]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 rcu_lockdep_assert(rcu_read_lock_held() || \
111 lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /*
143 * The default hierarchy, reserved for the subsystems that are otherwise
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
146 */
147 struct cgroup_root cgrp_dfl_root;
148
149 /*
150 * The default hierarchy always exists but is hidden until mounted for the
151 * first time. This is for backward compatibility.
152 */
153 static bool cgrp_dfl_root_visible;
154
155 /*
156 * Set by the boot param of the same name and makes subsystems with NULL
157 * ->dfl_files to use ->legacy_files on the default hierarchy.
158 */
159 static bool cgroup_legacy_files_on_dfl;
160
161 /* some controllers are not supported in the default hierarchy */
162 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
163
164 /* The list of hierarchy roots */
165
166 static LIST_HEAD(cgroup_roots);
167 static int cgroup_root_count;
168
169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
170 static DEFINE_IDR(cgroup_hierarchy_idr);
171
172 /*
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
178 */
179 static u64 css_serial_nr_next = 1;
180
181 /*
182 * These bitmask flags indicate whether tasks in the fork and exit paths have
183 * fork/exit handlers to call. This avoids us having to do extra work in the
184 * fork/exit path to check which subsystems have fork/exit callbacks.
185 */
186 static unsigned long have_fork_callback __read_mostly;
187 static unsigned long have_exit_callback __read_mostly;
188
189 static struct cftype cgroup_dfl_base_files[];
190 static struct cftype cgroup_legacy_base_files[];
191
192 static int rebind_subsystems(struct cgroup_root *dst_root,
193 unsigned long ss_mask);
194 static int cgroup_destroy_locked(struct cgroup *cgrp);
195 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
196 bool visible);
197 static void css_release(struct percpu_ref *ref);
198 static void kill_css(struct cgroup_subsys_state *css);
199 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
200 bool is_add);
201
202 /* IDR wrappers which synchronize using cgroup_idr_lock */
203 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
204 gfp_t gfp_mask)
205 {
206 int ret;
207
208 idr_preload(gfp_mask);
209 spin_lock_bh(&cgroup_idr_lock);
210 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
211 spin_unlock_bh(&cgroup_idr_lock);
212 idr_preload_end();
213 return ret;
214 }
215
216 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
217 {
218 void *ret;
219
220 spin_lock_bh(&cgroup_idr_lock);
221 ret = idr_replace(idr, ptr, id);
222 spin_unlock_bh(&cgroup_idr_lock);
223 return ret;
224 }
225
226 static void cgroup_idr_remove(struct idr *idr, int id)
227 {
228 spin_lock_bh(&cgroup_idr_lock);
229 idr_remove(idr, id);
230 spin_unlock_bh(&cgroup_idr_lock);
231 }
232
233 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
234 {
235 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
236
237 if (parent_css)
238 return container_of(parent_css, struct cgroup, self);
239 return NULL;
240 }
241
242 /**
243 * cgroup_css - obtain a cgroup's css for the specified subsystem
244 * @cgrp: the cgroup of interest
245 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
246 *
247 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
248 * function must be called either under cgroup_mutex or rcu_read_lock() and
249 * the caller is responsible for pinning the returned css if it wants to
250 * keep accessing it outside the said locks. This function may return
251 * %NULL if @cgrp doesn't have @subsys_id enabled.
252 */
253 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
254 struct cgroup_subsys *ss)
255 {
256 if (ss)
257 return rcu_dereference_check(cgrp->subsys[ss->id],
258 lockdep_is_held(&cgroup_mutex));
259 else
260 return &cgrp->self;
261 }
262
263 /**
264 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
265 * @cgrp: the cgroup of interest
266 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
267 *
268 * Similar to cgroup_css() but returns the effective css, which is defined
269 * as the matching css of the nearest ancestor including self which has @ss
270 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
271 * function is guaranteed to return non-NULL css.
272 */
273 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
274 struct cgroup_subsys *ss)
275 {
276 lockdep_assert_held(&cgroup_mutex);
277
278 if (!ss)
279 return &cgrp->self;
280
281 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
282 return NULL;
283
284 /*
285 * This function is used while updating css associations and thus
286 * can't test the csses directly. Use ->child_subsys_mask.
287 */
288 while (cgroup_parent(cgrp) &&
289 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
290 cgrp = cgroup_parent(cgrp);
291
292 return cgroup_css(cgrp, ss);
293 }
294
295 /**
296 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
297 * @cgrp: the cgroup of interest
298 * @ss: the subsystem of interest
299 *
300 * Find and get the effective css of @cgrp for @ss. The effective css is
301 * defined as the matching css of the nearest ancestor including self which
302 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
303 * the root css is returned, so this function always returns a valid css.
304 * The returned css must be put using css_put().
305 */
306 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
307 struct cgroup_subsys *ss)
308 {
309 struct cgroup_subsys_state *css;
310
311 rcu_read_lock();
312
313 do {
314 css = cgroup_css(cgrp, ss);
315
316 if (css && css_tryget_online(css))
317 goto out_unlock;
318 cgrp = cgroup_parent(cgrp);
319 } while (cgrp);
320
321 css = init_css_set.subsys[ss->id];
322 css_get(css);
323 out_unlock:
324 rcu_read_unlock();
325 return css;
326 }
327
328 /* convenient tests for these bits */
329 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
330 {
331 return !(cgrp->self.flags & CSS_ONLINE);
332 }
333
334 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
335 {
336 struct cgroup *cgrp = of->kn->parent->priv;
337 struct cftype *cft = of_cft(of);
338
339 /*
340 * This is open and unprotected implementation of cgroup_css().
341 * seq_css() is only called from a kernfs file operation which has
342 * an active reference on the file. Because all the subsystem
343 * files are drained before a css is disassociated with a cgroup,
344 * the matching css from the cgroup's subsys table is guaranteed to
345 * be and stay valid until the enclosing operation is complete.
346 */
347 if (cft->ss)
348 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
349 else
350 return &cgrp->self;
351 }
352 EXPORT_SYMBOL_GPL(of_css);
353
354 /**
355 * cgroup_is_descendant - test ancestry
356 * @cgrp: the cgroup to be tested
357 * @ancestor: possible ancestor of @cgrp
358 *
359 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
360 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
361 * and @ancestor are accessible.
362 */
363 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
364 {
365 while (cgrp) {
366 if (cgrp == ancestor)
367 return true;
368 cgrp = cgroup_parent(cgrp);
369 }
370 return false;
371 }
372
373 static int notify_on_release(const struct cgroup *cgrp)
374 {
375 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
376 }
377
378 /**
379 * for_each_css - iterate all css's of a cgroup
380 * @css: the iteration cursor
381 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
382 * @cgrp: the target cgroup to iterate css's of
383 *
384 * Should be called under cgroup_[tree_]mutex.
385 */
386 #define for_each_css(css, ssid, cgrp) \
387 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
388 if (!((css) = rcu_dereference_check( \
389 (cgrp)->subsys[(ssid)], \
390 lockdep_is_held(&cgroup_mutex)))) { } \
391 else
392
393 /**
394 * for_each_e_css - iterate all effective css's of a cgroup
395 * @css: the iteration cursor
396 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
397 * @cgrp: the target cgroup to iterate css's of
398 *
399 * Should be called under cgroup_[tree_]mutex.
400 */
401 #define for_each_e_css(css, ssid, cgrp) \
402 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
403 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
404 ; \
405 else
406
407 /**
408 * for_each_subsys - iterate all enabled cgroup subsystems
409 * @ss: the iteration cursor
410 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
411 */
412 #define for_each_subsys(ss, ssid) \
413 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
414 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
415
416 /**
417 * for_each_subsys_which - filter for_each_subsys with a bitmask
418 * @ss: the iteration cursor
419 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
420 * @ss_maskp: a pointer to the bitmask
421 *
422 * The block will only run for cases where the ssid-th bit (1 << ssid) of
423 * mask is set to 1.
424 */
425 #define for_each_subsys_which(ss, ssid, ss_maskp) \
426 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
427 (ssid) = 0; \
428 else \
429 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
430 if (((ss) = cgroup_subsys[ssid]) && false) \
431 break; \
432 else
433
434 /* iterate across the hierarchies */
435 #define for_each_root(root) \
436 list_for_each_entry((root), &cgroup_roots, root_list)
437
438 /* iterate over child cgrps, lock should be held throughout iteration */
439 #define cgroup_for_each_live_child(child, cgrp) \
440 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
441 if (({ lockdep_assert_held(&cgroup_mutex); \
442 cgroup_is_dead(child); })) \
443 ; \
444 else
445
446 static void cgroup_release_agent(struct work_struct *work);
447 static void check_for_release(struct cgroup *cgrp);
448
449 /*
450 * A cgroup can be associated with multiple css_sets as different tasks may
451 * belong to different cgroups on different hierarchies. In the other
452 * direction, a css_set is naturally associated with multiple cgroups.
453 * This M:N relationship is represented by the following link structure
454 * which exists for each association and allows traversing the associations
455 * from both sides.
456 */
457 struct cgrp_cset_link {
458 /* the cgroup and css_set this link associates */
459 struct cgroup *cgrp;
460 struct css_set *cset;
461
462 /* list of cgrp_cset_links anchored at cgrp->cset_links */
463 struct list_head cset_link;
464
465 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
466 struct list_head cgrp_link;
467 };
468
469 /*
470 * The default css_set - used by init and its children prior to any
471 * hierarchies being mounted. It contains a pointer to the root state
472 * for each subsystem. Also used to anchor the list of css_sets. Not
473 * reference-counted, to improve performance when child cgroups
474 * haven't been created.
475 */
476 struct css_set init_css_set = {
477 .refcount = ATOMIC_INIT(1),
478 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
479 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
480 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
481 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
482 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
483 };
484
485 static int css_set_count = 1; /* 1 for init_css_set */
486
487 /**
488 * cgroup_update_populated - updated populated count of a cgroup
489 * @cgrp: the target cgroup
490 * @populated: inc or dec populated count
491 *
492 * @cgrp is either getting the first task (css_set) or losing the last.
493 * Update @cgrp->populated_cnt accordingly. The count is propagated
494 * towards root so that a given cgroup's populated_cnt is zero iff the
495 * cgroup and all its descendants are empty.
496 *
497 * @cgrp's interface file "cgroup.populated" is zero if
498 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
499 * changes from or to zero, userland is notified that the content of the
500 * interface file has changed. This can be used to detect when @cgrp and
501 * its descendants become populated or empty.
502 */
503 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
504 {
505 lockdep_assert_held(&css_set_rwsem);
506
507 do {
508 bool trigger;
509
510 if (populated)
511 trigger = !cgrp->populated_cnt++;
512 else
513 trigger = !--cgrp->populated_cnt;
514
515 if (!trigger)
516 break;
517
518 if (cgrp->populated_kn)
519 kernfs_notify(cgrp->populated_kn);
520 cgrp = cgroup_parent(cgrp);
521 } while (cgrp);
522 }
523
524 /*
525 * hash table for cgroup groups. This improves the performance to find
526 * an existing css_set. This hash doesn't (currently) take into
527 * account cgroups in empty hierarchies.
528 */
529 #define CSS_SET_HASH_BITS 7
530 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
531
532 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
533 {
534 unsigned long key = 0UL;
535 struct cgroup_subsys *ss;
536 int i;
537
538 for_each_subsys(ss, i)
539 key += (unsigned long)css[i];
540 key = (key >> 16) ^ key;
541
542 return key;
543 }
544
545 static void put_css_set_locked(struct css_set *cset)
546 {
547 struct cgrp_cset_link *link, *tmp_link;
548 struct cgroup_subsys *ss;
549 int ssid;
550
551 lockdep_assert_held(&css_set_rwsem);
552
553 if (!atomic_dec_and_test(&cset->refcount))
554 return;
555
556 /* This css_set is dead. unlink it and release cgroup refcounts */
557 for_each_subsys(ss, ssid)
558 list_del(&cset->e_cset_node[ssid]);
559 hash_del(&cset->hlist);
560 css_set_count--;
561
562 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
563 struct cgroup *cgrp = link->cgrp;
564
565 list_del(&link->cset_link);
566 list_del(&link->cgrp_link);
567
568 /* @cgrp can't go away while we're holding css_set_rwsem */
569 if (list_empty(&cgrp->cset_links)) {
570 cgroup_update_populated(cgrp, false);
571 check_for_release(cgrp);
572 }
573
574 kfree(link);
575 }
576
577 kfree_rcu(cset, rcu_head);
578 }
579
580 static void put_css_set(struct css_set *cset)
581 {
582 /*
583 * Ensure that the refcount doesn't hit zero while any readers
584 * can see it. Similar to atomic_dec_and_lock(), but for an
585 * rwlock
586 */
587 if (atomic_add_unless(&cset->refcount, -1, 1))
588 return;
589
590 down_write(&css_set_rwsem);
591 put_css_set_locked(cset);
592 up_write(&css_set_rwsem);
593 }
594
595 /*
596 * refcounted get/put for css_set objects
597 */
598 static inline void get_css_set(struct css_set *cset)
599 {
600 atomic_inc(&cset->refcount);
601 }
602
603 /**
604 * compare_css_sets - helper function for find_existing_css_set().
605 * @cset: candidate css_set being tested
606 * @old_cset: existing css_set for a task
607 * @new_cgrp: cgroup that's being entered by the task
608 * @template: desired set of css pointers in css_set (pre-calculated)
609 *
610 * Returns true if "cset" matches "old_cset" except for the hierarchy
611 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
612 */
613 static bool compare_css_sets(struct css_set *cset,
614 struct css_set *old_cset,
615 struct cgroup *new_cgrp,
616 struct cgroup_subsys_state *template[])
617 {
618 struct list_head *l1, *l2;
619
620 /*
621 * On the default hierarchy, there can be csets which are
622 * associated with the same set of cgroups but different csses.
623 * Let's first ensure that csses match.
624 */
625 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
626 return false;
627
628 /*
629 * Compare cgroup pointers in order to distinguish between
630 * different cgroups in hierarchies. As different cgroups may
631 * share the same effective css, this comparison is always
632 * necessary.
633 */
634 l1 = &cset->cgrp_links;
635 l2 = &old_cset->cgrp_links;
636 while (1) {
637 struct cgrp_cset_link *link1, *link2;
638 struct cgroup *cgrp1, *cgrp2;
639
640 l1 = l1->next;
641 l2 = l2->next;
642 /* See if we reached the end - both lists are equal length. */
643 if (l1 == &cset->cgrp_links) {
644 BUG_ON(l2 != &old_cset->cgrp_links);
645 break;
646 } else {
647 BUG_ON(l2 == &old_cset->cgrp_links);
648 }
649 /* Locate the cgroups associated with these links. */
650 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
651 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
652 cgrp1 = link1->cgrp;
653 cgrp2 = link2->cgrp;
654 /* Hierarchies should be linked in the same order. */
655 BUG_ON(cgrp1->root != cgrp2->root);
656
657 /*
658 * If this hierarchy is the hierarchy of the cgroup
659 * that's changing, then we need to check that this
660 * css_set points to the new cgroup; if it's any other
661 * hierarchy, then this css_set should point to the
662 * same cgroup as the old css_set.
663 */
664 if (cgrp1->root == new_cgrp->root) {
665 if (cgrp1 != new_cgrp)
666 return false;
667 } else {
668 if (cgrp1 != cgrp2)
669 return false;
670 }
671 }
672 return true;
673 }
674
675 /**
676 * find_existing_css_set - init css array and find the matching css_set
677 * @old_cset: the css_set that we're using before the cgroup transition
678 * @cgrp: the cgroup that we're moving into
679 * @template: out param for the new set of csses, should be clear on entry
680 */
681 static struct css_set *find_existing_css_set(struct css_set *old_cset,
682 struct cgroup *cgrp,
683 struct cgroup_subsys_state *template[])
684 {
685 struct cgroup_root *root = cgrp->root;
686 struct cgroup_subsys *ss;
687 struct css_set *cset;
688 unsigned long key;
689 int i;
690
691 /*
692 * Build the set of subsystem state objects that we want to see in the
693 * new css_set. while subsystems can change globally, the entries here
694 * won't change, so no need for locking.
695 */
696 for_each_subsys(ss, i) {
697 if (root->subsys_mask & (1UL << i)) {
698 /*
699 * @ss is in this hierarchy, so we want the
700 * effective css from @cgrp.
701 */
702 template[i] = cgroup_e_css(cgrp, ss);
703 } else {
704 /*
705 * @ss is not in this hierarchy, so we don't want
706 * to change the css.
707 */
708 template[i] = old_cset->subsys[i];
709 }
710 }
711
712 key = css_set_hash(template);
713 hash_for_each_possible(css_set_table, cset, hlist, key) {
714 if (!compare_css_sets(cset, old_cset, cgrp, template))
715 continue;
716
717 /* This css_set matches what we need */
718 return cset;
719 }
720
721 /* No existing cgroup group matched */
722 return NULL;
723 }
724
725 static void free_cgrp_cset_links(struct list_head *links_to_free)
726 {
727 struct cgrp_cset_link *link, *tmp_link;
728
729 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
730 list_del(&link->cset_link);
731 kfree(link);
732 }
733 }
734
735 /**
736 * allocate_cgrp_cset_links - allocate cgrp_cset_links
737 * @count: the number of links to allocate
738 * @tmp_links: list_head the allocated links are put on
739 *
740 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
741 * through ->cset_link. Returns 0 on success or -errno.
742 */
743 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
744 {
745 struct cgrp_cset_link *link;
746 int i;
747
748 INIT_LIST_HEAD(tmp_links);
749
750 for (i = 0; i < count; i++) {
751 link = kzalloc(sizeof(*link), GFP_KERNEL);
752 if (!link) {
753 free_cgrp_cset_links(tmp_links);
754 return -ENOMEM;
755 }
756 list_add(&link->cset_link, tmp_links);
757 }
758 return 0;
759 }
760
761 /**
762 * link_css_set - a helper function to link a css_set to a cgroup
763 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
764 * @cset: the css_set to be linked
765 * @cgrp: the destination cgroup
766 */
767 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
768 struct cgroup *cgrp)
769 {
770 struct cgrp_cset_link *link;
771
772 BUG_ON(list_empty(tmp_links));
773
774 if (cgroup_on_dfl(cgrp))
775 cset->dfl_cgrp = cgrp;
776
777 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
778 link->cset = cset;
779 link->cgrp = cgrp;
780
781 if (list_empty(&cgrp->cset_links))
782 cgroup_update_populated(cgrp, true);
783 list_move(&link->cset_link, &cgrp->cset_links);
784
785 /*
786 * Always add links to the tail of the list so that the list
787 * is sorted by order of hierarchy creation
788 */
789 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
790 }
791
792 /**
793 * find_css_set - return a new css_set with one cgroup updated
794 * @old_cset: the baseline css_set
795 * @cgrp: the cgroup to be updated
796 *
797 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
798 * substituted into the appropriate hierarchy.
799 */
800 static struct css_set *find_css_set(struct css_set *old_cset,
801 struct cgroup *cgrp)
802 {
803 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
804 struct css_set *cset;
805 struct list_head tmp_links;
806 struct cgrp_cset_link *link;
807 struct cgroup_subsys *ss;
808 unsigned long key;
809 int ssid;
810
811 lockdep_assert_held(&cgroup_mutex);
812
813 /* First see if we already have a cgroup group that matches
814 * the desired set */
815 down_read(&css_set_rwsem);
816 cset = find_existing_css_set(old_cset, cgrp, template);
817 if (cset)
818 get_css_set(cset);
819 up_read(&css_set_rwsem);
820
821 if (cset)
822 return cset;
823
824 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
825 if (!cset)
826 return NULL;
827
828 /* Allocate all the cgrp_cset_link objects that we'll need */
829 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
830 kfree(cset);
831 return NULL;
832 }
833
834 atomic_set(&cset->refcount, 1);
835 INIT_LIST_HEAD(&cset->cgrp_links);
836 INIT_LIST_HEAD(&cset->tasks);
837 INIT_LIST_HEAD(&cset->mg_tasks);
838 INIT_LIST_HEAD(&cset->mg_preload_node);
839 INIT_LIST_HEAD(&cset->mg_node);
840 INIT_HLIST_NODE(&cset->hlist);
841
842 /* Copy the set of subsystem state objects generated in
843 * find_existing_css_set() */
844 memcpy(cset->subsys, template, sizeof(cset->subsys));
845
846 down_write(&css_set_rwsem);
847 /* Add reference counts and links from the new css_set. */
848 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
849 struct cgroup *c = link->cgrp;
850
851 if (c->root == cgrp->root)
852 c = cgrp;
853 link_css_set(&tmp_links, cset, c);
854 }
855
856 BUG_ON(!list_empty(&tmp_links));
857
858 css_set_count++;
859
860 /* Add @cset to the hash table */
861 key = css_set_hash(cset->subsys);
862 hash_add(css_set_table, &cset->hlist, key);
863
864 for_each_subsys(ss, ssid)
865 list_add_tail(&cset->e_cset_node[ssid],
866 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
867
868 up_write(&css_set_rwsem);
869
870 return cset;
871 }
872
873 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
874 {
875 struct cgroup *root_cgrp = kf_root->kn->priv;
876
877 return root_cgrp->root;
878 }
879
880 static int cgroup_init_root_id(struct cgroup_root *root)
881 {
882 int id;
883
884 lockdep_assert_held(&cgroup_mutex);
885
886 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
887 if (id < 0)
888 return id;
889
890 root->hierarchy_id = id;
891 return 0;
892 }
893
894 static void cgroup_exit_root_id(struct cgroup_root *root)
895 {
896 lockdep_assert_held(&cgroup_mutex);
897
898 if (root->hierarchy_id) {
899 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
900 root->hierarchy_id = 0;
901 }
902 }
903
904 static void cgroup_free_root(struct cgroup_root *root)
905 {
906 if (root) {
907 /* hierarchy ID should already have been released */
908 WARN_ON_ONCE(root->hierarchy_id);
909
910 idr_destroy(&root->cgroup_idr);
911 kfree(root);
912 }
913 }
914
915 static void cgroup_destroy_root(struct cgroup_root *root)
916 {
917 struct cgroup *cgrp = &root->cgrp;
918 struct cgrp_cset_link *link, *tmp_link;
919
920 mutex_lock(&cgroup_mutex);
921
922 BUG_ON(atomic_read(&root->nr_cgrps));
923 BUG_ON(!list_empty(&cgrp->self.children));
924
925 /* Rebind all subsystems back to the default hierarchy */
926 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
927
928 /*
929 * Release all the links from cset_links to this hierarchy's
930 * root cgroup
931 */
932 down_write(&css_set_rwsem);
933
934 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
935 list_del(&link->cset_link);
936 list_del(&link->cgrp_link);
937 kfree(link);
938 }
939 up_write(&css_set_rwsem);
940
941 if (!list_empty(&root->root_list)) {
942 list_del(&root->root_list);
943 cgroup_root_count--;
944 }
945
946 cgroup_exit_root_id(root);
947
948 mutex_unlock(&cgroup_mutex);
949
950 kernfs_destroy_root(root->kf_root);
951 cgroup_free_root(root);
952 }
953
954 /* look up cgroup associated with given css_set on the specified hierarchy */
955 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
956 struct cgroup_root *root)
957 {
958 struct cgroup *res = NULL;
959
960 lockdep_assert_held(&cgroup_mutex);
961 lockdep_assert_held(&css_set_rwsem);
962
963 if (cset == &init_css_set) {
964 res = &root->cgrp;
965 } else {
966 struct cgrp_cset_link *link;
967
968 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
969 struct cgroup *c = link->cgrp;
970
971 if (c->root == root) {
972 res = c;
973 break;
974 }
975 }
976 }
977
978 BUG_ON(!res);
979 return res;
980 }
981
982 /*
983 * Return the cgroup for "task" from the given hierarchy. Must be
984 * called with cgroup_mutex and css_set_rwsem held.
985 */
986 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
987 struct cgroup_root *root)
988 {
989 /*
990 * No need to lock the task - since we hold cgroup_mutex the
991 * task can't change groups, so the only thing that can happen
992 * is that it exits and its css is set back to init_css_set.
993 */
994 return cset_cgroup_from_root(task_css_set(task), root);
995 }
996
997 /*
998 * A task must hold cgroup_mutex to modify cgroups.
999 *
1000 * Any task can increment and decrement the count field without lock.
1001 * So in general, code holding cgroup_mutex can't rely on the count
1002 * field not changing. However, if the count goes to zero, then only
1003 * cgroup_attach_task() can increment it again. Because a count of zero
1004 * means that no tasks are currently attached, therefore there is no
1005 * way a task attached to that cgroup can fork (the other way to
1006 * increment the count). So code holding cgroup_mutex can safely
1007 * assume that if the count is zero, it will stay zero. Similarly, if
1008 * a task holds cgroup_mutex on a cgroup with zero count, it
1009 * knows that the cgroup won't be removed, as cgroup_rmdir()
1010 * needs that mutex.
1011 *
1012 * A cgroup can only be deleted if both its 'count' of using tasks
1013 * is zero, and its list of 'children' cgroups is empty. Since all
1014 * tasks in the system use _some_ cgroup, and since there is always at
1015 * least one task in the system (init, pid == 1), therefore, root cgroup
1016 * always has either children cgroups and/or using tasks. So we don't
1017 * need a special hack to ensure that root cgroup cannot be deleted.
1018 *
1019 * P.S. One more locking exception. RCU is used to guard the
1020 * update of a tasks cgroup pointer by cgroup_attach_task()
1021 */
1022
1023 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
1024 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1025 static const struct file_operations proc_cgroupstats_operations;
1026
1027 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1028 char *buf)
1029 {
1030 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1031 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1032 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1033 cft->ss->name, cft->name);
1034 else
1035 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1036 return buf;
1037 }
1038
1039 /**
1040 * cgroup_file_mode - deduce file mode of a control file
1041 * @cft: the control file in question
1042 *
1043 * returns cft->mode if ->mode is not 0
1044 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1045 * returns S_IRUGO if it has only a read handler
1046 * returns S_IWUSR if it has only a write hander
1047 */
1048 static umode_t cgroup_file_mode(const struct cftype *cft)
1049 {
1050 umode_t mode = 0;
1051
1052 if (cft->mode)
1053 return cft->mode;
1054
1055 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1056 mode |= S_IRUGO;
1057
1058 if (cft->write_u64 || cft->write_s64 || cft->write)
1059 mode |= S_IWUSR;
1060
1061 return mode;
1062 }
1063
1064 static void cgroup_get(struct cgroup *cgrp)
1065 {
1066 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1067 css_get(&cgrp->self);
1068 }
1069
1070 static bool cgroup_tryget(struct cgroup *cgrp)
1071 {
1072 return css_tryget(&cgrp->self);
1073 }
1074
1075 static void cgroup_put(struct cgroup *cgrp)
1076 {
1077 css_put(&cgrp->self);
1078 }
1079
1080 /**
1081 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1082 * @cgrp: the target cgroup
1083 * @subtree_control: the new subtree_control mask to consider
1084 *
1085 * On the default hierarchy, a subsystem may request other subsystems to be
1086 * enabled together through its ->depends_on mask. In such cases, more
1087 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1088 *
1089 * This function calculates which subsystems need to be enabled if
1090 * @subtree_control is to be applied to @cgrp. The returned mask is always
1091 * a superset of @subtree_control and follows the usual hierarchy rules.
1092 */
1093 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1094 unsigned long subtree_control)
1095 {
1096 struct cgroup *parent = cgroup_parent(cgrp);
1097 unsigned long cur_ss_mask = subtree_control;
1098 struct cgroup_subsys *ss;
1099 int ssid;
1100
1101 lockdep_assert_held(&cgroup_mutex);
1102
1103 if (!cgroup_on_dfl(cgrp))
1104 return cur_ss_mask;
1105
1106 while (true) {
1107 unsigned long new_ss_mask = cur_ss_mask;
1108
1109 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1110 new_ss_mask |= ss->depends_on;
1111
1112 /*
1113 * Mask out subsystems which aren't available. This can
1114 * happen only if some depended-upon subsystems were bound
1115 * to non-default hierarchies.
1116 */
1117 if (parent)
1118 new_ss_mask &= parent->child_subsys_mask;
1119 else
1120 new_ss_mask &= cgrp->root->subsys_mask;
1121
1122 if (new_ss_mask == cur_ss_mask)
1123 break;
1124 cur_ss_mask = new_ss_mask;
1125 }
1126
1127 return cur_ss_mask;
1128 }
1129
1130 /**
1131 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1132 * @cgrp: the target cgroup
1133 *
1134 * Update @cgrp->child_subsys_mask according to the current
1135 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1136 */
1137 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1138 {
1139 cgrp->child_subsys_mask =
1140 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1141 }
1142
1143 /**
1144 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1145 * @kn: the kernfs_node being serviced
1146 *
1147 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1148 * the method finishes if locking succeeded. Note that once this function
1149 * returns the cgroup returned by cgroup_kn_lock_live() may become
1150 * inaccessible any time. If the caller intends to continue to access the
1151 * cgroup, it should pin it before invoking this function.
1152 */
1153 static void cgroup_kn_unlock(struct kernfs_node *kn)
1154 {
1155 struct cgroup *cgrp;
1156
1157 if (kernfs_type(kn) == KERNFS_DIR)
1158 cgrp = kn->priv;
1159 else
1160 cgrp = kn->parent->priv;
1161
1162 mutex_unlock(&cgroup_mutex);
1163
1164 kernfs_unbreak_active_protection(kn);
1165 cgroup_put(cgrp);
1166 }
1167
1168 /**
1169 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1170 * @kn: the kernfs_node being serviced
1171 *
1172 * This helper is to be used by a cgroup kernfs method currently servicing
1173 * @kn. It breaks the active protection, performs cgroup locking and
1174 * verifies that the associated cgroup is alive. Returns the cgroup if
1175 * alive; otherwise, %NULL. A successful return should be undone by a
1176 * matching cgroup_kn_unlock() invocation.
1177 *
1178 * Any cgroup kernfs method implementation which requires locking the
1179 * associated cgroup should use this helper. It avoids nesting cgroup
1180 * locking under kernfs active protection and allows all kernfs operations
1181 * including self-removal.
1182 */
1183 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1184 {
1185 struct cgroup *cgrp;
1186
1187 if (kernfs_type(kn) == KERNFS_DIR)
1188 cgrp = kn->priv;
1189 else
1190 cgrp = kn->parent->priv;
1191
1192 /*
1193 * We're gonna grab cgroup_mutex which nests outside kernfs
1194 * active_ref. cgroup liveliness check alone provides enough
1195 * protection against removal. Ensure @cgrp stays accessible and
1196 * break the active_ref protection.
1197 */
1198 if (!cgroup_tryget(cgrp))
1199 return NULL;
1200 kernfs_break_active_protection(kn);
1201
1202 mutex_lock(&cgroup_mutex);
1203
1204 if (!cgroup_is_dead(cgrp))
1205 return cgrp;
1206
1207 cgroup_kn_unlock(kn);
1208 return NULL;
1209 }
1210
1211 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1212 {
1213 char name[CGROUP_FILE_NAME_MAX];
1214
1215 lockdep_assert_held(&cgroup_mutex);
1216 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1217 }
1218
1219 /**
1220 * cgroup_clear_dir - remove subsys files in a cgroup directory
1221 * @cgrp: target cgroup
1222 * @subsys_mask: mask of the subsystem ids whose files should be removed
1223 */
1224 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1225 {
1226 struct cgroup_subsys *ss;
1227 int i;
1228
1229 for_each_subsys(ss, i) {
1230 struct cftype *cfts;
1231
1232 if (!(subsys_mask & (1 << i)))
1233 continue;
1234 list_for_each_entry(cfts, &ss->cfts, node)
1235 cgroup_addrm_files(cgrp, cfts, false);
1236 }
1237 }
1238
1239 static int rebind_subsystems(struct cgroup_root *dst_root,
1240 unsigned long ss_mask)
1241 {
1242 struct cgroup_subsys *ss;
1243 unsigned long tmp_ss_mask;
1244 int ssid, i, ret;
1245
1246 lockdep_assert_held(&cgroup_mutex);
1247
1248 for_each_subsys_which(ss, ssid, &ss_mask) {
1249 /* if @ss has non-root csses attached to it, can't move */
1250 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1251 return -EBUSY;
1252
1253 /* can't move between two non-dummy roots either */
1254 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1255 return -EBUSY;
1256 }
1257
1258 /* skip creating root files on dfl_root for inhibited subsystems */
1259 tmp_ss_mask = ss_mask;
1260 if (dst_root == &cgrp_dfl_root)
1261 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1262
1263 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1264 if (ret) {
1265 if (dst_root != &cgrp_dfl_root)
1266 return ret;
1267
1268 /*
1269 * Rebinding back to the default root is not allowed to
1270 * fail. Using both default and non-default roots should
1271 * be rare. Moving subsystems back and forth even more so.
1272 * Just warn about it and continue.
1273 */
1274 if (cgrp_dfl_root_visible) {
1275 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1276 ret, ss_mask);
1277 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1278 }
1279 }
1280
1281 /*
1282 * Nothing can fail from this point on. Remove files for the
1283 * removed subsystems and rebind each subsystem.
1284 */
1285 for_each_subsys_which(ss, ssid, &ss_mask)
1286 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1287
1288 for_each_subsys_which(ss, ssid, &ss_mask) {
1289 struct cgroup_root *src_root;
1290 struct cgroup_subsys_state *css;
1291 struct css_set *cset;
1292
1293 src_root = ss->root;
1294 css = cgroup_css(&src_root->cgrp, ss);
1295
1296 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1297
1298 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1299 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1300 ss->root = dst_root;
1301 css->cgroup = &dst_root->cgrp;
1302
1303 down_write(&css_set_rwsem);
1304 hash_for_each(css_set_table, i, cset, hlist)
1305 list_move_tail(&cset->e_cset_node[ss->id],
1306 &dst_root->cgrp.e_csets[ss->id]);
1307 up_write(&css_set_rwsem);
1308
1309 src_root->subsys_mask &= ~(1 << ssid);
1310 src_root->cgrp.subtree_control &= ~(1 << ssid);
1311 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1312
1313 /* default hierarchy doesn't enable controllers by default */
1314 dst_root->subsys_mask |= 1 << ssid;
1315 if (dst_root != &cgrp_dfl_root) {
1316 dst_root->cgrp.subtree_control |= 1 << ssid;
1317 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1318 }
1319
1320 if (ss->bind)
1321 ss->bind(css);
1322 }
1323
1324 kernfs_activate(dst_root->cgrp.kn);
1325 return 0;
1326 }
1327
1328 static int cgroup_show_options(struct seq_file *seq,
1329 struct kernfs_root *kf_root)
1330 {
1331 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1332 struct cgroup_subsys *ss;
1333 int ssid;
1334
1335 for_each_subsys(ss, ssid)
1336 if (root->subsys_mask & (1 << ssid))
1337 seq_printf(seq, ",%s", ss->name);
1338 if (root->flags & CGRP_ROOT_NOPREFIX)
1339 seq_puts(seq, ",noprefix");
1340 if (root->flags & CGRP_ROOT_XATTR)
1341 seq_puts(seq, ",xattr");
1342
1343 spin_lock(&release_agent_path_lock);
1344 if (strlen(root->release_agent_path))
1345 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1346 spin_unlock(&release_agent_path_lock);
1347
1348 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1349 seq_puts(seq, ",clone_children");
1350 if (strlen(root->name))
1351 seq_printf(seq, ",name=%s", root->name);
1352 return 0;
1353 }
1354
1355 struct cgroup_sb_opts {
1356 unsigned long subsys_mask;
1357 unsigned int flags;
1358 char *release_agent;
1359 bool cpuset_clone_children;
1360 char *name;
1361 /* User explicitly requested empty subsystem */
1362 bool none;
1363 };
1364
1365 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1366 {
1367 char *token, *o = data;
1368 bool all_ss = false, one_ss = false;
1369 unsigned long mask = -1UL;
1370 struct cgroup_subsys *ss;
1371 int nr_opts = 0;
1372 int i;
1373
1374 #ifdef CONFIG_CPUSETS
1375 mask = ~(1U << cpuset_cgrp_id);
1376 #endif
1377
1378 memset(opts, 0, sizeof(*opts));
1379
1380 while ((token = strsep(&o, ",")) != NULL) {
1381 nr_opts++;
1382
1383 if (!*token)
1384 return -EINVAL;
1385 if (!strcmp(token, "none")) {
1386 /* Explicitly have no subsystems */
1387 opts->none = true;
1388 continue;
1389 }
1390 if (!strcmp(token, "all")) {
1391 /* Mutually exclusive option 'all' + subsystem name */
1392 if (one_ss)
1393 return -EINVAL;
1394 all_ss = true;
1395 continue;
1396 }
1397 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1398 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1399 continue;
1400 }
1401 if (!strcmp(token, "noprefix")) {
1402 opts->flags |= CGRP_ROOT_NOPREFIX;
1403 continue;
1404 }
1405 if (!strcmp(token, "clone_children")) {
1406 opts->cpuset_clone_children = true;
1407 continue;
1408 }
1409 if (!strcmp(token, "xattr")) {
1410 opts->flags |= CGRP_ROOT_XATTR;
1411 continue;
1412 }
1413 if (!strncmp(token, "release_agent=", 14)) {
1414 /* Specifying two release agents is forbidden */
1415 if (opts->release_agent)
1416 return -EINVAL;
1417 opts->release_agent =
1418 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1419 if (!opts->release_agent)
1420 return -ENOMEM;
1421 continue;
1422 }
1423 if (!strncmp(token, "name=", 5)) {
1424 const char *name = token + 5;
1425 /* Can't specify an empty name */
1426 if (!strlen(name))
1427 return -EINVAL;
1428 /* Must match [\w.-]+ */
1429 for (i = 0; i < strlen(name); i++) {
1430 char c = name[i];
1431 if (isalnum(c))
1432 continue;
1433 if ((c == '.') || (c == '-') || (c == '_'))
1434 continue;
1435 return -EINVAL;
1436 }
1437 /* Specifying two names is forbidden */
1438 if (opts->name)
1439 return -EINVAL;
1440 opts->name = kstrndup(name,
1441 MAX_CGROUP_ROOT_NAMELEN - 1,
1442 GFP_KERNEL);
1443 if (!opts->name)
1444 return -ENOMEM;
1445
1446 continue;
1447 }
1448
1449 for_each_subsys(ss, i) {
1450 if (strcmp(token, ss->name))
1451 continue;
1452 if (ss->disabled)
1453 continue;
1454
1455 /* Mutually exclusive option 'all' + subsystem name */
1456 if (all_ss)
1457 return -EINVAL;
1458 opts->subsys_mask |= (1 << i);
1459 one_ss = true;
1460
1461 break;
1462 }
1463 if (i == CGROUP_SUBSYS_COUNT)
1464 return -ENOENT;
1465 }
1466
1467 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1468 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1469 if (nr_opts != 1) {
1470 pr_err("sane_behavior: no other mount options allowed\n");
1471 return -EINVAL;
1472 }
1473 return 0;
1474 }
1475
1476 /*
1477 * If the 'all' option was specified select all the subsystems,
1478 * otherwise if 'none', 'name=' and a subsystem name options were
1479 * not specified, let's default to 'all'
1480 */
1481 if (all_ss || (!one_ss && !opts->none && !opts->name))
1482 for_each_subsys(ss, i)
1483 if (!ss->disabled)
1484 opts->subsys_mask |= (1 << i);
1485
1486 /*
1487 * We either have to specify by name or by subsystems. (So all
1488 * empty hierarchies must have a name).
1489 */
1490 if (!opts->subsys_mask && !opts->name)
1491 return -EINVAL;
1492
1493 /*
1494 * Option noprefix was introduced just for backward compatibility
1495 * with the old cpuset, so we allow noprefix only if mounting just
1496 * the cpuset subsystem.
1497 */
1498 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1499 return -EINVAL;
1500
1501 /* Can't specify "none" and some subsystems */
1502 if (opts->subsys_mask && opts->none)
1503 return -EINVAL;
1504
1505 return 0;
1506 }
1507
1508 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1509 {
1510 int ret = 0;
1511 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1512 struct cgroup_sb_opts opts;
1513 unsigned long added_mask, removed_mask;
1514
1515 if (root == &cgrp_dfl_root) {
1516 pr_err("remount is not allowed\n");
1517 return -EINVAL;
1518 }
1519
1520 mutex_lock(&cgroup_mutex);
1521
1522 /* See what subsystems are wanted */
1523 ret = parse_cgroupfs_options(data, &opts);
1524 if (ret)
1525 goto out_unlock;
1526
1527 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1528 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1529 task_tgid_nr(current), current->comm);
1530
1531 added_mask = opts.subsys_mask & ~root->subsys_mask;
1532 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1533
1534 /* Don't allow flags or name to change at remount */
1535 if ((opts.flags ^ root->flags) ||
1536 (opts.name && strcmp(opts.name, root->name))) {
1537 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1538 opts.flags, opts.name ?: "", root->flags, root->name);
1539 ret = -EINVAL;
1540 goto out_unlock;
1541 }
1542
1543 /* remounting is not allowed for populated hierarchies */
1544 if (!list_empty(&root->cgrp.self.children)) {
1545 ret = -EBUSY;
1546 goto out_unlock;
1547 }
1548
1549 ret = rebind_subsystems(root, added_mask);
1550 if (ret)
1551 goto out_unlock;
1552
1553 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1554
1555 if (opts.release_agent) {
1556 spin_lock(&release_agent_path_lock);
1557 strcpy(root->release_agent_path, opts.release_agent);
1558 spin_unlock(&release_agent_path_lock);
1559 }
1560 out_unlock:
1561 kfree(opts.release_agent);
1562 kfree(opts.name);
1563 mutex_unlock(&cgroup_mutex);
1564 return ret;
1565 }
1566
1567 /*
1568 * To reduce the fork() overhead for systems that are not actually using
1569 * their cgroups capability, we don't maintain the lists running through
1570 * each css_set to its tasks until we see the list actually used - in other
1571 * words after the first mount.
1572 */
1573 static bool use_task_css_set_links __read_mostly;
1574
1575 static void cgroup_enable_task_cg_lists(void)
1576 {
1577 struct task_struct *p, *g;
1578
1579 down_write(&css_set_rwsem);
1580
1581 if (use_task_css_set_links)
1582 goto out_unlock;
1583
1584 use_task_css_set_links = true;
1585
1586 /*
1587 * We need tasklist_lock because RCU is not safe against
1588 * while_each_thread(). Besides, a forking task that has passed
1589 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1590 * is not guaranteed to have its child immediately visible in the
1591 * tasklist if we walk through it with RCU.
1592 */
1593 read_lock(&tasklist_lock);
1594 do_each_thread(g, p) {
1595 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1596 task_css_set(p) != &init_css_set);
1597
1598 /*
1599 * We should check if the process is exiting, otherwise
1600 * it will race with cgroup_exit() in that the list
1601 * entry won't be deleted though the process has exited.
1602 * Do it while holding siglock so that we don't end up
1603 * racing against cgroup_exit().
1604 */
1605 spin_lock_irq(&p->sighand->siglock);
1606 if (!(p->flags & PF_EXITING)) {
1607 struct css_set *cset = task_css_set(p);
1608
1609 list_add(&p->cg_list, &cset->tasks);
1610 get_css_set(cset);
1611 }
1612 spin_unlock_irq(&p->sighand->siglock);
1613 } while_each_thread(g, p);
1614 read_unlock(&tasklist_lock);
1615 out_unlock:
1616 up_write(&css_set_rwsem);
1617 }
1618
1619 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1620 {
1621 struct cgroup_subsys *ss;
1622 int ssid;
1623
1624 INIT_LIST_HEAD(&cgrp->self.sibling);
1625 INIT_LIST_HEAD(&cgrp->self.children);
1626 INIT_LIST_HEAD(&cgrp->cset_links);
1627 INIT_LIST_HEAD(&cgrp->pidlists);
1628 mutex_init(&cgrp->pidlist_mutex);
1629 cgrp->self.cgroup = cgrp;
1630 cgrp->self.flags |= CSS_ONLINE;
1631
1632 for_each_subsys(ss, ssid)
1633 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1634
1635 init_waitqueue_head(&cgrp->offline_waitq);
1636 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1637 }
1638
1639 static void init_cgroup_root(struct cgroup_root *root,
1640 struct cgroup_sb_opts *opts)
1641 {
1642 struct cgroup *cgrp = &root->cgrp;
1643
1644 INIT_LIST_HEAD(&root->root_list);
1645 atomic_set(&root->nr_cgrps, 1);
1646 cgrp->root = root;
1647 init_cgroup_housekeeping(cgrp);
1648 idr_init(&root->cgroup_idr);
1649
1650 root->flags = opts->flags;
1651 if (opts->release_agent)
1652 strcpy(root->release_agent_path, opts->release_agent);
1653 if (opts->name)
1654 strcpy(root->name, opts->name);
1655 if (opts->cpuset_clone_children)
1656 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1657 }
1658
1659 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1660 {
1661 LIST_HEAD(tmp_links);
1662 struct cgroup *root_cgrp = &root->cgrp;
1663 struct cftype *base_files;
1664 struct css_set *cset;
1665 int i, ret;
1666
1667 lockdep_assert_held(&cgroup_mutex);
1668
1669 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1670 if (ret < 0)
1671 goto out;
1672 root_cgrp->id = ret;
1673
1674 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1675 GFP_KERNEL);
1676 if (ret)
1677 goto out;
1678
1679 /*
1680 * We're accessing css_set_count without locking css_set_rwsem here,
1681 * but that's OK - it can only be increased by someone holding
1682 * cgroup_lock, and that's us. The worst that can happen is that we
1683 * have some link structures left over
1684 */
1685 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1686 if (ret)
1687 goto cancel_ref;
1688
1689 ret = cgroup_init_root_id(root);
1690 if (ret)
1691 goto cancel_ref;
1692
1693 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1694 KERNFS_ROOT_CREATE_DEACTIVATED,
1695 root_cgrp);
1696 if (IS_ERR(root->kf_root)) {
1697 ret = PTR_ERR(root->kf_root);
1698 goto exit_root_id;
1699 }
1700 root_cgrp->kn = root->kf_root->kn;
1701
1702 if (root == &cgrp_dfl_root)
1703 base_files = cgroup_dfl_base_files;
1704 else
1705 base_files = cgroup_legacy_base_files;
1706
1707 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1708 if (ret)
1709 goto destroy_root;
1710
1711 ret = rebind_subsystems(root, ss_mask);
1712 if (ret)
1713 goto destroy_root;
1714
1715 /*
1716 * There must be no failure case after here, since rebinding takes
1717 * care of subsystems' refcounts, which are explicitly dropped in
1718 * the failure exit path.
1719 */
1720 list_add(&root->root_list, &cgroup_roots);
1721 cgroup_root_count++;
1722
1723 /*
1724 * Link the root cgroup in this hierarchy into all the css_set
1725 * objects.
1726 */
1727 down_write(&css_set_rwsem);
1728 hash_for_each(css_set_table, i, cset, hlist)
1729 link_css_set(&tmp_links, cset, root_cgrp);
1730 up_write(&css_set_rwsem);
1731
1732 BUG_ON(!list_empty(&root_cgrp->self.children));
1733 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1734
1735 kernfs_activate(root_cgrp->kn);
1736 ret = 0;
1737 goto out;
1738
1739 destroy_root:
1740 kernfs_destroy_root(root->kf_root);
1741 root->kf_root = NULL;
1742 exit_root_id:
1743 cgroup_exit_root_id(root);
1744 cancel_ref:
1745 percpu_ref_exit(&root_cgrp->self.refcnt);
1746 out:
1747 free_cgrp_cset_links(&tmp_links);
1748 return ret;
1749 }
1750
1751 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1752 int flags, const char *unused_dev_name,
1753 void *data)
1754 {
1755 struct super_block *pinned_sb = NULL;
1756 struct cgroup_subsys *ss;
1757 struct cgroup_root *root;
1758 struct cgroup_sb_opts opts;
1759 struct dentry *dentry;
1760 int ret;
1761 int i;
1762 bool new_sb;
1763
1764 /*
1765 * The first time anyone tries to mount a cgroup, enable the list
1766 * linking each css_set to its tasks and fix up all existing tasks.
1767 */
1768 if (!use_task_css_set_links)
1769 cgroup_enable_task_cg_lists();
1770
1771 mutex_lock(&cgroup_mutex);
1772
1773 /* First find the desired set of subsystems */
1774 ret = parse_cgroupfs_options(data, &opts);
1775 if (ret)
1776 goto out_unlock;
1777
1778 /* look for a matching existing root */
1779 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1780 cgrp_dfl_root_visible = true;
1781 root = &cgrp_dfl_root;
1782 cgroup_get(&root->cgrp);
1783 ret = 0;
1784 goto out_unlock;
1785 }
1786
1787 /*
1788 * Destruction of cgroup root is asynchronous, so subsystems may
1789 * still be dying after the previous unmount. Let's drain the
1790 * dying subsystems. We just need to ensure that the ones
1791 * unmounted previously finish dying and don't care about new ones
1792 * starting. Testing ref liveliness is good enough.
1793 */
1794 for_each_subsys(ss, i) {
1795 if (!(opts.subsys_mask & (1 << i)) ||
1796 ss->root == &cgrp_dfl_root)
1797 continue;
1798
1799 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1800 mutex_unlock(&cgroup_mutex);
1801 msleep(10);
1802 ret = restart_syscall();
1803 goto out_free;
1804 }
1805 cgroup_put(&ss->root->cgrp);
1806 }
1807
1808 for_each_root(root) {
1809 bool name_match = false;
1810
1811 if (root == &cgrp_dfl_root)
1812 continue;
1813
1814 /*
1815 * If we asked for a name then it must match. Also, if
1816 * name matches but sybsys_mask doesn't, we should fail.
1817 * Remember whether name matched.
1818 */
1819 if (opts.name) {
1820 if (strcmp(opts.name, root->name))
1821 continue;
1822 name_match = true;
1823 }
1824
1825 /*
1826 * If we asked for subsystems (or explicitly for no
1827 * subsystems) then they must match.
1828 */
1829 if ((opts.subsys_mask || opts.none) &&
1830 (opts.subsys_mask != root->subsys_mask)) {
1831 if (!name_match)
1832 continue;
1833 ret = -EBUSY;
1834 goto out_unlock;
1835 }
1836
1837 if (root->flags ^ opts.flags)
1838 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1839
1840 /*
1841 * We want to reuse @root whose lifetime is governed by its
1842 * ->cgrp. Let's check whether @root is alive and keep it
1843 * that way. As cgroup_kill_sb() can happen anytime, we
1844 * want to block it by pinning the sb so that @root doesn't
1845 * get killed before mount is complete.
1846 *
1847 * With the sb pinned, tryget_live can reliably indicate
1848 * whether @root can be reused. If it's being killed,
1849 * drain it. We can use wait_queue for the wait but this
1850 * path is super cold. Let's just sleep a bit and retry.
1851 */
1852 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1853 if (IS_ERR(pinned_sb) ||
1854 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1855 mutex_unlock(&cgroup_mutex);
1856 if (!IS_ERR_OR_NULL(pinned_sb))
1857 deactivate_super(pinned_sb);
1858 msleep(10);
1859 ret = restart_syscall();
1860 goto out_free;
1861 }
1862
1863 ret = 0;
1864 goto out_unlock;
1865 }
1866
1867 /*
1868 * No such thing, create a new one. name= matching without subsys
1869 * specification is allowed for already existing hierarchies but we
1870 * can't create new one without subsys specification.
1871 */
1872 if (!opts.subsys_mask && !opts.none) {
1873 ret = -EINVAL;
1874 goto out_unlock;
1875 }
1876
1877 root = kzalloc(sizeof(*root), GFP_KERNEL);
1878 if (!root) {
1879 ret = -ENOMEM;
1880 goto out_unlock;
1881 }
1882
1883 init_cgroup_root(root, &opts);
1884
1885 ret = cgroup_setup_root(root, opts.subsys_mask);
1886 if (ret)
1887 cgroup_free_root(root);
1888
1889 out_unlock:
1890 mutex_unlock(&cgroup_mutex);
1891 out_free:
1892 kfree(opts.release_agent);
1893 kfree(opts.name);
1894
1895 if (ret)
1896 return ERR_PTR(ret);
1897
1898 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1899 CGROUP_SUPER_MAGIC, &new_sb);
1900 if (IS_ERR(dentry) || !new_sb)
1901 cgroup_put(&root->cgrp);
1902
1903 /*
1904 * If @pinned_sb, we're reusing an existing root and holding an
1905 * extra ref on its sb. Mount is complete. Put the extra ref.
1906 */
1907 if (pinned_sb) {
1908 WARN_ON(new_sb);
1909 deactivate_super(pinned_sb);
1910 }
1911
1912 return dentry;
1913 }
1914
1915 static void cgroup_kill_sb(struct super_block *sb)
1916 {
1917 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1918 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1919
1920 /*
1921 * If @root doesn't have any mounts or children, start killing it.
1922 * This prevents new mounts by disabling percpu_ref_tryget_live().
1923 * cgroup_mount() may wait for @root's release.
1924 *
1925 * And don't kill the default root.
1926 */
1927 if (!list_empty(&root->cgrp.self.children) ||
1928 root == &cgrp_dfl_root)
1929 cgroup_put(&root->cgrp);
1930 else
1931 percpu_ref_kill(&root->cgrp.self.refcnt);
1932
1933 kernfs_kill_sb(sb);
1934 }
1935
1936 static struct file_system_type cgroup_fs_type = {
1937 .name = "cgroup",
1938 .mount = cgroup_mount,
1939 .kill_sb = cgroup_kill_sb,
1940 };
1941
1942 /**
1943 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1944 * @task: target task
1945 * @buf: the buffer to write the path into
1946 * @buflen: the length of the buffer
1947 *
1948 * Determine @task's cgroup on the first (the one with the lowest non-zero
1949 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1950 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1951 * cgroup controller callbacks.
1952 *
1953 * Return value is the same as kernfs_path().
1954 */
1955 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1956 {
1957 struct cgroup_root *root;
1958 struct cgroup *cgrp;
1959 int hierarchy_id = 1;
1960 char *path = NULL;
1961
1962 mutex_lock(&cgroup_mutex);
1963 down_read(&css_set_rwsem);
1964
1965 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1966
1967 if (root) {
1968 cgrp = task_cgroup_from_root(task, root);
1969 path = cgroup_path(cgrp, buf, buflen);
1970 } else {
1971 /* if no hierarchy exists, everyone is in "/" */
1972 if (strlcpy(buf, "/", buflen) < buflen)
1973 path = buf;
1974 }
1975
1976 up_read(&css_set_rwsem);
1977 mutex_unlock(&cgroup_mutex);
1978 return path;
1979 }
1980 EXPORT_SYMBOL_GPL(task_cgroup_path);
1981
1982 /* used to track tasks and other necessary states during migration */
1983 struct cgroup_taskset {
1984 /* the src and dst cset list running through cset->mg_node */
1985 struct list_head src_csets;
1986 struct list_head dst_csets;
1987
1988 /*
1989 * Fields for cgroup_taskset_*() iteration.
1990 *
1991 * Before migration is committed, the target migration tasks are on
1992 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1993 * the csets on ->dst_csets. ->csets point to either ->src_csets
1994 * or ->dst_csets depending on whether migration is committed.
1995 *
1996 * ->cur_csets and ->cur_task point to the current task position
1997 * during iteration.
1998 */
1999 struct list_head *csets;
2000 struct css_set *cur_cset;
2001 struct task_struct *cur_task;
2002 };
2003
2004 /**
2005 * cgroup_taskset_first - reset taskset and return the first task
2006 * @tset: taskset of interest
2007 *
2008 * @tset iteration is initialized and the first task is returned.
2009 */
2010 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2011 {
2012 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2013 tset->cur_task = NULL;
2014
2015 return cgroup_taskset_next(tset);
2016 }
2017
2018 /**
2019 * cgroup_taskset_next - iterate to the next task in taskset
2020 * @tset: taskset of interest
2021 *
2022 * Return the next task in @tset. Iteration must have been initialized
2023 * with cgroup_taskset_first().
2024 */
2025 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2026 {
2027 struct css_set *cset = tset->cur_cset;
2028 struct task_struct *task = tset->cur_task;
2029
2030 while (&cset->mg_node != tset->csets) {
2031 if (!task)
2032 task = list_first_entry(&cset->mg_tasks,
2033 struct task_struct, cg_list);
2034 else
2035 task = list_next_entry(task, cg_list);
2036
2037 if (&task->cg_list != &cset->mg_tasks) {
2038 tset->cur_cset = cset;
2039 tset->cur_task = task;
2040 return task;
2041 }
2042
2043 cset = list_next_entry(cset, mg_node);
2044 task = NULL;
2045 }
2046
2047 return NULL;
2048 }
2049
2050 /**
2051 * cgroup_task_migrate - move a task from one cgroup to another.
2052 * @old_cgrp: the cgroup @tsk is being migrated from
2053 * @tsk: the task being migrated
2054 * @new_cset: the new css_set @tsk is being attached to
2055 *
2056 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2057 */
2058 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2059 struct task_struct *tsk,
2060 struct css_set *new_cset)
2061 {
2062 struct css_set *old_cset;
2063
2064 lockdep_assert_held(&cgroup_mutex);
2065 lockdep_assert_held(&css_set_rwsem);
2066
2067 /*
2068 * We are synchronized through cgroup_threadgroup_rwsem against
2069 * PF_EXITING setting such that we can't race against cgroup_exit()
2070 * changing the css_set to init_css_set and dropping the old one.
2071 */
2072 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2073 old_cset = task_css_set(tsk);
2074
2075 get_css_set(new_cset);
2076 rcu_assign_pointer(tsk->cgroups, new_cset);
2077
2078 /*
2079 * Use move_tail so that cgroup_taskset_first() still returns the
2080 * leader after migration. This works because cgroup_migrate()
2081 * ensures that the dst_cset of the leader is the first on the
2082 * tset's dst_csets list.
2083 */
2084 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2085
2086 /*
2087 * We just gained a reference on old_cset by taking it from the
2088 * task. As trading it for new_cset is protected by cgroup_mutex,
2089 * we're safe to drop it here; it will be freed under RCU.
2090 */
2091 put_css_set_locked(old_cset);
2092 }
2093
2094 /**
2095 * cgroup_migrate_finish - cleanup after attach
2096 * @preloaded_csets: list of preloaded css_sets
2097 *
2098 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2099 * those functions for details.
2100 */
2101 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2102 {
2103 struct css_set *cset, *tmp_cset;
2104
2105 lockdep_assert_held(&cgroup_mutex);
2106
2107 down_write(&css_set_rwsem);
2108 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2109 cset->mg_src_cgrp = NULL;
2110 cset->mg_dst_cset = NULL;
2111 list_del_init(&cset->mg_preload_node);
2112 put_css_set_locked(cset);
2113 }
2114 up_write(&css_set_rwsem);
2115 }
2116
2117 /**
2118 * cgroup_migrate_add_src - add a migration source css_set
2119 * @src_cset: the source css_set to add
2120 * @dst_cgrp: the destination cgroup
2121 * @preloaded_csets: list of preloaded css_sets
2122 *
2123 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2124 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2125 * up by cgroup_migrate_finish().
2126 *
2127 * This function may be called without holding cgroup_threadgroup_rwsem
2128 * even if the target is a process. Threads may be created and destroyed
2129 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2130 * into play and the preloaded css_sets are guaranteed to cover all
2131 * migrations.
2132 */
2133 static void cgroup_migrate_add_src(struct css_set *src_cset,
2134 struct cgroup *dst_cgrp,
2135 struct list_head *preloaded_csets)
2136 {
2137 struct cgroup *src_cgrp;
2138
2139 lockdep_assert_held(&cgroup_mutex);
2140 lockdep_assert_held(&css_set_rwsem);
2141
2142 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2143
2144 if (!list_empty(&src_cset->mg_preload_node))
2145 return;
2146
2147 WARN_ON(src_cset->mg_src_cgrp);
2148 WARN_ON(!list_empty(&src_cset->mg_tasks));
2149 WARN_ON(!list_empty(&src_cset->mg_node));
2150
2151 src_cset->mg_src_cgrp = src_cgrp;
2152 get_css_set(src_cset);
2153 list_add(&src_cset->mg_preload_node, preloaded_csets);
2154 }
2155
2156 /**
2157 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2158 * @dst_cgrp: the destination cgroup (may be %NULL)
2159 * @preloaded_csets: list of preloaded source css_sets
2160 *
2161 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2162 * have been preloaded to @preloaded_csets. This function looks up and
2163 * pins all destination css_sets, links each to its source, and append them
2164 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2165 * source css_set is assumed to be its cgroup on the default hierarchy.
2166 *
2167 * This function must be called after cgroup_migrate_add_src() has been
2168 * called on each migration source css_set. After migration is performed
2169 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2170 * @preloaded_csets.
2171 */
2172 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2173 struct list_head *preloaded_csets)
2174 {
2175 LIST_HEAD(csets);
2176 struct css_set *src_cset, *tmp_cset;
2177
2178 lockdep_assert_held(&cgroup_mutex);
2179
2180 /*
2181 * Except for the root, child_subsys_mask must be zero for a cgroup
2182 * with tasks so that child cgroups don't compete against tasks.
2183 */
2184 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2185 dst_cgrp->child_subsys_mask)
2186 return -EBUSY;
2187
2188 /* look up the dst cset for each src cset and link it to src */
2189 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2190 struct css_set *dst_cset;
2191
2192 dst_cset = find_css_set(src_cset,
2193 dst_cgrp ?: src_cset->dfl_cgrp);
2194 if (!dst_cset)
2195 goto err;
2196
2197 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2198
2199 /*
2200 * If src cset equals dst, it's noop. Drop the src.
2201 * cgroup_migrate() will skip the cset too. Note that we
2202 * can't handle src == dst as some nodes are used by both.
2203 */
2204 if (src_cset == dst_cset) {
2205 src_cset->mg_src_cgrp = NULL;
2206 list_del_init(&src_cset->mg_preload_node);
2207 put_css_set(src_cset);
2208 put_css_set(dst_cset);
2209 continue;
2210 }
2211
2212 src_cset->mg_dst_cset = dst_cset;
2213
2214 if (list_empty(&dst_cset->mg_preload_node))
2215 list_add(&dst_cset->mg_preload_node, &csets);
2216 else
2217 put_css_set(dst_cset);
2218 }
2219
2220 list_splice_tail(&csets, preloaded_csets);
2221 return 0;
2222 err:
2223 cgroup_migrate_finish(&csets);
2224 return -ENOMEM;
2225 }
2226
2227 /**
2228 * cgroup_migrate - migrate a process or task to a cgroup
2229 * @cgrp: the destination cgroup
2230 * @leader: the leader of the process or the task to migrate
2231 * @threadgroup: whether @leader points to the whole process or a single task
2232 *
2233 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2234 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2235 * caller is also responsible for invoking cgroup_migrate_add_src() and
2236 * cgroup_migrate_prepare_dst() on the targets before invoking this
2237 * function and following up with cgroup_migrate_finish().
2238 *
2239 * As long as a controller's ->can_attach() doesn't fail, this function is
2240 * guaranteed to succeed. This means that, excluding ->can_attach()
2241 * failure, when migrating multiple targets, the success or failure can be
2242 * decided for all targets by invoking group_migrate_prepare_dst() before
2243 * actually starting migrating.
2244 */
2245 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2246 bool threadgroup)
2247 {
2248 struct cgroup_taskset tset = {
2249 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2250 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2251 .csets = &tset.src_csets,
2252 };
2253 struct cgroup_subsys_state *css, *failed_css = NULL;
2254 struct css_set *cset, *tmp_cset;
2255 struct task_struct *task, *tmp_task;
2256 int i, ret;
2257
2258 /*
2259 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2260 * already PF_EXITING could be freed from underneath us unless we
2261 * take an rcu_read_lock.
2262 */
2263 down_write(&css_set_rwsem);
2264 rcu_read_lock();
2265 task = leader;
2266 do {
2267 /* @task either already exited or can't exit until the end */
2268 if (task->flags & PF_EXITING)
2269 goto next;
2270
2271 /* leave @task alone if post_fork() hasn't linked it yet */
2272 if (list_empty(&task->cg_list))
2273 goto next;
2274
2275 cset = task_css_set(task);
2276 if (!cset->mg_src_cgrp)
2277 goto next;
2278
2279 /*
2280 * cgroup_taskset_first() must always return the leader.
2281 * Take care to avoid disturbing the ordering.
2282 */
2283 list_move_tail(&task->cg_list, &cset->mg_tasks);
2284 if (list_empty(&cset->mg_node))
2285 list_add_tail(&cset->mg_node, &tset.src_csets);
2286 if (list_empty(&cset->mg_dst_cset->mg_node))
2287 list_move_tail(&cset->mg_dst_cset->mg_node,
2288 &tset.dst_csets);
2289 next:
2290 if (!threadgroup)
2291 break;
2292 } while_each_thread(leader, task);
2293 rcu_read_unlock();
2294 up_write(&css_set_rwsem);
2295
2296 /* methods shouldn't be called if no task is actually migrating */
2297 if (list_empty(&tset.src_csets))
2298 return 0;
2299
2300 /* check that we can legitimately attach to the cgroup */
2301 for_each_e_css(css, i, cgrp) {
2302 if (css->ss->can_attach) {
2303 ret = css->ss->can_attach(css, &tset);
2304 if (ret) {
2305 failed_css = css;
2306 goto out_cancel_attach;
2307 }
2308 }
2309 }
2310
2311 /*
2312 * Now that we're guaranteed success, proceed to move all tasks to
2313 * the new cgroup. There are no failure cases after here, so this
2314 * is the commit point.
2315 */
2316 down_write(&css_set_rwsem);
2317 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2318 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2319 cgroup_task_migrate(cset->mg_src_cgrp, task,
2320 cset->mg_dst_cset);
2321 }
2322 up_write(&css_set_rwsem);
2323
2324 /*
2325 * Migration is committed, all target tasks are now on dst_csets.
2326 * Nothing is sensitive to fork() after this point. Notify
2327 * controllers that migration is complete.
2328 */
2329 tset.csets = &tset.dst_csets;
2330
2331 for_each_e_css(css, i, cgrp)
2332 if (css->ss->attach)
2333 css->ss->attach(css, &tset);
2334
2335 ret = 0;
2336 goto out_release_tset;
2337
2338 out_cancel_attach:
2339 for_each_e_css(css, i, cgrp) {
2340 if (css == failed_css)
2341 break;
2342 if (css->ss->cancel_attach)
2343 css->ss->cancel_attach(css, &tset);
2344 }
2345 out_release_tset:
2346 down_write(&css_set_rwsem);
2347 list_splice_init(&tset.dst_csets, &tset.src_csets);
2348 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2349 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2350 list_del_init(&cset->mg_node);
2351 }
2352 up_write(&css_set_rwsem);
2353 return ret;
2354 }
2355
2356 /**
2357 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2358 * @dst_cgrp: the cgroup to attach to
2359 * @leader: the task or the leader of the threadgroup to be attached
2360 * @threadgroup: attach the whole threadgroup?
2361 *
2362 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2363 */
2364 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2365 struct task_struct *leader, bool threadgroup)
2366 {
2367 LIST_HEAD(preloaded_csets);
2368 struct task_struct *task;
2369 int ret;
2370
2371 /* look up all src csets */
2372 down_read(&css_set_rwsem);
2373 rcu_read_lock();
2374 task = leader;
2375 do {
2376 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2377 &preloaded_csets);
2378 if (!threadgroup)
2379 break;
2380 } while_each_thread(leader, task);
2381 rcu_read_unlock();
2382 up_read(&css_set_rwsem);
2383
2384 /* prepare dst csets and commit */
2385 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2386 if (!ret)
2387 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2388
2389 cgroup_migrate_finish(&preloaded_csets);
2390 return ret;
2391 }
2392
2393 static int cgroup_procs_write_permission(struct task_struct *task,
2394 struct cgroup *dst_cgrp,
2395 struct kernfs_open_file *of)
2396 {
2397 const struct cred *cred = current_cred();
2398 const struct cred *tcred = get_task_cred(task);
2399 int ret = 0;
2400
2401 /*
2402 * even if we're attaching all tasks in the thread group, we only
2403 * need to check permissions on one of them.
2404 */
2405 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2406 !uid_eq(cred->euid, tcred->uid) &&
2407 !uid_eq(cred->euid, tcred->suid))
2408 ret = -EACCES;
2409
2410 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2411 struct super_block *sb = of->file->f_path.dentry->d_sb;
2412 struct cgroup *cgrp;
2413 struct inode *inode;
2414
2415 down_read(&css_set_rwsem);
2416 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2417 up_read(&css_set_rwsem);
2418
2419 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2420 cgrp = cgroup_parent(cgrp);
2421
2422 ret = -ENOMEM;
2423 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2424 if (inode) {
2425 ret = inode_permission(inode, MAY_WRITE);
2426 iput(inode);
2427 }
2428 }
2429
2430 put_cred(tcred);
2431 return ret;
2432 }
2433
2434 /*
2435 * Find the task_struct of the task to attach by vpid and pass it along to the
2436 * function to attach either it or all tasks in its threadgroup. Will lock
2437 * cgroup_mutex and threadgroup.
2438 */
2439 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2440 size_t nbytes, loff_t off, bool threadgroup)
2441 {
2442 struct task_struct *tsk;
2443 struct cgroup *cgrp;
2444 pid_t pid;
2445 int ret;
2446
2447 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2448 return -EINVAL;
2449
2450 cgrp = cgroup_kn_lock_live(of->kn);
2451 if (!cgrp)
2452 return -ENODEV;
2453
2454 percpu_down_write(&cgroup_threadgroup_rwsem);
2455 rcu_read_lock();
2456 if (pid) {
2457 tsk = find_task_by_vpid(pid);
2458 if (!tsk) {
2459 ret = -ESRCH;
2460 goto out_unlock_rcu;
2461 }
2462 } else {
2463 tsk = current;
2464 }
2465
2466 if (threadgroup)
2467 tsk = tsk->group_leader;
2468
2469 /*
2470 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2471 * trapped in a cpuset, or RT worker may be born in a cgroup
2472 * with no rt_runtime allocated. Just say no.
2473 */
2474 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2475 ret = -EINVAL;
2476 goto out_unlock_rcu;
2477 }
2478
2479 get_task_struct(tsk);
2480 rcu_read_unlock();
2481
2482 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2483 if (!ret)
2484 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2485
2486 put_task_struct(tsk);
2487 goto out_unlock_threadgroup;
2488
2489 out_unlock_rcu:
2490 rcu_read_unlock();
2491 out_unlock_threadgroup:
2492 percpu_up_write(&cgroup_threadgroup_rwsem);
2493 cgroup_kn_unlock(of->kn);
2494 return ret ?: nbytes;
2495 }
2496
2497 /**
2498 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2499 * @from: attach to all cgroups of a given task
2500 * @tsk: the task to be attached
2501 */
2502 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2503 {
2504 struct cgroup_root *root;
2505 int retval = 0;
2506
2507 mutex_lock(&cgroup_mutex);
2508 for_each_root(root) {
2509 struct cgroup *from_cgrp;
2510
2511 if (root == &cgrp_dfl_root)
2512 continue;
2513
2514 down_read(&css_set_rwsem);
2515 from_cgrp = task_cgroup_from_root(from, root);
2516 up_read(&css_set_rwsem);
2517
2518 retval = cgroup_attach_task(from_cgrp, tsk, false);
2519 if (retval)
2520 break;
2521 }
2522 mutex_unlock(&cgroup_mutex);
2523
2524 return retval;
2525 }
2526 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2527
2528 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2529 char *buf, size_t nbytes, loff_t off)
2530 {
2531 return __cgroup_procs_write(of, buf, nbytes, off, false);
2532 }
2533
2534 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2535 char *buf, size_t nbytes, loff_t off)
2536 {
2537 return __cgroup_procs_write(of, buf, nbytes, off, true);
2538 }
2539
2540 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2541 char *buf, size_t nbytes, loff_t off)
2542 {
2543 struct cgroup *cgrp;
2544
2545 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2546
2547 cgrp = cgroup_kn_lock_live(of->kn);
2548 if (!cgrp)
2549 return -ENODEV;
2550 spin_lock(&release_agent_path_lock);
2551 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2552 sizeof(cgrp->root->release_agent_path));
2553 spin_unlock(&release_agent_path_lock);
2554 cgroup_kn_unlock(of->kn);
2555 return nbytes;
2556 }
2557
2558 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2559 {
2560 struct cgroup *cgrp = seq_css(seq)->cgroup;
2561
2562 spin_lock(&release_agent_path_lock);
2563 seq_puts(seq, cgrp->root->release_agent_path);
2564 spin_unlock(&release_agent_path_lock);
2565 seq_putc(seq, '\n');
2566 return 0;
2567 }
2568
2569 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2570 {
2571 seq_puts(seq, "0\n");
2572 return 0;
2573 }
2574
2575 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2576 {
2577 struct cgroup_subsys *ss;
2578 bool printed = false;
2579 int ssid;
2580
2581 for_each_subsys_which(ss, ssid, &ss_mask) {
2582 if (printed)
2583 seq_putc(seq, ' ');
2584 seq_printf(seq, "%s", ss->name);
2585 printed = true;
2586 }
2587 if (printed)
2588 seq_putc(seq, '\n');
2589 }
2590
2591 /* show controllers which are currently attached to the default hierarchy */
2592 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2593 {
2594 struct cgroup *cgrp = seq_css(seq)->cgroup;
2595
2596 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2597 ~cgrp_dfl_root_inhibit_ss_mask);
2598 return 0;
2599 }
2600
2601 /* show controllers which are enabled from the parent */
2602 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2603 {
2604 struct cgroup *cgrp = seq_css(seq)->cgroup;
2605
2606 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2607 return 0;
2608 }
2609
2610 /* show controllers which are enabled for a given cgroup's children */
2611 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2612 {
2613 struct cgroup *cgrp = seq_css(seq)->cgroup;
2614
2615 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2616 return 0;
2617 }
2618
2619 /**
2620 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2621 * @cgrp: root of the subtree to update csses for
2622 *
2623 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2624 * css associations need to be updated accordingly. This function looks up
2625 * all css_sets which are attached to the subtree, creates the matching
2626 * updated css_sets and migrates the tasks to the new ones.
2627 */
2628 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2629 {
2630 LIST_HEAD(preloaded_csets);
2631 struct cgroup_subsys_state *css;
2632 struct css_set *src_cset;
2633 int ret;
2634
2635 lockdep_assert_held(&cgroup_mutex);
2636
2637 percpu_down_write(&cgroup_threadgroup_rwsem);
2638
2639 /* look up all csses currently attached to @cgrp's subtree */
2640 down_read(&css_set_rwsem);
2641 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2642 struct cgrp_cset_link *link;
2643
2644 /* self is not affected by child_subsys_mask change */
2645 if (css->cgroup == cgrp)
2646 continue;
2647
2648 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2649 cgroup_migrate_add_src(link->cset, cgrp,
2650 &preloaded_csets);
2651 }
2652 up_read(&css_set_rwsem);
2653
2654 /* NULL dst indicates self on default hierarchy */
2655 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2656 if (ret)
2657 goto out_finish;
2658
2659 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2660 struct task_struct *last_task = NULL, *task;
2661
2662 /* src_csets precede dst_csets, break on the first dst_cset */
2663 if (!src_cset->mg_src_cgrp)
2664 break;
2665
2666 /*
2667 * All tasks in src_cset need to be migrated to the
2668 * matching dst_cset. Empty it process by process. We
2669 * walk tasks but migrate processes. The leader might even
2670 * belong to a different cset but such src_cset would also
2671 * be among the target src_csets because the default
2672 * hierarchy enforces per-process membership.
2673 */
2674 while (true) {
2675 down_read(&css_set_rwsem);
2676 task = list_first_entry_or_null(&src_cset->tasks,
2677 struct task_struct, cg_list);
2678 if (task) {
2679 task = task->group_leader;
2680 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2681 get_task_struct(task);
2682 }
2683 up_read(&css_set_rwsem);
2684
2685 if (!task)
2686 break;
2687
2688 /* guard against possible infinite loop */
2689 if (WARN(last_task == task,
2690 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2691 goto out_finish;
2692 last_task = task;
2693
2694 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2695
2696 put_task_struct(task);
2697
2698 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2699 goto out_finish;
2700 }
2701 }
2702
2703 out_finish:
2704 cgroup_migrate_finish(&preloaded_csets);
2705 percpu_up_write(&cgroup_threadgroup_rwsem);
2706 return ret;
2707 }
2708
2709 /* change the enabled child controllers for a cgroup in the default hierarchy */
2710 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2711 char *buf, size_t nbytes,
2712 loff_t off)
2713 {
2714 unsigned long enable = 0, disable = 0;
2715 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2716 struct cgroup *cgrp, *child;
2717 struct cgroup_subsys *ss;
2718 char *tok;
2719 int ssid, ret;
2720
2721 /*
2722 * Parse input - space separated list of subsystem names prefixed
2723 * with either + or -.
2724 */
2725 buf = strstrip(buf);
2726 while ((tok = strsep(&buf, " "))) {
2727 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2728
2729 if (tok[0] == '\0')
2730 continue;
2731 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2732 if (ss->disabled || strcmp(tok + 1, ss->name))
2733 continue;
2734
2735 if (*tok == '+') {
2736 enable |= 1 << ssid;
2737 disable &= ~(1 << ssid);
2738 } else if (*tok == '-') {
2739 disable |= 1 << ssid;
2740 enable &= ~(1 << ssid);
2741 } else {
2742 return -EINVAL;
2743 }
2744 break;
2745 }
2746 if (ssid == CGROUP_SUBSYS_COUNT)
2747 return -EINVAL;
2748 }
2749
2750 cgrp = cgroup_kn_lock_live(of->kn);
2751 if (!cgrp)
2752 return -ENODEV;
2753
2754 for_each_subsys(ss, ssid) {
2755 if (enable & (1 << ssid)) {
2756 if (cgrp->subtree_control & (1 << ssid)) {
2757 enable &= ~(1 << ssid);
2758 continue;
2759 }
2760
2761 /* unavailable or not enabled on the parent? */
2762 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2763 (cgroup_parent(cgrp) &&
2764 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2765 ret = -ENOENT;
2766 goto out_unlock;
2767 }
2768 } else if (disable & (1 << ssid)) {
2769 if (!(cgrp->subtree_control & (1 << ssid))) {
2770 disable &= ~(1 << ssid);
2771 continue;
2772 }
2773
2774 /* a child has it enabled? */
2775 cgroup_for_each_live_child(child, cgrp) {
2776 if (child->subtree_control & (1 << ssid)) {
2777 ret = -EBUSY;
2778 goto out_unlock;
2779 }
2780 }
2781 }
2782 }
2783
2784 if (!enable && !disable) {
2785 ret = 0;
2786 goto out_unlock;
2787 }
2788
2789 /*
2790 * Except for the root, subtree_control must be zero for a cgroup
2791 * with tasks so that child cgroups don't compete against tasks.
2792 */
2793 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2794 ret = -EBUSY;
2795 goto out_unlock;
2796 }
2797
2798 /*
2799 * Update subsys masks and calculate what needs to be done. More
2800 * subsystems than specified may need to be enabled or disabled
2801 * depending on subsystem dependencies.
2802 */
2803 old_sc = cgrp->subtree_control;
2804 old_ss = cgrp->child_subsys_mask;
2805 new_sc = (old_sc | enable) & ~disable;
2806 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2807
2808 css_enable = ~old_ss & new_ss;
2809 css_disable = old_ss & ~new_ss;
2810 enable |= css_enable;
2811 disable |= css_disable;
2812
2813 /*
2814 * Because css offlining is asynchronous, userland might try to
2815 * re-enable the same controller while the previous instance is
2816 * still around. In such cases, wait till it's gone using
2817 * offline_waitq.
2818 */
2819 for_each_subsys_which(ss, ssid, &css_enable) {
2820 cgroup_for_each_live_child(child, cgrp) {
2821 DEFINE_WAIT(wait);
2822
2823 if (!cgroup_css(child, ss))
2824 continue;
2825
2826 cgroup_get(child);
2827 prepare_to_wait(&child->offline_waitq, &wait,
2828 TASK_UNINTERRUPTIBLE);
2829 cgroup_kn_unlock(of->kn);
2830 schedule();
2831 finish_wait(&child->offline_waitq, &wait);
2832 cgroup_put(child);
2833
2834 return restart_syscall();
2835 }
2836 }
2837
2838 cgrp->subtree_control = new_sc;
2839 cgrp->child_subsys_mask = new_ss;
2840
2841 /*
2842 * Create new csses or make the existing ones visible. A css is
2843 * created invisible if it's being implicitly enabled through
2844 * dependency. An invisible css is made visible when the userland
2845 * explicitly enables it.
2846 */
2847 for_each_subsys(ss, ssid) {
2848 if (!(enable & (1 << ssid)))
2849 continue;
2850
2851 cgroup_for_each_live_child(child, cgrp) {
2852 if (css_enable & (1 << ssid))
2853 ret = create_css(child, ss,
2854 cgrp->subtree_control & (1 << ssid));
2855 else
2856 ret = cgroup_populate_dir(child, 1 << ssid);
2857 if (ret)
2858 goto err_undo_css;
2859 }
2860 }
2861
2862 /*
2863 * At this point, cgroup_e_css() results reflect the new csses
2864 * making the following cgroup_update_dfl_csses() properly update
2865 * css associations of all tasks in the subtree.
2866 */
2867 ret = cgroup_update_dfl_csses(cgrp);
2868 if (ret)
2869 goto err_undo_css;
2870
2871 /*
2872 * All tasks are migrated out of disabled csses. Kill or hide
2873 * them. A css is hidden when the userland requests it to be
2874 * disabled while other subsystems are still depending on it. The
2875 * css must not actively control resources and be in the vanilla
2876 * state if it's made visible again later. Controllers which may
2877 * be depended upon should provide ->css_reset() for this purpose.
2878 */
2879 for_each_subsys(ss, ssid) {
2880 if (!(disable & (1 << ssid)))
2881 continue;
2882
2883 cgroup_for_each_live_child(child, cgrp) {
2884 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2885
2886 if (css_disable & (1 << ssid)) {
2887 kill_css(css);
2888 } else {
2889 cgroup_clear_dir(child, 1 << ssid);
2890 if (ss->css_reset)
2891 ss->css_reset(css);
2892 }
2893 }
2894 }
2895
2896 /*
2897 * The effective csses of all the descendants (excluding @cgrp) may
2898 * have changed. Subsystems can optionally subscribe to this event
2899 * by implementing ->css_e_css_changed() which is invoked if any of
2900 * the effective csses seen from the css's cgroup may have changed.
2901 */
2902 for_each_subsys(ss, ssid) {
2903 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2904 struct cgroup_subsys_state *css;
2905
2906 if (!ss->css_e_css_changed || !this_css)
2907 continue;
2908
2909 css_for_each_descendant_pre(css, this_css)
2910 if (css != this_css)
2911 ss->css_e_css_changed(css);
2912 }
2913
2914 kernfs_activate(cgrp->kn);
2915 ret = 0;
2916 out_unlock:
2917 cgroup_kn_unlock(of->kn);
2918 return ret ?: nbytes;
2919
2920 err_undo_css:
2921 cgrp->subtree_control = old_sc;
2922 cgrp->child_subsys_mask = old_ss;
2923
2924 for_each_subsys(ss, ssid) {
2925 if (!(enable & (1 << ssid)))
2926 continue;
2927
2928 cgroup_for_each_live_child(child, cgrp) {
2929 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2930
2931 if (!css)
2932 continue;
2933
2934 if (css_enable & (1 << ssid))
2935 kill_css(css);
2936 else
2937 cgroup_clear_dir(child, 1 << ssid);
2938 }
2939 }
2940 goto out_unlock;
2941 }
2942
2943 static int cgroup_populated_show(struct seq_file *seq, void *v)
2944 {
2945 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2946 return 0;
2947 }
2948
2949 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2950 size_t nbytes, loff_t off)
2951 {
2952 struct cgroup *cgrp = of->kn->parent->priv;
2953 struct cftype *cft = of->kn->priv;
2954 struct cgroup_subsys_state *css;
2955 int ret;
2956
2957 if (cft->write)
2958 return cft->write(of, buf, nbytes, off);
2959
2960 /*
2961 * kernfs guarantees that a file isn't deleted with operations in
2962 * flight, which means that the matching css is and stays alive and
2963 * doesn't need to be pinned. The RCU locking is not necessary
2964 * either. It's just for the convenience of using cgroup_css().
2965 */
2966 rcu_read_lock();
2967 css = cgroup_css(cgrp, cft->ss);
2968 rcu_read_unlock();
2969
2970 if (cft->write_u64) {
2971 unsigned long long v;
2972 ret = kstrtoull(buf, 0, &v);
2973 if (!ret)
2974 ret = cft->write_u64(css, cft, v);
2975 } else if (cft->write_s64) {
2976 long long v;
2977 ret = kstrtoll(buf, 0, &v);
2978 if (!ret)
2979 ret = cft->write_s64(css, cft, v);
2980 } else {
2981 ret = -EINVAL;
2982 }
2983
2984 return ret ?: nbytes;
2985 }
2986
2987 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2988 {
2989 return seq_cft(seq)->seq_start(seq, ppos);
2990 }
2991
2992 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2993 {
2994 return seq_cft(seq)->seq_next(seq, v, ppos);
2995 }
2996
2997 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2998 {
2999 seq_cft(seq)->seq_stop(seq, v);
3000 }
3001
3002 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3003 {
3004 struct cftype *cft = seq_cft(m);
3005 struct cgroup_subsys_state *css = seq_css(m);
3006
3007 if (cft->seq_show)
3008 return cft->seq_show(m, arg);
3009
3010 if (cft->read_u64)
3011 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3012 else if (cft->read_s64)
3013 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3014 else
3015 return -EINVAL;
3016 return 0;
3017 }
3018
3019 static struct kernfs_ops cgroup_kf_single_ops = {
3020 .atomic_write_len = PAGE_SIZE,
3021 .write = cgroup_file_write,
3022 .seq_show = cgroup_seqfile_show,
3023 };
3024
3025 static struct kernfs_ops cgroup_kf_ops = {
3026 .atomic_write_len = PAGE_SIZE,
3027 .write = cgroup_file_write,
3028 .seq_start = cgroup_seqfile_start,
3029 .seq_next = cgroup_seqfile_next,
3030 .seq_stop = cgroup_seqfile_stop,
3031 .seq_show = cgroup_seqfile_show,
3032 };
3033
3034 /*
3035 * cgroup_rename - Only allow simple rename of directories in place.
3036 */
3037 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3038 const char *new_name_str)
3039 {
3040 struct cgroup *cgrp = kn->priv;
3041 int ret;
3042
3043 if (kernfs_type(kn) != KERNFS_DIR)
3044 return -ENOTDIR;
3045 if (kn->parent != new_parent)
3046 return -EIO;
3047
3048 /*
3049 * This isn't a proper migration and its usefulness is very
3050 * limited. Disallow on the default hierarchy.
3051 */
3052 if (cgroup_on_dfl(cgrp))
3053 return -EPERM;
3054
3055 /*
3056 * We're gonna grab cgroup_mutex which nests outside kernfs
3057 * active_ref. kernfs_rename() doesn't require active_ref
3058 * protection. Break them before grabbing cgroup_mutex.
3059 */
3060 kernfs_break_active_protection(new_parent);
3061 kernfs_break_active_protection(kn);
3062
3063 mutex_lock(&cgroup_mutex);
3064
3065 ret = kernfs_rename(kn, new_parent, new_name_str);
3066
3067 mutex_unlock(&cgroup_mutex);
3068
3069 kernfs_unbreak_active_protection(kn);
3070 kernfs_unbreak_active_protection(new_parent);
3071 return ret;
3072 }
3073
3074 /* set uid and gid of cgroup dirs and files to that of the creator */
3075 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3076 {
3077 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3078 .ia_uid = current_fsuid(),
3079 .ia_gid = current_fsgid(), };
3080
3081 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3082 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3083 return 0;
3084
3085 return kernfs_setattr(kn, &iattr);
3086 }
3087
3088 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3089 {
3090 char name[CGROUP_FILE_NAME_MAX];
3091 struct kernfs_node *kn;
3092 struct lock_class_key *key = NULL;
3093 int ret;
3094
3095 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3096 key = &cft->lockdep_key;
3097 #endif
3098 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3099 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3100 NULL, key);
3101 if (IS_ERR(kn))
3102 return PTR_ERR(kn);
3103
3104 ret = cgroup_kn_set_ugid(kn);
3105 if (ret) {
3106 kernfs_remove(kn);
3107 return ret;
3108 }
3109
3110 if (cft->write == cgroup_procs_write)
3111 cgrp->procs_kn = kn;
3112 else if (cft->seq_show == cgroup_populated_show)
3113 cgrp->populated_kn = kn;
3114 return 0;
3115 }
3116
3117 /**
3118 * cgroup_addrm_files - add or remove files to a cgroup directory
3119 * @cgrp: the target cgroup
3120 * @cfts: array of cftypes to be added
3121 * @is_add: whether to add or remove
3122 *
3123 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3124 * For removals, this function never fails. If addition fails, this
3125 * function doesn't remove files already added. The caller is responsible
3126 * for cleaning up.
3127 */
3128 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3129 bool is_add)
3130 {
3131 struct cftype *cft;
3132 int ret;
3133
3134 lockdep_assert_held(&cgroup_mutex);
3135
3136 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3137 /* does cft->flags tell us to skip this file on @cgrp? */
3138 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3139 continue;
3140 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3141 continue;
3142 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3143 continue;
3144 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3145 continue;
3146
3147 if (is_add) {
3148 ret = cgroup_add_file(cgrp, cft);
3149 if (ret) {
3150 pr_warn("%s: failed to add %s, err=%d\n",
3151 __func__, cft->name, ret);
3152 return ret;
3153 }
3154 } else {
3155 cgroup_rm_file(cgrp, cft);
3156 }
3157 }
3158 return 0;
3159 }
3160
3161 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3162 {
3163 LIST_HEAD(pending);
3164 struct cgroup_subsys *ss = cfts[0].ss;
3165 struct cgroup *root = &ss->root->cgrp;
3166 struct cgroup_subsys_state *css;
3167 int ret = 0;
3168
3169 lockdep_assert_held(&cgroup_mutex);
3170
3171 /* add/rm files for all cgroups created before */
3172 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3173 struct cgroup *cgrp = css->cgroup;
3174
3175 if (cgroup_is_dead(cgrp))
3176 continue;
3177
3178 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3179 if (ret)
3180 break;
3181 }
3182
3183 if (is_add && !ret)
3184 kernfs_activate(root->kn);
3185 return ret;
3186 }
3187
3188 static void cgroup_exit_cftypes(struct cftype *cfts)
3189 {
3190 struct cftype *cft;
3191
3192 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3193 /* free copy for custom atomic_write_len, see init_cftypes() */
3194 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3195 kfree(cft->kf_ops);
3196 cft->kf_ops = NULL;
3197 cft->ss = NULL;
3198
3199 /* revert flags set by cgroup core while adding @cfts */
3200 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3201 }
3202 }
3203
3204 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3205 {
3206 struct cftype *cft;
3207
3208 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3209 struct kernfs_ops *kf_ops;
3210
3211 WARN_ON(cft->ss || cft->kf_ops);
3212
3213 if (cft->seq_start)
3214 kf_ops = &cgroup_kf_ops;
3215 else
3216 kf_ops = &cgroup_kf_single_ops;
3217
3218 /*
3219 * Ugh... if @cft wants a custom max_write_len, we need to
3220 * make a copy of kf_ops to set its atomic_write_len.
3221 */
3222 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3223 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3224 if (!kf_ops) {
3225 cgroup_exit_cftypes(cfts);
3226 return -ENOMEM;
3227 }
3228 kf_ops->atomic_write_len = cft->max_write_len;
3229 }
3230
3231 cft->kf_ops = kf_ops;
3232 cft->ss = ss;
3233 }
3234
3235 return 0;
3236 }
3237
3238 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3239 {
3240 lockdep_assert_held(&cgroup_mutex);
3241
3242 if (!cfts || !cfts[0].ss)
3243 return -ENOENT;
3244
3245 list_del(&cfts->node);
3246 cgroup_apply_cftypes(cfts, false);
3247 cgroup_exit_cftypes(cfts);
3248 return 0;
3249 }
3250
3251 /**
3252 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3253 * @cfts: zero-length name terminated array of cftypes
3254 *
3255 * Unregister @cfts. Files described by @cfts are removed from all
3256 * existing cgroups and all future cgroups won't have them either. This
3257 * function can be called anytime whether @cfts' subsys is attached or not.
3258 *
3259 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3260 * registered.
3261 */
3262 int cgroup_rm_cftypes(struct cftype *cfts)
3263 {
3264 int ret;
3265
3266 mutex_lock(&cgroup_mutex);
3267 ret = cgroup_rm_cftypes_locked(cfts);
3268 mutex_unlock(&cgroup_mutex);
3269 return ret;
3270 }
3271
3272 /**
3273 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3274 * @ss: target cgroup subsystem
3275 * @cfts: zero-length name terminated array of cftypes
3276 *
3277 * Register @cfts to @ss. Files described by @cfts are created for all
3278 * existing cgroups to which @ss is attached and all future cgroups will
3279 * have them too. This function can be called anytime whether @ss is
3280 * attached or not.
3281 *
3282 * Returns 0 on successful registration, -errno on failure. Note that this
3283 * function currently returns 0 as long as @cfts registration is successful
3284 * even if some file creation attempts on existing cgroups fail.
3285 */
3286 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3287 {
3288 int ret;
3289
3290 if (ss->disabled)
3291 return 0;
3292
3293 if (!cfts || cfts[0].name[0] == '\0')
3294 return 0;
3295
3296 ret = cgroup_init_cftypes(ss, cfts);
3297 if (ret)
3298 return ret;
3299
3300 mutex_lock(&cgroup_mutex);
3301
3302 list_add_tail(&cfts->node, &ss->cfts);
3303 ret = cgroup_apply_cftypes(cfts, true);
3304 if (ret)
3305 cgroup_rm_cftypes_locked(cfts);
3306
3307 mutex_unlock(&cgroup_mutex);
3308 return ret;
3309 }
3310
3311 /**
3312 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3313 * @ss: target cgroup subsystem
3314 * @cfts: zero-length name terminated array of cftypes
3315 *
3316 * Similar to cgroup_add_cftypes() but the added files are only used for
3317 * the default hierarchy.
3318 */
3319 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3320 {
3321 struct cftype *cft;
3322
3323 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3324 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3325 return cgroup_add_cftypes(ss, cfts);
3326 }
3327
3328 /**
3329 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3330 * @ss: target cgroup subsystem
3331 * @cfts: zero-length name terminated array of cftypes
3332 *
3333 * Similar to cgroup_add_cftypes() but the added files are only used for
3334 * the legacy hierarchies.
3335 */
3336 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3337 {
3338 struct cftype *cft;
3339
3340 /*
3341 * If legacy_flies_on_dfl, we want to show the legacy files on the
3342 * dfl hierarchy but iff the target subsystem hasn't been updated
3343 * for the dfl hierarchy yet.
3344 */
3345 if (!cgroup_legacy_files_on_dfl ||
3346 ss->dfl_cftypes != ss->legacy_cftypes) {
3347 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3348 cft->flags |= __CFTYPE_NOT_ON_DFL;
3349 }
3350
3351 return cgroup_add_cftypes(ss, cfts);
3352 }
3353
3354 /**
3355 * cgroup_task_count - count the number of tasks in a cgroup.
3356 * @cgrp: the cgroup in question
3357 *
3358 * Return the number of tasks in the cgroup.
3359 */
3360 static int cgroup_task_count(const struct cgroup *cgrp)
3361 {
3362 int count = 0;
3363 struct cgrp_cset_link *link;
3364
3365 down_read(&css_set_rwsem);
3366 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3367 count += atomic_read(&link->cset->refcount);
3368 up_read(&css_set_rwsem);
3369 return count;
3370 }
3371
3372 /**
3373 * css_next_child - find the next child of a given css
3374 * @pos: the current position (%NULL to initiate traversal)
3375 * @parent: css whose children to walk
3376 *
3377 * This function returns the next child of @parent and should be called
3378 * under either cgroup_mutex or RCU read lock. The only requirement is
3379 * that @parent and @pos are accessible. The next sibling is guaranteed to
3380 * be returned regardless of their states.
3381 *
3382 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3383 * css which finished ->css_online() is guaranteed to be visible in the
3384 * future iterations and will stay visible until the last reference is put.
3385 * A css which hasn't finished ->css_online() or already finished
3386 * ->css_offline() may show up during traversal. It's each subsystem's
3387 * responsibility to synchronize against on/offlining.
3388 */
3389 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3390 struct cgroup_subsys_state *parent)
3391 {
3392 struct cgroup_subsys_state *next;
3393
3394 cgroup_assert_mutex_or_rcu_locked();
3395
3396 /*
3397 * @pos could already have been unlinked from the sibling list.
3398 * Once a cgroup is removed, its ->sibling.next is no longer
3399 * updated when its next sibling changes. CSS_RELEASED is set when
3400 * @pos is taken off list, at which time its next pointer is valid,
3401 * and, as releases are serialized, the one pointed to by the next
3402 * pointer is guaranteed to not have started release yet. This
3403 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3404 * critical section, the one pointed to by its next pointer is
3405 * guaranteed to not have finished its RCU grace period even if we
3406 * have dropped rcu_read_lock() inbetween iterations.
3407 *
3408 * If @pos has CSS_RELEASED set, its next pointer can't be
3409 * dereferenced; however, as each css is given a monotonically
3410 * increasing unique serial number and always appended to the
3411 * sibling list, the next one can be found by walking the parent's
3412 * children until the first css with higher serial number than
3413 * @pos's. While this path can be slower, it happens iff iteration
3414 * races against release and the race window is very small.
3415 */
3416 if (!pos) {
3417 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3418 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3419 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3420 } else {
3421 list_for_each_entry_rcu(next, &parent->children, sibling)
3422 if (next->serial_nr > pos->serial_nr)
3423 break;
3424 }
3425
3426 /*
3427 * @next, if not pointing to the head, can be dereferenced and is
3428 * the next sibling.
3429 */
3430 if (&next->sibling != &parent->children)
3431 return next;
3432 return NULL;
3433 }
3434
3435 /**
3436 * css_next_descendant_pre - find the next descendant for pre-order walk
3437 * @pos: the current position (%NULL to initiate traversal)
3438 * @root: css whose descendants to walk
3439 *
3440 * To be used by css_for_each_descendant_pre(). Find the next descendant
3441 * to visit for pre-order traversal of @root's descendants. @root is
3442 * included in the iteration and the first node to be visited.
3443 *
3444 * While this function requires cgroup_mutex or RCU read locking, it
3445 * doesn't require the whole traversal to be contained in a single critical
3446 * section. This function will return the correct next descendant as long
3447 * as both @pos and @root are accessible and @pos is a descendant of @root.
3448 *
3449 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3450 * css which finished ->css_online() is guaranteed to be visible in the
3451 * future iterations and will stay visible until the last reference is put.
3452 * A css which hasn't finished ->css_online() or already finished
3453 * ->css_offline() may show up during traversal. It's each subsystem's
3454 * responsibility to synchronize against on/offlining.
3455 */
3456 struct cgroup_subsys_state *
3457 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3458 struct cgroup_subsys_state *root)
3459 {
3460 struct cgroup_subsys_state *next;
3461
3462 cgroup_assert_mutex_or_rcu_locked();
3463
3464 /* if first iteration, visit @root */
3465 if (!pos)
3466 return root;
3467
3468 /* visit the first child if exists */
3469 next = css_next_child(NULL, pos);
3470 if (next)
3471 return next;
3472
3473 /* no child, visit my or the closest ancestor's next sibling */
3474 while (pos != root) {
3475 next = css_next_child(pos, pos->parent);
3476 if (next)
3477 return next;
3478 pos = pos->parent;
3479 }
3480
3481 return NULL;
3482 }
3483
3484 /**
3485 * css_rightmost_descendant - return the rightmost descendant of a css
3486 * @pos: css of interest
3487 *
3488 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3489 * is returned. This can be used during pre-order traversal to skip
3490 * subtree of @pos.
3491 *
3492 * While this function requires cgroup_mutex or RCU read locking, it
3493 * doesn't require the whole traversal to be contained in a single critical
3494 * section. This function will return the correct rightmost descendant as
3495 * long as @pos is accessible.
3496 */
3497 struct cgroup_subsys_state *
3498 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3499 {
3500 struct cgroup_subsys_state *last, *tmp;
3501
3502 cgroup_assert_mutex_or_rcu_locked();
3503
3504 do {
3505 last = pos;
3506 /* ->prev isn't RCU safe, walk ->next till the end */
3507 pos = NULL;
3508 css_for_each_child(tmp, last)
3509 pos = tmp;
3510 } while (pos);
3511
3512 return last;
3513 }
3514
3515 static struct cgroup_subsys_state *
3516 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3517 {
3518 struct cgroup_subsys_state *last;
3519
3520 do {
3521 last = pos;
3522 pos = css_next_child(NULL, pos);
3523 } while (pos);
3524
3525 return last;
3526 }
3527
3528 /**
3529 * css_next_descendant_post - find the next descendant for post-order walk
3530 * @pos: the current position (%NULL to initiate traversal)
3531 * @root: css whose descendants to walk
3532 *
3533 * To be used by css_for_each_descendant_post(). Find the next descendant
3534 * to visit for post-order traversal of @root's descendants. @root is
3535 * included in the iteration and the last node to be visited.
3536 *
3537 * While this function requires cgroup_mutex or RCU read locking, it
3538 * doesn't require the whole traversal to be contained in a single critical
3539 * section. This function will return the correct next descendant as long
3540 * as both @pos and @cgroup are accessible and @pos is a descendant of
3541 * @cgroup.
3542 *
3543 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3544 * css which finished ->css_online() is guaranteed to be visible in the
3545 * future iterations and will stay visible until the last reference is put.
3546 * A css which hasn't finished ->css_online() or already finished
3547 * ->css_offline() may show up during traversal. It's each subsystem's
3548 * responsibility to synchronize against on/offlining.
3549 */
3550 struct cgroup_subsys_state *
3551 css_next_descendant_post(struct cgroup_subsys_state *pos,
3552 struct cgroup_subsys_state *root)
3553 {
3554 struct cgroup_subsys_state *next;
3555
3556 cgroup_assert_mutex_or_rcu_locked();
3557
3558 /* if first iteration, visit leftmost descendant which may be @root */
3559 if (!pos)
3560 return css_leftmost_descendant(root);
3561
3562 /* if we visited @root, we're done */
3563 if (pos == root)
3564 return NULL;
3565
3566 /* if there's an unvisited sibling, visit its leftmost descendant */
3567 next = css_next_child(pos, pos->parent);
3568 if (next)
3569 return css_leftmost_descendant(next);
3570
3571 /* no sibling left, visit parent */
3572 return pos->parent;
3573 }
3574
3575 /**
3576 * css_has_online_children - does a css have online children
3577 * @css: the target css
3578 *
3579 * Returns %true if @css has any online children; otherwise, %false. This
3580 * function can be called from any context but the caller is responsible
3581 * for synchronizing against on/offlining as necessary.
3582 */
3583 bool css_has_online_children(struct cgroup_subsys_state *css)
3584 {
3585 struct cgroup_subsys_state *child;
3586 bool ret = false;
3587
3588 rcu_read_lock();
3589 css_for_each_child(child, css) {
3590 if (child->flags & CSS_ONLINE) {
3591 ret = true;
3592 break;
3593 }
3594 }
3595 rcu_read_unlock();
3596 return ret;
3597 }
3598
3599 /**
3600 * css_advance_task_iter - advance a task itererator to the next css_set
3601 * @it: the iterator to advance
3602 *
3603 * Advance @it to the next css_set to walk.
3604 */
3605 static void css_advance_task_iter(struct css_task_iter *it)
3606 {
3607 struct list_head *l = it->cset_pos;
3608 struct cgrp_cset_link *link;
3609 struct css_set *cset;
3610
3611 /* Advance to the next non-empty css_set */
3612 do {
3613 l = l->next;
3614 if (l == it->cset_head) {
3615 it->cset_pos = NULL;
3616 return;
3617 }
3618
3619 if (it->ss) {
3620 cset = container_of(l, struct css_set,
3621 e_cset_node[it->ss->id]);
3622 } else {
3623 link = list_entry(l, struct cgrp_cset_link, cset_link);
3624 cset = link->cset;
3625 }
3626 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3627
3628 it->cset_pos = l;
3629
3630 if (!list_empty(&cset->tasks))
3631 it->task_pos = cset->tasks.next;
3632 else
3633 it->task_pos = cset->mg_tasks.next;
3634
3635 it->tasks_head = &cset->tasks;
3636 it->mg_tasks_head = &cset->mg_tasks;
3637 }
3638
3639 /**
3640 * css_task_iter_start - initiate task iteration
3641 * @css: the css to walk tasks of
3642 * @it: the task iterator to use
3643 *
3644 * Initiate iteration through the tasks of @css. The caller can call
3645 * css_task_iter_next() to walk through the tasks until the function
3646 * returns NULL. On completion of iteration, css_task_iter_end() must be
3647 * called.
3648 *
3649 * Note that this function acquires a lock which is released when the
3650 * iteration finishes. The caller can't sleep while iteration is in
3651 * progress.
3652 */
3653 void css_task_iter_start(struct cgroup_subsys_state *css,
3654 struct css_task_iter *it)
3655 __acquires(css_set_rwsem)
3656 {
3657 /* no one should try to iterate before mounting cgroups */
3658 WARN_ON_ONCE(!use_task_css_set_links);
3659
3660 down_read(&css_set_rwsem);
3661
3662 it->ss = css->ss;
3663
3664 if (it->ss)
3665 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3666 else
3667 it->cset_pos = &css->cgroup->cset_links;
3668
3669 it->cset_head = it->cset_pos;
3670
3671 css_advance_task_iter(it);
3672 }
3673
3674 /**
3675 * css_task_iter_next - return the next task for the iterator
3676 * @it: the task iterator being iterated
3677 *
3678 * The "next" function for task iteration. @it should have been
3679 * initialized via css_task_iter_start(). Returns NULL when the iteration
3680 * reaches the end.
3681 */
3682 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3683 {
3684 struct task_struct *res;
3685 struct list_head *l = it->task_pos;
3686
3687 /* If the iterator cg is NULL, we have no tasks */
3688 if (!it->cset_pos)
3689 return NULL;
3690 res = list_entry(l, struct task_struct, cg_list);
3691
3692 /*
3693 * Advance iterator to find next entry. cset->tasks is consumed
3694 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3695 * next cset.
3696 */
3697 l = l->next;
3698
3699 if (l == it->tasks_head)
3700 l = it->mg_tasks_head->next;
3701
3702 if (l == it->mg_tasks_head)
3703 css_advance_task_iter(it);
3704 else
3705 it->task_pos = l;
3706
3707 return res;
3708 }
3709
3710 /**
3711 * css_task_iter_end - finish task iteration
3712 * @it: the task iterator to finish
3713 *
3714 * Finish task iteration started by css_task_iter_start().
3715 */
3716 void css_task_iter_end(struct css_task_iter *it)
3717 __releases(css_set_rwsem)
3718 {
3719 up_read(&css_set_rwsem);
3720 }
3721
3722 /**
3723 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3724 * @to: cgroup to which the tasks will be moved
3725 * @from: cgroup in which the tasks currently reside
3726 *
3727 * Locking rules between cgroup_post_fork() and the migration path
3728 * guarantee that, if a task is forking while being migrated, the new child
3729 * is guaranteed to be either visible in the source cgroup after the
3730 * parent's migration is complete or put into the target cgroup. No task
3731 * can slip out of migration through forking.
3732 */
3733 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3734 {
3735 LIST_HEAD(preloaded_csets);
3736 struct cgrp_cset_link *link;
3737 struct css_task_iter it;
3738 struct task_struct *task;
3739 int ret;
3740
3741 mutex_lock(&cgroup_mutex);
3742
3743 /* all tasks in @from are being moved, all csets are source */
3744 down_read(&css_set_rwsem);
3745 list_for_each_entry(link, &from->cset_links, cset_link)
3746 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3747 up_read(&css_set_rwsem);
3748
3749 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3750 if (ret)
3751 goto out_err;
3752
3753 /*
3754 * Migrate tasks one-by-one until @form is empty. This fails iff
3755 * ->can_attach() fails.
3756 */
3757 do {
3758 css_task_iter_start(&from->self, &it);
3759 task = css_task_iter_next(&it);
3760 if (task)
3761 get_task_struct(task);
3762 css_task_iter_end(&it);
3763
3764 if (task) {
3765 ret = cgroup_migrate(to, task, false);
3766 put_task_struct(task);
3767 }
3768 } while (task && !ret);
3769 out_err:
3770 cgroup_migrate_finish(&preloaded_csets);
3771 mutex_unlock(&cgroup_mutex);
3772 return ret;
3773 }
3774
3775 /*
3776 * Stuff for reading the 'tasks'/'procs' files.
3777 *
3778 * Reading this file can return large amounts of data if a cgroup has
3779 * *lots* of attached tasks. So it may need several calls to read(),
3780 * but we cannot guarantee that the information we produce is correct
3781 * unless we produce it entirely atomically.
3782 *
3783 */
3784
3785 /* which pidlist file are we talking about? */
3786 enum cgroup_filetype {
3787 CGROUP_FILE_PROCS,
3788 CGROUP_FILE_TASKS,
3789 };
3790
3791 /*
3792 * A pidlist is a list of pids that virtually represents the contents of one
3793 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3794 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3795 * to the cgroup.
3796 */
3797 struct cgroup_pidlist {
3798 /*
3799 * used to find which pidlist is wanted. doesn't change as long as
3800 * this particular list stays in the list.
3801 */
3802 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3803 /* array of xids */
3804 pid_t *list;
3805 /* how many elements the above list has */
3806 int length;
3807 /* each of these stored in a list by its cgroup */
3808 struct list_head links;
3809 /* pointer to the cgroup we belong to, for list removal purposes */
3810 struct cgroup *owner;
3811 /* for delayed destruction */
3812 struct delayed_work destroy_dwork;
3813 };
3814
3815 /*
3816 * The following two functions "fix" the issue where there are more pids
3817 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3818 * TODO: replace with a kernel-wide solution to this problem
3819 */
3820 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3821 static void *pidlist_allocate(int count)
3822 {
3823 if (PIDLIST_TOO_LARGE(count))
3824 return vmalloc(count * sizeof(pid_t));
3825 else
3826 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3827 }
3828
3829 static void pidlist_free(void *p)
3830 {
3831 kvfree(p);
3832 }
3833
3834 /*
3835 * Used to destroy all pidlists lingering waiting for destroy timer. None
3836 * should be left afterwards.
3837 */
3838 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3839 {
3840 struct cgroup_pidlist *l, *tmp_l;
3841
3842 mutex_lock(&cgrp->pidlist_mutex);
3843 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3844 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3845 mutex_unlock(&cgrp->pidlist_mutex);
3846
3847 flush_workqueue(cgroup_pidlist_destroy_wq);
3848 BUG_ON(!list_empty(&cgrp->pidlists));
3849 }
3850
3851 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3852 {
3853 struct delayed_work *dwork = to_delayed_work(work);
3854 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3855 destroy_dwork);
3856 struct cgroup_pidlist *tofree = NULL;
3857
3858 mutex_lock(&l->owner->pidlist_mutex);
3859
3860 /*
3861 * Destroy iff we didn't get queued again. The state won't change
3862 * as destroy_dwork can only be queued while locked.
3863 */
3864 if (!delayed_work_pending(dwork)) {
3865 list_del(&l->links);
3866 pidlist_free(l->list);
3867 put_pid_ns(l->key.ns);
3868 tofree = l;
3869 }
3870
3871 mutex_unlock(&l->owner->pidlist_mutex);
3872 kfree(tofree);
3873 }
3874
3875 /*
3876 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3877 * Returns the number of unique elements.
3878 */
3879 static int pidlist_uniq(pid_t *list, int length)
3880 {
3881 int src, dest = 1;
3882
3883 /*
3884 * we presume the 0th element is unique, so i starts at 1. trivial
3885 * edge cases first; no work needs to be done for either
3886 */
3887 if (length == 0 || length == 1)
3888 return length;
3889 /* src and dest walk down the list; dest counts unique elements */
3890 for (src = 1; src < length; src++) {
3891 /* find next unique element */
3892 while (list[src] == list[src-1]) {
3893 src++;
3894 if (src == length)
3895 goto after;
3896 }
3897 /* dest always points to where the next unique element goes */
3898 list[dest] = list[src];
3899 dest++;
3900 }
3901 after:
3902 return dest;
3903 }
3904
3905 /*
3906 * The two pid files - task and cgroup.procs - guaranteed that the result
3907 * is sorted, which forced this whole pidlist fiasco. As pid order is
3908 * different per namespace, each namespace needs differently sorted list,
3909 * making it impossible to use, for example, single rbtree of member tasks
3910 * sorted by task pointer. As pidlists can be fairly large, allocating one
3911 * per open file is dangerous, so cgroup had to implement shared pool of
3912 * pidlists keyed by cgroup and namespace.
3913 *
3914 * All this extra complexity was caused by the original implementation
3915 * committing to an entirely unnecessary property. In the long term, we
3916 * want to do away with it. Explicitly scramble sort order if on the
3917 * default hierarchy so that no such expectation exists in the new
3918 * interface.
3919 *
3920 * Scrambling is done by swapping every two consecutive bits, which is
3921 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3922 */
3923 static pid_t pid_fry(pid_t pid)
3924 {
3925 unsigned a = pid & 0x55555555;
3926 unsigned b = pid & 0xAAAAAAAA;
3927
3928 return (a << 1) | (b >> 1);
3929 }
3930
3931 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3932 {
3933 if (cgroup_on_dfl(cgrp))
3934 return pid_fry(pid);
3935 else
3936 return pid;
3937 }
3938
3939 static int cmppid(const void *a, const void *b)
3940 {
3941 return *(pid_t *)a - *(pid_t *)b;
3942 }
3943
3944 static int fried_cmppid(const void *a, const void *b)
3945 {
3946 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3947 }
3948
3949 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3950 enum cgroup_filetype type)
3951 {
3952 struct cgroup_pidlist *l;
3953 /* don't need task_nsproxy() if we're looking at ourself */
3954 struct pid_namespace *ns = task_active_pid_ns(current);
3955
3956 lockdep_assert_held(&cgrp->pidlist_mutex);
3957
3958 list_for_each_entry(l, &cgrp->pidlists, links)
3959 if (l->key.type == type && l->key.ns == ns)
3960 return l;
3961 return NULL;
3962 }
3963
3964 /*
3965 * find the appropriate pidlist for our purpose (given procs vs tasks)
3966 * returns with the lock on that pidlist already held, and takes care
3967 * of the use count, or returns NULL with no locks held if we're out of
3968 * memory.
3969 */
3970 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3971 enum cgroup_filetype type)
3972 {
3973 struct cgroup_pidlist *l;
3974
3975 lockdep_assert_held(&cgrp->pidlist_mutex);
3976
3977 l = cgroup_pidlist_find(cgrp, type);
3978 if (l)
3979 return l;
3980
3981 /* entry not found; create a new one */
3982 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3983 if (!l)
3984 return l;
3985
3986 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3987 l->key.type = type;
3988 /* don't need task_nsproxy() if we're looking at ourself */
3989 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3990 l->owner = cgrp;
3991 list_add(&l->links, &cgrp->pidlists);
3992 return l;
3993 }
3994
3995 /*
3996 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3997 */
3998 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3999 struct cgroup_pidlist **lp)
4000 {
4001 pid_t *array;
4002 int length;
4003 int pid, n = 0; /* used for populating the array */
4004 struct css_task_iter it;
4005 struct task_struct *tsk;
4006 struct cgroup_pidlist *l;
4007
4008 lockdep_assert_held(&cgrp->pidlist_mutex);
4009
4010 /*
4011 * If cgroup gets more users after we read count, we won't have
4012 * enough space - tough. This race is indistinguishable to the
4013 * caller from the case that the additional cgroup users didn't
4014 * show up until sometime later on.
4015 */
4016 length = cgroup_task_count(cgrp);
4017 array = pidlist_allocate(length);
4018 if (!array)
4019 return -ENOMEM;
4020 /* now, populate the array */
4021 css_task_iter_start(&cgrp->self, &it);
4022 while ((tsk = css_task_iter_next(&it))) {
4023 if (unlikely(n == length))
4024 break;
4025 /* get tgid or pid for procs or tasks file respectively */
4026 if (type == CGROUP_FILE_PROCS)
4027 pid = task_tgid_vnr(tsk);
4028 else
4029 pid = task_pid_vnr(tsk);
4030 if (pid > 0) /* make sure to only use valid results */
4031 array[n++] = pid;
4032 }
4033 css_task_iter_end(&it);
4034 length = n;
4035 /* now sort & (if procs) strip out duplicates */
4036 if (cgroup_on_dfl(cgrp))
4037 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4038 else
4039 sort(array, length, sizeof(pid_t), cmppid, NULL);
4040 if (type == CGROUP_FILE_PROCS)
4041 length = pidlist_uniq(array, length);
4042
4043 l = cgroup_pidlist_find_create(cgrp, type);
4044 if (!l) {
4045 pidlist_free(array);
4046 return -ENOMEM;
4047 }
4048
4049 /* store array, freeing old if necessary */
4050 pidlist_free(l->list);
4051 l->list = array;
4052 l->length = length;
4053 *lp = l;
4054 return 0;
4055 }
4056
4057 /**
4058 * cgroupstats_build - build and fill cgroupstats
4059 * @stats: cgroupstats to fill information into
4060 * @dentry: A dentry entry belonging to the cgroup for which stats have
4061 * been requested.
4062 *
4063 * Build and fill cgroupstats so that taskstats can export it to user
4064 * space.
4065 */
4066 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4067 {
4068 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4069 struct cgroup *cgrp;
4070 struct css_task_iter it;
4071 struct task_struct *tsk;
4072
4073 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4074 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4075 kernfs_type(kn) != KERNFS_DIR)
4076 return -EINVAL;
4077
4078 mutex_lock(&cgroup_mutex);
4079
4080 /*
4081 * We aren't being called from kernfs and there's no guarantee on
4082 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4083 * @kn->priv is RCU safe. Let's do the RCU dancing.
4084 */
4085 rcu_read_lock();
4086 cgrp = rcu_dereference(kn->priv);
4087 if (!cgrp || cgroup_is_dead(cgrp)) {
4088 rcu_read_unlock();
4089 mutex_unlock(&cgroup_mutex);
4090 return -ENOENT;
4091 }
4092 rcu_read_unlock();
4093
4094 css_task_iter_start(&cgrp->self, &it);
4095 while ((tsk = css_task_iter_next(&it))) {
4096 switch (tsk->state) {
4097 case TASK_RUNNING:
4098 stats->nr_running++;
4099 break;
4100 case TASK_INTERRUPTIBLE:
4101 stats->nr_sleeping++;
4102 break;
4103 case TASK_UNINTERRUPTIBLE:
4104 stats->nr_uninterruptible++;
4105 break;
4106 case TASK_STOPPED:
4107 stats->nr_stopped++;
4108 break;
4109 default:
4110 if (delayacct_is_task_waiting_on_io(tsk))
4111 stats->nr_io_wait++;
4112 break;
4113 }
4114 }
4115 css_task_iter_end(&it);
4116
4117 mutex_unlock(&cgroup_mutex);
4118 return 0;
4119 }
4120
4121
4122 /*
4123 * seq_file methods for the tasks/procs files. The seq_file position is the
4124 * next pid to display; the seq_file iterator is a pointer to the pid
4125 * in the cgroup->l->list array.
4126 */
4127
4128 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4129 {
4130 /*
4131 * Initially we receive a position value that corresponds to
4132 * one more than the last pid shown (or 0 on the first call or
4133 * after a seek to the start). Use a binary-search to find the
4134 * next pid to display, if any
4135 */
4136 struct kernfs_open_file *of = s->private;
4137 struct cgroup *cgrp = seq_css(s)->cgroup;
4138 struct cgroup_pidlist *l;
4139 enum cgroup_filetype type = seq_cft(s)->private;
4140 int index = 0, pid = *pos;
4141 int *iter, ret;
4142
4143 mutex_lock(&cgrp->pidlist_mutex);
4144
4145 /*
4146 * !NULL @of->priv indicates that this isn't the first start()
4147 * after open. If the matching pidlist is around, we can use that.
4148 * Look for it. Note that @of->priv can't be used directly. It
4149 * could already have been destroyed.
4150 */
4151 if (of->priv)
4152 of->priv = cgroup_pidlist_find(cgrp, type);
4153
4154 /*
4155 * Either this is the first start() after open or the matching
4156 * pidlist has been destroyed inbetween. Create a new one.
4157 */
4158 if (!of->priv) {
4159 ret = pidlist_array_load(cgrp, type,
4160 (struct cgroup_pidlist **)&of->priv);
4161 if (ret)
4162 return ERR_PTR(ret);
4163 }
4164 l = of->priv;
4165
4166 if (pid) {
4167 int end = l->length;
4168
4169 while (index < end) {
4170 int mid = (index + end) / 2;
4171 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4172 index = mid;
4173 break;
4174 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4175 index = mid + 1;
4176 else
4177 end = mid;
4178 }
4179 }
4180 /* If we're off the end of the array, we're done */
4181 if (index >= l->length)
4182 return NULL;
4183 /* Update the abstract position to be the actual pid that we found */
4184 iter = l->list + index;
4185 *pos = cgroup_pid_fry(cgrp, *iter);
4186 return iter;
4187 }
4188
4189 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4190 {
4191 struct kernfs_open_file *of = s->private;
4192 struct cgroup_pidlist *l = of->priv;
4193
4194 if (l)
4195 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4196 CGROUP_PIDLIST_DESTROY_DELAY);
4197 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4198 }
4199
4200 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4201 {
4202 struct kernfs_open_file *of = s->private;
4203 struct cgroup_pidlist *l = of->priv;
4204 pid_t *p = v;
4205 pid_t *end = l->list + l->length;
4206 /*
4207 * Advance to the next pid in the array. If this goes off the
4208 * end, we're done
4209 */
4210 p++;
4211 if (p >= end) {
4212 return NULL;
4213 } else {
4214 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4215 return p;
4216 }
4217 }
4218
4219 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4220 {
4221 seq_printf(s, "%d\n", *(int *)v);
4222
4223 return 0;
4224 }
4225
4226 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4227 struct cftype *cft)
4228 {
4229 return notify_on_release(css->cgroup);
4230 }
4231
4232 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4233 struct cftype *cft, u64 val)
4234 {
4235 if (val)
4236 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4237 else
4238 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4239 return 0;
4240 }
4241
4242 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4243 struct cftype *cft)
4244 {
4245 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4246 }
4247
4248 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4249 struct cftype *cft, u64 val)
4250 {
4251 if (val)
4252 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4253 else
4254 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4255 return 0;
4256 }
4257
4258 /* cgroup core interface files for the default hierarchy */
4259 static struct cftype cgroup_dfl_base_files[] = {
4260 {
4261 .name = "cgroup.procs",
4262 .seq_start = cgroup_pidlist_start,
4263 .seq_next = cgroup_pidlist_next,
4264 .seq_stop = cgroup_pidlist_stop,
4265 .seq_show = cgroup_pidlist_show,
4266 .private = CGROUP_FILE_PROCS,
4267 .write = cgroup_procs_write,
4268 .mode = S_IRUGO | S_IWUSR,
4269 },
4270 {
4271 .name = "cgroup.controllers",
4272 .flags = CFTYPE_ONLY_ON_ROOT,
4273 .seq_show = cgroup_root_controllers_show,
4274 },
4275 {
4276 .name = "cgroup.controllers",
4277 .flags = CFTYPE_NOT_ON_ROOT,
4278 .seq_show = cgroup_controllers_show,
4279 },
4280 {
4281 .name = "cgroup.subtree_control",
4282 .seq_show = cgroup_subtree_control_show,
4283 .write = cgroup_subtree_control_write,
4284 },
4285 {
4286 .name = "cgroup.populated",
4287 .flags = CFTYPE_NOT_ON_ROOT,
4288 .seq_show = cgroup_populated_show,
4289 },
4290 { } /* terminate */
4291 };
4292
4293 /* cgroup core interface files for the legacy hierarchies */
4294 static struct cftype cgroup_legacy_base_files[] = {
4295 {
4296 .name = "cgroup.procs",
4297 .seq_start = cgroup_pidlist_start,
4298 .seq_next = cgroup_pidlist_next,
4299 .seq_stop = cgroup_pidlist_stop,
4300 .seq_show = cgroup_pidlist_show,
4301 .private = CGROUP_FILE_PROCS,
4302 .write = cgroup_procs_write,
4303 .mode = S_IRUGO | S_IWUSR,
4304 },
4305 {
4306 .name = "cgroup.clone_children",
4307 .read_u64 = cgroup_clone_children_read,
4308 .write_u64 = cgroup_clone_children_write,
4309 },
4310 {
4311 .name = "cgroup.sane_behavior",
4312 .flags = CFTYPE_ONLY_ON_ROOT,
4313 .seq_show = cgroup_sane_behavior_show,
4314 },
4315 {
4316 .name = "tasks",
4317 .seq_start = cgroup_pidlist_start,
4318 .seq_next = cgroup_pidlist_next,
4319 .seq_stop = cgroup_pidlist_stop,
4320 .seq_show = cgroup_pidlist_show,
4321 .private = CGROUP_FILE_TASKS,
4322 .write = cgroup_tasks_write,
4323 .mode = S_IRUGO | S_IWUSR,
4324 },
4325 {
4326 .name = "notify_on_release",
4327 .read_u64 = cgroup_read_notify_on_release,
4328 .write_u64 = cgroup_write_notify_on_release,
4329 },
4330 {
4331 .name = "release_agent",
4332 .flags = CFTYPE_ONLY_ON_ROOT,
4333 .seq_show = cgroup_release_agent_show,
4334 .write = cgroup_release_agent_write,
4335 .max_write_len = PATH_MAX - 1,
4336 },
4337 { } /* terminate */
4338 };
4339
4340 /**
4341 * cgroup_populate_dir - create subsys files in a cgroup directory
4342 * @cgrp: target cgroup
4343 * @subsys_mask: mask of the subsystem ids whose files should be added
4344 *
4345 * On failure, no file is added.
4346 */
4347 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4348 {
4349 struct cgroup_subsys *ss;
4350 int i, ret = 0;
4351
4352 /* process cftsets of each subsystem */
4353 for_each_subsys(ss, i) {
4354 struct cftype *cfts;
4355
4356 if (!(subsys_mask & (1 << i)))
4357 continue;
4358
4359 list_for_each_entry(cfts, &ss->cfts, node) {
4360 ret = cgroup_addrm_files(cgrp, cfts, true);
4361 if (ret < 0)
4362 goto err;
4363 }
4364 }
4365 return 0;
4366 err:
4367 cgroup_clear_dir(cgrp, subsys_mask);
4368 return ret;
4369 }
4370
4371 /*
4372 * css destruction is four-stage process.
4373 *
4374 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4375 * Implemented in kill_css().
4376 *
4377 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4378 * and thus css_tryget_online() is guaranteed to fail, the css can be
4379 * offlined by invoking offline_css(). After offlining, the base ref is
4380 * put. Implemented in css_killed_work_fn().
4381 *
4382 * 3. When the percpu_ref reaches zero, the only possible remaining
4383 * accessors are inside RCU read sections. css_release() schedules the
4384 * RCU callback.
4385 *
4386 * 4. After the grace period, the css can be freed. Implemented in
4387 * css_free_work_fn().
4388 *
4389 * It is actually hairier because both step 2 and 4 require process context
4390 * and thus involve punting to css->destroy_work adding two additional
4391 * steps to the already complex sequence.
4392 */
4393 static void css_free_work_fn(struct work_struct *work)
4394 {
4395 struct cgroup_subsys_state *css =
4396 container_of(work, struct cgroup_subsys_state, destroy_work);
4397 struct cgroup_subsys *ss = css->ss;
4398 struct cgroup *cgrp = css->cgroup;
4399
4400 percpu_ref_exit(&css->refcnt);
4401
4402 if (ss) {
4403 /* css free path */
4404 int id = css->id;
4405
4406 if (css->parent)
4407 css_put(css->parent);
4408
4409 ss->css_free(css);
4410 cgroup_idr_remove(&ss->css_idr, id);
4411 cgroup_put(cgrp);
4412 } else {
4413 /* cgroup free path */
4414 atomic_dec(&cgrp->root->nr_cgrps);
4415 cgroup_pidlist_destroy_all(cgrp);
4416 cancel_work_sync(&cgrp->release_agent_work);
4417
4418 if (cgroup_parent(cgrp)) {
4419 /*
4420 * We get a ref to the parent, and put the ref when
4421 * this cgroup is being freed, so it's guaranteed
4422 * that the parent won't be destroyed before its
4423 * children.
4424 */
4425 cgroup_put(cgroup_parent(cgrp));
4426 kernfs_put(cgrp->kn);
4427 kfree(cgrp);
4428 } else {
4429 /*
4430 * This is root cgroup's refcnt reaching zero,
4431 * which indicates that the root should be
4432 * released.
4433 */
4434 cgroup_destroy_root(cgrp->root);
4435 }
4436 }
4437 }
4438
4439 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4440 {
4441 struct cgroup_subsys_state *css =
4442 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4443
4444 INIT_WORK(&css->destroy_work, css_free_work_fn);
4445 queue_work(cgroup_destroy_wq, &css->destroy_work);
4446 }
4447
4448 static void css_release_work_fn(struct work_struct *work)
4449 {
4450 struct cgroup_subsys_state *css =
4451 container_of(work, struct cgroup_subsys_state, destroy_work);
4452 struct cgroup_subsys *ss = css->ss;
4453 struct cgroup *cgrp = css->cgroup;
4454
4455 mutex_lock(&cgroup_mutex);
4456
4457 css->flags |= CSS_RELEASED;
4458 list_del_rcu(&css->sibling);
4459
4460 if (ss) {
4461 /* css release path */
4462 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4463 if (ss->css_released)
4464 ss->css_released(css);
4465 } else {
4466 /* cgroup release path */
4467 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4468 cgrp->id = -1;
4469
4470 /*
4471 * There are two control paths which try to determine
4472 * cgroup from dentry without going through kernfs -
4473 * cgroupstats_build() and css_tryget_online_from_dir().
4474 * Those are supported by RCU protecting clearing of
4475 * cgrp->kn->priv backpointer.
4476 */
4477 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4478 }
4479
4480 mutex_unlock(&cgroup_mutex);
4481
4482 call_rcu(&css->rcu_head, css_free_rcu_fn);
4483 }
4484
4485 static void css_release(struct percpu_ref *ref)
4486 {
4487 struct cgroup_subsys_state *css =
4488 container_of(ref, struct cgroup_subsys_state, refcnt);
4489
4490 INIT_WORK(&css->destroy_work, css_release_work_fn);
4491 queue_work(cgroup_destroy_wq, &css->destroy_work);
4492 }
4493
4494 static void init_and_link_css(struct cgroup_subsys_state *css,
4495 struct cgroup_subsys *ss, struct cgroup *cgrp)
4496 {
4497 lockdep_assert_held(&cgroup_mutex);
4498
4499 cgroup_get(cgrp);
4500
4501 memset(css, 0, sizeof(*css));
4502 css->cgroup = cgrp;
4503 css->ss = ss;
4504 INIT_LIST_HEAD(&css->sibling);
4505 INIT_LIST_HEAD(&css->children);
4506 css->serial_nr = css_serial_nr_next++;
4507
4508 if (cgroup_parent(cgrp)) {
4509 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4510 css_get(css->parent);
4511 }
4512
4513 BUG_ON(cgroup_css(cgrp, ss));
4514 }
4515
4516 /* invoke ->css_online() on a new CSS and mark it online if successful */
4517 static int online_css(struct cgroup_subsys_state *css)
4518 {
4519 struct cgroup_subsys *ss = css->ss;
4520 int ret = 0;
4521
4522 lockdep_assert_held(&cgroup_mutex);
4523
4524 if (ss->css_online)
4525 ret = ss->css_online(css);
4526 if (!ret) {
4527 css->flags |= CSS_ONLINE;
4528 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4529 }
4530 return ret;
4531 }
4532
4533 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4534 static void offline_css(struct cgroup_subsys_state *css)
4535 {
4536 struct cgroup_subsys *ss = css->ss;
4537
4538 lockdep_assert_held(&cgroup_mutex);
4539
4540 if (!(css->flags & CSS_ONLINE))
4541 return;
4542
4543 if (ss->css_offline)
4544 ss->css_offline(css);
4545
4546 css->flags &= ~CSS_ONLINE;
4547 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4548
4549 wake_up_all(&css->cgroup->offline_waitq);
4550 }
4551
4552 /**
4553 * create_css - create a cgroup_subsys_state
4554 * @cgrp: the cgroup new css will be associated with
4555 * @ss: the subsys of new css
4556 * @visible: whether to create control knobs for the new css or not
4557 *
4558 * Create a new css associated with @cgrp - @ss pair. On success, the new
4559 * css is online and installed in @cgrp with all interface files created if
4560 * @visible. Returns 0 on success, -errno on failure.
4561 */
4562 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4563 bool visible)
4564 {
4565 struct cgroup *parent = cgroup_parent(cgrp);
4566 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4567 struct cgroup_subsys_state *css;
4568 int err;
4569
4570 lockdep_assert_held(&cgroup_mutex);
4571
4572 css = ss->css_alloc(parent_css);
4573 if (IS_ERR(css))
4574 return PTR_ERR(css);
4575
4576 init_and_link_css(css, ss, cgrp);
4577
4578 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4579 if (err)
4580 goto err_free_css;
4581
4582 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4583 if (err < 0)
4584 goto err_free_percpu_ref;
4585 css->id = err;
4586
4587 if (visible) {
4588 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4589 if (err)
4590 goto err_free_id;
4591 }
4592
4593 /* @css is ready to be brought online now, make it visible */
4594 list_add_tail_rcu(&css->sibling, &parent_css->children);
4595 cgroup_idr_replace(&ss->css_idr, css, css->id);
4596
4597 err = online_css(css);
4598 if (err)
4599 goto err_list_del;
4600
4601 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4602 cgroup_parent(parent)) {
4603 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4604 current->comm, current->pid, ss->name);
4605 if (!strcmp(ss->name, "memory"))
4606 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4607 ss->warned_broken_hierarchy = true;
4608 }
4609
4610 return 0;
4611
4612 err_list_del:
4613 list_del_rcu(&css->sibling);
4614 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4615 err_free_id:
4616 cgroup_idr_remove(&ss->css_idr, css->id);
4617 err_free_percpu_ref:
4618 percpu_ref_exit(&css->refcnt);
4619 err_free_css:
4620 call_rcu(&css->rcu_head, css_free_rcu_fn);
4621 return err;
4622 }
4623
4624 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4625 umode_t mode)
4626 {
4627 struct cgroup *parent, *cgrp;
4628 struct cgroup_root *root;
4629 struct cgroup_subsys *ss;
4630 struct kernfs_node *kn;
4631 struct cftype *base_files;
4632 int ssid, ret;
4633
4634 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4635 */
4636 if (strchr(name, '\n'))
4637 return -EINVAL;
4638
4639 parent = cgroup_kn_lock_live(parent_kn);
4640 if (!parent)
4641 return -ENODEV;
4642 root = parent->root;
4643
4644 /* allocate the cgroup and its ID, 0 is reserved for the root */
4645 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4646 if (!cgrp) {
4647 ret = -ENOMEM;
4648 goto out_unlock;
4649 }
4650
4651 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4652 if (ret)
4653 goto out_free_cgrp;
4654
4655 /*
4656 * Temporarily set the pointer to NULL, so idr_find() won't return
4657 * a half-baked cgroup.
4658 */
4659 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4660 if (cgrp->id < 0) {
4661 ret = -ENOMEM;
4662 goto out_cancel_ref;
4663 }
4664
4665 init_cgroup_housekeeping(cgrp);
4666
4667 cgrp->self.parent = &parent->self;
4668 cgrp->root = root;
4669
4670 if (notify_on_release(parent))
4671 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4672
4673 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4674 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4675
4676 /* create the directory */
4677 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4678 if (IS_ERR(kn)) {
4679 ret = PTR_ERR(kn);
4680 goto out_free_id;
4681 }
4682 cgrp->kn = kn;
4683
4684 /*
4685 * This extra ref will be put in cgroup_free_fn() and guarantees
4686 * that @cgrp->kn is always accessible.
4687 */
4688 kernfs_get(kn);
4689
4690 cgrp->self.serial_nr = css_serial_nr_next++;
4691
4692 /* allocation complete, commit to creation */
4693 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4694 atomic_inc(&root->nr_cgrps);
4695 cgroup_get(parent);
4696
4697 /*
4698 * @cgrp is now fully operational. If something fails after this
4699 * point, it'll be released via the normal destruction path.
4700 */
4701 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4702
4703 ret = cgroup_kn_set_ugid(kn);
4704 if (ret)
4705 goto out_destroy;
4706
4707 if (cgroup_on_dfl(cgrp))
4708 base_files = cgroup_dfl_base_files;
4709 else
4710 base_files = cgroup_legacy_base_files;
4711
4712 ret = cgroup_addrm_files(cgrp, base_files, true);
4713 if (ret)
4714 goto out_destroy;
4715
4716 /* let's create and online css's */
4717 for_each_subsys(ss, ssid) {
4718 if (parent->child_subsys_mask & (1 << ssid)) {
4719 ret = create_css(cgrp, ss,
4720 parent->subtree_control & (1 << ssid));
4721 if (ret)
4722 goto out_destroy;
4723 }
4724 }
4725
4726 /*
4727 * On the default hierarchy, a child doesn't automatically inherit
4728 * subtree_control from the parent. Each is configured manually.
4729 */
4730 if (!cgroup_on_dfl(cgrp)) {
4731 cgrp->subtree_control = parent->subtree_control;
4732 cgroup_refresh_child_subsys_mask(cgrp);
4733 }
4734
4735 kernfs_activate(kn);
4736
4737 ret = 0;
4738 goto out_unlock;
4739
4740 out_free_id:
4741 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4742 out_cancel_ref:
4743 percpu_ref_exit(&cgrp->self.refcnt);
4744 out_free_cgrp:
4745 kfree(cgrp);
4746 out_unlock:
4747 cgroup_kn_unlock(parent_kn);
4748 return ret;
4749
4750 out_destroy:
4751 cgroup_destroy_locked(cgrp);
4752 goto out_unlock;
4753 }
4754
4755 /*
4756 * This is called when the refcnt of a css is confirmed to be killed.
4757 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4758 * initate destruction and put the css ref from kill_css().
4759 */
4760 static void css_killed_work_fn(struct work_struct *work)
4761 {
4762 struct cgroup_subsys_state *css =
4763 container_of(work, struct cgroup_subsys_state, destroy_work);
4764
4765 mutex_lock(&cgroup_mutex);
4766 offline_css(css);
4767 mutex_unlock(&cgroup_mutex);
4768
4769 css_put(css);
4770 }
4771
4772 /* css kill confirmation processing requires process context, bounce */
4773 static void css_killed_ref_fn(struct percpu_ref *ref)
4774 {
4775 struct cgroup_subsys_state *css =
4776 container_of(ref, struct cgroup_subsys_state, refcnt);
4777
4778 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4779 queue_work(cgroup_destroy_wq, &css->destroy_work);
4780 }
4781
4782 /**
4783 * kill_css - destroy a css
4784 * @css: css to destroy
4785 *
4786 * This function initiates destruction of @css by removing cgroup interface
4787 * files and putting its base reference. ->css_offline() will be invoked
4788 * asynchronously once css_tryget_online() is guaranteed to fail and when
4789 * the reference count reaches zero, @css will be released.
4790 */
4791 static void kill_css(struct cgroup_subsys_state *css)
4792 {
4793 lockdep_assert_held(&cgroup_mutex);
4794
4795 /*
4796 * This must happen before css is disassociated with its cgroup.
4797 * See seq_css() for details.
4798 */
4799 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4800
4801 /*
4802 * Killing would put the base ref, but we need to keep it alive
4803 * until after ->css_offline().
4804 */
4805 css_get(css);
4806
4807 /*
4808 * cgroup core guarantees that, by the time ->css_offline() is
4809 * invoked, no new css reference will be given out via
4810 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4811 * proceed to offlining css's because percpu_ref_kill() doesn't
4812 * guarantee that the ref is seen as killed on all CPUs on return.
4813 *
4814 * Use percpu_ref_kill_and_confirm() to get notifications as each
4815 * css is confirmed to be seen as killed on all CPUs.
4816 */
4817 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4818 }
4819
4820 /**
4821 * cgroup_destroy_locked - the first stage of cgroup destruction
4822 * @cgrp: cgroup to be destroyed
4823 *
4824 * css's make use of percpu refcnts whose killing latency shouldn't be
4825 * exposed to userland and are RCU protected. Also, cgroup core needs to
4826 * guarantee that css_tryget_online() won't succeed by the time
4827 * ->css_offline() is invoked. To satisfy all the requirements,
4828 * destruction is implemented in the following two steps.
4829 *
4830 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4831 * userland visible parts and start killing the percpu refcnts of
4832 * css's. Set up so that the next stage will be kicked off once all
4833 * the percpu refcnts are confirmed to be killed.
4834 *
4835 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4836 * rest of destruction. Once all cgroup references are gone, the
4837 * cgroup is RCU-freed.
4838 *
4839 * This function implements s1. After this step, @cgrp is gone as far as
4840 * the userland is concerned and a new cgroup with the same name may be
4841 * created. As cgroup doesn't care about the names internally, this
4842 * doesn't cause any problem.
4843 */
4844 static int cgroup_destroy_locked(struct cgroup *cgrp)
4845 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4846 {
4847 struct cgroup_subsys_state *css;
4848 bool empty;
4849 int ssid;
4850
4851 lockdep_assert_held(&cgroup_mutex);
4852
4853 /*
4854 * css_set_rwsem synchronizes access to ->cset_links and prevents
4855 * @cgrp from being removed while put_css_set() is in progress.
4856 */
4857 down_read(&css_set_rwsem);
4858 empty = list_empty(&cgrp->cset_links);
4859 up_read(&css_set_rwsem);
4860 if (!empty)
4861 return -EBUSY;
4862
4863 /*
4864 * Make sure there's no live children. We can't test emptiness of
4865 * ->self.children as dead children linger on it while being
4866 * drained; otherwise, "rmdir parent/child parent" may fail.
4867 */
4868 if (css_has_online_children(&cgrp->self))
4869 return -EBUSY;
4870
4871 /*
4872 * Mark @cgrp dead. This prevents further task migration and child
4873 * creation by disabling cgroup_lock_live_group().
4874 */
4875 cgrp->self.flags &= ~CSS_ONLINE;
4876
4877 /* initiate massacre of all css's */
4878 for_each_css(css, ssid, cgrp)
4879 kill_css(css);
4880
4881 /*
4882 * Remove @cgrp directory along with the base files. @cgrp has an
4883 * extra ref on its kn.
4884 */
4885 kernfs_remove(cgrp->kn);
4886
4887 check_for_release(cgroup_parent(cgrp));
4888
4889 /* put the base reference */
4890 percpu_ref_kill(&cgrp->self.refcnt);
4891
4892 return 0;
4893 };
4894
4895 static int cgroup_rmdir(struct kernfs_node *kn)
4896 {
4897 struct cgroup *cgrp;
4898 int ret = 0;
4899
4900 cgrp = cgroup_kn_lock_live(kn);
4901 if (!cgrp)
4902 return 0;
4903
4904 ret = cgroup_destroy_locked(cgrp);
4905
4906 cgroup_kn_unlock(kn);
4907 return ret;
4908 }
4909
4910 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4911 .remount_fs = cgroup_remount,
4912 .show_options = cgroup_show_options,
4913 .mkdir = cgroup_mkdir,
4914 .rmdir = cgroup_rmdir,
4915 .rename = cgroup_rename,
4916 };
4917
4918 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4919 {
4920 struct cgroup_subsys_state *css;
4921
4922 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4923
4924 mutex_lock(&cgroup_mutex);
4925
4926 idr_init(&ss->css_idr);
4927 INIT_LIST_HEAD(&ss->cfts);
4928
4929 /* Create the root cgroup state for this subsystem */
4930 ss->root = &cgrp_dfl_root;
4931 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4932 /* We don't handle early failures gracefully */
4933 BUG_ON(IS_ERR(css));
4934 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4935
4936 /*
4937 * Root csses are never destroyed and we can't initialize
4938 * percpu_ref during early init. Disable refcnting.
4939 */
4940 css->flags |= CSS_NO_REF;
4941
4942 if (early) {
4943 /* allocation can't be done safely during early init */
4944 css->id = 1;
4945 } else {
4946 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4947 BUG_ON(css->id < 0);
4948 }
4949
4950 /* Update the init_css_set to contain a subsys
4951 * pointer to this state - since the subsystem is
4952 * newly registered, all tasks and hence the
4953 * init_css_set is in the subsystem's root cgroup. */
4954 init_css_set.subsys[ss->id] = css;
4955
4956 have_fork_callback |= (bool)ss->fork << ss->id;
4957 have_exit_callback |= (bool)ss->exit << ss->id;
4958
4959 /* At system boot, before all subsystems have been
4960 * registered, no tasks have been forked, so we don't
4961 * need to invoke fork callbacks here. */
4962 BUG_ON(!list_empty(&init_task.tasks));
4963
4964 BUG_ON(online_css(css));
4965
4966 mutex_unlock(&cgroup_mutex);
4967 }
4968
4969 /**
4970 * cgroup_init_early - cgroup initialization at system boot
4971 *
4972 * Initialize cgroups at system boot, and initialize any
4973 * subsystems that request early init.
4974 */
4975 int __init cgroup_init_early(void)
4976 {
4977 static struct cgroup_sb_opts __initdata opts;
4978 struct cgroup_subsys *ss;
4979 int i;
4980
4981 init_cgroup_root(&cgrp_dfl_root, &opts);
4982 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4983
4984 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4985
4986 for_each_subsys(ss, i) {
4987 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4988 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4989 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4990 ss->id, ss->name);
4991 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4992 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4993
4994 ss->id = i;
4995 ss->name = cgroup_subsys_name[i];
4996
4997 if (ss->early_init)
4998 cgroup_init_subsys(ss, true);
4999 }
5000 return 0;
5001 }
5002
5003 /**
5004 * cgroup_init - cgroup initialization
5005 *
5006 * Register cgroup filesystem and /proc file, and initialize
5007 * any subsystems that didn't request early init.
5008 */
5009 int __init cgroup_init(void)
5010 {
5011 struct cgroup_subsys *ss;
5012 unsigned long key;
5013 int ssid, err;
5014
5015 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5016 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5017 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5018
5019 mutex_lock(&cgroup_mutex);
5020
5021 /* Add init_css_set to the hash table */
5022 key = css_set_hash(init_css_set.subsys);
5023 hash_add(css_set_table, &init_css_set.hlist, key);
5024
5025 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5026
5027 mutex_unlock(&cgroup_mutex);
5028
5029 for_each_subsys(ss, ssid) {
5030 if (ss->early_init) {
5031 struct cgroup_subsys_state *css =
5032 init_css_set.subsys[ss->id];
5033
5034 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5035 GFP_KERNEL);
5036 BUG_ON(css->id < 0);
5037 } else {
5038 cgroup_init_subsys(ss, false);
5039 }
5040
5041 list_add_tail(&init_css_set.e_cset_node[ssid],
5042 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5043
5044 /*
5045 * Setting dfl_root subsys_mask needs to consider the
5046 * disabled flag and cftype registration needs kmalloc,
5047 * both of which aren't available during early_init.
5048 */
5049 if (ss->disabled)
5050 continue;
5051
5052 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5053
5054 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5055 ss->dfl_cftypes = ss->legacy_cftypes;
5056
5057 if (!ss->dfl_cftypes)
5058 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5059
5060 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5061 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5062 } else {
5063 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5064 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5065 }
5066
5067 if (ss->bind)
5068 ss->bind(init_css_set.subsys[ssid]);
5069 }
5070
5071 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5072 if (err)
5073 return err;
5074
5075 err = register_filesystem(&cgroup_fs_type);
5076 if (err < 0) {
5077 sysfs_remove_mount_point(fs_kobj, "cgroup");
5078 return err;
5079 }
5080
5081 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5082 return 0;
5083 }
5084
5085 static int __init cgroup_wq_init(void)
5086 {
5087 /*
5088 * There isn't much point in executing destruction path in
5089 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5090 * Use 1 for @max_active.
5091 *
5092 * We would prefer to do this in cgroup_init() above, but that
5093 * is called before init_workqueues(): so leave this until after.
5094 */
5095 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5096 BUG_ON(!cgroup_destroy_wq);
5097
5098 /*
5099 * Used to destroy pidlists and separate to serve as flush domain.
5100 * Cap @max_active to 1 too.
5101 */
5102 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5103 0, 1);
5104 BUG_ON(!cgroup_pidlist_destroy_wq);
5105
5106 return 0;
5107 }
5108 core_initcall(cgroup_wq_init);
5109
5110 /*
5111 * proc_cgroup_show()
5112 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5113 * - Used for /proc/<pid>/cgroup.
5114 */
5115 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5116 struct pid *pid, struct task_struct *tsk)
5117 {
5118 char *buf, *path;
5119 int retval;
5120 struct cgroup_root *root;
5121
5122 retval = -ENOMEM;
5123 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5124 if (!buf)
5125 goto out;
5126
5127 mutex_lock(&cgroup_mutex);
5128 down_read(&css_set_rwsem);
5129
5130 for_each_root(root) {
5131 struct cgroup_subsys *ss;
5132 struct cgroup *cgrp;
5133 int ssid, count = 0;
5134
5135 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5136 continue;
5137
5138 seq_printf(m, "%d:", root->hierarchy_id);
5139 for_each_subsys(ss, ssid)
5140 if (root->subsys_mask & (1 << ssid))
5141 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5142 if (strlen(root->name))
5143 seq_printf(m, "%sname=%s", count ? "," : "",
5144 root->name);
5145 seq_putc(m, ':');
5146 cgrp = task_cgroup_from_root(tsk, root);
5147 path = cgroup_path(cgrp, buf, PATH_MAX);
5148 if (!path) {
5149 retval = -ENAMETOOLONG;
5150 goto out_unlock;
5151 }
5152 seq_puts(m, path);
5153 seq_putc(m, '\n');
5154 }
5155
5156 retval = 0;
5157 out_unlock:
5158 up_read(&css_set_rwsem);
5159 mutex_unlock(&cgroup_mutex);
5160 kfree(buf);
5161 out:
5162 return retval;
5163 }
5164
5165 /* Display information about each subsystem and each hierarchy */
5166 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5167 {
5168 struct cgroup_subsys *ss;
5169 int i;
5170
5171 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5172 /*
5173 * ideally we don't want subsystems moving around while we do this.
5174 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5175 * subsys/hierarchy state.
5176 */
5177 mutex_lock(&cgroup_mutex);
5178
5179 for_each_subsys(ss, i)
5180 seq_printf(m, "%s\t%d\t%d\t%d\n",
5181 ss->name, ss->root->hierarchy_id,
5182 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5183
5184 mutex_unlock(&cgroup_mutex);
5185 return 0;
5186 }
5187
5188 static int cgroupstats_open(struct inode *inode, struct file *file)
5189 {
5190 return single_open(file, proc_cgroupstats_show, NULL);
5191 }
5192
5193 static const struct file_operations proc_cgroupstats_operations = {
5194 .open = cgroupstats_open,
5195 .read = seq_read,
5196 .llseek = seq_lseek,
5197 .release = single_release,
5198 };
5199
5200 /**
5201 * cgroup_fork - initialize cgroup related fields during copy_process()
5202 * @child: pointer to task_struct of forking parent process.
5203 *
5204 * A task is associated with the init_css_set until cgroup_post_fork()
5205 * attaches it to the parent's css_set. Empty cg_list indicates that
5206 * @child isn't holding reference to its css_set.
5207 */
5208 void cgroup_fork(struct task_struct *child)
5209 {
5210 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5211 INIT_LIST_HEAD(&child->cg_list);
5212 }
5213
5214 /**
5215 * cgroup_post_fork - called on a new task after adding it to the task list
5216 * @child: the task in question
5217 *
5218 * Adds the task to the list running through its css_set if necessary and
5219 * call the subsystem fork() callbacks. Has to be after the task is
5220 * visible on the task list in case we race with the first call to
5221 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5222 * list.
5223 */
5224 void cgroup_post_fork(struct task_struct *child)
5225 {
5226 struct cgroup_subsys *ss;
5227 int i;
5228
5229 /*
5230 * This may race against cgroup_enable_task_cg_lists(). As that
5231 * function sets use_task_css_set_links before grabbing
5232 * tasklist_lock and we just went through tasklist_lock to add
5233 * @child, it's guaranteed that either we see the set
5234 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5235 * @child during its iteration.
5236 *
5237 * If we won the race, @child is associated with %current's
5238 * css_set. Grabbing css_set_rwsem guarantees both that the
5239 * association is stable, and, on completion of the parent's
5240 * migration, @child is visible in the source of migration or
5241 * already in the destination cgroup. This guarantee is necessary
5242 * when implementing operations which need to migrate all tasks of
5243 * a cgroup to another.
5244 *
5245 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5246 * will remain in init_css_set. This is safe because all tasks are
5247 * in the init_css_set before cg_links is enabled and there's no
5248 * operation which transfers all tasks out of init_css_set.
5249 */
5250 if (use_task_css_set_links) {
5251 struct css_set *cset;
5252
5253 down_write(&css_set_rwsem);
5254 cset = task_css_set(current);
5255 if (list_empty(&child->cg_list)) {
5256 rcu_assign_pointer(child->cgroups, cset);
5257 list_add(&child->cg_list, &cset->tasks);
5258 get_css_set(cset);
5259 }
5260 up_write(&css_set_rwsem);
5261 }
5262
5263 /*
5264 * Call ss->fork(). This must happen after @child is linked on
5265 * css_set; otherwise, @child might change state between ->fork()
5266 * and addition to css_set.
5267 */
5268 for_each_subsys_which(ss, i, &have_fork_callback)
5269 ss->fork(child);
5270 }
5271
5272 /**
5273 * cgroup_exit - detach cgroup from exiting task
5274 * @tsk: pointer to task_struct of exiting process
5275 *
5276 * Description: Detach cgroup from @tsk and release it.
5277 *
5278 * Note that cgroups marked notify_on_release force every task in
5279 * them to take the global cgroup_mutex mutex when exiting.
5280 * This could impact scaling on very large systems. Be reluctant to
5281 * use notify_on_release cgroups where very high task exit scaling
5282 * is required on large systems.
5283 *
5284 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5285 * call cgroup_exit() while the task is still competent to handle
5286 * notify_on_release(), then leave the task attached to the root cgroup in
5287 * each hierarchy for the remainder of its exit. No need to bother with
5288 * init_css_set refcnting. init_css_set never goes away and we can't race
5289 * with migration path - PF_EXITING is visible to migration path.
5290 */
5291 void cgroup_exit(struct task_struct *tsk)
5292 {
5293 struct cgroup_subsys *ss;
5294 struct css_set *cset;
5295 bool put_cset = false;
5296 int i;
5297
5298 /*
5299 * Unlink from @tsk from its css_set. As migration path can't race
5300 * with us, we can check cg_list without grabbing css_set_rwsem.
5301 */
5302 if (!list_empty(&tsk->cg_list)) {
5303 down_write(&css_set_rwsem);
5304 list_del_init(&tsk->cg_list);
5305 up_write(&css_set_rwsem);
5306 put_cset = true;
5307 }
5308
5309 /* Reassign the task to the init_css_set. */
5310 cset = task_css_set(tsk);
5311 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5312
5313 /* see cgroup_post_fork() for details */
5314 for_each_subsys_which(ss, i, &have_exit_callback) {
5315 struct cgroup_subsys_state *old_css = cset->subsys[i];
5316 struct cgroup_subsys_state *css = task_css(tsk, i);
5317
5318 ss->exit(css, old_css, tsk);
5319 }
5320
5321 if (put_cset)
5322 put_css_set(cset);
5323 }
5324
5325 static void check_for_release(struct cgroup *cgrp)
5326 {
5327 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5328 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5329 schedule_work(&cgrp->release_agent_work);
5330 }
5331
5332 /*
5333 * Notify userspace when a cgroup is released, by running the
5334 * configured release agent with the name of the cgroup (path
5335 * relative to the root of cgroup file system) as the argument.
5336 *
5337 * Most likely, this user command will try to rmdir this cgroup.
5338 *
5339 * This races with the possibility that some other task will be
5340 * attached to this cgroup before it is removed, or that some other
5341 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5342 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5343 * unused, and this cgroup will be reprieved from its death sentence,
5344 * to continue to serve a useful existence. Next time it's released,
5345 * we will get notified again, if it still has 'notify_on_release' set.
5346 *
5347 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5348 * means only wait until the task is successfully execve()'d. The
5349 * separate release agent task is forked by call_usermodehelper(),
5350 * then control in this thread returns here, without waiting for the
5351 * release agent task. We don't bother to wait because the caller of
5352 * this routine has no use for the exit status of the release agent
5353 * task, so no sense holding our caller up for that.
5354 */
5355 static void cgroup_release_agent(struct work_struct *work)
5356 {
5357 struct cgroup *cgrp =
5358 container_of(work, struct cgroup, release_agent_work);
5359 char *pathbuf = NULL, *agentbuf = NULL, *path;
5360 char *argv[3], *envp[3];
5361
5362 mutex_lock(&cgroup_mutex);
5363
5364 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5365 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5366 if (!pathbuf || !agentbuf)
5367 goto out;
5368
5369 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5370 if (!path)
5371 goto out;
5372
5373 argv[0] = agentbuf;
5374 argv[1] = path;
5375 argv[2] = NULL;
5376
5377 /* minimal command environment */
5378 envp[0] = "HOME=/";
5379 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5380 envp[2] = NULL;
5381
5382 mutex_unlock(&cgroup_mutex);
5383 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5384 goto out_free;
5385 out:
5386 mutex_unlock(&cgroup_mutex);
5387 out_free:
5388 kfree(agentbuf);
5389 kfree(pathbuf);
5390 }
5391
5392 static int __init cgroup_disable(char *str)
5393 {
5394 struct cgroup_subsys *ss;
5395 char *token;
5396 int i;
5397
5398 while ((token = strsep(&str, ",")) != NULL) {
5399 if (!*token)
5400 continue;
5401
5402 for_each_subsys(ss, i) {
5403 if (!strcmp(token, ss->name)) {
5404 ss->disabled = 1;
5405 printk(KERN_INFO "Disabling %s control group"
5406 " subsystem\n", ss->name);
5407 break;
5408 }
5409 }
5410 }
5411 return 1;
5412 }
5413 __setup("cgroup_disable=", cgroup_disable);
5414
5415 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5416 {
5417 printk("cgroup: using legacy files on the default hierarchy\n");
5418 cgroup_legacy_files_on_dfl = true;
5419 return 0;
5420 }
5421 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5422
5423 /**
5424 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5425 * @dentry: directory dentry of interest
5426 * @ss: subsystem of interest
5427 *
5428 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5429 * to get the corresponding css and return it. If such css doesn't exist
5430 * or can't be pinned, an ERR_PTR value is returned.
5431 */
5432 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5433 struct cgroup_subsys *ss)
5434 {
5435 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5436 struct cgroup_subsys_state *css = NULL;
5437 struct cgroup *cgrp;
5438
5439 /* is @dentry a cgroup dir? */
5440 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5441 kernfs_type(kn) != KERNFS_DIR)
5442 return ERR_PTR(-EBADF);
5443
5444 rcu_read_lock();
5445
5446 /*
5447 * This path doesn't originate from kernfs and @kn could already
5448 * have been or be removed at any point. @kn->priv is RCU
5449 * protected for this access. See css_release_work_fn() for details.
5450 */
5451 cgrp = rcu_dereference(kn->priv);
5452 if (cgrp)
5453 css = cgroup_css(cgrp, ss);
5454
5455 if (!css || !css_tryget_online(css))
5456 css = ERR_PTR(-ENOENT);
5457
5458 rcu_read_unlock();
5459 return css;
5460 }
5461
5462 /**
5463 * css_from_id - lookup css by id
5464 * @id: the cgroup id
5465 * @ss: cgroup subsys to be looked into
5466 *
5467 * Returns the css if there's valid one with @id, otherwise returns NULL.
5468 * Should be called under rcu_read_lock().
5469 */
5470 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5471 {
5472 WARN_ON_ONCE(!rcu_read_lock_held());
5473 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5474 }
5475
5476 #ifdef CONFIG_CGROUP_DEBUG
5477 static struct cgroup_subsys_state *
5478 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5479 {
5480 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5481
5482 if (!css)
5483 return ERR_PTR(-ENOMEM);
5484
5485 return css;
5486 }
5487
5488 static void debug_css_free(struct cgroup_subsys_state *css)
5489 {
5490 kfree(css);
5491 }
5492
5493 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5494 struct cftype *cft)
5495 {
5496 return cgroup_task_count(css->cgroup);
5497 }
5498
5499 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5500 struct cftype *cft)
5501 {
5502 return (u64)(unsigned long)current->cgroups;
5503 }
5504
5505 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5506 struct cftype *cft)
5507 {
5508 u64 count;
5509
5510 rcu_read_lock();
5511 count = atomic_read(&task_css_set(current)->refcount);
5512 rcu_read_unlock();
5513 return count;
5514 }
5515
5516 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5517 {
5518 struct cgrp_cset_link *link;
5519 struct css_set *cset;
5520 char *name_buf;
5521
5522 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5523 if (!name_buf)
5524 return -ENOMEM;
5525
5526 down_read(&css_set_rwsem);
5527 rcu_read_lock();
5528 cset = rcu_dereference(current->cgroups);
5529 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5530 struct cgroup *c = link->cgrp;
5531
5532 cgroup_name(c, name_buf, NAME_MAX + 1);
5533 seq_printf(seq, "Root %d group %s\n",
5534 c->root->hierarchy_id, name_buf);
5535 }
5536 rcu_read_unlock();
5537 up_read(&css_set_rwsem);
5538 kfree(name_buf);
5539 return 0;
5540 }
5541
5542 #define MAX_TASKS_SHOWN_PER_CSS 25
5543 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5544 {
5545 struct cgroup_subsys_state *css = seq_css(seq);
5546 struct cgrp_cset_link *link;
5547
5548 down_read(&css_set_rwsem);
5549 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5550 struct css_set *cset = link->cset;
5551 struct task_struct *task;
5552 int count = 0;
5553
5554 seq_printf(seq, "css_set %p\n", cset);
5555
5556 list_for_each_entry(task, &cset->tasks, cg_list) {
5557 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5558 goto overflow;
5559 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5560 }
5561
5562 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5563 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5564 goto overflow;
5565 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5566 }
5567 continue;
5568 overflow:
5569 seq_puts(seq, " ...\n");
5570 }
5571 up_read(&css_set_rwsem);
5572 return 0;
5573 }
5574
5575 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5576 {
5577 return (!cgroup_has_tasks(css->cgroup) &&
5578 !css_has_online_children(&css->cgroup->self));
5579 }
5580
5581 static struct cftype debug_files[] = {
5582 {
5583 .name = "taskcount",
5584 .read_u64 = debug_taskcount_read,
5585 },
5586
5587 {
5588 .name = "current_css_set",
5589 .read_u64 = current_css_set_read,
5590 },
5591
5592 {
5593 .name = "current_css_set_refcount",
5594 .read_u64 = current_css_set_refcount_read,
5595 },
5596
5597 {
5598 .name = "current_css_set_cg_links",
5599 .seq_show = current_css_set_cg_links_read,
5600 },
5601
5602 {
5603 .name = "cgroup_css_links",
5604 .seq_show = cgroup_css_links_read,
5605 },
5606
5607 {
5608 .name = "releasable",
5609 .read_u64 = releasable_read,
5610 },
5611
5612 { } /* terminate */
5613 };
5614
5615 struct cgroup_subsys debug_cgrp_subsys = {
5616 .css_alloc = debug_css_alloc,
5617 .css_free = debug_css_free,
5618 .legacy_cftypes = debug_files,
5619 };
5620 #endif /* CONFIG_CGROUP_DEBUG */