]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
Merge branch 'for-v3.12' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 #ifdef CONFIG_PROVE_RCU
83 DEFINE_MUTEX(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
85 #else
86 static DEFINE_MUTEX(cgroup_mutex);
87 #endif
88
89 static DEFINE_MUTEX(cgroup_root_mutex);
90
91 /*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
93 * populated with the built in subsystems, and modular subsystems are
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
97 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 #include <linux/cgroup_subsys.h>
101 };
102
103 /*
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
107 */
108 static struct cgroupfs_root cgroup_dummy_root;
109
110 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
112
113 /*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
120 struct cgroup_subsys_state *css;
121
122 /* file xattrs */
123 struct simple_xattrs xattrs;
124 };
125
126 /*
127 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
128 * cgroup_subsys->use_id != 0.
129 */
130 #define CSS_ID_MAX (65535)
131 struct css_id {
132 /*
133 * The css to which this ID points. This pointer is set to valid value
134 * after cgroup is populated. If cgroup is removed, this will be NULL.
135 * This pointer is expected to be RCU-safe because destroy()
136 * is called after synchronize_rcu(). But for safe use, css_tryget()
137 * should be used for avoiding race.
138 */
139 struct cgroup_subsys_state __rcu *css;
140 /*
141 * ID of this css.
142 */
143 unsigned short id;
144 /*
145 * Depth in hierarchy which this ID belongs to.
146 */
147 unsigned short depth;
148 /*
149 * ID is freed by RCU. (and lookup routine is RCU safe.)
150 */
151 struct rcu_head rcu_head;
152 /*
153 * Hierarchy of CSS ID belongs to.
154 */
155 unsigned short stack[0]; /* Array of Length (depth+1) */
156 };
157
158 /*
159 * cgroup_event represents events which userspace want to receive.
160 */
161 struct cgroup_event {
162 /*
163 * css which the event belongs to.
164 */
165 struct cgroup_subsys_state *css;
166 /*
167 * Control file which the event associated.
168 */
169 struct cftype *cft;
170 /*
171 * eventfd to signal userspace about the event.
172 */
173 struct eventfd_ctx *eventfd;
174 /*
175 * Each of these stored in a list by the cgroup.
176 */
177 struct list_head list;
178 /*
179 * All fields below needed to unregister event when
180 * userspace closes eventfd.
181 */
182 poll_table pt;
183 wait_queue_head_t *wqh;
184 wait_queue_t wait;
185 struct work_struct remove;
186 };
187
188 /* The list of hierarchy roots */
189
190 static LIST_HEAD(cgroup_roots);
191 static int cgroup_root_count;
192
193 /*
194 * Hierarchy ID allocation and mapping. It follows the same exclusion
195 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
196 * writes, either for reads.
197 */
198 static DEFINE_IDR(cgroup_hierarchy_idr);
199
200 static struct cgroup_name root_cgroup_name = { .name = "/" };
201
202 /*
203 * Assign a monotonically increasing serial number to cgroups. It
204 * guarantees cgroups with bigger numbers are newer than those with smaller
205 * numbers. Also, as cgroups are always appended to the parent's
206 * ->children list, it guarantees that sibling cgroups are always sorted in
207 * the ascending serial number order on the list. Protected by
208 * cgroup_mutex.
209 */
210 static u64 cgroup_serial_nr_next = 1;
211
212 /* This flag indicates whether tasks in the fork and exit paths should
213 * check for fork/exit handlers to call. This avoids us having to do
214 * extra work in the fork/exit path if none of the subsystems need to
215 * be called.
216 */
217 static int need_forkexit_callback __read_mostly;
218
219 static struct cftype cgroup_base_files[];
220
221 static void cgroup_destroy_css_killed(struct cgroup *cgrp);
222 static int cgroup_destroy_locked(struct cgroup *cgrp);
223 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
224 bool is_add);
225
226 /**
227 * cgroup_css - obtain a cgroup's css for the specified subsystem
228 * @cgrp: the cgroup of interest
229 * @ss: the subsystem of interest (%NULL returns the dummy_css)
230 *
231 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
232 * function must be called either under cgroup_mutex or rcu_read_lock() and
233 * the caller is responsible for pinning the returned css if it wants to
234 * keep accessing it outside the said locks. This function may return
235 * %NULL if @cgrp doesn't have @subsys_id enabled.
236 */
237 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
238 struct cgroup_subsys *ss)
239 {
240 if (ss)
241 return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
242 lockdep_is_held(&cgroup_mutex));
243 else
244 return &cgrp->dummy_css;
245 }
246
247 /* convenient tests for these bits */
248 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
249 {
250 return test_bit(CGRP_DEAD, &cgrp->flags);
251 }
252
253 /**
254 * cgroup_is_descendant - test ancestry
255 * @cgrp: the cgroup to be tested
256 * @ancestor: possible ancestor of @cgrp
257 *
258 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
259 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
260 * and @ancestor are accessible.
261 */
262 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
263 {
264 while (cgrp) {
265 if (cgrp == ancestor)
266 return true;
267 cgrp = cgrp->parent;
268 }
269 return false;
270 }
271 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
272
273 static int cgroup_is_releasable(const struct cgroup *cgrp)
274 {
275 const int bits =
276 (1 << CGRP_RELEASABLE) |
277 (1 << CGRP_NOTIFY_ON_RELEASE);
278 return (cgrp->flags & bits) == bits;
279 }
280
281 static int notify_on_release(const struct cgroup *cgrp)
282 {
283 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
284 }
285
286 /**
287 * for_each_subsys - iterate all loaded cgroup subsystems
288 * @ss: the iteration cursor
289 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
290 *
291 * Should be called under cgroup_mutex.
292 */
293 #define for_each_subsys(ss, i) \
294 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
295 if (({ lockdep_assert_held(&cgroup_mutex); \
296 !((ss) = cgroup_subsys[i]); })) { } \
297 else
298
299 /**
300 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
301 * @ss: the iteration cursor
302 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
303 *
304 * Bulit-in subsystems are always present and iteration itself doesn't
305 * require any synchronization.
306 */
307 #define for_each_builtin_subsys(ss, i) \
308 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
309 (((ss) = cgroup_subsys[i]) || true); (i)++)
310
311 /* iterate each subsystem attached to a hierarchy */
312 #define for_each_root_subsys(root, ss) \
313 list_for_each_entry((ss), &(root)->subsys_list, sibling)
314
315 /* iterate across the active hierarchies */
316 #define for_each_active_root(root) \
317 list_for_each_entry((root), &cgroup_roots, root_list)
318
319 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
320 {
321 return dentry->d_fsdata;
322 }
323
324 static inline struct cfent *__d_cfe(struct dentry *dentry)
325 {
326 return dentry->d_fsdata;
327 }
328
329 static inline struct cftype *__d_cft(struct dentry *dentry)
330 {
331 return __d_cfe(dentry)->type;
332 }
333
334 /**
335 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
336 * @cgrp: the cgroup to be checked for liveness
337 *
338 * On success, returns true; the mutex should be later unlocked. On
339 * failure returns false with no lock held.
340 */
341 static bool cgroup_lock_live_group(struct cgroup *cgrp)
342 {
343 mutex_lock(&cgroup_mutex);
344 if (cgroup_is_dead(cgrp)) {
345 mutex_unlock(&cgroup_mutex);
346 return false;
347 }
348 return true;
349 }
350
351 /* the list of cgroups eligible for automatic release. Protected by
352 * release_list_lock */
353 static LIST_HEAD(release_list);
354 static DEFINE_RAW_SPINLOCK(release_list_lock);
355 static void cgroup_release_agent(struct work_struct *work);
356 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
357 static void check_for_release(struct cgroup *cgrp);
358
359 /*
360 * A cgroup can be associated with multiple css_sets as different tasks may
361 * belong to different cgroups on different hierarchies. In the other
362 * direction, a css_set is naturally associated with multiple cgroups.
363 * This M:N relationship is represented by the following link structure
364 * which exists for each association and allows traversing the associations
365 * from both sides.
366 */
367 struct cgrp_cset_link {
368 /* the cgroup and css_set this link associates */
369 struct cgroup *cgrp;
370 struct css_set *cset;
371
372 /* list of cgrp_cset_links anchored at cgrp->cset_links */
373 struct list_head cset_link;
374
375 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
376 struct list_head cgrp_link;
377 };
378
379 /* The default css_set - used by init and its children prior to any
380 * hierarchies being mounted. It contains a pointer to the root state
381 * for each subsystem. Also used to anchor the list of css_sets. Not
382 * reference-counted, to improve performance when child cgroups
383 * haven't been created.
384 */
385
386 static struct css_set init_css_set;
387 static struct cgrp_cset_link init_cgrp_cset_link;
388
389 static int cgroup_init_idr(struct cgroup_subsys *ss,
390 struct cgroup_subsys_state *css);
391
392 /*
393 * css_set_lock protects the list of css_set objects, and the chain of
394 * tasks off each css_set. Nests outside task->alloc_lock due to
395 * css_task_iter_start().
396 */
397 static DEFINE_RWLOCK(css_set_lock);
398 static int css_set_count;
399
400 /*
401 * hash table for cgroup groups. This improves the performance to find
402 * an existing css_set. This hash doesn't (currently) take into
403 * account cgroups in empty hierarchies.
404 */
405 #define CSS_SET_HASH_BITS 7
406 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
407
408 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
409 {
410 unsigned long key = 0UL;
411 struct cgroup_subsys *ss;
412 int i;
413
414 for_each_subsys(ss, i)
415 key += (unsigned long)css[i];
416 key = (key >> 16) ^ key;
417
418 return key;
419 }
420
421 /*
422 * We don't maintain the lists running through each css_set to its task
423 * until after the first call to css_task_iter_start(). This reduces the
424 * fork()/exit() overhead for people who have cgroups compiled into their
425 * kernel but not actually in use.
426 */
427 static int use_task_css_set_links __read_mostly;
428
429 static void __put_css_set(struct css_set *cset, int taskexit)
430 {
431 struct cgrp_cset_link *link, *tmp_link;
432
433 /*
434 * Ensure that the refcount doesn't hit zero while any readers
435 * can see it. Similar to atomic_dec_and_lock(), but for an
436 * rwlock
437 */
438 if (atomic_add_unless(&cset->refcount, -1, 1))
439 return;
440 write_lock(&css_set_lock);
441 if (!atomic_dec_and_test(&cset->refcount)) {
442 write_unlock(&css_set_lock);
443 return;
444 }
445
446 /* This css_set is dead. unlink it and release cgroup refcounts */
447 hash_del(&cset->hlist);
448 css_set_count--;
449
450 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
451 struct cgroup *cgrp = link->cgrp;
452
453 list_del(&link->cset_link);
454 list_del(&link->cgrp_link);
455
456 /* @cgrp can't go away while we're holding css_set_lock */
457 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
458 if (taskexit)
459 set_bit(CGRP_RELEASABLE, &cgrp->flags);
460 check_for_release(cgrp);
461 }
462
463 kfree(link);
464 }
465
466 write_unlock(&css_set_lock);
467 kfree_rcu(cset, rcu_head);
468 }
469
470 /*
471 * refcounted get/put for css_set objects
472 */
473 static inline void get_css_set(struct css_set *cset)
474 {
475 atomic_inc(&cset->refcount);
476 }
477
478 static inline void put_css_set(struct css_set *cset)
479 {
480 __put_css_set(cset, 0);
481 }
482
483 static inline void put_css_set_taskexit(struct css_set *cset)
484 {
485 __put_css_set(cset, 1);
486 }
487
488 /**
489 * compare_css_sets - helper function for find_existing_css_set().
490 * @cset: candidate css_set being tested
491 * @old_cset: existing css_set for a task
492 * @new_cgrp: cgroup that's being entered by the task
493 * @template: desired set of css pointers in css_set (pre-calculated)
494 *
495 * Returns true if "cset" matches "old_cset" except for the hierarchy
496 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
497 */
498 static bool compare_css_sets(struct css_set *cset,
499 struct css_set *old_cset,
500 struct cgroup *new_cgrp,
501 struct cgroup_subsys_state *template[])
502 {
503 struct list_head *l1, *l2;
504
505 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
506 /* Not all subsystems matched */
507 return false;
508 }
509
510 /*
511 * Compare cgroup pointers in order to distinguish between
512 * different cgroups in heirarchies with no subsystems. We
513 * could get by with just this check alone (and skip the
514 * memcmp above) but on most setups the memcmp check will
515 * avoid the need for this more expensive check on almost all
516 * candidates.
517 */
518
519 l1 = &cset->cgrp_links;
520 l2 = &old_cset->cgrp_links;
521 while (1) {
522 struct cgrp_cset_link *link1, *link2;
523 struct cgroup *cgrp1, *cgrp2;
524
525 l1 = l1->next;
526 l2 = l2->next;
527 /* See if we reached the end - both lists are equal length. */
528 if (l1 == &cset->cgrp_links) {
529 BUG_ON(l2 != &old_cset->cgrp_links);
530 break;
531 } else {
532 BUG_ON(l2 == &old_cset->cgrp_links);
533 }
534 /* Locate the cgroups associated with these links. */
535 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
536 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
537 cgrp1 = link1->cgrp;
538 cgrp2 = link2->cgrp;
539 /* Hierarchies should be linked in the same order. */
540 BUG_ON(cgrp1->root != cgrp2->root);
541
542 /*
543 * If this hierarchy is the hierarchy of the cgroup
544 * that's changing, then we need to check that this
545 * css_set points to the new cgroup; if it's any other
546 * hierarchy, then this css_set should point to the
547 * same cgroup as the old css_set.
548 */
549 if (cgrp1->root == new_cgrp->root) {
550 if (cgrp1 != new_cgrp)
551 return false;
552 } else {
553 if (cgrp1 != cgrp2)
554 return false;
555 }
556 }
557 return true;
558 }
559
560 /**
561 * find_existing_css_set - init css array and find the matching css_set
562 * @old_cset: the css_set that we're using before the cgroup transition
563 * @cgrp: the cgroup that we're moving into
564 * @template: out param for the new set of csses, should be clear on entry
565 */
566 static struct css_set *find_existing_css_set(struct css_set *old_cset,
567 struct cgroup *cgrp,
568 struct cgroup_subsys_state *template[])
569 {
570 struct cgroupfs_root *root = cgrp->root;
571 struct cgroup_subsys *ss;
572 struct css_set *cset;
573 unsigned long key;
574 int i;
575
576 /*
577 * Build the set of subsystem state objects that we want to see in the
578 * new css_set. while subsystems can change globally, the entries here
579 * won't change, so no need for locking.
580 */
581 for_each_subsys(ss, i) {
582 if (root->subsys_mask & (1UL << i)) {
583 /* Subsystem is in this hierarchy. So we want
584 * the subsystem state from the new
585 * cgroup */
586 template[i] = cgroup_css(cgrp, ss);
587 } else {
588 /* Subsystem is not in this hierarchy, so we
589 * don't want to change the subsystem state */
590 template[i] = old_cset->subsys[i];
591 }
592 }
593
594 key = css_set_hash(template);
595 hash_for_each_possible(css_set_table, cset, hlist, key) {
596 if (!compare_css_sets(cset, old_cset, cgrp, template))
597 continue;
598
599 /* This css_set matches what we need */
600 return cset;
601 }
602
603 /* No existing cgroup group matched */
604 return NULL;
605 }
606
607 static void free_cgrp_cset_links(struct list_head *links_to_free)
608 {
609 struct cgrp_cset_link *link, *tmp_link;
610
611 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
612 list_del(&link->cset_link);
613 kfree(link);
614 }
615 }
616
617 /**
618 * allocate_cgrp_cset_links - allocate cgrp_cset_links
619 * @count: the number of links to allocate
620 * @tmp_links: list_head the allocated links are put on
621 *
622 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
623 * through ->cset_link. Returns 0 on success or -errno.
624 */
625 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
626 {
627 struct cgrp_cset_link *link;
628 int i;
629
630 INIT_LIST_HEAD(tmp_links);
631
632 for (i = 0; i < count; i++) {
633 link = kzalloc(sizeof(*link), GFP_KERNEL);
634 if (!link) {
635 free_cgrp_cset_links(tmp_links);
636 return -ENOMEM;
637 }
638 list_add(&link->cset_link, tmp_links);
639 }
640 return 0;
641 }
642
643 /**
644 * link_css_set - a helper function to link a css_set to a cgroup
645 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
646 * @cset: the css_set to be linked
647 * @cgrp: the destination cgroup
648 */
649 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
650 struct cgroup *cgrp)
651 {
652 struct cgrp_cset_link *link;
653
654 BUG_ON(list_empty(tmp_links));
655 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
656 link->cset = cset;
657 link->cgrp = cgrp;
658 list_move(&link->cset_link, &cgrp->cset_links);
659 /*
660 * Always add links to the tail of the list so that the list
661 * is sorted by order of hierarchy creation
662 */
663 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
664 }
665
666 /**
667 * find_css_set - return a new css_set with one cgroup updated
668 * @old_cset: the baseline css_set
669 * @cgrp: the cgroup to be updated
670 *
671 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
672 * substituted into the appropriate hierarchy.
673 */
674 static struct css_set *find_css_set(struct css_set *old_cset,
675 struct cgroup *cgrp)
676 {
677 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
678 struct css_set *cset;
679 struct list_head tmp_links;
680 struct cgrp_cset_link *link;
681 unsigned long key;
682
683 lockdep_assert_held(&cgroup_mutex);
684
685 /* First see if we already have a cgroup group that matches
686 * the desired set */
687 read_lock(&css_set_lock);
688 cset = find_existing_css_set(old_cset, cgrp, template);
689 if (cset)
690 get_css_set(cset);
691 read_unlock(&css_set_lock);
692
693 if (cset)
694 return cset;
695
696 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
697 if (!cset)
698 return NULL;
699
700 /* Allocate all the cgrp_cset_link objects that we'll need */
701 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
702 kfree(cset);
703 return NULL;
704 }
705
706 atomic_set(&cset->refcount, 1);
707 INIT_LIST_HEAD(&cset->cgrp_links);
708 INIT_LIST_HEAD(&cset->tasks);
709 INIT_HLIST_NODE(&cset->hlist);
710
711 /* Copy the set of subsystem state objects generated in
712 * find_existing_css_set() */
713 memcpy(cset->subsys, template, sizeof(cset->subsys));
714
715 write_lock(&css_set_lock);
716 /* Add reference counts and links from the new css_set. */
717 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
718 struct cgroup *c = link->cgrp;
719
720 if (c->root == cgrp->root)
721 c = cgrp;
722 link_css_set(&tmp_links, cset, c);
723 }
724
725 BUG_ON(!list_empty(&tmp_links));
726
727 css_set_count++;
728
729 /* Add this cgroup group to the hash table */
730 key = css_set_hash(cset->subsys);
731 hash_add(css_set_table, &cset->hlist, key);
732
733 write_unlock(&css_set_lock);
734
735 return cset;
736 }
737
738 /*
739 * Return the cgroup for "task" from the given hierarchy. Must be
740 * called with cgroup_mutex held.
741 */
742 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
743 struct cgroupfs_root *root)
744 {
745 struct css_set *cset;
746 struct cgroup *res = NULL;
747
748 BUG_ON(!mutex_is_locked(&cgroup_mutex));
749 read_lock(&css_set_lock);
750 /*
751 * No need to lock the task - since we hold cgroup_mutex the
752 * task can't change groups, so the only thing that can happen
753 * is that it exits and its css is set back to init_css_set.
754 */
755 cset = task_css_set(task);
756 if (cset == &init_css_set) {
757 res = &root->top_cgroup;
758 } else {
759 struct cgrp_cset_link *link;
760
761 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
762 struct cgroup *c = link->cgrp;
763
764 if (c->root == root) {
765 res = c;
766 break;
767 }
768 }
769 }
770 read_unlock(&css_set_lock);
771 BUG_ON(!res);
772 return res;
773 }
774
775 /*
776 * There is one global cgroup mutex. We also require taking
777 * task_lock() when dereferencing a task's cgroup subsys pointers.
778 * See "The task_lock() exception", at the end of this comment.
779 *
780 * A task must hold cgroup_mutex to modify cgroups.
781 *
782 * Any task can increment and decrement the count field without lock.
783 * So in general, code holding cgroup_mutex can't rely on the count
784 * field not changing. However, if the count goes to zero, then only
785 * cgroup_attach_task() can increment it again. Because a count of zero
786 * means that no tasks are currently attached, therefore there is no
787 * way a task attached to that cgroup can fork (the other way to
788 * increment the count). So code holding cgroup_mutex can safely
789 * assume that if the count is zero, it will stay zero. Similarly, if
790 * a task holds cgroup_mutex on a cgroup with zero count, it
791 * knows that the cgroup won't be removed, as cgroup_rmdir()
792 * needs that mutex.
793 *
794 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
795 * (usually) take cgroup_mutex. These are the two most performance
796 * critical pieces of code here. The exception occurs on cgroup_exit(),
797 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
798 * is taken, and if the cgroup count is zero, a usermode call made
799 * to the release agent with the name of the cgroup (path relative to
800 * the root of cgroup file system) as the argument.
801 *
802 * A cgroup can only be deleted if both its 'count' of using tasks
803 * is zero, and its list of 'children' cgroups is empty. Since all
804 * tasks in the system use _some_ cgroup, and since there is always at
805 * least one task in the system (init, pid == 1), therefore, top_cgroup
806 * always has either children cgroups and/or using tasks. So we don't
807 * need a special hack to ensure that top_cgroup cannot be deleted.
808 *
809 * The task_lock() exception
810 *
811 * The need for this exception arises from the action of
812 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
813 * another. It does so using cgroup_mutex, however there are
814 * several performance critical places that need to reference
815 * task->cgroup without the expense of grabbing a system global
816 * mutex. Therefore except as noted below, when dereferencing or, as
817 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
818 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
819 * the task_struct routinely used for such matters.
820 *
821 * P.S. One more locking exception. RCU is used to guard the
822 * update of a tasks cgroup pointer by cgroup_attach_task()
823 */
824
825 /*
826 * A couple of forward declarations required, due to cyclic reference loop:
827 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
828 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
829 * -> cgroup_mkdir.
830 */
831
832 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
833 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
834 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
835 static const struct inode_operations cgroup_dir_inode_operations;
836 static const struct file_operations proc_cgroupstats_operations;
837
838 static struct backing_dev_info cgroup_backing_dev_info = {
839 .name = "cgroup",
840 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
841 };
842
843 static int alloc_css_id(struct cgroup_subsys_state *child_css);
844
845 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
846 {
847 struct inode *inode = new_inode(sb);
848
849 if (inode) {
850 inode->i_ino = get_next_ino();
851 inode->i_mode = mode;
852 inode->i_uid = current_fsuid();
853 inode->i_gid = current_fsgid();
854 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
855 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
856 }
857 return inode;
858 }
859
860 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
861 {
862 struct cgroup_name *name;
863
864 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
865 if (!name)
866 return NULL;
867 strcpy(name->name, dentry->d_name.name);
868 return name;
869 }
870
871 static void cgroup_free_fn(struct work_struct *work)
872 {
873 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
874
875 mutex_lock(&cgroup_mutex);
876 cgrp->root->number_of_cgroups--;
877 mutex_unlock(&cgroup_mutex);
878
879 /*
880 * We get a ref to the parent's dentry, and put the ref when
881 * this cgroup is being freed, so it's guaranteed that the
882 * parent won't be destroyed before its children.
883 */
884 dput(cgrp->parent->dentry);
885
886 /*
887 * Drop the active superblock reference that we took when we
888 * created the cgroup. This will free cgrp->root, if we are
889 * holding the last reference to @sb.
890 */
891 deactivate_super(cgrp->root->sb);
892
893 /*
894 * if we're getting rid of the cgroup, refcount should ensure
895 * that there are no pidlists left.
896 */
897 BUG_ON(!list_empty(&cgrp->pidlists));
898
899 simple_xattrs_free(&cgrp->xattrs);
900
901 kfree(rcu_dereference_raw(cgrp->name));
902 kfree(cgrp);
903 }
904
905 static void cgroup_free_rcu(struct rcu_head *head)
906 {
907 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
908
909 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
910 schedule_work(&cgrp->destroy_work);
911 }
912
913 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
914 {
915 /* is dentry a directory ? if so, kfree() associated cgroup */
916 if (S_ISDIR(inode->i_mode)) {
917 struct cgroup *cgrp = dentry->d_fsdata;
918
919 BUG_ON(!(cgroup_is_dead(cgrp)));
920 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
921 } else {
922 struct cfent *cfe = __d_cfe(dentry);
923 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
924
925 WARN_ONCE(!list_empty(&cfe->node) &&
926 cgrp != &cgrp->root->top_cgroup,
927 "cfe still linked for %s\n", cfe->type->name);
928 simple_xattrs_free(&cfe->xattrs);
929 kfree(cfe);
930 }
931 iput(inode);
932 }
933
934 static int cgroup_delete(const struct dentry *d)
935 {
936 return 1;
937 }
938
939 static void remove_dir(struct dentry *d)
940 {
941 struct dentry *parent = dget(d->d_parent);
942
943 d_delete(d);
944 simple_rmdir(parent->d_inode, d);
945 dput(parent);
946 }
947
948 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
949 {
950 struct cfent *cfe;
951
952 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
953 lockdep_assert_held(&cgroup_mutex);
954
955 /*
956 * If we're doing cleanup due to failure of cgroup_create(),
957 * the corresponding @cfe may not exist.
958 */
959 list_for_each_entry(cfe, &cgrp->files, node) {
960 struct dentry *d = cfe->dentry;
961
962 if (cft && cfe->type != cft)
963 continue;
964
965 dget(d);
966 d_delete(d);
967 simple_unlink(cgrp->dentry->d_inode, d);
968 list_del_init(&cfe->node);
969 dput(d);
970
971 break;
972 }
973 }
974
975 /**
976 * cgroup_clear_dir - remove subsys files in a cgroup directory
977 * @cgrp: target cgroup
978 * @subsys_mask: mask of the subsystem ids whose files should be removed
979 */
980 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
981 {
982 struct cgroup_subsys *ss;
983 int i;
984
985 for_each_subsys(ss, i) {
986 struct cftype_set *set;
987
988 if (!test_bit(i, &subsys_mask))
989 continue;
990 list_for_each_entry(set, &ss->cftsets, node)
991 cgroup_addrm_files(cgrp, set->cfts, false);
992 }
993 }
994
995 /*
996 * NOTE : the dentry must have been dget()'ed
997 */
998 static void cgroup_d_remove_dir(struct dentry *dentry)
999 {
1000 struct dentry *parent;
1001
1002 parent = dentry->d_parent;
1003 spin_lock(&parent->d_lock);
1004 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1005 list_del_init(&dentry->d_u.d_child);
1006 spin_unlock(&dentry->d_lock);
1007 spin_unlock(&parent->d_lock);
1008 remove_dir(dentry);
1009 }
1010
1011 /*
1012 * Call with cgroup_mutex held. Drops reference counts on modules, including
1013 * any duplicate ones that parse_cgroupfs_options took. If this function
1014 * returns an error, no reference counts are touched.
1015 */
1016 static int rebind_subsystems(struct cgroupfs_root *root,
1017 unsigned long added_mask, unsigned removed_mask)
1018 {
1019 struct cgroup *cgrp = &root->top_cgroup;
1020 struct cgroup_subsys *ss;
1021 unsigned long pinned = 0;
1022 int i, ret;
1023
1024 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1025 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1026
1027 /* Check that any added subsystems are currently free */
1028 for_each_subsys(ss, i) {
1029 if (!(added_mask & (1 << i)))
1030 continue;
1031
1032 /* is the subsystem mounted elsewhere? */
1033 if (ss->root != &cgroup_dummy_root) {
1034 ret = -EBUSY;
1035 goto out_put;
1036 }
1037
1038 /* pin the module */
1039 if (!try_module_get(ss->module)) {
1040 ret = -ENOENT;
1041 goto out_put;
1042 }
1043 pinned |= 1 << i;
1044 }
1045
1046 /* subsys could be missing if unloaded between parsing and here */
1047 if (added_mask != pinned) {
1048 ret = -ENOENT;
1049 goto out_put;
1050 }
1051
1052 ret = cgroup_populate_dir(cgrp, added_mask);
1053 if (ret)
1054 goto out_put;
1055
1056 /*
1057 * Nothing can fail from this point on. Remove files for the
1058 * removed subsystems and rebind each subsystem.
1059 */
1060 cgroup_clear_dir(cgrp, removed_mask);
1061
1062 for_each_subsys(ss, i) {
1063 unsigned long bit = 1UL << i;
1064
1065 if (bit & added_mask) {
1066 /* We're binding this subsystem to this hierarchy */
1067 BUG_ON(cgroup_css(cgrp, ss));
1068 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1069 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
1070
1071 rcu_assign_pointer(cgrp->subsys[i],
1072 cgroup_css(cgroup_dummy_top, ss));
1073 cgroup_css(cgrp, ss)->cgroup = cgrp;
1074
1075 list_move(&ss->sibling, &root->subsys_list);
1076 ss->root = root;
1077 if (ss->bind)
1078 ss->bind(cgroup_css(cgrp, ss));
1079
1080 /* refcount was already taken, and we're keeping it */
1081 root->subsys_mask |= bit;
1082 } else if (bit & removed_mask) {
1083 /* We're removing this subsystem */
1084 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1085 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
1086
1087 if (ss->bind)
1088 ss->bind(cgroup_css(cgroup_dummy_top, ss));
1089
1090 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
1091 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1092
1093 cgroup_subsys[i]->root = &cgroup_dummy_root;
1094 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1095
1096 /* subsystem is now free - drop reference on module */
1097 module_put(ss->module);
1098 root->subsys_mask &= ~bit;
1099 }
1100 }
1101
1102 /*
1103 * Mark @root has finished binding subsystems. @root->subsys_mask
1104 * now matches the bound subsystems.
1105 */
1106 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1107
1108 return 0;
1109
1110 out_put:
1111 for_each_subsys(ss, i)
1112 if (pinned & (1 << i))
1113 module_put(ss->module);
1114 return ret;
1115 }
1116
1117 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1118 {
1119 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1120 struct cgroup_subsys *ss;
1121
1122 mutex_lock(&cgroup_root_mutex);
1123 for_each_root_subsys(root, ss)
1124 seq_printf(seq, ",%s", ss->name);
1125 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1126 seq_puts(seq, ",sane_behavior");
1127 if (root->flags & CGRP_ROOT_NOPREFIX)
1128 seq_puts(seq, ",noprefix");
1129 if (root->flags & CGRP_ROOT_XATTR)
1130 seq_puts(seq, ",xattr");
1131 if (strlen(root->release_agent_path))
1132 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1133 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1134 seq_puts(seq, ",clone_children");
1135 if (strlen(root->name))
1136 seq_printf(seq, ",name=%s", root->name);
1137 mutex_unlock(&cgroup_root_mutex);
1138 return 0;
1139 }
1140
1141 struct cgroup_sb_opts {
1142 unsigned long subsys_mask;
1143 unsigned long flags;
1144 char *release_agent;
1145 bool cpuset_clone_children;
1146 char *name;
1147 /* User explicitly requested empty subsystem */
1148 bool none;
1149
1150 struct cgroupfs_root *new_root;
1151
1152 };
1153
1154 /*
1155 * Convert a hierarchy specifier into a bitmask of subsystems and
1156 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1157 * array. This function takes refcounts on subsystems to be used, unless it
1158 * returns error, in which case no refcounts are taken.
1159 */
1160 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1161 {
1162 char *token, *o = data;
1163 bool all_ss = false, one_ss = false;
1164 unsigned long mask = (unsigned long)-1;
1165 struct cgroup_subsys *ss;
1166 int i;
1167
1168 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1169
1170 #ifdef CONFIG_CPUSETS
1171 mask = ~(1UL << cpuset_subsys_id);
1172 #endif
1173
1174 memset(opts, 0, sizeof(*opts));
1175
1176 while ((token = strsep(&o, ",")) != NULL) {
1177 if (!*token)
1178 return -EINVAL;
1179 if (!strcmp(token, "none")) {
1180 /* Explicitly have no subsystems */
1181 opts->none = true;
1182 continue;
1183 }
1184 if (!strcmp(token, "all")) {
1185 /* Mutually exclusive option 'all' + subsystem name */
1186 if (one_ss)
1187 return -EINVAL;
1188 all_ss = true;
1189 continue;
1190 }
1191 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1192 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1193 continue;
1194 }
1195 if (!strcmp(token, "noprefix")) {
1196 opts->flags |= CGRP_ROOT_NOPREFIX;
1197 continue;
1198 }
1199 if (!strcmp(token, "clone_children")) {
1200 opts->cpuset_clone_children = true;
1201 continue;
1202 }
1203 if (!strcmp(token, "xattr")) {
1204 opts->flags |= CGRP_ROOT_XATTR;
1205 continue;
1206 }
1207 if (!strncmp(token, "release_agent=", 14)) {
1208 /* Specifying two release agents is forbidden */
1209 if (opts->release_agent)
1210 return -EINVAL;
1211 opts->release_agent =
1212 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1213 if (!opts->release_agent)
1214 return -ENOMEM;
1215 continue;
1216 }
1217 if (!strncmp(token, "name=", 5)) {
1218 const char *name = token + 5;
1219 /* Can't specify an empty name */
1220 if (!strlen(name))
1221 return -EINVAL;
1222 /* Must match [\w.-]+ */
1223 for (i = 0; i < strlen(name); i++) {
1224 char c = name[i];
1225 if (isalnum(c))
1226 continue;
1227 if ((c == '.') || (c == '-') || (c == '_'))
1228 continue;
1229 return -EINVAL;
1230 }
1231 /* Specifying two names is forbidden */
1232 if (opts->name)
1233 return -EINVAL;
1234 opts->name = kstrndup(name,
1235 MAX_CGROUP_ROOT_NAMELEN - 1,
1236 GFP_KERNEL);
1237 if (!opts->name)
1238 return -ENOMEM;
1239
1240 continue;
1241 }
1242
1243 for_each_subsys(ss, i) {
1244 if (strcmp(token, ss->name))
1245 continue;
1246 if (ss->disabled)
1247 continue;
1248
1249 /* Mutually exclusive option 'all' + subsystem name */
1250 if (all_ss)
1251 return -EINVAL;
1252 set_bit(i, &opts->subsys_mask);
1253 one_ss = true;
1254
1255 break;
1256 }
1257 if (i == CGROUP_SUBSYS_COUNT)
1258 return -ENOENT;
1259 }
1260
1261 /*
1262 * If the 'all' option was specified select all the subsystems,
1263 * otherwise if 'none', 'name=' and a subsystem name options
1264 * were not specified, let's default to 'all'
1265 */
1266 if (all_ss || (!one_ss && !opts->none && !opts->name))
1267 for_each_subsys(ss, i)
1268 if (!ss->disabled)
1269 set_bit(i, &opts->subsys_mask);
1270
1271 /* Consistency checks */
1272
1273 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1274 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1275
1276 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1277 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1278 return -EINVAL;
1279 }
1280
1281 if (opts->cpuset_clone_children) {
1282 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1283 return -EINVAL;
1284 }
1285 }
1286
1287 /*
1288 * Option noprefix was introduced just for backward compatibility
1289 * with the old cpuset, so we allow noprefix only if mounting just
1290 * the cpuset subsystem.
1291 */
1292 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1293 return -EINVAL;
1294
1295
1296 /* Can't specify "none" and some subsystems */
1297 if (opts->subsys_mask && opts->none)
1298 return -EINVAL;
1299
1300 /*
1301 * We either have to specify by name or by subsystems. (So all
1302 * empty hierarchies must have a name).
1303 */
1304 if (!opts->subsys_mask && !opts->name)
1305 return -EINVAL;
1306
1307 return 0;
1308 }
1309
1310 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1311 {
1312 int ret = 0;
1313 struct cgroupfs_root *root = sb->s_fs_info;
1314 struct cgroup *cgrp = &root->top_cgroup;
1315 struct cgroup_sb_opts opts;
1316 unsigned long added_mask, removed_mask;
1317
1318 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1319 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1320 return -EINVAL;
1321 }
1322
1323 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1324 mutex_lock(&cgroup_mutex);
1325 mutex_lock(&cgroup_root_mutex);
1326
1327 /* See what subsystems are wanted */
1328 ret = parse_cgroupfs_options(data, &opts);
1329 if (ret)
1330 goto out_unlock;
1331
1332 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1333 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1334 task_tgid_nr(current), current->comm);
1335
1336 added_mask = opts.subsys_mask & ~root->subsys_mask;
1337 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1338
1339 /* Don't allow flags or name to change at remount */
1340 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1341 (opts.name && strcmp(opts.name, root->name))) {
1342 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1343 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1344 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1345 ret = -EINVAL;
1346 goto out_unlock;
1347 }
1348
1349 /* remounting is not allowed for populated hierarchies */
1350 if (root->number_of_cgroups > 1) {
1351 ret = -EBUSY;
1352 goto out_unlock;
1353 }
1354
1355 ret = rebind_subsystems(root, added_mask, removed_mask);
1356 if (ret)
1357 goto out_unlock;
1358
1359 if (opts.release_agent)
1360 strcpy(root->release_agent_path, opts.release_agent);
1361 out_unlock:
1362 kfree(opts.release_agent);
1363 kfree(opts.name);
1364 mutex_unlock(&cgroup_root_mutex);
1365 mutex_unlock(&cgroup_mutex);
1366 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1367 return ret;
1368 }
1369
1370 static const struct super_operations cgroup_ops = {
1371 .statfs = simple_statfs,
1372 .drop_inode = generic_delete_inode,
1373 .show_options = cgroup_show_options,
1374 .remount_fs = cgroup_remount,
1375 };
1376
1377 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1378 {
1379 INIT_LIST_HEAD(&cgrp->sibling);
1380 INIT_LIST_HEAD(&cgrp->children);
1381 INIT_LIST_HEAD(&cgrp->files);
1382 INIT_LIST_HEAD(&cgrp->cset_links);
1383 INIT_LIST_HEAD(&cgrp->release_list);
1384 INIT_LIST_HEAD(&cgrp->pidlists);
1385 mutex_init(&cgrp->pidlist_mutex);
1386 cgrp->dummy_css.cgroup = cgrp;
1387 INIT_LIST_HEAD(&cgrp->event_list);
1388 spin_lock_init(&cgrp->event_list_lock);
1389 simple_xattrs_init(&cgrp->xattrs);
1390 }
1391
1392 static void init_cgroup_root(struct cgroupfs_root *root)
1393 {
1394 struct cgroup *cgrp = &root->top_cgroup;
1395
1396 INIT_LIST_HEAD(&root->subsys_list);
1397 INIT_LIST_HEAD(&root->root_list);
1398 root->number_of_cgroups = 1;
1399 cgrp->root = root;
1400 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1401 init_cgroup_housekeeping(cgrp);
1402 idr_init(&root->cgroup_idr);
1403 }
1404
1405 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1406 {
1407 int id;
1408
1409 lockdep_assert_held(&cgroup_mutex);
1410 lockdep_assert_held(&cgroup_root_mutex);
1411
1412 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1413 GFP_KERNEL);
1414 if (id < 0)
1415 return id;
1416
1417 root->hierarchy_id = id;
1418 return 0;
1419 }
1420
1421 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1422 {
1423 lockdep_assert_held(&cgroup_mutex);
1424 lockdep_assert_held(&cgroup_root_mutex);
1425
1426 if (root->hierarchy_id) {
1427 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1428 root->hierarchy_id = 0;
1429 }
1430 }
1431
1432 static int cgroup_test_super(struct super_block *sb, void *data)
1433 {
1434 struct cgroup_sb_opts *opts = data;
1435 struct cgroupfs_root *root = sb->s_fs_info;
1436
1437 /* If we asked for a name then it must match */
1438 if (opts->name && strcmp(opts->name, root->name))
1439 return 0;
1440
1441 /*
1442 * If we asked for subsystems (or explicitly for no
1443 * subsystems) then they must match
1444 */
1445 if ((opts->subsys_mask || opts->none)
1446 && (opts->subsys_mask != root->subsys_mask))
1447 return 0;
1448
1449 return 1;
1450 }
1451
1452 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1453 {
1454 struct cgroupfs_root *root;
1455
1456 if (!opts->subsys_mask && !opts->none)
1457 return NULL;
1458
1459 root = kzalloc(sizeof(*root), GFP_KERNEL);
1460 if (!root)
1461 return ERR_PTR(-ENOMEM);
1462
1463 init_cgroup_root(root);
1464
1465 /*
1466 * We need to set @root->subsys_mask now so that @root can be
1467 * matched by cgroup_test_super() before it finishes
1468 * initialization; otherwise, competing mounts with the same
1469 * options may try to bind the same subsystems instead of waiting
1470 * for the first one leading to unexpected mount errors.
1471 * SUBSYS_BOUND will be set once actual binding is complete.
1472 */
1473 root->subsys_mask = opts->subsys_mask;
1474 root->flags = opts->flags;
1475 if (opts->release_agent)
1476 strcpy(root->release_agent_path, opts->release_agent);
1477 if (opts->name)
1478 strcpy(root->name, opts->name);
1479 if (opts->cpuset_clone_children)
1480 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1481 return root;
1482 }
1483
1484 static void cgroup_free_root(struct cgroupfs_root *root)
1485 {
1486 if (root) {
1487 /* hierarhcy ID shoulid already have been released */
1488 WARN_ON_ONCE(root->hierarchy_id);
1489
1490 idr_destroy(&root->cgroup_idr);
1491 kfree(root);
1492 }
1493 }
1494
1495 static int cgroup_set_super(struct super_block *sb, void *data)
1496 {
1497 int ret;
1498 struct cgroup_sb_opts *opts = data;
1499
1500 /* If we don't have a new root, we can't set up a new sb */
1501 if (!opts->new_root)
1502 return -EINVAL;
1503
1504 BUG_ON(!opts->subsys_mask && !opts->none);
1505
1506 ret = set_anon_super(sb, NULL);
1507 if (ret)
1508 return ret;
1509
1510 sb->s_fs_info = opts->new_root;
1511 opts->new_root->sb = sb;
1512
1513 sb->s_blocksize = PAGE_CACHE_SIZE;
1514 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1515 sb->s_magic = CGROUP_SUPER_MAGIC;
1516 sb->s_op = &cgroup_ops;
1517
1518 return 0;
1519 }
1520
1521 static int cgroup_get_rootdir(struct super_block *sb)
1522 {
1523 static const struct dentry_operations cgroup_dops = {
1524 .d_iput = cgroup_diput,
1525 .d_delete = cgroup_delete,
1526 };
1527
1528 struct inode *inode =
1529 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1530
1531 if (!inode)
1532 return -ENOMEM;
1533
1534 inode->i_fop = &simple_dir_operations;
1535 inode->i_op = &cgroup_dir_inode_operations;
1536 /* directories start off with i_nlink == 2 (for "." entry) */
1537 inc_nlink(inode);
1538 sb->s_root = d_make_root(inode);
1539 if (!sb->s_root)
1540 return -ENOMEM;
1541 /* for everything else we want ->d_op set */
1542 sb->s_d_op = &cgroup_dops;
1543 return 0;
1544 }
1545
1546 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1547 int flags, const char *unused_dev_name,
1548 void *data)
1549 {
1550 struct cgroup_sb_opts opts;
1551 struct cgroupfs_root *root;
1552 int ret = 0;
1553 struct super_block *sb;
1554 struct cgroupfs_root *new_root;
1555 struct list_head tmp_links;
1556 struct inode *inode;
1557 const struct cred *cred;
1558
1559 /* First find the desired set of subsystems */
1560 mutex_lock(&cgroup_mutex);
1561 ret = parse_cgroupfs_options(data, &opts);
1562 mutex_unlock(&cgroup_mutex);
1563 if (ret)
1564 goto out_err;
1565
1566 /*
1567 * Allocate a new cgroup root. We may not need it if we're
1568 * reusing an existing hierarchy.
1569 */
1570 new_root = cgroup_root_from_opts(&opts);
1571 if (IS_ERR(new_root)) {
1572 ret = PTR_ERR(new_root);
1573 goto out_err;
1574 }
1575 opts.new_root = new_root;
1576
1577 /* Locate an existing or new sb for this hierarchy */
1578 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1579 if (IS_ERR(sb)) {
1580 ret = PTR_ERR(sb);
1581 cgroup_free_root(opts.new_root);
1582 goto out_err;
1583 }
1584
1585 root = sb->s_fs_info;
1586 BUG_ON(!root);
1587 if (root == opts.new_root) {
1588 /* We used the new root structure, so this is a new hierarchy */
1589 struct cgroup *root_cgrp = &root->top_cgroup;
1590 struct cgroupfs_root *existing_root;
1591 int i;
1592 struct css_set *cset;
1593
1594 BUG_ON(sb->s_root != NULL);
1595
1596 ret = cgroup_get_rootdir(sb);
1597 if (ret)
1598 goto drop_new_super;
1599 inode = sb->s_root->d_inode;
1600
1601 mutex_lock(&inode->i_mutex);
1602 mutex_lock(&cgroup_mutex);
1603 mutex_lock(&cgroup_root_mutex);
1604
1605 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1606 0, 1, GFP_KERNEL);
1607 if (root_cgrp->id < 0)
1608 goto unlock_drop;
1609
1610 /* Check for name clashes with existing mounts */
1611 ret = -EBUSY;
1612 if (strlen(root->name))
1613 for_each_active_root(existing_root)
1614 if (!strcmp(existing_root->name, root->name))
1615 goto unlock_drop;
1616
1617 /*
1618 * We're accessing css_set_count without locking
1619 * css_set_lock here, but that's OK - it can only be
1620 * increased by someone holding cgroup_lock, and
1621 * that's us. The worst that can happen is that we
1622 * have some link structures left over
1623 */
1624 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1625 if (ret)
1626 goto unlock_drop;
1627
1628 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1629 ret = cgroup_init_root_id(root, 2, 0);
1630 if (ret)
1631 goto unlock_drop;
1632
1633 sb->s_root->d_fsdata = root_cgrp;
1634 root_cgrp->dentry = sb->s_root;
1635
1636 /*
1637 * We're inside get_sb() and will call lookup_one_len() to
1638 * create the root files, which doesn't work if SELinux is
1639 * in use. The following cred dancing somehow works around
1640 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1641 * populating new cgroupfs mount") for more details.
1642 */
1643 cred = override_creds(&init_cred);
1644
1645 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1646 if (ret)
1647 goto rm_base_files;
1648
1649 ret = rebind_subsystems(root, root->subsys_mask, 0);
1650 if (ret)
1651 goto rm_base_files;
1652
1653 revert_creds(cred);
1654
1655 /*
1656 * There must be no failure case after here, since rebinding
1657 * takes care of subsystems' refcounts, which are explicitly
1658 * dropped in the failure exit path.
1659 */
1660
1661 list_add(&root->root_list, &cgroup_roots);
1662 cgroup_root_count++;
1663
1664 /* Link the top cgroup in this hierarchy into all
1665 * the css_set objects */
1666 write_lock(&css_set_lock);
1667 hash_for_each(css_set_table, i, cset, hlist)
1668 link_css_set(&tmp_links, cset, root_cgrp);
1669 write_unlock(&css_set_lock);
1670
1671 free_cgrp_cset_links(&tmp_links);
1672
1673 BUG_ON(!list_empty(&root_cgrp->children));
1674 BUG_ON(root->number_of_cgroups != 1);
1675
1676 mutex_unlock(&cgroup_root_mutex);
1677 mutex_unlock(&cgroup_mutex);
1678 mutex_unlock(&inode->i_mutex);
1679 } else {
1680 /*
1681 * We re-used an existing hierarchy - the new root (if
1682 * any) is not needed
1683 */
1684 cgroup_free_root(opts.new_root);
1685
1686 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1687 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1688 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1689 ret = -EINVAL;
1690 goto drop_new_super;
1691 } else {
1692 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1693 }
1694 }
1695 }
1696
1697 kfree(opts.release_agent);
1698 kfree(opts.name);
1699 return dget(sb->s_root);
1700
1701 rm_base_files:
1702 free_cgrp_cset_links(&tmp_links);
1703 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
1704 revert_creds(cred);
1705 unlock_drop:
1706 cgroup_exit_root_id(root);
1707 mutex_unlock(&cgroup_root_mutex);
1708 mutex_unlock(&cgroup_mutex);
1709 mutex_unlock(&inode->i_mutex);
1710 drop_new_super:
1711 deactivate_locked_super(sb);
1712 out_err:
1713 kfree(opts.release_agent);
1714 kfree(opts.name);
1715 return ERR_PTR(ret);
1716 }
1717
1718 static void cgroup_kill_sb(struct super_block *sb) {
1719 struct cgroupfs_root *root = sb->s_fs_info;
1720 struct cgroup *cgrp = &root->top_cgroup;
1721 struct cgrp_cset_link *link, *tmp_link;
1722 int ret;
1723
1724 BUG_ON(!root);
1725
1726 BUG_ON(root->number_of_cgroups != 1);
1727 BUG_ON(!list_empty(&cgrp->children));
1728
1729 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1730 mutex_lock(&cgroup_mutex);
1731 mutex_lock(&cgroup_root_mutex);
1732
1733 /* Rebind all subsystems back to the default hierarchy */
1734 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1735 ret = rebind_subsystems(root, 0, root->subsys_mask);
1736 /* Shouldn't be able to fail ... */
1737 BUG_ON(ret);
1738 }
1739
1740 /*
1741 * Release all the links from cset_links to this hierarchy's
1742 * root cgroup
1743 */
1744 write_lock(&css_set_lock);
1745
1746 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1747 list_del(&link->cset_link);
1748 list_del(&link->cgrp_link);
1749 kfree(link);
1750 }
1751 write_unlock(&css_set_lock);
1752
1753 if (!list_empty(&root->root_list)) {
1754 list_del(&root->root_list);
1755 cgroup_root_count--;
1756 }
1757
1758 cgroup_exit_root_id(root);
1759
1760 mutex_unlock(&cgroup_root_mutex);
1761 mutex_unlock(&cgroup_mutex);
1762 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1763
1764 simple_xattrs_free(&cgrp->xattrs);
1765
1766 kill_litter_super(sb);
1767 cgroup_free_root(root);
1768 }
1769
1770 static struct file_system_type cgroup_fs_type = {
1771 .name = "cgroup",
1772 .mount = cgroup_mount,
1773 .kill_sb = cgroup_kill_sb,
1774 };
1775
1776 static struct kobject *cgroup_kobj;
1777
1778 /**
1779 * cgroup_path - generate the path of a cgroup
1780 * @cgrp: the cgroup in question
1781 * @buf: the buffer to write the path into
1782 * @buflen: the length of the buffer
1783 *
1784 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1785 *
1786 * We can't generate cgroup path using dentry->d_name, as accessing
1787 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1788 * inode's i_mutex, while on the other hand cgroup_path() can be called
1789 * with some irq-safe spinlocks held.
1790 */
1791 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1792 {
1793 int ret = -ENAMETOOLONG;
1794 char *start;
1795
1796 if (!cgrp->parent) {
1797 if (strlcpy(buf, "/", buflen) >= buflen)
1798 return -ENAMETOOLONG;
1799 return 0;
1800 }
1801
1802 start = buf + buflen - 1;
1803 *start = '\0';
1804
1805 rcu_read_lock();
1806 do {
1807 const char *name = cgroup_name(cgrp);
1808 int len;
1809
1810 len = strlen(name);
1811 if ((start -= len) < buf)
1812 goto out;
1813 memcpy(start, name, len);
1814
1815 if (--start < buf)
1816 goto out;
1817 *start = '/';
1818
1819 cgrp = cgrp->parent;
1820 } while (cgrp->parent);
1821 ret = 0;
1822 memmove(buf, start, buf + buflen - start);
1823 out:
1824 rcu_read_unlock();
1825 return ret;
1826 }
1827 EXPORT_SYMBOL_GPL(cgroup_path);
1828
1829 /**
1830 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1831 * @task: target task
1832 * @buf: the buffer to write the path into
1833 * @buflen: the length of the buffer
1834 *
1835 * Determine @task's cgroup on the first (the one with the lowest non-zero
1836 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1837 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1838 * cgroup controller callbacks.
1839 *
1840 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1841 */
1842 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1843 {
1844 struct cgroupfs_root *root;
1845 struct cgroup *cgrp;
1846 int hierarchy_id = 1, ret = 0;
1847
1848 if (buflen < 2)
1849 return -ENAMETOOLONG;
1850
1851 mutex_lock(&cgroup_mutex);
1852
1853 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1854
1855 if (root) {
1856 cgrp = task_cgroup_from_root(task, root);
1857 ret = cgroup_path(cgrp, buf, buflen);
1858 } else {
1859 /* if no hierarchy exists, everyone is in "/" */
1860 memcpy(buf, "/", 2);
1861 }
1862
1863 mutex_unlock(&cgroup_mutex);
1864 return ret;
1865 }
1866 EXPORT_SYMBOL_GPL(task_cgroup_path);
1867
1868 /*
1869 * Control Group taskset
1870 */
1871 struct task_and_cgroup {
1872 struct task_struct *task;
1873 struct cgroup *cgrp;
1874 struct css_set *cset;
1875 };
1876
1877 struct cgroup_taskset {
1878 struct task_and_cgroup single;
1879 struct flex_array *tc_array;
1880 int tc_array_len;
1881 int idx;
1882 struct cgroup *cur_cgrp;
1883 };
1884
1885 /**
1886 * cgroup_taskset_first - reset taskset and return the first task
1887 * @tset: taskset of interest
1888 *
1889 * @tset iteration is initialized and the first task is returned.
1890 */
1891 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1892 {
1893 if (tset->tc_array) {
1894 tset->idx = 0;
1895 return cgroup_taskset_next(tset);
1896 } else {
1897 tset->cur_cgrp = tset->single.cgrp;
1898 return tset->single.task;
1899 }
1900 }
1901 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1902
1903 /**
1904 * cgroup_taskset_next - iterate to the next task in taskset
1905 * @tset: taskset of interest
1906 *
1907 * Return the next task in @tset. Iteration must have been initialized
1908 * with cgroup_taskset_first().
1909 */
1910 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1911 {
1912 struct task_and_cgroup *tc;
1913
1914 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1915 return NULL;
1916
1917 tc = flex_array_get(tset->tc_array, tset->idx++);
1918 tset->cur_cgrp = tc->cgrp;
1919 return tc->task;
1920 }
1921 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1922
1923 /**
1924 * cgroup_taskset_cur_css - return the matching css for the current task
1925 * @tset: taskset of interest
1926 * @subsys_id: the ID of the target subsystem
1927 *
1928 * Return the css for the current (last returned) task of @tset for
1929 * subsystem specified by @subsys_id. This function must be preceded by
1930 * either cgroup_taskset_first() or cgroup_taskset_next().
1931 */
1932 struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1933 int subsys_id)
1934 {
1935 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
1936 }
1937 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
1938
1939 /**
1940 * cgroup_taskset_size - return the number of tasks in taskset
1941 * @tset: taskset of interest
1942 */
1943 int cgroup_taskset_size(struct cgroup_taskset *tset)
1944 {
1945 return tset->tc_array ? tset->tc_array_len : 1;
1946 }
1947 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1948
1949
1950 /*
1951 * cgroup_task_migrate - move a task from one cgroup to another.
1952 *
1953 * Must be called with cgroup_mutex and threadgroup locked.
1954 */
1955 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1956 struct task_struct *tsk,
1957 struct css_set *new_cset)
1958 {
1959 struct css_set *old_cset;
1960
1961 /*
1962 * We are synchronized through threadgroup_lock() against PF_EXITING
1963 * setting such that we can't race against cgroup_exit() changing the
1964 * css_set to init_css_set and dropping the old one.
1965 */
1966 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1967 old_cset = task_css_set(tsk);
1968
1969 task_lock(tsk);
1970 rcu_assign_pointer(tsk->cgroups, new_cset);
1971 task_unlock(tsk);
1972
1973 /* Update the css_set linked lists if we're using them */
1974 write_lock(&css_set_lock);
1975 if (!list_empty(&tsk->cg_list))
1976 list_move(&tsk->cg_list, &new_cset->tasks);
1977 write_unlock(&css_set_lock);
1978
1979 /*
1980 * We just gained a reference on old_cset by taking it from the
1981 * task. As trading it for new_cset is protected by cgroup_mutex,
1982 * we're safe to drop it here; it will be freed under RCU.
1983 */
1984 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1985 put_css_set(old_cset);
1986 }
1987
1988 /**
1989 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1990 * @cgrp: the cgroup to attach to
1991 * @tsk: the task or the leader of the threadgroup to be attached
1992 * @threadgroup: attach the whole threadgroup?
1993 *
1994 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1995 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1996 */
1997 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1998 bool threadgroup)
1999 {
2000 int retval, i, group_size;
2001 struct cgroup_subsys *ss, *failed_ss = NULL;
2002 struct cgroupfs_root *root = cgrp->root;
2003 /* threadgroup list cursor and array */
2004 struct task_struct *leader = tsk;
2005 struct task_and_cgroup *tc;
2006 struct flex_array *group;
2007 struct cgroup_taskset tset = { };
2008
2009 /*
2010 * step 0: in order to do expensive, possibly blocking operations for
2011 * every thread, we cannot iterate the thread group list, since it needs
2012 * rcu or tasklist locked. instead, build an array of all threads in the
2013 * group - group_rwsem prevents new threads from appearing, and if
2014 * threads exit, this will just be an over-estimate.
2015 */
2016 if (threadgroup)
2017 group_size = get_nr_threads(tsk);
2018 else
2019 group_size = 1;
2020 /* flex_array supports very large thread-groups better than kmalloc. */
2021 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2022 if (!group)
2023 return -ENOMEM;
2024 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2025 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2026 if (retval)
2027 goto out_free_group_list;
2028
2029 i = 0;
2030 /*
2031 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2032 * already PF_EXITING could be freed from underneath us unless we
2033 * take an rcu_read_lock.
2034 */
2035 rcu_read_lock();
2036 do {
2037 struct task_and_cgroup ent;
2038
2039 /* @tsk either already exited or can't exit until the end */
2040 if (tsk->flags & PF_EXITING)
2041 continue;
2042
2043 /* as per above, nr_threads may decrease, but not increase. */
2044 BUG_ON(i >= group_size);
2045 ent.task = tsk;
2046 ent.cgrp = task_cgroup_from_root(tsk, root);
2047 /* nothing to do if this task is already in the cgroup */
2048 if (ent.cgrp == cgrp)
2049 continue;
2050 /*
2051 * saying GFP_ATOMIC has no effect here because we did prealloc
2052 * earlier, but it's good form to communicate our expectations.
2053 */
2054 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2055 BUG_ON(retval != 0);
2056 i++;
2057
2058 if (!threadgroup)
2059 break;
2060 } while_each_thread(leader, tsk);
2061 rcu_read_unlock();
2062 /* remember the number of threads in the array for later. */
2063 group_size = i;
2064 tset.tc_array = group;
2065 tset.tc_array_len = group_size;
2066
2067 /* methods shouldn't be called if no task is actually migrating */
2068 retval = 0;
2069 if (!group_size)
2070 goto out_free_group_list;
2071
2072 /*
2073 * step 1: check that we can legitimately attach to the cgroup.
2074 */
2075 for_each_root_subsys(root, ss) {
2076 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2077
2078 if (ss->can_attach) {
2079 retval = ss->can_attach(css, &tset);
2080 if (retval) {
2081 failed_ss = ss;
2082 goto out_cancel_attach;
2083 }
2084 }
2085 }
2086
2087 /*
2088 * step 2: make sure css_sets exist for all threads to be migrated.
2089 * we use find_css_set, which allocates a new one if necessary.
2090 */
2091 for (i = 0; i < group_size; i++) {
2092 struct css_set *old_cset;
2093
2094 tc = flex_array_get(group, i);
2095 old_cset = task_css_set(tc->task);
2096 tc->cset = find_css_set(old_cset, cgrp);
2097 if (!tc->cset) {
2098 retval = -ENOMEM;
2099 goto out_put_css_set_refs;
2100 }
2101 }
2102
2103 /*
2104 * step 3: now that we're guaranteed success wrt the css_sets,
2105 * proceed to move all tasks to the new cgroup. There are no
2106 * failure cases after here, so this is the commit point.
2107 */
2108 for (i = 0; i < group_size; i++) {
2109 tc = flex_array_get(group, i);
2110 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
2111 }
2112 /* nothing is sensitive to fork() after this point. */
2113
2114 /*
2115 * step 4: do subsystem attach callbacks.
2116 */
2117 for_each_root_subsys(root, ss) {
2118 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2119
2120 if (ss->attach)
2121 ss->attach(css, &tset);
2122 }
2123
2124 /*
2125 * step 5: success! and cleanup
2126 */
2127 retval = 0;
2128 out_put_css_set_refs:
2129 if (retval) {
2130 for (i = 0; i < group_size; i++) {
2131 tc = flex_array_get(group, i);
2132 if (!tc->cset)
2133 break;
2134 put_css_set(tc->cset);
2135 }
2136 }
2137 out_cancel_attach:
2138 if (retval) {
2139 for_each_root_subsys(root, ss) {
2140 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2141
2142 if (ss == failed_ss)
2143 break;
2144 if (ss->cancel_attach)
2145 ss->cancel_attach(css, &tset);
2146 }
2147 }
2148 out_free_group_list:
2149 flex_array_free(group);
2150 return retval;
2151 }
2152
2153 /*
2154 * Find the task_struct of the task to attach by vpid and pass it along to the
2155 * function to attach either it or all tasks in its threadgroup. Will lock
2156 * cgroup_mutex and threadgroup; may take task_lock of task.
2157 */
2158 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2159 {
2160 struct task_struct *tsk;
2161 const struct cred *cred = current_cred(), *tcred;
2162 int ret;
2163
2164 if (!cgroup_lock_live_group(cgrp))
2165 return -ENODEV;
2166
2167 retry_find_task:
2168 rcu_read_lock();
2169 if (pid) {
2170 tsk = find_task_by_vpid(pid);
2171 if (!tsk) {
2172 rcu_read_unlock();
2173 ret= -ESRCH;
2174 goto out_unlock_cgroup;
2175 }
2176 /*
2177 * even if we're attaching all tasks in the thread group, we
2178 * only need to check permissions on one of them.
2179 */
2180 tcred = __task_cred(tsk);
2181 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2182 !uid_eq(cred->euid, tcred->uid) &&
2183 !uid_eq(cred->euid, tcred->suid)) {
2184 rcu_read_unlock();
2185 ret = -EACCES;
2186 goto out_unlock_cgroup;
2187 }
2188 } else
2189 tsk = current;
2190
2191 if (threadgroup)
2192 tsk = tsk->group_leader;
2193
2194 /*
2195 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2196 * trapped in a cpuset, or RT worker may be born in a cgroup
2197 * with no rt_runtime allocated. Just say no.
2198 */
2199 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2200 ret = -EINVAL;
2201 rcu_read_unlock();
2202 goto out_unlock_cgroup;
2203 }
2204
2205 get_task_struct(tsk);
2206 rcu_read_unlock();
2207
2208 threadgroup_lock(tsk);
2209 if (threadgroup) {
2210 if (!thread_group_leader(tsk)) {
2211 /*
2212 * a race with de_thread from another thread's exec()
2213 * may strip us of our leadership, if this happens,
2214 * there is no choice but to throw this task away and
2215 * try again; this is
2216 * "double-double-toil-and-trouble-check locking".
2217 */
2218 threadgroup_unlock(tsk);
2219 put_task_struct(tsk);
2220 goto retry_find_task;
2221 }
2222 }
2223
2224 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2225
2226 threadgroup_unlock(tsk);
2227
2228 put_task_struct(tsk);
2229 out_unlock_cgroup:
2230 mutex_unlock(&cgroup_mutex);
2231 return ret;
2232 }
2233
2234 /**
2235 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2236 * @from: attach to all cgroups of a given task
2237 * @tsk: the task to be attached
2238 */
2239 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2240 {
2241 struct cgroupfs_root *root;
2242 int retval = 0;
2243
2244 mutex_lock(&cgroup_mutex);
2245 for_each_active_root(root) {
2246 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2247
2248 retval = cgroup_attach_task(from_cgrp, tsk, false);
2249 if (retval)
2250 break;
2251 }
2252 mutex_unlock(&cgroup_mutex);
2253
2254 return retval;
2255 }
2256 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2257
2258 static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2259 struct cftype *cft, u64 pid)
2260 {
2261 return attach_task_by_pid(css->cgroup, pid, false);
2262 }
2263
2264 static int cgroup_procs_write(struct cgroup_subsys_state *css,
2265 struct cftype *cft, u64 tgid)
2266 {
2267 return attach_task_by_pid(css->cgroup, tgid, true);
2268 }
2269
2270 static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2271 struct cftype *cft, const char *buffer)
2272 {
2273 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
2274 if (strlen(buffer) >= PATH_MAX)
2275 return -EINVAL;
2276 if (!cgroup_lock_live_group(css->cgroup))
2277 return -ENODEV;
2278 mutex_lock(&cgroup_root_mutex);
2279 strcpy(css->cgroup->root->release_agent_path, buffer);
2280 mutex_unlock(&cgroup_root_mutex);
2281 mutex_unlock(&cgroup_mutex);
2282 return 0;
2283 }
2284
2285 static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2286 struct cftype *cft, struct seq_file *seq)
2287 {
2288 struct cgroup *cgrp = css->cgroup;
2289
2290 if (!cgroup_lock_live_group(cgrp))
2291 return -ENODEV;
2292 seq_puts(seq, cgrp->root->release_agent_path);
2293 seq_putc(seq, '\n');
2294 mutex_unlock(&cgroup_mutex);
2295 return 0;
2296 }
2297
2298 static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2299 struct cftype *cft, struct seq_file *seq)
2300 {
2301 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
2302 return 0;
2303 }
2304
2305 /* A buffer size big enough for numbers or short strings */
2306 #define CGROUP_LOCAL_BUFFER_SIZE 64
2307
2308 static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2309 struct cftype *cft, struct file *file,
2310 const char __user *userbuf, size_t nbytes,
2311 loff_t *unused_ppos)
2312 {
2313 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2314 int retval = 0;
2315 char *end;
2316
2317 if (!nbytes)
2318 return -EINVAL;
2319 if (nbytes >= sizeof(buffer))
2320 return -E2BIG;
2321 if (copy_from_user(buffer, userbuf, nbytes))
2322 return -EFAULT;
2323
2324 buffer[nbytes] = 0; /* nul-terminate */
2325 if (cft->write_u64) {
2326 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2327 if (*end)
2328 return -EINVAL;
2329 retval = cft->write_u64(css, cft, val);
2330 } else {
2331 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2332 if (*end)
2333 return -EINVAL;
2334 retval = cft->write_s64(css, cft, val);
2335 }
2336 if (!retval)
2337 retval = nbytes;
2338 return retval;
2339 }
2340
2341 static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2342 struct cftype *cft, struct file *file,
2343 const char __user *userbuf, size_t nbytes,
2344 loff_t *unused_ppos)
2345 {
2346 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2347 int retval = 0;
2348 size_t max_bytes = cft->max_write_len;
2349 char *buffer = local_buffer;
2350
2351 if (!max_bytes)
2352 max_bytes = sizeof(local_buffer) - 1;
2353 if (nbytes >= max_bytes)
2354 return -E2BIG;
2355 /* Allocate a dynamic buffer if we need one */
2356 if (nbytes >= sizeof(local_buffer)) {
2357 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2358 if (buffer == NULL)
2359 return -ENOMEM;
2360 }
2361 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2362 retval = -EFAULT;
2363 goto out;
2364 }
2365
2366 buffer[nbytes] = 0; /* nul-terminate */
2367 retval = cft->write_string(css, cft, strstrip(buffer));
2368 if (!retval)
2369 retval = nbytes;
2370 out:
2371 if (buffer != local_buffer)
2372 kfree(buffer);
2373 return retval;
2374 }
2375
2376 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2377 size_t nbytes, loff_t *ppos)
2378 {
2379 struct cfent *cfe = __d_cfe(file->f_dentry);
2380 struct cftype *cft = __d_cft(file->f_dentry);
2381 struct cgroup_subsys_state *css = cfe->css;
2382
2383 if (cft->write)
2384 return cft->write(css, cft, file, buf, nbytes, ppos);
2385 if (cft->write_u64 || cft->write_s64)
2386 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
2387 if (cft->write_string)
2388 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
2389 if (cft->trigger) {
2390 int ret = cft->trigger(css, (unsigned int)cft->private);
2391 return ret ? ret : nbytes;
2392 }
2393 return -EINVAL;
2394 }
2395
2396 static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2397 struct cftype *cft, struct file *file,
2398 char __user *buf, size_t nbytes, loff_t *ppos)
2399 {
2400 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2401 u64 val = cft->read_u64(css, cft);
2402 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2403
2404 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2405 }
2406
2407 static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2408 struct cftype *cft, struct file *file,
2409 char __user *buf, size_t nbytes, loff_t *ppos)
2410 {
2411 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2412 s64 val = cft->read_s64(css, cft);
2413 int len = sprintf(tmp, "%lld\n", (long long) val);
2414
2415 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2416 }
2417
2418 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2419 size_t nbytes, loff_t *ppos)
2420 {
2421 struct cfent *cfe = __d_cfe(file->f_dentry);
2422 struct cftype *cft = __d_cft(file->f_dentry);
2423 struct cgroup_subsys_state *css = cfe->css;
2424
2425 if (cft->read)
2426 return cft->read(css, cft, file, buf, nbytes, ppos);
2427 if (cft->read_u64)
2428 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
2429 if (cft->read_s64)
2430 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
2431 return -EINVAL;
2432 }
2433
2434 /*
2435 * seqfile ops/methods for returning structured data. Currently just
2436 * supports string->u64 maps, but can be extended in future.
2437 */
2438
2439 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2440 {
2441 struct seq_file *sf = cb->state;
2442 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2443 }
2444
2445 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2446 {
2447 struct cfent *cfe = m->private;
2448 struct cftype *cft = cfe->type;
2449 struct cgroup_subsys_state *css = cfe->css;
2450
2451 if (cft->read_map) {
2452 struct cgroup_map_cb cb = {
2453 .fill = cgroup_map_add,
2454 .state = m,
2455 };
2456 return cft->read_map(css, cft, &cb);
2457 }
2458 return cft->read_seq_string(css, cft, m);
2459 }
2460
2461 static const struct file_operations cgroup_seqfile_operations = {
2462 .read = seq_read,
2463 .write = cgroup_file_write,
2464 .llseek = seq_lseek,
2465 .release = single_release,
2466 };
2467
2468 static int cgroup_file_open(struct inode *inode, struct file *file)
2469 {
2470 struct cfent *cfe = __d_cfe(file->f_dentry);
2471 struct cftype *cft = __d_cft(file->f_dentry);
2472 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2473 struct cgroup_subsys_state *css;
2474 int err;
2475
2476 err = generic_file_open(inode, file);
2477 if (err)
2478 return err;
2479
2480 /*
2481 * If the file belongs to a subsystem, pin the css. Will be
2482 * unpinned either on open failure or release. This ensures that
2483 * @css stays alive for all file operations.
2484 */
2485 rcu_read_lock();
2486 css = cgroup_css(cgrp, cft->ss);
2487 if (cft->ss && !css_tryget(css))
2488 css = NULL;
2489 rcu_read_unlock();
2490
2491 if (!css)
2492 return -ENODEV;
2493
2494 /*
2495 * @cfe->css is used by read/write/close to determine the
2496 * associated css. @file->private_data would be a better place but
2497 * that's already used by seqfile. Multiple accessors may use it
2498 * simultaneously which is okay as the association never changes.
2499 */
2500 WARN_ON_ONCE(cfe->css && cfe->css != css);
2501 cfe->css = css;
2502
2503 if (cft->read_map || cft->read_seq_string) {
2504 file->f_op = &cgroup_seqfile_operations;
2505 err = single_open(file, cgroup_seqfile_show, cfe);
2506 } else if (cft->open) {
2507 err = cft->open(inode, file);
2508 }
2509
2510 if (css->ss && err)
2511 css_put(css);
2512 return err;
2513 }
2514
2515 static int cgroup_file_release(struct inode *inode, struct file *file)
2516 {
2517 struct cfent *cfe = __d_cfe(file->f_dentry);
2518 struct cftype *cft = __d_cft(file->f_dentry);
2519 struct cgroup_subsys_state *css = cfe->css;
2520 int ret = 0;
2521
2522 if (cft->release)
2523 ret = cft->release(inode, file);
2524 if (css->ss)
2525 css_put(css);
2526 return ret;
2527 }
2528
2529 /*
2530 * cgroup_rename - Only allow simple rename of directories in place.
2531 */
2532 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2533 struct inode *new_dir, struct dentry *new_dentry)
2534 {
2535 int ret;
2536 struct cgroup_name *name, *old_name;
2537 struct cgroup *cgrp;
2538
2539 /*
2540 * It's convinient to use parent dir's i_mutex to protected
2541 * cgrp->name.
2542 */
2543 lockdep_assert_held(&old_dir->i_mutex);
2544
2545 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2546 return -ENOTDIR;
2547 if (new_dentry->d_inode)
2548 return -EEXIST;
2549 if (old_dir != new_dir)
2550 return -EIO;
2551
2552 cgrp = __d_cgrp(old_dentry);
2553
2554 /*
2555 * This isn't a proper migration and its usefulness is very
2556 * limited. Disallow if sane_behavior.
2557 */
2558 if (cgroup_sane_behavior(cgrp))
2559 return -EPERM;
2560
2561 name = cgroup_alloc_name(new_dentry);
2562 if (!name)
2563 return -ENOMEM;
2564
2565 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2566 if (ret) {
2567 kfree(name);
2568 return ret;
2569 }
2570
2571 old_name = rcu_dereference_protected(cgrp->name, true);
2572 rcu_assign_pointer(cgrp->name, name);
2573
2574 kfree_rcu(old_name, rcu_head);
2575 return 0;
2576 }
2577
2578 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2579 {
2580 if (S_ISDIR(dentry->d_inode->i_mode))
2581 return &__d_cgrp(dentry)->xattrs;
2582 else
2583 return &__d_cfe(dentry)->xattrs;
2584 }
2585
2586 static inline int xattr_enabled(struct dentry *dentry)
2587 {
2588 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2589 return root->flags & CGRP_ROOT_XATTR;
2590 }
2591
2592 static bool is_valid_xattr(const char *name)
2593 {
2594 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2595 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2596 return true;
2597 return false;
2598 }
2599
2600 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2601 const void *val, size_t size, int flags)
2602 {
2603 if (!xattr_enabled(dentry))
2604 return -EOPNOTSUPP;
2605 if (!is_valid_xattr(name))
2606 return -EINVAL;
2607 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2608 }
2609
2610 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2611 {
2612 if (!xattr_enabled(dentry))
2613 return -EOPNOTSUPP;
2614 if (!is_valid_xattr(name))
2615 return -EINVAL;
2616 return simple_xattr_remove(__d_xattrs(dentry), name);
2617 }
2618
2619 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2620 void *buf, size_t size)
2621 {
2622 if (!xattr_enabled(dentry))
2623 return -EOPNOTSUPP;
2624 if (!is_valid_xattr(name))
2625 return -EINVAL;
2626 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2627 }
2628
2629 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2630 {
2631 if (!xattr_enabled(dentry))
2632 return -EOPNOTSUPP;
2633 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2634 }
2635
2636 static const struct file_operations cgroup_file_operations = {
2637 .read = cgroup_file_read,
2638 .write = cgroup_file_write,
2639 .llseek = generic_file_llseek,
2640 .open = cgroup_file_open,
2641 .release = cgroup_file_release,
2642 };
2643
2644 static const struct inode_operations cgroup_file_inode_operations = {
2645 .setxattr = cgroup_setxattr,
2646 .getxattr = cgroup_getxattr,
2647 .listxattr = cgroup_listxattr,
2648 .removexattr = cgroup_removexattr,
2649 };
2650
2651 static const struct inode_operations cgroup_dir_inode_operations = {
2652 .lookup = simple_lookup,
2653 .mkdir = cgroup_mkdir,
2654 .rmdir = cgroup_rmdir,
2655 .rename = cgroup_rename,
2656 .setxattr = cgroup_setxattr,
2657 .getxattr = cgroup_getxattr,
2658 .listxattr = cgroup_listxattr,
2659 .removexattr = cgroup_removexattr,
2660 };
2661
2662 /*
2663 * Check if a file is a control file
2664 */
2665 static inline struct cftype *__file_cft(struct file *file)
2666 {
2667 if (file_inode(file)->i_fop != &cgroup_file_operations)
2668 return ERR_PTR(-EINVAL);
2669 return __d_cft(file->f_dentry);
2670 }
2671
2672 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2673 struct super_block *sb)
2674 {
2675 struct inode *inode;
2676
2677 if (!dentry)
2678 return -ENOENT;
2679 if (dentry->d_inode)
2680 return -EEXIST;
2681
2682 inode = cgroup_new_inode(mode, sb);
2683 if (!inode)
2684 return -ENOMEM;
2685
2686 if (S_ISDIR(mode)) {
2687 inode->i_op = &cgroup_dir_inode_operations;
2688 inode->i_fop = &simple_dir_operations;
2689
2690 /* start off with i_nlink == 2 (for "." entry) */
2691 inc_nlink(inode);
2692 inc_nlink(dentry->d_parent->d_inode);
2693
2694 /*
2695 * Control reaches here with cgroup_mutex held.
2696 * @inode->i_mutex should nest outside cgroup_mutex but we
2697 * want to populate it immediately without releasing
2698 * cgroup_mutex. As @inode isn't visible to anyone else
2699 * yet, trylock will always succeed without affecting
2700 * lockdep checks.
2701 */
2702 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2703 } else if (S_ISREG(mode)) {
2704 inode->i_size = 0;
2705 inode->i_fop = &cgroup_file_operations;
2706 inode->i_op = &cgroup_file_inode_operations;
2707 }
2708 d_instantiate(dentry, inode);
2709 dget(dentry); /* Extra count - pin the dentry in core */
2710 return 0;
2711 }
2712
2713 /**
2714 * cgroup_file_mode - deduce file mode of a control file
2715 * @cft: the control file in question
2716 *
2717 * returns cft->mode if ->mode is not 0
2718 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2719 * returns S_IRUGO if it has only a read handler
2720 * returns S_IWUSR if it has only a write hander
2721 */
2722 static umode_t cgroup_file_mode(const struct cftype *cft)
2723 {
2724 umode_t mode = 0;
2725
2726 if (cft->mode)
2727 return cft->mode;
2728
2729 if (cft->read || cft->read_u64 || cft->read_s64 ||
2730 cft->read_map || cft->read_seq_string)
2731 mode |= S_IRUGO;
2732
2733 if (cft->write || cft->write_u64 || cft->write_s64 ||
2734 cft->write_string || cft->trigger)
2735 mode |= S_IWUSR;
2736
2737 return mode;
2738 }
2739
2740 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2741 {
2742 struct dentry *dir = cgrp->dentry;
2743 struct cgroup *parent = __d_cgrp(dir);
2744 struct dentry *dentry;
2745 struct cfent *cfe;
2746 int error;
2747 umode_t mode;
2748 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2749
2750 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
2751 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2752 strcpy(name, cft->ss->name);
2753 strcat(name, ".");
2754 }
2755 strcat(name, cft->name);
2756
2757 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2758
2759 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2760 if (!cfe)
2761 return -ENOMEM;
2762
2763 dentry = lookup_one_len(name, dir, strlen(name));
2764 if (IS_ERR(dentry)) {
2765 error = PTR_ERR(dentry);
2766 goto out;
2767 }
2768
2769 cfe->type = (void *)cft;
2770 cfe->dentry = dentry;
2771 dentry->d_fsdata = cfe;
2772 simple_xattrs_init(&cfe->xattrs);
2773
2774 mode = cgroup_file_mode(cft);
2775 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2776 if (!error) {
2777 list_add_tail(&cfe->node, &parent->files);
2778 cfe = NULL;
2779 }
2780 dput(dentry);
2781 out:
2782 kfree(cfe);
2783 return error;
2784 }
2785
2786 /**
2787 * cgroup_addrm_files - add or remove files to a cgroup directory
2788 * @cgrp: the target cgroup
2789 * @cfts: array of cftypes to be added
2790 * @is_add: whether to add or remove
2791 *
2792 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2793 * For removals, this function never fails. If addition fails, this
2794 * function doesn't remove files already added. The caller is responsible
2795 * for cleaning up.
2796 */
2797 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2798 bool is_add)
2799 {
2800 struct cftype *cft;
2801 int ret;
2802
2803 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2804 lockdep_assert_held(&cgroup_mutex);
2805
2806 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2807 /* does cft->flags tell us to skip this file on @cgrp? */
2808 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2809 continue;
2810 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2811 continue;
2812 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2813 continue;
2814
2815 if (is_add) {
2816 ret = cgroup_add_file(cgrp, cft);
2817 if (ret) {
2818 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2819 cft->name, ret);
2820 return ret;
2821 }
2822 } else {
2823 cgroup_rm_file(cgrp, cft);
2824 }
2825 }
2826 return 0;
2827 }
2828
2829 static void cgroup_cfts_prepare(void)
2830 __acquires(&cgroup_mutex)
2831 {
2832 /*
2833 * Thanks to the entanglement with vfs inode locking, we can't walk
2834 * the existing cgroups under cgroup_mutex and create files.
2835 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2836 * lock before calling cgroup_addrm_files().
2837 */
2838 mutex_lock(&cgroup_mutex);
2839 }
2840
2841 static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
2842 __releases(&cgroup_mutex)
2843 {
2844 LIST_HEAD(pending);
2845 struct cgroup_subsys *ss = cfts[0].ss;
2846 struct cgroup *root = &ss->root->top_cgroup;
2847 struct super_block *sb = ss->root->sb;
2848 struct dentry *prev = NULL;
2849 struct inode *inode;
2850 struct cgroup_subsys_state *css;
2851 u64 update_before;
2852 int ret = 0;
2853
2854 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2855 if (!cfts || ss->root == &cgroup_dummy_root ||
2856 !atomic_inc_not_zero(&sb->s_active)) {
2857 mutex_unlock(&cgroup_mutex);
2858 return 0;
2859 }
2860
2861 /*
2862 * All cgroups which are created after we drop cgroup_mutex will
2863 * have the updated set of files, so we only need to update the
2864 * cgroups created before the current @cgroup_serial_nr_next.
2865 */
2866 update_before = cgroup_serial_nr_next;
2867
2868 mutex_unlock(&cgroup_mutex);
2869
2870 /* add/rm files for all cgroups created before */
2871 rcu_read_lock();
2872 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2873 struct cgroup *cgrp = css->cgroup;
2874
2875 if (cgroup_is_dead(cgrp))
2876 continue;
2877
2878 inode = cgrp->dentry->d_inode;
2879 dget(cgrp->dentry);
2880 rcu_read_unlock();
2881
2882 dput(prev);
2883 prev = cgrp->dentry;
2884
2885 mutex_lock(&inode->i_mutex);
2886 mutex_lock(&cgroup_mutex);
2887 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2888 ret = cgroup_addrm_files(cgrp, cfts, is_add);
2889 mutex_unlock(&cgroup_mutex);
2890 mutex_unlock(&inode->i_mutex);
2891
2892 rcu_read_lock();
2893 if (ret)
2894 break;
2895 }
2896 rcu_read_unlock();
2897 dput(prev);
2898 deactivate_super(sb);
2899 return ret;
2900 }
2901
2902 /**
2903 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2904 * @ss: target cgroup subsystem
2905 * @cfts: zero-length name terminated array of cftypes
2906 *
2907 * Register @cfts to @ss. Files described by @cfts are created for all
2908 * existing cgroups to which @ss is attached and all future cgroups will
2909 * have them too. This function can be called anytime whether @ss is
2910 * attached or not.
2911 *
2912 * Returns 0 on successful registration, -errno on failure. Note that this
2913 * function currently returns 0 as long as @cfts registration is successful
2914 * even if some file creation attempts on existing cgroups fail.
2915 */
2916 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2917 {
2918 struct cftype_set *set;
2919 struct cftype *cft;
2920 int ret;
2921
2922 set = kzalloc(sizeof(*set), GFP_KERNEL);
2923 if (!set)
2924 return -ENOMEM;
2925
2926 for (cft = cfts; cft->name[0] != '\0'; cft++)
2927 cft->ss = ss;
2928
2929 cgroup_cfts_prepare();
2930 set->cfts = cfts;
2931 list_add_tail(&set->node, &ss->cftsets);
2932 ret = cgroup_cfts_commit(cfts, true);
2933 if (ret)
2934 cgroup_rm_cftypes(cfts);
2935 return ret;
2936 }
2937 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2938
2939 /**
2940 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2941 * @cfts: zero-length name terminated array of cftypes
2942 *
2943 * Unregister @cfts. Files described by @cfts are removed from all
2944 * existing cgroups and all future cgroups won't have them either. This
2945 * function can be called anytime whether @cfts' subsys is attached or not.
2946 *
2947 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2948 * registered.
2949 */
2950 int cgroup_rm_cftypes(struct cftype *cfts)
2951 {
2952 struct cftype_set *set;
2953
2954 if (!cfts || !cfts[0].ss)
2955 return -ENOENT;
2956
2957 cgroup_cfts_prepare();
2958
2959 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
2960 if (set->cfts == cfts) {
2961 list_del(&set->node);
2962 kfree(set);
2963 cgroup_cfts_commit(cfts, false);
2964 return 0;
2965 }
2966 }
2967
2968 cgroup_cfts_commit(NULL, false);
2969 return -ENOENT;
2970 }
2971
2972 /**
2973 * cgroup_task_count - count the number of tasks in a cgroup.
2974 * @cgrp: the cgroup in question
2975 *
2976 * Return the number of tasks in the cgroup.
2977 */
2978 int cgroup_task_count(const struct cgroup *cgrp)
2979 {
2980 int count = 0;
2981 struct cgrp_cset_link *link;
2982
2983 read_lock(&css_set_lock);
2984 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2985 count += atomic_read(&link->cset->refcount);
2986 read_unlock(&css_set_lock);
2987 return count;
2988 }
2989
2990 /*
2991 * To reduce the fork() overhead for systems that are not actually using
2992 * their cgroups capability, we don't maintain the lists running through
2993 * each css_set to its tasks until we see the list actually used - in other
2994 * words after the first call to css_task_iter_start().
2995 */
2996 static void cgroup_enable_task_cg_lists(void)
2997 {
2998 struct task_struct *p, *g;
2999 write_lock(&css_set_lock);
3000 use_task_css_set_links = 1;
3001 /*
3002 * We need tasklist_lock because RCU is not safe against
3003 * while_each_thread(). Besides, a forking task that has passed
3004 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3005 * is not guaranteed to have its child immediately visible in the
3006 * tasklist if we walk through it with RCU.
3007 */
3008 read_lock(&tasklist_lock);
3009 do_each_thread(g, p) {
3010 task_lock(p);
3011 /*
3012 * We should check if the process is exiting, otherwise
3013 * it will race with cgroup_exit() in that the list
3014 * entry won't be deleted though the process has exited.
3015 */
3016 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
3017 list_add(&p->cg_list, &task_css_set(p)->tasks);
3018 task_unlock(p);
3019 } while_each_thread(g, p);
3020 read_unlock(&tasklist_lock);
3021 write_unlock(&css_set_lock);
3022 }
3023
3024 /**
3025 * css_next_child - find the next child of a given css
3026 * @pos_css: the current position (%NULL to initiate traversal)
3027 * @parent_css: css whose children to walk
3028 *
3029 * This function returns the next child of @parent_css and should be called
3030 * under RCU read lock. The only requirement is that @parent_css and
3031 * @pos_css are accessible. The next sibling is guaranteed to be returned
3032 * regardless of their states.
3033 */
3034 struct cgroup_subsys_state *
3035 css_next_child(struct cgroup_subsys_state *pos_css,
3036 struct cgroup_subsys_state *parent_css)
3037 {
3038 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3039 struct cgroup *cgrp = parent_css->cgroup;
3040 struct cgroup *next;
3041
3042 WARN_ON_ONCE(!rcu_read_lock_held());
3043
3044 /*
3045 * @pos could already have been removed. Once a cgroup is removed,
3046 * its ->sibling.next is no longer updated when its next sibling
3047 * changes. As CGRP_DEAD assertion is serialized and happens
3048 * before the cgroup is taken off the ->sibling list, if we see it
3049 * unasserted, it's guaranteed that the next sibling hasn't
3050 * finished its grace period even if it's already removed, and thus
3051 * safe to dereference from this RCU critical section. If
3052 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3053 * to be visible as %true here.
3054 *
3055 * If @pos is dead, its next pointer can't be dereferenced;
3056 * however, as each cgroup is given a monotonically increasing
3057 * unique serial number and always appended to the sibling list,
3058 * the next one can be found by walking the parent's children until
3059 * we see a cgroup with higher serial number than @pos's. While
3060 * this path can be slower, it's taken only when either the current
3061 * cgroup is removed or iteration and removal race.
3062 */
3063 if (!pos) {
3064 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3065 } else if (likely(!cgroup_is_dead(pos))) {
3066 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3067 } else {
3068 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3069 if (next->serial_nr > pos->serial_nr)
3070 break;
3071 }
3072
3073 if (&next->sibling == &cgrp->children)
3074 return NULL;
3075
3076 return cgroup_css(next, parent_css->ss);
3077 }
3078 EXPORT_SYMBOL_GPL(css_next_child);
3079
3080 /**
3081 * css_next_descendant_pre - find the next descendant for pre-order walk
3082 * @pos: the current position (%NULL to initiate traversal)
3083 * @root: css whose descendants to walk
3084 *
3085 * To be used by css_for_each_descendant_pre(). Find the next descendant
3086 * to visit for pre-order traversal of @root's descendants. @root is
3087 * included in the iteration and the first node to be visited.
3088 *
3089 * While this function requires RCU read locking, it doesn't require the
3090 * whole traversal to be contained in a single RCU critical section. This
3091 * function will return the correct next descendant as long as both @pos
3092 * and @root are accessible and @pos is a descendant of @root.
3093 */
3094 struct cgroup_subsys_state *
3095 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3096 struct cgroup_subsys_state *root)
3097 {
3098 struct cgroup_subsys_state *next;
3099
3100 WARN_ON_ONCE(!rcu_read_lock_held());
3101
3102 /* if first iteration, visit @root */
3103 if (!pos)
3104 return root;
3105
3106 /* visit the first child if exists */
3107 next = css_next_child(NULL, pos);
3108 if (next)
3109 return next;
3110
3111 /* no child, visit my or the closest ancestor's next sibling */
3112 while (pos != root) {
3113 next = css_next_child(pos, css_parent(pos));
3114 if (next)
3115 return next;
3116 pos = css_parent(pos);
3117 }
3118
3119 return NULL;
3120 }
3121 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
3122
3123 /**
3124 * css_rightmost_descendant - return the rightmost descendant of a css
3125 * @pos: css of interest
3126 *
3127 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3128 * is returned. This can be used during pre-order traversal to skip
3129 * subtree of @pos.
3130 *
3131 * While this function requires RCU read locking, it doesn't require the
3132 * whole traversal to be contained in a single RCU critical section. This
3133 * function will return the correct rightmost descendant as long as @pos is
3134 * accessible.
3135 */
3136 struct cgroup_subsys_state *
3137 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3138 {
3139 struct cgroup_subsys_state *last, *tmp;
3140
3141 WARN_ON_ONCE(!rcu_read_lock_held());
3142
3143 do {
3144 last = pos;
3145 /* ->prev isn't RCU safe, walk ->next till the end */
3146 pos = NULL;
3147 css_for_each_child(tmp, last)
3148 pos = tmp;
3149 } while (pos);
3150
3151 return last;
3152 }
3153 EXPORT_SYMBOL_GPL(css_rightmost_descendant);
3154
3155 static struct cgroup_subsys_state *
3156 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3157 {
3158 struct cgroup_subsys_state *last;
3159
3160 do {
3161 last = pos;
3162 pos = css_next_child(NULL, pos);
3163 } while (pos);
3164
3165 return last;
3166 }
3167
3168 /**
3169 * css_next_descendant_post - find the next descendant for post-order walk
3170 * @pos: the current position (%NULL to initiate traversal)
3171 * @root: css whose descendants to walk
3172 *
3173 * To be used by css_for_each_descendant_post(). Find the next descendant
3174 * to visit for post-order traversal of @root's descendants. @root is
3175 * included in the iteration and the last node to be visited.
3176 *
3177 * While this function requires RCU read locking, it doesn't require the
3178 * whole traversal to be contained in a single RCU critical section. This
3179 * function will return the correct next descendant as long as both @pos
3180 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3181 */
3182 struct cgroup_subsys_state *
3183 css_next_descendant_post(struct cgroup_subsys_state *pos,
3184 struct cgroup_subsys_state *root)
3185 {
3186 struct cgroup_subsys_state *next;
3187
3188 WARN_ON_ONCE(!rcu_read_lock_held());
3189
3190 /* if first iteration, visit the leftmost descendant */
3191 if (!pos) {
3192 next = css_leftmost_descendant(root);
3193 return next != root ? next : NULL;
3194 }
3195
3196 /* if we visited @root, we're done */
3197 if (pos == root)
3198 return NULL;
3199
3200 /* if there's an unvisited sibling, visit its leftmost descendant */
3201 next = css_next_child(pos, css_parent(pos));
3202 if (next)
3203 return css_leftmost_descendant(next);
3204
3205 /* no sibling left, visit parent */
3206 return css_parent(pos);
3207 }
3208 EXPORT_SYMBOL_GPL(css_next_descendant_post);
3209
3210 /**
3211 * css_advance_task_iter - advance a task itererator to the next css_set
3212 * @it: the iterator to advance
3213 *
3214 * Advance @it to the next css_set to walk.
3215 */
3216 static void css_advance_task_iter(struct css_task_iter *it)
3217 {
3218 struct list_head *l = it->cset_link;
3219 struct cgrp_cset_link *link;
3220 struct css_set *cset;
3221
3222 /* Advance to the next non-empty css_set */
3223 do {
3224 l = l->next;
3225 if (l == &it->origin_css->cgroup->cset_links) {
3226 it->cset_link = NULL;
3227 return;
3228 }
3229 link = list_entry(l, struct cgrp_cset_link, cset_link);
3230 cset = link->cset;
3231 } while (list_empty(&cset->tasks));
3232 it->cset_link = l;
3233 it->task = cset->tasks.next;
3234 }
3235
3236 /**
3237 * css_task_iter_start - initiate task iteration
3238 * @css: the css to walk tasks of
3239 * @it: the task iterator to use
3240 *
3241 * Initiate iteration through the tasks of @css. The caller can call
3242 * css_task_iter_next() to walk through the tasks until the function
3243 * returns NULL. On completion of iteration, css_task_iter_end() must be
3244 * called.
3245 *
3246 * Note that this function acquires a lock which is released when the
3247 * iteration finishes. The caller can't sleep while iteration is in
3248 * progress.
3249 */
3250 void css_task_iter_start(struct cgroup_subsys_state *css,
3251 struct css_task_iter *it)
3252 __acquires(css_set_lock)
3253 {
3254 /*
3255 * The first time anyone tries to iterate across a css, we need to
3256 * enable the list linking each css_set to its tasks, and fix up
3257 * all existing tasks.
3258 */
3259 if (!use_task_css_set_links)
3260 cgroup_enable_task_cg_lists();
3261
3262 read_lock(&css_set_lock);
3263
3264 it->origin_css = css;
3265 it->cset_link = &css->cgroup->cset_links;
3266
3267 css_advance_task_iter(it);
3268 }
3269
3270 /**
3271 * css_task_iter_next - return the next task for the iterator
3272 * @it: the task iterator being iterated
3273 *
3274 * The "next" function for task iteration. @it should have been
3275 * initialized via css_task_iter_start(). Returns NULL when the iteration
3276 * reaches the end.
3277 */
3278 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3279 {
3280 struct task_struct *res;
3281 struct list_head *l = it->task;
3282 struct cgrp_cset_link *link;
3283
3284 /* If the iterator cg is NULL, we have no tasks */
3285 if (!it->cset_link)
3286 return NULL;
3287 res = list_entry(l, struct task_struct, cg_list);
3288 /* Advance iterator to find next entry */
3289 l = l->next;
3290 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3291 if (l == &link->cset->tasks) {
3292 /*
3293 * We reached the end of this task list - move on to the
3294 * next cgrp_cset_link.
3295 */
3296 css_advance_task_iter(it);
3297 } else {
3298 it->task = l;
3299 }
3300 return res;
3301 }
3302
3303 /**
3304 * css_task_iter_end - finish task iteration
3305 * @it: the task iterator to finish
3306 *
3307 * Finish task iteration started by css_task_iter_start().
3308 */
3309 void css_task_iter_end(struct css_task_iter *it)
3310 __releases(css_set_lock)
3311 {
3312 read_unlock(&css_set_lock);
3313 }
3314
3315 static inline int started_after_time(struct task_struct *t1,
3316 struct timespec *time,
3317 struct task_struct *t2)
3318 {
3319 int start_diff = timespec_compare(&t1->start_time, time);
3320 if (start_diff > 0) {
3321 return 1;
3322 } else if (start_diff < 0) {
3323 return 0;
3324 } else {
3325 /*
3326 * Arbitrarily, if two processes started at the same
3327 * time, we'll say that the lower pointer value
3328 * started first. Note that t2 may have exited by now
3329 * so this may not be a valid pointer any longer, but
3330 * that's fine - it still serves to distinguish
3331 * between two tasks started (effectively) simultaneously.
3332 */
3333 return t1 > t2;
3334 }
3335 }
3336
3337 /*
3338 * This function is a callback from heap_insert() and is used to order
3339 * the heap.
3340 * In this case we order the heap in descending task start time.
3341 */
3342 static inline int started_after(void *p1, void *p2)
3343 {
3344 struct task_struct *t1 = p1;
3345 struct task_struct *t2 = p2;
3346 return started_after_time(t1, &t2->start_time, t2);
3347 }
3348
3349 /**
3350 * css_scan_tasks - iterate though all the tasks in a css
3351 * @css: the css to iterate tasks of
3352 * @test: optional test callback
3353 * @process: process callback
3354 * @data: data passed to @test and @process
3355 * @heap: optional pre-allocated heap used for task iteration
3356 *
3357 * Iterate through all the tasks in @css, calling @test for each, and if it
3358 * returns %true, call @process for it also.
3359 *
3360 * @test may be NULL, meaning always true (select all tasks), which
3361 * effectively duplicates css_task_iter_{start,next,end}() but does not
3362 * lock css_set_lock for the call to @process.
3363 *
3364 * It is guaranteed that @process will act on every task that is a member
3365 * of @css for the duration of this call. This function may or may not
3366 * call @process for tasks that exit or move to a different css during the
3367 * call, or are forked or move into the css during the call.
3368 *
3369 * Note that @test may be called with locks held, and may in some
3370 * situations be called multiple times for the same task, so it should be
3371 * cheap.
3372 *
3373 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3374 * heap operations (and its "gt" member will be overwritten), else a
3375 * temporary heap will be used (allocation of which may cause this function
3376 * to fail).
3377 */
3378 int css_scan_tasks(struct cgroup_subsys_state *css,
3379 bool (*test)(struct task_struct *, void *),
3380 void (*process)(struct task_struct *, void *),
3381 void *data, struct ptr_heap *heap)
3382 {
3383 int retval, i;
3384 struct css_task_iter it;
3385 struct task_struct *p, *dropped;
3386 /* Never dereference latest_task, since it's not refcounted */
3387 struct task_struct *latest_task = NULL;
3388 struct ptr_heap tmp_heap;
3389 struct timespec latest_time = { 0, 0 };
3390
3391 if (heap) {
3392 /* The caller supplied our heap and pre-allocated its memory */
3393 heap->gt = &started_after;
3394 } else {
3395 /* We need to allocate our own heap memory */
3396 heap = &tmp_heap;
3397 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3398 if (retval)
3399 /* cannot allocate the heap */
3400 return retval;
3401 }
3402
3403 again:
3404 /*
3405 * Scan tasks in the css, using the @test callback to determine
3406 * which are of interest, and invoking @process callback on the
3407 * ones which need an update. Since we don't want to hold any
3408 * locks during the task updates, gather tasks to be processed in a
3409 * heap structure. The heap is sorted by descending task start
3410 * time. If the statically-sized heap fills up, we overflow tasks
3411 * that started later, and in future iterations only consider tasks
3412 * that started after the latest task in the previous pass. This
3413 * guarantees forward progress and that we don't miss any tasks.
3414 */
3415 heap->size = 0;
3416 css_task_iter_start(css, &it);
3417 while ((p = css_task_iter_next(&it))) {
3418 /*
3419 * Only affect tasks that qualify per the caller's callback,
3420 * if he provided one
3421 */
3422 if (test && !test(p, data))
3423 continue;
3424 /*
3425 * Only process tasks that started after the last task
3426 * we processed
3427 */
3428 if (!started_after_time(p, &latest_time, latest_task))
3429 continue;
3430 dropped = heap_insert(heap, p);
3431 if (dropped == NULL) {
3432 /*
3433 * The new task was inserted; the heap wasn't
3434 * previously full
3435 */
3436 get_task_struct(p);
3437 } else if (dropped != p) {
3438 /*
3439 * The new task was inserted, and pushed out a
3440 * different task
3441 */
3442 get_task_struct(p);
3443 put_task_struct(dropped);
3444 }
3445 /*
3446 * Else the new task was newer than anything already in
3447 * the heap and wasn't inserted
3448 */
3449 }
3450 css_task_iter_end(&it);
3451
3452 if (heap->size) {
3453 for (i = 0; i < heap->size; i++) {
3454 struct task_struct *q = heap->ptrs[i];
3455 if (i == 0) {
3456 latest_time = q->start_time;
3457 latest_task = q;
3458 }
3459 /* Process the task per the caller's callback */
3460 process(q, data);
3461 put_task_struct(q);
3462 }
3463 /*
3464 * If we had to process any tasks at all, scan again
3465 * in case some of them were in the middle of forking
3466 * children that didn't get processed.
3467 * Not the most efficient way to do it, but it avoids
3468 * having to take callback_mutex in the fork path
3469 */
3470 goto again;
3471 }
3472 if (heap == &tmp_heap)
3473 heap_free(&tmp_heap);
3474 return 0;
3475 }
3476
3477 static void cgroup_transfer_one_task(struct task_struct *task, void *data)
3478 {
3479 struct cgroup *new_cgroup = data;
3480
3481 mutex_lock(&cgroup_mutex);
3482 cgroup_attach_task(new_cgroup, task, false);
3483 mutex_unlock(&cgroup_mutex);
3484 }
3485
3486 /**
3487 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3488 * @to: cgroup to which the tasks will be moved
3489 * @from: cgroup in which the tasks currently reside
3490 */
3491 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3492 {
3493 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3494 to, NULL);
3495 }
3496
3497 /*
3498 * Stuff for reading the 'tasks'/'procs' files.
3499 *
3500 * Reading this file can return large amounts of data if a cgroup has
3501 * *lots* of attached tasks. So it may need several calls to read(),
3502 * but we cannot guarantee that the information we produce is correct
3503 * unless we produce it entirely atomically.
3504 *
3505 */
3506
3507 /* which pidlist file are we talking about? */
3508 enum cgroup_filetype {
3509 CGROUP_FILE_PROCS,
3510 CGROUP_FILE_TASKS,
3511 };
3512
3513 /*
3514 * A pidlist is a list of pids that virtually represents the contents of one
3515 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3516 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3517 * to the cgroup.
3518 */
3519 struct cgroup_pidlist {
3520 /*
3521 * used to find which pidlist is wanted. doesn't change as long as
3522 * this particular list stays in the list.
3523 */
3524 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3525 /* array of xids */
3526 pid_t *list;
3527 /* how many elements the above list has */
3528 int length;
3529 /* how many files are using the current array */
3530 int use_count;
3531 /* each of these stored in a list by its cgroup */
3532 struct list_head links;
3533 /* pointer to the cgroup we belong to, for list removal purposes */
3534 struct cgroup *owner;
3535 /* protects the other fields */
3536 struct rw_semaphore rwsem;
3537 };
3538
3539 /*
3540 * The following two functions "fix" the issue where there are more pids
3541 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3542 * TODO: replace with a kernel-wide solution to this problem
3543 */
3544 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3545 static void *pidlist_allocate(int count)
3546 {
3547 if (PIDLIST_TOO_LARGE(count))
3548 return vmalloc(count * sizeof(pid_t));
3549 else
3550 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3551 }
3552 static void pidlist_free(void *p)
3553 {
3554 if (is_vmalloc_addr(p))
3555 vfree(p);
3556 else
3557 kfree(p);
3558 }
3559
3560 /*
3561 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3562 * Returns the number of unique elements.
3563 */
3564 static int pidlist_uniq(pid_t *list, int length)
3565 {
3566 int src, dest = 1;
3567
3568 /*
3569 * we presume the 0th element is unique, so i starts at 1. trivial
3570 * edge cases first; no work needs to be done for either
3571 */
3572 if (length == 0 || length == 1)
3573 return length;
3574 /* src and dest walk down the list; dest counts unique elements */
3575 for (src = 1; src < length; src++) {
3576 /* find next unique element */
3577 while (list[src] == list[src-1]) {
3578 src++;
3579 if (src == length)
3580 goto after;
3581 }
3582 /* dest always points to where the next unique element goes */
3583 list[dest] = list[src];
3584 dest++;
3585 }
3586 after:
3587 return dest;
3588 }
3589
3590 static int cmppid(const void *a, const void *b)
3591 {
3592 return *(pid_t *)a - *(pid_t *)b;
3593 }
3594
3595 /*
3596 * find the appropriate pidlist for our purpose (given procs vs tasks)
3597 * returns with the lock on that pidlist already held, and takes care
3598 * of the use count, or returns NULL with no locks held if we're out of
3599 * memory.
3600 */
3601 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3602 enum cgroup_filetype type)
3603 {
3604 struct cgroup_pidlist *l;
3605 /* don't need task_nsproxy() if we're looking at ourself */
3606 struct pid_namespace *ns = task_active_pid_ns(current);
3607
3608 /*
3609 * We can't drop the pidlist_mutex before taking the l->rwsem in case
3610 * the last ref-holder is trying to remove l from the list at the same
3611 * time. Holding the pidlist_mutex precludes somebody taking whichever
3612 * list we find out from under us - compare release_pid_array().
3613 */
3614 mutex_lock(&cgrp->pidlist_mutex);
3615 list_for_each_entry(l, &cgrp->pidlists, links) {
3616 if (l->key.type == type && l->key.ns == ns) {
3617 /* make sure l doesn't vanish out from under us */
3618 down_write(&l->rwsem);
3619 mutex_unlock(&cgrp->pidlist_mutex);
3620 return l;
3621 }
3622 }
3623 /* entry not found; create a new one */
3624 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3625 if (!l) {
3626 mutex_unlock(&cgrp->pidlist_mutex);
3627 return l;
3628 }
3629 init_rwsem(&l->rwsem);
3630 down_write(&l->rwsem);
3631 l->key.type = type;
3632 l->key.ns = get_pid_ns(ns);
3633 l->owner = cgrp;
3634 list_add(&l->links, &cgrp->pidlists);
3635 mutex_unlock(&cgrp->pidlist_mutex);
3636 return l;
3637 }
3638
3639 /*
3640 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3641 */
3642 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3643 struct cgroup_pidlist **lp)
3644 {
3645 pid_t *array;
3646 int length;
3647 int pid, n = 0; /* used for populating the array */
3648 struct css_task_iter it;
3649 struct task_struct *tsk;
3650 struct cgroup_pidlist *l;
3651
3652 /*
3653 * If cgroup gets more users after we read count, we won't have
3654 * enough space - tough. This race is indistinguishable to the
3655 * caller from the case that the additional cgroup users didn't
3656 * show up until sometime later on.
3657 */
3658 length = cgroup_task_count(cgrp);
3659 array = pidlist_allocate(length);
3660 if (!array)
3661 return -ENOMEM;
3662 /* now, populate the array */
3663 css_task_iter_start(&cgrp->dummy_css, &it);
3664 while ((tsk = css_task_iter_next(&it))) {
3665 if (unlikely(n == length))
3666 break;
3667 /* get tgid or pid for procs or tasks file respectively */
3668 if (type == CGROUP_FILE_PROCS)
3669 pid = task_tgid_vnr(tsk);
3670 else
3671 pid = task_pid_vnr(tsk);
3672 if (pid > 0) /* make sure to only use valid results */
3673 array[n++] = pid;
3674 }
3675 css_task_iter_end(&it);
3676 length = n;
3677 /* now sort & (if procs) strip out duplicates */
3678 sort(array, length, sizeof(pid_t), cmppid, NULL);
3679 if (type == CGROUP_FILE_PROCS)
3680 length = pidlist_uniq(array, length);
3681 l = cgroup_pidlist_find(cgrp, type);
3682 if (!l) {
3683 pidlist_free(array);
3684 return -ENOMEM;
3685 }
3686 /* store array, freeing old if necessary - lock already held */
3687 pidlist_free(l->list);
3688 l->list = array;
3689 l->length = length;
3690 l->use_count++;
3691 up_write(&l->rwsem);
3692 *lp = l;
3693 return 0;
3694 }
3695
3696 /**
3697 * cgroupstats_build - build and fill cgroupstats
3698 * @stats: cgroupstats to fill information into
3699 * @dentry: A dentry entry belonging to the cgroup for which stats have
3700 * been requested.
3701 *
3702 * Build and fill cgroupstats so that taskstats can export it to user
3703 * space.
3704 */
3705 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3706 {
3707 int ret = -EINVAL;
3708 struct cgroup *cgrp;
3709 struct css_task_iter it;
3710 struct task_struct *tsk;
3711
3712 /*
3713 * Validate dentry by checking the superblock operations,
3714 * and make sure it's a directory.
3715 */
3716 if (dentry->d_sb->s_op != &cgroup_ops ||
3717 !S_ISDIR(dentry->d_inode->i_mode))
3718 goto err;
3719
3720 ret = 0;
3721 cgrp = dentry->d_fsdata;
3722
3723 css_task_iter_start(&cgrp->dummy_css, &it);
3724 while ((tsk = css_task_iter_next(&it))) {
3725 switch (tsk->state) {
3726 case TASK_RUNNING:
3727 stats->nr_running++;
3728 break;
3729 case TASK_INTERRUPTIBLE:
3730 stats->nr_sleeping++;
3731 break;
3732 case TASK_UNINTERRUPTIBLE:
3733 stats->nr_uninterruptible++;
3734 break;
3735 case TASK_STOPPED:
3736 stats->nr_stopped++;
3737 break;
3738 default:
3739 if (delayacct_is_task_waiting_on_io(tsk))
3740 stats->nr_io_wait++;
3741 break;
3742 }
3743 }
3744 css_task_iter_end(&it);
3745
3746 err:
3747 return ret;
3748 }
3749
3750
3751 /*
3752 * seq_file methods for the tasks/procs files. The seq_file position is the
3753 * next pid to display; the seq_file iterator is a pointer to the pid
3754 * in the cgroup->l->list array.
3755 */
3756
3757 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3758 {
3759 /*
3760 * Initially we receive a position value that corresponds to
3761 * one more than the last pid shown (or 0 on the first call or
3762 * after a seek to the start). Use a binary-search to find the
3763 * next pid to display, if any
3764 */
3765 struct cgroup_pidlist *l = s->private;
3766 int index = 0, pid = *pos;
3767 int *iter;
3768
3769 down_read(&l->rwsem);
3770 if (pid) {
3771 int end = l->length;
3772
3773 while (index < end) {
3774 int mid = (index + end) / 2;
3775 if (l->list[mid] == pid) {
3776 index = mid;
3777 break;
3778 } else if (l->list[mid] <= pid)
3779 index = mid + 1;
3780 else
3781 end = mid;
3782 }
3783 }
3784 /* If we're off the end of the array, we're done */
3785 if (index >= l->length)
3786 return NULL;
3787 /* Update the abstract position to be the actual pid that we found */
3788 iter = l->list + index;
3789 *pos = *iter;
3790 return iter;
3791 }
3792
3793 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3794 {
3795 struct cgroup_pidlist *l = s->private;
3796 up_read(&l->rwsem);
3797 }
3798
3799 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3800 {
3801 struct cgroup_pidlist *l = s->private;
3802 pid_t *p = v;
3803 pid_t *end = l->list + l->length;
3804 /*
3805 * Advance to the next pid in the array. If this goes off the
3806 * end, we're done
3807 */
3808 p++;
3809 if (p >= end) {
3810 return NULL;
3811 } else {
3812 *pos = *p;
3813 return p;
3814 }
3815 }
3816
3817 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3818 {
3819 return seq_printf(s, "%d\n", *(int *)v);
3820 }
3821
3822 /*
3823 * seq_operations functions for iterating on pidlists through seq_file -
3824 * independent of whether it's tasks or procs
3825 */
3826 static const struct seq_operations cgroup_pidlist_seq_operations = {
3827 .start = cgroup_pidlist_start,
3828 .stop = cgroup_pidlist_stop,
3829 .next = cgroup_pidlist_next,
3830 .show = cgroup_pidlist_show,
3831 };
3832
3833 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3834 {
3835 /*
3836 * the case where we're the last user of this particular pidlist will
3837 * have us remove it from the cgroup's list, which entails taking the
3838 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3839 * pidlist_mutex, we have to take pidlist_mutex first.
3840 */
3841 mutex_lock(&l->owner->pidlist_mutex);
3842 down_write(&l->rwsem);
3843 BUG_ON(!l->use_count);
3844 if (!--l->use_count) {
3845 /* we're the last user if refcount is 0; remove and free */
3846 list_del(&l->links);
3847 mutex_unlock(&l->owner->pidlist_mutex);
3848 pidlist_free(l->list);
3849 put_pid_ns(l->key.ns);
3850 up_write(&l->rwsem);
3851 kfree(l);
3852 return;
3853 }
3854 mutex_unlock(&l->owner->pidlist_mutex);
3855 up_write(&l->rwsem);
3856 }
3857
3858 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3859 {
3860 struct cgroup_pidlist *l;
3861 if (!(file->f_mode & FMODE_READ))
3862 return 0;
3863 /*
3864 * the seq_file will only be initialized if the file was opened for
3865 * reading; hence we check if it's not null only in that case.
3866 */
3867 l = ((struct seq_file *)file->private_data)->private;
3868 cgroup_release_pid_array(l);
3869 return seq_release(inode, file);
3870 }
3871
3872 static const struct file_operations cgroup_pidlist_operations = {
3873 .read = seq_read,
3874 .llseek = seq_lseek,
3875 .write = cgroup_file_write,
3876 .release = cgroup_pidlist_release,
3877 };
3878
3879 /*
3880 * The following functions handle opens on a file that displays a pidlist
3881 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3882 * in the cgroup.
3883 */
3884 /* helper function for the two below it */
3885 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3886 {
3887 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3888 struct cgroup_pidlist *l;
3889 int retval;
3890
3891 /* Nothing to do for write-only files */
3892 if (!(file->f_mode & FMODE_READ))
3893 return 0;
3894
3895 /* have the array populated */
3896 retval = pidlist_array_load(cgrp, type, &l);
3897 if (retval)
3898 return retval;
3899 /* configure file information */
3900 file->f_op = &cgroup_pidlist_operations;
3901
3902 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3903 if (retval) {
3904 cgroup_release_pid_array(l);
3905 return retval;
3906 }
3907 ((struct seq_file *)file->private_data)->private = l;
3908 return 0;
3909 }
3910 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3911 {
3912 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3913 }
3914 static int cgroup_procs_open(struct inode *unused, struct file *file)
3915 {
3916 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3917 }
3918
3919 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3920 struct cftype *cft)
3921 {
3922 return notify_on_release(css->cgroup);
3923 }
3924
3925 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3926 struct cftype *cft, u64 val)
3927 {
3928 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3929 if (val)
3930 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3931 else
3932 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3933 return 0;
3934 }
3935
3936 /*
3937 * When dput() is called asynchronously, if umount has been done and
3938 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3939 * there's a small window that vfs will see the root dentry with non-zero
3940 * refcnt and trigger BUG().
3941 *
3942 * That's why we hold a reference before dput() and drop it right after.
3943 */
3944 static void cgroup_dput(struct cgroup *cgrp)
3945 {
3946 struct super_block *sb = cgrp->root->sb;
3947
3948 atomic_inc(&sb->s_active);
3949 dput(cgrp->dentry);
3950 deactivate_super(sb);
3951 }
3952
3953 /*
3954 * Unregister event and free resources.
3955 *
3956 * Gets called from workqueue.
3957 */
3958 static void cgroup_event_remove(struct work_struct *work)
3959 {
3960 struct cgroup_event *event = container_of(work, struct cgroup_event,
3961 remove);
3962 struct cgroup_subsys_state *css = event->css;
3963
3964 remove_wait_queue(event->wqh, &event->wait);
3965
3966 event->cft->unregister_event(css, event->cft, event->eventfd);
3967
3968 /* Notify userspace the event is going away. */
3969 eventfd_signal(event->eventfd, 1);
3970
3971 eventfd_ctx_put(event->eventfd);
3972 kfree(event);
3973 css_put(css);
3974 }
3975
3976 /*
3977 * Gets called on POLLHUP on eventfd when user closes it.
3978 *
3979 * Called with wqh->lock held and interrupts disabled.
3980 */
3981 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3982 int sync, void *key)
3983 {
3984 struct cgroup_event *event = container_of(wait,
3985 struct cgroup_event, wait);
3986 struct cgroup *cgrp = event->css->cgroup;
3987 unsigned long flags = (unsigned long)key;
3988
3989 if (flags & POLLHUP) {
3990 /*
3991 * If the event has been detached at cgroup removal, we
3992 * can simply return knowing the other side will cleanup
3993 * for us.
3994 *
3995 * We can't race against event freeing since the other
3996 * side will require wqh->lock via remove_wait_queue(),
3997 * which we hold.
3998 */
3999 spin_lock(&cgrp->event_list_lock);
4000 if (!list_empty(&event->list)) {
4001 list_del_init(&event->list);
4002 /*
4003 * We are in atomic context, but cgroup_event_remove()
4004 * may sleep, so we have to call it in workqueue.
4005 */
4006 schedule_work(&event->remove);
4007 }
4008 spin_unlock(&cgrp->event_list_lock);
4009 }
4010
4011 return 0;
4012 }
4013
4014 static void cgroup_event_ptable_queue_proc(struct file *file,
4015 wait_queue_head_t *wqh, poll_table *pt)
4016 {
4017 struct cgroup_event *event = container_of(pt,
4018 struct cgroup_event, pt);
4019
4020 event->wqh = wqh;
4021 add_wait_queue(wqh, &event->wait);
4022 }
4023
4024 /*
4025 * Parse input and register new cgroup event handler.
4026 *
4027 * Input must be in format '<event_fd> <control_fd> <args>'.
4028 * Interpretation of args is defined by control file implementation.
4029 */
4030 static int cgroup_write_event_control(struct cgroup_subsys_state *dummy_css,
4031 struct cftype *cft, const char *buffer)
4032 {
4033 struct cgroup *cgrp = dummy_css->cgroup;
4034 struct cgroup_event *event;
4035 struct cgroup_subsys_state *cfile_css;
4036 unsigned int efd, cfd;
4037 struct file *efile;
4038 struct file *cfile;
4039 char *endp;
4040 int ret;
4041
4042 efd = simple_strtoul(buffer, &endp, 10);
4043 if (*endp != ' ')
4044 return -EINVAL;
4045 buffer = endp + 1;
4046
4047 cfd = simple_strtoul(buffer, &endp, 10);
4048 if ((*endp != ' ') && (*endp != '\0'))
4049 return -EINVAL;
4050 buffer = endp + 1;
4051
4052 event = kzalloc(sizeof(*event), GFP_KERNEL);
4053 if (!event)
4054 return -ENOMEM;
4055
4056 INIT_LIST_HEAD(&event->list);
4057 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4058 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4059 INIT_WORK(&event->remove, cgroup_event_remove);
4060
4061 efile = eventfd_fget(efd);
4062 if (IS_ERR(efile)) {
4063 ret = PTR_ERR(efile);
4064 goto out_kfree;
4065 }
4066
4067 event->eventfd = eventfd_ctx_fileget(efile);
4068 if (IS_ERR(event->eventfd)) {
4069 ret = PTR_ERR(event->eventfd);
4070 goto out_put_efile;
4071 }
4072
4073 cfile = fget(cfd);
4074 if (!cfile) {
4075 ret = -EBADF;
4076 goto out_put_eventfd;
4077 }
4078
4079 /* the process need read permission on control file */
4080 /* AV: shouldn't we check that it's been opened for read instead? */
4081 ret = inode_permission(file_inode(cfile), MAY_READ);
4082 if (ret < 0)
4083 goto out_put_cfile;
4084
4085 event->cft = __file_cft(cfile);
4086 if (IS_ERR(event->cft)) {
4087 ret = PTR_ERR(event->cft);
4088 goto out_put_cfile;
4089 }
4090
4091 if (!event->cft->ss) {
4092 ret = -EBADF;
4093 goto out_put_cfile;
4094 }
4095
4096 /*
4097 * Determine the css of @cfile, verify it belongs to the same
4098 * cgroup as cgroup.event_control, and associate @event with it.
4099 * Remaining events are automatically removed on cgroup destruction
4100 * but the removal is asynchronous, so take an extra ref.
4101 */
4102 rcu_read_lock();
4103
4104 ret = -EINVAL;
4105 event->css = cgroup_css(cgrp, event->cft->ss);
4106 cfile_css = css_from_dir(cfile->f_dentry->d_parent, event->cft->ss);
4107 if (event->css && event->css == cfile_css && css_tryget(event->css))
4108 ret = 0;
4109
4110 rcu_read_unlock();
4111 if (ret)
4112 goto out_put_cfile;
4113
4114 if (!event->cft->register_event || !event->cft->unregister_event) {
4115 ret = -EINVAL;
4116 goto out_put_css;
4117 }
4118
4119 ret = event->cft->register_event(event->css, event->cft,
4120 event->eventfd, buffer);
4121 if (ret)
4122 goto out_put_css;
4123
4124 efile->f_op->poll(efile, &event->pt);
4125
4126 spin_lock(&cgrp->event_list_lock);
4127 list_add(&event->list, &cgrp->event_list);
4128 spin_unlock(&cgrp->event_list_lock);
4129
4130 fput(cfile);
4131 fput(efile);
4132
4133 return 0;
4134
4135 out_put_css:
4136 css_put(event->css);
4137 out_put_cfile:
4138 fput(cfile);
4139 out_put_eventfd:
4140 eventfd_ctx_put(event->eventfd);
4141 out_put_efile:
4142 fput(efile);
4143 out_kfree:
4144 kfree(event);
4145
4146 return ret;
4147 }
4148
4149 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4150 struct cftype *cft)
4151 {
4152 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4153 }
4154
4155 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4156 struct cftype *cft, u64 val)
4157 {
4158 if (val)
4159 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4160 else
4161 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4162 return 0;
4163 }
4164
4165 static struct cftype cgroup_base_files[] = {
4166 {
4167 .name = "cgroup.procs",
4168 .open = cgroup_procs_open,
4169 .write_u64 = cgroup_procs_write,
4170 .release = cgroup_pidlist_release,
4171 .mode = S_IRUGO | S_IWUSR,
4172 },
4173 {
4174 .name = "cgroup.event_control",
4175 .write_string = cgroup_write_event_control,
4176 .mode = S_IWUGO,
4177 },
4178 {
4179 .name = "cgroup.clone_children",
4180 .flags = CFTYPE_INSANE,
4181 .read_u64 = cgroup_clone_children_read,
4182 .write_u64 = cgroup_clone_children_write,
4183 },
4184 {
4185 .name = "cgroup.sane_behavior",
4186 .flags = CFTYPE_ONLY_ON_ROOT,
4187 .read_seq_string = cgroup_sane_behavior_show,
4188 },
4189
4190 /*
4191 * Historical crazy stuff. These don't have "cgroup." prefix and
4192 * don't exist if sane_behavior. If you're depending on these, be
4193 * prepared to be burned.
4194 */
4195 {
4196 .name = "tasks",
4197 .flags = CFTYPE_INSANE, /* use "procs" instead */
4198 .open = cgroup_tasks_open,
4199 .write_u64 = cgroup_tasks_write,
4200 .release = cgroup_pidlist_release,
4201 .mode = S_IRUGO | S_IWUSR,
4202 },
4203 {
4204 .name = "notify_on_release",
4205 .flags = CFTYPE_INSANE,
4206 .read_u64 = cgroup_read_notify_on_release,
4207 .write_u64 = cgroup_write_notify_on_release,
4208 },
4209 {
4210 .name = "release_agent",
4211 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4212 .read_seq_string = cgroup_release_agent_show,
4213 .write_string = cgroup_release_agent_write,
4214 .max_write_len = PATH_MAX,
4215 },
4216 { } /* terminate */
4217 };
4218
4219 /**
4220 * cgroup_populate_dir - create subsys files in a cgroup directory
4221 * @cgrp: target cgroup
4222 * @subsys_mask: mask of the subsystem ids whose files should be added
4223 *
4224 * On failure, no file is added.
4225 */
4226 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4227 {
4228 struct cgroup_subsys *ss;
4229 int i, ret = 0;
4230
4231 /* process cftsets of each subsystem */
4232 for_each_subsys(ss, i) {
4233 struct cftype_set *set;
4234
4235 if (!test_bit(i, &subsys_mask))
4236 continue;
4237
4238 list_for_each_entry(set, &ss->cftsets, node) {
4239 ret = cgroup_addrm_files(cgrp, set->cfts, true);
4240 if (ret < 0)
4241 goto err;
4242 }
4243 }
4244
4245 /* This cgroup is ready now */
4246 for_each_root_subsys(cgrp->root, ss) {
4247 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
4248 struct css_id *id = rcu_dereference_protected(css->id, true);
4249
4250 /*
4251 * Update id->css pointer and make this css visible from
4252 * CSS ID functions. This pointer will be dereferened
4253 * from RCU-read-side without locks.
4254 */
4255 if (id)
4256 rcu_assign_pointer(id->css, css);
4257 }
4258
4259 return 0;
4260 err:
4261 cgroup_clear_dir(cgrp, subsys_mask);
4262 return ret;
4263 }
4264
4265 /*
4266 * css destruction is four-stage process.
4267 *
4268 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4269 * Implemented in kill_css().
4270 *
4271 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4272 * and thus css_tryget() is guaranteed to fail, the css can be offlined
4273 * by invoking offline_css(). After offlining, the base ref is put.
4274 * Implemented in css_killed_work_fn().
4275 *
4276 * 3. When the percpu_ref reaches zero, the only possible remaining
4277 * accessors are inside RCU read sections. css_release() schedules the
4278 * RCU callback.
4279 *
4280 * 4. After the grace period, the css can be freed. Implemented in
4281 * css_free_work_fn().
4282 *
4283 * It is actually hairier because both step 2 and 4 require process context
4284 * and thus involve punting to css->destroy_work adding two additional
4285 * steps to the already complex sequence.
4286 */
4287 static void css_free_work_fn(struct work_struct *work)
4288 {
4289 struct cgroup_subsys_state *css =
4290 container_of(work, struct cgroup_subsys_state, destroy_work);
4291 struct cgroup *cgrp = css->cgroup;
4292
4293 if (css->parent)
4294 css_put(css->parent);
4295
4296 css->ss->css_free(css);
4297 cgroup_dput(cgrp);
4298 }
4299
4300 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4301 {
4302 struct cgroup_subsys_state *css =
4303 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4304
4305 /*
4306 * css holds an extra ref to @cgrp->dentry which is put on the last
4307 * css_put(). dput() requires process context which we don't have.
4308 */
4309 INIT_WORK(&css->destroy_work, css_free_work_fn);
4310 schedule_work(&css->destroy_work);
4311 }
4312
4313 static void css_release(struct percpu_ref *ref)
4314 {
4315 struct cgroup_subsys_state *css =
4316 container_of(ref, struct cgroup_subsys_state, refcnt);
4317
4318 call_rcu(&css->rcu_head, css_free_rcu_fn);
4319 }
4320
4321 static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
4322 struct cgroup *cgrp)
4323 {
4324 css->cgroup = cgrp;
4325 css->ss = ss;
4326 css->flags = 0;
4327 css->id = NULL;
4328
4329 if (cgrp->parent)
4330 css->parent = cgroup_css(cgrp->parent, ss);
4331 else
4332 css->flags |= CSS_ROOT;
4333
4334 BUG_ON(cgroup_css(cgrp, ss));
4335 }
4336
4337 /* invoke ->css_online() on a new CSS and mark it online if successful */
4338 static int online_css(struct cgroup_subsys_state *css)
4339 {
4340 struct cgroup_subsys *ss = css->ss;
4341 int ret = 0;
4342
4343 lockdep_assert_held(&cgroup_mutex);
4344
4345 if (ss->css_online)
4346 ret = ss->css_online(css);
4347 if (!ret) {
4348 css->flags |= CSS_ONLINE;
4349 css->cgroup->nr_css++;
4350 rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
4351 }
4352 return ret;
4353 }
4354
4355 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4356 static void offline_css(struct cgroup_subsys_state *css)
4357 {
4358 struct cgroup_subsys *ss = css->ss;
4359
4360 lockdep_assert_held(&cgroup_mutex);
4361
4362 if (!(css->flags & CSS_ONLINE))
4363 return;
4364
4365 if (ss->css_offline)
4366 ss->css_offline(css);
4367
4368 css->flags &= ~CSS_ONLINE;
4369 css->cgroup->nr_css--;
4370 RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
4371 }
4372
4373 /*
4374 * cgroup_create - create a cgroup
4375 * @parent: cgroup that will be parent of the new cgroup
4376 * @dentry: dentry of the new cgroup
4377 * @mode: mode to set on new inode
4378 *
4379 * Must be called with the mutex on the parent inode held
4380 */
4381 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4382 umode_t mode)
4383 {
4384 struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
4385 struct cgroup *cgrp;
4386 struct cgroup_name *name;
4387 struct cgroupfs_root *root = parent->root;
4388 int err = 0;
4389 struct cgroup_subsys *ss;
4390 struct super_block *sb = root->sb;
4391
4392 /* allocate the cgroup and its ID, 0 is reserved for the root */
4393 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4394 if (!cgrp)
4395 return -ENOMEM;
4396
4397 name = cgroup_alloc_name(dentry);
4398 if (!name)
4399 goto err_free_cgrp;
4400 rcu_assign_pointer(cgrp->name, name);
4401
4402 /*
4403 * Temporarily set the pointer to NULL, so idr_find() won't return
4404 * a half-baked cgroup.
4405 */
4406 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
4407 if (cgrp->id < 0)
4408 goto err_free_name;
4409
4410 /*
4411 * Only live parents can have children. Note that the liveliness
4412 * check isn't strictly necessary because cgroup_mkdir() and
4413 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4414 * anyway so that locking is contained inside cgroup proper and we
4415 * don't get nasty surprises if we ever grow another caller.
4416 */
4417 if (!cgroup_lock_live_group(parent)) {
4418 err = -ENODEV;
4419 goto err_free_id;
4420 }
4421
4422 /* Grab a reference on the superblock so the hierarchy doesn't
4423 * get deleted on unmount if there are child cgroups. This
4424 * can be done outside cgroup_mutex, since the sb can't
4425 * disappear while someone has an open control file on the
4426 * fs */
4427 atomic_inc(&sb->s_active);
4428
4429 init_cgroup_housekeeping(cgrp);
4430
4431 dentry->d_fsdata = cgrp;
4432 cgrp->dentry = dentry;
4433
4434 cgrp->parent = parent;
4435 cgrp->dummy_css.parent = &parent->dummy_css;
4436 cgrp->root = parent->root;
4437
4438 if (notify_on_release(parent))
4439 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4440
4441 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4442 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4443
4444 for_each_root_subsys(root, ss) {
4445 struct cgroup_subsys_state *css;
4446
4447 css = ss->css_alloc(cgroup_css(parent, ss));
4448 if (IS_ERR(css)) {
4449 err = PTR_ERR(css);
4450 goto err_free_all;
4451 }
4452 css_ar[ss->subsys_id] = css;
4453
4454 err = percpu_ref_init(&css->refcnt, css_release);
4455 if (err)
4456 goto err_free_all;
4457
4458 init_css(css, ss, cgrp);
4459
4460 if (ss->use_id) {
4461 err = alloc_css_id(css);
4462 if (err)
4463 goto err_free_all;
4464 }
4465 }
4466
4467 /*
4468 * Create directory. cgroup_create_file() returns with the new
4469 * directory locked on success so that it can be populated without
4470 * dropping cgroup_mutex.
4471 */
4472 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4473 if (err < 0)
4474 goto err_free_all;
4475 lockdep_assert_held(&dentry->d_inode->i_mutex);
4476
4477 cgrp->serial_nr = cgroup_serial_nr_next++;
4478
4479 /* allocation complete, commit to creation */
4480 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4481 root->number_of_cgroups++;
4482
4483 /* each css holds a ref to the cgroup's dentry and the parent css */
4484 for_each_root_subsys(root, ss) {
4485 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4486
4487 dget(dentry);
4488 css_get(css->parent);
4489 }
4490
4491 /* hold a ref to the parent's dentry */
4492 dget(parent->dentry);
4493
4494 /* creation succeeded, notify subsystems */
4495 for_each_root_subsys(root, ss) {
4496 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4497
4498 err = online_css(css);
4499 if (err)
4500 goto err_destroy;
4501
4502 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4503 parent->parent) {
4504 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4505 current->comm, current->pid, ss->name);
4506 if (!strcmp(ss->name, "memory"))
4507 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4508 ss->warned_broken_hierarchy = true;
4509 }
4510 }
4511
4512 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4513
4514 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4515 if (err)
4516 goto err_destroy;
4517
4518 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4519 if (err)
4520 goto err_destroy;
4521
4522 mutex_unlock(&cgroup_mutex);
4523 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4524
4525 return 0;
4526
4527 err_free_all:
4528 for_each_root_subsys(root, ss) {
4529 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4530
4531 if (css) {
4532 percpu_ref_cancel_init(&css->refcnt);
4533 ss->css_free(css);
4534 }
4535 }
4536 mutex_unlock(&cgroup_mutex);
4537 /* Release the reference count that we took on the superblock */
4538 deactivate_super(sb);
4539 err_free_id:
4540 idr_remove(&root->cgroup_idr, cgrp->id);
4541 err_free_name:
4542 kfree(rcu_dereference_raw(cgrp->name));
4543 err_free_cgrp:
4544 kfree(cgrp);
4545 return err;
4546
4547 err_destroy:
4548 cgroup_destroy_locked(cgrp);
4549 mutex_unlock(&cgroup_mutex);
4550 mutex_unlock(&dentry->d_inode->i_mutex);
4551 return err;
4552 }
4553
4554 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4555 {
4556 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4557
4558 /* the vfs holds inode->i_mutex already */
4559 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4560 }
4561
4562 /*
4563 * This is called when the refcnt of a css is confirmed to be killed.
4564 * css_tryget() is now guaranteed to fail.
4565 */
4566 static void css_killed_work_fn(struct work_struct *work)
4567 {
4568 struct cgroup_subsys_state *css =
4569 container_of(work, struct cgroup_subsys_state, destroy_work);
4570 struct cgroup *cgrp = css->cgroup;
4571
4572 mutex_lock(&cgroup_mutex);
4573
4574 /*
4575 * css_tryget() is guaranteed to fail now. Tell subsystems to
4576 * initate destruction.
4577 */
4578 offline_css(css);
4579
4580 /*
4581 * If @cgrp is marked dead, it's waiting for refs of all css's to
4582 * be disabled before proceeding to the second phase of cgroup
4583 * destruction. If we are the last one, kick it off.
4584 */
4585 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
4586 cgroup_destroy_css_killed(cgrp);
4587
4588 mutex_unlock(&cgroup_mutex);
4589
4590 /*
4591 * Put the css refs from kill_css(). Each css holds an extra
4592 * reference to the cgroup's dentry and cgroup removal proceeds
4593 * regardless of css refs. On the last put of each css, whenever
4594 * that may be, the extra dentry ref is put so that dentry
4595 * destruction happens only after all css's are released.
4596 */
4597 css_put(css);
4598 }
4599
4600 /* css kill confirmation processing requires process context, bounce */
4601 static void css_killed_ref_fn(struct percpu_ref *ref)
4602 {
4603 struct cgroup_subsys_state *css =
4604 container_of(ref, struct cgroup_subsys_state, refcnt);
4605
4606 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4607 schedule_work(&css->destroy_work);
4608 }
4609
4610 /**
4611 * kill_css - destroy a css
4612 * @css: css to destroy
4613 *
4614 * This function initiates destruction of @css by removing cgroup interface
4615 * files and putting its base reference. ->css_offline() will be invoked
4616 * asynchronously once css_tryget() is guaranteed to fail and when the
4617 * reference count reaches zero, @css will be released.
4618 */
4619 static void kill_css(struct cgroup_subsys_state *css)
4620 {
4621 cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);
4622
4623 /*
4624 * Killing would put the base ref, but we need to keep it alive
4625 * until after ->css_offline().
4626 */
4627 css_get(css);
4628
4629 /*
4630 * cgroup core guarantees that, by the time ->css_offline() is
4631 * invoked, no new css reference will be given out via
4632 * css_tryget(). We can't simply call percpu_ref_kill() and
4633 * proceed to offlining css's because percpu_ref_kill() doesn't
4634 * guarantee that the ref is seen as killed on all CPUs on return.
4635 *
4636 * Use percpu_ref_kill_and_confirm() to get notifications as each
4637 * css is confirmed to be seen as killed on all CPUs.
4638 */
4639 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4640 }
4641
4642 /**
4643 * cgroup_destroy_locked - the first stage of cgroup destruction
4644 * @cgrp: cgroup to be destroyed
4645 *
4646 * css's make use of percpu refcnts whose killing latency shouldn't be
4647 * exposed to userland and are RCU protected. Also, cgroup core needs to
4648 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4649 * invoked. To satisfy all the requirements, destruction is implemented in
4650 * the following two steps.
4651 *
4652 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4653 * userland visible parts and start killing the percpu refcnts of
4654 * css's. Set up so that the next stage will be kicked off once all
4655 * the percpu refcnts are confirmed to be killed.
4656 *
4657 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4658 * rest of destruction. Once all cgroup references are gone, the
4659 * cgroup is RCU-freed.
4660 *
4661 * This function implements s1. After this step, @cgrp is gone as far as
4662 * the userland is concerned and a new cgroup with the same name may be
4663 * created. As cgroup doesn't care about the names internally, this
4664 * doesn't cause any problem.
4665 */
4666 static int cgroup_destroy_locked(struct cgroup *cgrp)
4667 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4668 {
4669 struct dentry *d = cgrp->dentry;
4670 struct cgroup_event *event, *tmp;
4671 struct cgroup_subsys *ss;
4672 struct cgroup *child;
4673 bool empty;
4674
4675 lockdep_assert_held(&d->d_inode->i_mutex);
4676 lockdep_assert_held(&cgroup_mutex);
4677
4678 /*
4679 * css_set_lock synchronizes access to ->cset_links and prevents
4680 * @cgrp from being removed while __put_css_set() is in progress.
4681 */
4682 read_lock(&css_set_lock);
4683 empty = list_empty(&cgrp->cset_links);
4684 read_unlock(&css_set_lock);
4685 if (!empty)
4686 return -EBUSY;
4687
4688 /*
4689 * Make sure there's no live children. We can't test ->children
4690 * emptiness as dead children linger on it while being destroyed;
4691 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4692 */
4693 empty = true;
4694 rcu_read_lock();
4695 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4696 empty = cgroup_is_dead(child);
4697 if (!empty)
4698 break;
4699 }
4700 rcu_read_unlock();
4701 if (!empty)
4702 return -EBUSY;
4703
4704 /*
4705 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4706 * will be invoked to perform the rest of destruction once the
4707 * percpu refs of all css's are confirmed to be killed.
4708 */
4709 for_each_root_subsys(cgrp->root, ss)
4710 kill_css(cgroup_css(cgrp, ss));
4711
4712 /*
4713 * Mark @cgrp dead. This prevents further task migration and child
4714 * creation by disabling cgroup_lock_live_group(). Note that
4715 * CGRP_DEAD assertion is depended upon by css_next_child() to
4716 * resume iteration after dropping RCU read lock. See
4717 * css_next_child() for details.
4718 */
4719 set_bit(CGRP_DEAD, &cgrp->flags);
4720
4721 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4722 raw_spin_lock(&release_list_lock);
4723 if (!list_empty(&cgrp->release_list))
4724 list_del_init(&cgrp->release_list);
4725 raw_spin_unlock(&release_list_lock);
4726
4727 /*
4728 * If @cgrp has css's attached, the second stage of cgroup
4729 * destruction is kicked off from css_killed_work_fn() after the
4730 * refs of all attached css's are killed. If @cgrp doesn't have
4731 * any css, we kick it off here.
4732 */
4733 if (!cgrp->nr_css)
4734 cgroup_destroy_css_killed(cgrp);
4735
4736 /*
4737 * Clear the base files and remove @cgrp directory. The removal
4738 * puts the base ref but we aren't quite done with @cgrp yet, so
4739 * hold onto it.
4740 */
4741 cgroup_addrm_files(cgrp, cgroup_base_files, false);
4742 dget(d);
4743 cgroup_d_remove_dir(d);
4744
4745 /*
4746 * Unregister events and notify userspace.
4747 * Notify userspace about cgroup removing only after rmdir of cgroup
4748 * directory to avoid race between userspace and kernelspace.
4749 */
4750 spin_lock(&cgrp->event_list_lock);
4751 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4752 list_del_init(&event->list);
4753 schedule_work(&event->remove);
4754 }
4755 spin_unlock(&cgrp->event_list_lock);
4756
4757 return 0;
4758 };
4759
4760 /**
4761 * cgroup_destroy_css_killed - the second step of cgroup destruction
4762 * @work: cgroup->destroy_free_work
4763 *
4764 * This function is invoked from a work item for a cgroup which is being
4765 * destroyed after all css's are offlined and performs the rest of
4766 * destruction. This is the second step of destruction described in the
4767 * comment above cgroup_destroy_locked().
4768 */
4769 static void cgroup_destroy_css_killed(struct cgroup *cgrp)
4770 {
4771 struct cgroup *parent = cgrp->parent;
4772 struct dentry *d = cgrp->dentry;
4773
4774 lockdep_assert_held(&cgroup_mutex);
4775
4776 /* delete this cgroup from parent->children */
4777 list_del_rcu(&cgrp->sibling);
4778
4779 /*
4780 * We should remove the cgroup object from idr before its grace
4781 * period starts, so we won't be looking up a cgroup while the
4782 * cgroup is being freed.
4783 */
4784 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4785 cgrp->id = -1;
4786
4787 dput(d);
4788
4789 set_bit(CGRP_RELEASABLE, &parent->flags);
4790 check_for_release(parent);
4791 }
4792
4793 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4794 {
4795 int ret;
4796
4797 mutex_lock(&cgroup_mutex);
4798 ret = cgroup_destroy_locked(dentry->d_fsdata);
4799 mutex_unlock(&cgroup_mutex);
4800
4801 return ret;
4802 }
4803
4804 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4805 {
4806 INIT_LIST_HEAD(&ss->cftsets);
4807
4808 /*
4809 * base_cftset is embedded in subsys itself, no need to worry about
4810 * deregistration.
4811 */
4812 if (ss->base_cftypes) {
4813 struct cftype *cft;
4814
4815 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4816 cft->ss = ss;
4817
4818 ss->base_cftset.cfts = ss->base_cftypes;
4819 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4820 }
4821 }
4822
4823 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4824 {
4825 struct cgroup_subsys_state *css;
4826
4827 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4828
4829 mutex_lock(&cgroup_mutex);
4830
4831 /* init base cftset */
4832 cgroup_init_cftsets(ss);
4833
4834 /* Create the top cgroup state for this subsystem */
4835 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4836 ss->root = &cgroup_dummy_root;
4837 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4838 /* We don't handle early failures gracefully */
4839 BUG_ON(IS_ERR(css));
4840 init_css(css, ss, cgroup_dummy_top);
4841
4842 /* Update the init_css_set to contain a subsys
4843 * pointer to this state - since the subsystem is
4844 * newly registered, all tasks and hence the
4845 * init_css_set is in the subsystem's top cgroup. */
4846 init_css_set.subsys[ss->subsys_id] = css;
4847
4848 need_forkexit_callback |= ss->fork || ss->exit;
4849
4850 /* At system boot, before all subsystems have been
4851 * registered, no tasks have been forked, so we don't
4852 * need to invoke fork callbacks here. */
4853 BUG_ON(!list_empty(&init_task.tasks));
4854
4855 BUG_ON(online_css(css));
4856
4857 mutex_unlock(&cgroup_mutex);
4858
4859 /* this function shouldn't be used with modular subsystems, since they
4860 * need to register a subsys_id, among other things */
4861 BUG_ON(ss->module);
4862 }
4863
4864 /**
4865 * cgroup_load_subsys: load and register a modular subsystem at runtime
4866 * @ss: the subsystem to load
4867 *
4868 * This function should be called in a modular subsystem's initcall. If the
4869 * subsystem is built as a module, it will be assigned a new subsys_id and set
4870 * up for use. If the subsystem is built-in anyway, work is delegated to the
4871 * simpler cgroup_init_subsys.
4872 */
4873 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4874 {
4875 struct cgroup_subsys_state *css;
4876 int i, ret;
4877 struct hlist_node *tmp;
4878 struct css_set *cset;
4879 unsigned long key;
4880
4881 /* check name and function validity */
4882 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4883 ss->css_alloc == NULL || ss->css_free == NULL)
4884 return -EINVAL;
4885
4886 /*
4887 * we don't support callbacks in modular subsystems. this check is
4888 * before the ss->module check for consistency; a subsystem that could
4889 * be a module should still have no callbacks even if the user isn't
4890 * compiling it as one.
4891 */
4892 if (ss->fork || ss->exit)
4893 return -EINVAL;
4894
4895 /*
4896 * an optionally modular subsystem is built-in: we want to do nothing,
4897 * since cgroup_init_subsys will have already taken care of it.
4898 */
4899 if (ss->module == NULL) {
4900 /* a sanity check */
4901 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4902 return 0;
4903 }
4904
4905 /* init base cftset */
4906 cgroup_init_cftsets(ss);
4907
4908 mutex_lock(&cgroup_mutex);
4909 cgroup_subsys[ss->subsys_id] = ss;
4910
4911 /*
4912 * no ss->css_alloc seems to need anything important in the ss
4913 * struct, so this can happen first (i.e. before the dummy root
4914 * attachment).
4915 */
4916 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4917 if (IS_ERR(css)) {
4918 /* failure case - need to deassign the cgroup_subsys[] slot. */
4919 cgroup_subsys[ss->subsys_id] = NULL;
4920 mutex_unlock(&cgroup_mutex);
4921 return PTR_ERR(css);
4922 }
4923
4924 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4925 ss->root = &cgroup_dummy_root;
4926
4927 /* our new subsystem will be attached to the dummy hierarchy. */
4928 init_css(css, ss, cgroup_dummy_top);
4929 /* init_idr must be after init_css() because it sets css->id. */
4930 if (ss->use_id) {
4931 ret = cgroup_init_idr(ss, css);
4932 if (ret)
4933 goto err_unload;
4934 }
4935
4936 /*
4937 * Now we need to entangle the css into the existing css_sets. unlike
4938 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4939 * will need a new pointer to it; done by iterating the css_set_table.
4940 * furthermore, modifying the existing css_sets will corrupt the hash
4941 * table state, so each changed css_set will need its hash recomputed.
4942 * this is all done under the css_set_lock.
4943 */
4944 write_lock(&css_set_lock);
4945 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4946 /* skip entries that we already rehashed */
4947 if (cset->subsys[ss->subsys_id])
4948 continue;
4949 /* remove existing entry */
4950 hash_del(&cset->hlist);
4951 /* set new value */
4952 cset->subsys[ss->subsys_id] = css;
4953 /* recompute hash and restore entry */
4954 key = css_set_hash(cset->subsys);
4955 hash_add(css_set_table, &cset->hlist, key);
4956 }
4957 write_unlock(&css_set_lock);
4958
4959 ret = online_css(css);
4960 if (ret)
4961 goto err_unload;
4962
4963 /* success! */
4964 mutex_unlock(&cgroup_mutex);
4965 return 0;
4966
4967 err_unload:
4968 mutex_unlock(&cgroup_mutex);
4969 /* @ss can't be mounted here as try_module_get() would fail */
4970 cgroup_unload_subsys(ss);
4971 return ret;
4972 }
4973 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4974
4975 /**
4976 * cgroup_unload_subsys: unload a modular subsystem
4977 * @ss: the subsystem to unload
4978 *
4979 * This function should be called in a modular subsystem's exitcall. When this
4980 * function is invoked, the refcount on the subsystem's module will be 0, so
4981 * the subsystem will not be attached to any hierarchy.
4982 */
4983 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4984 {
4985 struct cgrp_cset_link *link;
4986
4987 BUG_ON(ss->module == NULL);
4988
4989 /*
4990 * we shouldn't be called if the subsystem is in use, and the use of
4991 * try_module_get() in rebind_subsystems() should ensure that it
4992 * doesn't start being used while we're killing it off.
4993 */
4994 BUG_ON(ss->root != &cgroup_dummy_root);
4995
4996 mutex_lock(&cgroup_mutex);
4997
4998 offline_css(cgroup_css(cgroup_dummy_top, ss));
4999
5000 if (ss->use_id)
5001 idr_destroy(&ss->idr);
5002
5003 /* deassign the subsys_id */
5004 cgroup_subsys[ss->subsys_id] = NULL;
5005
5006 /* remove subsystem from the dummy root's list of subsystems */
5007 list_del_init(&ss->sibling);
5008
5009 /*
5010 * disentangle the css from all css_sets attached to the dummy
5011 * top. as in loading, we need to pay our respects to the hashtable
5012 * gods.
5013 */
5014 write_lock(&css_set_lock);
5015 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
5016 struct css_set *cset = link->cset;
5017 unsigned long key;
5018
5019 hash_del(&cset->hlist);
5020 cset->subsys[ss->subsys_id] = NULL;
5021 key = css_set_hash(cset->subsys);
5022 hash_add(css_set_table, &cset->hlist, key);
5023 }
5024 write_unlock(&css_set_lock);
5025
5026 /*
5027 * remove subsystem's css from the cgroup_dummy_top and free it -
5028 * need to free before marking as null because ss->css_free needs
5029 * the cgrp->subsys pointer to find their state. note that this
5030 * also takes care of freeing the css_id.
5031 */
5032 ss->css_free(cgroup_css(cgroup_dummy_top, ss));
5033 RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
5034
5035 mutex_unlock(&cgroup_mutex);
5036 }
5037 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
5038
5039 /**
5040 * cgroup_init_early - cgroup initialization at system boot
5041 *
5042 * Initialize cgroups at system boot, and initialize any
5043 * subsystems that request early init.
5044 */
5045 int __init cgroup_init_early(void)
5046 {
5047 struct cgroup_subsys *ss;
5048 int i;
5049
5050 atomic_set(&init_css_set.refcount, 1);
5051 INIT_LIST_HEAD(&init_css_set.cgrp_links);
5052 INIT_LIST_HEAD(&init_css_set.tasks);
5053 INIT_HLIST_NODE(&init_css_set.hlist);
5054 css_set_count = 1;
5055 init_cgroup_root(&cgroup_dummy_root);
5056 cgroup_root_count = 1;
5057 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5058
5059 init_cgrp_cset_link.cset = &init_css_set;
5060 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
5061 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
5062 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
5063
5064 /* at bootup time, we don't worry about modular subsystems */
5065 for_each_builtin_subsys(ss, i) {
5066 BUG_ON(!ss->name);
5067 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
5068 BUG_ON(!ss->css_alloc);
5069 BUG_ON(!ss->css_free);
5070 if (ss->subsys_id != i) {
5071 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
5072 ss->name, ss->subsys_id);
5073 BUG();
5074 }
5075
5076 if (ss->early_init)
5077 cgroup_init_subsys(ss);
5078 }
5079 return 0;
5080 }
5081
5082 /**
5083 * cgroup_init - cgroup initialization
5084 *
5085 * Register cgroup filesystem and /proc file, and initialize
5086 * any subsystems that didn't request early init.
5087 */
5088 int __init cgroup_init(void)
5089 {
5090 struct cgroup_subsys *ss;
5091 unsigned long key;
5092 int i, err;
5093
5094 err = bdi_init(&cgroup_backing_dev_info);
5095 if (err)
5096 return err;
5097
5098 for_each_builtin_subsys(ss, i) {
5099 if (!ss->early_init)
5100 cgroup_init_subsys(ss);
5101 if (ss->use_id)
5102 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
5103 }
5104
5105 /* allocate id for the dummy hierarchy */
5106 mutex_lock(&cgroup_mutex);
5107 mutex_lock(&cgroup_root_mutex);
5108
5109 /* Add init_css_set to the hash table */
5110 key = css_set_hash(init_css_set.subsys);
5111 hash_add(css_set_table, &init_css_set.hlist, key);
5112
5113 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
5114
5115 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5116 0, 1, GFP_KERNEL);
5117 BUG_ON(err < 0);
5118
5119 mutex_unlock(&cgroup_root_mutex);
5120 mutex_unlock(&cgroup_mutex);
5121
5122 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5123 if (!cgroup_kobj) {
5124 err = -ENOMEM;
5125 goto out;
5126 }
5127
5128 err = register_filesystem(&cgroup_fs_type);
5129 if (err < 0) {
5130 kobject_put(cgroup_kobj);
5131 goto out;
5132 }
5133
5134 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5135
5136 out:
5137 if (err)
5138 bdi_destroy(&cgroup_backing_dev_info);
5139
5140 return err;
5141 }
5142
5143 /*
5144 * proc_cgroup_show()
5145 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5146 * - Used for /proc/<pid>/cgroup.
5147 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5148 * doesn't really matter if tsk->cgroup changes after we read it,
5149 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
5150 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5151 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5152 * cgroup to top_cgroup.
5153 */
5154
5155 /* TODO: Use a proper seq_file iterator */
5156 int proc_cgroup_show(struct seq_file *m, void *v)
5157 {
5158 struct pid *pid;
5159 struct task_struct *tsk;
5160 char *buf;
5161 int retval;
5162 struct cgroupfs_root *root;
5163
5164 retval = -ENOMEM;
5165 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5166 if (!buf)
5167 goto out;
5168
5169 retval = -ESRCH;
5170 pid = m->private;
5171 tsk = get_pid_task(pid, PIDTYPE_PID);
5172 if (!tsk)
5173 goto out_free;
5174
5175 retval = 0;
5176
5177 mutex_lock(&cgroup_mutex);
5178
5179 for_each_active_root(root) {
5180 struct cgroup_subsys *ss;
5181 struct cgroup *cgrp;
5182 int count = 0;
5183
5184 seq_printf(m, "%d:", root->hierarchy_id);
5185 for_each_root_subsys(root, ss)
5186 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5187 if (strlen(root->name))
5188 seq_printf(m, "%sname=%s", count ? "," : "",
5189 root->name);
5190 seq_putc(m, ':');
5191 cgrp = task_cgroup_from_root(tsk, root);
5192 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
5193 if (retval < 0)
5194 goto out_unlock;
5195 seq_puts(m, buf);
5196 seq_putc(m, '\n');
5197 }
5198
5199 out_unlock:
5200 mutex_unlock(&cgroup_mutex);
5201 put_task_struct(tsk);
5202 out_free:
5203 kfree(buf);
5204 out:
5205 return retval;
5206 }
5207
5208 /* Display information about each subsystem and each hierarchy */
5209 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5210 {
5211 struct cgroup_subsys *ss;
5212 int i;
5213
5214 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5215 /*
5216 * ideally we don't want subsystems moving around while we do this.
5217 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5218 * subsys/hierarchy state.
5219 */
5220 mutex_lock(&cgroup_mutex);
5221
5222 for_each_subsys(ss, i)
5223 seq_printf(m, "%s\t%d\t%d\t%d\n",
5224 ss->name, ss->root->hierarchy_id,
5225 ss->root->number_of_cgroups, !ss->disabled);
5226
5227 mutex_unlock(&cgroup_mutex);
5228 return 0;
5229 }
5230
5231 static int cgroupstats_open(struct inode *inode, struct file *file)
5232 {
5233 return single_open(file, proc_cgroupstats_show, NULL);
5234 }
5235
5236 static const struct file_operations proc_cgroupstats_operations = {
5237 .open = cgroupstats_open,
5238 .read = seq_read,
5239 .llseek = seq_lseek,
5240 .release = single_release,
5241 };
5242
5243 /**
5244 * cgroup_fork - attach newly forked task to its parents cgroup.
5245 * @child: pointer to task_struct of forking parent process.
5246 *
5247 * Description: A task inherits its parent's cgroup at fork().
5248 *
5249 * A pointer to the shared css_set was automatically copied in
5250 * fork.c by dup_task_struct(). However, we ignore that copy, since
5251 * it was not made under the protection of RCU or cgroup_mutex, so
5252 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5253 * have already changed current->cgroups, allowing the previously
5254 * referenced cgroup group to be removed and freed.
5255 *
5256 * At the point that cgroup_fork() is called, 'current' is the parent
5257 * task, and the passed argument 'child' points to the child task.
5258 */
5259 void cgroup_fork(struct task_struct *child)
5260 {
5261 task_lock(current);
5262 get_css_set(task_css_set(current));
5263 child->cgroups = current->cgroups;
5264 task_unlock(current);
5265 INIT_LIST_HEAD(&child->cg_list);
5266 }
5267
5268 /**
5269 * cgroup_post_fork - called on a new task after adding it to the task list
5270 * @child: the task in question
5271 *
5272 * Adds the task to the list running through its css_set if necessary and
5273 * call the subsystem fork() callbacks. Has to be after the task is
5274 * visible on the task list in case we race with the first call to
5275 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5276 * list.
5277 */
5278 void cgroup_post_fork(struct task_struct *child)
5279 {
5280 struct cgroup_subsys *ss;
5281 int i;
5282
5283 /*
5284 * use_task_css_set_links is set to 1 before we walk the tasklist
5285 * under the tasklist_lock and we read it here after we added the child
5286 * to the tasklist under the tasklist_lock as well. If the child wasn't
5287 * yet in the tasklist when we walked through it from
5288 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5289 * should be visible now due to the paired locking and barriers implied
5290 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5291 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5292 * lock on fork.
5293 */
5294 if (use_task_css_set_links) {
5295 write_lock(&css_set_lock);
5296 task_lock(child);
5297 if (list_empty(&child->cg_list))
5298 list_add(&child->cg_list, &task_css_set(child)->tasks);
5299 task_unlock(child);
5300 write_unlock(&css_set_lock);
5301 }
5302
5303 /*
5304 * Call ss->fork(). This must happen after @child is linked on
5305 * css_set; otherwise, @child might change state between ->fork()
5306 * and addition to css_set.
5307 */
5308 if (need_forkexit_callback) {
5309 /*
5310 * fork/exit callbacks are supported only for builtin
5311 * subsystems, and the builtin section of the subsys
5312 * array is immutable, so we don't need to lock the
5313 * subsys array here. On the other hand, modular section
5314 * of the array can be freed at module unload, so we
5315 * can't touch that.
5316 */
5317 for_each_builtin_subsys(ss, i)
5318 if (ss->fork)
5319 ss->fork(child);
5320 }
5321 }
5322
5323 /**
5324 * cgroup_exit - detach cgroup from exiting task
5325 * @tsk: pointer to task_struct of exiting process
5326 * @run_callback: run exit callbacks?
5327 *
5328 * Description: Detach cgroup from @tsk and release it.
5329 *
5330 * Note that cgroups marked notify_on_release force every task in
5331 * them to take the global cgroup_mutex mutex when exiting.
5332 * This could impact scaling on very large systems. Be reluctant to
5333 * use notify_on_release cgroups where very high task exit scaling
5334 * is required on large systems.
5335 *
5336 * the_top_cgroup_hack:
5337 *
5338 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5339 *
5340 * We call cgroup_exit() while the task is still competent to
5341 * handle notify_on_release(), then leave the task attached to the
5342 * root cgroup in each hierarchy for the remainder of its exit.
5343 *
5344 * To do this properly, we would increment the reference count on
5345 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5346 * code we would add a second cgroup function call, to drop that
5347 * reference. This would just create an unnecessary hot spot on
5348 * the top_cgroup reference count, to no avail.
5349 *
5350 * Normally, holding a reference to a cgroup without bumping its
5351 * count is unsafe. The cgroup could go away, or someone could
5352 * attach us to a different cgroup, decrementing the count on
5353 * the first cgroup that we never incremented. But in this case,
5354 * top_cgroup isn't going away, and either task has PF_EXITING set,
5355 * which wards off any cgroup_attach_task() attempts, or task is a failed
5356 * fork, never visible to cgroup_attach_task.
5357 */
5358 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5359 {
5360 struct cgroup_subsys *ss;
5361 struct css_set *cset;
5362 int i;
5363
5364 /*
5365 * Unlink from the css_set task list if necessary.
5366 * Optimistically check cg_list before taking
5367 * css_set_lock
5368 */
5369 if (!list_empty(&tsk->cg_list)) {
5370 write_lock(&css_set_lock);
5371 if (!list_empty(&tsk->cg_list))
5372 list_del_init(&tsk->cg_list);
5373 write_unlock(&css_set_lock);
5374 }
5375
5376 /* Reassign the task to the init_css_set. */
5377 task_lock(tsk);
5378 cset = task_css_set(tsk);
5379 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5380
5381 if (run_callbacks && need_forkexit_callback) {
5382 /*
5383 * fork/exit callbacks are supported only for builtin
5384 * subsystems, see cgroup_post_fork() for details.
5385 */
5386 for_each_builtin_subsys(ss, i) {
5387 if (ss->exit) {
5388 struct cgroup_subsys_state *old_css = cset->subsys[i];
5389 struct cgroup_subsys_state *css = task_css(tsk, i);
5390
5391 ss->exit(css, old_css, tsk);
5392 }
5393 }
5394 }
5395 task_unlock(tsk);
5396
5397 put_css_set_taskexit(cset);
5398 }
5399
5400 static void check_for_release(struct cgroup *cgrp)
5401 {
5402 if (cgroup_is_releasable(cgrp) &&
5403 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5404 /*
5405 * Control Group is currently removeable. If it's not
5406 * already queued for a userspace notification, queue
5407 * it now
5408 */
5409 int need_schedule_work = 0;
5410
5411 raw_spin_lock(&release_list_lock);
5412 if (!cgroup_is_dead(cgrp) &&
5413 list_empty(&cgrp->release_list)) {
5414 list_add(&cgrp->release_list, &release_list);
5415 need_schedule_work = 1;
5416 }
5417 raw_spin_unlock(&release_list_lock);
5418 if (need_schedule_work)
5419 schedule_work(&release_agent_work);
5420 }
5421 }
5422
5423 /*
5424 * Notify userspace when a cgroup is released, by running the
5425 * configured release agent with the name of the cgroup (path
5426 * relative to the root of cgroup file system) as the argument.
5427 *
5428 * Most likely, this user command will try to rmdir this cgroup.
5429 *
5430 * This races with the possibility that some other task will be
5431 * attached to this cgroup before it is removed, or that some other
5432 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5433 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5434 * unused, and this cgroup will be reprieved from its death sentence,
5435 * to continue to serve a useful existence. Next time it's released,
5436 * we will get notified again, if it still has 'notify_on_release' set.
5437 *
5438 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5439 * means only wait until the task is successfully execve()'d. The
5440 * separate release agent task is forked by call_usermodehelper(),
5441 * then control in this thread returns here, without waiting for the
5442 * release agent task. We don't bother to wait because the caller of
5443 * this routine has no use for the exit status of the release agent
5444 * task, so no sense holding our caller up for that.
5445 */
5446 static void cgroup_release_agent(struct work_struct *work)
5447 {
5448 BUG_ON(work != &release_agent_work);
5449 mutex_lock(&cgroup_mutex);
5450 raw_spin_lock(&release_list_lock);
5451 while (!list_empty(&release_list)) {
5452 char *argv[3], *envp[3];
5453 int i;
5454 char *pathbuf = NULL, *agentbuf = NULL;
5455 struct cgroup *cgrp = list_entry(release_list.next,
5456 struct cgroup,
5457 release_list);
5458 list_del_init(&cgrp->release_list);
5459 raw_spin_unlock(&release_list_lock);
5460 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5461 if (!pathbuf)
5462 goto continue_free;
5463 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5464 goto continue_free;
5465 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5466 if (!agentbuf)
5467 goto continue_free;
5468
5469 i = 0;
5470 argv[i++] = agentbuf;
5471 argv[i++] = pathbuf;
5472 argv[i] = NULL;
5473
5474 i = 0;
5475 /* minimal command environment */
5476 envp[i++] = "HOME=/";
5477 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5478 envp[i] = NULL;
5479
5480 /* Drop the lock while we invoke the usermode helper,
5481 * since the exec could involve hitting disk and hence
5482 * be a slow process */
5483 mutex_unlock(&cgroup_mutex);
5484 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5485 mutex_lock(&cgroup_mutex);
5486 continue_free:
5487 kfree(pathbuf);
5488 kfree(agentbuf);
5489 raw_spin_lock(&release_list_lock);
5490 }
5491 raw_spin_unlock(&release_list_lock);
5492 mutex_unlock(&cgroup_mutex);
5493 }
5494
5495 static int __init cgroup_disable(char *str)
5496 {
5497 struct cgroup_subsys *ss;
5498 char *token;
5499 int i;
5500
5501 while ((token = strsep(&str, ",")) != NULL) {
5502 if (!*token)
5503 continue;
5504
5505 /*
5506 * cgroup_disable, being at boot time, can't know about
5507 * module subsystems, so we don't worry about them.
5508 */
5509 for_each_builtin_subsys(ss, i) {
5510 if (!strcmp(token, ss->name)) {
5511 ss->disabled = 1;
5512 printk(KERN_INFO "Disabling %s control group"
5513 " subsystem\n", ss->name);
5514 break;
5515 }
5516 }
5517 }
5518 return 1;
5519 }
5520 __setup("cgroup_disable=", cgroup_disable);
5521
5522 /*
5523 * Functons for CSS ID.
5524 */
5525
5526 /* to get ID other than 0, this should be called when !cgroup_is_dead() */
5527 unsigned short css_id(struct cgroup_subsys_state *css)
5528 {
5529 struct css_id *cssid;
5530
5531 /*
5532 * This css_id() can return correct value when somone has refcnt
5533 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5534 * it's unchanged until freed.
5535 */
5536 cssid = rcu_dereference_raw(css->id);
5537
5538 if (cssid)
5539 return cssid->id;
5540 return 0;
5541 }
5542 EXPORT_SYMBOL_GPL(css_id);
5543
5544 /**
5545 * css_is_ancestor - test "root" css is an ancestor of "child"
5546 * @child: the css to be tested.
5547 * @root: the css supporsed to be an ancestor of the child.
5548 *
5549 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5550 * this function reads css->id, the caller must hold rcu_read_lock().
5551 * But, considering usual usage, the csses should be valid objects after test.
5552 * Assuming that the caller will do some action to the child if this returns
5553 * returns true, the caller must take "child";s reference count.
5554 * If "child" is valid object and this returns true, "root" is valid, too.
5555 */
5556
5557 bool css_is_ancestor(struct cgroup_subsys_state *child,
5558 const struct cgroup_subsys_state *root)
5559 {
5560 struct css_id *child_id;
5561 struct css_id *root_id;
5562
5563 child_id = rcu_dereference(child->id);
5564 if (!child_id)
5565 return false;
5566 root_id = rcu_dereference(root->id);
5567 if (!root_id)
5568 return false;
5569 if (child_id->depth < root_id->depth)
5570 return false;
5571 if (child_id->stack[root_id->depth] != root_id->id)
5572 return false;
5573 return true;
5574 }
5575
5576 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5577 {
5578 struct css_id *id = rcu_dereference_protected(css->id, true);
5579
5580 /* When this is called before css_id initialization, id can be NULL */
5581 if (!id)
5582 return;
5583
5584 BUG_ON(!ss->use_id);
5585
5586 rcu_assign_pointer(id->css, NULL);
5587 rcu_assign_pointer(css->id, NULL);
5588 spin_lock(&ss->id_lock);
5589 idr_remove(&ss->idr, id->id);
5590 spin_unlock(&ss->id_lock);
5591 kfree_rcu(id, rcu_head);
5592 }
5593 EXPORT_SYMBOL_GPL(free_css_id);
5594
5595 /*
5596 * This is called by init or create(). Then, calls to this function are
5597 * always serialized (By cgroup_mutex() at create()).
5598 */
5599
5600 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5601 {
5602 struct css_id *newid;
5603 int ret, size;
5604
5605 BUG_ON(!ss->use_id);
5606
5607 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5608 newid = kzalloc(size, GFP_KERNEL);
5609 if (!newid)
5610 return ERR_PTR(-ENOMEM);
5611
5612 idr_preload(GFP_KERNEL);
5613 spin_lock(&ss->id_lock);
5614 /* Don't use 0. allocates an ID of 1-65535 */
5615 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5616 spin_unlock(&ss->id_lock);
5617 idr_preload_end();
5618
5619 /* Returns error when there are no free spaces for new ID.*/
5620 if (ret < 0)
5621 goto err_out;
5622
5623 newid->id = ret;
5624 newid->depth = depth;
5625 return newid;
5626 err_out:
5627 kfree(newid);
5628 return ERR_PTR(ret);
5629
5630 }
5631
5632 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5633 struct cgroup_subsys_state *rootcss)
5634 {
5635 struct css_id *newid;
5636
5637 spin_lock_init(&ss->id_lock);
5638 idr_init(&ss->idr);
5639
5640 newid = get_new_cssid(ss, 0);
5641 if (IS_ERR(newid))
5642 return PTR_ERR(newid);
5643
5644 newid->stack[0] = newid->id;
5645 RCU_INIT_POINTER(newid->css, rootcss);
5646 RCU_INIT_POINTER(rootcss->id, newid);
5647 return 0;
5648 }
5649
5650 static int alloc_css_id(struct cgroup_subsys_state *child_css)
5651 {
5652 struct cgroup_subsys_state *parent_css = css_parent(child_css);
5653 struct css_id *child_id, *parent_id;
5654 int i, depth;
5655
5656 parent_id = rcu_dereference_protected(parent_css->id, true);
5657 depth = parent_id->depth + 1;
5658
5659 child_id = get_new_cssid(child_css->ss, depth);
5660 if (IS_ERR(child_id))
5661 return PTR_ERR(child_id);
5662
5663 for (i = 0; i < depth; i++)
5664 child_id->stack[i] = parent_id->stack[i];
5665 child_id->stack[depth] = child_id->id;
5666 /*
5667 * child_id->css pointer will be set after this cgroup is available
5668 * see cgroup_populate_dir()
5669 */
5670 rcu_assign_pointer(child_css->id, child_id);
5671
5672 return 0;
5673 }
5674
5675 /**
5676 * css_lookup - lookup css by id
5677 * @ss: cgroup subsys to be looked into.
5678 * @id: the id
5679 *
5680 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5681 * NULL if not. Should be called under rcu_read_lock()
5682 */
5683 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5684 {
5685 struct css_id *cssid = NULL;
5686
5687 BUG_ON(!ss->use_id);
5688 cssid = idr_find(&ss->idr, id);
5689
5690 if (unlikely(!cssid))
5691 return NULL;
5692
5693 return rcu_dereference(cssid->css);
5694 }
5695 EXPORT_SYMBOL_GPL(css_lookup);
5696
5697 /**
5698 * css_from_dir - get corresponding css from the dentry of a cgroup dir
5699 * @dentry: directory dentry of interest
5700 * @ss: subsystem of interest
5701 *
5702 * Must be called under RCU read lock. The caller is responsible for
5703 * pinning the returned css if it needs to be accessed outside the RCU
5704 * critical section.
5705 */
5706 struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
5707 struct cgroup_subsys *ss)
5708 {
5709 struct cgroup *cgrp;
5710
5711 WARN_ON_ONCE(!rcu_read_lock_held());
5712
5713 /* is @dentry a cgroup dir? */
5714 if (!dentry->d_inode ||
5715 dentry->d_inode->i_op != &cgroup_dir_inode_operations)
5716 return ERR_PTR(-EBADF);
5717
5718 cgrp = __d_cgrp(dentry);
5719 return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
5720 }
5721
5722 /**
5723 * css_from_id - lookup css by id
5724 * @id: the cgroup id
5725 * @ss: cgroup subsys to be looked into
5726 *
5727 * Returns the css if there's valid one with @id, otherwise returns NULL.
5728 * Should be called under rcu_read_lock().
5729 */
5730 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5731 {
5732 struct cgroup *cgrp;
5733
5734 rcu_lockdep_assert(rcu_read_lock_held() ||
5735 lockdep_is_held(&cgroup_mutex),
5736 "css_from_id() needs proper protection");
5737
5738 cgrp = idr_find(&ss->root->cgroup_idr, id);
5739 if (cgrp)
5740 return cgroup_css(cgrp, ss);
5741 return NULL;
5742 }
5743
5744 #ifdef CONFIG_CGROUP_DEBUG
5745 static struct cgroup_subsys_state *
5746 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5747 {
5748 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5749
5750 if (!css)
5751 return ERR_PTR(-ENOMEM);
5752
5753 return css;
5754 }
5755
5756 static void debug_css_free(struct cgroup_subsys_state *css)
5757 {
5758 kfree(css);
5759 }
5760
5761 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5762 struct cftype *cft)
5763 {
5764 return cgroup_task_count(css->cgroup);
5765 }
5766
5767 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5768 struct cftype *cft)
5769 {
5770 return (u64)(unsigned long)current->cgroups;
5771 }
5772
5773 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5774 struct cftype *cft)
5775 {
5776 u64 count;
5777
5778 rcu_read_lock();
5779 count = atomic_read(&task_css_set(current)->refcount);
5780 rcu_read_unlock();
5781 return count;
5782 }
5783
5784 static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
5785 struct cftype *cft,
5786 struct seq_file *seq)
5787 {
5788 struct cgrp_cset_link *link;
5789 struct css_set *cset;
5790
5791 read_lock(&css_set_lock);
5792 rcu_read_lock();
5793 cset = rcu_dereference(current->cgroups);
5794 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5795 struct cgroup *c = link->cgrp;
5796 const char *name;
5797
5798 if (c->dentry)
5799 name = c->dentry->d_name.name;
5800 else
5801 name = "?";
5802 seq_printf(seq, "Root %d group %s\n",
5803 c->root->hierarchy_id, name);
5804 }
5805 rcu_read_unlock();
5806 read_unlock(&css_set_lock);
5807 return 0;
5808 }
5809
5810 #define MAX_TASKS_SHOWN_PER_CSS 25
5811 static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5812 struct cftype *cft, struct seq_file *seq)
5813 {
5814 struct cgrp_cset_link *link;
5815
5816 read_lock(&css_set_lock);
5817 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5818 struct css_set *cset = link->cset;
5819 struct task_struct *task;
5820 int count = 0;
5821 seq_printf(seq, "css_set %p\n", cset);
5822 list_for_each_entry(task, &cset->tasks, cg_list) {
5823 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5824 seq_puts(seq, " ...\n");
5825 break;
5826 } else {
5827 seq_printf(seq, " task %d\n",
5828 task_pid_vnr(task));
5829 }
5830 }
5831 }
5832 read_unlock(&css_set_lock);
5833 return 0;
5834 }
5835
5836 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5837 {
5838 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5839 }
5840
5841 static struct cftype debug_files[] = {
5842 {
5843 .name = "taskcount",
5844 .read_u64 = debug_taskcount_read,
5845 },
5846
5847 {
5848 .name = "current_css_set",
5849 .read_u64 = current_css_set_read,
5850 },
5851
5852 {
5853 .name = "current_css_set_refcount",
5854 .read_u64 = current_css_set_refcount_read,
5855 },
5856
5857 {
5858 .name = "current_css_set_cg_links",
5859 .read_seq_string = current_css_set_cg_links_read,
5860 },
5861
5862 {
5863 .name = "cgroup_css_links",
5864 .read_seq_string = cgroup_css_links_read,
5865 },
5866
5867 {
5868 .name = "releasable",
5869 .read_u64 = releasable_read,
5870 },
5871
5872 { } /* terminate */
5873 };
5874
5875 struct cgroup_subsys debug_subsys = {
5876 .name = "debug",
5877 .css_alloc = debug_css_alloc,
5878 .css_free = debug_css_free,
5879 .subsys_id = debug_subsys_id,
5880 .base_cftypes = debug_files,
5881 };
5882 #endif /* CONFIG_CGROUP_DEBUG */