]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
Merge tag 'defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) &_x ## _subsys,
96 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
97 #include <linux/cgroup_subsys.h>
98 };
99
100 #define MAX_CGROUP_ROOT_NAMELEN 64
101
102 /*
103 * A cgroupfs_root represents the root of a cgroup hierarchy,
104 * and may be associated with a superblock to form an active
105 * hierarchy
106 */
107 struct cgroupfs_root {
108 struct super_block *sb;
109
110 /*
111 * The bitmask of subsystems intended to be attached to this
112 * hierarchy
113 */
114 unsigned long subsys_bits;
115
116 /* Unique id for this hierarchy. */
117 int hierarchy_id;
118
119 /* The bitmask of subsystems currently attached to this hierarchy */
120 unsigned long actual_subsys_bits;
121
122 /* A list running through the attached subsystems */
123 struct list_head subsys_list;
124
125 /* The root cgroup for this hierarchy */
126 struct cgroup top_cgroup;
127
128 /* Tracks how many cgroups are currently defined in hierarchy.*/
129 int number_of_cgroups;
130
131 /* A list running through the active hierarchies */
132 struct list_head root_list;
133
134 /* All cgroups on this root, cgroup_mutex protected */
135 struct list_head allcg_list;
136
137 /* Hierarchy-specific flags */
138 unsigned long flags;
139
140 /* The path to use for release notifications. */
141 char release_agent_path[PATH_MAX];
142
143 /* The name for this hierarchy - may be empty */
144 char name[MAX_CGROUP_ROOT_NAMELEN];
145 };
146
147 /*
148 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
149 * subsystems that are otherwise unattached - it never has more than a
150 * single cgroup, and all tasks are part of that cgroup.
151 */
152 static struct cgroupfs_root rootnode;
153
154 /*
155 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
156 */
157 struct cfent {
158 struct list_head node;
159 struct dentry *dentry;
160 struct cftype *type;
161 };
162
163 /*
164 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
165 * cgroup_subsys->use_id != 0.
166 */
167 #define CSS_ID_MAX (65535)
168 struct css_id {
169 /*
170 * The css to which this ID points. This pointer is set to valid value
171 * after cgroup is populated. If cgroup is removed, this will be NULL.
172 * This pointer is expected to be RCU-safe because destroy()
173 * is called after synchronize_rcu(). But for safe use, css_is_removed()
174 * css_tryget() should be used for avoiding race.
175 */
176 struct cgroup_subsys_state __rcu *css;
177 /*
178 * ID of this css.
179 */
180 unsigned short id;
181 /*
182 * Depth in hierarchy which this ID belongs to.
183 */
184 unsigned short depth;
185 /*
186 * ID is freed by RCU. (and lookup routine is RCU safe.)
187 */
188 struct rcu_head rcu_head;
189 /*
190 * Hierarchy of CSS ID belongs to.
191 */
192 unsigned short stack[0]; /* Array of Length (depth+1) */
193 };
194
195 /*
196 * cgroup_event represents events which userspace want to receive.
197 */
198 struct cgroup_event {
199 /*
200 * Cgroup which the event belongs to.
201 */
202 struct cgroup *cgrp;
203 /*
204 * Control file which the event associated.
205 */
206 struct cftype *cft;
207 /*
208 * eventfd to signal userspace about the event.
209 */
210 struct eventfd_ctx *eventfd;
211 /*
212 * Each of these stored in a list by the cgroup.
213 */
214 struct list_head list;
215 /*
216 * All fields below needed to unregister event when
217 * userspace closes eventfd.
218 */
219 poll_table pt;
220 wait_queue_head_t *wqh;
221 wait_queue_t wait;
222 struct work_struct remove;
223 };
224
225 /* The list of hierarchy roots */
226
227 static LIST_HEAD(roots);
228 static int root_count;
229
230 static DEFINE_IDA(hierarchy_ida);
231 static int next_hierarchy_id;
232 static DEFINE_SPINLOCK(hierarchy_id_lock);
233
234 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
235 #define dummytop (&rootnode.top_cgroup)
236
237 /* This flag indicates whether tasks in the fork and exit paths should
238 * check for fork/exit handlers to call. This avoids us having to do
239 * extra work in the fork/exit path if none of the subsystems need to
240 * be called.
241 */
242 static int need_forkexit_callback __read_mostly;
243
244 #ifdef CONFIG_PROVE_LOCKING
245 int cgroup_lock_is_held(void)
246 {
247 return lockdep_is_held(&cgroup_mutex);
248 }
249 #else /* #ifdef CONFIG_PROVE_LOCKING */
250 int cgroup_lock_is_held(void)
251 {
252 return mutex_is_locked(&cgroup_mutex);
253 }
254 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
255
256 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
257
258 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
259 static int css_refcnt(struct cgroup_subsys_state *css)
260 {
261 int v = atomic_read(&css->refcnt);
262
263 return v >= 0 ? v : v - CSS_DEACT_BIAS;
264 }
265
266 /* convenient tests for these bits */
267 inline int cgroup_is_removed(const struct cgroup *cgrp)
268 {
269 return test_bit(CGRP_REMOVED, &cgrp->flags);
270 }
271
272 /* bits in struct cgroupfs_root flags field */
273 enum {
274 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
275 };
276
277 static int cgroup_is_releasable(const struct cgroup *cgrp)
278 {
279 const int bits =
280 (1 << CGRP_RELEASABLE) |
281 (1 << CGRP_NOTIFY_ON_RELEASE);
282 return (cgrp->flags & bits) == bits;
283 }
284
285 static int notify_on_release(const struct cgroup *cgrp)
286 {
287 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
288 }
289
290 static int clone_children(const struct cgroup *cgrp)
291 {
292 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
293 }
294
295 /*
296 * for_each_subsys() allows you to iterate on each subsystem attached to
297 * an active hierarchy
298 */
299 #define for_each_subsys(_root, _ss) \
300 list_for_each_entry(_ss, &_root->subsys_list, sibling)
301
302 /* for_each_active_root() allows you to iterate across the active hierarchies */
303 #define for_each_active_root(_root) \
304 list_for_each_entry(_root, &roots, root_list)
305
306 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
307 {
308 return dentry->d_fsdata;
309 }
310
311 static inline struct cfent *__d_cfe(struct dentry *dentry)
312 {
313 return dentry->d_fsdata;
314 }
315
316 static inline struct cftype *__d_cft(struct dentry *dentry)
317 {
318 return __d_cfe(dentry)->type;
319 }
320
321 /* the list of cgroups eligible for automatic release. Protected by
322 * release_list_lock */
323 static LIST_HEAD(release_list);
324 static DEFINE_RAW_SPINLOCK(release_list_lock);
325 static void cgroup_release_agent(struct work_struct *work);
326 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
327 static void check_for_release(struct cgroup *cgrp);
328
329 /* Link structure for associating css_set objects with cgroups */
330 struct cg_cgroup_link {
331 /*
332 * List running through cg_cgroup_links associated with a
333 * cgroup, anchored on cgroup->css_sets
334 */
335 struct list_head cgrp_link_list;
336 struct cgroup *cgrp;
337 /*
338 * List running through cg_cgroup_links pointing at a
339 * single css_set object, anchored on css_set->cg_links
340 */
341 struct list_head cg_link_list;
342 struct css_set *cg;
343 };
344
345 /* The default css_set - used by init and its children prior to any
346 * hierarchies being mounted. It contains a pointer to the root state
347 * for each subsystem. Also used to anchor the list of css_sets. Not
348 * reference-counted, to improve performance when child cgroups
349 * haven't been created.
350 */
351
352 static struct css_set init_css_set;
353 static struct cg_cgroup_link init_css_set_link;
354
355 static int cgroup_init_idr(struct cgroup_subsys *ss,
356 struct cgroup_subsys_state *css);
357
358 /* css_set_lock protects the list of css_set objects, and the
359 * chain of tasks off each css_set. Nests outside task->alloc_lock
360 * due to cgroup_iter_start() */
361 static DEFINE_RWLOCK(css_set_lock);
362 static int css_set_count;
363
364 /*
365 * hash table for cgroup groups. This improves the performance to find
366 * an existing css_set. This hash doesn't (currently) take into
367 * account cgroups in empty hierarchies.
368 */
369 #define CSS_SET_HASH_BITS 7
370 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
371 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
372
373 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
374 {
375 int i;
376 int index;
377 unsigned long tmp = 0UL;
378
379 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
380 tmp += (unsigned long)css[i];
381 tmp = (tmp >> 16) ^ tmp;
382
383 index = hash_long(tmp, CSS_SET_HASH_BITS);
384
385 return &css_set_table[index];
386 }
387
388 /* We don't maintain the lists running through each css_set to its
389 * task until after the first call to cgroup_iter_start(). This
390 * reduces the fork()/exit() overhead for people who have cgroups
391 * compiled into their kernel but not actually in use */
392 static int use_task_css_set_links __read_mostly;
393
394 static void __put_css_set(struct css_set *cg, int taskexit)
395 {
396 struct cg_cgroup_link *link;
397 struct cg_cgroup_link *saved_link;
398 /*
399 * Ensure that the refcount doesn't hit zero while any readers
400 * can see it. Similar to atomic_dec_and_lock(), but for an
401 * rwlock
402 */
403 if (atomic_add_unless(&cg->refcount, -1, 1))
404 return;
405 write_lock(&css_set_lock);
406 if (!atomic_dec_and_test(&cg->refcount)) {
407 write_unlock(&css_set_lock);
408 return;
409 }
410
411 /* This css_set is dead. unlink it and release cgroup refcounts */
412 hlist_del(&cg->hlist);
413 css_set_count--;
414
415 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
416 cg_link_list) {
417 struct cgroup *cgrp = link->cgrp;
418 list_del(&link->cg_link_list);
419 list_del(&link->cgrp_link_list);
420 if (atomic_dec_and_test(&cgrp->count) &&
421 notify_on_release(cgrp)) {
422 if (taskexit)
423 set_bit(CGRP_RELEASABLE, &cgrp->flags);
424 check_for_release(cgrp);
425 }
426
427 kfree(link);
428 }
429
430 write_unlock(&css_set_lock);
431 kfree_rcu(cg, rcu_head);
432 }
433
434 /*
435 * refcounted get/put for css_set objects
436 */
437 static inline void get_css_set(struct css_set *cg)
438 {
439 atomic_inc(&cg->refcount);
440 }
441
442 static inline void put_css_set(struct css_set *cg)
443 {
444 __put_css_set(cg, 0);
445 }
446
447 static inline void put_css_set_taskexit(struct css_set *cg)
448 {
449 __put_css_set(cg, 1);
450 }
451
452 /*
453 * compare_css_sets - helper function for find_existing_css_set().
454 * @cg: candidate css_set being tested
455 * @old_cg: existing css_set for a task
456 * @new_cgrp: cgroup that's being entered by the task
457 * @template: desired set of css pointers in css_set (pre-calculated)
458 *
459 * Returns true if "cg" matches "old_cg" except for the hierarchy
460 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
461 */
462 static bool compare_css_sets(struct css_set *cg,
463 struct css_set *old_cg,
464 struct cgroup *new_cgrp,
465 struct cgroup_subsys_state *template[])
466 {
467 struct list_head *l1, *l2;
468
469 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
470 /* Not all subsystems matched */
471 return false;
472 }
473
474 /*
475 * Compare cgroup pointers in order to distinguish between
476 * different cgroups in heirarchies with no subsystems. We
477 * could get by with just this check alone (and skip the
478 * memcmp above) but on most setups the memcmp check will
479 * avoid the need for this more expensive check on almost all
480 * candidates.
481 */
482
483 l1 = &cg->cg_links;
484 l2 = &old_cg->cg_links;
485 while (1) {
486 struct cg_cgroup_link *cgl1, *cgl2;
487 struct cgroup *cg1, *cg2;
488
489 l1 = l1->next;
490 l2 = l2->next;
491 /* See if we reached the end - both lists are equal length. */
492 if (l1 == &cg->cg_links) {
493 BUG_ON(l2 != &old_cg->cg_links);
494 break;
495 } else {
496 BUG_ON(l2 == &old_cg->cg_links);
497 }
498 /* Locate the cgroups associated with these links. */
499 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
500 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
501 cg1 = cgl1->cgrp;
502 cg2 = cgl2->cgrp;
503 /* Hierarchies should be linked in the same order. */
504 BUG_ON(cg1->root != cg2->root);
505
506 /*
507 * If this hierarchy is the hierarchy of the cgroup
508 * that's changing, then we need to check that this
509 * css_set points to the new cgroup; if it's any other
510 * hierarchy, then this css_set should point to the
511 * same cgroup as the old css_set.
512 */
513 if (cg1->root == new_cgrp->root) {
514 if (cg1 != new_cgrp)
515 return false;
516 } else {
517 if (cg1 != cg2)
518 return false;
519 }
520 }
521 return true;
522 }
523
524 /*
525 * find_existing_css_set() is a helper for
526 * find_css_set(), and checks to see whether an existing
527 * css_set is suitable.
528 *
529 * oldcg: the cgroup group that we're using before the cgroup
530 * transition
531 *
532 * cgrp: the cgroup that we're moving into
533 *
534 * template: location in which to build the desired set of subsystem
535 * state objects for the new cgroup group
536 */
537 static struct css_set *find_existing_css_set(
538 struct css_set *oldcg,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
541 {
542 int i;
543 struct cgroupfs_root *root = cgrp->root;
544 struct hlist_head *hhead;
545 struct hlist_node *node;
546 struct css_set *cg;
547
548 /*
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
552 */
553 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
554 if (root->subsys_bits & (1UL << i)) {
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
558 template[i] = cgrp->subsys[i];
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
562 template[i] = oldcg->subsys[i];
563 }
564 }
565
566 hhead = css_set_hash(template);
567 hlist_for_each_entry(cg, node, hhead, hlist) {
568 if (!compare_css_sets(cg, oldcg, cgrp, template))
569 continue;
570
571 /* This css_set matches what we need */
572 return cg;
573 }
574
575 /* No existing cgroup group matched */
576 return NULL;
577 }
578
579 static void free_cg_links(struct list_head *tmp)
580 {
581 struct cg_cgroup_link *link;
582 struct cg_cgroup_link *saved_link;
583
584 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
585 list_del(&link->cgrp_link_list);
586 kfree(link);
587 }
588 }
589
590 /*
591 * allocate_cg_links() allocates "count" cg_cgroup_link structures
592 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
593 * success or a negative error
594 */
595 static int allocate_cg_links(int count, struct list_head *tmp)
596 {
597 struct cg_cgroup_link *link;
598 int i;
599 INIT_LIST_HEAD(tmp);
600 for (i = 0; i < count; i++) {
601 link = kmalloc(sizeof(*link), GFP_KERNEL);
602 if (!link) {
603 free_cg_links(tmp);
604 return -ENOMEM;
605 }
606 list_add(&link->cgrp_link_list, tmp);
607 }
608 return 0;
609 }
610
611 /**
612 * link_css_set - a helper function to link a css_set to a cgroup
613 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
614 * @cg: the css_set to be linked
615 * @cgrp: the destination cgroup
616 */
617 static void link_css_set(struct list_head *tmp_cg_links,
618 struct css_set *cg, struct cgroup *cgrp)
619 {
620 struct cg_cgroup_link *link;
621
622 BUG_ON(list_empty(tmp_cg_links));
623 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
624 cgrp_link_list);
625 link->cg = cg;
626 link->cgrp = cgrp;
627 atomic_inc(&cgrp->count);
628 list_move(&link->cgrp_link_list, &cgrp->css_sets);
629 /*
630 * Always add links to the tail of the list so that the list
631 * is sorted by order of hierarchy creation
632 */
633 list_add_tail(&link->cg_link_list, &cg->cg_links);
634 }
635
636 /*
637 * find_css_set() takes an existing cgroup group and a
638 * cgroup object, and returns a css_set object that's
639 * equivalent to the old group, but with the given cgroup
640 * substituted into the appropriate hierarchy. Must be called with
641 * cgroup_mutex held
642 */
643 static struct css_set *find_css_set(
644 struct css_set *oldcg, struct cgroup *cgrp)
645 {
646 struct css_set *res;
647 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
648
649 struct list_head tmp_cg_links;
650
651 struct hlist_head *hhead;
652 struct cg_cgroup_link *link;
653
654 /* First see if we already have a cgroup group that matches
655 * the desired set */
656 read_lock(&css_set_lock);
657 res = find_existing_css_set(oldcg, cgrp, template);
658 if (res)
659 get_css_set(res);
660 read_unlock(&css_set_lock);
661
662 if (res)
663 return res;
664
665 res = kmalloc(sizeof(*res), GFP_KERNEL);
666 if (!res)
667 return NULL;
668
669 /* Allocate all the cg_cgroup_link objects that we'll need */
670 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
671 kfree(res);
672 return NULL;
673 }
674
675 atomic_set(&res->refcount, 1);
676 INIT_LIST_HEAD(&res->cg_links);
677 INIT_LIST_HEAD(&res->tasks);
678 INIT_HLIST_NODE(&res->hlist);
679
680 /* Copy the set of subsystem state objects generated in
681 * find_existing_css_set() */
682 memcpy(res->subsys, template, sizeof(res->subsys));
683
684 write_lock(&css_set_lock);
685 /* Add reference counts and links from the new css_set. */
686 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
687 struct cgroup *c = link->cgrp;
688 if (c->root == cgrp->root)
689 c = cgrp;
690 link_css_set(&tmp_cg_links, res, c);
691 }
692
693 BUG_ON(!list_empty(&tmp_cg_links));
694
695 css_set_count++;
696
697 /* Add this cgroup group to the hash table */
698 hhead = css_set_hash(res->subsys);
699 hlist_add_head(&res->hlist, hhead);
700
701 write_unlock(&css_set_lock);
702
703 return res;
704 }
705
706 /*
707 * Return the cgroup for "task" from the given hierarchy. Must be
708 * called with cgroup_mutex held.
709 */
710 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
711 struct cgroupfs_root *root)
712 {
713 struct css_set *css;
714 struct cgroup *res = NULL;
715
716 BUG_ON(!mutex_is_locked(&cgroup_mutex));
717 read_lock(&css_set_lock);
718 /*
719 * No need to lock the task - since we hold cgroup_mutex the
720 * task can't change groups, so the only thing that can happen
721 * is that it exits and its css is set back to init_css_set.
722 */
723 css = task->cgroups;
724 if (css == &init_css_set) {
725 res = &root->top_cgroup;
726 } else {
727 struct cg_cgroup_link *link;
728 list_for_each_entry(link, &css->cg_links, cg_link_list) {
729 struct cgroup *c = link->cgrp;
730 if (c->root == root) {
731 res = c;
732 break;
733 }
734 }
735 }
736 read_unlock(&css_set_lock);
737 BUG_ON(!res);
738 return res;
739 }
740
741 /*
742 * There is one global cgroup mutex. We also require taking
743 * task_lock() when dereferencing a task's cgroup subsys pointers.
744 * See "The task_lock() exception", at the end of this comment.
745 *
746 * A task must hold cgroup_mutex to modify cgroups.
747 *
748 * Any task can increment and decrement the count field without lock.
749 * So in general, code holding cgroup_mutex can't rely on the count
750 * field not changing. However, if the count goes to zero, then only
751 * cgroup_attach_task() can increment it again. Because a count of zero
752 * means that no tasks are currently attached, therefore there is no
753 * way a task attached to that cgroup can fork (the other way to
754 * increment the count). So code holding cgroup_mutex can safely
755 * assume that if the count is zero, it will stay zero. Similarly, if
756 * a task holds cgroup_mutex on a cgroup with zero count, it
757 * knows that the cgroup won't be removed, as cgroup_rmdir()
758 * needs that mutex.
759 *
760 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
761 * (usually) take cgroup_mutex. These are the two most performance
762 * critical pieces of code here. The exception occurs on cgroup_exit(),
763 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
764 * is taken, and if the cgroup count is zero, a usermode call made
765 * to the release agent with the name of the cgroup (path relative to
766 * the root of cgroup file system) as the argument.
767 *
768 * A cgroup can only be deleted if both its 'count' of using tasks
769 * is zero, and its list of 'children' cgroups is empty. Since all
770 * tasks in the system use _some_ cgroup, and since there is always at
771 * least one task in the system (init, pid == 1), therefore, top_cgroup
772 * always has either children cgroups and/or using tasks. So we don't
773 * need a special hack to ensure that top_cgroup cannot be deleted.
774 *
775 * The task_lock() exception
776 *
777 * The need for this exception arises from the action of
778 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
779 * another. It does so using cgroup_mutex, however there are
780 * several performance critical places that need to reference
781 * task->cgroup without the expense of grabbing a system global
782 * mutex. Therefore except as noted below, when dereferencing or, as
783 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
784 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
785 * the task_struct routinely used for such matters.
786 *
787 * P.S. One more locking exception. RCU is used to guard the
788 * update of a tasks cgroup pointer by cgroup_attach_task()
789 */
790
791 /**
792 * cgroup_lock - lock out any changes to cgroup structures
793 *
794 */
795 void cgroup_lock(void)
796 {
797 mutex_lock(&cgroup_mutex);
798 }
799 EXPORT_SYMBOL_GPL(cgroup_lock);
800
801 /**
802 * cgroup_unlock - release lock on cgroup changes
803 *
804 * Undo the lock taken in a previous cgroup_lock() call.
805 */
806 void cgroup_unlock(void)
807 {
808 mutex_unlock(&cgroup_mutex);
809 }
810 EXPORT_SYMBOL_GPL(cgroup_unlock);
811
812 /*
813 * A couple of forward declarations required, due to cyclic reference loop:
814 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
815 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
816 * -> cgroup_mkdir.
817 */
818
819 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
820 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
821 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
822 static int cgroup_populate_dir(struct cgroup *cgrp);
823 static const struct inode_operations cgroup_dir_inode_operations;
824 static const struct file_operations proc_cgroupstats_operations;
825
826 static struct backing_dev_info cgroup_backing_dev_info = {
827 .name = "cgroup",
828 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
829 };
830
831 static int alloc_css_id(struct cgroup_subsys *ss,
832 struct cgroup *parent, struct cgroup *child);
833
834 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
835 {
836 struct inode *inode = new_inode(sb);
837
838 if (inode) {
839 inode->i_ino = get_next_ino();
840 inode->i_mode = mode;
841 inode->i_uid = current_fsuid();
842 inode->i_gid = current_fsgid();
843 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
844 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
845 }
846 return inode;
847 }
848
849 /*
850 * Call subsys's pre_destroy handler.
851 * This is called before css refcnt check.
852 */
853 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
854 {
855 struct cgroup_subsys *ss;
856 int ret = 0;
857
858 for_each_subsys(cgrp->root, ss) {
859 if (!ss->pre_destroy)
860 continue;
861
862 ret = ss->pre_destroy(cgrp);
863 if (ret) {
864 /* ->pre_destroy() failure is being deprecated */
865 WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
866 break;
867 }
868 }
869
870 return ret;
871 }
872
873 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
874 {
875 /* is dentry a directory ? if so, kfree() associated cgroup */
876 if (S_ISDIR(inode->i_mode)) {
877 struct cgroup *cgrp = dentry->d_fsdata;
878 struct cgroup_subsys *ss;
879 BUG_ON(!(cgroup_is_removed(cgrp)));
880 /* It's possible for external users to be holding css
881 * reference counts on a cgroup; css_put() needs to
882 * be able to access the cgroup after decrementing
883 * the reference count in order to know if it needs to
884 * queue the cgroup to be handled by the release
885 * agent */
886 synchronize_rcu();
887
888 mutex_lock(&cgroup_mutex);
889 /*
890 * Release the subsystem state objects.
891 */
892 for_each_subsys(cgrp->root, ss)
893 ss->destroy(cgrp);
894
895 cgrp->root->number_of_cgroups--;
896 mutex_unlock(&cgroup_mutex);
897
898 /*
899 * Drop the active superblock reference that we took when we
900 * created the cgroup
901 */
902 deactivate_super(cgrp->root->sb);
903
904 /*
905 * if we're getting rid of the cgroup, refcount should ensure
906 * that there are no pidlists left.
907 */
908 BUG_ON(!list_empty(&cgrp->pidlists));
909
910 kfree_rcu(cgrp, rcu_head);
911 } else {
912 struct cfent *cfe = __d_cfe(dentry);
913 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
914
915 WARN_ONCE(!list_empty(&cfe->node) &&
916 cgrp != &cgrp->root->top_cgroup,
917 "cfe still linked for %s\n", cfe->type->name);
918 kfree(cfe);
919 }
920 iput(inode);
921 }
922
923 static int cgroup_delete(const struct dentry *d)
924 {
925 return 1;
926 }
927
928 static void remove_dir(struct dentry *d)
929 {
930 struct dentry *parent = dget(d->d_parent);
931
932 d_delete(d);
933 simple_rmdir(parent->d_inode, d);
934 dput(parent);
935 }
936
937 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
938 {
939 struct cfent *cfe;
940
941 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
942 lockdep_assert_held(&cgroup_mutex);
943
944 list_for_each_entry(cfe, &cgrp->files, node) {
945 struct dentry *d = cfe->dentry;
946
947 if (cft && cfe->type != cft)
948 continue;
949
950 dget(d);
951 d_delete(d);
952 simple_unlink(d->d_inode, d);
953 list_del_init(&cfe->node);
954 dput(d);
955
956 return 0;
957 }
958 return -ENOENT;
959 }
960
961 static void cgroup_clear_directory(struct dentry *dir)
962 {
963 struct cgroup *cgrp = __d_cgrp(dir);
964
965 while (!list_empty(&cgrp->files))
966 cgroup_rm_file(cgrp, NULL);
967 }
968
969 /*
970 * NOTE : the dentry must have been dget()'ed
971 */
972 static void cgroup_d_remove_dir(struct dentry *dentry)
973 {
974 struct dentry *parent;
975
976 cgroup_clear_directory(dentry);
977
978 parent = dentry->d_parent;
979 spin_lock(&parent->d_lock);
980 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
981 list_del_init(&dentry->d_u.d_child);
982 spin_unlock(&dentry->d_lock);
983 spin_unlock(&parent->d_lock);
984 remove_dir(dentry);
985 }
986
987 /*
988 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
989 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
990 * reference to css->refcnt. In general, this refcnt is expected to goes down
991 * to zero, soon.
992 *
993 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
994 */
995 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
996
997 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
998 {
999 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
1000 wake_up_all(&cgroup_rmdir_waitq);
1001 }
1002
1003 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1004 {
1005 css_get(css);
1006 }
1007
1008 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1009 {
1010 cgroup_wakeup_rmdir_waiter(css->cgroup);
1011 css_put(css);
1012 }
1013
1014 /*
1015 * Call with cgroup_mutex held. Drops reference counts on modules, including
1016 * any duplicate ones that parse_cgroupfs_options took. If this function
1017 * returns an error, no reference counts are touched.
1018 */
1019 static int rebind_subsystems(struct cgroupfs_root *root,
1020 unsigned long final_bits)
1021 {
1022 unsigned long added_bits, removed_bits;
1023 struct cgroup *cgrp = &root->top_cgroup;
1024 int i;
1025
1026 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1027 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1028
1029 removed_bits = root->actual_subsys_bits & ~final_bits;
1030 added_bits = final_bits & ~root->actual_subsys_bits;
1031 /* Check that any added subsystems are currently free */
1032 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1033 unsigned long bit = 1UL << i;
1034 struct cgroup_subsys *ss = subsys[i];
1035 if (!(bit & added_bits))
1036 continue;
1037 /*
1038 * Nobody should tell us to do a subsys that doesn't exist:
1039 * parse_cgroupfs_options should catch that case and refcounts
1040 * ensure that subsystems won't disappear once selected.
1041 */
1042 BUG_ON(ss == NULL);
1043 if (ss->root != &rootnode) {
1044 /* Subsystem isn't free */
1045 return -EBUSY;
1046 }
1047 }
1048
1049 /* Currently we don't handle adding/removing subsystems when
1050 * any child cgroups exist. This is theoretically supportable
1051 * but involves complex error handling, so it's being left until
1052 * later */
1053 if (root->number_of_cgroups > 1)
1054 return -EBUSY;
1055
1056 /* Process each subsystem */
1057 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1058 struct cgroup_subsys *ss = subsys[i];
1059 unsigned long bit = 1UL << i;
1060 if (bit & added_bits) {
1061 /* We're binding this subsystem to this hierarchy */
1062 BUG_ON(ss == NULL);
1063 BUG_ON(cgrp->subsys[i]);
1064 BUG_ON(!dummytop->subsys[i]);
1065 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1066 mutex_lock(&ss->hierarchy_mutex);
1067 cgrp->subsys[i] = dummytop->subsys[i];
1068 cgrp->subsys[i]->cgroup = cgrp;
1069 list_move(&ss->sibling, &root->subsys_list);
1070 ss->root = root;
1071 if (ss->bind)
1072 ss->bind(cgrp);
1073 mutex_unlock(&ss->hierarchy_mutex);
1074 /* refcount was already taken, and we're keeping it */
1075 } else if (bit & removed_bits) {
1076 /* We're removing this subsystem */
1077 BUG_ON(ss == NULL);
1078 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1079 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1080 mutex_lock(&ss->hierarchy_mutex);
1081 if (ss->bind)
1082 ss->bind(dummytop);
1083 dummytop->subsys[i]->cgroup = dummytop;
1084 cgrp->subsys[i] = NULL;
1085 subsys[i]->root = &rootnode;
1086 list_move(&ss->sibling, &rootnode.subsys_list);
1087 mutex_unlock(&ss->hierarchy_mutex);
1088 /* subsystem is now free - drop reference on module */
1089 module_put(ss->module);
1090 } else if (bit & final_bits) {
1091 /* Subsystem state should already exist */
1092 BUG_ON(ss == NULL);
1093 BUG_ON(!cgrp->subsys[i]);
1094 /*
1095 * a refcount was taken, but we already had one, so
1096 * drop the extra reference.
1097 */
1098 module_put(ss->module);
1099 #ifdef CONFIG_MODULE_UNLOAD
1100 BUG_ON(ss->module && !module_refcount(ss->module));
1101 #endif
1102 } else {
1103 /* Subsystem state shouldn't exist */
1104 BUG_ON(cgrp->subsys[i]);
1105 }
1106 }
1107 root->subsys_bits = root->actual_subsys_bits = final_bits;
1108 synchronize_rcu();
1109
1110 return 0;
1111 }
1112
1113 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1114 {
1115 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1116 struct cgroup_subsys *ss;
1117
1118 mutex_lock(&cgroup_root_mutex);
1119 for_each_subsys(root, ss)
1120 seq_printf(seq, ",%s", ss->name);
1121 if (test_bit(ROOT_NOPREFIX, &root->flags))
1122 seq_puts(seq, ",noprefix");
1123 if (strlen(root->release_agent_path))
1124 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1125 if (clone_children(&root->top_cgroup))
1126 seq_puts(seq, ",clone_children");
1127 if (strlen(root->name))
1128 seq_printf(seq, ",name=%s", root->name);
1129 mutex_unlock(&cgroup_root_mutex);
1130 return 0;
1131 }
1132
1133 struct cgroup_sb_opts {
1134 unsigned long subsys_bits;
1135 unsigned long flags;
1136 char *release_agent;
1137 bool clone_children;
1138 char *name;
1139 /* User explicitly requested empty subsystem */
1140 bool none;
1141
1142 struct cgroupfs_root *new_root;
1143
1144 };
1145
1146 /*
1147 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1148 * with cgroup_mutex held to protect the subsys[] array. This function takes
1149 * refcounts on subsystems to be used, unless it returns error, in which case
1150 * no refcounts are taken.
1151 */
1152 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1153 {
1154 char *token, *o = data;
1155 bool all_ss = false, one_ss = false;
1156 unsigned long mask = (unsigned long)-1;
1157 int i;
1158 bool module_pin_failed = false;
1159
1160 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1161
1162 #ifdef CONFIG_CPUSETS
1163 mask = ~(1UL << cpuset_subsys_id);
1164 #endif
1165
1166 memset(opts, 0, sizeof(*opts));
1167
1168 while ((token = strsep(&o, ",")) != NULL) {
1169 if (!*token)
1170 return -EINVAL;
1171 if (!strcmp(token, "none")) {
1172 /* Explicitly have no subsystems */
1173 opts->none = true;
1174 continue;
1175 }
1176 if (!strcmp(token, "all")) {
1177 /* Mutually exclusive option 'all' + subsystem name */
1178 if (one_ss)
1179 return -EINVAL;
1180 all_ss = true;
1181 continue;
1182 }
1183 if (!strcmp(token, "noprefix")) {
1184 set_bit(ROOT_NOPREFIX, &opts->flags);
1185 continue;
1186 }
1187 if (!strcmp(token, "clone_children")) {
1188 opts->clone_children = true;
1189 continue;
1190 }
1191 if (!strncmp(token, "release_agent=", 14)) {
1192 /* Specifying two release agents is forbidden */
1193 if (opts->release_agent)
1194 return -EINVAL;
1195 opts->release_agent =
1196 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1197 if (!opts->release_agent)
1198 return -ENOMEM;
1199 continue;
1200 }
1201 if (!strncmp(token, "name=", 5)) {
1202 const char *name = token + 5;
1203 /* Can't specify an empty name */
1204 if (!strlen(name))
1205 return -EINVAL;
1206 /* Must match [\w.-]+ */
1207 for (i = 0; i < strlen(name); i++) {
1208 char c = name[i];
1209 if (isalnum(c))
1210 continue;
1211 if ((c == '.') || (c == '-') || (c == '_'))
1212 continue;
1213 return -EINVAL;
1214 }
1215 /* Specifying two names is forbidden */
1216 if (opts->name)
1217 return -EINVAL;
1218 opts->name = kstrndup(name,
1219 MAX_CGROUP_ROOT_NAMELEN - 1,
1220 GFP_KERNEL);
1221 if (!opts->name)
1222 return -ENOMEM;
1223
1224 continue;
1225 }
1226
1227 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1228 struct cgroup_subsys *ss = subsys[i];
1229 if (ss == NULL)
1230 continue;
1231 if (strcmp(token, ss->name))
1232 continue;
1233 if (ss->disabled)
1234 continue;
1235
1236 /* Mutually exclusive option 'all' + subsystem name */
1237 if (all_ss)
1238 return -EINVAL;
1239 set_bit(i, &opts->subsys_bits);
1240 one_ss = true;
1241
1242 break;
1243 }
1244 if (i == CGROUP_SUBSYS_COUNT)
1245 return -ENOENT;
1246 }
1247
1248 /*
1249 * If the 'all' option was specified select all the subsystems,
1250 * otherwise if 'none', 'name=' and a subsystem name options
1251 * were not specified, let's default to 'all'
1252 */
1253 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1255 struct cgroup_subsys *ss = subsys[i];
1256 if (ss == NULL)
1257 continue;
1258 if (ss->disabled)
1259 continue;
1260 set_bit(i, &opts->subsys_bits);
1261 }
1262 }
1263
1264 /* Consistency checks */
1265
1266 /*
1267 * Option noprefix was introduced just for backward compatibility
1268 * with the old cpuset, so we allow noprefix only if mounting just
1269 * the cpuset subsystem.
1270 */
1271 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1272 (opts->subsys_bits & mask))
1273 return -EINVAL;
1274
1275
1276 /* Can't specify "none" and some subsystems */
1277 if (opts->subsys_bits && opts->none)
1278 return -EINVAL;
1279
1280 /*
1281 * We either have to specify by name or by subsystems. (So all
1282 * empty hierarchies must have a name).
1283 */
1284 if (!opts->subsys_bits && !opts->name)
1285 return -EINVAL;
1286
1287 /*
1288 * Grab references on all the modules we'll need, so the subsystems
1289 * don't dance around before rebind_subsystems attaches them. This may
1290 * take duplicate reference counts on a subsystem that's already used,
1291 * but rebind_subsystems handles this case.
1292 */
1293 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1294 unsigned long bit = 1UL << i;
1295
1296 if (!(bit & opts->subsys_bits))
1297 continue;
1298 if (!try_module_get(subsys[i]->module)) {
1299 module_pin_failed = true;
1300 break;
1301 }
1302 }
1303 if (module_pin_failed) {
1304 /*
1305 * oops, one of the modules was going away. this means that we
1306 * raced with a module_delete call, and to the user this is
1307 * essentially a "subsystem doesn't exist" case.
1308 */
1309 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1310 /* drop refcounts only on the ones we took */
1311 unsigned long bit = 1UL << i;
1312
1313 if (!(bit & opts->subsys_bits))
1314 continue;
1315 module_put(subsys[i]->module);
1316 }
1317 return -ENOENT;
1318 }
1319
1320 return 0;
1321 }
1322
1323 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1324 {
1325 int i;
1326 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1327 unsigned long bit = 1UL << i;
1328
1329 if (!(bit & subsys_bits))
1330 continue;
1331 module_put(subsys[i]->module);
1332 }
1333 }
1334
1335 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1336 {
1337 int ret = 0;
1338 struct cgroupfs_root *root = sb->s_fs_info;
1339 struct cgroup *cgrp = &root->top_cgroup;
1340 struct cgroup_sb_opts opts;
1341
1342 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1343 mutex_lock(&cgroup_mutex);
1344 mutex_lock(&cgroup_root_mutex);
1345
1346 /* See what subsystems are wanted */
1347 ret = parse_cgroupfs_options(data, &opts);
1348 if (ret)
1349 goto out_unlock;
1350
1351 /* See feature-removal-schedule.txt */
1352 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1353 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1354 task_tgid_nr(current), current->comm);
1355
1356 /* Don't allow flags or name to change at remount */
1357 if (opts.flags != root->flags ||
1358 (opts.name && strcmp(opts.name, root->name))) {
1359 ret = -EINVAL;
1360 drop_parsed_module_refcounts(opts.subsys_bits);
1361 goto out_unlock;
1362 }
1363
1364 ret = rebind_subsystems(root, opts.subsys_bits);
1365 if (ret) {
1366 drop_parsed_module_refcounts(opts.subsys_bits);
1367 goto out_unlock;
1368 }
1369
1370 /* clear out any existing files and repopulate subsystem files */
1371 cgroup_clear_directory(cgrp->dentry);
1372 cgroup_populate_dir(cgrp);
1373
1374 if (opts.release_agent)
1375 strcpy(root->release_agent_path, opts.release_agent);
1376 out_unlock:
1377 kfree(opts.release_agent);
1378 kfree(opts.name);
1379 mutex_unlock(&cgroup_root_mutex);
1380 mutex_unlock(&cgroup_mutex);
1381 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1382 return ret;
1383 }
1384
1385 static const struct super_operations cgroup_ops = {
1386 .statfs = simple_statfs,
1387 .drop_inode = generic_delete_inode,
1388 .show_options = cgroup_show_options,
1389 .remount_fs = cgroup_remount,
1390 };
1391
1392 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1393 {
1394 INIT_LIST_HEAD(&cgrp->sibling);
1395 INIT_LIST_HEAD(&cgrp->children);
1396 INIT_LIST_HEAD(&cgrp->files);
1397 INIT_LIST_HEAD(&cgrp->css_sets);
1398 INIT_LIST_HEAD(&cgrp->release_list);
1399 INIT_LIST_HEAD(&cgrp->pidlists);
1400 mutex_init(&cgrp->pidlist_mutex);
1401 INIT_LIST_HEAD(&cgrp->event_list);
1402 spin_lock_init(&cgrp->event_list_lock);
1403 }
1404
1405 static void init_cgroup_root(struct cgroupfs_root *root)
1406 {
1407 struct cgroup *cgrp = &root->top_cgroup;
1408
1409 INIT_LIST_HEAD(&root->subsys_list);
1410 INIT_LIST_HEAD(&root->root_list);
1411 INIT_LIST_HEAD(&root->allcg_list);
1412 root->number_of_cgroups = 1;
1413 cgrp->root = root;
1414 cgrp->top_cgroup = cgrp;
1415 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1416 init_cgroup_housekeeping(cgrp);
1417 }
1418
1419 static bool init_root_id(struct cgroupfs_root *root)
1420 {
1421 int ret = 0;
1422
1423 do {
1424 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1425 return false;
1426 spin_lock(&hierarchy_id_lock);
1427 /* Try to allocate the next unused ID */
1428 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1429 &root->hierarchy_id);
1430 if (ret == -ENOSPC)
1431 /* Try again starting from 0 */
1432 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1433 if (!ret) {
1434 next_hierarchy_id = root->hierarchy_id + 1;
1435 } else if (ret != -EAGAIN) {
1436 /* Can only get here if the 31-bit IDR is full ... */
1437 BUG_ON(ret);
1438 }
1439 spin_unlock(&hierarchy_id_lock);
1440 } while (ret);
1441 return true;
1442 }
1443
1444 static int cgroup_test_super(struct super_block *sb, void *data)
1445 {
1446 struct cgroup_sb_opts *opts = data;
1447 struct cgroupfs_root *root = sb->s_fs_info;
1448
1449 /* If we asked for a name then it must match */
1450 if (opts->name && strcmp(opts->name, root->name))
1451 return 0;
1452
1453 /*
1454 * If we asked for subsystems (or explicitly for no
1455 * subsystems) then they must match
1456 */
1457 if ((opts->subsys_bits || opts->none)
1458 && (opts->subsys_bits != root->subsys_bits))
1459 return 0;
1460
1461 return 1;
1462 }
1463
1464 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1465 {
1466 struct cgroupfs_root *root;
1467
1468 if (!opts->subsys_bits && !opts->none)
1469 return NULL;
1470
1471 root = kzalloc(sizeof(*root), GFP_KERNEL);
1472 if (!root)
1473 return ERR_PTR(-ENOMEM);
1474
1475 if (!init_root_id(root)) {
1476 kfree(root);
1477 return ERR_PTR(-ENOMEM);
1478 }
1479 init_cgroup_root(root);
1480
1481 root->subsys_bits = opts->subsys_bits;
1482 root->flags = opts->flags;
1483 if (opts->release_agent)
1484 strcpy(root->release_agent_path, opts->release_agent);
1485 if (opts->name)
1486 strcpy(root->name, opts->name);
1487 if (opts->clone_children)
1488 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1489 return root;
1490 }
1491
1492 static void cgroup_drop_root(struct cgroupfs_root *root)
1493 {
1494 if (!root)
1495 return;
1496
1497 BUG_ON(!root->hierarchy_id);
1498 spin_lock(&hierarchy_id_lock);
1499 ida_remove(&hierarchy_ida, root->hierarchy_id);
1500 spin_unlock(&hierarchy_id_lock);
1501 kfree(root);
1502 }
1503
1504 static int cgroup_set_super(struct super_block *sb, void *data)
1505 {
1506 int ret;
1507 struct cgroup_sb_opts *opts = data;
1508
1509 /* If we don't have a new root, we can't set up a new sb */
1510 if (!opts->new_root)
1511 return -EINVAL;
1512
1513 BUG_ON(!opts->subsys_bits && !opts->none);
1514
1515 ret = set_anon_super(sb, NULL);
1516 if (ret)
1517 return ret;
1518
1519 sb->s_fs_info = opts->new_root;
1520 opts->new_root->sb = sb;
1521
1522 sb->s_blocksize = PAGE_CACHE_SIZE;
1523 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1524 sb->s_magic = CGROUP_SUPER_MAGIC;
1525 sb->s_op = &cgroup_ops;
1526
1527 return 0;
1528 }
1529
1530 static int cgroup_get_rootdir(struct super_block *sb)
1531 {
1532 static const struct dentry_operations cgroup_dops = {
1533 .d_iput = cgroup_diput,
1534 .d_delete = cgroup_delete,
1535 };
1536
1537 struct inode *inode =
1538 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1539
1540 if (!inode)
1541 return -ENOMEM;
1542
1543 inode->i_fop = &simple_dir_operations;
1544 inode->i_op = &cgroup_dir_inode_operations;
1545 /* directories start off with i_nlink == 2 (for "." entry) */
1546 inc_nlink(inode);
1547 sb->s_root = d_make_root(inode);
1548 if (!sb->s_root)
1549 return -ENOMEM;
1550 /* for everything else we want ->d_op set */
1551 sb->s_d_op = &cgroup_dops;
1552 return 0;
1553 }
1554
1555 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1556 int flags, const char *unused_dev_name,
1557 void *data)
1558 {
1559 struct cgroup_sb_opts opts;
1560 struct cgroupfs_root *root;
1561 int ret = 0;
1562 struct super_block *sb;
1563 struct cgroupfs_root *new_root;
1564 struct inode *inode;
1565
1566 /* First find the desired set of subsystems */
1567 mutex_lock(&cgroup_mutex);
1568 ret = parse_cgroupfs_options(data, &opts);
1569 mutex_unlock(&cgroup_mutex);
1570 if (ret)
1571 goto out_err;
1572
1573 /*
1574 * Allocate a new cgroup root. We may not need it if we're
1575 * reusing an existing hierarchy.
1576 */
1577 new_root = cgroup_root_from_opts(&opts);
1578 if (IS_ERR(new_root)) {
1579 ret = PTR_ERR(new_root);
1580 goto drop_modules;
1581 }
1582 opts.new_root = new_root;
1583
1584 /* Locate an existing or new sb for this hierarchy */
1585 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1586 if (IS_ERR(sb)) {
1587 ret = PTR_ERR(sb);
1588 cgroup_drop_root(opts.new_root);
1589 goto drop_modules;
1590 }
1591
1592 root = sb->s_fs_info;
1593 BUG_ON(!root);
1594 if (root == opts.new_root) {
1595 /* We used the new root structure, so this is a new hierarchy */
1596 struct list_head tmp_cg_links;
1597 struct cgroup *root_cgrp = &root->top_cgroup;
1598 struct cgroupfs_root *existing_root;
1599 const struct cred *cred;
1600 int i;
1601
1602 BUG_ON(sb->s_root != NULL);
1603
1604 ret = cgroup_get_rootdir(sb);
1605 if (ret)
1606 goto drop_new_super;
1607 inode = sb->s_root->d_inode;
1608
1609 mutex_lock(&inode->i_mutex);
1610 mutex_lock(&cgroup_mutex);
1611 mutex_lock(&cgroup_root_mutex);
1612
1613 /* Check for name clashes with existing mounts */
1614 ret = -EBUSY;
1615 if (strlen(root->name))
1616 for_each_active_root(existing_root)
1617 if (!strcmp(existing_root->name, root->name))
1618 goto unlock_drop;
1619
1620 /*
1621 * We're accessing css_set_count without locking
1622 * css_set_lock here, but that's OK - it can only be
1623 * increased by someone holding cgroup_lock, and
1624 * that's us. The worst that can happen is that we
1625 * have some link structures left over
1626 */
1627 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1628 if (ret)
1629 goto unlock_drop;
1630
1631 ret = rebind_subsystems(root, root->subsys_bits);
1632 if (ret == -EBUSY) {
1633 free_cg_links(&tmp_cg_links);
1634 goto unlock_drop;
1635 }
1636 /*
1637 * There must be no failure case after here, since rebinding
1638 * takes care of subsystems' refcounts, which are explicitly
1639 * dropped in the failure exit path.
1640 */
1641
1642 /* EBUSY should be the only error here */
1643 BUG_ON(ret);
1644
1645 list_add(&root->root_list, &roots);
1646 root_count++;
1647
1648 sb->s_root->d_fsdata = root_cgrp;
1649 root->top_cgroup.dentry = sb->s_root;
1650
1651 /* Link the top cgroup in this hierarchy into all
1652 * the css_set objects */
1653 write_lock(&css_set_lock);
1654 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1655 struct hlist_head *hhead = &css_set_table[i];
1656 struct hlist_node *node;
1657 struct css_set *cg;
1658
1659 hlist_for_each_entry(cg, node, hhead, hlist)
1660 link_css_set(&tmp_cg_links, cg, root_cgrp);
1661 }
1662 write_unlock(&css_set_lock);
1663
1664 free_cg_links(&tmp_cg_links);
1665
1666 BUG_ON(!list_empty(&root_cgrp->sibling));
1667 BUG_ON(!list_empty(&root_cgrp->children));
1668 BUG_ON(root->number_of_cgroups != 1);
1669
1670 cred = override_creds(&init_cred);
1671 cgroup_populate_dir(root_cgrp);
1672 revert_creds(cred);
1673 mutex_unlock(&cgroup_root_mutex);
1674 mutex_unlock(&cgroup_mutex);
1675 mutex_unlock(&inode->i_mutex);
1676 } else {
1677 /*
1678 * We re-used an existing hierarchy - the new root (if
1679 * any) is not needed
1680 */
1681 cgroup_drop_root(opts.new_root);
1682 /* no subsys rebinding, so refcounts don't change */
1683 drop_parsed_module_refcounts(opts.subsys_bits);
1684 }
1685
1686 kfree(opts.release_agent);
1687 kfree(opts.name);
1688 return dget(sb->s_root);
1689
1690 unlock_drop:
1691 mutex_unlock(&cgroup_root_mutex);
1692 mutex_unlock(&cgroup_mutex);
1693 mutex_unlock(&inode->i_mutex);
1694 drop_new_super:
1695 deactivate_locked_super(sb);
1696 drop_modules:
1697 drop_parsed_module_refcounts(opts.subsys_bits);
1698 out_err:
1699 kfree(opts.release_agent);
1700 kfree(opts.name);
1701 return ERR_PTR(ret);
1702 }
1703
1704 static void cgroup_kill_sb(struct super_block *sb) {
1705 struct cgroupfs_root *root = sb->s_fs_info;
1706 struct cgroup *cgrp = &root->top_cgroup;
1707 int ret;
1708 struct cg_cgroup_link *link;
1709 struct cg_cgroup_link *saved_link;
1710
1711 BUG_ON(!root);
1712
1713 BUG_ON(root->number_of_cgroups != 1);
1714 BUG_ON(!list_empty(&cgrp->children));
1715 BUG_ON(!list_empty(&cgrp->sibling));
1716
1717 mutex_lock(&cgroup_mutex);
1718 mutex_lock(&cgroup_root_mutex);
1719
1720 /* Rebind all subsystems back to the default hierarchy */
1721 ret = rebind_subsystems(root, 0);
1722 /* Shouldn't be able to fail ... */
1723 BUG_ON(ret);
1724
1725 /*
1726 * Release all the links from css_sets to this hierarchy's
1727 * root cgroup
1728 */
1729 write_lock(&css_set_lock);
1730
1731 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1732 cgrp_link_list) {
1733 list_del(&link->cg_link_list);
1734 list_del(&link->cgrp_link_list);
1735 kfree(link);
1736 }
1737 write_unlock(&css_set_lock);
1738
1739 if (!list_empty(&root->root_list)) {
1740 list_del(&root->root_list);
1741 root_count--;
1742 }
1743
1744 mutex_unlock(&cgroup_root_mutex);
1745 mutex_unlock(&cgroup_mutex);
1746
1747 kill_litter_super(sb);
1748 cgroup_drop_root(root);
1749 }
1750
1751 static struct file_system_type cgroup_fs_type = {
1752 .name = "cgroup",
1753 .mount = cgroup_mount,
1754 .kill_sb = cgroup_kill_sb,
1755 };
1756
1757 static struct kobject *cgroup_kobj;
1758
1759 /**
1760 * cgroup_path - generate the path of a cgroup
1761 * @cgrp: the cgroup in question
1762 * @buf: the buffer to write the path into
1763 * @buflen: the length of the buffer
1764 *
1765 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1766 * reference. Writes path of cgroup into buf. Returns 0 on success,
1767 * -errno on error.
1768 */
1769 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1770 {
1771 char *start;
1772 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1773 cgroup_lock_is_held());
1774
1775 if (!dentry || cgrp == dummytop) {
1776 /*
1777 * Inactive subsystems have no dentry for their root
1778 * cgroup
1779 */
1780 strcpy(buf, "/");
1781 return 0;
1782 }
1783
1784 start = buf + buflen;
1785
1786 *--start = '\0';
1787 for (;;) {
1788 int len = dentry->d_name.len;
1789
1790 if ((start -= len) < buf)
1791 return -ENAMETOOLONG;
1792 memcpy(start, dentry->d_name.name, len);
1793 cgrp = cgrp->parent;
1794 if (!cgrp)
1795 break;
1796
1797 dentry = rcu_dereference_check(cgrp->dentry,
1798 cgroup_lock_is_held());
1799 if (!cgrp->parent)
1800 continue;
1801 if (--start < buf)
1802 return -ENAMETOOLONG;
1803 *start = '/';
1804 }
1805 memmove(buf, start, buf + buflen - start);
1806 return 0;
1807 }
1808 EXPORT_SYMBOL_GPL(cgroup_path);
1809
1810 /*
1811 * Control Group taskset
1812 */
1813 struct task_and_cgroup {
1814 struct task_struct *task;
1815 struct cgroup *cgrp;
1816 struct css_set *cg;
1817 };
1818
1819 struct cgroup_taskset {
1820 struct task_and_cgroup single;
1821 struct flex_array *tc_array;
1822 int tc_array_len;
1823 int idx;
1824 struct cgroup *cur_cgrp;
1825 };
1826
1827 /**
1828 * cgroup_taskset_first - reset taskset and return the first task
1829 * @tset: taskset of interest
1830 *
1831 * @tset iteration is initialized and the first task is returned.
1832 */
1833 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1834 {
1835 if (tset->tc_array) {
1836 tset->idx = 0;
1837 return cgroup_taskset_next(tset);
1838 } else {
1839 tset->cur_cgrp = tset->single.cgrp;
1840 return tset->single.task;
1841 }
1842 }
1843 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1844
1845 /**
1846 * cgroup_taskset_next - iterate to the next task in taskset
1847 * @tset: taskset of interest
1848 *
1849 * Return the next task in @tset. Iteration must have been initialized
1850 * with cgroup_taskset_first().
1851 */
1852 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1853 {
1854 struct task_and_cgroup *tc;
1855
1856 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1857 return NULL;
1858
1859 tc = flex_array_get(tset->tc_array, tset->idx++);
1860 tset->cur_cgrp = tc->cgrp;
1861 return tc->task;
1862 }
1863 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1864
1865 /**
1866 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1867 * @tset: taskset of interest
1868 *
1869 * Return the cgroup for the current (last returned) task of @tset. This
1870 * function must be preceded by either cgroup_taskset_first() or
1871 * cgroup_taskset_next().
1872 */
1873 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1874 {
1875 return tset->cur_cgrp;
1876 }
1877 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1878
1879 /**
1880 * cgroup_taskset_size - return the number of tasks in taskset
1881 * @tset: taskset of interest
1882 */
1883 int cgroup_taskset_size(struct cgroup_taskset *tset)
1884 {
1885 return tset->tc_array ? tset->tc_array_len : 1;
1886 }
1887 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1888
1889
1890 /*
1891 * cgroup_task_migrate - move a task from one cgroup to another.
1892 *
1893 * 'guarantee' is set if the caller promises that a new css_set for the task
1894 * will already exist. If not set, this function might sleep, and can fail with
1895 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1896 */
1897 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1898 struct task_struct *tsk, struct css_set *newcg)
1899 {
1900 struct css_set *oldcg;
1901
1902 /*
1903 * We are synchronized through threadgroup_lock() against PF_EXITING
1904 * setting such that we can't race against cgroup_exit() changing the
1905 * css_set to init_css_set and dropping the old one.
1906 */
1907 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1908 oldcg = tsk->cgroups;
1909
1910 task_lock(tsk);
1911 rcu_assign_pointer(tsk->cgroups, newcg);
1912 task_unlock(tsk);
1913
1914 /* Update the css_set linked lists if we're using them */
1915 write_lock(&css_set_lock);
1916 if (!list_empty(&tsk->cg_list))
1917 list_move(&tsk->cg_list, &newcg->tasks);
1918 write_unlock(&css_set_lock);
1919
1920 /*
1921 * We just gained a reference on oldcg by taking it from the task. As
1922 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1923 * it here; it will be freed under RCU.
1924 */
1925 put_css_set(oldcg);
1926
1927 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1928 }
1929
1930 /**
1931 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1932 * @cgrp: the cgroup the task is attaching to
1933 * @tsk: the task to be attached
1934 *
1935 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1936 * @tsk during call.
1937 */
1938 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1939 {
1940 int retval = 0;
1941 struct cgroup_subsys *ss, *failed_ss = NULL;
1942 struct cgroup *oldcgrp;
1943 struct cgroupfs_root *root = cgrp->root;
1944 struct cgroup_taskset tset = { };
1945 struct css_set *newcg;
1946
1947 /* @tsk either already exited or can't exit until the end */
1948 if (tsk->flags & PF_EXITING)
1949 return -ESRCH;
1950
1951 /* Nothing to do if the task is already in that cgroup */
1952 oldcgrp = task_cgroup_from_root(tsk, root);
1953 if (cgrp == oldcgrp)
1954 return 0;
1955
1956 tset.single.task = tsk;
1957 tset.single.cgrp = oldcgrp;
1958
1959 for_each_subsys(root, ss) {
1960 if (ss->can_attach) {
1961 retval = ss->can_attach(cgrp, &tset);
1962 if (retval) {
1963 /*
1964 * Remember on which subsystem the can_attach()
1965 * failed, so that we only call cancel_attach()
1966 * against the subsystems whose can_attach()
1967 * succeeded. (See below)
1968 */
1969 failed_ss = ss;
1970 goto out;
1971 }
1972 }
1973 }
1974
1975 newcg = find_css_set(tsk->cgroups, cgrp);
1976 if (!newcg) {
1977 retval = -ENOMEM;
1978 goto out;
1979 }
1980
1981 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1982
1983 for_each_subsys(root, ss) {
1984 if (ss->attach)
1985 ss->attach(cgrp, &tset);
1986 }
1987
1988 synchronize_rcu();
1989
1990 /*
1991 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1992 * is no longer empty.
1993 */
1994 cgroup_wakeup_rmdir_waiter(cgrp);
1995 out:
1996 if (retval) {
1997 for_each_subsys(root, ss) {
1998 if (ss == failed_ss)
1999 /*
2000 * This subsystem was the one that failed the
2001 * can_attach() check earlier, so we don't need
2002 * to call cancel_attach() against it or any
2003 * remaining subsystems.
2004 */
2005 break;
2006 if (ss->cancel_attach)
2007 ss->cancel_attach(cgrp, &tset);
2008 }
2009 }
2010 return retval;
2011 }
2012
2013 /**
2014 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2015 * @from: attach to all cgroups of a given task
2016 * @tsk: the task to be attached
2017 */
2018 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2019 {
2020 struct cgroupfs_root *root;
2021 int retval = 0;
2022
2023 cgroup_lock();
2024 for_each_active_root(root) {
2025 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2026
2027 retval = cgroup_attach_task(from_cg, tsk);
2028 if (retval)
2029 break;
2030 }
2031 cgroup_unlock();
2032
2033 return retval;
2034 }
2035 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2036
2037 /**
2038 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2039 * @cgrp: the cgroup to attach to
2040 * @leader: the threadgroup leader task_struct of the group to be attached
2041 *
2042 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2043 * task_lock of each thread in leader's threadgroup individually in turn.
2044 */
2045 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2046 {
2047 int retval, i, group_size;
2048 struct cgroup_subsys *ss, *failed_ss = NULL;
2049 /* guaranteed to be initialized later, but the compiler needs this */
2050 struct cgroupfs_root *root = cgrp->root;
2051 /* threadgroup list cursor and array */
2052 struct task_struct *tsk;
2053 struct task_and_cgroup *tc;
2054 struct flex_array *group;
2055 struct cgroup_taskset tset = { };
2056
2057 /*
2058 * step 0: in order to do expensive, possibly blocking operations for
2059 * every thread, we cannot iterate the thread group list, since it needs
2060 * rcu or tasklist locked. instead, build an array of all threads in the
2061 * group - group_rwsem prevents new threads from appearing, and if
2062 * threads exit, this will just be an over-estimate.
2063 */
2064 group_size = get_nr_threads(leader);
2065 /* flex_array supports very large thread-groups better than kmalloc. */
2066 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2067 if (!group)
2068 return -ENOMEM;
2069 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2070 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2071 if (retval)
2072 goto out_free_group_list;
2073
2074 tsk = leader;
2075 i = 0;
2076 /*
2077 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2078 * already PF_EXITING could be freed from underneath us unless we
2079 * take an rcu_read_lock.
2080 */
2081 rcu_read_lock();
2082 do {
2083 struct task_and_cgroup ent;
2084
2085 /* @tsk either already exited or can't exit until the end */
2086 if (tsk->flags & PF_EXITING)
2087 continue;
2088
2089 /* as per above, nr_threads may decrease, but not increase. */
2090 BUG_ON(i >= group_size);
2091 ent.task = tsk;
2092 ent.cgrp = task_cgroup_from_root(tsk, root);
2093 /* nothing to do if this task is already in the cgroup */
2094 if (ent.cgrp == cgrp)
2095 continue;
2096 /*
2097 * saying GFP_ATOMIC has no effect here because we did prealloc
2098 * earlier, but it's good form to communicate our expectations.
2099 */
2100 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2101 BUG_ON(retval != 0);
2102 i++;
2103 } while_each_thread(leader, tsk);
2104 rcu_read_unlock();
2105 /* remember the number of threads in the array for later. */
2106 group_size = i;
2107 tset.tc_array = group;
2108 tset.tc_array_len = group_size;
2109
2110 /* methods shouldn't be called if no task is actually migrating */
2111 retval = 0;
2112 if (!group_size)
2113 goto out_free_group_list;
2114
2115 /*
2116 * step 1: check that we can legitimately attach to the cgroup.
2117 */
2118 for_each_subsys(root, ss) {
2119 if (ss->can_attach) {
2120 retval = ss->can_attach(cgrp, &tset);
2121 if (retval) {
2122 failed_ss = ss;
2123 goto out_cancel_attach;
2124 }
2125 }
2126 }
2127
2128 /*
2129 * step 2: make sure css_sets exist for all threads to be migrated.
2130 * we use find_css_set, which allocates a new one if necessary.
2131 */
2132 for (i = 0; i < group_size; i++) {
2133 tc = flex_array_get(group, i);
2134 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2135 if (!tc->cg) {
2136 retval = -ENOMEM;
2137 goto out_put_css_set_refs;
2138 }
2139 }
2140
2141 /*
2142 * step 3: now that we're guaranteed success wrt the css_sets,
2143 * proceed to move all tasks to the new cgroup. There are no
2144 * failure cases after here, so this is the commit point.
2145 */
2146 for (i = 0; i < group_size; i++) {
2147 tc = flex_array_get(group, i);
2148 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2149 }
2150 /* nothing is sensitive to fork() after this point. */
2151
2152 /*
2153 * step 4: do subsystem attach callbacks.
2154 */
2155 for_each_subsys(root, ss) {
2156 if (ss->attach)
2157 ss->attach(cgrp, &tset);
2158 }
2159
2160 /*
2161 * step 5: success! and cleanup
2162 */
2163 synchronize_rcu();
2164 cgroup_wakeup_rmdir_waiter(cgrp);
2165 retval = 0;
2166 out_put_css_set_refs:
2167 if (retval) {
2168 for (i = 0; i < group_size; i++) {
2169 tc = flex_array_get(group, i);
2170 if (!tc->cg)
2171 break;
2172 put_css_set(tc->cg);
2173 }
2174 }
2175 out_cancel_attach:
2176 if (retval) {
2177 for_each_subsys(root, ss) {
2178 if (ss == failed_ss)
2179 break;
2180 if (ss->cancel_attach)
2181 ss->cancel_attach(cgrp, &tset);
2182 }
2183 }
2184 out_free_group_list:
2185 flex_array_free(group);
2186 return retval;
2187 }
2188
2189 /*
2190 * Find the task_struct of the task to attach by vpid and pass it along to the
2191 * function to attach either it or all tasks in its threadgroup. Will lock
2192 * cgroup_mutex and threadgroup; may take task_lock of task.
2193 */
2194 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2195 {
2196 struct task_struct *tsk;
2197 const struct cred *cred = current_cred(), *tcred;
2198 int ret;
2199
2200 if (!cgroup_lock_live_group(cgrp))
2201 return -ENODEV;
2202
2203 retry_find_task:
2204 rcu_read_lock();
2205 if (pid) {
2206 tsk = find_task_by_vpid(pid);
2207 if (!tsk) {
2208 rcu_read_unlock();
2209 ret= -ESRCH;
2210 goto out_unlock_cgroup;
2211 }
2212 /*
2213 * even if we're attaching all tasks in the thread group, we
2214 * only need to check permissions on one of them.
2215 */
2216 tcred = __task_cred(tsk);
2217 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2218 !uid_eq(cred->euid, tcred->uid) &&
2219 !uid_eq(cred->euid, tcred->suid)) {
2220 rcu_read_unlock();
2221 ret = -EACCES;
2222 goto out_unlock_cgroup;
2223 }
2224 } else
2225 tsk = current;
2226
2227 if (threadgroup)
2228 tsk = tsk->group_leader;
2229
2230 /*
2231 * Workqueue threads may acquire PF_THREAD_BOUND and become
2232 * trapped in a cpuset, or RT worker may be born in a cgroup
2233 * with no rt_runtime allocated. Just say no.
2234 */
2235 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2236 ret = -EINVAL;
2237 rcu_read_unlock();
2238 goto out_unlock_cgroup;
2239 }
2240
2241 get_task_struct(tsk);
2242 rcu_read_unlock();
2243
2244 threadgroup_lock(tsk);
2245 if (threadgroup) {
2246 if (!thread_group_leader(tsk)) {
2247 /*
2248 * a race with de_thread from another thread's exec()
2249 * may strip us of our leadership, if this happens,
2250 * there is no choice but to throw this task away and
2251 * try again; this is
2252 * "double-double-toil-and-trouble-check locking".
2253 */
2254 threadgroup_unlock(tsk);
2255 put_task_struct(tsk);
2256 goto retry_find_task;
2257 }
2258 ret = cgroup_attach_proc(cgrp, tsk);
2259 } else
2260 ret = cgroup_attach_task(cgrp, tsk);
2261 threadgroup_unlock(tsk);
2262
2263 put_task_struct(tsk);
2264 out_unlock_cgroup:
2265 cgroup_unlock();
2266 return ret;
2267 }
2268
2269 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2270 {
2271 return attach_task_by_pid(cgrp, pid, false);
2272 }
2273
2274 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2275 {
2276 return attach_task_by_pid(cgrp, tgid, true);
2277 }
2278
2279 /**
2280 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2281 * @cgrp: the cgroup to be checked for liveness
2282 *
2283 * On success, returns true; the lock should be later released with
2284 * cgroup_unlock(). On failure returns false with no lock held.
2285 */
2286 bool cgroup_lock_live_group(struct cgroup *cgrp)
2287 {
2288 mutex_lock(&cgroup_mutex);
2289 if (cgroup_is_removed(cgrp)) {
2290 mutex_unlock(&cgroup_mutex);
2291 return false;
2292 }
2293 return true;
2294 }
2295 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2296
2297 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2298 const char *buffer)
2299 {
2300 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2301 if (strlen(buffer) >= PATH_MAX)
2302 return -EINVAL;
2303 if (!cgroup_lock_live_group(cgrp))
2304 return -ENODEV;
2305 mutex_lock(&cgroup_root_mutex);
2306 strcpy(cgrp->root->release_agent_path, buffer);
2307 mutex_unlock(&cgroup_root_mutex);
2308 cgroup_unlock();
2309 return 0;
2310 }
2311
2312 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2313 struct seq_file *seq)
2314 {
2315 if (!cgroup_lock_live_group(cgrp))
2316 return -ENODEV;
2317 seq_puts(seq, cgrp->root->release_agent_path);
2318 seq_putc(seq, '\n');
2319 cgroup_unlock();
2320 return 0;
2321 }
2322
2323 /* A buffer size big enough for numbers or short strings */
2324 #define CGROUP_LOCAL_BUFFER_SIZE 64
2325
2326 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2327 struct file *file,
2328 const char __user *userbuf,
2329 size_t nbytes, loff_t *unused_ppos)
2330 {
2331 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2332 int retval = 0;
2333 char *end;
2334
2335 if (!nbytes)
2336 return -EINVAL;
2337 if (nbytes >= sizeof(buffer))
2338 return -E2BIG;
2339 if (copy_from_user(buffer, userbuf, nbytes))
2340 return -EFAULT;
2341
2342 buffer[nbytes] = 0; /* nul-terminate */
2343 if (cft->write_u64) {
2344 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2345 if (*end)
2346 return -EINVAL;
2347 retval = cft->write_u64(cgrp, cft, val);
2348 } else {
2349 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2350 if (*end)
2351 return -EINVAL;
2352 retval = cft->write_s64(cgrp, cft, val);
2353 }
2354 if (!retval)
2355 retval = nbytes;
2356 return retval;
2357 }
2358
2359 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2360 struct file *file,
2361 const char __user *userbuf,
2362 size_t nbytes, loff_t *unused_ppos)
2363 {
2364 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2365 int retval = 0;
2366 size_t max_bytes = cft->max_write_len;
2367 char *buffer = local_buffer;
2368
2369 if (!max_bytes)
2370 max_bytes = sizeof(local_buffer) - 1;
2371 if (nbytes >= max_bytes)
2372 return -E2BIG;
2373 /* Allocate a dynamic buffer if we need one */
2374 if (nbytes >= sizeof(local_buffer)) {
2375 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2376 if (buffer == NULL)
2377 return -ENOMEM;
2378 }
2379 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2380 retval = -EFAULT;
2381 goto out;
2382 }
2383
2384 buffer[nbytes] = 0; /* nul-terminate */
2385 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2386 if (!retval)
2387 retval = nbytes;
2388 out:
2389 if (buffer != local_buffer)
2390 kfree(buffer);
2391 return retval;
2392 }
2393
2394 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2395 size_t nbytes, loff_t *ppos)
2396 {
2397 struct cftype *cft = __d_cft(file->f_dentry);
2398 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2399
2400 if (cgroup_is_removed(cgrp))
2401 return -ENODEV;
2402 if (cft->write)
2403 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2404 if (cft->write_u64 || cft->write_s64)
2405 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2406 if (cft->write_string)
2407 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2408 if (cft->trigger) {
2409 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2410 return ret ? ret : nbytes;
2411 }
2412 return -EINVAL;
2413 }
2414
2415 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2416 struct file *file,
2417 char __user *buf, size_t nbytes,
2418 loff_t *ppos)
2419 {
2420 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2421 u64 val = cft->read_u64(cgrp, cft);
2422 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2423
2424 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2425 }
2426
2427 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2428 struct file *file,
2429 char __user *buf, size_t nbytes,
2430 loff_t *ppos)
2431 {
2432 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2433 s64 val = cft->read_s64(cgrp, cft);
2434 int len = sprintf(tmp, "%lld\n", (long long) val);
2435
2436 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2437 }
2438
2439 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2440 size_t nbytes, loff_t *ppos)
2441 {
2442 struct cftype *cft = __d_cft(file->f_dentry);
2443 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2444
2445 if (cgroup_is_removed(cgrp))
2446 return -ENODEV;
2447
2448 if (cft->read)
2449 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2450 if (cft->read_u64)
2451 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2452 if (cft->read_s64)
2453 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2454 return -EINVAL;
2455 }
2456
2457 /*
2458 * seqfile ops/methods for returning structured data. Currently just
2459 * supports string->u64 maps, but can be extended in future.
2460 */
2461
2462 struct cgroup_seqfile_state {
2463 struct cftype *cft;
2464 struct cgroup *cgroup;
2465 };
2466
2467 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2468 {
2469 struct seq_file *sf = cb->state;
2470 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2471 }
2472
2473 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2474 {
2475 struct cgroup_seqfile_state *state = m->private;
2476 struct cftype *cft = state->cft;
2477 if (cft->read_map) {
2478 struct cgroup_map_cb cb = {
2479 .fill = cgroup_map_add,
2480 .state = m,
2481 };
2482 return cft->read_map(state->cgroup, cft, &cb);
2483 }
2484 return cft->read_seq_string(state->cgroup, cft, m);
2485 }
2486
2487 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2488 {
2489 struct seq_file *seq = file->private_data;
2490 kfree(seq->private);
2491 return single_release(inode, file);
2492 }
2493
2494 static const struct file_operations cgroup_seqfile_operations = {
2495 .read = seq_read,
2496 .write = cgroup_file_write,
2497 .llseek = seq_lseek,
2498 .release = cgroup_seqfile_release,
2499 };
2500
2501 static int cgroup_file_open(struct inode *inode, struct file *file)
2502 {
2503 int err;
2504 struct cftype *cft;
2505
2506 err = generic_file_open(inode, file);
2507 if (err)
2508 return err;
2509 cft = __d_cft(file->f_dentry);
2510
2511 if (cft->read_map || cft->read_seq_string) {
2512 struct cgroup_seqfile_state *state =
2513 kzalloc(sizeof(*state), GFP_USER);
2514 if (!state)
2515 return -ENOMEM;
2516 state->cft = cft;
2517 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2518 file->f_op = &cgroup_seqfile_operations;
2519 err = single_open(file, cgroup_seqfile_show, state);
2520 if (err < 0)
2521 kfree(state);
2522 } else if (cft->open)
2523 err = cft->open(inode, file);
2524 else
2525 err = 0;
2526
2527 return err;
2528 }
2529
2530 static int cgroup_file_release(struct inode *inode, struct file *file)
2531 {
2532 struct cftype *cft = __d_cft(file->f_dentry);
2533 if (cft->release)
2534 return cft->release(inode, file);
2535 return 0;
2536 }
2537
2538 /*
2539 * cgroup_rename - Only allow simple rename of directories in place.
2540 */
2541 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2542 struct inode *new_dir, struct dentry *new_dentry)
2543 {
2544 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2545 return -ENOTDIR;
2546 if (new_dentry->d_inode)
2547 return -EEXIST;
2548 if (old_dir != new_dir)
2549 return -EIO;
2550 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2551 }
2552
2553 static const struct file_operations cgroup_file_operations = {
2554 .read = cgroup_file_read,
2555 .write = cgroup_file_write,
2556 .llseek = generic_file_llseek,
2557 .open = cgroup_file_open,
2558 .release = cgroup_file_release,
2559 };
2560
2561 static const struct inode_operations cgroup_dir_inode_operations = {
2562 .lookup = cgroup_lookup,
2563 .mkdir = cgroup_mkdir,
2564 .rmdir = cgroup_rmdir,
2565 .rename = cgroup_rename,
2566 };
2567
2568 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2569 {
2570 if (dentry->d_name.len > NAME_MAX)
2571 return ERR_PTR(-ENAMETOOLONG);
2572 d_add(dentry, NULL);
2573 return NULL;
2574 }
2575
2576 /*
2577 * Check if a file is a control file
2578 */
2579 static inline struct cftype *__file_cft(struct file *file)
2580 {
2581 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2582 return ERR_PTR(-EINVAL);
2583 return __d_cft(file->f_dentry);
2584 }
2585
2586 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2587 struct super_block *sb)
2588 {
2589 struct inode *inode;
2590
2591 if (!dentry)
2592 return -ENOENT;
2593 if (dentry->d_inode)
2594 return -EEXIST;
2595
2596 inode = cgroup_new_inode(mode, sb);
2597 if (!inode)
2598 return -ENOMEM;
2599
2600 if (S_ISDIR(mode)) {
2601 inode->i_op = &cgroup_dir_inode_operations;
2602 inode->i_fop = &simple_dir_operations;
2603
2604 /* start off with i_nlink == 2 (for "." entry) */
2605 inc_nlink(inode);
2606
2607 /* start with the directory inode held, so that we can
2608 * populate it without racing with another mkdir */
2609 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2610 } else if (S_ISREG(mode)) {
2611 inode->i_size = 0;
2612 inode->i_fop = &cgroup_file_operations;
2613 }
2614 d_instantiate(dentry, inode);
2615 dget(dentry); /* Extra count - pin the dentry in core */
2616 return 0;
2617 }
2618
2619 /*
2620 * cgroup_create_dir - create a directory for an object.
2621 * @cgrp: the cgroup we create the directory for. It must have a valid
2622 * ->parent field. And we are going to fill its ->dentry field.
2623 * @dentry: dentry of the new cgroup
2624 * @mode: mode to set on new directory.
2625 */
2626 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2627 umode_t mode)
2628 {
2629 struct dentry *parent;
2630 int error = 0;
2631
2632 parent = cgrp->parent->dentry;
2633 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2634 if (!error) {
2635 dentry->d_fsdata = cgrp;
2636 inc_nlink(parent->d_inode);
2637 rcu_assign_pointer(cgrp->dentry, dentry);
2638 dget(dentry);
2639 }
2640 dput(dentry);
2641
2642 return error;
2643 }
2644
2645 /**
2646 * cgroup_file_mode - deduce file mode of a control file
2647 * @cft: the control file in question
2648 *
2649 * returns cft->mode if ->mode is not 0
2650 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2651 * returns S_IRUGO if it has only a read handler
2652 * returns S_IWUSR if it has only a write hander
2653 */
2654 static umode_t cgroup_file_mode(const struct cftype *cft)
2655 {
2656 umode_t mode = 0;
2657
2658 if (cft->mode)
2659 return cft->mode;
2660
2661 if (cft->read || cft->read_u64 || cft->read_s64 ||
2662 cft->read_map || cft->read_seq_string)
2663 mode |= S_IRUGO;
2664
2665 if (cft->write || cft->write_u64 || cft->write_s64 ||
2666 cft->write_string || cft->trigger)
2667 mode |= S_IWUSR;
2668
2669 return mode;
2670 }
2671
2672 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2673 const struct cftype *cft)
2674 {
2675 struct dentry *dir = cgrp->dentry;
2676 struct cgroup *parent = __d_cgrp(dir);
2677 struct dentry *dentry;
2678 struct cfent *cfe;
2679 int error;
2680 umode_t mode;
2681 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2682
2683 /* does @cft->flags tell us to skip creation on @cgrp? */
2684 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2685 return 0;
2686 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2687 return 0;
2688
2689 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2690 strcpy(name, subsys->name);
2691 strcat(name, ".");
2692 }
2693 strcat(name, cft->name);
2694
2695 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2696
2697 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2698 if (!cfe)
2699 return -ENOMEM;
2700
2701 dentry = lookup_one_len(name, dir, strlen(name));
2702 if (IS_ERR(dentry)) {
2703 error = PTR_ERR(dentry);
2704 goto out;
2705 }
2706
2707 mode = cgroup_file_mode(cft);
2708 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2709 if (!error) {
2710 cfe->type = (void *)cft;
2711 cfe->dentry = dentry;
2712 dentry->d_fsdata = cfe;
2713 list_add_tail(&cfe->node, &parent->files);
2714 cfe = NULL;
2715 }
2716 dput(dentry);
2717 out:
2718 kfree(cfe);
2719 return error;
2720 }
2721
2722 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2723 const struct cftype cfts[], bool is_add)
2724 {
2725 const struct cftype *cft;
2726 int err, ret = 0;
2727
2728 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2729 if (is_add)
2730 err = cgroup_add_file(cgrp, subsys, cft);
2731 else
2732 err = cgroup_rm_file(cgrp, cft);
2733 if (err) {
2734 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2735 is_add ? "add" : "remove", cft->name, err);
2736 ret = err;
2737 }
2738 }
2739 return ret;
2740 }
2741
2742 static DEFINE_MUTEX(cgroup_cft_mutex);
2743
2744 static void cgroup_cfts_prepare(void)
2745 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2746 {
2747 /*
2748 * Thanks to the entanglement with vfs inode locking, we can't walk
2749 * the existing cgroups under cgroup_mutex and create files.
2750 * Instead, we increment reference on all cgroups and build list of
2751 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2752 * exclusive access to the field.
2753 */
2754 mutex_lock(&cgroup_cft_mutex);
2755 mutex_lock(&cgroup_mutex);
2756 }
2757
2758 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2759 const struct cftype *cfts, bool is_add)
2760 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2761 {
2762 LIST_HEAD(pending);
2763 struct cgroup *cgrp, *n;
2764
2765 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2766 if (cfts && ss->root != &rootnode) {
2767 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2768 dget(cgrp->dentry);
2769 list_add_tail(&cgrp->cft_q_node, &pending);
2770 }
2771 }
2772
2773 mutex_unlock(&cgroup_mutex);
2774
2775 /*
2776 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2777 * files for all cgroups which were created before.
2778 */
2779 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2780 struct inode *inode = cgrp->dentry->d_inode;
2781
2782 mutex_lock(&inode->i_mutex);
2783 mutex_lock(&cgroup_mutex);
2784 if (!cgroup_is_removed(cgrp))
2785 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2786 mutex_unlock(&cgroup_mutex);
2787 mutex_unlock(&inode->i_mutex);
2788
2789 list_del_init(&cgrp->cft_q_node);
2790 dput(cgrp->dentry);
2791 }
2792
2793 mutex_unlock(&cgroup_cft_mutex);
2794 }
2795
2796 /**
2797 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2798 * @ss: target cgroup subsystem
2799 * @cfts: zero-length name terminated array of cftypes
2800 *
2801 * Register @cfts to @ss. Files described by @cfts are created for all
2802 * existing cgroups to which @ss is attached and all future cgroups will
2803 * have them too. This function can be called anytime whether @ss is
2804 * attached or not.
2805 *
2806 * Returns 0 on successful registration, -errno on failure. Note that this
2807 * function currently returns 0 as long as @cfts registration is successful
2808 * even if some file creation attempts on existing cgroups fail.
2809 */
2810 int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2811 {
2812 struct cftype_set *set;
2813
2814 set = kzalloc(sizeof(*set), GFP_KERNEL);
2815 if (!set)
2816 return -ENOMEM;
2817
2818 cgroup_cfts_prepare();
2819 set->cfts = cfts;
2820 list_add_tail(&set->node, &ss->cftsets);
2821 cgroup_cfts_commit(ss, cfts, true);
2822
2823 return 0;
2824 }
2825 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2826
2827 /**
2828 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2829 * @ss: target cgroup subsystem
2830 * @cfts: zero-length name terminated array of cftypes
2831 *
2832 * Unregister @cfts from @ss. Files described by @cfts are removed from
2833 * all existing cgroups to which @ss is attached and all future cgroups
2834 * won't have them either. This function can be called anytime whether @ss
2835 * is attached or not.
2836 *
2837 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2838 * registered with @ss.
2839 */
2840 int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2841 {
2842 struct cftype_set *set;
2843
2844 cgroup_cfts_prepare();
2845
2846 list_for_each_entry(set, &ss->cftsets, node) {
2847 if (set->cfts == cfts) {
2848 list_del_init(&set->node);
2849 cgroup_cfts_commit(ss, cfts, false);
2850 return 0;
2851 }
2852 }
2853
2854 cgroup_cfts_commit(ss, NULL, false);
2855 return -ENOENT;
2856 }
2857
2858 /**
2859 * cgroup_task_count - count the number of tasks in a cgroup.
2860 * @cgrp: the cgroup in question
2861 *
2862 * Return the number of tasks in the cgroup.
2863 */
2864 int cgroup_task_count(const struct cgroup *cgrp)
2865 {
2866 int count = 0;
2867 struct cg_cgroup_link *link;
2868
2869 read_lock(&css_set_lock);
2870 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2871 count += atomic_read(&link->cg->refcount);
2872 }
2873 read_unlock(&css_set_lock);
2874 return count;
2875 }
2876
2877 /*
2878 * Advance a list_head iterator. The iterator should be positioned at
2879 * the start of a css_set
2880 */
2881 static void cgroup_advance_iter(struct cgroup *cgrp,
2882 struct cgroup_iter *it)
2883 {
2884 struct list_head *l = it->cg_link;
2885 struct cg_cgroup_link *link;
2886 struct css_set *cg;
2887
2888 /* Advance to the next non-empty css_set */
2889 do {
2890 l = l->next;
2891 if (l == &cgrp->css_sets) {
2892 it->cg_link = NULL;
2893 return;
2894 }
2895 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2896 cg = link->cg;
2897 } while (list_empty(&cg->tasks));
2898 it->cg_link = l;
2899 it->task = cg->tasks.next;
2900 }
2901
2902 /*
2903 * To reduce the fork() overhead for systems that are not actually
2904 * using their cgroups capability, we don't maintain the lists running
2905 * through each css_set to its tasks until we see the list actually
2906 * used - in other words after the first call to cgroup_iter_start().
2907 */
2908 static void cgroup_enable_task_cg_lists(void)
2909 {
2910 struct task_struct *p, *g;
2911 write_lock(&css_set_lock);
2912 use_task_css_set_links = 1;
2913 /*
2914 * We need tasklist_lock because RCU is not safe against
2915 * while_each_thread(). Besides, a forking task that has passed
2916 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2917 * is not guaranteed to have its child immediately visible in the
2918 * tasklist if we walk through it with RCU.
2919 */
2920 read_lock(&tasklist_lock);
2921 do_each_thread(g, p) {
2922 task_lock(p);
2923 /*
2924 * We should check if the process is exiting, otherwise
2925 * it will race with cgroup_exit() in that the list
2926 * entry won't be deleted though the process has exited.
2927 */
2928 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2929 list_add(&p->cg_list, &p->cgroups->tasks);
2930 task_unlock(p);
2931 } while_each_thread(g, p);
2932 read_unlock(&tasklist_lock);
2933 write_unlock(&css_set_lock);
2934 }
2935
2936 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2937 __acquires(css_set_lock)
2938 {
2939 /*
2940 * The first time anyone tries to iterate across a cgroup,
2941 * we need to enable the list linking each css_set to its
2942 * tasks, and fix up all existing tasks.
2943 */
2944 if (!use_task_css_set_links)
2945 cgroup_enable_task_cg_lists();
2946
2947 read_lock(&css_set_lock);
2948 it->cg_link = &cgrp->css_sets;
2949 cgroup_advance_iter(cgrp, it);
2950 }
2951
2952 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2953 struct cgroup_iter *it)
2954 {
2955 struct task_struct *res;
2956 struct list_head *l = it->task;
2957 struct cg_cgroup_link *link;
2958
2959 /* If the iterator cg is NULL, we have no tasks */
2960 if (!it->cg_link)
2961 return NULL;
2962 res = list_entry(l, struct task_struct, cg_list);
2963 /* Advance iterator to find next entry */
2964 l = l->next;
2965 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2966 if (l == &link->cg->tasks) {
2967 /* We reached the end of this task list - move on to
2968 * the next cg_cgroup_link */
2969 cgroup_advance_iter(cgrp, it);
2970 } else {
2971 it->task = l;
2972 }
2973 return res;
2974 }
2975
2976 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2977 __releases(css_set_lock)
2978 {
2979 read_unlock(&css_set_lock);
2980 }
2981
2982 static inline int started_after_time(struct task_struct *t1,
2983 struct timespec *time,
2984 struct task_struct *t2)
2985 {
2986 int start_diff = timespec_compare(&t1->start_time, time);
2987 if (start_diff > 0) {
2988 return 1;
2989 } else if (start_diff < 0) {
2990 return 0;
2991 } else {
2992 /*
2993 * Arbitrarily, if two processes started at the same
2994 * time, we'll say that the lower pointer value
2995 * started first. Note that t2 may have exited by now
2996 * so this may not be a valid pointer any longer, but
2997 * that's fine - it still serves to distinguish
2998 * between two tasks started (effectively) simultaneously.
2999 */
3000 return t1 > t2;
3001 }
3002 }
3003
3004 /*
3005 * This function is a callback from heap_insert() and is used to order
3006 * the heap.
3007 * In this case we order the heap in descending task start time.
3008 */
3009 static inline int started_after(void *p1, void *p2)
3010 {
3011 struct task_struct *t1 = p1;
3012 struct task_struct *t2 = p2;
3013 return started_after_time(t1, &t2->start_time, t2);
3014 }
3015
3016 /**
3017 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3018 * @scan: struct cgroup_scanner containing arguments for the scan
3019 *
3020 * Arguments include pointers to callback functions test_task() and
3021 * process_task().
3022 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3023 * and if it returns true, call process_task() for it also.
3024 * The test_task pointer may be NULL, meaning always true (select all tasks).
3025 * Effectively duplicates cgroup_iter_{start,next,end}()
3026 * but does not lock css_set_lock for the call to process_task().
3027 * The struct cgroup_scanner may be embedded in any structure of the caller's
3028 * creation.
3029 * It is guaranteed that process_task() will act on every task that
3030 * is a member of the cgroup for the duration of this call. This
3031 * function may or may not call process_task() for tasks that exit
3032 * or move to a different cgroup during the call, or are forked or
3033 * move into the cgroup during the call.
3034 *
3035 * Note that test_task() may be called with locks held, and may in some
3036 * situations be called multiple times for the same task, so it should
3037 * be cheap.
3038 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3039 * pre-allocated and will be used for heap operations (and its "gt" member will
3040 * be overwritten), else a temporary heap will be used (allocation of which
3041 * may cause this function to fail).
3042 */
3043 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3044 {
3045 int retval, i;
3046 struct cgroup_iter it;
3047 struct task_struct *p, *dropped;
3048 /* Never dereference latest_task, since it's not refcounted */
3049 struct task_struct *latest_task = NULL;
3050 struct ptr_heap tmp_heap;
3051 struct ptr_heap *heap;
3052 struct timespec latest_time = { 0, 0 };
3053
3054 if (scan->heap) {
3055 /* The caller supplied our heap and pre-allocated its memory */
3056 heap = scan->heap;
3057 heap->gt = &started_after;
3058 } else {
3059 /* We need to allocate our own heap memory */
3060 heap = &tmp_heap;
3061 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3062 if (retval)
3063 /* cannot allocate the heap */
3064 return retval;
3065 }
3066
3067 again:
3068 /*
3069 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3070 * to determine which are of interest, and using the scanner's
3071 * "process_task" callback to process any of them that need an update.
3072 * Since we don't want to hold any locks during the task updates,
3073 * gather tasks to be processed in a heap structure.
3074 * The heap is sorted by descending task start time.
3075 * If the statically-sized heap fills up, we overflow tasks that
3076 * started later, and in future iterations only consider tasks that
3077 * started after the latest task in the previous pass. This
3078 * guarantees forward progress and that we don't miss any tasks.
3079 */
3080 heap->size = 0;
3081 cgroup_iter_start(scan->cg, &it);
3082 while ((p = cgroup_iter_next(scan->cg, &it))) {
3083 /*
3084 * Only affect tasks that qualify per the caller's callback,
3085 * if he provided one
3086 */
3087 if (scan->test_task && !scan->test_task(p, scan))
3088 continue;
3089 /*
3090 * Only process tasks that started after the last task
3091 * we processed
3092 */
3093 if (!started_after_time(p, &latest_time, latest_task))
3094 continue;
3095 dropped = heap_insert(heap, p);
3096 if (dropped == NULL) {
3097 /*
3098 * The new task was inserted; the heap wasn't
3099 * previously full
3100 */
3101 get_task_struct(p);
3102 } else if (dropped != p) {
3103 /*
3104 * The new task was inserted, and pushed out a
3105 * different task
3106 */
3107 get_task_struct(p);
3108 put_task_struct(dropped);
3109 }
3110 /*
3111 * Else the new task was newer than anything already in
3112 * the heap and wasn't inserted
3113 */
3114 }
3115 cgroup_iter_end(scan->cg, &it);
3116
3117 if (heap->size) {
3118 for (i = 0; i < heap->size; i++) {
3119 struct task_struct *q = heap->ptrs[i];
3120 if (i == 0) {
3121 latest_time = q->start_time;
3122 latest_task = q;
3123 }
3124 /* Process the task per the caller's callback */
3125 scan->process_task(q, scan);
3126 put_task_struct(q);
3127 }
3128 /*
3129 * If we had to process any tasks at all, scan again
3130 * in case some of them were in the middle of forking
3131 * children that didn't get processed.
3132 * Not the most efficient way to do it, but it avoids
3133 * having to take callback_mutex in the fork path
3134 */
3135 goto again;
3136 }
3137 if (heap == &tmp_heap)
3138 heap_free(&tmp_heap);
3139 return 0;
3140 }
3141
3142 /*
3143 * Stuff for reading the 'tasks'/'procs' files.
3144 *
3145 * Reading this file can return large amounts of data if a cgroup has
3146 * *lots* of attached tasks. So it may need several calls to read(),
3147 * but we cannot guarantee that the information we produce is correct
3148 * unless we produce it entirely atomically.
3149 *
3150 */
3151
3152 /* which pidlist file are we talking about? */
3153 enum cgroup_filetype {
3154 CGROUP_FILE_PROCS,
3155 CGROUP_FILE_TASKS,
3156 };
3157
3158 /*
3159 * A pidlist is a list of pids that virtually represents the contents of one
3160 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3161 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3162 * to the cgroup.
3163 */
3164 struct cgroup_pidlist {
3165 /*
3166 * used to find which pidlist is wanted. doesn't change as long as
3167 * this particular list stays in the list.
3168 */
3169 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3170 /* array of xids */
3171 pid_t *list;
3172 /* how many elements the above list has */
3173 int length;
3174 /* how many files are using the current array */
3175 int use_count;
3176 /* each of these stored in a list by its cgroup */
3177 struct list_head links;
3178 /* pointer to the cgroup we belong to, for list removal purposes */
3179 struct cgroup *owner;
3180 /* protects the other fields */
3181 struct rw_semaphore mutex;
3182 };
3183
3184 /*
3185 * The following two functions "fix" the issue where there are more pids
3186 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3187 * TODO: replace with a kernel-wide solution to this problem
3188 */
3189 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3190 static void *pidlist_allocate(int count)
3191 {
3192 if (PIDLIST_TOO_LARGE(count))
3193 return vmalloc(count * sizeof(pid_t));
3194 else
3195 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3196 }
3197 static void pidlist_free(void *p)
3198 {
3199 if (is_vmalloc_addr(p))
3200 vfree(p);
3201 else
3202 kfree(p);
3203 }
3204 static void *pidlist_resize(void *p, int newcount)
3205 {
3206 void *newlist;
3207 /* note: if new alloc fails, old p will still be valid either way */
3208 if (is_vmalloc_addr(p)) {
3209 newlist = vmalloc(newcount * sizeof(pid_t));
3210 if (!newlist)
3211 return NULL;
3212 memcpy(newlist, p, newcount * sizeof(pid_t));
3213 vfree(p);
3214 } else {
3215 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3216 }
3217 return newlist;
3218 }
3219
3220 /*
3221 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3222 * If the new stripped list is sufficiently smaller and there's enough memory
3223 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3224 * number of unique elements.
3225 */
3226 /* is the size difference enough that we should re-allocate the array? */
3227 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3228 static int pidlist_uniq(pid_t **p, int length)
3229 {
3230 int src, dest = 1;
3231 pid_t *list = *p;
3232 pid_t *newlist;
3233
3234 /*
3235 * we presume the 0th element is unique, so i starts at 1. trivial
3236 * edge cases first; no work needs to be done for either
3237 */
3238 if (length == 0 || length == 1)
3239 return length;
3240 /* src and dest walk down the list; dest counts unique elements */
3241 for (src = 1; src < length; src++) {
3242 /* find next unique element */
3243 while (list[src] == list[src-1]) {
3244 src++;
3245 if (src == length)
3246 goto after;
3247 }
3248 /* dest always points to where the next unique element goes */
3249 list[dest] = list[src];
3250 dest++;
3251 }
3252 after:
3253 /*
3254 * if the length difference is large enough, we want to allocate a
3255 * smaller buffer to save memory. if this fails due to out of memory,
3256 * we'll just stay with what we've got.
3257 */
3258 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3259 newlist = pidlist_resize(list, dest);
3260 if (newlist)
3261 *p = newlist;
3262 }
3263 return dest;
3264 }
3265
3266 static int cmppid(const void *a, const void *b)
3267 {
3268 return *(pid_t *)a - *(pid_t *)b;
3269 }
3270
3271 /*
3272 * find the appropriate pidlist for our purpose (given procs vs tasks)
3273 * returns with the lock on that pidlist already held, and takes care
3274 * of the use count, or returns NULL with no locks held if we're out of
3275 * memory.
3276 */
3277 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3278 enum cgroup_filetype type)
3279 {
3280 struct cgroup_pidlist *l;
3281 /* don't need task_nsproxy() if we're looking at ourself */
3282 struct pid_namespace *ns = current->nsproxy->pid_ns;
3283
3284 /*
3285 * We can't drop the pidlist_mutex before taking the l->mutex in case
3286 * the last ref-holder is trying to remove l from the list at the same
3287 * time. Holding the pidlist_mutex precludes somebody taking whichever
3288 * list we find out from under us - compare release_pid_array().
3289 */
3290 mutex_lock(&cgrp->pidlist_mutex);
3291 list_for_each_entry(l, &cgrp->pidlists, links) {
3292 if (l->key.type == type && l->key.ns == ns) {
3293 /* make sure l doesn't vanish out from under us */
3294 down_write(&l->mutex);
3295 mutex_unlock(&cgrp->pidlist_mutex);
3296 return l;
3297 }
3298 }
3299 /* entry not found; create a new one */
3300 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3301 if (!l) {
3302 mutex_unlock(&cgrp->pidlist_mutex);
3303 return l;
3304 }
3305 init_rwsem(&l->mutex);
3306 down_write(&l->mutex);
3307 l->key.type = type;
3308 l->key.ns = get_pid_ns(ns);
3309 l->use_count = 0; /* don't increment here */
3310 l->list = NULL;
3311 l->owner = cgrp;
3312 list_add(&l->links, &cgrp->pidlists);
3313 mutex_unlock(&cgrp->pidlist_mutex);
3314 return l;
3315 }
3316
3317 /*
3318 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3319 */
3320 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3321 struct cgroup_pidlist **lp)
3322 {
3323 pid_t *array;
3324 int length;
3325 int pid, n = 0; /* used for populating the array */
3326 struct cgroup_iter it;
3327 struct task_struct *tsk;
3328 struct cgroup_pidlist *l;
3329
3330 /*
3331 * If cgroup gets more users after we read count, we won't have
3332 * enough space - tough. This race is indistinguishable to the
3333 * caller from the case that the additional cgroup users didn't
3334 * show up until sometime later on.
3335 */
3336 length = cgroup_task_count(cgrp);
3337 array = pidlist_allocate(length);
3338 if (!array)
3339 return -ENOMEM;
3340 /* now, populate the array */
3341 cgroup_iter_start(cgrp, &it);
3342 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3343 if (unlikely(n == length))
3344 break;
3345 /* get tgid or pid for procs or tasks file respectively */
3346 if (type == CGROUP_FILE_PROCS)
3347 pid = task_tgid_vnr(tsk);
3348 else
3349 pid = task_pid_vnr(tsk);
3350 if (pid > 0) /* make sure to only use valid results */
3351 array[n++] = pid;
3352 }
3353 cgroup_iter_end(cgrp, &it);
3354 length = n;
3355 /* now sort & (if procs) strip out duplicates */
3356 sort(array, length, sizeof(pid_t), cmppid, NULL);
3357 if (type == CGROUP_FILE_PROCS)
3358 length = pidlist_uniq(&array, length);
3359 l = cgroup_pidlist_find(cgrp, type);
3360 if (!l) {
3361 pidlist_free(array);
3362 return -ENOMEM;
3363 }
3364 /* store array, freeing old if necessary - lock already held */
3365 pidlist_free(l->list);
3366 l->list = array;
3367 l->length = length;
3368 l->use_count++;
3369 up_write(&l->mutex);
3370 *lp = l;
3371 return 0;
3372 }
3373
3374 /**
3375 * cgroupstats_build - build and fill cgroupstats
3376 * @stats: cgroupstats to fill information into
3377 * @dentry: A dentry entry belonging to the cgroup for which stats have
3378 * been requested.
3379 *
3380 * Build and fill cgroupstats so that taskstats can export it to user
3381 * space.
3382 */
3383 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3384 {
3385 int ret = -EINVAL;
3386 struct cgroup *cgrp;
3387 struct cgroup_iter it;
3388 struct task_struct *tsk;
3389
3390 /*
3391 * Validate dentry by checking the superblock operations,
3392 * and make sure it's a directory.
3393 */
3394 if (dentry->d_sb->s_op != &cgroup_ops ||
3395 !S_ISDIR(dentry->d_inode->i_mode))
3396 goto err;
3397
3398 ret = 0;
3399 cgrp = dentry->d_fsdata;
3400
3401 cgroup_iter_start(cgrp, &it);
3402 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3403 switch (tsk->state) {
3404 case TASK_RUNNING:
3405 stats->nr_running++;
3406 break;
3407 case TASK_INTERRUPTIBLE:
3408 stats->nr_sleeping++;
3409 break;
3410 case TASK_UNINTERRUPTIBLE:
3411 stats->nr_uninterruptible++;
3412 break;
3413 case TASK_STOPPED:
3414 stats->nr_stopped++;
3415 break;
3416 default:
3417 if (delayacct_is_task_waiting_on_io(tsk))
3418 stats->nr_io_wait++;
3419 break;
3420 }
3421 }
3422 cgroup_iter_end(cgrp, &it);
3423
3424 err:
3425 return ret;
3426 }
3427
3428
3429 /*
3430 * seq_file methods for the tasks/procs files. The seq_file position is the
3431 * next pid to display; the seq_file iterator is a pointer to the pid
3432 * in the cgroup->l->list array.
3433 */
3434
3435 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3436 {
3437 /*
3438 * Initially we receive a position value that corresponds to
3439 * one more than the last pid shown (or 0 on the first call or
3440 * after a seek to the start). Use a binary-search to find the
3441 * next pid to display, if any
3442 */
3443 struct cgroup_pidlist *l = s->private;
3444 int index = 0, pid = *pos;
3445 int *iter;
3446
3447 down_read(&l->mutex);
3448 if (pid) {
3449 int end = l->length;
3450
3451 while (index < end) {
3452 int mid = (index + end) / 2;
3453 if (l->list[mid] == pid) {
3454 index = mid;
3455 break;
3456 } else if (l->list[mid] <= pid)
3457 index = mid + 1;
3458 else
3459 end = mid;
3460 }
3461 }
3462 /* If we're off the end of the array, we're done */
3463 if (index >= l->length)
3464 return NULL;
3465 /* Update the abstract position to be the actual pid that we found */
3466 iter = l->list + index;
3467 *pos = *iter;
3468 return iter;
3469 }
3470
3471 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3472 {
3473 struct cgroup_pidlist *l = s->private;
3474 up_read(&l->mutex);
3475 }
3476
3477 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3478 {
3479 struct cgroup_pidlist *l = s->private;
3480 pid_t *p = v;
3481 pid_t *end = l->list + l->length;
3482 /*
3483 * Advance to the next pid in the array. If this goes off the
3484 * end, we're done
3485 */
3486 p++;
3487 if (p >= end) {
3488 return NULL;
3489 } else {
3490 *pos = *p;
3491 return p;
3492 }
3493 }
3494
3495 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3496 {
3497 return seq_printf(s, "%d\n", *(int *)v);
3498 }
3499
3500 /*
3501 * seq_operations functions for iterating on pidlists through seq_file -
3502 * independent of whether it's tasks or procs
3503 */
3504 static const struct seq_operations cgroup_pidlist_seq_operations = {
3505 .start = cgroup_pidlist_start,
3506 .stop = cgroup_pidlist_stop,
3507 .next = cgroup_pidlist_next,
3508 .show = cgroup_pidlist_show,
3509 };
3510
3511 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3512 {
3513 /*
3514 * the case where we're the last user of this particular pidlist will
3515 * have us remove it from the cgroup's list, which entails taking the
3516 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3517 * pidlist_mutex, we have to take pidlist_mutex first.
3518 */
3519 mutex_lock(&l->owner->pidlist_mutex);
3520 down_write(&l->mutex);
3521 BUG_ON(!l->use_count);
3522 if (!--l->use_count) {
3523 /* we're the last user if refcount is 0; remove and free */
3524 list_del(&l->links);
3525 mutex_unlock(&l->owner->pidlist_mutex);
3526 pidlist_free(l->list);
3527 put_pid_ns(l->key.ns);
3528 up_write(&l->mutex);
3529 kfree(l);
3530 return;
3531 }
3532 mutex_unlock(&l->owner->pidlist_mutex);
3533 up_write(&l->mutex);
3534 }
3535
3536 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3537 {
3538 struct cgroup_pidlist *l;
3539 if (!(file->f_mode & FMODE_READ))
3540 return 0;
3541 /*
3542 * the seq_file will only be initialized if the file was opened for
3543 * reading; hence we check if it's not null only in that case.
3544 */
3545 l = ((struct seq_file *)file->private_data)->private;
3546 cgroup_release_pid_array(l);
3547 return seq_release(inode, file);
3548 }
3549
3550 static const struct file_operations cgroup_pidlist_operations = {
3551 .read = seq_read,
3552 .llseek = seq_lseek,
3553 .write = cgroup_file_write,
3554 .release = cgroup_pidlist_release,
3555 };
3556
3557 /*
3558 * The following functions handle opens on a file that displays a pidlist
3559 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3560 * in the cgroup.
3561 */
3562 /* helper function for the two below it */
3563 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3564 {
3565 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3566 struct cgroup_pidlist *l;
3567 int retval;
3568
3569 /* Nothing to do for write-only files */
3570 if (!(file->f_mode & FMODE_READ))
3571 return 0;
3572
3573 /* have the array populated */
3574 retval = pidlist_array_load(cgrp, type, &l);
3575 if (retval)
3576 return retval;
3577 /* configure file information */
3578 file->f_op = &cgroup_pidlist_operations;
3579
3580 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3581 if (retval) {
3582 cgroup_release_pid_array(l);
3583 return retval;
3584 }
3585 ((struct seq_file *)file->private_data)->private = l;
3586 return 0;
3587 }
3588 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3589 {
3590 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3591 }
3592 static int cgroup_procs_open(struct inode *unused, struct file *file)
3593 {
3594 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3595 }
3596
3597 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3598 struct cftype *cft)
3599 {
3600 return notify_on_release(cgrp);
3601 }
3602
3603 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3604 struct cftype *cft,
3605 u64 val)
3606 {
3607 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3608 if (val)
3609 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3610 else
3611 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3612 return 0;
3613 }
3614
3615 /*
3616 * Unregister event and free resources.
3617 *
3618 * Gets called from workqueue.
3619 */
3620 static void cgroup_event_remove(struct work_struct *work)
3621 {
3622 struct cgroup_event *event = container_of(work, struct cgroup_event,
3623 remove);
3624 struct cgroup *cgrp = event->cgrp;
3625
3626 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3627
3628 eventfd_ctx_put(event->eventfd);
3629 kfree(event);
3630 dput(cgrp->dentry);
3631 }
3632
3633 /*
3634 * Gets called on POLLHUP on eventfd when user closes it.
3635 *
3636 * Called with wqh->lock held and interrupts disabled.
3637 */
3638 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3639 int sync, void *key)
3640 {
3641 struct cgroup_event *event = container_of(wait,
3642 struct cgroup_event, wait);
3643 struct cgroup *cgrp = event->cgrp;
3644 unsigned long flags = (unsigned long)key;
3645
3646 if (flags & POLLHUP) {
3647 __remove_wait_queue(event->wqh, &event->wait);
3648 spin_lock(&cgrp->event_list_lock);
3649 list_del(&event->list);
3650 spin_unlock(&cgrp->event_list_lock);
3651 /*
3652 * We are in atomic context, but cgroup_event_remove() may
3653 * sleep, so we have to call it in workqueue.
3654 */
3655 schedule_work(&event->remove);
3656 }
3657
3658 return 0;
3659 }
3660
3661 static void cgroup_event_ptable_queue_proc(struct file *file,
3662 wait_queue_head_t *wqh, poll_table *pt)
3663 {
3664 struct cgroup_event *event = container_of(pt,
3665 struct cgroup_event, pt);
3666
3667 event->wqh = wqh;
3668 add_wait_queue(wqh, &event->wait);
3669 }
3670
3671 /*
3672 * Parse input and register new cgroup event handler.
3673 *
3674 * Input must be in format '<event_fd> <control_fd> <args>'.
3675 * Interpretation of args is defined by control file implementation.
3676 */
3677 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3678 const char *buffer)
3679 {
3680 struct cgroup_event *event = NULL;
3681 unsigned int efd, cfd;
3682 struct file *efile = NULL;
3683 struct file *cfile = NULL;
3684 char *endp;
3685 int ret;
3686
3687 efd = simple_strtoul(buffer, &endp, 10);
3688 if (*endp != ' ')
3689 return -EINVAL;
3690 buffer = endp + 1;
3691
3692 cfd = simple_strtoul(buffer, &endp, 10);
3693 if ((*endp != ' ') && (*endp != '\0'))
3694 return -EINVAL;
3695 buffer = endp + 1;
3696
3697 event = kzalloc(sizeof(*event), GFP_KERNEL);
3698 if (!event)
3699 return -ENOMEM;
3700 event->cgrp = cgrp;
3701 INIT_LIST_HEAD(&event->list);
3702 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3703 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3704 INIT_WORK(&event->remove, cgroup_event_remove);
3705
3706 efile = eventfd_fget(efd);
3707 if (IS_ERR(efile)) {
3708 ret = PTR_ERR(efile);
3709 goto fail;
3710 }
3711
3712 event->eventfd = eventfd_ctx_fileget(efile);
3713 if (IS_ERR(event->eventfd)) {
3714 ret = PTR_ERR(event->eventfd);
3715 goto fail;
3716 }
3717
3718 cfile = fget(cfd);
3719 if (!cfile) {
3720 ret = -EBADF;
3721 goto fail;
3722 }
3723
3724 /* the process need read permission on control file */
3725 /* AV: shouldn't we check that it's been opened for read instead? */
3726 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3727 if (ret < 0)
3728 goto fail;
3729
3730 event->cft = __file_cft(cfile);
3731 if (IS_ERR(event->cft)) {
3732 ret = PTR_ERR(event->cft);
3733 goto fail;
3734 }
3735
3736 if (!event->cft->register_event || !event->cft->unregister_event) {
3737 ret = -EINVAL;
3738 goto fail;
3739 }
3740
3741 ret = event->cft->register_event(cgrp, event->cft,
3742 event->eventfd, buffer);
3743 if (ret)
3744 goto fail;
3745
3746 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3747 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3748 ret = 0;
3749 goto fail;
3750 }
3751
3752 /*
3753 * Events should be removed after rmdir of cgroup directory, but before
3754 * destroying subsystem state objects. Let's take reference to cgroup
3755 * directory dentry to do that.
3756 */
3757 dget(cgrp->dentry);
3758
3759 spin_lock(&cgrp->event_list_lock);
3760 list_add(&event->list, &cgrp->event_list);
3761 spin_unlock(&cgrp->event_list_lock);
3762
3763 fput(cfile);
3764 fput(efile);
3765
3766 return 0;
3767
3768 fail:
3769 if (cfile)
3770 fput(cfile);
3771
3772 if (event && event->eventfd && !IS_ERR(event->eventfd))
3773 eventfd_ctx_put(event->eventfd);
3774
3775 if (!IS_ERR_OR_NULL(efile))
3776 fput(efile);
3777
3778 kfree(event);
3779
3780 return ret;
3781 }
3782
3783 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3784 struct cftype *cft)
3785 {
3786 return clone_children(cgrp);
3787 }
3788
3789 static int cgroup_clone_children_write(struct cgroup *cgrp,
3790 struct cftype *cft,
3791 u64 val)
3792 {
3793 if (val)
3794 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3795 else
3796 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3797 return 0;
3798 }
3799
3800 /*
3801 * for the common functions, 'private' gives the type of file
3802 */
3803 /* for hysterical raisins, we can't put this on the older files */
3804 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3805 static struct cftype files[] = {
3806 {
3807 .name = "tasks",
3808 .open = cgroup_tasks_open,
3809 .write_u64 = cgroup_tasks_write,
3810 .release = cgroup_pidlist_release,
3811 .mode = S_IRUGO | S_IWUSR,
3812 },
3813 {
3814 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3815 .open = cgroup_procs_open,
3816 .write_u64 = cgroup_procs_write,
3817 .release = cgroup_pidlist_release,
3818 .mode = S_IRUGO | S_IWUSR,
3819 },
3820 {
3821 .name = "notify_on_release",
3822 .read_u64 = cgroup_read_notify_on_release,
3823 .write_u64 = cgroup_write_notify_on_release,
3824 },
3825 {
3826 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3827 .write_string = cgroup_write_event_control,
3828 .mode = S_IWUGO,
3829 },
3830 {
3831 .name = "cgroup.clone_children",
3832 .read_u64 = cgroup_clone_children_read,
3833 .write_u64 = cgroup_clone_children_write,
3834 },
3835 {
3836 .name = "release_agent",
3837 .flags = CFTYPE_ONLY_ON_ROOT,
3838 .read_seq_string = cgroup_release_agent_show,
3839 .write_string = cgroup_release_agent_write,
3840 .max_write_len = PATH_MAX,
3841 },
3842 { } /* terminate */
3843 };
3844
3845 static int cgroup_populate_dir(struct cgroup *cgrp)
3846 {
3847 int err;
3848 struct cgroup_subsys *ss;
3849
3850 err = cgroup_addrm_files(cgrp, NULL, files, true);
3851 if (err < 0)
3852 return err;
3853
3854 /* process cftsets of each subsystem */
3855 for_each_subsys(cgrp->root, ss) {
3856 struct cftype_set *set;
3857
3858 list_for_each_entry(set, &ss->cftsets, node)
3859 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3860 }
3861
3862 /* This cgroup is ready now */
3863 for_each_subsys(cgrp->root, ss) {
3864 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3865 /*
3866 * Update id->css pointer and make this css visible from
3867 * CSS ID functions. This pointer will be dereferened
3868 * from RCU-read-side without locks.
3869 */
3870 if (css->id)
3871 rcu_assign_pointer(css->id->css, css);
3872 }
3873
3874 return 0;
3875 }
3876
3877 static void css_dput_fn(struct work_struct *work)
3878 {
3879 struct cgroup_subsys_state *css =
3880 container_of(work, struct cgroup_subsys_state, dput_work);
3881
3882 dput(css->cgroup->dentry);
3883 }
3884
3885 static void init_cgroup_css(struct cgroup_subsys_state *css,
3886 struct cgroup_subsys *ss,
3887 struct cgroup *cgrp)
3888 {
3889 css->cgroup = cgrp;
3890 atomic_set(&css->refcnt, 1);
3891 css->flags = 0;
3892 css->id = NULL;
3893 if (cgrp == dummytop)
3894 set_bit(CSS_ROOT, &css->flags);
3895 BUG_ON(cgrp->subsys[ss->subsys_id]);
3896 cgrp->subsys[ss->subsys_id] = css;
3897
3898 /*
3899 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
3900 * which is put on the last css_put(). dput() requires process
3901 * context, which css_put() may be called without. @css->dput_work
3902 * will be used to invoke dput() asynchronously from css_put().
3903 */
3904 INIT_WORK(&css->dput_work, css_dput_fn);
3905 if (ss->__DEPRECATED_clear_css_refs)
3906 set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
3907 }
3908
3909 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3910 {
3911 /* We need to take each hierarchy_mutex in a consistent order */
3912 int i;
3913
3914 /*
3915 * No worry about a race with rebind_subsystems that might mess up the
3916 * locking order, since both parties are under cgroup_mutex.
3917 */
3918 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3919 struct cgroup_subsys *ss = subsys[i];
3920 if (ss == NULL)
3921 continue;
3922 if (ss->root == root)
3923 mutex_lock(&ss->hierarchy_mutex);
3924 }
3925 }
3926
3927 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3928 {
3929 int i;
3930
3931 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3932 struct cgroup_subsys *ss = subsys[i];
3933 if (ss == NULL)
3934 continue;
3935 if (ss->root == root)
3936 mutex_unlock(&ss->hierarchy_mutex);
3937 }
3938 }
3939
3940 /*
3941 * cgroup_create - create a cgroup
3942 * @parent: cgroup that will be parent of the new cgroup
3943 * @dentry: dentry of the new cgroup
3944 * @mode: mode to set on new inode
3945 *
3946 * Must be called with the mutex on the parent inode held
3947 */
3948 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3949 umode_t mode)
3950 {
3951 struct cgroup *cgrp;
3952 struct cgroupfs_root *root = parent->root;
3953 int err = 0;
3954 struct cgroup_subsys *ss;
3955 struct super_block *sb = root->sb;
3956
3957 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3958 if (!cgrp)
3959 return -ENOMEM;
3960
3961 /* Grab a reference on the superblock so the hierarchy doesn't
3962 * get deleted on unmount if there are child cgroups. This
3963 * can be done outside cgroup_mutex, since the sb can't
3964 * disappear while someone has an open control file on the
3965 * fs */
3966 atomic_inc(&sb->s_active);
3967
3968 mutex_lock(&cgroup_mutex);
3969
3970 init_cgroup_housekeeping(cgrp);
3971
3972 cgrp->parent = parent;
3973 cgrp->root = parent->root;
3974 cgrp->top_cgroup = parent->top_cgroup;
3975
3976 if (notify_on_release(parent))
3977 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3978
3979 if (clone_children(parent))
3980 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3981
3982 for_each_subsys(root, ss) {
3983 struct cgroup_subsys_state *css = ss->create(cgrp);
3984
3985 if (IS_ERR(css)) {
3986 err = PTR_ERR(css);
3987 goto err_destroy;
3988 }
3989 init_cgroup_css(css, ss, cgrp);
3990 if (ss->use_id) {
3991 err = alloc_css_id(ss, parent, cgrp);
3992 if (err)
3993 goto err_destroy;
3994 }
3995 /* At error, ->destroy() callback has to free assigned ID. */
3996 if (clone_children(parent) && ss->post_clone)
3997 ss->post_clone(cgrp);
3998 }
3999
4000 cgroup_lock_hierarchy(root);
4001 list_add(&cgrp->sibling, &cgrp->parent->children);
4002 cgroup_unlock_hierarchy(root);
4003 root->number_of_cgroups++;
4004
4005 err = cgroup_create_dir(cgrp, dentry, mode);
4006 if (err < 0)
4007 goto err_remove;
4008
4009 /* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
4010 for_each_subsys(root, ss)
4011 if (!ss->__DEPRECATED_clear_css_refs)
4012 dget(dentry);
4013
4014 /* The cgroup directory was pre-locked for us */
4015 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
4016
4017 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4018
4019 err = cgroup_populate_dir(cgrp);
4020 /* If err < 0, we have a half-filled directory - oh well ;) */
4021
4022 mutex_unlock(&cgroup_mutex);
4023 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4024
4025 return 0;
4026
4027 err_remove:
4028
4029 cgroup_lock_hierarchy(root);
4030 list_del(&cgrp->sibling);
4031 cgroup_unlock_hierarchy(root);
4032 root->number_of_cgroups--;
4033
4034 err_destroy:
4035
4036 for_each_subsys(root, ss) {
4037 if (cgrp->subsys[ss->subsys_id])
4038 ss->destroy(cgrp);
4039 }
4040
4041 mutex_unlock(&cgroup_mutex);
4042
4043 /* Release the reference count that we took on the superblock */
4044 deactivate_super(sb);
4045
4046 kfree(cgrp);
4047 return err;
4048 }
4049
4050 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4051 {
4052 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4053
4054 /* the vfs holds inode->i_mutex already */
4055 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4056 }
4057
4058 /*
4059 * Check the reference count on each subsystem. Since we already
4060 * established that there are no tasks in the cgroup, if the css refcount
4061 * is also 1, then there should be no outstanding references, so the
4062 * subsystem is safe to destroy. We scan across all subsystems rather than
4063 * using the per-hierarchy linked list of mounted subsystems since we can
4064 * be called via check_for_release() with no synchronization other than
4065 * RCU, and the subsystem linked list isn't RCU-safe.
4066 */
4067 static int cgroup_has_css_refs(struct cgroup *cgrp)
4068 {
4069 int i;
4070
4071 /*
4072 * We won't need to lock the subsys array, because the subsystems
4073 * we're concerned about aren't going anywhere since our cgroup root
4074 * has a reference on them.
4075 */
4076 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4077 struct cgroup_subsys *ss = subsys[i];
4078 struct cgroup_subsys_state *css;
4079
4080 /* Skip subsystems not present or not in this hierarchy */
4081 if (ss == NULL || ss->root != cgrp->root)
4082 continue;
4083
4084 css = cgrp->subsys[ss->subsys_id];
4085 /*
4086 * When called from check_for_release() it's possible
4087 * that by this point the cgroup has been removed
4088 * and the css deleted. But a false-positive doesn't
4089 * matter, since it can only happen if the cgroup
4090 * has been deleted and hence no longer needs the
4091 * release agent to be called anyway.
4092 */
4093 if (css && css_refcnt(css) > 1)
4094 return 1;
4095 }
4096 return 0;
4097 }
4098
4099 /*
4100 * Atomically mark all (or else none) of the cgroup's CSS objects as
4101 * CSS_REMOVED. Return true on success, or false if the cgroup has
4102 * busy subsystems. Call with cgroup_mutex held
4103 *
4104 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4105 * not, cgroup removal behaves differently.
4106 *
4107 * If clear is set, css refcnt for the subsystem should be zero before
4108 * cgroup removal can be committed. This is implemented by
4109 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4110 * called multiple times until all css refcnts reach zero and is allowed to
4111 * veto removal on any invocation. This behavior is deprecated and will be
4112 * removed as soon as the existing user (memcg) is updated.
4113 *
4114 * If clear is not set, each css holds an extra reference to the cgroup's
4115 * dentry and cgroup removal proceeds regardless of css refs.
4116 * ->pre_destroy() will be called at least once and is not allowed to fail.
4117 * On the last put of each css, whenever that may be, the extra dentry ref
4118 * is put so that dentry destruction happens only after all css's are
4119 * released.
4120 */
4121 static int cgroup_clear_css_refs(struct cgroup *cgrp)
4122 {
4123 struct cgroup_subsys *ss;
4124 unsigned long flags;
4125 bool failed = false;
4126
4127 local_irq_save(flags);
4128
4129 /*
4130 * Block new css_tryget() by deactivating refcnt. If all refcnts
4131 * for subsystems w/ clear_css_refs set were 1 at the moment of
4132 * deactivation, we succeeded.
4133 */
4134 for_each_subsys(cgrp->root, ss) {
4135 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4136
4137 WARN_ON(atomic_read(&css->refcnt) < 0);
4138 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4139
4140 if (ss->__DEPRECATED_clear_css_refs)
4141 failed |= css_refcnt(css) != 1;
4142 }
4143
4144 /*
4145 * If succeeded, set REMOVED and put all the base refs; otherwise,
4146 * restore refcnts to positive values. Either way, all in-progress
4147 * css_tryget() will be released.
4148 */
4149 for_each_subsys(cgrp->root, ss) {
4150 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4151
4152 if (!failed) {
4153 set_bit(CSS_REMOVED, &css->flags);
4154 css_put(css);
4155 } else {
4156 atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
4157 }
4158 }
4159
4160 local_irq_restore(flags);
4161 return !failed;
4162 }
4163
4164 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4165 {
4166 struct cgroup *cgrp = dentry->d_fsdata;
4167 struct dentry *d;
4168 struct cgroup *parent;
4169 DEFINE_WAIT(wait);
4170 struct cgroup_event *event, *tmp;
4171 int ret;
4172
4173 /* the vfs holds both inode->i_mutex already */
4174 again:
4175 mutex_lock(&cgroup_mutex);
4176 if (atomic_read(&cgrp->count) != 0) {
4177 mutex_unlock(&cgroup_mutex);
4178 return -EBUSY;
4179 }
4180 if (!list_empty(&cgrp->children)) {
4181 mutex_unlock(&cgroup_mutex);
4182 return -EBUSY;
4183 }
4184 mutex_unlock(&cgroup_mutex);
4185
4186 /*
4187 * In general, subsystem has no css->refcnt after pre_destroy(). But
4188 * in racy cases, subsystem may have to get css->refcnt after
4189 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4190 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4191 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4192 * and subsystem's reference count handling. Please see css_get/put
4193 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4194 */
4195 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4196
4197 /*
4198 * Call pre_destroy handlers of subsys. Notify subsystems
4199 * that rmdir() request comes.
4200 */
4201 ret = cgroup_call_pre_destroy(cgrp);
4202 if (ret) {
4203 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4204 return ret;
4205 }
4206
4207 mutex_lock(&cgroup_mutex);
4208 parent = cgrp->parent;
4209 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4210 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4211 mutex_unlock(&cgroup_mutex);
4212 return -EBUSY;
4213 }
4214 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4215 if (!cgroup_clear_css_refs(cgrp)) {
4216 mutex_unlock(&cgroup_mutex);
4217 /*
4218 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4219 * prepare_to_wait(), we need to check this flag.
4220 */
4221 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4222 schedule();
4223 finish_wait(&cgroup_rmdir_waitq, &wait);
4224 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4225 if (signal_pending(current))
4226 return -EINTR;
4227 goto again;
4228 }
4229 /* NO css_tryget() can success after here. */
4230 finish_wait(&cgroup_rmdir_waitq, &wait);
4231 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4232
4233 raw_spin_lock(&release_list_lock);
4234 set_bit(CGRP_REMOVED, &cgrp->flags);
4235 if (!list_empty(&cgrp->release_list))
4236 list_del_init(&cgrp->release_list);
4237 raw_spin_unlock(&release_list_lock);
4238
4239 cgroup_lock_hierarchy(cgrp->root);
4240 /* delete this cgroup from parent->children */
4241 list_del_init(&cgrp->sibling);
4242 cgroup_unlock_hierarchy(cgrp->root);
4243
4244 list_del_init(&cgrp->allcg_node);
4245
4246 d = dget(cgrp->dentry);
4247
4248 cgroup_d_remove_dir(d);
4249 dput(d);
4250
4251 set_bit(CGRP_RELEASABLE, &parent->flags);
4252 check_for_release(parent);
4253
4254 /*
4255 * Unregister events and notify userspace.
4256 * Notify userspace about cgroup removing only after rmdir of cgroup
4257 * directory to avoid race between userspace and kernelspace
4258 */
4259 spin_lock(&cgrp->event_list_lock);
4260 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4261 list_del(&event->list);
4262 remove_wait_queue(event->wqh, &event->wait);
4263 eventfd_signal(event->eventfd, 1);
4264 schedule_work(&event->remove);
4265 }
4266 spin_unlock(&cgrp->event_list_lock);
4267
4268 mutex_unlock(&cgroup_mutex);
4269 return 0;
4270 }
4271
4272 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4273 {
4274 INIT_LIST_HEAD(&ss->cftsets);
4275
4276 /*
4277 * base_cftset is embedded in subsys itself, no need to worry about
4278 * deregistration.
4279 */
4280 if (ss->base_cftypes) {
4281 ss->base_cftset.cfts = ss->base_cftypes;
4282 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4283 }
4284 }
4285
4286 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4287 {
4288 struct cgroup_subsys_state *css;
4289
4290 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4291
4292 /* init base cftset */
4293 cgroup_init_cftsets(ss);
4294
4295 /* Create the top cgroup state for this subsystem */
4296 list_add(&ss->sibling, &rootnode.subsys_list);
4297 ss->root = &rootnode;
4298 css = ss->create(dummytop);
4299 /* We don't handle early failures gracefully */
4300 BUG_ON(IS_ERR(css));
4301 init_cgroup_css(css, ss, dummytop);
4302
4303 /* Update the init_css_set to contain a subsys
4304 * pointer to this state - since the subsystem is
4305 * newly registered, all tasks and hence the
4306 * init_css_set is in the subsystem's top cgroup. */
4307 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4308
4309 need_forkexit_callback |= ss->fork || ss->exit;
4310
4311 /* At system boot, before all subsystems have been
4312 * registered, no tasks have been forked, so we don't
4313 * need to invoke fork callbacks here. */
4314 BUG_ON(!list_empty(&init_task.tasks));
4315
4316 mutex_init(&ss->hierarchy_mutex);
4317 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4318 ss->active = 1;
4319
4320 /* this function shouldn't be used with modular subsystems, since they
4321 * need to register a subsys_id, among other things */
4322 BUG_ON(ss->module);
4323 }
4324
4325 /**
4326 * cgroup_load_subsys: load and register a modular subsystem at runtime
4327 * @ss: the subsystem to load
4328 *
4329 * This function should be called in a modular subsystem's initcall. If the
4330 * subsystem is built as a module, it will be assigned a new subsys_id and set
4331 * up for use. If the subsystem is built-in anyway, work is delegated to the
4332 * simpler cgroup_init_subsys.
4333 */
4334 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4335 {
4336 int i;
4337 struct cgroup_subsys_state *css;
4338
4339 /* check name and function validity */
4340 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4341 ss->create == NULL || ss->destroy == NULL)
4342 return -EINVAL;
4343
4344 /*
4345 * we don't support callbacks in modular subsystems. this check is
4346 * before the ss->module check for consistency; a subsystem that could
4347 * be a module should still have no callbacks even if the user isn't
4348 * compiling it as one.
4349 */
4350 if (ss->fork || ss->exit)
4351 return -EINVAL;
4352
4353 /*
4354 * an optionally modular subsystem is built-in: we want to do nothing,
4355 * since cgroup_init_subsys will have already taken care of it.
4356 */
4357 if (ss->module == NULL) {
4358 /* a few sanity checks */
4359 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4360 BUG_ON(subsys[ss->subsys_id] != ss);
4361 return 0;
4362 }
4363
4364 /* init base cftset */
4365 cgroup_init_cftsets(ss);
4366
4367 /*
4368 * need to register a subsys id before anything else - for example,
4369 * init_cgroup_css needs it.
4370 */
4371 mutex_lock(&cgroup_mutex);
4372 /* find the first empty slot in the array */
4373 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4374 if (subsys[i] == NULL)
4375 break;
4376 }
4377 if (i == CGROUP_SUBSYS_COUNT) {
4378 /* maximum number of subsystems already registered! */
4379 mutex_unlock(&cgroup_mutex);
4380 return -EBUSY;
4381 }
4382 /* assign ourselves the subsys_id */
4383 ss->subsys_id = i;
4384 subsys[i] = ss;
4385
4386 /*
4387 * no ss->create seems to need anything important in the ss struct, so
4388 * this can happen first (i.e. before the rootnode attachment).
4389 */
4390 css = ss->create(dummytop);
4391 if (IS_ERR(css)) {
4392 /* failure case - need to deassign the subsys[] slot. */
4393 subsys[i] = NULL;
4394 mutex_unlock(&cgroup_mutex);
4395 return PTR_ERR(css);
4396 }
4397
4398 list_add(&ss->sibling, &rootnode.subsys_list);
4399 ss->root = &rootnode;
4400
4401 /* our new subsystem will be attached to the dummy hierarchy. */
4402 init_cgroup_css(css, ss, dummytop);
4403 /* init_idr must be after init_cgroup_css because it sets css->id. */
4404 if (ss->use_id) {
4405 int ret = cgroup_init_idr(ss, css);
4406 if (ret) {
4407 dummytop->subsys[ss->subsys_id] = NULL;
4408 ss->destroy(dummytop);
4409 subsys[i] = NULL;
4410 mutex_unlock(&cgroup_mutex);
4411 return ret;
4412 }
4413 }
4414
4415 /*
4416 * Now we need to entangle the css into the existing css_sets. unlike
4417 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4418 * will need a new pointer to it; done by iterating the css_set_table.
4419 * furthermore, modifying the existing css_sets will corrupt the hash
4420 * table state, so each changed css_set will need its hash recomputed.
4421 * this is all done under the css_set_lock.
4422 */
4423 write_lock(&css_set_lock);
4424 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4425 struct css_set *cg;
4426 struct hlist_node *node, *tmp;
4427 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4428
4429 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4430 /* skip entries that we already rehashed */
4431 if (cg->subsys[ss->subsys_id])
4432 continue;
4433 /* remove existing entry */
4434 hlist_del(&cg->hlist);
4435 /* set new value */
4436 cg->subsys[ss->subsys_id] = css;
4437 /* recompute hash and restore entry */
4438 new_bucket = css_set_hash(cg->subsys);
4439 hlist_add_head(&cg->hlist, new_bucket);
4440 }
4441 }
4442 write_unlock(&css_set_lock);
4443
4444 mutex_init(&ss->hierarchy_mutex);
4445 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4446 ss->active = 1;
4447
4448 /* success! */
4449 mutex_unlock(&cgroup_mutex);
4450 return 0;
4451 }
4452 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4453
4454 /**
4455 * cgroup_unload_subsys: unload a modular subsystem
4456 * @ss: the subsystem to unload
4457 *
4458 * This function should be called in a modular subsystem's exitcall. When this
4459 * function is invoked, the refcount on the subsystem's module will be 0, so
4460 * the subsystem will not be attached to any hierarchy.
4461 */
4462 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4463 {
4464 struct cg_cgroup_link *link;
4465 struct hlist_head *hhead;
4466
4467 BUG_ON(ss->module == NULL);
4468
4469 /*
4470 * we shouldn't be called if the subsystem is in use, and the use of
4471 * try_module_get in parse_cgroupfs_options should ensure that it
4472 * doesn't start being used while we're killing it off.
4473 */
4474 BUG_ON(ss->root != &rootnode);
4475
4476 mutex_lock(&cgroup_mutex);
4477 /* deassign the subsys_id */
4478 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4479 subsys[ss->subsys_id] = NULL;
4480
4481 /* remove subsystem from rootnode's list of subsystems */
4482 list_del_init(&ss->sibling);
4483
4484 /*
4485 * disentangle the css from all css_sets attached to the dummytop. as
4486 * in loading, we need to pay our respects to the hashtable gods.
4487 */
4488 write_lock(&css_set_lock);
4489 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4490 struct css_set *cg = link->cg;
4491
4492 hlist_del(&cg->hlist);
4493 BUG_ON(!cg->subsys[ss->subsys_id]);
4494 cg->subsys[ss->subsys_id] = NULL;
4495 hhead = css_set_hash(cg->subsys);
4496 hlist_add_head(&cg->hlist, hhead);
4497 }
4498 write_unlock(&css_set_lock);
4499
4500 /*
4501 * remove subsystem's css from the dummytop and free it - need to free
4502 * before marking as null because ss->destroy needs the cgrp->subsys
4503 * pointer to find their state. note that this also takes care of
4504 * freeing the css_id.
4505 */
4506 ss->destroy(dummytop);
4507 dummytop->subsys[ss->subsys_id] = NULL;
4508
4509 mutex_unlock(&cgroup_mutex);
4510 }
4511 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4512
4513 /**
4514 * cgroup_init_early - cgroup initialization at system boot
4515 *
4516 * Initialize cgroups at system boot, and initialize any
4517 * subsystems that request early init.
4518 */
4519 int __init cgroup_init_early(void)
4520 {
4521 int i;
4522 atomic_set(&init_css_set.refcount, 1);
4523 INIT_LIST_HEAD(&init_css_set.cg_links);
4524 INIT_LIST_HEAD(&init_css_set.tasks);
4525 INIT_HLIST_NODE(&init_css_set.hlist);
4526 css_set_count = 1;
4527 init_cgroup_root(&rootnode);
4528 root_count = 1;
4529 init_task.cgroups = &init_css_set;
4530
4531 init_css_set_link.cg = &init_css_set;
4532 init_css_set_link.cgrp = dummytop;
4533 list_add(&init_css_set_link.cgrp_link_list,
4534 &rootnode.top_cgroup.css_sets);
4535 list_add(&init_css_set_link.cg_link_list,
4536 &init_css_set.cg_links);
4537
4538 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4539 INIT_HLIST_HEAD(&css_set_table[i]);
4540
4541 /* at bootup time, we don't worry about modular subsystems */
4542 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4543 struct cgroup_subsys *ss = subsys[i];
4544
4545 BUG_ON(!ss->name);
4546 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4547 BUG_ON(!ss->create);
4548 BUG_ON(!ss->destroy);
4549 if (ss->subsys_id != i) {
4550 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4551 ss->name, ss->subsys_id);
4552 BUG();
4553 }
4554
4555 if (ss->early_init)
4556 cgroup_init_subsys(ss);
4557 }
4558 return 0;
4559 }
4560
4561 /**
4562 * cgroup_init - cgroup initialization
4563 *
4564 * Register cgroup filesystem and /proc file, and initialize
4565 * any subsystems that didn't request early init.
4566 */
4567 int __init cgroup_init(void)
4568 {
4569 int err;
4570 int i;
4571 struct hlist_head *hhead;
4572
4573 err = bdi_init(&cgroup_backing_dev_info);
4574 if (err)
4575 return err;
4576
4577 /* at bootup time, we don't worry about modular subsystems */
4578 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4579 struct cgroup_subsys *ss = subsys[i];
4580 if (!ss->early_init)
4581 cgroup_init_subsys(ss);
4582 if (ss->use_id)
4583 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4584 }
4585
4586 /* Add init_css_set to the hash table */
4587 hhead = css_set_hash(init_css_set.subsys);
4588 hlist_add_head(&init_css_set.hlist, hhead);
4589 BUG_ON(!init_root_id(&rootnode));
4590
4591 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4592 if (!cgroup_kobj) {
4593 err = -ENOMEM;
4594 goto out;
4595 }
4596
4597 err = register_filesystem(&cgroup_fs_type);
4598 if (err < 0) {
4599 kobject_put(cgroup_kobj);
4600 goto out;
4601 }
4602
4603 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4604
4605 out:
4606 if (err)
4607 bdi_destroy(&cgroup_backing_dev_info);
4608
4609 return err;
4610 }
4611
4612 /*
4613 * proc_cgroup_show()
4614 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4615 * - Used for /proc/<pid>/cgroup.
4616 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4617 * doesn't really matter if tsk->cgroup changes after we read it,
4618 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4619 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4620 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4621 * cgroup to top_cgroup.
4622 */
4623
4624 /* TODO: Use a proper seq_file iterator */
4625 static int proc_cgroup_show(struct seq_file *m, void *v)
4626 {
4627 struct pid *pid;
4628 struct task_struct *tsk;
4629 char *buf;
4630 int retval;
4631 struct cgroupfs_root *root;
4632
4633 retval = -ENOMEM;
4634 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4635 if (!buf)
4636 goto out;
4637
4638 retval = -ESRCH;
4639 pid = m->private;
4640 tsk = get_pid_task(pid, PIDTYPE_PID);
4641 if (!tsk)
4642 goto out_free;
4643
4644 retval = 0;
4645
4646 mutex_lock(&cgroup_mutex);
4647
4648 for_each_active_root(root) {
4649 struct cgroup_subsys *ss;
4650 struct cgroup *cgrp;
4651 int count = 0;
4652
4653 seq_printf(m, "%d:", root->hierarchy_id);
4654 for_each_subsys(root, ss)
4655 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4656 if (strlen(root->name))
4657 seq_printf(m, "%sname=%s", count ? "," : "",
4658 root->name);
4659 seq_putc(m, ':');
4660 cgrp = task_cgroup_from_root(tsk, root);
4661 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4662 if (retval < 0)
4663 goto out_unlock;
4664 seq_puts(m, buf);
4665 seq_putc(m, '\n');
4666 }
4667
4668 out_unlock:
4669 mutex_unlock(&cgroup_mutex);
4670 put_task_struct(tsk);
4671 out_free:
4672 kfree(buf);
4673 out:
4674 return retval;
4675 }
4676
4677 static int cgroup_open(struct inode *inode, struct file *file)
4678 {
4679 struct pid *pid = PROC_I(inode)->pid;
4680 return single_open(file, proc_cgroup_show, pid);
4681 }
4682
4683 const struct file_operations proc_cgroup_operations = {
4684 .open = cgroup_open,
4685 .read = seq_read,
4686 .llseek = seq_lseek,
4687 .release = single_release,
4688 };
4689
4690 /* Display information about each subsystem and each hierarchy */
4691 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4692 {
4693 int i;
4694
4695 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4696 /*
4697 * ideally we don't want subsystems moving around while we do this.
4698 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4699 * subsys/hierarchy state.
4700 */
4701 mutex_lock(&cgroup_mutex);
4702 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4703 struct cgroup_subsys *ss = subsys[i];
4704 if (ss == NULL)
4705 continue;
4706 seq_printf(m, "%s\t%d\t%d\t%d\n",
4707 ss->name, ss->root->hierarchy_id,
4708 ss->root->number_of_cgroups, !ss->disabled);
4709 }
4710 mutex_unlock(&cgroup_mutex);
4711 return 0;
4712 }
4713
4714 static int cgroupstats_open(struct inode *inode, struct file *file)
4715 {
4716 return single_open(file, proc_cgroupstats_show, NULL);
4717 }
4718
4719 static const struct file_operations proc_cgroupstats_operations = {
4720 .open = cgroupstats_open,
4721 .read = seq_read,
4722 .llseek = seq_lseek,
4723 .release = single_release,
4724 };
4725
4726 /**
4727 * cgroup_fork - attach newly forked task to its parents cgroup.
4728 * @child: pointer to task_struct of forking parent process.
4729 *
4730 * Description: A task inherits its parent's cgroup at fork().
4731 *
4732 * A pointer to the shared css_set was automatically copied in
4733 * fork.c by dup_task_struct(). However, we ignore that copy, since
4734 * it was not made under the protection of RCU, cgroup_mutex or
4735 * threadgroup_change_begin(), so it might no longer be a valid
4736 * cgroup pointer. cgroup_attach_task() might have already changed
4737 * current->cgroups, allowing the previously referenced cgroup
4738 * group to be removed and freed.
4739 *
4740 * Outside the pointer validity we also need to process the css_set
4741 * inheritance between threadgoup_change_begin() and
4742 * threadgoup_change_end(), this way there is no leak in any process
4743 * wide migration performed by cgroup_attach_proc() that could otherwise
4744 * miss a thread because it is too early or too late in the fork stage.
4745 *
4746 * At the point that cgroup_fork() is called, 'current' is the parent
4747 * task, and the passed argument 'child' points to the child task.
4748 */
4749 void cgroup_fork(struct task_struct *child)
4750 {
4751 /*
4752 * We don't need to task_lock() current because current->cgroups
4753 * can't be changed concurrently here. The parent obviously hasn't
4754 * exited and called cgroup_exit(), and we are synchronized against
4755 * cgroup migration through threadgroup_change_begin().
4756 */
4757 child->cgroups = current->cgroups;
4758 get_css_set(child->cgroups);
4759 INIT_LIST_HEAD(&child->cg_list);
4760 }
4761
4762 /**
4763 * cgroup_fork_callbacks - run fork callbacks
4764 * @child: the new task
4765 *
4766 * Called on a new task very soon before adding it to the
4767 * tasklist. No need to take any locks since no-one can
4768 * be operating on this task.
4769 */
4770 void cgroup_fork_callbacks(struct task_struct *child)
4771 {
4772 if (need_forkexit_callback) {
4773 int i;
4774 /*
4775 * forkexit callbacks are only supported for builtin
4776 * subsystems, and the builtin section of the subsys array is
4777 * immutable, so we don't need to lock the subsys array here.
4778 */
4779 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4780 struct cgroup_subsys *ss = subsys[i];
4781 if (ss->fork)
4782 ss->fork(child);
4783 }
4784 }
4785 }
4786
4787 /**
4788 * cgroup_post_fork - called on a new task after adding it to the task list
4789 * @child: the task in question
4790 *
4791 * Adds the task to the list running through its css_set if necessary.
4792 * Has to be after the task is visible on the task list in case we race
4793 * with the first call to cgroup_iter_start() - to guarantee that the
4794 * new task ends up on its list.
4795 */
4796 void cgroup_post_fork(struct task_struct *child)
4797 {
4798 /*
4799 * use_task_css_set_links is set to 1 before we walk the tasklist
4800 * under the tasklist_lock and we read it here after we added the child
4801 * to the tasklist under the tasklist_lock as well. If the child wasn't
4802 * yet in the tasklist when we walked through it from
4803 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4804 * should be visible now due to the paired locking and barriers implied
4805 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4806 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4807 * lock on fork.
4808 */
4809 if (use_task_css_set_links) {
4810 write_lock(&css_set_lock);
4811 if (list_empty(&child->cg_list)) {
4812 /*
4813 * It's safe to use child->cgroups without task_lock()
4814 * here because we are protected through
4815 * threadgroup_change_begin() against concurrent
4816 * css_set change in cgroup_task_migrate(). Also
4817 * the task can't exit at that point until
4818 * wake_up_new_task() is called, so we are protected
4819 * against cgroup_exit() setting child->cgroup to
4820 * init_css_set.
4821 */
4822 list_add(&child->cg_list, &child->cgroups->tasks);
4823 }
4824 write_unlock(&css_set_lock);
4825 }
4826 }
4827 /**
4828 * cgroup_exit - detach cgroup from exiting task
4829 * @tsk: pointer to task_struct of exiting process
4830 * @run_callback: run exit callbacks?
4831 *
4832 * Description: Detach cgroup from @tsk and release it.
4833 *
4834 * Note that cgroups marked notify_on_release force every task in
4835 * them to take the global cgroup_mutex mutex when exiting.
4836 * This could impact scaling on very large systems. Be reluctant to
4837 * use notify_on_release cgroups where very high task exit scaling
4838 * is required on large systems.
4839 *
4840 * the_top_cgroup_hack:
4841 *
4842 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4843 *
4844 * We call cgroup_exit() while the task is still competent to
4845 * handle notify_on_release(), then leave the task attached to the
4846 * root cgroup in each hierarchy for the remainder of its exit.
4847 *
4848 * To do this properly, we would increment the reference count on
4849 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4850 * code we would add a second cgroup function call, to drop that
4851 * reference. This would just create an unnecessary hot spot on
4852 * the top_cgroup reference count, to no avail.
4853 *
4854 * Normally, holding a reference to a cgroup without bumping its
4855 * count is unsafe. The cgroup could go away, or someone could
4856 * attach us to a different cgroup, decrementing the count on
4857 * the first cgroup that we never incremented. But in this case,
4858 * top_cgroup isn't going away, and either task has PF_EXITING set,
4859 * which wards off any cgroup_attach_task() attempts, or task is a failed
4860 * fork, never visible to cgroup_attach_task.
4861 */
4862 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4863 {
4864 struct css_set *cg;
4865 int i;
4866
4867 /*
4868 * Unlink from the css_set task list if necessary.
4869 * Optimistically check cg_list before taking
4870 * css_set_lock
4871 */
4872 if (!list_empty(&tsk->cg_list)) {
4873 write_lock(&css_set_lock);
4874 if (!list_empty(&tsk->cg_list))
4875 list_del_init(&tsk->cg_list);
4876 write_unlock(&css_set_lock);
4877 }
4878
4879 /* Reassign the task to the init_css_set. */
4880 task_lock(tsk);
4881 cg = tsk->cgroups;
4882 tsk->cgroups = &init_css_set;
4883
4884 if (run_callbacks && need_forkexit_callback) {
4885 /*
4886 * modular subsystems can't use callbacks, so no need to lock
4887 * the subsys array
4888 */
4889 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4890 struct cgroup_subsys *ss = subsys[i];
4891 if (ss->exit) {
4892 struct cgroup *old_cgrp =
4893 rcu_dereference_raw(cg->subsys[i])->cgroup;
4894 struct cgroup *cgrp = task_cgroup(tsk, i);
4895 ss->exit(cgrp, old_cgrp, tsk);
4896 }
4897 }
4898 }
4899 task_unlock(tsk);
4900
4901 if (cg)
4902 put_css_set_taskexit(cg);
4903 }
4904
4905 /**
4906 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4907 * @cgrp: the cgroup in question
4908 * @task: the task in question
4909 *
4910 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4911 * hierarchy.
4912 *
4913 * If we are sending in dummytop, then presumably we are creating
4914 * the top cgroup in the subsystem.
4915 *
4916 * Called only by the ns (nsproxy) cgroup.
4917 */
4918 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4919 {
4920 int ret;
4921 struct cgroup *target;
4922
4923 if (cgrp == dummytop)
4924 return 1;
4925
4926 target = task_cgroup_from_root(task, cgrp->root);
4927 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4928 cgrp = cgrp->parent;
4929 ret = (cgrp == target);
4930 return ret;
4931 }
4932
4933 static void check_for_release(struct cgroup *cgrp)
4934 {
4935 /* All of these checks rely on RCU to keep the cgroup
4936 * structure alive */
4937 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4938 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4939 /* Control Group is currently removeable. If it's not
4940 * already queued for a userspace notification, queue
4941 * it now */
4942 int need_schedule_work = 0;
4943 raw_spin_lock(&release_list_lock);
4944 if (!cgroup_is_removed(cgrp) &&
4945 list_empty(&cgrp->release_list)) {
4946 list_add(&cgrp->release_list, &release_list);
4947 need_schedule_work = 1;
4948 }
4949 raw_spin_unlock(&release_list_lock);
4950 if (need_schedule_work)
4951 schedule_work(&release_agent_work);
4952 }
4953 }
4954
4955 /* Caller must verify that the css is not for root cgroup */
4956 bool __css_tryget(struct cgroup_subsys_state *css)
4957 {
4958 do {
4959 int v = css_refcnt(css);
4960
4961 if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
4962 return true;
4963 cpu_relax();
4964 } while (!test_bit(CSS_REMOVED, &css->flags));
4965
4966 return false;
4967 }
4968 EXPORT_SYMBOL_GPL(__css_tryget);
4969
4970 /* Caller must verify that the css is not for root cgroup */
4971 void __css_put(struct cgroup_subsys_state *css)
4972 {
4973 struct cgroup *cgrp = css->cgroup;
4974
4975 rcu_read_lock();
4976 atomic_dec(&css->refcnt);
4977 switch (css_refcnt(css)) {
4978 case 1:
4979 if (notify_on_release(cgrp)) {
4980 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4981 check_for_release(cgrp);
4982 }
4983 cgroup_wakeup_rmdir_waiter(cgrp);
4984 break;
4985 case 0:
4986 if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
4987 schedule_work(&css->dput_work);
4988 break;
4989 }
4990 rcu_read_unlock();
4991 }
4992 EXPORT_SYMBOL_GPL(__css_put);
4993
4994 /*
4995 * Notify userspace when a cgroup is released, by running the
4996 * configured release agent with the name of the cgroup (path
4997 * relative to the root of cgroup file system) as the argument.
4998 *
4999 * Most likely, this user command will try to rmdir this cgroup.
5000 *
5001 * This races with the possibility that some other task will be
5002 * attached to this cgroup before it is removed, or that some other
5003 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5004 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5005 * unused, and this cgroup will be reprieved from its death sentence,
5006 * to continue to serve a useful existence. Next time it's released,
5007 * we will get notified again, if it still has 'notify_on_release' set.
5008 *
5009 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5010 * means only wait until the task is successfully execve()'d. The
5011 * separate release agent task is forked by call_usermodehelper(),
5012 * then control in this thread returns here, without waiting for the
5013 * release agent task. We don't bother to wait because the caller of
5014 * this routine has no use for the exit status of the release agent
5015 * task, so no sense holding our caller up for that.
5016 */
5017 static void cgroup_release_agent(struct work_struct *work)
5018 {
5019 BUG_ON(work != &release_agent_work);
5020 mutex_lock(&cgroup_mutex);
5021 raw_spin_lock(&release_list_lock);
5022 while (!list_empty(&release_list)) {
5023 char *argv[3], *envp[3];
5024 int i;
5025 char *pathbuf = NULL, *agentbuf = NULL;
5026 struct cgroup *cgrp = list_entry(release_list.next,
5027 struct cgroup,
5028 release_list);
5029 list_del_init(&cgrp->release_list);
5030 raw_spin_unlock(&release_list_lock);
5031 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5032 if (!pathbuf)
5033 goto continue_free;
5034 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5035 goto continue_free;
5036 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5037 if (!agentbuf)
5038 goto continue_free;
5039
5040 i = 0;
5041 argv[i++] = agentbuf;
5042 argv[i++] = pathbuf;
5043 argv[i] = NULL;
5044
5045 i = 0;
5046 /* minimal command environment */
5047 envp[i++] = "HOME=/";
5048 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5049 envp[i] = NULL;
5050
5051 /* Drop the lock while we invoke the usermode helper,
5052 * since the exec could involve hitting disk and hence
5053 * be a slow process */
5054 mutex_unlock(&cgroup_mutex);
5055 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5056 mutex_lock(&cgroup_mutex);
5057 continue_free:
5058 kfree(pathbuf);
5059 kfree(agentbuf);
5060 raw_spin_lock(&release_list_lock);
5061 }
5062 raw_spin_unlock(&release_list_lock);
5063 mutex_unlock(&cgroup_mutex);
5064 }
5065
5066 static int __init cgroup_disable(char *str)
5067 {
5068 int i;
5069 char *token;
5070
5071 while ((token = strsep(&str, ",")) != NULL) {
5072 if (!*token)
5073 continue;
5074 /*
5075 * cgroup_disable, being at boot time, can't know about module
5076 * subsystems, so we don't worry about them.
5077 */
5078 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5079 struct cgroup_subsys *ss = subsys[i];
5080
5081 if (!strcmp(token, ss->name)) {
5082 ss->disabled = 1;
5083 printk(KERN_INFO "Disabling %s control group"
5084 " subsystem\n", ss->name);
5085 break;
5086 }
5087 }
5088 }
5089 return 1;
5090 }
5091 __setup("cgroup_disable=", cgroup_disable);
5092
5093 /*
5094 * Functons for CSS ID.
5095 */
5096
5097 /*
5098 *To get ID other than 0, this should be called when !cgroup_is_removed().
5099 */
5100 unsigned short css_id(struct cgroup_subsys_state *css)
5101 {
5102 struct css_id *cssid;
5103
5104 /*
5105 * This css_id() can return correct value when somone has refcnt
5106 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5107 * it's unchanged until freed.
5108 */
5109 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5110
5111 if (cssid)
5112 return cssid->id;
5113 return 0;
5114 }
5115 EXPORT_SYMBOL_GPL(css_id);
5116
5117 unsigned short css_depth(struct cgroup_subsys_state *css)
5118 {
5119 struct css_id *cssid;
5120
5121 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5122
5123 if (cssid)
5124 return cssid->depth;
5125 return 0;
5126 }
5127 EXPORT_SYMBOL_GPL(css_depth);
5128
5129 /**
5130 * css_is_ancestor - test "root" css is an ancestor of "child"
5131 * @child: the css to be tested.
5132 * @root: the css supporsed to be an ancestor of the child.
5133 *
5134 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5135 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
5136 * But, considering usual usage, the csses should be valid objects after test.
5137 * Assuming that the caller will do some action to the child if this returns
5138 * returns true, the caller must take "child";s reference count.
5139 * If "child" is valid object and this returns true, "root" is valid, too.
5140 */
5141
5142 bool css_is_ancestor(struct cgroup_subsys_state *child,
5143 const struct cgroup_subsys_state *root)
5144 {
5145 struct css_id *child_id;
5146 struct css_id *root_id;
5147 bool ret = true;
5148
5149 rcu_read_lock();
5150 child_id = rcu_dereference(child->id);
5151 root_id = rcu_dereference(root->id);
5152 if (!child_id
5153 || !root_id
5154 || (child_id->depth < root_id->depth)
5155 || (child_id->stack[root_id->depth] != root_id->id))
5156 ret = false;
5157 rcu_read_unlock();
5158 return ret;
5159 }
5160
5161 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5162 {
5163 struct css_id *id = css->id;
5164 /* When this is called before css_id initialization, id can be NULL */
5165 if (!id)
5166 return;
5167
5168 BUG_ON(!ss->use_id);
5169
5170 rcu_assign_pointer(id->css, NULL);
5171 rcu_assign_pointer(css->id, NULL);
5172 spin_lock(&ss->id_lock);
5173 idr_remove(&ss->idr, id->id);
5174 spin_unlock(&ss->id_lock);
5175 kfree_rcu(id, rcu_head);
5176 }
5177 EXPORT_SYMBOL_GPL(free_css_id);
5178
5179 /*
5180 * This is called by init or create(). Then, calls to this function are
5181 * always serialized (By cgroup_mutex() at create()).
5182 */
5183
5184 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5185 {
5186 struct css_id *newid;
5187 int myid, error, size;
5188
5189 BUG_ON(!ss->use_id);
5190
5191 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5192 newid = kzalloc(size, GFP_KERNEL);
5193 if (!newid)
5194 return ERR_PTR(-ENOMEM);
5195 /* get id */
5196 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5197 error = -ENOMEM;
5198 goto err_out;
5199 }
5200 spin_lock(&ss->id_lock);
5201 /* Don't use 0. allocates an ID of 1-65535 */
5202 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5203 spin_unlock(&ss->id_lock);
5204
5205 /* Returns error when there are no free spaces for new ID.*/
5206 if (error) {
5207 error = -ENOSPC;
5208 goto err_out;
5209 }
5210 if (myid > CSS_ID_MAX)
5211 goto remove_idr;
5212
5213 newid->id = myid;
5214 newid->depth = depth;
5215 return newid;
5216 remove_idr:
5217 error = -ENOSPC;
5218 spin_lock(&ss->id_lock);
5219 idr_remove(&ss->idr, myid);
5220 spin_unlock(&ss->id_lock);
5221 err_out:
5222 kfree(newid);
5223 return ERR_PTR(error);
5224
5225 }
5226
5227 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5228 struct cgroup_subsys_state *rootcss)
5229 {
5230 struct css_id *newid;
5231
5232 spin_lock_init(&ss->id_lock);
5233 idr_init(&ss->idr);
5234
5235 newid = get_new_cssid(ss, 0);
5236 if (IS_ERR(newid))
5237 return PTR_ERR(newid);
5238
5239 newid->stack[0] = newid->id;
5240 newid->css = rootcss;
5241 rootcss->id = newid;
5242 return 0;
5243 }
5244
5245 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5246 struct cgroup *child)
5247 {
5248 int subsys_id, i, depth = 0;
5249 struct cgroup_subsys_state *parent_css, *child_css;
5250 struct css_id *child_id, *parent_id;
5251
5252 subsys_id = ss->subsys_id;
5253 parent_css = parent->subsys[subsys_id];
5254 child_css = child->subsys[subsys_id];
5255 parent_id = parent_css->id;
5256 depth = parent_id->depth + 1;
5257
5258 child_id = get_new_cssid(ss, depth);
5259 if (IS_ERR(child_id))
5260 return PTR_ERR(child_id);
5261
5262 for (i = 0; i < depth; i++)
5263 child_id->stack[i] = parent_id->stack[i];
5264 child_id->stack[depth] = child_id->id;
5265 /*
5266 * child_id->css pointer will be set after this cgroup is available
5267 * see cgroup_populate_dir()
5268 */
5269 rcu_assign_pointer(child_css->id, child_id);
5270
5271 return 0;
5272 }
5273
5274 /**
5275 * css_lookup - lookup css by id
5276 * @ss: cgroup subsys to be looked into.
5277 * @id: the id
5278 *
5279 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5280 * NULL if not. Should be called under rcu_read_lock()
5281 */
5282 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5283 {
5284 struct css_id *cssid = NULL;
5285
5286 BUG_ON(!ss->use_id);
5287 cssid = idr_find(&ss->idr, id);
5288
5289 if (unlikely(!cssid))
5290 return NULL;
5291
5292 return rcu_dereference(cssid->css);
5293 }
5294 EXPORT_SYMBOL_GPL(css_lookup);
5295
5296 /**
5297 * css_get_next - lookup next cgroup under specified hierarchy.
5298 * @ss: pointer to subsystem
5299 * @id: current position of iteration.
5300 * @root: pointer to css. search tree under this.
5301 * @foundid: position of found object.
5302 *
5303 * Search next css under the specified hierarchy of rootid. Calling under
5304 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5305 */
5306 struct cgroup_subsys_state *
5307 css_get_next(struct cgroup_subsys *ss, int id,
5308 struct cgroup_subsys_state *root, int *foundid)
5309 {
5310 struct cgroup_subsys_state *ret = NULL;
5311 struct css_id *tmp;
5312 int tmpid;
5313 int rootid = css_id(root);
5314 int depth = css_depth(root);
5315
5316 if (!rootid)
5317 return NULL;
5318
5319 BUG_ON(!ss->use_id);
5320 WARN_ON_ONCE(!rcu_read_lock_held());
5321
5322 /* fill start point for scan */
5323 tmpid = id;
5324 while (1) {
5325 /*
5326 * scan next entry from bitmap(tree), tmpid is updated after
5327 * idr_get_next().
5328 */
5329 tmp = idr_get_next(&ss->idr, &tmpid);
5330 if (!tmp)
5331 break;
5332 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5333 ret = rcu_dereference(tmp->css);
5334 if (ret) {
5335 *foundid = tmpid;
5336 break;
5337 }
5338 }
5339 /* continue to scan from next id */
5340 tmpid = tmpid + 1;
5341 }
5342 return ret;
5343 }
5344
5345 /*
5346 * get corresponding css from file open on cgroupfs directory
5347 */
5348 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5349 {
5350 struct cgroup *cgrp;
5351 struct inode *inode;
5352 struct cgroup_subsys_state *css;
5353
5354 inode = f->f_dentry->d_inode;
5355 /* check in cgroup filesystem dir */
5356 if (inode->i_op != &cgroup_dir_inode_operations)
5357 return ERR_PTR(-EBADF);
5358
5359 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5360 return ERR_PTR(-EINVAL);
5361
5362 /* get cgroup */
5363 cgrp = __d_cgrp(f->f_dentry);
5364 css = cgrp->subsys[id];
5365 return css ? css : ERR_PTR(-ENOENT);
5366 }
5367
5368 #ifdef CONFIG_CGROUP_DEBUG
5369 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5370 {
5371 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5372
5373 if (!css)
5374 return ERR_PTR(-ENOMEM);
5375
5376 return css;
5377 }
5378
5379 static void debug_destroy(struct cgroup *cont)
5380 {
5381 kfree(cont->subsys[debug_subsys_id]);
5382 }
5383
5384 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5385 {
5386 return atomic_read(&cont->count);
5387 }
5388
5389 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5390 {
5391 return cgroup_task_count(cont);
5392 }
5393
5394 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5395 {
5396 return (u64)(unsigned long)current->cgroups;
5397 }
5398
5399 static u64 current_css_set_refcount_read(struct cgroup *cont,
5400 struct cftype *cft)
5401 {
5402 u64 count;
5403
5404 rcu_read_lock();
5405 count = atomic_read(&current->cgroups->refcount);
5406 rcu_read_unlock();
5407 return count;
5408 }
5409
5410 static int current_css_set_cg_links_read(struct cgroup *cont,
5411 struct cftype *cft,
5412 struct seq_file *seq)
5413 {
5414 struct cg_cgroup_link *link;
5415 struct css_set *cg;
5416
5417 read_lock(&css_set_lock);
5418 rcu_read_lock();
5419 cg = rcu_dereference(current->cgroups);
5420 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5421 struct cgroup *c = link->cgrp;
5422 const char *name;
5423
5424 if (c->dentry)
5425 name = c->dentry->d_name.name;
5426 else
5427 name = "?";
5428 seq_printf(seq, "Root %d group %s\n",
5429 c->root->hierarchy_id, name);
5430 }
5431 rcu_read_unlock();
5432 read_unlock(&css_set_lock);
5433 return 0;
5434 }
5435
5436 #define MAX_TASKS_SHOWN_PER_CSS 25
5437 static int cgroup_css_links_read(struct cgroup *cont,
5438 struct cftype *cft,
5439 struct seq_file *seq)
5440 {
5441 struct cg_cgroup_link *link;
5442
5443 read_lock(&css_set_lock);
5444 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5445 struct css_set *cg = link->cg;
5446 struct task_struct *task;
5447 int count = 0;
5448 seq_printf(seq, "css_set %p\n", cg);
5449 list_for_each_entry(task, &cg->tasks, cg_list) {
5450 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5451 seq_puts(seq, " ...\n");
5452 break;
5453 } else {
5454 seq_printf(seq, " task %d\n",
5455 task_pid_vnr(task));
5456 }
5457 }
5458 }
5459 read_unlock(&css_set_lock);
5460 return 0;
5461 }
5462
5463 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5464 {
5465 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5466 }
5467
5468 static struct cftype debug_files[] = {
5469 {
5470 .name = "cgroup_refcount",
5471 .read_u64 = cgroup_refcount_read,
5472 },
5473 {
5474 .name = "taskcount",
5475 .read_u64 = debug_taskcount_read,
5476 },
5477
5478 {
5479 .name = "current_css_set",
5480 .read_u64 = current_css_set_read,
5481 },
5482
5483 {
5484 .name = "current_css_set_refcount",
5485 .read_u64 = current_css_set_refcount_read,
5486 },
5487
5488 {
5489 .name = "current_css_set_cg_links",
5490 .read_seq_string = current_css_set_cg_links_read,
5491 },
5492
5493 {
5494 .name = "cgroup_css_links",
5495 .read_seq_string = cgroup_css_links_read,
5496 },
5497
5498 {
5499 .name = "releasable",
5500 .read_u64 = releasable_read,
5501 },
5502
5503 { } /* terminate */
5504 };
5505
5506 struct cgroup_subsys debug_subsys = {
5507 .name = "debug",
5508 .create = debug_create,
5509 .destroy = debug_destroy,
5510 .subsys_id = debug_subsys_id,
5511 .base_cftypes = debug_files,
5512 };
5513 #endif /* CONFIG_CGROUP_DEBUG */