struct cgroup_subsys_state *next;
3842
3843 cgroup_assert_mutex_or_rcu_locked();
3844
3845 /* if first iteration, visit @root */
3846 if (!pos)
3847 return root;
3848
3849 /* visit the first child if exists */
3850 next = css_next_child(NULL, pos);
3851 if (next)
3852 return next;
3853
3854 /* no child, visit my or the closest ancestor's next sibling */
3855 while (pos != root) {
3856 next = css_next_child(pos, pos->parent);
3857 if (next)
3858 return next;
3859 pos = pos->parent;
3860 }
3861
3862 return NULL;
3863 }
3864
3865 /**
3866 * css_rightmost_descendant - return the rightmost descendant of a css
3867 * @pos: css of interest
3868 *
3869 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3870 * is returned. This can be used during pre-order traversal to skip
3871 * subtree of @pos.
3872 *
3873 * While this function requires cgroup_mutex or RCU read locking, it
3874 * doesn't require the whole traversal to be contained in a single critical
3875 * section. This function will return the correct rightmost descendant as
3876 * long as @pos is accessible.
3877 */
3878 struct cgroup_subsys_state *
3879 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3880 {
3881 struct cgroup_subsys_state *last, *tmp;
3882
3883 cgroup_assert_mutex_or_rcu_locked();
3884
3885 do {
3886 last = pos;
3887 /* ->prev isn't RCU safe, walk ->next till the end */
3888 pos = NULL;
3889 css_for_each_child(tmp, last)
3890 pos = tmp;
3891 } while (pos);
3892
3893 return last;
3894 }
3895
3896 static struct cgroup_subsys_state *
3897 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3898 {
3899 struct cgroup_subsys_state *last;
3900
3901 do {
3902 last = pos;
3903 pos = css_next_child(NULL, pos);
3904 } while (pos);
3905
3906 return last;
3907 }
3908
3909 /**
3910 * css_next_descendant_post - find the next descendant for post-order walk
3911 * @pos: the current position (%NULL to initiate traversal)
3912 * @root: css whose descendants to walk
3913 *
3914 * To be used by css_for_each_descendant_post(). Find the next descendant
3915 * to visit for post-order traversal of @root's descendants. @root is
3916 * included in the iteration and the last node to be visited.
3917 *
3918 * While this function requires cgroup_mutex or RCU read locking, it
3919 * doesn't require the whole traversal to be contained in a single critical
3920 * section. This function will return the correct next descendant as long
3921 * as both @pos and @cgroup are accessible and @pos is a descendant of
3922 * @cgroup.
3923 *
3924 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3925 * css which finished ->css_online() is guaranteed to be visible in the
3926 * future iterations and will stay visible until the last reference is put.
3927 * A css which hasn't finished ->css_online() or already finished
3928 * ->css_offline() may show up during traversal. It's each subsystem's
3929 * responsibility to synchronize against on/offlining.
3930 */
3931 struct cgroup_subsys_state *
3932 css_next_descendant_post(struct cgroup_subsys_state *pos,
3933 struct cgroup_subsys_state *root)
3934 {
3935 struct cgroup_subsys_state *next;
3936
3937 cgroup_assert_mutex_or_rcu_locked();
3938
3939 /* if first iteration, visit leftmost descendant which may be @root */
3940 if (!pos)
3941 return css_leftmost_descendant(root);
3942
3943 /* if we visited @root, we're done */
3944 if (pos == root)
3945 return NULL;
3946
3947 /* if there's an unvisited sibling, visit its leftmost descendant */
3948 next = css_next_child(pos, pos->parent);
3949 if (next)
3950 return css_leftmost_descendant(next);
3951
3952 /* no sibling left, visit parent */
3953 return pos->parent;
3954 }
3955
3956 /**
3957 * css_has_online_children - does a css have online children
3958 * @css: the target css
3959 *
3960 * Returns %true if @css has any online children; otherwise, %false. This
3961 * function can be called from any context but the caller is responsible
3962 * for synchronizing against on/offlining as necessary.
3963 */
3964 bool css_has_online_children(struct cgroup_subsys_state *css)
3965 {
3966 struct cgroup_subsys_state *child;
3967 bool ret = false;
3968
3969 rcu_read_lock();
3970 css_for_each_child(child, css) {
3971 if (child->flags & CSS_ONLINE) {
3972 ret = true;
3973 break;
3974 }
3975 }
3976 rcu_read_unlock();
3977 return ret;
3978 }
3979
3980 /**
3981 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3982 * @it: the iterator to advance
3983 *
3984 * Advance @it to the next css_set to walk.
3985 */
3986 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3987 {
3988 struct list_head *l = it->cset_pos;
3989 struct cgrp_cset_link *link;
3990 struct css_set *cset;
3991
3992 lockdep_assert_held(&css_set_lock);
3993
3994 /* Advance to the next non-empty css_set */
3995 do {
3996 l = l->next;
3997 if (l == it->cset_head) {
3998 it->cset_pos = NULL;
3999 it->task_pos = NULL;
4000 return;
4001 }
4002
4003 if (it->ss) {
4004 cset = container_of(l, struct css_set,
4005 e_cset_node[it->ss->id]);
4006 } else {
4007 link = list_entry(l, struct cgrp_cset_link, cset_link);
4008 cset = link->cset;
4009 }
4010 } while (!css_set_populated(cset));
4011
4012 it->cset_pos = l;
4013
4014 if (!list_empty(&cset->tasks))
4015 it->task_pos = cset->tasks.next;
4016 else
4017 it->task_pos = cset->mg_tasks.next;
4018
4019 it->tasks_head = &cset->tasks;
4020 it->mg_tasks_head = &cset->mg_tasks;
4021
4022 /*
4023 * We don't keep css_sets locked across iteration steps and thus
4024 * need to take steps to ensure that iteration can be resumed after
4025 * the lock is re-acquired. Iteration is performed at two levels -
4026 * css_sets and tasks in them.
4027 *
4028 * Once created, a css_set never leaves its cgroup lists, so a
4029 * pinned css_set is guaranteed to stay put and we can resume
4030 * iteration afterwards.
4031 *
4032 * Tasks may leave @cset across iteration steps. This is resolved
4033 * by registering each iterator with the css_set currently being
4034 * walked and making css_set_move_task() advance iterators whose
4035 * next task is leaving.
4036 */
4037 if (it->cur_cset) {
4038 list_del(&it->iters_node);
4039 put_css_set_locked(it->cur_cset);
4040 }
4041 get_css_set(cset);
4042 it->cur_cset = cset;
4043 list_add(&it->iters_node, &cset->task_iters);
4044 }
4045
4046 static void css_task_iter_advance(struct css_task_iter *it)
4047 {
4048 struct list_head *l = it->task_pos;
4049
4050 lockdep_assert_held(&css_set_lock);
4051 WARN_ON_ONCE(!l);
4052
4053 /*
4054 * Advance iterator to find next entry. cset->tasks is consumed
4055 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4056 * next cset.
4057 */
4058 l = l->next;
4059
4060 if (l == it->tasks_head)
4061 l = it->mg_tasks_head->next;
4062
4063 if (l == it->mg_tasks_head)
4064 css_task_iter_advance_css_set(it);
4065 else
4066 it->task_pos = l;
4067 }
4068
4069 /**
4070 * css_task_iter_start - initiate task iteration
4071 * @css: the css to walk tasks of
4072 * @it: the task iterator to use
4073 *
4074 * Initiate iteration through the tasks of @css. The caller can call
4075 * css_task_iter_next() to walk through the tasks until the function
4076 * returns NULL. On completion of iteration, css_task_iter_end() must be
4077 * called.
4078 */
4079 void css_task_iter_start(struct cgroup_subsys_state *css,
4080 struct css_task_iter *it)
4081 {
4082 /* no one should try to iterate before mounting cgroups */
4083 WARN_ON_ONCE(!use_task_css_set_links);
4084
4085 memset(it, 0, sizeof(*it));
4086
4087 spin_lock_bh(&css_set_lock);
4088
4089 it->ss = css->ss;
4090
4091 if (it->ss)
4092 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4093 else
4094 it->cset_pos = &css->cgroup->cset_links;
4095
4096 it->cset_head = it->cset_pos;
4097
4098 css_task_iter_advance_css_set(it);
4099
4100 spin_unlock_bh(&css_set_lock);
4101 }
4102
4103 /**
4104 * css_task_iter_next - return the next task for the iterator
4105 * @it: the task iterator being iterated
4106 *
4107 * The "next" function for task iteration. @it should have been
4108 * initialized via css_task_iter_start(). Returns NULL when the iteration
4109 * reaches the end.
4110 */
4111 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4112 {
4113 if (it->cur_task) {
4114 put_task_struct(it->cur_task);
4115 it->cur_task = NULL;
4116 }
4117
4118 spin_lock_bh(&css_set_lock);
4119
4120 if (it->task_pos) {
4121 it->cur_task = list_entry(it->task_pos, struct task_struct,
4122 cg_list);
4123 get_task_struct(it->cur_task);
4124 css_task_iter_advance(it);
4125 }
4126
4127 spin_unlock_bh(&css_set_lock);
4128
4129 return it->cur_task;
4130 }
4131
4132 /**
4133 * css_task_iter_end - finish task iteration
4134 * @it: the task iterator to finish
4135 *
4136 * Finish task iteration started by css_task_iter_start().
4137 */
4138 void css_task_iter_end(struct css_task_iter *it)
4139 {
4140 if (it->cur_cset) {
4141 spin_lock_bh(&css_set_lock);
4142 list_del(&it->iters_node);
4143 put_css_set_locked(it->cur_cset);
4144 spin_unlock_bh(&css_set_lock);
4145 }
4146
4147 if (it->cur_task)
4148 put_task_struct(it->cur_task);
4149 }
4150
4151 /**
4152 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4153 * @to: cgroup to which the tasks will be moved
4154 * @from: cgroup in which the tasks currently reside
4155 *
4156 * Locking rules between cgroup_post_fork() and the migration path
4157 * guarantee that, if a task is forking while being migrated, the new child
4158 * is guaranteed to be either visible in the source cgroup after the
4159 * parent's migration is complete or put into the target cgroup. No task
4160 * can slip out of migration through forking.
4161 */
4162 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4163 {
4164 LIST_HEAD(preloaded_csets);
4165 struct cgrp_cset_link *link;
4166 struct css_task_iter it;
4167 struct task_struct *task;
4168 int ret;
4169
4170 if (!cgroup_may_migrate_to(to))
4171 return -EBUSY;
4172
4173 mutex_lock(&cgroup_mutex);
4174
4175 /* all tasks in @from are being moved, all csets are source */
4176 spin_lock_bh(&css_set_lock);
4177 list_for_each_entry(link, &from->cset_links, cset_link)
4178 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4179 spin_unlock_bh(&css_set_lock);
4180
4181 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4182 if (ret)
4183 goto out_err;
4184
4185 /*
4186 * Migrate tasks one-by-one until @from is empty. This fails iff
4187 * ->can_attach() fails.
4188 */
4189 do {
4190 css_task_iter_start(&from->self, &it);
4191 task = css_task_iter_next(&it);
4192 if (task)
4193 get_task_struct(task);
4194 css_task_iter_end(&it);
4195
4196 if (task) {
4197 ret = cgroup_migrate(task, false, to->root);
4198 put_task_struct(task);
4199 }
4200 } while (task && !ret);
4201 out_err:
4202 cgroup_migrate_finish(&preloaded_csets);
4203 mutex_unlock(&cgroup_mutex);
4204 return ret;
4205 }
4206
4207 /*
4208 * Stuff for reading the 'tasks'/'procs' files.
4209 *
4210 * Reading this file can return large amounts of data if a cgroup has
4211 * *lots* of attached tasks. So it may need several calls to read(),
4212 * but we cannot guarantee that the information we produce is correct
4213 * unless we produce it entirely atomically.
4214 *
4215 */
4216
4217 /* which pidlist file are we talking about? */
4218 enum cgroup_filetype {
4219 CGROUP_FILE_PROCS,
4220 CGROUP_FILE_TASKS,
4221 };
4222
4223 /*
4224 * A pidlist is a list of pids that virtually represents the contents of one
4225 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4226 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4227 * to the cgroup.
4228 */
4229 struct cgroup_pidlist {
4230 /*
4231 * used to find which pidlist is wanted. doesn't change as long as
4232 * this particular list stays in the list.
4233 */
4234 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4235 /* array of xids */
4236 pid_t *list;
4237 /* how many elements the above list has */
4238 int length;
4239 /* each of these stored in a list by its cgroup */
4240 struct list_head links;
4241 /* pointer to the cgroup we belong to, for list removal purposes */
4242 struct cgroup *owner;
4243 /* for delayed destruction */
4244 struct delayed_work destroy_dwork;
4245 };
4246
4247 /*
4248 * The following two functions "fix" the issue where there are more pids
4249 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4250 * TODO: replace with a kernel-wide solution to this problem
4251 */
4252 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4253 static void *pidlist_allocate(int count)
4254 {
4255 if (PIDLIST_TOO_LARGE(count))
4256 return vmalloc(count * sizeof(pid_t));
4257 else
4258 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4259 }
4260
4261 static void pidlist_free(void *p)
4262 {
4263 kvfree(p);
4264 }
4265
4266 /*
4267 * Used to destroy all pidlists lingering waiting for destroy timer. None
4268 * should be left afterwards.
4269 */
4270 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4271 {
4272 struct cgroup_pidlist *l, *tmp_l;
4273
4274 mutex_lock(&cgrp->pidlist_mutex);
4275 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4276 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4277 mutex_unlock(&cgrp->pidlist_mutex);
4278
4279 flush_workqueue(cgroup_pidlist_destroy_wq);
4280 BUG_ON(!list_empty(&cgrp->pidlists));
4281 }
4282
4283 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4284 {
4285 struct delayed_work *dwork = to_delayed_work(work);
4286 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4287 destroy_dwork);
4288 struct cgroup_pidlist *tofree = NULL;
4289
4290 mutex_lock(&l->owner->pidlist_mutex);
4291
4292 /*
4293 * Destroy iff we didn't get queued again. The state won't change
4294 * as destroy_dwork can only be queued while locked.
4295 */
4296 if (!delayed_work_pending(dwork)) {
4297 list_del(&l->links);
4298 pidlist_free(l->list);
4299 put_pid_ns(l->key.ns);
4300 tofree = l;
4301 }
4302
4303 mutex_unlock(&l->owner->pidlist_mutex);
4304 kfree(tofree);
4305 }
4306
4307 /*
4308 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4309 * Returns the number of unique elements.
4310 */
4311 static int pidlist_uniq(pid_t *list, int length)
4312 {
4313 int src, dest = 1;
4314
4315 /*
4316 * we presume the 0th element is unique, so i starts at 1. trivial
4317 * edge cases first; no work needs to be done for either
4318 */
4319 if (length == 0 || length == 1)
4320 return length;
4321 /* src and dest walk down the list; dest counts unique elements */
4322 for (src = 1; src < length; src++) {
4323 /* find next unique element */
4324 while (list[src] == list[src-1]) {
4325 src++;
4326 if (src == length)
4327 goto after;
4328 }
4329 /* dest always points to where the next unique element goes */
4330 list[dest] = list[src];
4331 dest++;
4332 }
4333 after:
4334 return dest;
4335 }
4336
4337 /*
4338 * The two pid files - task and cgroup.procs - guaranteed that the result
4339 * is sorted, which forced this whole pidlist fiasco. As pid order is
4340 * different per namespace, each namespace needs differently sorted list,
4341 * making it impossible to use, for example, single rbtree of member tasks
4342 * sorted by task pointer. As pidlists can be fairly large, allocating one
4343 * per open file is dangerous, so cgroup had to implement shared pool of
4344 * pidlists keyed by cgroup and namespace.
4345 *
4346 * All this extra complexity was caused by the original implementation
4347 * committing to an entirely unnecessary property. In the long term, we
4348 * want to do away with it. Explicitly scramble sort order if on the
4349 * default hierarchy so that no such expectation exists in the new
4350 * interface.
4351 *
4352 * Scrambling is done by swapping every two consecutive bits, which is
4353 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4354 */
4355 static pid_t pid_fry(pid_t pid)
4356 {
4357 unsigned a = pid & 0x55555555;
4358 unsigned b = pid & 0xAAAAAAAA;
4359
4360 return (a << 1) | (b >> 1);
4361 }
4362
4363 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4364 {
4365 if (cgroup_on_dfl(cgrp))
4366 return pid_fry(pid);
4367 else
4368 return pid;
4369 }
4370
4371 static int cmppid(const void *a, const void *b)
4372 {
4373 return *(pid_t *)a - *(pid_t *)b;
4374 }
4375
4376 static int fried_cmppid(const void *a, const void *b)
4377 {
4378 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4379 }
4380
4381 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4382 enum cgroup_filetype type)
4383 {
4384 struct cgroup_pidlist *l;
4385 /* don't need task_nsproxy() if we're looking at ourself */
4386 struct pid_namespace *ns = task_active_pid_ns(current);
4387
4388 lockdep_assert_held(&cgrp->pidlist_mutex);
4389
4390 list_for_each_entry(l, &cgrp->pidlists, links)
4391 if (l->key.type == type && l->key.ns == ns)
4392 return l;
4393 return NULL;
4394 }
4395
4396 /*
4397 * find the appropriate pidlist for our purpose (given procs vs tasks)
4398 * returns with the lock on that pidlist already held, and takes care
4399 * of the use count, or returns NULL with no locks held if we're out of
4400 * memory.
4401 */
4402 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4403 enum cgroup_filetype type)
4404 {
4405 struct cgroup_pidlist *l;
4406
4407 lockdep_assert_held(&cgrp->pidlist_mutex);
4408
4409 l = cgroup_pidlist_find(cgrp, type);
4410 if (l)
4411 return l;
4412
4413 /* entry not found; create a new one */
4414 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4415 if (!l)
4416 return l;
4417
4418 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4419 l->key.type = type;
4420 /* don't need task_nsproxy() if we're looking at ourself */
4421 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4422 l->owner = cgrp;
4423 list_add(&l->links, &cgrp->pidlists);
4424 return l;
4425 }
4426
4427 /*
4428 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4429 */
4430 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4431 struct cgroup_pidlist **lp)
4432 {
4433 pid_t *array;
4434 int length;
4435 int pid, n = 0; /* used for populating the array */
4436 struct css_task_iter it;
4437 struct task_struct *tsk;
4438 struct cgroup_pidlist *l;
4439
4440 lockdep_assert_held(&cgrp->pidlist_mutex);
4441
4442 /*
4443 * If cgroup gets more users after we read count, we won't have
4444 * enough space - tough. This race is indistinguishable to the
4445 * caller from the case that the additional cgroup users didn't
4446 * show up until sometime later on.
4447 */
4448 length = cgroup_task_count(cgrp);
4449 array = pidlist_allocate(length);
4450 if (!array)
4451 return -ENOMEM;
4452 /* now, populate the array */
4453 css_task_iter_start(&cgrp->self, &it);
4454 while ((tsk = css_task_iter_next(&it))) {
4455 if (unlikely(n == length))
4456 break;
4457 /* get tgid or pid for procs or tasks file respectively */
4458 if (type == CGROUP_FILE_PROCS)
4459 pid = task_tgid_vnr(tsk);
4460 else
4461 pid = task_pid_vnr(tsk);
4462 if (pid > 0) /* make sure to only use valid results */
4463 array[n++] = pid;
4464 }
4465 css_task_iter_end(&it);
4466 length = n;
4467 /* now sort & (if procs) strip out duplicates */
4468 if (cgroup_on_dfl(cgrp))
4469 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4470 else
4471 sort(array, length, sizeof(pid_t), cmppid, NULL);
4472 if (type == CGROUP_FILE_PROCS)
4473 length = pidlist_uniq(array, length);
4474
4475 l = cgroup_pidlist_find_create(cgrp, type);
4476 if (!l) {
4477 pidlist_free(array);
4478 return -ENOMEM;
4479 }
4480
4481 /* store array, freeing old if necessary */
4482 pidlist_free(l->list);
4483 l->list = array;
4484 l->length = length;
4485 *lp = l;
4486 return 0;
4487 }
4488
4489 /**
4490 * cgroupstats_build - build and fill cgroupstats
4491 * @stats: cgroupstats to fill information into
4492 * @dentry: A dentry entry belonging to the cgroup for which stats have
4493 * been requested.
4494 *
4495 * Build and fill cgroupstats so that taskstats can export it to user
4496 * space.
4497 */
4498 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4499 {
4500 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4501 struct cgroup *cgrp;
4502 struct css_task_iter it;
4503 struct task_struct *tsk;
4504
4505 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4506 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4507 kernfs_type(kn) != KERNFS_DIR)
4508 return -EINVAL;
4509
4510 mutex_lock(&cgroup_mutex);
4511
4512 /*
4513 * We aren't being called from kernfs and there's no guarantee on
4514 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4515 * @kn->priv is RCU safe. Let's do the RCU dancing.
4516 */
4517 rcu_read_lock();
4518 cgrp = rcu_dereference(kn->priv);
4519 if (!cgrp || cgroup_is_dead(cgrp)) {
4520 rcu_read_unlock();
4521 mutex_unlock(&cgroup_mutex);
4522 return -ENOENT;
4523 }
4524 rcu_read_unlock();
4525
4526 css_task_iter_start(&cgrp->self, &it);
4527 while ((tsk = css_task_iter_next(&it))) {
4528 switch (tsk->state) {
4529 case TASK_RUNNING:
4530 stats->nr_running++;
4531 break;
4532 case TASK_INTERRUPTIBLE:
4533 stats->nr_sleeping++;
4534 break;
4535 case TASK_UNINTERRUPTIBLE:
4536 stats->nr_uninterruptible++;
4537 break;
4538 case TASK_STOPPED:
4539 stats->nr_stopped++;
4540 break;
4541 default:
4542 if (delayacct_is_task_waiting_on_io(tsk))
4543 stats->nr_io_wait++;
4544 break;
4545 }
4546 }
4547 css_task_iter_end(&it);
4548
4549 mutex_unlock(&cgroup_mutex);
4550 return 0;
4551 }
4552
4553
4554 /*
4555 * seq_file methods for the tasks/procs files. The seq_file position is the
4556 * next pid to display; the seq_file iterator is a pointer to the pid
4557 * in the cgroup->l->list array.
4558 */
4559
4560 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4561 {
4562 /*
4563 * Initially we receive a position value that corresponds to
4564 * one more than the last pid shown (or 0 on the first call or
4565 * after a seek to the start). Use a binary-search to find the
4566 * next pid to display, if any
4567 */
4568 struct kernfs_open_file *of = s->private;
4569 struct cgroup *cgrp = seq_css(s)->cgroup;
4570 struct cgroup_pidlist *l;
4571 enum cgroup_filetype type = seq_cft(s)->private;
4572 int index = 0, pid = *pos;
4573 int *iter, ret;
4574
4575 mutex_lock(&cgrp->pidlist_mutex);
4576
4577 /*
4578 * !NULL @of->priv indicates that this isn't the first start()
4579 * after open. If the matching pidlist is around, we can use that.
4580 * Look for it. Note that @of->priv can't be used directly. It
4581 * could already have been destroyed.
4582 */
4583 if (of->priv)
4584 of->priv = cgroup_pidlist_find(cgrp, type);
4585
4586 /*
4587 * Either this is the first start() after open or the matching
4588 * pidlist has been destroyed inbetween. Create a new one.
4589 */
4590 if (!of->priv) {
4591 ret = pidlist_array_load(cgrp, type,
4592 (struct cgroup_pidlist **)&of->priv);
4593 if (ret)
4594 return ERR_PTR(ret);
4595 }
4596 l = of->priv;
4597
4598 if (pid) {
4599 int end = l->length;
4600
4601 while (index < end) {
4602 int mid = (index + end) / 2;
4603 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4604 index = mid;
4605 break;
4606 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4607 index = mid + 1;
4608 else
4609 end = mid;
4610 }
4611 }
4612 /* If we're off the end of the array, we're done */
4613 if (index >= l->length)
4614 return NULL;
4615 /* Update the abstract position to be the actual pid that we found */
4616 iter = l->list + index;
4617 *pos = cgroup_pid_fry(cgrp, *iter);
4618 return iter;
4619 }
4620
4621 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4622 {
4623 struct kernfs_open_file *of = s->private;
4624 struct cgroup_pidlist *l = of->priv;
4625
4626 if (l)
4627 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4628 CGROUP_PIDLIST_DESTROY_DELAY);
4629 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4630 }
4631
4632 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4633 {
4634 struct kernfs_open_file *of = s->private;
4635 struct cgroup_pidlist *l = of->priv;
4636 pid_t *p = v;
4637 pid_t *end = l->list + l->length;
4638 /*
4639 * Advance to the next pid in the array. If this goes off the
4640 * end, we're done
4641 */
4642 p++;
4643 if (p >= end) {
4644 return NULL;
4645 } else {
4646 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4647 return p;
4648 }
4649 }
4650
4651 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4652 {
4653 seq_printf(s, "%d\n", *(int *)v);
4654
4655 return 0;
4656 }
4657
4658 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4659 struct cftype *cft)
4660 {
4661 return notify_on_release(css->cgroup);
4662 }
4663
4664 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4665 struct cftype *cft, u64 val)
4666 {
4667 if (val)
4668 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4669 else
4670 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4671 return 0;
4672 }
4673
4674 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4675 struct cftype *cft)
4676 {
4677 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4678 }
4679
4680 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4681 struct cftype *cft, u64 val)
4682 {
4683 if (val)
4684 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4685 else
4686 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4687 return 0;
4688 }
4689
4690 /* cgroup core interface files for the default hierarchy */
4691 static struct cftype cgroup_dfl_base_files[] = {
4692 {
4693 .name = "cgroup.procs",
4694 .file_offset = offsetof(struct cgroup, procs_file),
4695 .seq_start = cgroup_pidlist_start,
4696 .seq_next = cgroup_pidlist_next,
4697 .seq_stop = cgroup_pidlist_stop,
4698 .seq_show = cgroup_pidlist_show,
4699 .private = CGROUP_FILE_PROCS,
4700 .write = cgroup_procs_write,
4701 },
4702 {
4703 .name = "cgroup.controllers",
4704 .seq_show = cgroup_controllers_show,
4705 },
4706 {
4707 .name = "cgroup.subtree_control",
4708 .seq_show = cgroup_subtree_control_show,
4709 .write = cgroup_subtree_control_write,
4710 },
4711 {
4712 .name = "cgroup.events",
4713 .flags = CFTYPE_NOT_ON_ROOT,
4714 .file_offset = offsetof(struct cgroup, events_file),
4715 .seq_show = cgroup_events_show,
4716 },
4717 { } /* terminate */
4718 };
4719
4720 /* cgroup core interface files for the legacy hierarchies */
4721 static struct cftype cgroup_legacy_base_files[] = {
4722 {
4723 .name = "cgroup.procs",
4724 .seq_start = cgroup_pidlist_start,
4725 .seq_next = cgroup_pidlist_next,
4726 .seq_stop = cgroup_pidlist_stop,
4727 .seq_show = cgroup_pidlist_show,
4728 .private = CGROUP_FILE_PROCS,
4729 .write = cgroup_procs_write,
4730 },
4731 {
4732 .name = "cgroup.clone_children",
4733 .read_u64 = cgroup_clone_children_read,
4734 .write_u64 = cgroup_clone_children_write,
4735 },
4736 {
4737 .name = "cgroup.sane_behavior",
4738 .flags = CFTYPE_ONLY_ON_ROOT,
4739 .seq_show = cgroup_sane_behavior_show,
4740 },
4741 {
4742 .name = "tasks",
4743 .seq_start = cgroup_pidlist_start,
4744 .seq_next = cgroup_pidlist_next,
4745 .seq_stop = cgroup_pidlist_stop,
4746 .seq_show = cgroup_pidlist_show,
4747 .private = CGROUP_FILE_TASKS,
4748 .write = cgroup_tasks_write,
4749 },
4750 {
4751 .name = "notify_on_release",
4752 .read_u64 = cgroup_read_notify_on_release,
4753 .write_u64 = cgroup_write_notify_on_release,
4754 },
4755 {
4756 .name = "release_agent",
4757 .flags = CFTYPE_ONLY_ON_ROOT,
4758 .seq_show = cgroup_release_agent_show,
4759 .write = cgroup_release_agent_write,
4760 .max_write_len = PATH_MAX - 1,
4761 },
4762 { } /* terminate */
4763 };
4764
4765 /*
4766 * css destruction is four-stage process.
4767 *
4768 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4769 * Implemented in kill_css().
4770 *
4771 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4772 * and thus css_tryget_online() is guaranteed to fail, the css can be
4773 * offlined by invoking offline_css(). After offlining, the base ref is
4774 * put. Implemented in css_killed_work_fn().
4775 *
4776 * 3. When the percpu_ref reaches zero, the only possible remaining
4777 * accessors are inside RCU read sections. css_release() schedules the
4778 * RCU callback.
4779 *
4780 * 4. After the grace period, the css can be freed. Implemented in
4781 * css_free_work_fn().
4782 *
4783 * It is actually hairier because both step 2 and 4 require process context
4784 * and thus involve punting to css->destroy_work adding two additional
4785 * steps to the already complex sequence.
4786 */
4787 static void css_free_work_fn(struct work_struct *work)
4788 {
4789 struct cgroup_subsys_state *css =
4790 container_of(work, struct cgroup_subsys_state, destroy_work);
4791 struct cgroup_subsys *ss = css->ss;
4792 struct cgroup *cgrp = css->cgroup;
4793
4794 percpu_ref_exit(&css->refcnt);
4795
4796 if (ss) {
4797 /* css free path */
4798 struct cgroup_subsys_state *parent = css->parent;
4799 int id = css->id;
4800
4801 ss->css_free(css);
4802 cgroup_idr_remove(&ss->css_idr, id);
4803 cgroup_put(cgrp);
4804
4805 if (parent)
4806 css_put(parent);
4807 } else {
4808 /* cgroup free path */
4809 atomic_dec(&cgrp->root->nr_cgrps);
4810 cgroup_pidlist_destroy_all(cgrp);
4811 cancel_work_sync(&cgrp->release_agent_work);
4812
4813 if (cgroup_parent(cgrp)) {
4814 /*
4815 * We get a ref to the parent, and put the ref when
4816 * this cgroup is being freed, so it's guaranteed
4817 * that the parent won't be destroyed before its
4818 * children.
4819 */
4820 cgroup_put(cgroup_parent(cgrp));
4821 kernfs_put(cgrp->kn);
4822 kfree(cgrp);
4823 } else {
4824 /*
4825 * This is root cgroup's refcnt reaching zero,
4826 * which indicates that the root should be
4827 * released.
4828 */
4829 cgroup_destroy_root(cgrp->root);
4830 }
4831 }
4832 }
4833
4834 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4835 {
4836 struct cgroup_subsys_state *css =
4837 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4838
4839 INIT_WORK(&css->destroy_work, css_free_work_fn);
4840 queue_work(cgroup_destroy_wq, &css->destroy_work);
4841 }
4842
4843 static void css_release_work_fn(struct work_struct *work)
4844 {
4845 struct cgroup_subsys_state *css =
4846 container_of(work, struct cgroup_subsys_state, destroy_work);
4847 struct cgroup_subsys *ss = css->ss;
4848 struct cgroup *cgrp = css->cgroup;
4849
4850 mutex_lock(&cgroup_mutex);
4851
4852 css->flags |= CSS_RELEASED;
4853 list_del_rcu(&css->sibling);
4854
4855 if (ss) {
4856 /* css release path */
4857 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4858 if (ss->css_released)
4859 ss->css_released(css);
4860 } else {
4861 /* cgroup release path */
4862 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4863 cgrp->id = -1;
4864
4865 /*
4866 * There are two control paths which try to determine
4867 * cgroup from dentry without going through kernfs -
4868 * cgroupstats_build() and css_tryget_online_from_dir().
4869 * Those are supported by RCU protecting clearing of
4870 * cgrp->kn->priv backpointer.
4871 */
4872 if (cgrp->kn)
4873 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4874 NULL);
4875 }
4876
4877 mutex_unlock(&cgroup_mutex);
4878
4879 call_rcu(&css->rcu_head, css_free_rcu_fn);
4880 }
4881
4882 static void css_release(struct percpu_ref *ref)
4883 {
4884 struct cgroup_subsys_state *css =
4885 container_of(ref, struct cgroup_subsys_state, refcnt);
4886
4887 INIT_WORK(&css->destroy_work, css_release_work_fn);
4888 queue_work(cgroup_destroy_wq, &css->destroy_work);
4889 }
4890
4891 static void init_and_link_css(struct cgroup_subsys_state *css,
4892 struct cgroup_subsys *ss, struct cgroup *cgrp)
4893 {
4894 lockdep_assert_held(&cgroup_mutex);
4895
4896 cgroup_get(cgrp);
4897
4898 memset(css, 0, sizeof(*css));
4899 css->cgroup = cgrp;
4900 css->ss = ss;
4901 INIT_LIST_HEAD(&css->sibling);
4902 INIT_LIST_HEAD(&css->children);
4903 css->serial_nr = css_serial_nr_next++;
4904 atomic_set(&css->online_cnt, 0);
4905
4906 if (cgroup_parent(cgrp)) {
4907 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4908 css_get(css->parent);
4909 }
4910
4911 BUG_ON(cgroup_css(cgrp, ss));
4912 }
4913
4914 /* invoke ->css_online() on a new CSS and mark it online if successful */
4915 static int online_css(struct cgroup_subsys_state *css)
4916 {
4917 struct cgroup_subsys *ss = css->ss;
4918 int ret = 0;
4919
4920 lockdep_assert_held(&cgroup_mutex);
4921
4922 if (ss->css_online)
4923 ret = ss->css_online(css);
4924 if (!ret) {
4925 css->flags |= CSS_ONLINE;
4926 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4927
4928 atomic_inc(&css->online_cnt);
4929 if (css->parent)
4930 atomic_inc(&css->parent->online_cnt);
4931 }
4932 return ret;
4933 }
4934
4935 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4936 static void offline_css(struct cgroup_subsys_state *css)
4937 {
4938 struct cgroup_subsys *ss = css->ss;
4939
4940 lockdep_assert_held(&cgroup_mutex);
4941
4942 if (!(css->flags & CSS_ONLINE))
4943 return;
4944
4945 if (ss->css_reset)
4946 ss->css_reset(css);
4947
4948 if (ss->css_offline)
4949 ss->css_offline(css);
4950
4951 css->flags &= ~CSS_ONLINE;
4952 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4953
4954 wake_up_all(&css->cgroup->offline_waitq);
4955 }
4956
4957 /**
4958 * css_create - create a cgroup_subsys_state
4959 * @cgrp: the cgroup new css will be associated with
4960 * @ss: the subsys of new css
4961 *
4962 * Create a new css associated with @cgrp - @ss pair. On success, the new
4963 * css is online and installed in @cgrp. This function doesn't create the
4964 * interface files. Returns 0 on success, -errno on failure.
4965 */
4966 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4967 struct cgroup_subsys *ss)
4968 {
4969 struct cgroup *parent = cgroup_parent(cgrp);
4970 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4971 struct cgroup_subsys_state *css;
4972 int err;
4973
4974 lockdep_assert_held(&cgroup_mutex);
4975
4976 css = ss->css_alloc(parent_css);
4977 if (IS_ERR(css))
4978 return css;
4979
4980 init_and_link_css(css, ss, cgrp);
4981
4982 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4983 if (err)
4984 goto err_free_css;
4985
4986 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4987 if (err < 0)
4988 goto err_free_percpu_ref;
4989 css->id = err;
4990
4991 /* @css is ready to be brought online now, make it visible */
4992 list_add_tail_rcu(&css->sibling, &parent_css->children);
4993 cgroup_idr_replace(&ss->css_idr, css, css->id);
4994
4995 err = online_css(css);
4996 if (err)
4997 goto err_list_del;
4998
4999 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5000 cgroup_parent(parent)) {
5001 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5002 current->comm, current->pid, ss->name);
5003 if (!strcmp(ss->name, "memory"))
5004 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5005 ss->warned_broken_hierarchy = true;
5006 }
5007
5008 return css;
5009
5010 err_list_del:
5011 list_del_rcu(&css->sibling);
5012 cgroup_idr_remove(&ss->css_idr, css->id);
5013 err_free_percpu_ref:
5014 percpu_ref_exit(&css->refcnt);
5015 err_free_css:
5016 call_rcu(&css->rcu_head, css_free_rcu_fn);
5017 return ERR_PTR(err);
5018 }
5019
5020 static struct cgroup *cgroup_create(struct cgroup *parent)
5021 {
5022 struct cgroup_root *root = parent->root;
5023 struct cgroup *cgrp, *tcgrp;
5024 int level = parent->level + 1;
5025 int ret;
5026
5027 /* allocate the cgroup and its ID, 0 is reserved for the root */
5028 cgrp = kzalloc(sizeof(*cgrp) +
5029 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5030 if (!cgrp)
5031 return ERR_PTR(-ENOMEM);
5032
5033 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5034 if (ret)
5035 goto out_free_cgrp;
5036
5037 /*
5038 * Temporarily set the pointer to NULL, so idr_find() won't return
5039 * a half-baked cgroup.
5040 */
5041 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5042 if (cgrp->id < 0) {
5043 ret = -ENOMEM;
5044 goto out_cancel_ref;
5045 }
5046
5047 init_cgroup_housekeeping(cgrp);
5048
5049 cgrp->self.parent = &parent->self;
5050 cgrp->root = root;
5051 cgrp->level = level;
5052
5053 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5054 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5055
5056 if (notify_on_release(parent))
5057 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5058
5059 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5060 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5061
5062 cgrp->self.serial_nr = css_serial_nr_next++;
5063
5064 /* allocation complete, commit to creation */
5065 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5066 atomic_inc(&root->nr_cgrps);
5067 cgroup_get(parent);
5068
5069 /*
5070 * @cgrp is now fully operational. If something fails after this
5071 * point, it'll be released via the normal destruction path.
5072 */
5073 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5074
5075 /*
5076 * On the default hierarchy, a child doesn't automatically inherit
5077 * subtree_control from the parent. Each is configured manually.
5078 */
5079 if (!cgroup_on_dfl(cgrp))
5080 cgrp->subtree_control = cgroup_control(cgrp);
5081
5082 cgroup_propagate_control(cgrp);
5083
5084 /* @cgrp doesn't have dir yet so the following will only create csses */
5085 ret = cgroup_apply_control_enable(cgrp);
5086 if (ret)
5087 goto out_destroy;
5088
5089 return cgrp;
5090
5091 out_cancel_ref:
5092 percpu_ref_exit(&cgrp->self.refcnt);
5093 out_free_cgrp:
5094 kfree(cgrp);
5095 return ERR_PTR(ret);
5096 out_destroy:
5097 cgroup_destroy_locked(cgrp);
5098 return ERR_PTR(ret);
5099 }
5100
5101 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5102 umode_t mode)
5103 {
5104 struct cgroup *parent, *cgrp;
5105 struct kernfs_node *kn;
5106 int ret;
5107
5108 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5109 if (strchr(name, '\n'))
5110 return -EINVAL;
5111
5112 parent = cgroup_kn_lock_live(parent_kn, false);
5113 if (!parent)
5114 return -ENODEV;
5115
5116 cgrp = cgroup_create(parent);
5117 if (IS_ERR(cgrp)) {
5118 ret = PTR_ERR(cgrp);
5119 goto out_unlock;
5120 }
5121
5122 /* create the directory */
5123 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5124 if (IS_ERR(kn)) {
5125 ret = PTR_ERR(kn);
5126 goto out_destroy;
5127 }
5128 cgrp->kn = kn;
5129
5130 /*
5131 * This extra ref will be put in cgroup_free_fn() and guarantees
5132 * that @cgrp->kn is always accessible.
5133 */
5134 kernfs_get(kn);
5135
5136 ret = cgroup_kn_set_ugid(kn);
5137 if (ret)
5138 goto out_destroy;
5139
5140 ret = css_populate_dir(&cgrp->self);
5141 if (ret)
5142 goto out_destroy;
5143
5144 ret = cgroup_apply_control_enable(cgrp);
5145 if (ret)
5146 goto out_destroy;
5147
5148 /* let's create and online css's */
5149 kernfs_activate(kn);
5150
5151 ret = 0;
5152 goto out_unlock;
5153
5154 out_destroy:
5155 cgroup_destroy_locked(cgrp);
5156 out_unlock:
5157 cgroup_kn_unlock(parent_kn);
5158 return ret;
5159 }
5160
5161 /*
5162 * This is called when the refcnt of a css is confirmed to be killed.
5163 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5164 * initate destruction and put the css ref from kill_css().
5165 */
5166 static void css_killed_work_fn(struct work_struct *work)
5167 {
5168 struct cgroup_subsys_state *css =
5169 container_of(work, struct cgroup_subsys_state, destroy_work);
5170
5171 mutex_lock(&cgroup_mutex);
5172
5173 do {
5174 offline_css(css);
5175 css_put(css);
5176 /* @css can't go away while we're holding cgroup_mutex */
5177 css = css->parent;
5178 } while (css && atomic_dec_and_test(&css->online_cnt));
5179
5180 mutex_unlock(&cgroup_mutex);
5181 }
5182
5183 /* css kill confirmation processing requires process context, bounce */
5184 static void css_killed_ref_fn(struct percpu_ref *ref)
5185 {
5186 struct cgroup_subsys_state *css =
5187 container_of(ref, struct cgroup_subsys_state, refcnt);
5188
5189 if (atomic_dec_and_test(&css->online_cnt)) {
5190 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5191 queue_work(cgroup_destroy_wq, &css->destroy_work);
5192 }
5193 }
5194
5195 /**
5196 * kill_css - destroy a css
5197 * @css: css to destroy
5198 *
5199 * This function initiates destruction of @css by removing cgroup interface
5200 * files and putting its base reference. ->css_offline() will be invoked
5201 * asynchronously once css_tryget_online() is guaranteed to fail and when
5202 * the reference count reaches zero, @css will be released.
5203 */
5204 static void kill_css(struct cgroup_subsys_state *css)
5205 {
5206 lockdep_assert_held(&cgroup_mutex);
5207
5208 /*
5209 * This must happen before css is disassociated with its cgroup.
5210 * See seq_css() for details.
5211 */
5212 css_clear_dir(css);
5213
5214 /*
5215 * Killing would put the base ref, but we need to keep it alive
5216 * until after ->css_offline().
5217 */
5218 css_get(css);
5219
5220 /*
5221 * cgroup core guarantees that, by the time ->css_offline() is
5222 * invoked, no new css reference will be given out via
5223 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5224 * proceed to offlining css's because percpu_ref_kill() doesn't
5225 * guarantee that the ref is seen as killed on all CPUs on return.
5226 *
5227 * Use percpu_ref_kill_and_confirm() to get notifications as each
5228 * css is confirmed to be seen as killed on all CPUs.
5229 */
5230 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5231 }
5232
5233 /**
5234 * cgroup_destroy_locked - the first stage of cgroup destruction
5235 * @cgrp: cgroup to be destroyed
5236 *
5237 * css's make use of percpu refcnts whose killing latency shouldn't be
5238 * exposed to userland and are RCU protected. Also, cgroup core needs to
5239 * guarantee that css_tryget_online() won't succeed by the time
5240 * ->css_offline() is invoked. To satisfy all the requirements,
5241 * destruction is implemented in the following two steps.
5242 *
5243 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5244 * userland visible parts and start killing the percpu refcnts of
5245 * css's. Set up so that the next stage will be kicked off once all
5246 * the percpu refcnts are confirmed to be killed.
5247 *
5248 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5249 * rest of destruction. Once all cgroup references are gone, the
5250 * cgroup is RCU-freed.
5251 *
5252 * This function implements s1. After this step, @cgrp is gone as far as
5253 * the userland is concerned and a new cgroup with the same name may be
5254 * created. As cgroup doesn't care about the names internally, this
5255 * doesn't cause any problem.
5256 */
5257 static int cgroup_destroy_locked(struct cgroup *cgrp)
5258 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5259 {
5260 struct cgroup_subsys_state *css;
5261 int ssid;
5262
5263 lockdep_assert_held(&cgroup_mutex);
5264
5265 /*
5266 * Only migration can raise populated from zero and we're already
5267 * holding cgroup_mutex.
5268 */
5269 if (cgroup_is_populated(cgrp))
5270 return -EBUSY;
5271
5272 /*
5273 * Make sure there's no live children. We can't test emptiness of
5274 * ->self.children as dead children linger on it while being
5275 * drained; otherwise, "rmdir parent/child parent" may fail.
5276 */
5277 if (css_has_online_children(&cgrp->self))
5278 return -EBUSY;
5279
5280 /*
5281 * Mark @cgrp dead. This prevents further task migration and child
5282 * creation by disabling cgroup_lock_live_group().
5283 */
5284 cgrp->self.flags &= ~CSS_ONLINE;
5285
5286 /* initiate massacre of all css's */
5287 for_each_css(css, ssid, cgrp)
5288 kill_css(css);
5289
5290 /*
5291 * Remove @cgrp directory along with the base files. @cgrp has an
5292 * extra ref on its kn.
5293 */
5294 kernfs_remove(cgrp->kn);
5295
5296 check_for_release(cgroup_parent(cgrp));
5297
5298 /* put the base reference */
5299 percpu_ref_kill(&cgrp->self.refcnt);
5300
5301 return 0;
5302 };
5303
5304 static int cgroup_rmdir(struct kernfs_node *kn)
5305 {
5306 struct cgroup *cgrp;
5307 int ret = 0;
5308
5309 cgrp = cgroup_kn_lock_live(kn, false);
5310 if (!cgrp)
5311 return 0;
5312
5313 ret = cgroup_destroy_locked(cgrp);
5314
5315 cgroup_kn_unlock(kn);
5316 return ret;
5317 }
5318
5319 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5320 .remount_fs = cgroup_remount,
5321 .show_options = cgroup_show_options,
5322 .mkdir = cgroup_mkdir,
5323 .rmdir = cgroup_rmdir,
5324 .rename = cgroup_rename,
5325 };
5326
5327 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5328 {
5329 struct cgroup_subsys_state *css;
5330
5331 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5332
5333 mutex_lock(&cgroup_mutex);
5334
5335 idr_init(&ss->css_idr);
5336 INIT_LIST_HEAD(&ss->cfts);
5337
5338 /* Create the root cgroup state for this subsystem */
5339 ss->root = &cgrp_dfl_root;
5340 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5341 /* We don't handle early failures gracefully */
5342 BUG_ON(IS_ERR(css));
5343 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5344
5345 /*
5346 * Root csses are never destroyed and we can't initialize
5347 * percpu_ref during early init. Disable refcnting.
5348 */
5349 css->flags |= CSS_NO_REF;
5350
5351 if (early) {
5352 /* allocation can't be done safely during early init */
5353 css->id = 1;
5354 } else {
5355 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5356 BUG_ON(css->id < 0);
5357 }
5358
5359 /* Update the init_css_set to contain a subsys
5360 * pointer to this state - since the subsystem is
5361 * newly registered, all tasks and hence the
5362 * init_css_set is in the subsystem's root cgroup. */
5363 init_css_set.subsys[ss->id] = css;
5364
5365 have_fork_callback |= (bool)ss->fork << ss->id;
5366 have_exit_callback |= (bool)ss->exit << ss->id;
5367 have_free_callback |= (bool)ss->free << ss->id;
5368 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5369
5370 /* At system boot, before all subsystems have been
5371 * registered, no tasks have been forked, so we don't
5372 * need to invoke fork callbacks here. */
5373 BUG_ON(!list_empty(&init_task.tasks));
5374
5375 BUG_ON(online_css(css));
5376
5377 mutex_unlock(&cgroup_mutex);
5378 }
5379
5380 /**
5381 * cgroup_init_early - cgroup initialization at system boot
5382 *
5383 * Initialize cgroups at system boot, and initialize any
5384 * subsystems that request early init.
5385 */
5386 int __init cgroup_init_early(void)
5387 {
5388 static struct cgroup_sb_opts __initdata opts;
5389 struct cgroup_subsys *ss;
5390 int i;
5391
5392 init_cgroup_root(&cgrp_dfl_root, &opts);
5393 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5394
5395 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5396
5397 for_each_subsys(ss, i) {
5398 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5399 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5400 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5401 ss->id, ss->name);
5402 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5403 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5404
5405 ss->id = i;
5406 ss->name = cgroup_subsys_name[i];
5407 if (!ss->legacy_name)
5408 ss->legacy_name = cgroup_subsys_name[i];
5409
5410 if (ss->early_init)
5411 cgroup_init_subsys(ss, true);
5412 }
5413 return 0;
5414 }
5415
5416 static u16 cgroup_disable_mask __initdata;
5417
5418 /**
5419 * cgroup_init - cgroup initialization
5420 *
5421 * Register cgroup filesystem and /proc file, and initialize
5422 * any subsystems that didn't request early init.
5423 */
5424 int __init cgroup_init(void)
5425 {
5426 struct cgroup_subsys *ss;
5427 int ssid;
5428
5429 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5430 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5431 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5432 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5433
5434 mutex_lock(&cgroup_mutex);
5435
5436 /*
5437 * Add init_css_set to the hash table so that dfl_root can link to
5438 * it during init.
5439 */
5440 hash_add(css_set_table, &init_css_set.hlist,
5441 css_set_hash(init_css_set.subsys));
5442
5443 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5444
5445 mutex_unlock(&cgroup_mutex);
5446
5447 for_each_subsys(ss, ssid) {
5448 if (ss->early_init) {
5449 struct cgroup_subsys_state *css =
5450 init_css_set.subsys[ss->id];
5451
5452 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5453 GFP_KERNEL);
5454 BUG_ON(css->id < 0);
5455 } else {
5456 cgroup_init_subsys(ss, false);
5457 }
5458
5459 list_add_tail(&init_css_set.e_cset_node[ssid],
5460 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5461
5462 /*
5463 * Setting dfl_root subsys_mask needs to consider the
5464 * disabled flag and cftype registration needs kmalloc,
5465 * both of which aren't available during early_init.
5466 */
5467 if (cgroup_disable_mask & (1 << ssid)) {
5468 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5469 printk(KERN_INFO "Disabling %s control group subsystem\n",
5470 ss->name);
5471 continue;
5472 }
5473
5474 if (cgroup_ssid_no_v1(ssid))
5475 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5476 ss->name);
5477
5478 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5479
5480 if (ss->implicit_on_dfl)
5481 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5482 else if (!ss->dfl_cftypes)
5483 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5484
5485 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5486 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5487 } else {
5488 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5489 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5490 }
5491
5492 if (ss->bind)
5493 ss->bind(init_css_set.subsys[ssid]);
5494 }
5495
5496 /* init_css_set.subsys[] has been updated, re-hash */
5497 hash_del(&init_css_set.hlist);
5498 hash_add(css_set_table, &init_css_set.hlist,
5499 css_set_hash(init_css_set.subsys));
5500
5501 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5502 WARN_ON(register_filesystem(&cgroup_fs_type));
5503 WARN_ON(register_filesystem(&cgroup2_fs_type));
5504 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5505
5506 return 0;
5507 }
5508
5509 static int __init cgroup_wq_init(void)
5510 {
5511 /*
5512 * There isn't much point in executing destruction path in
5513 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5514 * Use 1 for @max_active.
5515 *
5516 * We would prefer to do this in cgroup_init() above, but that
5517 * is called before init_workqueues(): so leave this until after.
5518 */
5519 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5520 BUG_ON(!cgroup_destroy_wq);
5521
5522 /*
5523 * Used to destroy pidlists and separate to serve as flush domain.
5524 * Cap @max_active to 1 too.
5525 */
5526 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5527 0, 1);
5528 BUG_ON(!cgroup_pidlist_destroy_wq);
5529
5530 return 0;
5531 }
5532 core_initcall(cgroup_wq_init);
5533
5534 /*
5535 * proc_cgroup_show()
5536 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5537 * - Used for /proc/<pid>/cgroup.
5538 */
5539 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5540 struct pid *pid, struct task_struct *tsk)
5541 {
5542 char *buf, *path;
5543 int retval;
5544 struct cgroup_root *root;
5545
5546 retval = -ENOMEM;
5547 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5548 if (!buf)
5549 goto out;
5550
5551 mutex_lock(&cgroup_mutex);
5552 spin_lock_bh(&css_set_lock);
5553
5554 for_each_root(root) {
5555 struct cgroup_subsys *ss;
5556 struct cgroup *cgrp;
5557 int ssid, count = 0;
5558
5559 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5560 continue;
5561
5562 seq_printf(m, "%d:", root->hierarchy_id);
5563 if (root != &cgrp_dfl_root)
5564 for_each_subsys(ss, ssid)
5565 if (root->subsys_mask & (1 << ssid))
5566 seq_printf(m, "%s%s", count++ ? "," : "",
5567 ss->legacy_name);
5568 if (strlen(root->name))
5569 seq_printf(m, "%sname=%s", count ? "," : "",
5570 root->name);
5571 seq_putc(m, ':');
5572
5573 cgrp = task_cgroup_from_root(tsk, root);
5574
5575 /*
5576 * On traditional hierarchies, all zombie tasks show up as
5577 * belonging to the root cgroup. On the default hierarchy,
5578 * while a zombie doesn't show up in "cgroup.procs" and
5579 * thus can't be migrated, its /proc/PID/cgroup keeps
5580 * reporting the cgroup it belonged to before exiting. If
5581 * the cgroup is removed before the zombie is reaped,
5582 * " (deleted)" is appended to the cgroup path.
5583 */
5584 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5585 path = cgroup_path(cgrp, buf, PATH_MAX);
5586 if (!path) {
5587 retval = -ENAMETOOLONG;
5588 goto out_unlock;
5589 }
5590 } else {
5591 path = "/";
5592 }
5593
5594 seq_puts(m, path);
5595
5596 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5597 seq_puts(m, " (deleted)\n");
5598 else
5599 seq_putc(m, '\n');
5600 }
5601
5602 retval = 0;
5603 out_unlock:
5604 spin_unlock_bh(&css_set_lock);
5605 mutex_unlock(&cgroup_mutex);
5606 kfree(buf);
5607 out:
5608 return retval;
5609 }
5610
5611 /* Display information about each subsystem and each hierarchy */
5612 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5613 {
5614 struct cgroup_subsys *ss;
5615 int i;
5616
5617 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5618 /*
5619 * ideally we don't want subsystems moving around while we do this.
5620 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5621 * subsys/hierarchy state.
5622 */
5623 mutex_lock(&cgroup_mutex);
5624
5625 for_each_subsys(ss, i)
5626 seq_printf(m, "%s\t%d\t%d\t%d\n",
5627 ss->legacy_name, ss->root->hierarchy_id,
5628 atomic_read(&ss->root->nr_cgrps),
5629 cgroup_ssid_enabled(i));
5630
5631 mutex_unlock(&cgroup_mutex);
5632 return 0;
5633 }
5634
5635 static int cgroupstats_open(struct inode *inode, struct file *file)
5636 {
5637 return single_open(file, proc_cgroupstats_show, NULL);
5638 }
5639
5640 static const struct file_operations proc_cgroupstats_operations = {
5641 .open = cgroupstats_open,
5642 .read = seq_read,
5643 .llseek = seq_lseek,
5644 .release = single_release,
5645 };
5646
5647 /**
5648 * cgroup_fork - initialize cgroup related fields during copy_process()
5649 * @child: pointer to task_struct of forking parent process.
5650 *
5651 * A task is associated with the init_css_set until cgroup_post_fork()
5652 * attaches it to the parent's css_set. Empty cg_list indicates that
5653 * @child isn't holding reference to its css_set.
5654 */
5655 void cgroup_fork(struct task_struct *child)
5656 {
5657 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5658 INIT_LIST_HEAD(&child->cg_list);
5659 }
5660
5661 /**
5662 * cgroup_can_fork - called on a new task before the process is exposed
5663 * @child: the task in question.
5664 *
5665 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5666 * returns an error, the fork aborts with that error code. This allows for
5667 * a cgroup subsystem to conditionally allow or deny new forks.
5668 */
5669 int cgroup_can_fork(struct task_struct *child)
5670 {
5671 struct cgroup_subsys *ss;
5672 int i, j, ret;
5673
5674 do_each_subsys_mask(ss, i, have_canfork_callback) {
5675 ret = ss->can_fork(child);
5676 if (ret)
5677 goto out_revert;
5678 } while_each_subsys_mask();
5679
5680 return 0;
5681
5682 out_revert:
5683 for_each_subsys(ss, j) {
5684 if (j >= i)
5685 break;
5686 if (ss->cancel_fork)
5687 ss->cancel_fork(child);
5688 }
5689
5690 return ret;
5691 }
5692
5693 /**
5694 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5695 * @child: the task in question
5696 *
5697 * This calls the cancel_fork() callbacks if a fork failed *after*
5698 * cgroup_can_fork() succeded.
5699 */
5700 void cgroup_cancel_fork(struct task_struct *child)
5701 {
5702 struct cgroup_subsys *ss;
5703 int i;
5704
5705 for_each_subsys(ss, i)
5706 if (ss->cancel_fork)
5707 ss->cancel_fork(child);
5708 }
5709
5710 /**
5711 * cgroup_post_fork - called on a new task after adding it to the task list
5712 * @child: the task in question
5713 *
5714 * Adds the task to the list running through its css_set if necessary and
5715 * call the subsystem fork() callbacks. Has to be after the task is
5716 * visible on the task list in case we race with the first call to
5717 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5718 * list.
5719 */
5720 void cgroup_post_fork(struct task_struct *child)
5721 {
5722 struct cgroup_subsys *ss;
5723 int i;
5724
5725 /*
5726 * This may race against cgroup_enable_task_cg_lists(). As that
5727 * function sets use_task_css_set_links before grabbing
5728 * tasklist_lock and we just went through tasklist_lock to add
5729 * @child, it's guaranteed that either we see the set
5730 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5731 * @child during its iteration.
5732 *
5733 * If we won the race, @child is associated with %current's
5734 * css_set. Grabbing css_set_lock guarantees both that the
5735 * association is stable, and, on completion of the parent's
5736 * migration, @child is visible in the source of migration or
5737 * already in the destination cgroup. This guarantee is necessary
5738 * when implementing operations which need to migrate all tasks of
5739 * a cgroup to another.
5740 *
5741 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5742 * will remain in init_css_set. This is safe because all tasks are
5743 * in the init_css_set before cg_links is enabled and there's no
5744 * operation which transfers all tasks out of init_css_set.
5745 */
5746 if (use_task_css_set_links) {
5747 struct css_set *cset;
5748
5749 spin_lock_bh(&css_set_lock);
5750 cset = task_css_set(current);
5751 if (list_empty(&child->cg_list)) {
5752 get_css_set(cset);
5753 css_set_move_task(child, NULL, cset, false);
5754 }
5755 spin_unlock_bh(&css_set_lock);
5756 }
5757
5758 /*
5759 * Call ss->fork(). This must happen after @child is linked on
5760 * css_set; otherwise, @child might change state between ->fork()
5761 * and addition to css_set.
5762 */
5763 do_each_subsys_mask(ss, i, have_fork_callback) {
5764 ss->fork(child);
5765 } while_each_subsys_mask();
5766 }
5767
5768 /**
5769 * cgroup_exit - detach cgroup from exiting task
5770 * @tsk: pointer to task_struct of exiting process
5771 *
5772 * Description: Detach cgroup from @tsk and release it.
5773 *
5774 * Note that cgroups marked notify_on_release force every task in
5775 * them to take the global cgroup_mutex mutex when exiting.
5776 * This could impact scaling on very large systems. Be reluctant to
5777 * use notify_on_release cgroups where very high task exit scaling
5778 * is required on large systems.
5779 *
5780 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5781 * call cgroup_exit() while the task is still competent to handle
5782 * notify_on_release(), then leave the task attached to the root cgroup in
5783 * each hierarchy for the remainder of its exit. No need to bother with
5784 * init_css_set refcnting. init_css_set never goes away and we can't race
5785 * with migration path - PF_EXITING is visible to migration path.
5786 */
5787 void cgroup_exit(struct task_struct *tsk)
5788 {
5789 struct cgroup_subsys *ss;
5790 struct css_set *cset;
5791 int i;
5792
5793 /*
5794 * Unlink from @tsk from its css_set. As migration path can't race
5795 * with us, we can check css_set and cg_list without synchronization.
5796 */
5797 cset = task_css_set(tsk);
5798
5799 if (!list_empty(&tsk->cg_list)) {
5800 spin_lock_bh(&css_set_lock);
5801 css_set_move_task(tsk, cset, NULL, false);
5802 spin_unlock_bh(&css_set_lock);
5803 } else {
5804 get_css_set(cset);
5805 }
5806
5807 /* see cgroup_post_fork() for details */
5808 do_each_subsys_mask(ss, i, have_exit_callback) {
5809 ss->exit(tsk);
5810 } while_each_subsys_mask();
5811 }
5812
5813 void cgroup_free(struct task_struct *task)
5814 {
5815 struct css_set *cset = task_css_set(task);
5816 struct cgroup_subsys *ss;
5817 int ssid;
5818
5819 do_each_subsys_mask(ss, ssid, have_free_callback) {
5820 ss->free(task);
5821 } while_each_subsys_mask();
5822
5823 put_css_set(cset);
5824 }
5825
5826 static void check_for_release(struct cgroup *cgrp)
5827 {
5828 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5829 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5830 schedule_work(&cgrp->release_agent_work);
5831 }
5832
5833 /*
5834 * Notify userspace when a cgroup is released, by running the
5835 * configured release agent with the name of the cgroup (path
5836 * relative to the root of cgroup file system) as the argument.
5837 *
5838 * Most likely, this user command will try to rmdir this cgroup.
5839 *
5840 * This races with the possibility that some other task will be
5841 * attached to this cgroup before it is removed, or that some other
5842 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5843 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5844 * unused, and this cgroup will be reprieved from its death sentence,
5845 * to continue to serve a useful existence. Next time it's released,
5846 * we will get notified again, if it still has 'notify_on_release' set.
5847 *
5848 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5849 * means only wait until the task is successfully execve()'d. The
5850 * separate release agent task is forked by call_usermodehelper(),
5851 * then control in this thread returns here, without waiting for the
5852 * release agent task. We don't bother to wait because the caller of
5853 * this routine has no use for the exit status of the release agent
5854 * task, so no sense holding our caller up for that.
5855 */
5856 static void cgroup_release_agent(struct work_struct *work)
5857 {
5858 struct cgroup *cgrp =
5859 container_of(work, struct cgroup, release_agent_work);
5860 char *pathbuf = NULL, *agentbuf = NULL, *path;
5861 char *argv[3], *envp[3];
5862
5863 mutex_lock(&cgroup_mutex);
5864
5865 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5866 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5867 if (!pathbuf || !agentbuf)
5868 goto out;
5869
5870 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5871 if (!path)
5872 goto out;
5873
5874 argv[0] = agentbuf;
5875 argv[1] = path;
5876 argv[2] = NULL;
5877
5878 /* minimal command environment */
5879 envp[0] = "HOME=/";
5880 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5881 envp[2] = NULL;
5882
5883 mutex_unlock(&cgroup_mutex);
5884 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5885 goto out_free;
5886 out:
5887 mutex_unlock(&cgroup_mutex);
5888 out_free:
5889 kfree(agentbuf);
5890 kfree(pathbuf);
5891 }
5892
5893 static int __init cgroup_disable(char *str)
5894 {
5895 struct cgroup_subsys *ss;
5896 char *token;
5897 int i;
5898
5899 while ((token = strsep(&str, ",")) != NULL) {
5900 if (!*token)
5901 continue;
5902
5903 for_each_subsys(ss, i) {
5904 if (strcmp(token, ss->name) &&
5905 strcmp(token, ss->legacy_name))
5906 continue;
5907 cgroup_disable_mask |= 1 << i;
5908 }
5909 }
5910 return 1;
5911 }
5912 __setup("cgroup_disable=", cgroup_disable);
5913
5914 static int __init cgroup_no_v1(char *str)
5915 {
5916 struct cgroup_subsys *ss;
5917 char *token;
5918 int i;
5919
5920 while ((token = strsep(&str, ",")) != NULL) {
5921 if (!*token)
5922 continue;
5923
5924 if (!strcmp(token, "all")) {
5925 cgroup_no_v1_mask = U16_MAX;
5926 break;
5927 }
5928
5929 for_each_subsys(ss, i) {
5930 if (strcmp(token, ss->name) &&
5931 strcmp(token, ss->legacy_name))
5932 continue;
5933
5934 cgroup_no_v1_mask |= 1 << i;
5935 }
5936 }
5937 return 1;
5938 }
5939 __setup("cgroup_no_v1=", cgroup_no_v1);
5940
5941 /**
5942 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5943 * @dentry: directory dentry of interest
5944 * @ss: subsystem of interest
5945 *
5946 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5947 * to get the corresponding css and return it. If such css doesn't exist
5948 * or can't be pinned, an ERR_PTR value is returned.
5949 */
5950 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5951 struct cgroup_subsys *ss)
5952 {
5953 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5954 struct file_system_type *s_type = dentry->d_sb->s_type;
5955 struct cgroup_subsys_state *css = NULL;
5956 struct cgroup *cgrp;
5957
5958 /* is @dentry a cgroup dir? */
5959 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5960 !kn || kernfs_type(kn) != KERNFS_DIR)
5961 return ERR_PTR(-EBADF);
5962
5963 rcu_read_lock();
5964
5965 /*
5966 * This path doesn't originate from kernfs and @kn could already
5967 * have been or be removed at any point. @kn->priv is RCU
5968 * protected for this access. See css_release_work_fn() for details.
5969 */
5970 cgrp = rcu_dereference(kn->priv);
5971 if (cgrp)
5972 css = cgroup_css(cgrp, ss);
5973
5974 if (!css || !css_tryget_online(css))
5975 css = ERR_PTR(-ENOENT);
5976
5977 rcu_read_unlock();
5978 return css;
5979 }
5980
5981 /**
5982 * css_from_id - lookup css by id
5983 * @id: the cgroup id
5984 * @ss: cgroup subsys to be looked into
5985 *
5986 * Returns the css if there's valid one with @id, otherwise returns NULL.
5987 * Should be called under rcu_read_lock().
5988 */
5989 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5990 {
5991 WARN_ON_ONCE(!rcu_read_lock_held());
5992 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5993 }
5994
5995 /**
5996 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5997 * @path: path on the default hierarchy
5998 *
5999 * Find the cgroup at @path on the default hierarchy, increment its
6000 * reference count and return it. Returns pointer to the found cgroup on
6001 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6002 * if @path points to a non-directory.
6003 */
6004 struct cgroup *cgroup_get_from_path(const char *path)
6005 {
6006 struct kernfs_node *kn;
6007 struct cgroup *cgrp;
6008
6009 mutex_lock(&cgroup_mutex);
6010
6011 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6012 if (kn) {
6013 if (kernfs_type(kn) == KERNFS_DIR) {
6014 cgrp = kn->priv;
6015 cgroup_get(cgrp);
6016 } else {
6017 cgrp = ERR_PTR(-ENOTDIR);
6018 }
6019 kernfs_put(kn);
6020 } else {
6021 cgrp = ERR_PTR(-ENOENT);
6022 }
6023
6024 mutex_unlock(&cgroup_mutex);
6025 return cgrp;
6026 }
6027 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6028
6029 /*
6030 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6031 * definition in cgroup-defs.h.
6032 */
6033 #ifdef CONFIG_SOCK_CGROUP_DATA
6034
6035 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6036
6037 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6038 static bool cgroup_sk_alloc_disabled __read_mostly;
6039
6040 void cgroup_sk_alloc_disable(void)
6041 {
6042 if (cgroup_sk_alloc_disabled)
6043 return;
6044 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6045 cgroup_sk_alloc_disabled = true;
6046 }
6047
6048 #else
6049
6050 #define cgroup_sk_alloc_disabled false
6051
6052 #endif
6053
6054 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6055 {
6056 if (cgroup_sk_alloc_disabled)
6057 return;
6058
6059 rcu_read_lock();
6060
6061 while (true) {
6062 struct css_set *cset;
6063
6064 cset = task_css_set(current);
6065 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6066 skcd->val = (unsigned long)cset->dfl_cgrp;
6067 break;
6068 }
6069 cpu_relax();
6070 }
6071
6072 rcu_read_unlock();
6073 }
6074
6075 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6076 {
6077 cgroup_put(sock_cgroup_ptr(skcd));
6078 }
6079
6080 #endif /* CONFIG_SOCK_CGROUP_DATA */
6081
6082 #ifdef CONFIG_CGROUP_DEBUG
6083 static struct cgroup_subsys_state *
6084 debug_css_alloc(struct cgroup_subsys_state *parent_css)
6085 {
6086 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6087
6088 if (!css)
6089 return ERR_PTR(-ENOMEM);
6090
6091 return css;
6092 }
6093
6094 static void debug_css_free(struct cgroup_subsys_state *css)
6095 {
6096 kfree(css);
6097 }
6098
6099 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6100 struct cftype *cft)
6101 {
6102 return cgroup_task_count(css->cgroup);
6103 }
6104
6105 static u64 current_css_set_read(struct cgroup_subsys_state *css,
6106 struct cftype *cft)
6107 {
6108 return (u64)(unsigned long)current->cgroups;
6109 }
6110
6111 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6112 struct cftype *cft)
6113 {
6114 u64 count;
6115
6116 rcu_read_lock();
6117 count = atomic_read(&task_css_set(current)->refcount);
6118 rcu_read_unlock();
6119 return count;
6120 }
6121
6122 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6123 {
6124 struct cgrp_cset_link *link;
6125 struct css_set *cset;
6126 char *name_buf;
6127
6128 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6129 if (!name_buf)
6130 return -ENOMEM;
6131
6132 spin_lock_bh(&css_set_lock);
6133 rcu_read_lock();
6134 cset = rcu_dereference(current->cgroups);
6135 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6136 struct cgroup *c = link->cgrp;
6137
6138 cgroup_name(c, name_buf, NAME_MAX + 1);
6139 seq_printf(seq, "Root %d group %s\n",
6140 c->root->hierarchy_id, name_buf);
6141 }
6142 rcu_read_unlock();
6143 spin_unlock_bh(&css_set_lock);
6144 kfree(name_buf);
6145 return 0;
6146 }
6147
6148 #define MAX_TASKS_SHOWN_PER_CSS 25
6149 static int cgroup_css_links_read(struct seq_file *seq, void *v)
6150 {
6151 struct cgroup_subsys_state *css = seq_css(seq);
6152 struct cgrp_cset_link *link;
6153
6154 spin_lock_bh(&css_set_lock);
6155 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6156 struct css_set *cset = link->cset;
6157 struct task_struct *task;
6158 int count = 0;
6159
6160 seq_printf(seq, "css_set %p\n", cset);
6161
6162 list_for_each_entry(task, &cset->tasks, cg_list) {
6163 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6164 goto overflow;
6165 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6166 }
6167
6168 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6169 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6170 goto overflow;
6171 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6172 }
6173 continue;
6174 overflow:
6175 seq_puts(seq, " ...\n");
6176 }
6177 spin_unlock_bh(&css_set_lock);
6178 return 0;
6179 }
6180
6181 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6182 {
6183 return (!cgroup_is_populated(css->cgroup) &&
6184 !css_has_online_children(&css->cgroup->self));
6185 }
6186
6187 static struct cftype debug_files[] = {
6188 {
6189 .name = "taskcount",
6190 .read_u64 = debug_taskcount_read,
6191 },
6192
6193 {
6194 .name = "current_css_set",
6195 .read_u64 = current_css_set_read,
6196 },
6197
6198 {
6199 .name = "current_css_set_refcount",
6200 .read_u64 = current_css_set_refcount_read,
6201 },
6202
6203 {
6204 .name = "current_css_set_cg_links",
6205 .seq_show = current_css_set_cg_links_read,
6206 },
6207
6208 {
6209 .name = "cgroup_css_links",
6210 .seq_show = cgroup_css_links_read,
6211 },
6212
6213 {
6214 .name = "releasable",
6215 .read_u64 = releasable_read,
6216 },
6217
6218 { } /* terminate */
6219 };
6220
6221 struct cgroup_subsys debug_cgrp_subsys = {
6222 .css_alloc = debug_css_alloc,
6223 .css_free = debug_css_free,
6224 .legacy_cftypes = debug_files,
6225 };
6226 #endif /* CONFIG_CGROUP_DEBUG */