2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/proc_ns.h>
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
73 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
75 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
82 * css_set_lock protects task->cgroups pointer, the list of css_set
83 * objects, and the chain of tasks off each css_set.
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
88 #ifdef CONFIG_PROVE_RCU
89 DEFINE_MUTEX(cgroup_mutex
);
90 DEFINE_SPINLOCK(css_set_lock
);
91 EXPORT_SYMBOL_GPL(cgroup_mutex
);
92 EXPORT_SYMBOL_GPL(css_set_lock
);
94 static DEFINE_MUTEX(cgroup_mutex
);
95 static DEFINE_SPINLOCK(css_set_lock
);
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
102 static DEFINE_SPINLOCK(cgroup_idr_lock
);
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
108 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
114 static DEFINE_SPINLOCK(release_agent_path_lock
);
116 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
118 #define cgroup_assert_mutex_or_rcu_locked() \
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
121 "cgroup_mutex or RCU read lock required");
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
129 static struct workqueue_struct
*cgroup_destroy_wq
;
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
135 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
137 /* generate an array of cgroup subsystem pointers */
138 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
139 static struct cgroup_subsys
*cgroup_subsys
[] = {
140 #include <linux/cgroup_subsys.h>
144 /* array of cgroup subsystem names */
145 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146 static const char *cgroup_subsys_name
[] = {
147 #include <linux/cgroup_subsys.h>
151 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157 #include <linux/cgroup_subsys.h>
160 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
162 #include <linux/cgroup_subsys.h>
166 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
168 #include <linux/cgroup_subsys.h>
173 * The default hierarchy, reserved for the subsystems that are otherwise
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
177 struct cgroup_root cgrp_dfl_root
;
178 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
184 static bool cgrp_dfl_visible
;
186 /* Controllers blocked by the commandline in v1 */
187 static u16 cgroup_no_v1_mask
;
189 /* some controllers are not supported in the default hierarchy */
190 static u16 cgrp_dfl_inhibit_ss_mask
;
192 /* some controllers are implicitly enabled on the default hierarchy */
193 static unsigned long cgrp_dfl_implicit_ss_mask
;
195 /* The list of hierarchy roots */
197 static LIST_HEAD(cgroup_roots
);
198 static int cgroup_root_count
;
200 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
201 static DEFINE_IDR(cgroup_hierarchy_idr
);
204 * Assign a monotonically increasing serial number to csses. It guarantees
205 * cgroups with bigger numbers are newer than those with smaller numbers.
206 * Also, as csses are always appended to the parent's ->children list, it
207 * guarantees that sibling csses are always sorted in the ascending serial
208 * number order on the list. Protected by cgroup_mutex.
210 static u64 css_serial_nr_next
= 1;
213 * These bitmask flags indicate whether tasks in the fork and exit paths have
214 * fork/exit handlers to call. This avoids us having to do extra work in the
215 * fork/exit path to check which subsystems have fork/exit callbacks.
217 static u16 have_fork_callback __read_mostly
;
218 static u16 have_exit_callback __read_mostly
;
219 static u16 have_free_callback __read_mostly
;
221 /* cgroup namespace for init task */
222 struct cgroup_namespace init_cgroup_ns
= {
223 .count
= { .counter
= 2, },
224 .user_ns
= &init_user_ns
,
225 .ns
.ops
= &cgroupns_operations
,
226 .ns
.inum
= PROC_CGROUP_INIT_INO
,
227 .root_cset
= &init_css_set
,
230 /* Ditto for the can_fork callback. */
231 static u16 have_canfork_callback __read_mostly
;
233 static struct file_system_type cgroup2_fs_type
;
234 static struct cftype cgroup_dfl_base_files
[];
235 static struct cftype cgroup_legacy_base_files
[];
237 static int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
);
238 static void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
);
239 static int cgroup_apply_control(struct cgroup
*cgrp
);
240 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
241 static void css_task_iter_advance(struct css_task_iter
*it
);
242 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
243 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
244 struct cgroup_subsys
*ss
);
245 static void css_release(struct percpu_ref
*ref
);
246 static void kill_css(struct cgroup_subsys_state
*css
);
247 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
248 struct cgroup
*cgrp
, struct cftype cfts
[],
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
259 static bool cgroup_ssid_enabled(int ssid
)
261 if (CGROUP_SUBSYS_COUNT
== 0)
264 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
267 static bool cgroup_ssid_no_v1(int ssid
)
269 return cgroup_no_v1_mask
& (1 << ssid
);
273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274 * @cgrp: the cgroup of interest
276 * The default hierarchy is the v2 interface of cgroup and this function
277 * can be used to test whether a cgroup is on the default hierarchy for
278 * cases where a subsystem should behave differnetly depending on the
281 * The set of behaviors which change on the default hierarchy are still
282 * being determined and the mount option is prefixed with __DEVEL__.
284 * List of changed behaviors:
286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287 * and "name" are disallowed.
289 * - When mounting an existing superblock, mount options should match.
291 * - Remount is disallowed.
293 * - rename(2) is disallowed.
295 * - "tasks" is removed. Everything should be at process granularity. Use
296 * "cgroup.procs" instead.
298 * - "cgroup.procs" is not sorted. pids will be unique unless they got
299 * recycled inbetween reads.
301 * - "release_agent" and "notify_on_release" are removed. Replacement
302 * notification mechanism will be implemented.
304 * - "cgroup.clone_children" is removed.
306 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
307 * and its descendants contain no task; otherwise, 1. The file also
308 * generates kernfs notification which can be monitored through poll and
309 * [di]notify when the value of the file changes.
311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312 * take masks of ancestors with non-empty cpus/mems, instead of being
313 * moved to an ancestor.
315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
316 * masks of ancestors.
318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
321 * - blkcg: blk-throttle becomes properly hierarchical.
323 * - debug: disallowed on the default hierarchy.
325 static bool cgroup_on_dfl(const struct cgroup
*cgrp
)
327 return cgrp
->root
== &cgrp_dfl_root
;
330 /* IDR wrappers which synchronize using cgroup_idr_lock */
331 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
336 idr_preload(gfp_mask
);
337 spin_lock_bh(&cgroup_idr_lock
);
338 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
339 spin_unlock_bh(&cgroup_idr_lock
);
344 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
348 spin_lock_bh(&cgroup_idr_lock
);
349 ret
= idr_replace(idr
, ptr
, id
);
350 spin_unlock_bh(&cgroup_idr_lock
);
354 static void cgroup_idr_remove(struct idr
*idr
, int id
)
356 spin_lock_bh(&cgroup_idr_lock
);
358 spin_unlock_bh(&cgroup_idr_lock
);
361 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
363 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
366 return container_of(parent_css
, struct cgroup
, self
);
370 /* subsystems visibly enabled on a cgroup */
371 static u16
cgroup_control(struct cgroup
*cgrp
)
373 struct cgroup
*parent
= cgroup_parent(cgrp
);
374 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
377 return parent
->subtree_control
;
379 if (cgroup_on_dfl(cgrp
))
380 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
381 cgrp_dfl_implicit_ss_mask
);
385 /* subsystems enabled on a cgroup */
386 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
388 struct cgroup
*parent
= cgroup_parent(cgrp
);
391 return parent
->subtree_ss_mask
;
393 return cgrp
->root
->subsys_mask
;
397 * cgroup_css - obtain a cgroup's css for the specified subsystem
398 * @cgrp: the cgroup of interest
399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
402 * function must be called either under cgroup_mutex or rcu_read_lock() and
403 * the caller is responsible for pinning the returned css if it wants to
404 * keep accessing it outside the said locks. This function may return
405 * %NULL if @cgrp doesn't have @subsys_id enabled.
407 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
408 struct cgroup_subsys
*ss
)
411 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
412 lockdep_is_held(&cgroup_mutex
));
418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419 * @cgrp: the cgroup of interest
420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
422 * Similar to cgroup_css() but returns the effective css, which is defined
423 * as the matching css of the nearest ancestor including self which has @ss
424 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
425 * function is guaranteed to return non-NULL css.
427 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
428 struct cgroup_subsys
*ss
)
430 lockdep_assert_held(&cgroup_mutex
);
436 * This function is used while updating css associations and thus
437 * can't test the csses directly. Test ss_mask.
439 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
440 cgrp
= cgroup_parent(cgrp
);
445 return cgroup_css(cgrp
, ss
);
449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest
453 * Find and get the effective css of @cgrp for @ss. The effective css is
454 * defined as the matching css of the nearest ancestor including self which
455 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
456 * the root css is returned, so this function always returns a valid css.
457 * The returned css must be put using css_put().
459 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
460 struct cgroup_subsys
*ss
)
462 struct cgroup_subsys_state
*css
;
467 css
= cgroup_css(cgrp
, ss
);
469 if (css
&& css_tryget_online(css
))
471 cgrp
= cgroup_parent(cgrp
);
474 css
= init_css_set
.subsys
[ss
->id
];
481 /* convenient tests for these bits */
482 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
484 return !(cgrp
->self
.flags
& CSS_ONLINE
);
487 static void cgroup_get(struct cgroup
*cgrp
)
489 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
490 css_get(&cgrp
->self
);
493 static bool cgroup_tryget(struct cgroup
*cgrp
)
495 return css_tryget(&cgrp
->self
);
498 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
500 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
501 struct cftype
*cft
= of_cft(of
);
504 * This is open and unprotected implementation of cgroup_css().
505 * seq_css() is only called from a kernfs file operation which has
506 * an active reference on the file. Because all the subsystem
507 * files are drained before a css is disassociated with a cgroup,
508 * the matching css from the cgroup's subsys table is guaranteed to
509 * be and stay valid until the enclosing operation is complete.
512 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
516 EXPORT_SYMBOL_GPL(of_css
);
518 static int notify_on_release(const struct cgroup
*cgrp
)
520 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
524 * for_each_css - iterate all css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
529 * Should be called under cgroup_[tree_]mutex.
531 #define for_each_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = rcu_dereference_check( \
534 (cgrp)->subsys[(ssid)], \
535 lockdep_is_held(&cgroup_mutex)))) { } \
539 * for_each_e_css - iterate all effective css's of a cgroup
540 * @css: the iteration cursor
541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542 * @cgrp: the target cgroup to iterate css's of
544 * Should be called under cgroup_[tree_]mutex.
546 #define for_each_e_css(css, ssid, cgrp) \
547 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
548 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
553 * for_each_subsys - iterate all enabled cgroup subsystems
554 * @ss: the iteration cursor
555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
557 #define for_each_subsys(ss, ssid) \
558 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
559 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
563 * @ss: the iteration cursor
564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
565 * @ss_mask: the bitmask
567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
570 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
571 unsigned long __ss_mask = (ss_mask); \
572 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
576 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
577 (ss) = cgroup_subsys[ssid]; \
580 #define while_each_subsys_mask() \
585 /* iterate across the hierarchies */
586 #define for_each_root(root) \
587 list_for_each_entry((root), &cgroup_roots, root_list)
589 /* iterate over child cgrps, lock should be held throughout iteration */
590 #define cgroup_for_each_live_child(child, cgrp) \
591 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
592 if (({ lockdep_assert_held(&cgroup_mutex); \
593 cgroup_is_dead(child); })) \
597 /* walk live descendants in preorder */
598 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
599 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
600 if (({ lockdep_assert_held(&cgroup_mutex); \
601 (dsct) = (d_css)->cgroup; \
602 cgroup_is_dead(dsct); })) \
606 /* walk live descendants in postorder */
607 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
608 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609 if (({ lockdep_assert_held(&cgroup_mutex); \
610 (dsct) = (d_css)->cgroup; \
611 cgroup_is_dead(dsct); })) \
615 static void cgroup_release_agent(struct work_struct
*work
);
616 static void check_for_release(struct cgroup
*cgrp
);
619 * A cgroup can be associated with multiple css_sets as different tasks may
620 * belong to different cgroups on different hierarchies. In the other
621 * direction, a css_set is naturally associated with multiple cgroups.
622 * This M:N relationship is represented by the following link structure
623 * which exists for each association and allows traversing the associations
626 struct cgrp_cset_link
{
627 /* the cgroup and css_set this link associates */
629 struct css_set
*cset
;
631 /* list of cgrp_cset_links anchored at cgrp->cset_links */
632 struct list_head cset_link
;
634 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635 struct list_head cgrp_link
;
639 * The default css_set - used by init and its children prior to any
640 * hierarchies being mounted. It contains a pointer to the root state
641 * for each subsystem. Also used to anchor the list of css_sets. Not
642 * reference-counted, to improve performance when child cgroups
643 * haven't been created.
645 struct css_set init_css_set
= {
646 .refcount
= ATOMIC_INIT(1),
647 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
648 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
649 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
650 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
651 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
652 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
655 static int css_set_count
= 1; /* 1 for init_css_set */
658 * css_set_populated - does a css_set contain any tasks?
659 * @cset: target css_set
661 static bool css_set_populated(struct css_set
*cset
)
663 lockdep_assert_held(&css_set_lock
);
665 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
669 * cgroup_update_populated - updated populated count of a cgroup
670 * @cgrp: the target cgroup
671 * @populated: inc or dec populated count
673 * One of the css_sets associated with @cgrp is either getting its first
674 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
675 * count is propagated towards root so that a given cgroup's populated_cnt
676 * is zero iff the cgroup and all its descendants don't contain any tasks.
678 * @cgrp's interface file "cgroup.populated" is zero if
679 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
680 * changes from or to zero, userland is notified that the content of the
681 * interface file has changed. This can be used to detect when @cgrp and
682 * its descendants become populated or empty.
684 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
686 lockdep_assert_held(&css_set_lock
);
692 trigger
= !cgrp
->populated_cnt
++;
694 trigger
= !--cgrp
->populated_cnt
;
699 check_for_release(cgrp
);
700 cgroup_file_notify(&cgrp
->events_file
);
702 cgrp
= cgroup_parent(cgrp
);
707 * css_set_update_populated - update populated state of a css_set
708 * @cset: target css_set
709 * @populated: whether @cset is populated or depopulated
711 * @cset is either getting the first task or losing the last. Update the
712 * ->populated_cnt of all associated cgroups accordingly.
714 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
716 struct cgrp_cset_link
*link
;
718 lockdep_assert_held(&css_set_lock
);
720 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
721 cgroup_update_populated(link
->cgrp
, populated
);
725 * css_set_move_task - move a task from one css_set to another
726 * @task: task being moved
727 * @from_cset: css_set @task currently belongs to (may be NULL)
728 * @to_cset: new css_set @task is being moved to (may be NULL)
729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
731 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
732 * css_set, @from_cset can be NULL. If @task is being disassociated
733 * instead of moved, @to_cset can be NULL.
735 * This function automatically handles populated_cnt updates and
736 * css_task_iter adjustments but the caller is responsible for managing
737 * @from_cset and @to_cset's reference counts.
739 static void css_set_move_task(struct task_struct
*task
,
740 struct css_set
*from_cset
, struct css_set
*to_cset
,
743 lockdep_assert_held(&css_set_lock
);
745 if (to_cset
&& !css_set_populated(to_cset
))
746 css_set_update_populated(to_cset
, true);
749 struct css_task_iter
*it
, *pos
;
751 WARN_ON_ONCE(list_empty(&task
->cg_list
));
754 * @task is leaving, advance task iterators which are
755 * pointing to it so that they can resume at the next
756 * position. Advancing an iterator might remove it from
757 * the list, use safe walk. See css_task_iter_advance*()
760 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
762 if (it
->task_pos
== &task
->cg_list
)
763 css_task_iter_advance(it
);
765 list_del_init(&task
->cg_list
);
766 if (!css_set_populated(from_cset
))
767 css_set_update_populated(from_cset
, false);
769 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
774 * We are synchronized through cgroup_threadgroup_rwsem
775 * against PF_EXITING setting such that we can't race
776 * against cgroup_exit() changing the css_set to
777 * init_css_set and dropping the old one.
779 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
781 rcu_assign_pointer(task
->cgroups
, to_cset
);
782 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
788 * hash table for cgroup groups. This improves the performance to find
789 * an existing css_set. This hash doesn't (currently) take into
790 * account cgroups in empty hierarchies.
792 #define CSS_SET_HASH_BITS 7
793 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
795 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
797 unsigned long key
= 0UL;
798 struct cgroup_subsys
*ss
;
801 for_each_subsys(ss
, i
)
802 key
+= (unsigned long)css
[i
];
803 key
= (key
>> 16) ^ key
;
808 static void put_css_set_locked(struct css_set
*cset
)
810 struct cgrp_cset_link
*link
, *tmp_link
;
811 struct cgroup_subsys
*ss
;
814 lockdep_assert_held(&css_set_lock
);
816 if (!atomic_dec_and_test(&cset
->refcount
))
819 /* This css_set is dead. unlink it and release cgroup and css refs */
820 for_each_subsys(ss
, ssid
) {
821 list_del(&cset
->e_cset_node
[ssid
]);
822 css_put(cset
->subsys
[ssid
]);
824 hash_del(&cset
->hlist
);
827 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
828 list_del(&link
->cset_link
);
829 list_del(&link
->cgrp_link
);
830 if (cgroup_parent(link
->cgrp
))
831 cgroup_put(link
->cgrp
);
835 kfree_rcu(cset
, rcu_head
);
838 static void put_css_set(struct css_set
*cset
)
841 * Ensure that the refcount doesn't hit zero while any readers
842 * can see it. Similar to atomic_dec_and_lock(), but for an
845 if (atomic_add_unless(&cset
->refcount
, -1, 1))
848 spin_lock_bh(&css_set_lock
);
849 put_css_set_locked(cset
);
850 spin_unlock_bh(&css_set_lock
);
854 * refcounted get/put for css_set objects
856 static inline void get_css_set(struct css_set
*cset
)
858 atomic_inc(&cset
->refcount
);
862 * compare_css_sets - helper function for find_existing_css_set().
863 * @cset: candidate css_set being tested
864 * @old_cset: existing css_set for a task
865 * @new_cgrp: cgroup that's being entered by the task
866 * @template: desired set of css pointers in css_set (pre-calculated)
868 * Returns true if "cset" matches "old_cset" except for the hierarchy
869 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
871 static bool compare_css_sets(struct css_set
*cset
,
872 struct css_set
*old_cset
,
873 struct cgroup
*new_cgrp
,
874 struct cgroup_subsys_state
*template[])
876 struct list_head
*l1
, *l2
;
879 * On the default hierarchy, there can be csets which are
880 * associated with the same set of cgroups but different csses.
881 * Let's first ensure that csses match.
883 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
887 * Compare cgroup pointers in order to distinguish between
888 * different cgroups in hierarchies. As different cgroups may
889 * share the same effective css, this comparison is always
892 l1
= &cset
->cgrp_links
;
893 l2
= &old_cset
->cgrp_links
;
895 struct cgrp_cset_link
*link1
, *link2
;
896 struct cgroup
*cgrp1
, *cgrp2
;
900 /* See if we reached the end - both lists are equal length. */
901 if (l1
== &cset
->cgrp_links
) {
902 BUG_ON(l2
!= &old_cset
->cgrp_links
);
905 BUG_ON(l2
== &old_cset
->cgrp_links
);
907 /* Locate the cgroups associated with these links. */
908 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
909 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
912 /* Hierarchies should be linked in the same order. */
913 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
916 * If this hierarchy is the hierarchy of the cgroup
917 * that's changing, then we need to check that this
918 * css_set points to the new cgroup; if it's any other
919 * hierarchy, then this css_set should point to the
920 * same cgroup as the old css_set.
922 if (cgrp1
->root
== new_cgrp
->root
) {
923 if (cgrp1
!= new_cgrp
)
934 * find_existing_css_set - init css array and find the matching css_set
935 * @old_cset: the css_set that we're using before the cgroup transition
936 * @cgrp: the cgroup that we're moving into
937 * @template: out param for the new set of csses, should be clear on entry
939 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
941 struct cgroup_subsys_state
*template[])
943 struct cgroup_root
*root
= cgrp
->root
;
944 struct cgroup_subsys
*ss
;
945 struct css_set
*cset
;
950 * Build the set of subsystem state objects that we want to see in the
951 * new css_set. while subsystems can change globally, the entries here
952 * won't change, so no need for locking.
954 for_each_subsys(ss
, i
) {
955 if (root
->subsys_mask
& (1UL << i
)) {
957 * @ss is in this hierarchy, so we want the
958 * effective css from @cgrp.
960 template[i
] = cgroup_e_css(cgrp
, ss
);
963 * @ss is not in this hierarchy, so we don't want
966 template[i
] = old_cset
->subsys
[i
];
970 key
= css_set_hash(template);
971 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
972 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
975 /* This css_set matches what we need */
979 /* No existing cgroup group matched */
983 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
985 struct cgrp_cset_link
*link
, *tmp_link
;
987 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
988 list_del(&link
->cset_link
);
994 * allocate_cgrp_cset_links - allocate cgrp_cset_links
995 * @count: the number of links to allocate
996 * @tmp_links: list_head the allocated links are put on
998 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
999 * through ->cset_link. Returns 0 on success or -errno.
1001 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1003 struct cgrp_cset_link
*link
;
1006 INIT_LIST_HEAD(tmp_links
);
1008 for (i
= 0; i
< count
; i
++) {
1009 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1011 free_cgrp_cset_links(tmp_links
);
1014 list_add(&link
->cset_link
, tmp_links
);
1020 * link_css_set - a helper function to link a css_set to a cgroup
1021 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1022 * @cset: the css_set to be linked
1023 * @cgrp: the destination cgroup
1025 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1026 struct cgroup
*cgrp
)
1028 struct cgrp_cset_link
*link
;
1030 BUG_ON(list_empty(tmp_links
));
1032 if (cgroup_on_dfl(cgrp
))
1033 cset
->dfl_cgrp
= cgrp
;
1035 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1040 * Always add links to the tail of the lists so that the lists are
1041 * in choronological order.
1043 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1044 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1046 if (cgroup_parent(cgrp
))
1051 * find_css_set - return a new css_set with one cgroup updated
1052 * @old_cset: the baseline css_set
1053 * @cgrp: the cgroup to be updated
1055 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1056 * substituted into the appropriate hierarchy.
1058 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1059 struct cgroup
*cgrp
)
1061 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1062 struct css_set
*cset
;
1063 struct list_head tmp_links
;
1064 struct cgrp_cset_link
*link
;
1065 struct cgroup_subsys
*ss
;
1069 lockdep_assert_held(&cgroup_mutex
);
1071 /* First see if we already have a cgroup group that matches
1072 * the desired set */
1073 spin_lock_bh(&css_set_lock
);
1074 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1077 spin_unlock_bh(&css_set_lock
);
1082 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1086 /* Allocate all the cgrp_cset_link objects that we'll need */
1087 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1092 atomic_set(&cset
->refcount
, 1);
1093 INIT_LIST_HEAD(&cset
->cgrp_links
);
1094 INIT_LIST_HEAD(&cset
->tasks
);
1095 INIT_LIST_HEAD(&cset
->mg_tasks
);
1096 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1097 INIT_LIST_HEAD(&cset
->mg_node
);
1098 INIT_LIST_HEAD(&cset
->task_iters
);
1099 INIT_HLIST_NODE(&cset
->hlist
);
1101 /* Copy the set of subsystem state objects generated in
1102 * find_existing_css_set() */
1103 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1105 spin_lock_bh(&css_set_lock
);
1106 /* Add reference counts and links from the new css_set. */
1107 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1108 struct cgroup
*c
= link
->cgrp
;
1110 if (c
->root
== cgrp
->root
)
1112 link_css_set(&tmp_links
, cset
, c
);
1115 BUG_ON(!list_empty(&tmp_links
));
1119 /* Add @cset to the hash table */
1120 key
= css_set_hash(cset
->subsys
);
1121 hash_add(css_set_table
, &cset
->hlist
, key
);
1123 for_each_subsys(ss
, ssid
) {
1124 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1126 list_add_tail(&cset
->e_cset_node
[ssid
],
1127 &css
->cgroup
->e_csets
[ssid
]);
1131 spin_unlock_bh(&css_set_lock
);
1136 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1138 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1140 return root_cgrp
->root
;
1143 static int cgroup_init_root_id(struct cgroup_root
*root
)
1147 lockdep_assert_held(&cgroup_mutex
);
1149 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1153 root
->hierarchy_id
= id
;
1157 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1159 lockdep_assert_held(&cgroup_mutex
);
1161 if (root
->hierarchy_id
) {
1162 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1163 root
->hierarchy_id
= 0;
1167 static void cgroup_free_root(struct cgroup_root
*root
)
1170 /* hierarchy ID should already have been released */
1171 WARN_ON_ONCE(root
->hierarchy_id
);
1173 idr_destroy(&root
->cgroup_idr
);
1178 static void cgroup_destroy_root(struct cgroup_root
*root
)
1180 struct cgroup
*cgrp
= &root
->cgrp
;
1181 struct cgrp_cset_link
*link
, *tmp_link
;
1183 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1185 BUG_ON(atomic_read(&root
->nr_cgrps
));
1186 BUG_ON(!list_empty(&cgrp
->self
.children
));
1188 /* Rebind all subsystems back to the default hierarchy */
1189 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1192 * Release all the links from cset_links to this hierarchy's
1195 spin_lock_bh(&css_set_lock
);
1197 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1198 list_del(&link
->cset_link
);
1199 list_del(&link
->cgrp_link
);
1203 spin_unlock_bh(&css_set_lock
);
1205 if (!list_empty(&root
->root_list
)) {
1206 list_del(&root
->root_list
);
1207 cgroup_root_count
--;
1210 cgroup_exit_root_id(root
);
1212 mutex_unlock(&cgroup_mutex
);
1214 kernfs_destroy_root(root
->kf_root
);
1215 cgroup_free_root(root
);
1218 /* look up cgroup associated with given css_set on the specified hierarchy */
1219 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1220 struct cgroup_root
*root
)
1222 struct cgroup
*res
= NULL
;
1224 lockdep_assert_held(&cgroup_mutex
);
1225 lockdep_assert_held(&css_set_lock
);
1227 if (cset
== &init_css_set
) {
1230 struct cgrp_cset_link
*link
;
1232 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1233 struct cgroup
*c
= link
->cgrp
;
1235 if (c
->root
== root
) {
1247 * Return the cgroup for "task" from the given hierarchy. Must be
1248 * called with cgroup_mutex and css_set_lock held.
1250 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1251 struct cgroup_root
*root
)
1254 * No need to lock the task - since we hold cgroup_mutex the
1255 * task can't change groups, so the only thing that can happen
1256 * is that it exits and its css is set back to init_css_set.
1258 return cset_cgroup_from_root(task_css_set(task
), root
);
1262 * A task must hold cgroup_mutex to modify cgroups.
1264 * Any task can increment and decrement the count field without lock.
1265 * So in general, code holding cgroup_mutex can't rely on the count
1266 * field not changing. However, if the count goes to zero, then only
1267 * cgroup_attach_task() can increment it again. Because a count of zero
1268 * means that no tasks are currently attached, therefore there is no
1269 * way a task attached to that cgroup can fork (the other way to
1270 * increment the count). So code holding cgroup_mutex can safely
1271 * assume that if the count is zero, it will stay zero. Similarly, if
1272 * a task holds cgroup_mutex on a cgroup with zero count, it
1273 * knows that the cgroup won't be removed, as cgroup_rmdir()
1276 * A cgroup can only be deleted if both its 'count' of using tasks
1277 * is zero, and its list of 'children' cgroups is empty. Since all
1278 * tasks in the system use _some_ cgroup, and since there is always at
1279 * least one task in the system (init, pid == 1), therefore, root cgroup
1280 * always has either children cgroups and/or using tasks. So we don't
1281 * need a special hack to ensure that root cgroup cannot be deleted.
1283 * P.S. One more locking exception. RCU is used to guard the
1284 * update of a tasks cgroup pointer by cgroup_attach_task()
1287 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1288 static const struct file_operations proc_cgroupstats_operations
;
1290 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1293 struct cgroup_subsys
*ss
= cft
->ss
;
1295 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1296 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1297 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1298 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1301 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1306 * cgroup_file_mode - deduce file mode of a control file
1307 * @cft: the control file in question
1309 * S_IRUGO for read, S_IWUSR for write.
1311 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1315 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1318 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1319 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1329 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1330 * @subtree_control: the new subtree_control mask to consider
1331 * @this_ss_mask: available subsystems
1333 * On the default hierarchy, a subsystem may request other subsystems to be
1334 * enabled together through its ->depends_on mask. In such cases, more
1335 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1337 * This function calculates which subsystems need to be enabled if
1338 * @subtree_control is to be applied while restricted to @this_ss_mask.
1340 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1342 u16 cur_ss_mask
= subtree_control
;
1343 struct cgroup_subsys
*ss
;
1346 lockdep_assert_held(&cgroup_mutex
);
1348 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1351 u16 new_ss_mask
= cur_ss_mask
;
1353 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1354 new_ss_mask
|= ss
->depends_on
;
1355 } while_each_subsys_mask();
1358 * Mask out subsystems which aren't available. This can
1359 * happen only if some depended-upon subsystems were bound
1360 * to non-default hierarchies.
1362 new_ss_mask
&= this_ss_mask
;
1364 if (new_ss_mask
== cur_ss_mask
)
1366 cur_ss_mask
= new_ss_mask
;
1373 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1374 * @kn: the kernfs_node being serviced
1376 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1377 * the method finishes if locking succeeded. Note that once this function
1378 * returns the cgroup returned by cgroup_kn_lock_live() may become
1379 * inaccessible any time. If the caller intends to continue to access the
1380 * cgroup, it should pin it before invoking this function.
1382 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1384 struct cgroup
*cgrp
;
1386 if (kernfs_type(kn
) == KERNFS_DIR
)
1389 cgrp
= kn
->parent
->priv
;
1391 mutex_unlock(&cgroup_mutex
);
1393 kernfs_unbreak_active_protection(kn
);
1398 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1399 * @kn: the kernfs_node being serviced
1400 * @drain_offline: perform offline draining on the cgroup
1402 * This helper is to be used by a cgroup kernfs method currently servicing
1403 * @kn. It breaks the active protection, performs cgroup locking and
1404 * verifies that the associated cgroup is alive. Returns the cgroup if
1405 * alive; otherwise, %NULL. A successful return should be undone by a
1406 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1407 * cgroup is drained of offlining csses before return.
1409 * Any cgroup kernfs method implementation which requires locking the
1410 * associated cgroup should use this helper. It avoids nesting cgroup
1411 * locking under kernfs active protection and allows all kernfs operations
1412 * including self-removal.
1414 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
,
1417 struct cgroup
*cgrp
;
1419 if (kernfs_type(kn
) == KERNFS_DIR
)
1422 cgrp
= kn
->parent
->priv
;
1425 * We're gonna grab cgroup_mutex which nests outside kernfs
1426 * active_ref. cgroup liveliness check alone provides enough
1427 * protection against removal. Ensure @cgrp stays accessible and
1428 * break the active_ref protection.
1430 if (!cgroup_tryget(cgrp
))
1432 kernfs_break_active_protection(kn
);
1435 cgroup_lock_and_drain_offline(cgrp
);
1437 mutex_lock(&cgroup_mutex
);
1439 if (!cgroup_is_dead(cgrp
))
1442 cgroup_kn_unlock(kn
);
1446 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1448 char name
[CGROUP_FILE_NAME_MAX
];
1450 lockdep_assert_held(&cgroup_mutex
);
1452 if (cft
->file_offset
) {
1453 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1454 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1456 spin_lock_irq(&cgroup_file_kn_lock
);
1458 spin_unlock_irq(&cgroup_file_kn_lock
);
1461 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1465 * css_clear_dir - remove subsys files in a cgroup directory
1468 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1470 struct cgroup
*cgrp
= css
->cgroup
;
1471 struct cftype
*cfts
;
1473 if (!(css
->flags
& CSS_VISIBLE
))
1476 css
->flags
&= ~CSS_VISIBLE
;
1478 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1479 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1483 * css_populate_dir - create subsys files in a cgroup directory
1486 * On failure, no file is added.
1488 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1490 struct cgroup
*cgrp
= css
->cgroup
;
1491 struct cftype
*cfts
, *failed_cfts
;
1494 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1498 if (cgroup_on_dfl(cgrp
))
1499 cfts
= cgroup_dfl_base_files
;
1501 cfts
= cgroup_legacy_base_files
;
1503 return cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1506 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1507 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1514 css
->flags
|= CSS_VISIBLE
;
1518 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1519 if (cfts
== failed_cfts
)
1521 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1526 static int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1528 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1529 struct cgroup_subsys
*ss
;
1532 lockdep_assert_held(&cgroup_mutex
);
1534 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1536 * If @ss has non-root csses attached to it, can't move.
1537 * If @ss is an implicit controller, it is exempt from this
1538 * rule and can be stolen.
1540 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1541 !ss
->implicit_on_dfl
)
1544 /* can't move between two non-dummy roots either */
1545 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1547 } while_each_subsys_mask();
1549 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1550 struct cgroup_root
*src_root
= ss
->root
;
1551 struct cgroup
*scgrp
= &src_root
->cgrp
;
1552 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1553 struct css_set
*cset
;
1555 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1557 /* disable from the source */
1558 src_root
->subsys_mask
&= ~(1 << ssid
);
1559 WARN_ON(cgroup_apply_control(scgrp
));
1560 cgroup_finalize_control(scgrp
, 0);
1563 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1564 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1565 ss
->root
= dst_root
;
1566 css
->cgroup
= dcgrp
;
1568 spin_lock_bh(&css_set_lock
);
1569 hash_for_each(css_set_table
, i
, cset
, hlist
)
1570 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1571 &dcgrp
->e_csets
[ss
->id
]);
1572 spin_unlock_bh(&css_set_lock
);
1574 /* default hierarchy doesn't enable controllers by default */
1575 dst_root
->subsys_mask
|= 1 << ssid
;
1576 if (dst_root
== &cgrp_dfl_root
) {
1577 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1579 dcgrp
->subtree_control
|= 1 << ssid
;
1580 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1583 ret
= cgroup_apply_control(dcgrp
);
1585 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1590 } while_each_subsys_mask();
1592 kernfs_activate(dcgrp
->kn
);
1596 static int cgroup_show_options(struct seq_file
*seq
,
1597 struct kernfs_root
*kf_root
)
1599 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1600 struct cgroup_subsys
*ss
;
1603 if (root
!= &cgrp_dfl_root
)
1604 for_each_subsys(ss
, ssid
)
1605 if (root
->subsys_mask
& (1 << ssid
))
1606 seq_show_option(seq
, ss
->legacy_name
, NULL
);
1607 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1608 seq_puts(seq
, ",noprefix");
1609 if (root
->flags
& CGRP_ROOT_XATTR
)
1610 seq_puts(seq
, ",xattr");
1612 spin_lock(&release_agent_path_lock
);
1613 if (strlen(root
->release_agent_path
))
1614 seq_show_option(seq
, "release_agent",
1615 root
->release_agent_path
);
1616 spin_unlock(&release_agent_path_lock
);
1618 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1619 seq_puts(seq
, ",clone_children");
1620 if (strlen(root
->name
))
1621 seq_show_option(seq
, "name", root
->name
);
1625 struct cgroup_sb_opts
{
1628 char *release_agent
;
1629 bool cpuset_clone_children
;
1631 /* User explicitly requested empty subsystem */
1635 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1637 char *token
, *o
= data
;
1638 bool all_ss
= false, one_ss
= false;
1640 struct cgroup_subsys
*ss
;
1644 #ifdef CONFIG_CPUSETS
1645 mask
= ~((u16
)1 << cpuset_cgrp_id
);
1648 memset(opts
, 0, sizeof(*opts
));
1650 while ((token
= strsep(&o
, ",")) != NULL
) {
1655 if (!strcmp(token
, "none")) {
1656 /* Explicitly have no subsystems */
1660 if (!strcmp(token
, "all")) {
1661 /* Mutually exclusive option 'all' + subsystem name */
1667 if (!strcmp(token
, "noprefix")) {
1668 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1671 if (!strcmp(token
, "clone_children")) {
1672 opts
->cpuset_clone_children
= true;
1675 if (!strcmp(token
, "xattr")) {
1676 opts
->flags
|= CGRP_ROOT_XATTR
;
1679 if (!strncmp(token
, "release_agent=", 14)) {
1680 /* Specifying two release agents is forbidden */
1681 if (opts
->release_agent
)
1683 opts
->release_agent
=
1684 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1685 if (!opts
->release_agent
)
1689 if (!strncmp(token
, "name=", 5)) {
1690 const char *name
= token
+ 5;
1691 /* Can't specify an empty name */
1694 /* Must match [\w.-]+ */
1695 for (i
= 0; i
< strlen(name
); i
++) {
1699 if ((c
== '.') || (c
== '-') || (c
== '_'))
1703 /* Specifying two names is forbidden */
1706 opts
->name
= kstrndup(name
,
1707 MAX_CGROUP_ROOT_NAMELEN
- 1,
1715 for_each_subsys(ss
, i
) {
1716 if (strcmp(token
, ss
->legacy_name
))
1718 if (!cgroup_ssid_enabled(i
))
1720 if (cgroup_ssid_no_v1(i
))
1723 /* Mutually exclusive option 'all' + subsystem name */
1726 opts
->subsys_mask
|= (1 << i
);
1731 if (i
== CGROUP_SUBSYS_COUNT
)
1736 * If the 'all' option was specified select all the subsystems,
1737 * otherwise if 'none', 'name=' and a subsystem name options were
1738 * not specified, let's default to 'all'
1740 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1741 for_each_subsys(ss
, i
)
1742 if (cgroup_ssid_enabled(i
) && !cgroup_ssid_no_v1(i
))
1743 opts
->subsys_mask
|= (1 << i
);
1746 * We either have to specify by name or by subsystems. (So all
1747 * empty hierarchies must have a name).
1749 if (!opts
->subsys_mask
&& !opts
->name
)
1753 * Option noprefix was introduced just for backward compatibility
1754 * with the old cpuset, so we allow noprefix only if mounting just
1755 * the cpuset subsystem.
1757 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1760 /* Can't specify "none" and some subsystems */
1761 if (opts
->subsys_mask
&& opts
->none
)
1767 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1770 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1771 struct cgroup_sb_opts opts
;
1772 u16 added_mask
, removed_mask
;
1774 if (root
== &cgrp_dfl_root
) {
1775 pr_err("remount is not allowed\n");
1779 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1781 /* See what subsystems are wanted */
1782 ret
= parse_cgroupfs_options(data
, &opts
);
1786 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1787 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1788 task_tgid_nr(current
), current
->comm
);
1790 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1791 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1793 /* Don't allow flags or name to change at remount */
1794 if ((opts
.flags
^ root
->flags
) ||
1795 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1796 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1797 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1802 /* remounting is not allowed for populated hierarchies */
1803 if (!list_empty(&root
->cgrp
.self
.children
)) {
1808 ret
= rebind_subsystems(root
, added_mask
);
1812 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, removed_mask
));
1814 if (opts
.release_agent
) {
1815 spin_lock(&release_agent_path_lock
);
1816 strcpy(root
->release_agent_path
, opts
.release_agent
);
1817 spin_unlock(&release_agent_path_lock
);
1820 kfree(opts
.release_agent
);
1822 mutex_unlock(&cgroup_mutex
);
1827 * To reduce the fork() overhead for systems that are not actually using
1828 * their cgroups capability, we don't maintain the lists running through
1829 * each css_set to its tasks until we see the list actually used - in other
1830 * words after the first mount.
1832 static bool use_task_css_set_links __read_mostly
;
1834 static void cgroup_enable_task_cg_lists(void)
1836 struct task_struct
*p
, *g
;
1838 spin_lock_bh(&css_set_lock
);
1840 if (use_task_css_set_links
)
1843 use_task_css_set_links
= true;
1846 * We need tasklist_lock because RCU is not safe against
1847 * while_each_thread(). Besides, a forking task that has passed
1848 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1849 * is not guaranteed to have its child immediately visible in the
1850 * tasklist if we walk through it with RCU.
1852 read_lock(&tasklist_lock
);
1853 do_each_thread(g
, p
) {
1854 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1855 task_css_set(p
) != &init_css_set
);
1858 * We should check if the process is exiting, otherwise
1859 * it will race with cgroup_exit() in that the list
1860 * entry won't be deleted though the process has exited.
1861 * Do it while holding siglock so that we don't end up
1862 * racing against cgroup_exit().
1864 spin_lock_irq(&p
->sighand
->siglock
);
1865 if (!(p
->flags
& PF_EXITING
)) {
1866 struct css_set
*cset
= task_css_set(p
);
1868 if (!css_set_populated(cset
))
1869 css_set_update_populated(cset
, true);
1870 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1873 spin_unlock_irq(&p
->sighand
->siglock
);
1874 } while_each_thread(g
, p
);
1875 read_unlock(&tasklist_lock
);
1877 spin_unlock_bh(&css_set_lock
);
1880 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1882 struct cgroup_subsys
*ss
;
1885 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1886 INIT_LIST_HEAD(&cgrp
->self
.children
);
1887 INIT_LIST_HEAD(&cgrp
->cset_links
);
1888 INIT_LIST_HEAD(&cgrp
->pidlists
);
1889 mutex_init(&cgrp
->pidlist_mutex
);
1890 cgrp
->self
.cgroup
= cgrp
;
1891 cgrp
->self
.flags
|= CSS_ONLINE
;
1893 for_each_subsys(ss
, ssid
)
1894 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1896 init_waitqueue_head(&cgrp
->offline_waitq
);
1897 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1900 static void init_cgroup_root(struct cgroup_root
*root
,
1901 struct cgroup_sb_opts
*opts
)
1903 struct cgroup
*cgrp
= &root
->cgrp
;
1905 INIT_LIST_HEAD(&root
->root_list
);
1906 atomic_set(&root
->nr_cgrps
, 1);
1908 init_cgroup_housekeeping(cgrp
);
1909 idr_init(&root
->cgroup_idr
);
1911 root
->flags
= opts
->flags
;
1912 if (opts
->release_agent
)
1913 strcpy(root
->release_agent_path
, opts
->release_agent
);
1915 strcpy(root
->name
, opts
->name
);
1916 if (opts
->cpuset_clone_children
)
1917 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1920 static int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
)
1922 LIST_HEAD(tmp_links
);
1923 struct cgroup
*root_cgrp
= &root
->cgrp
;
1924 struct css_set
*cset
;
1927 lockdep_assert_held(&cgroup_mutex
);
1929 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1932 root_cgrp
->id
= ret
;
1933 root_cgrp
->ancestor_ids
[0] = ret
;
1935 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
1941 * We're accessing css_set_count without locking css_set_lock here,
1942 * but that's OK - it can only be increased by someone holding
1943 * cgroup_lock, and that's us. Later rebinding may disable
1944 * controllers on the default hierarchy and thus create new csets,
1945 * which can't be more than the existing ones. Allocate 2x.
1947 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
1951 ret
= cgroup_init_root_id(root
);
1955 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
1956 KERNFS_ROOT_CREATE_DEACTIVATED
,
1958 if (IS_ERR(root
->kf_root
)) {
1959 ret
= PTR_ERR(root
->kf_root
);
1962 root_cgrp
->kn
= root
->kf_root
->kn
;
1964 ret
= css_populate_dir(&root_cgrp
->self
);
1968 ret
= rebind_subsystems(root
, ss_mask
);
1973 * There must be no failure case after here, since rebinding takes
1974 * care of subsystems' refcounts, which are explicitly dropped in
1975 * the failure exit path.
1977 list_add(&root
->root_list
, &cgroup_roots
);
1978 cgroup_root_count
++;
1981 * Link the root cgroup in this hierarchy into all the css_set
1984 spin_lock_bh(&css_set_lock
);
1985 hash_for_each(css_set_table
, i
, cset
, hlist
) {
1986 link_css_set(&tmp_links
, cset
, root_cgrp
);
1987 if (css_set_populated(cset
))
1988 cgroup_update_populated(root_cgrp
, true);
1990 spin_unlock_bh(&css_set_lock
);
1992 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1993 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1995 kernfs_activate(root_cgrp
->kn
);
2000 kernfs_destroy_root(root
->kf_root
);
2001 root
->kf_root
= NULL
;
2003 cgroup_exit_root_id(root
);
2005 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
2007 free_cgrp_cset_links(&tmp_links
);
2011 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
2012 int flags
, const char *unused_dev_name
,
2015 bool is_v2
= fs_type
== &cgroup2_fs_type
;
2016 struct super_block
*pinned_sb
= NULL
;
2017 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
2018 struct cgroup_subsys
*ss
;
2019 struct cgroup_root
*root
;
2020 struct cgroup_sb_opts opts
;
2021 struct dentry
*dentry
;
2028 /* Check if the caller has permission to mount. */
2029 if (!ns_capable(ns
->user_ns
, CAP_SYS_ADMIN
)) {
2031 return ERR_PTR(-EPERM
);
2035 * The first time anyone tries to mount a cgroup, enable the list
2036 * linking each css_set to its tasks and fix up all existing tasks.
2038 if (!use_task_css_set_links
)
2039 cgroup_enable_task_cg_lists();
2043 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data
);
2045 return ERR_PTR(-EINVAL
);
2047 cgrp_dfl_visible
= true;
2048 root
= &cgrp_dfl_root
;
2049 cgroup_get(&root
->cgrp
);
2053 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
2055 /* First find the desired set of subsystems */
2056 ret
= parse_cgroupfs_options(data
, &opts
);
2061 * Destruction of cgroup root is asynchronous, so subsystems may
2062 * still be dying after the previous unmount. Let's drain the
2063 * dying subsystems. We just need to ensure that the ones
2064 * unmounted previously finish dying and don't care about new ones
2065 * starting. Testing ref liveliness is good enough.
2067 for_each_subsys(ss
, i
) {
2068 if (!(opts
.subsys_mask
& (1 << i
)) ||
2069 ss
->root
== &cgrp_dfl_root
)
2072 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
2073 mutex_unlock(&cgroup_mutex
);
2075 ret
= restart_syscall();
2078 cgroup_put(&ss
->root
->cgrp
);
2081 for_each_root(root
) {
2082 bool name_match
= false;
2084 if (root
== &cgrp_dfl_root
)
2088 * If we asked for a name then it must match. Also, if
2089 * name matches but sybsys_mask doesn't, we should fail.
2090 * Remember whether name matched.
2093 if (strcmp(opts
.name
, root
->name
))
2099 * If we asked for subsystems (or explicitly for no
2100 * subsystems) then they must match.
2102 if ((opts
.subsys_mask
|| opts
.none
) &&
2103 (opts
.subsys_mask
!= root
->subsys_mask
)) {
2110 if (root
->flags
^ opts
.flags
)
2111 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2114 * We want to reuse @root whose lifetime is governed by its
2115 * ->cgrp. Let's check whether @root is alive and keep it
2116 * that way. As cgroup_kill_sb() can happen anytime, we
2117 * want to block it by pinning the sb so that @root doesn't
2118 * get killed before mount is complete.
2120 * With the sb pinned, tryget_live can reliably indicate
2121 * whether @root can be reused. If it's being killed,
2122 * drain it. We can use wait_queue for the wait but this
2123 * path is super cold. Let's just sleep a bit and retry.
2125 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
2126 if (IS_ERR(pinned_sb
) ||
2127 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
2128 mutex_unlock(&cgroup_mutex
);
2129 if (!IS_ERR_OR_NULL(pinned_sb
))
2130 deactivate_super(pinned_sb
);
2132 ret
= restart_syscall();
2141 * No such thing, create a new one. name= matching without subsys
2142 * specification is allowed for already existing hierarchies but we
2143 * can't create new one without subsys specification.
2145 if (!opts
.subsys_mask
&& !opts
.none
) {
2151 * We know this subsystem has not yet been bound. Users in a non-init
2152 * user namespace may only mount hierarchies with no bound subsystems,
2153 * i.e. 'none,name=user1'
2155 if (!opts
.none
&& !capable(CAP_SYS_ADMIN
)) {
2160 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
2166 init_cgroup_root(root
, &opts
);
2168 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
2170 cgroup_free_root(root
);
2173 mutex_unlock(&cgroup_mutex
);
2175 kfree(opts
.release_agent
);
2180 return ERR_PTR(ret
);
2183 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
2184 is_v2
? CGROUP2_SUPER_MAGIC
: CGROUP_SUPER_MAGIC
,
2188 * In non-init cgroup namespace, instead of root cgroup's
2189 * dentry, we return the dentry corresponding to the
2190 * cgroupns->root_cgrp.
2192 if (!IS_ERR(dentry
) && ns
!= &init_cgroup_ns
) {
2193 struct dentry
*nsdentry
;
2194 struct cgroup
*cgrp
;
2196 mutex_lock(&cgroup_mutex
);
2197 spin_lock_bh(&css_set_lock
);
2199 cgrp
= cset_cgroup_from_root(ns
->root_cset
, root
);
2201 spin_unlock_bh(&css_set_lock
);
2202 mutex_unlock(&cgroup_mutex
);
2204 nsdentry
= kernfs_node_dentry(cgrp
->kn
, dentry
->d_sb
);
2209 if (IS_ERR(dentry
) || !new_sb
)
2210 cgroup_put(&root
->cgrp
);
2213 * If @pinned_sb, we're reusing an existing root and holding an
2214 * extra ref on its sb. Mount is complete. Put the extra ref.
2218 deactivate_super(pinned_sb
);
2225 static void cgroup_kill_sb(struct super_block
*sb
)
2227 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2228 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2231 * If @root doesn't have any mounts or children, start killing it.
2232 * This prevents new mounts by disabling percpu_ref_tryget_live().
2233 * cgroup_mount() may wait for @root's release.
2235 * And don't kill the default root.
2237 if (!list_empty(&root
->cgrp
.self
.children
) ||
2238 root
== &cgrp_dfl_root
)
2239 cgroup_put(&root
->cgrp
);
2241 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2246 static struct file_system_type cgroup_fs_type
= {
2248 .mount
= cgroup_mount
,
2249 .kill_sb
= cgroup_kill_sb
,
2250 .fs_flags
= FS_USERNS_MOUNT
,
2253 static struct file_system_type cgroup2_fs_type
= {
2255 .mount
= cgroup_mount
,
2256 .kill_sb
= cgroup_kill_sb
,
2257 .fs_flags
= FS_USERNS_MOUNT
,
2260 static char *cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2261 struct cgroup_namespace
*ns
)
2263 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2266 ret
= kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2267 if (ret
< 0 || ret
>= buflen
)
2272 char *cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2273 struct cgroup_namespace
*ns
)
2277 mutex_lock(&cgroup_mutex
);
2278 spin_lock_bh(&css_set_lock
);
2280 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2282 spin_unlock_bh(&css_set_lock
);
2283 mutex_unlock(&cgroup_mutex
);
2287 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2290 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2291 * @task: target task
2292 * @buf: the buffer to write the path into
2293 * @buflen: the length of the buffer
2295 * Determine @task's cgroup on the first (the one with the lowest non-zero
2296 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2297 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2298 * cgroup controller callbacks.
2300 * Return value is the same as kernfs_path().
2302 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2304 struct cgroup_root
*root
;
2305 struct cgroup
*cgrp
;
2306 int hierarchy_id
= 1;
2309 mutex_lock(&cgroup_mutex
);
2310 spin_lock_bh(&css_set_lock
);
2312 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2315 cgrp
= task_cgroup_from_root(task
, root
);
2316 path
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2318 /* if no hierarchy exists, everyone is in "/" */
2319 if (strlcpy(buf
, "/", buflen
) < buflen
)
2323 spin_unlock_bh(&css_set_lock
);
2324 mutex_unlock(&cgroup_mutex
);
2327 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2329 /* used to track tasks and other necessary states during migration */
2330 struct cgroup_taskset
{
2331 /* the src and dst cset list running through cset->mg_node */
2332 struct list_head src_csets
;
2333 struct list_head dst_csets
;
2335 /* the subsys currently being processed */
2339 * Fields for cgroup_taskset_*() iteration.
2341 * Before migration is committed, the target migration tasks are on
2342 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2343 * the csets on ->dst_csets. ->csets point to either ->src_csets
2344 * or ->dst_csets depending on whether migration is committed.
2346 * ->cur_csets and ->cur_task point to the current task position
2349 struct list_head
*csets
;
2350 struct css_set
*cur_cset
;
2351 struct task_struct
*cur_task
;
2354 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2355 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2356 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2357 .csets = &tset.src_csets, \
2361 * cgroup_taskset_add - try to add a migration target task to a taskset
2362 * @task: target task
2363 * @tset: target taskset
2365 * Add @task, which is a migration target, to @tset. This function becomes
2366 * noop if @task doesn't need to be migrated. @task's css_set should have
2367 * been added as a migration source and @task->cg_list will be moved from
2368 * the css_set's tasks list to mg_tasks one.
2370 static void cgroup_taskset_add(struct task_struct
*task
,
2371 struct cgroup_taskset
*tset
)
2373 struct css_set
*cset
;
2375 lockdep_assert_held(&css_set_lock
);
2377 /* @task either already exited or can't exit until the end */
2378 if (task
->flags
& PF_EXITING
)
2381 /* leave @task alone if post_fork() hasn't linked it yet */
2382 if (list_empty(&task
->cg_list
))
2385 cset
= task_css_set(task
);
2386 if (!cset
->mg_src_cgrp
)
2389 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2390 if (list_empty(&cset
->mg_node
))
2391 list_add_tail(&cset
->mg_node
, &tset
->src_csets
);
2392 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2393 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2398 * cgroup_taskset_first - reset taskset and return the first task
2399 * @tset: taskset of interest
2400 * @dst_cssp: output variable for the destination css
2402 * @tset iteration is initialized and the first task is returned.
2404 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2405 struct cgroup_subsys_state
**dst_cssp
)
2407 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2408 tset
->cur_task
= NULL
;
2410 return cgroup_taskset_next(tset
, dst_cssp
);
2414 * cgroup_taskset_next - iterate to the next task in taskset
2415 * @tset: taskset of interest
2416 * @dst_cssp: output variable for the destination css
2418 * Return the next task in @tset. Iteration must have been initialized
2419 * with cgroup_taskset_first().
2421 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2422 struct cgroup_subsys_state
**dst_cssp
)
2424 struct css_set
*cset
= tset
->cur_cset
;
2425 struct task_struct
*task
= tset
->cur_task
;
2427 while (&cset
->mg_node
!= tset
->csets
) {
2429 task
= list_first_entry(&cset
->mg_tasks
,
2430 struct task_struct
, cg_list
);
2432 task
= list_next_entry(task
, cg_list
);
2434 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2435 tset
->cur_cset
= cset
;
2436 tset
->cur_task
= task
;
2439 * This function may be called both before and
2440 * after cgroup_taskset_migrate(). The two cases
2441 * can be distinguished by looking at whether @cset
2442 * has its ->mg_dst_cset set.
2444 if (cset
->mg_dst_cset
)
2445 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2447 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2452 cset
= list_next_entry(cset
, mg_node
);
2460 * cgroup_taskset_migrate - migrate a taskset
2461 * @tset: taget taskset
2462 * @root: cgroup root the migration is taking place on
2464 * Migrate tasks in @tset as setup by migration preparation functions.
2465 * This function fails iff one of the ->can_attach callbacks fails and
2466 * guarantees that either all or none of the tasks in @tset are migrated.
2467 * @tset is consumed regardless of success.
2469 static int cgroup_taskset_migrate(struct cgroup_taskset
*tset
,
2470 struct cgroup_root
*root
)
2472 struct cgroup_subsys
*ss
;
2473 struct task_struct
*task
, *tmp_task
;
2474 struct css_set
*cset
, *tmp_cset
;
2475 int ssid
, failed_ssid
, ret
;
2477 /* methods shouldn't be called if no task is actually migrating */
2478 if (list_empty(&tset
->src_csets
))
2481 /* check that we can legitimately attach to the cgroup */
2482 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2483 if (ss
->can_attach
) {
2485 ret
= ss
->can_attach(tset
);
2488 goto out_cancel_attach
;
2491 } while_each_subsys_mask();
2494 * Now that we're guaranteed success, proceed to move all tasks to
2495 * the new cgroup. There are no failure cases after here, so this
2496 * is the commit point.
2498 spin_lock_bh(&css_set_lock
);
2499 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2500 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2501 struct css_set
*from_cset
= task_css_set(task
);
2502 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2504 get_css_set(to_cset
);
2505 css_set_move_task(task
, from_cset
, to_cset
, true);
2506 put_css_set_locked(from_cset
);
2509 spin_unlock_bh(&css_set_lock
);
2512 * Migration is committed, all target tasks are now on dst_csets.
2513 * Nothing is sensitive to fork() after this point. Notify
2514 * controllers that migration is complete.
2516 tset
->csets
= &tset
->dst_csets
;
2518 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2523 } while_each_subsys_mask();
2526 goto out_release_tset
;
2529 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2530 if (ssid
== failed_ssid
)
2532 if (ss
->cancel_attach
) {
2534 ss
->cancel_attach(tset
);
2536 } while_each_subsys_mask();
2538 spin_lock_bh(&css_set_lock
);
2539 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2540 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2541 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2542 list_del_init(&cset
->mg_node
);
2544 spin_unlock_bh(&css_set_lock
);
2549 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2550 * @dst_cgrp: destination cgroup to test
2552 * On the default hierarchy, except for the root, subtree_control must be
2553 * zero for migration destination cgroups with tasks so that child cgroups
2554 * don't compete against tasks.
2556 static bool cgroup_may_migrate_to(struct cgroup
*dst_cgrp
)
2558 return !cgroup_on_dfl(dst_cgrp
) || !cgroup_parent(dst_cgrp
) ||
2559 !dst_cgrp
->subtree_control
;
2563 * cgroup_migrate_finish - cleanup after attach
2564 * @preloaded_csets: list of preloaded css_sets
2566 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2567 * those functions for details.
2569 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2571 struct css_set
*cset
, *tmp_cset
;
2573 lockdep_assert_held(&cgroup_mutex
);
2575 spin_lock_bh(&css_set_lock
);
2576 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2577 cset
->mg_src_cgrp
= NULL
;
2578 cset
->mg_dst_cgrp
= NULL
;
2579 cset
->mg_dst_cset
= NULL
;
2580 list_del_init(&cset
->mg_preload_node
);
2581 put_css_set_locked(cset
);
2583 spin_unlock_bh(&css_set_lock
);
2587 * cgroup_migrate_add_src - add a migration source css_set
2588 * @src_cset: the source css_set to add
2589 * @dst_cgrp: the destination cgroup
2590 * @preloaded_csets: list of preloaded css_sets
2592 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2593 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2594 * up by cgroup_migrate_finish().
2596 * This function may be called without holding cgroup_threadgroup_rwsem
2597 * even if the target is a process. Threads may be created and destroyed
2598 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2599 * into play and the preloaded css_sets are guaranteed to cover all
2602 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2603 struct cgroup
*dst_cgrp
,
2604 struct list_head
*preloaded_csets
)
2606 struct cgroup
*src_cgrp
;
2608 lockdep_assert_held(&cgroup_mutex
);
2609 lockdep_assert_held(&css_set_lock
);
2612 * If ->dead, @src_set is associated with one or more dead cgroups
2613 * and doesn't contain any migratable tasks. Ignore it early so
2614 * that the rest of migration path doesn't get confused by it.
2619 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2621 if (!list_empty(&src_cset
->mg_preload_node
))
2624 WARN_ON(src_cset
->mg_src_cgrp
);
2625 WARN_ON(src_cset
->mg_dst_cgrp
);
2626 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2627 WARN_ON(!list_empty(&src_cset
->mg_node
));
2629 src_cset
->mg_src_cgrp
= src_cgrp
;
2630 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2631 get_css_set(src_cset
);
2632 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2636 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2637 * @preloaded_csets: list of preloaded source css_sets
2639 * Tasks are about to be moved and all the source css_sets have been
2640 * preloaded to @preloaded_csets. This function looks up and pins all
2641 * destination css_sets, links each to its source, and append them to
2644 * This function must be called after cgroup_migrate_add_src() has been
2645 * called on each migration source css_set. After migration is performed
2646 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2649 static int cgroup_migrate_prepare_dst(struct list_head
*preloaded_csets
)
2652 struct css_set
*src_cset
, *tmp_cset
;
2654 lockdep_assert_held(&cgroup_mutex
);
2656 /* look up the dst cset for each src cset and link it to src */
2657 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2658 struct css_set
*dst_cset
;
2660 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2664 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2667 * If src cset equals dst, it's noop. Drop the src.
2668 * cgroup_migrate() will skip the cset too. Note that we
2669 * can't handle src == dst as some nodes are used by both.
2671 if (src_cset
== dst_cset
) {
2672 src_cset
->mg_src_cgrp
= NULL
;
2673 src_cset
->mg_dst_cgrp
= NULL
;
2674 list_del_init(&src_cset
->mg_preload_node
);
2675 put_css_set(src_cset
);
2676 put_css_set(dst_cset
);
2680 src_cset
->mg_dst_cset
= dst_cset
;
2682 if (list_empty(&dst_cset
->mg_preload_node
))
2683 list_add(&dst_cset
->mg_preload_node
, &csets
);
2685 put_css_set(dst_cset
);
2688 list_splice_tail(&csets
, preloaded_csets
);
2691 cgroup_migrate_finish(&csets
);
2696 * cgroup_migrate - migrate a process or task to a cgroup
2697 * @leader: the leader of the process or the task to migrate
2698 * @threadgroup: whether @leader points to the whole process or a single task
2699 * @root: cgroup root migration is taking place on
2701 * Migrate a process or task denoted by @leader. If migrating a process,
2702 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2703 * responsible for invoking cgroup_migrate_add_src() and
2704 * cgroup_migrate_prepare_dst() on the targets before invoking this
2705 * function and following up with cgroup_migrate_finish().
2707 * As long as a controller's ->can_attach() doesn't fail, this function is
2708 * guaranteed to succeed. This means that, excluding ->can_attach()
2709 * failure, when migrating multiple targets, the success or failure can be
2710 * decided for all targets by invoking group_migrate_prepare_dst() before
2711 * actually starting migrating.
2713 static int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2714 struct cgroup_root
*root
)
2716 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2717 struct task_struct
*task
;
2720 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2721 * already PF_EXITING could be freed from underneath us unless we
2722 * take an rcu_read_lock.
2724 spin_lock_bh(&css_set_lock
);
2728 cgroup_taskset_add(task
, &tset
);
2731 } while_each_thread(leader
, task
);
2733 spin_unlock_bh(&css_set_lock
);
2735 return cgroup_taskset_migrate(&tset
, root
);
2739 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2740 * @dst_cgrp: the cgroup to attach to
2741 * @leader: the task or the leader of the threadgroup to be attached
2742 * @threadgroup: attach the whole threadgroup?
2744 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2746 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2747 struct task_struct
*leader
, bool threadgroup
)
2749 LIST_HEAD(preloaded_csets
);
2750 struct task_struct
*task
;
2753 if (!cgroup_may_migrate_to(dst_cgrp
))
2756 /* look up all src csets */
2757 spin_lock_bh(&css_set_lock
);
2761 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2765 } while_each_thread(leader
, task
);
2767 spin_unlock_bh(&css_set_lock
);
2769 /* prepare dst csets and commit */
2770 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
2772 ret
= cgroup_migrate(leader
, threadgroup
, dst_cgrp
->root
);
2774 cgroup_migrate_finish(&preloaded_csets
);
2778 static int cgroup_procs_write_permission(struct task_struct
*task
,
2779 struct cgroup
*dst_cgrp
,
2780 struct kernfs_open_file
*of
)
2782 const struct cred
*cred
= current_cred();
2783 const struct cred
*tcred
= get_task_cred(task
);
2787 * even if we're attaching all tasks in the thread group, we only
2788 * need to check permissions on one of them.
2790 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2791 !uid_eq(cred
->euid
, tcred
->uid
) &&
2792 !uid_eq(cred
->euid
, tcred
->suid
))
2795 if (!ret
&& cgroup_on_dfl(dst_cgrp
)) {
2796 struct super_block
*sb
= of
->file
->f_path
.dentry
->d_sb
;
2797 struct cgroup
*cgrp
;
2798 struct inode
*inode
;
2800 spin_lock_bh(&css_set_lock
);
2801 cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
2802 spin_unlock_bh(&css_set_lock
);
2804 while (!cgroup_is_descendant(dst_cgrp
, cgrp
))
2805 cgrp
= cgroup_parent(cgrp
);
2808 inode
= kernfs_get_inode(sb
, cgrp
->procs_file
.kn
);
2810 ret
= inode_permission(inode
, MAY_WRITE
);
2820 * Find the task_struct of the task to attach by vpid and pass it along to the
2821 * function to attach either it or all tasks in its threadgroup. Will lock
2822 * cgroup_mutex and threadgroup.
2824 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2825 size_t nbytes
, loff_t off
, bool threadgroup
)
2827 struct task_struct
*tsk
;
2828 struct cgroup_subsys
*ss
;
2829 struct cgroup
*cgrp
;
2833 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2836 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
2840 percpu_down_write(&cgroup_threadgroup_rwsem
);
2843 tsk
= find_task_by_vpid(pid
);
2846 goto out_unlock_rcu
;
2853 tsk
= tsk
->group_leader
;
2856 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2857 * trapped in a cpuset, or RT worker may be born in a cgroup
2858 * with no rt_runtime allocated. Just say no.
2860 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2862 goto out_unlock_rcu
;
2865 get_task_struct(tsk
);
2868 ret
= cgroup_procs_write_permission(tsk
, cgrp
, of
);
2870 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2872 put_task_struct(tsk
);
2873 goto out_unlock_threadgroup
;
2877 out_unlock_threadgroup
:
2878 percpu_up_write(&cgroup_threadgroup_rwsem
);
2879 for_each_subsys(ss
, ssid
)
2880 if (ss
->post_attach
)
2882 cgroup_kn_unlock(of
->kn
);
2883 return ret
?: nbytes
;
2887 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2888 * @from: attach to all cgroups of a given task
2889 * @tsk: the task to be attached
2891 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2893 struct cgroup_root
*root
;
2896 mutex_lock(&cgroup_mutex
);
2897 for_each_root(root
) {
2898 struct cgroup
*from_cgrp
;
2900 if (root
== &cgrp_dfl_root
)
2903 spin_lock_bh(&css_set_lock
);
2904 from_cgrp
= task_cgroup_from_root(from
, root
);
2905 spin_unlock_bh(&css_set_lock
);
2907 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2911 mutex_unlock(&cgroup_mutex
);
2915 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2917 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2918 char *buf
, size_t nbytes
, loff_t off
)
2920 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2923 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2924 char *buf
, size_t nbytes
, loff_t off
)
2926 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2929 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2930 char *buf
, size_t nbytes
, loff_t off
)
2932 struct cgroup
*cgrp
;
2934 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2936 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
2939 spin_lock(&release_agent_path_lock
);
2940 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
2941 sizeof(cgrp
->root
->release_agent_path
));
2942 spin_unlock(&release_agent_path_lock
);
2943 cgroup_kn_unlock(of
->kn
);
2947 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
2949 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2951 spin_lock(&release_agent_path_lock
);
2952 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2953 spin_unlock(&release_agent_path_lock
);
2954 seq_putc(seq
, '\n');
2958 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
2960 seq_puts(seq
, "0\n");
2964 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2966 struct cgroup_subsys
*ss
;
2967 bool printed
= false;
2970 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2973 seq_printf(seq
, "%s", ss
->name
);
2975 } while_each_subsys_mask();
2977 seq_putc(seq
, '\n');
2980 /* show controllers which are enabled from the parent */
2981 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2983 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2985 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2989 /* show controllers which are enabled for a given cgroup's children */
2990 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2992 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2994 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2999 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3000 * @cgrp: root of the subtree to update csses for
3002 * @cgrp's control masks have changed and its subtree's css associations
3003 * need to be updated accordingly. This function looks up all css_sets
3004 * which are attached to the subtree, creates the matching updated css_sets
3005 * and migrates the tasks to the new ones.
3007 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
3009 LIST_HEAD(preloaded_csets
);
3010 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
3011 struct cgroup_subsys_state
*d_css
;
3012 struct cgroup
*dsct
;
3013 struct css_set
*src_cset
;
3016 lockdep_assert_held(&cgroup_mutex
);
3018 percpu_down_write(&cgroup_threadgroup_rwsem
);
3020 /* look up all csses currently attached to @cgrp's subtree */
3021 spin_lock_bh(&css_set_lock
);
3022 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3023 struct cgrp_cset_link
*link
;
3025 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
3026 cgroup_migrate_add_src(link
->cset
, dsct
,
3029 spin_unlock_bh(&css_set_lock
);
3031 /* NULL dst indicates self on default hierarchy */
3032 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
3036 spin_lock_bh(&css_set_lock
);
3037 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
3038 struct task_struct
*task
, *ntask
;
3040 /* src_csets precede dst_csets, break on the first dst_cset */
3041 if (!src_cset
->mg_src_cgrp
)
3044 /* all tasks in src_csets need to be migrated */
3045 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
3046 cgroup_taskset_add(task
, &tset
);
3048 spin_unlock_bh(&css_set_lock
);
3050 ret
= cgroup_taskset_migrate(&tset
, cgrp
->root
);
3052 cgroup_migrate_finish(&preloaded_csets
);
3053 percpu_up_write(&cgroup_threadgroup_rwsem
);
3058 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3059 * @cgrp: root of the target subtree
3061 * Because css offlining is asynchronous, userland may try to re-enable a
3062 * controller while the previous css is still around. This function grabs
3063 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3065 static void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
3066 __acquires(&cgroup_mutex
)
3068 struct cgroup
*dsct
;
3069 struct cgroup_subsys_state
*d_css
;
3070 struct cgroup_subsys
*ss
;
3074 mutex_lock(&cgroup_mutex
);
3076 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3077 for_each_subsys(ss
, ssid
) {
3078 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3081 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
3085 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
3086 TASK_UNINTERRUPTIBLE
);
3088 mutex_unlock(&cgroup_mutex
);
3090 finish_wait(&dsct
->offline_waitq
, &wait
);
3099 * cgroup_save_control - save control masks of a subtree
3100 * @cgrp: root of the target subtree
3102 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3103 * prefixed fields for @cgrp's subtree including @cgrp itself.
3105 static void cgroup_save_control(struct cgroup
*cgrp
)
3107 struct cgroup
*dsct
;
3108 struct cgroup_subsys_state
*d_css
;
3110 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3111 dsct
->old_subtree_control
= dsct
->subtree_control
;
3112 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
3117 * cgroup_propagate_control - refresh control masks of a subtree
3118 * @cgrp: root of the target subtree
3120 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3121 * ->subtree_control and propagate controller availability through the
3122 * subtree so that descendants don't have unavailable controllers enabled.
3124 static void cgroup_propagate_control(struct cgroup
*cgrp
)
3126 struct cgroup
*dsct
;
3127 struct cgroup_subsys_state
*d_css
;
3129 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3130 dsct
->subtree_control
&= cgroup_control(dsct
);
3131 dsct
->subtree_ss_mask
=
3132 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
3133 cgroup_ss_mask(dsct
));
3138 * cgroup_restore_control - restore control masks of a subtree
3139 * @cgrp: root of the target subtree
3141 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3142 * prefixed fields for @cgrp's subtree including @cgrp itself.
3144 static void cgroup_restore_control(struct cgroup
*cgrp
)
3146 struct cgroup
*dsct
;
3147 struct cgroup_subsys_state
*d_css
;
3149 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3150 dsct
->subtree_control
= dsct
->old_subtree_control
;
3151 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
3155 static bool css_visible(struct cgroup_subsys_state
*css
)
3157 struct cgroup_subsys
*ss
= css
->ss
;
3158 struct cgroup
*cgrp
= css
->cgroup
;
3160 if (cgroup_control(cgrp
) & (1 << ss
->id
))
3162 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
3164 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
3168 * cgroup_apply_control_enable - enable or show csses according to control
3169 * @cgrp: root of the target subtree
3171 * Walk @cgrp's subtree and create new csses or make the existing ones
3172 * visible. A css is created invisible if it's being implicitly enabled
3173 * through dependency. An invisible css is made visible when the userland
3174 * explicitly enables it.
3176 * Returns 0 on success, -errno on failure. On failure, csses which have
3177 * been processed already aren't cleaned up. The caller is responsible for
3178 * cleaning up with cgroup_apply_control_disble().
3180 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
3182 struct cgroup
*dsct
;
3183 struct cgroup_subsys_state
*d_css
;
3184 struct cgroup_subsys
*ss
;
3187 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3188 for_each_subsys(ss
, ssid
) {
3189 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3191 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3193 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
3197 css
= css_create(dsct
, ss
);
3199 return PTR_ERR(css
);
3202 if (css_visible(css
)) {
3203 ret
= css_populate_dir(css
);
3214 * cgroup_apply_control_disable - kill or hide csses according to control
3215 * @cgrp: root of the target subtree
3217 * Walk @cgrp's subtree and kill and hide csses so that they match
3218 * cgroup_ss_mask() and cgroup_visible_mask().
3220 * A css is hidden when the userland requests it to be disabled while other
3221 * subsystems are still depending on it. The css must not actively control
3222 * resources and be in the vanilla state if it's made visible again later.
3223 * Controllers which may be depended upon should provide ->css_reset() for
3226 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
3228 struct cgroup
*dsct
;
3229 struct cgroup_subsys_state
*d_css
;
3230 struct cgroup_subsys
*ss
;
3233 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3234 for_each_subsys(ss
, ssid
) {
3235 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3237 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3243 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
3245 } else if (!css_visible(css
)) {
3255 * cgroup_apply_control - apply control mask updates to the subtree
3256 * @cgrp: root of the target subtree
3258 * subsystems can be enabled and disabled in a subtree using the following
3261 * 1. Call cgroup_save_control() to stash the current state.
3262 * 2. Update ->subtree_control masks in the subtree as desired.
3263 * 3. Call cgroup_apply_control() to apply the changes.
3264 * 4. Optionally perform other related operations.
3265 * 5. Call cgroup_finalize_control() to finish up.
3267 * This function implements step 3 and propagates the mask changes
3268 * throughout @cgrp's subtree, updates csses accordingly and perform
3269 * process migrations.
3271 static int cgroup_apply_control(struct cgroup
*cgrp
)
3275 cgroup_propagate_control(cgrp
);
3277 ret
= cgroup_apply_control_enable(cgrp
);
3282 * At this point, cgroup_e_css() results reflect the new csses
3283 * making the following cgroup_update_dfl_csses() properly update
3284 * css associations of all tasks in the subtree.
3286 ret
= cgroup_update_dfl_csses(cgrp
);
3294 * cgroup_finalize_control - finalize control mask update
3295 * @cgrp: root of the target subtree
3296 * @ret: the result of the update
3298 * Finalize control mask update. See cgroup_apply_control() for more info.
3300 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3303 cgroup_restore_control(cgrp
);
3304 cgroup_propagate_control(cgrp
);
3307 cgroup_apply_control_disable(cgrp
);
3310 /* change the enabled child controllers for a cgroup in the default hierarchy */
3311 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3312 char *buf
, size_t nbytes
,
3315 u16 enable
= 0, disable
= 0;
3316 struct cgroup
*cgrp
, *child
;
3317 struct cgroup_subsys
*ss
;
3322 * Parse input - space separated list of subsystem names prefixed
3323 * with either + or -.
3325 buf
= strstrip(buf
);
3326 while ((tok
= strsep(&buf
, " "))) {
3329 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3330 if (!cgroup_ssid_enabled(ssid
) ||
3331 strcmp(tok
+ 1, ss
->name
))
3335 enable
|= 1 << ssid
;
3336 disable
&= ~(1 << ssid
);
3337 } else if (*tok
== '-') {
3338 disable
|= 1 << ssid
;
3339 enable
&= ~(1 << ssid
);
3344 } while_each_subsys_mask();
3345 if (ssid
== CGROUP_SUBSYS_COUNT
)
3349 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3353 for_each_subsys(ss
, ssid
) {
3354 if (enable
& (1 << ssid
)) {
3355 if (cgrp
->subtree_control
& (1 << ssid
)) {
3356 enable
&= ~(1 << ssid
);
3360 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3364 } else if (disable
& (1 << ssid
)) {
3365 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3366 disable
&= ~(1 << ssid
);
3370 /* a child has it enabled? */
3371 cgroup_for_each_live_child(child
, cgrp
) {
3372 if (child
->subtree_control
& (1 << ssid
)) {
3380 if (!enable
&& !disable
) {
3386 * Except for the root, subtree_control must be zero for a cgroup
3387 * with tasks so that child cgroups don't compete against tasks.
3389 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
3394 /* save and update control masks and prepare csses */
3395 cgroup_save_control(cgrp
);
3397 cgrp
->subtree_control
|= enable
;
3398 cgrp
->subtree_control
&= ~disable
;
3400 ret
= cgroup_apply_control(cgrp
);
3402 cgroup_finalize_control(cgrp
, ret
);
3404 kernfs_activate(cgrp
->kn
);
3407 cgroup_kn_unlock(of
->kn
);
3408 return ret
?: nbytes
;
3411 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3413 seq_printf(seq
, "populated %d\n",
3414 cgroup_is_populated(seq_css(seq
)->cgroup
));
3418 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3419 size_t nbytes
, loff_t off
)
3421 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3422 struct cftype
*cft
= of
->kn
->priv
;
3423 struct cgroup_subsys_state
*css
;
3427 return cft
->write(of
, buf
, nbytes
, off
);
3430 * kernfs guarantees that a file isn't deleted with operations in
3431 * flight, which means that the matching css is and stays alive and
3432 * doesn't need to be pinned. The RCU locking is not necessary
3433 * either. It's just for the convenience of using cgroup_css().
3436 css
= cgroup_css(cgrp
, cft
->ss
);
3439 if (cft
->write_u64
) {
3440 unsigned long long v
;
3441 ret
= kstrtoull(buf
, 0, &v
);
3443 ret
= cft
->write_u64(css
, cft
, v
);
3444 } else if (cft
->write_s64
) {
3446 ret
= kstrtoll(buf
, 0, &v
);
3448 ret
= cft
->write_s64(css
, cft
, v
);
3453 return ret
?: nbytes
;
3456 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3458 return seq_cft(seq
)->seq_start(seq
, ppos
);
3461 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3463 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3466 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3468 seq_cft(seq
)->seq_stop(seq
, v
);
3471 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3473 struct cftype
*cft
= seq_cft(m
);
3474 struct cgroup_subsys_state
*css
= seq_css(m
);
3477 return cft
->seq_show(m
, arg
);
3480 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3481 else if (cft
->read_s64
)
3482 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3488 static struct kernfs_ops cgroup_kf_single_ops
= {
3489 .atomic_write_len
= PAGE_SIZE
,
3490 .write
= cgroup_file_write
,
3491 .seq_show
= cgroup_seqfile_show
,
3494 static struct kernfs_ops cgroup_kf_ops
= {
3495 .atomic_write_len
= PAGE_SIZE
,
3496 .write
= cgroup_file_write
,
3497 .seq_start
= cgroup_seqfile_start
,
3498 .seq_next
= cgroup_seqfile_next
,
3499 .seq_stop
= cgroup_seqfile_stop
,
3500 .seq_show
= cgroup_seqfile_show
,
3504 * cgroup_rename - Only allow simple rename of directories in place.
3506 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
3507 const char *new_name_str
)
3509 struct cgroup
*cgrp
= kn
->priv
;
3512 if (kernfs_type(kn
) != KERNFS_DIR
)
3514 if (kn
->parent
!= new_parent
)
3518 * This isn't a proper migration and its usefulness is very
3519 * limited. Disallow on the default hierarchy.
3521 if (cgroup_on_dfl(cgrp
))
3525 * We're gonna grab cgroup_mutex which nests outside kernfs
3526 * active_ref. kernfs_rename() doesn't require active_ref
3527 * protection. Break them before grabbing cgroup_mutex.
3529 kernfs_break_active_protection(new_parent
);
3530 kernfs_break_active_protection(kn
);
3532 mutex_lock(&cgroup_mutex
);
3534 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
3536 mutex_unlock(&cgroup_mutex
);
3538 kernfs_unbreak_active_protection(kn
);
3539 kernfs_unbreak_active_protection(new_parent
);
3543 /* set uid and gid of cgroup dirs and files to that of the creator */
3544 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3546 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3547 .ia_uid
= current_fsuid(),
3548 .ia_gid
= current_fsgid(), };
3550 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3551 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3554 return kernfs_setattr(kn
, &iattr
);
3557 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3560 char name
[CGROUP_FILE_NAME_MAX
];
3561 struct kernfs_node
*kn
;
3562 struct lock_class_key
*key
= NULL
;
3565 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3566 key
= &cft
->lockdep_key
;
3568 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3569 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3574 ret
= cgroup_kn_set_ugid(kn
);
3580 if (cft
->file_offset
) {
3581 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3583 spin_lock_irq(&cgroup_file_kn_lock
);
3585 spin_unlock_irq(&cgroup_file_kn_lock
);
3592 * cgroup_addrm_files - add or remove files to a cgroup directory
3593 * @css: the target css
3594 * @cgrp: the target cgroup (usually css->cgroup)
3595 * @cfts: array of cftypes to be added
3596 * @is_add: whether to add or remove
3598 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3599 * For removals, this function never fails.
3601 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3602 struct cgroup
*cgrp
, struct cftype cfts
[],
3605 struct cftype
*cft
, *cft_end
= NULL
;
3608 lockdep_assert_held(&cgroup_mutex
);
3611 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3612 /* does cft->flags tell us to skip this file on @cgrp? */
3613 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3615 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3617 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3619 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3623 ret
= cgroup_add_file(css
, cgrp
, cft
);
3625 pr_warn("%s: failed to add %s, err=%d\n",
3626 __func__
, cft
->name
, ret
);
3632 cgroup_rm_file(cgrp
, cft
);
3638 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3641 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3642 struct cgroup
*root
= &ss
->root
->cgrp
;
3643 struct cgroup_subsys_state
*css
;
3646 lockdep_assert_held(&cgroup_mutex
);
3648 /* add/rm files for all cgroups created before */
3649 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3650 struct cgroup
*cgrp
= css
->cgroup
;
3652 if (!(css
->flags
& CSS_VISIBLE
))
3655 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3661 kernfs_activate(root
->kn
);
3665 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3669 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3670 /* free copy for custom atomic_write_len, see init_cftypes() */
3671 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3676 /* revert flags set by cgroup core while adding @cfts */
3677 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3681 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3685 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3686 struct kernfs_ops
*kf_ops
;
3688 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3691 kf_ops
= &cgroup_kf_ops
;
3693 kf_ops
= &cgroup_kf_single_ops
;
3696 * Ugh... if @cft wants a custom max_write_len, we need to
3697 * make a copy of kf_ops to set its atomic_write_len.
3699 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3700 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3702 cgroup_exit_cftypes(cfts
);
3705 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3708 cft
->kf_ops
= kf_ops
;
3715 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3717 lockdep_assert_held(&cgroup_mutex
);
3719 if (!cfts
|| !cfts
[0].ss
)
3722 list_del(&cfts
->node
);
3723 cgroup_apply_cftypes(cfts
, false);
3724 cgroup_exit_cftypes(cfts
);
3729 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3730 * @cfts: zero-length name terminated array of cftypes
3732 * Unregister @cfts. Files described by @cfts are removed from all
3733 * existing cgroups and all future cgroups won't have them either. This
3734 * function can be called anytime whether @cfts' subsys is attached or not.
3736 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3739 int cgroup_rm_cftypes(struct cftype
*cfts
)
3743 mutex_lock(&cgroup_mutex
);
3744 ret
= cgroup_rm_cftypes_locked(cfts
);
3745 mutex_unlock(&cgroup_mutex
);
3750 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3751 * @ss: target cgroup subsystem
3752 * @cfts: zero-length name terminated array of cftypes
3754 * Register @cfts to @ss. Files described by @cfts are created for all
3755 * existing cgroups to which @ss is attached and all future cgroups will
3756 * have them too. This function can be called anytime whether @ss is
3759 * Returns 0 on successful registration, -errno on failure. Note that this
3760 * function currently returns 0 as long as @cfts registration is successful
3761 * even if some file creation attempts on existing cgroups fail.
3763 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3767 if (!cgroup_ssid_enabled(ss
->id
))
3770 if (!cfts
|| cfts
[0].name
[0] == '\0')
3773 ret
= cgroup_init_cftypes(ss
, cfts
);
3777 mutex_lock(&cgroup_mutex
);
3779 list_add_tail(&cfts
->node
, &ss
->cfts
);
3780 ret
= cgroup_apply_cftypes(cfts
, true);
3782 cgroup_rm_cftypes_locked(cfts
);
3784 mutex_unlock(&cgroup_mutex
);
3789 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3790 * @ss: target cgroup subsystem
3791 * @cfts: zero-length name terminated array of cftypes
3793 * Similar to cgroup_add_cftypes() but the added files are only used for
3794 * the default hierarchy.
3796 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3800 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3801 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3802 return cgroup_add_cftypes(ss
, cfts
);
3806 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3807 * @ss: target cgroup subsystem
3808 * @cfts: zero-length name terminated array of cftypes
3810 * Similar to cgroup_add_cftypes() but the added files are only used for
3811 * the legacy hierarchies.
3813 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3817 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3818 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3819 return cgroup_add_cftypes(ss
, cfts
);
3823 * cgroup_file_notify - generate a file modified event for a cgroup_file
3824 * @cfile: target cgroup_file
3826 * @cfile must have been obtained by setting cftype->file_offset.
3828 void cgroup_file_notify(struct cgroup_file
*cfile
)
3830 unsigned long flags
;
3832 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3834 kernfs_notify(cfile
->kn
);
3835 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3839 * cgroup_task_count - count the number of tasks in a cgroup.
3840 * @cgrp: the cgroup in question
3842 * Return the number of tasks in the cgroup.
3844 static int cgroup_task_count(const struct cgroup
*cgrp
)
3847 struct cgrp_cset_link
*link
;
3849 spin_lock_bh(&css_set_lock
);
3850 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3851 count
+= atomic_read(&link
->cset
->refcount
);
3852 spin_unlock_bh(&css_set_lock
);
3857 * css_next_child - find the next child of a given css
3858 * @pos: the current position (%NULL to initiate traversal)
3859 * @parent: css whose children to walk
3861 * This function returns the next child of @parent and should be called
3862 * under either cgroup_mutex or RCU read lock. The only requirement is
3863 * that @parent and @pos are accessible. The next sibling is guaranteed to
3864 * be returned regardless of their states.
3866 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3867 * css which finished ->css_online() is guaranteed to be visible in the
3868 * future iterations and will stay visible until the last reference is put.
3869 * A css which hasn't finished ->css_online() or already finished
3870 * ->css_offline() may show up during traversal. It's each subsystem's
3871 * responsibility to synchronize against on/offlining.
3873 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3874 struct cgroup_subsys_state
*parent
)
3876 struct cgroup_subsys_state
*next
;
3878 cgroup_assert_mutex_or_rcu_locked();
3881 * @pos could already have been unlinked from the sibling list.
3882 * Once a cgroup is removed, its ->sibling.next is no longer
3883 * updated when its next sibling changes. CSS_RELEASED is set when
3884 * @pos is taken off list, at which time its next pointer is valid,
3885 * and, as releases are serialized, the one pointed to by the next
3886 * pointer is guaranteed to not have started release yet. This
3887 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3888 * critical section, the one pointed to by its next pointer is
3889 * guaranteed to not have finished its RCU grace period even if we
3890 * have dropped rcu_read_lock() inbetween iterations.
3892 * If @pos has CSS_RELEASED set, its next pointer can't be
3893 * dereferenced; however, as each css is given a monotonically
3894 * increasing unique serial number and always appended to the
3895 * sibling list, the next one can be found by walking the parent's
3896 * children until the first css with higher serial number than
3897 * @pos's. While this path can be slower, it happens iff iteration
3898 * races against release and the race window is very small.
3901 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3902 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3903 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3905 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3906 if (next
->serial_nr
> pos
->serial_nr
)
3911 * @next, if not pointing to the head, can be dereferenced and is
3914 if (&next
->sibling
!= &parent
->children
)
3920 * css_next_descendant_pre - find the next descendant for pre-order walk
3921 * @pos: the current position (%NULL to initiate traversal)
3922 * @root: css whose descendants to walk
3924 * To be used by css_for_each_descendant_pre(). Find the next descendant
3925 * to visit for pre-order traversal of @root's descendants. @root is
3926 * included in the iteration and the first node to be visited.
3928 * While this function requires cgroup_mutex or RCU read locking, it
3929 * doesn't require the whole traversal to be contained in a single critical
3930 * section. This function will return the correct next descendant as long
3931 * as both @pos and @root are accessible and @pos is a descendant of @root.
3933 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3934 * css which finished ->css_online() is guaranteed to be visible in the
3935 * future iterations and will stay visible until the last reference is put.
3936 * A css which hasn't finished ->css_online() or already finished
3937 * ->css_offline() may show up during traversal. It's each subsystem's
3938 * responsibility to synchronize against on/offlining.
3940 struct cgroup_subsys_state
*
3941 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3942 struct cgroup_subsys_state
*root
)
3944 struct cgroup_subsys_state
*next
;
3946 cgroup_assert_mutex_or_rcu_locked();
3948 /* if first iteration, visit @root */
3952 /* visit the first child if exists */
3953 next
= css_next_child(NULL
, pos
);
3957 /* no child, visit my or the closest ancestor's next sibling */
3958 while (pos
!= root
) {
3959 next
= css_next_child(pos
, pos
->parent
);
3969 * css_rightmost_descendant - return the rightmost descendant of a css
3970 * @pos: css of interest
3972 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3973 * is returned. This can be used during pre-order traversal to skip
3976 * While this function requires cgroup_mutex or RCU read locking, it
3977 * doesn't require the whole traversal to be contained in a single critical
3978 * section. This function will return the correct rightmost descendant as
3979 * long as @pos is accessible.
3981 struct cgroup_subsys_state
*
3982 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3984 struct cgroup_subsys_state
*last
, *tmp
;
3986 cgroup_assert_mutex_or_rcu_locked();
3990 /* ->prev isn't RCU safe, walk ->next till the end */
3992 css_for_each_child(tmp
, last
)
3999 static struct cgroup_subsys_state
*
4000 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
4002 struct cgroup_subsys_state
*last
;
4006 pos
= css_next_child(NULL
, pos
);
4013 * css_next_descendant_post - find the next descendant for post-order walk
4014 * @pos: the current position (%NULL to initiate traversal)
4015 * @root: css whose descendants to walk
4017 * To be used by css_for_each_descendant_post(). Find the next descendant
4018 * to visit for post-order traversal of @root's descendants. @root is
4019 * included in the iteration and the last node to be visited.
4021 * While this function requires cgroup_mutex or RCU read locking, it
4022 * doesn't require the whole traversal to be contained in a single critical
4023 * section. This function will return the correct next descendant as long
4024 * as both @pos and @cgroup are accessible and @pos is a descendant of
4027 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4028 * css which finished ->css_online() is guaranteed to be visible in the
4029 * future iterations and will stay visible until the last reference is put.
4030 * A css which hasn't finished ->css_online() or already finished
4031 * ->css_offline() may show up during traversal. It's each subsystem's
4032 * responsibility to synchronize against on/offlining.
4034 struct cgroup_subsys_state
*
4035 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4036 struct cgroup_subsys_state
*root
)
4038 struct cgroup_subsys_state
*next
;
4040 cgroup_assert_mutex_or_rcu_locked();
4042 /* if first iteration, visit leftmost descendant which may be @root */
4044 return css_leftmost_descendant(root
);
4046 /* if we visited @root, we're done */
4050 /* if there's an unvisited sibling, visit its leftmost descendant */
4051 next
= css_next_child(pos
, pos
->parent
);
4053 return css_leftmost_descendant(next
);
4055 /* no sibling left, visit parent */
4060 * css_has_online_children - does a css have online children
4061 * @css: the target css
4063 * Returns %true if @css has any online children; otherwise, %false. This
4064 * function can be called from any context but the caller is responsible
4065 * for synchronizing against on/offlining as necessary.
4067 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4069 struct cgroup_subsys_state
*child
;
4073 css_for_each_child(child
, css
) {
4074 if (child
->flags
& CSS_ONLINE
) {
4084 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4085 * @it: the iterator to advance
4087 * Advance @it to the next css_set to walk.
4089 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4091 struct list_head
*l
= it
->cset_pos
;
4092 struct cgrp_cset_link
*link
;
4093 struct css_set
*cset
;
4095 lockdep_assert_held(&css_set_lock
);
4097 /* Advance to the next non-empty css_set */
4100 if (l
== it
->cset_head
) {
4101 it
->cset_pos
= NULL
;
4102 it
->task_pos
= NULL
;
4107 cset
= container_of(l
, struct css_set
,
4108 e_cset_node
[it
->ss
->id
]);
4110 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4113 } while (!css_set_populated(cset
));
4117 if (!list_empty(&cset
->tasks
))
4118 it
->task_pos
= cset
->tasks
.next
;
4120 it
->task_pos
= cset
->mg_tasks
.next
;
4122 it
->tasks_head
= &cset
->tasks
;
4123 it
->mg_tasks_head
= &cset
->mg_tasks
;
4126 * We don't keep css_sets locked across iteration steps and thus
4127 * need to take steps to ensure that iteration can be resumed after
4128 * the lock is re-acquired. Iteration is performed at two levels -
4129 * css_sets and tasks in them.
4131 * Once created, a css_set never leaves its cgroup lists, so a
4132 * pinned css_set is guaranteed to stay put and we can resume
4133 * iteration afterwards.
4135 * Tasks may leave @cset across iteration steps. This is resolved
4136 * by registering each iterator with the css_set currently being
4137 * walked and making css_set_move_task() advance iterators whose
4138 * next task is leaving.
4141 list_del(&it
->iters_node
);
4142 put_css_set_locked(it
->cur_cset
);
4145 it
->cur_cset
= cset
;
4146 list_add(&it
->iters_node
, &cset
->task_iters
);
4149 static void css_task_iter_advance(struct css_task_iter
*it
)
4151 struct list_head
*l
= it
->task_pos
;
4153 lockdep_assert_held(&css_set_lock
);
4157 * Advance iterator to find next entry. cset->tasks is consumed
4158 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4163 if (l
== it
->tasks_head
)
4164 l
= it
->mg_tasks_head
->next
;
4166 if (l
== it
->mg_tasks_head
)
4167 css_task_iter_advance_css_set(it
);
4173 * css_task_iter_start - initiate task iteration
4174 * @css: the css to walk tasks of
4175 * @it: the task iterator to use
4177 * Initiate iteration through the tasks of @css. The caller can call
4178 * css_task_iter_next() to walk through the tasks until the function
4179 * returns NULL. On completion of iteration, css_task_iter_end() must be
4182 void css_task_iter_start(struct cgroup_subsys_state
*css
,
4183 struct css_task_iter
*it
)
4185 /* no one should try to iterate before mounting cgroups */
4186 WARN_ON_ONCE(!use_task_css_set_links
);
4188 memset(it
, 0, sizeof(*it
));
4190 spin_lock_bh(&css_set_lock
);
4195 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4197 it
->cset_pos
= &css
->cgroup
->cset_links
;
4199 it
->cset_head
= it
->cset_pos
;
4201 css_task_iter_advance_css_set(it
);
4203 spin_unlock_bh(&css_set_lock
);
4207 * css_task_iter_next - return the next task for the iterator
4208 * @it: the task iterator being iterated
4210 * The "next" function for task iteration. @it should have been
4211 * initialized via css_task_iter_start(). Returns NULL when the iteration
4214 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4217 put_task_struct(it
->cur_task
);
4218 it
->cur_task
= NULL
;
4221 spin_lock_bh(&css_set_lock
);
4224 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4226 get_task_struct(it
->cur_task
);
4227 css_task_iter_advance(it
);
4230 spin_unlock_bh(&css_set_lock
);
4232 return it
->cur_task
;
4236 * css_task_iter_end - finish task iteration
4237 * @it: the task iterator to finish
4239 * Finish task iteration started by css_task_iter_start().
4241 void css_task_iter_end(struct css_task_iter
*it
)
4244 spin_lock_bh(&css_set_lock
);
4245 list_del(&it
->iters_node
);
4246 put_css_set_locked(it
->cur_cset
);
4247 spin_unlock_bh(&css_set_lock
);
4251 put_task_struct(it
->cur_task
);
4255 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4256 * @to: cgroup to which the tasks will be moved
4257 * @from: cgroup in which the tasks currently reside
4259 * Locking rules between cgroup_post_fork() and the migration path
4260 * guarantee that, if a task is forking while being migrated, the new child
4261 * is guaranteed to be either visible in the source cgroup after the
4262 * parent's migration is complete or put into the target cgroup. No task
4263 * can slip out of migration through forking.
4265 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
4267 LIST_HEAD(preloaded_csets
);
4268 struct cgrp_cset_link
*link
;
4269 struct css_task_iter it
;
4270 struct task_struct
*task
;
4273 if (!cgroup_may_migrate_to(to
))
4276 mutex_lock(&cgroup_mutex
);
4278 /* all tasks in @from are being moved, all csets are source */
4279 spin_lock_bh(&css_set_lock
);
4280 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
4281 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
4282 spin_unlock_bh(&css_set_lock
);
4284 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
4289 * Migrate tasks one-by-one until @from is empty. This fails iff
4290 * ->can_attach() fails.
4293 css_task_iter_start(&from
->self
, &it
);
4294 task
= css_task_iter_next(&it
);
4296 get_task_struct(task
);
4297 css_task_iter_end(&it
);
4300 ret
= cgroup_migrate(task
, false, to
->root
);
4301 put_task_struct(task
);
4303 } while (task
&& !ret
);
4305 cgroup_migrate_finish(&preloaded_csets
);
4306 mutex_unlock(&cgroup_mutex
);
4311 * Stuff for reading the 'tasks'/'procs' files.
4313 * Reading this file can return large amounts of data if a cgroup has
4314 * *lots* of attached tasks. So it may need several calls to read(),
4315 * but we cannot guarantee that the information we produce is correct
4316 * unless we produce it entirely atomically.
4320 /* which pidlist file are we talking about? */
4321 enum cgroup_filetype
{
4327 * A pidlist is a list of pids that virtually represents the contents of one
4328 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4329 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4332 struct cgroup_pidlist
{
4334 * used to find which pidlist is wanted. doesn't change as long as
4335 * this particular list stays in the list.
4337 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
4340 /* how many elements the above list has */
4342 /* each of these stored in a list by its cgroup */
4343 struct list_head links
;
4344 /* pointer to the cgroup we belong to, for list removal purposes */
4345 struct cgroup
*owner
;
4346 /* for delayed destruction */
4347 struct delayed_work destroy_dwork
;
4351 * The following two functions "fix" the issue where there are more pids
4352 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4353 * TODO: replace with a kernel-wide solution to this problem
4355 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4356 static void *pidlist_allocate(int count
)
4358 if (PIDLIST_TOO_LARGE(count
))
4359 return vmalloc(count
* sizeof(pid_t
));
4361 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
4364 static void pidlist_free(void *p
)
4370 * Used to destroy all pidlists lingering waiting for destroy timer. None
4371 * should be left afterwards.
4373 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
4375 struct cgroup_pidlist
*l
, *tmp_l
;
4377 mutex_lock(&cgrp
->pidlist_mutex
);
4378 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
4379 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
4380 mutex_unlock(&cgrp
->pidlist_mutex
);
4382 flush_workqueue(cgroup_pidlist_destroy_wq
);
4383 BUG_ON(!list_empty(&cgrp
->pidlists
));
4386 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
4388 struct delayed_work
*dwork
= to_delayed_work(work
);
4389 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
4391 struct cgroup_pidlist
*tofree
= NULL
;
4393 mutex_lock(&l
->owner
->pidlist_mutex
);
4396 * Destroy iff we didn't get queued again. The state won't change
4397 * as destroy_dwork can only be queued while locked.
4399 if (!delayed_work_pending(dwork
)) {
4400 list_del(&l
->links
);
4401 pidlist_free(l
->list
);
4402 put_pid_ns(l
->key
.ns
);
4406 mutex_unlock(&l
->owner
->pidlist_mutex
);
4411 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4412 * Returns the number of unique elements.
4414 static int pidlist_uniq(pid_t
*list
, int length
)
4419 * we presume the 0th element is unique, so i starts at 1. trivial
4420 * edge cases first; no work needs to be done for either
4422 if (length
== 0 || length
== 1)
4424 /* src and dest walk down the list; dest counts unique elements */
4425 for (src
= 1; src
< length
; src
++) {
4426 /* find next unique element */
4427 while (list
[src
] == list
[src
-1]) {
4432 /* dest always points to where the next unique element goes */
4433 list
[dest
] = list
[src
];
4441 * The two pid files - task and cgroup.procs - guaranteed that the result
4442 * is sorted, which forced this whole pidlist fiasco. As pid order is
4443 * different per namespace, each namespace needs differently sorted list,
4444 * making it impossible to use, for example, single rbtree of member tasks
4445 * sorted by task pointer. As pidlists can be fairly large, allocating one
4446 * per open file is dangerous, so cgroup had to implement shared pool of
4447 * pidlists keyed by cgroup and namespace.
4449 * All this extra complexity was caused by the original implementation
4450 * committing to an entirely unnecessary property. In the long term, we
4451 * want to do away with it. Explicitly scramble sort order if on the
4452 * default hierarchy so that no such expectation exists in the new
4455 * Scrambling is done by swapping every two consecutive bits, which is
4456 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4458 static pid_t
pid_fry(pid_t pid
)
4460 unsigned a
= pid
& 0x55555555;
4461 unsigned b
= pid
& 0xAAAAAAAA;
4463 return (a
<< 1) | (b
>> 1);
4466 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
4468 if (cgroup_on_dfl(cgrp
))
4469 return pid_fry(pid
);
4474 static int cmppid(const void *a
, const void *b
)
4476 return *(pid_t
*)a
- *(pid_t
*)b
;
4479 static int fried_cmppid(const void *a
, const void *b
)
4481 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
4484 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
4485 enum cgroup_filetype type
)
4487 struct cgroup_pidlist
*l
;
4488 /* don't need task_nsproxy() if we're looking at ourself */
4489 struct pid_namespace
*ns
= task_active_pid_ns(current
);
4491 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4493 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
4494 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
4500 * find the appropriate pidlist for our purpose (given procs vs tasks)
4501 * returns with the lock on that pidlist already held, and takes care
4502 * of the use count, or returns NULL with no locks held if we're out of
4505 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
4506 enum cgroup_filetype type
)
4508 struct cgroup_pidlist
*l
;
4510 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4512 l
= cgroup_pidlist_find(cgrp
, type
);
4516 /* entry not found; create a new one */
4517 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
4521 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
4523 /* don't need task_nsproxy() if we're looking at ourself */
4524 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
4526 list_add(&l
->links
, &cgrp
->pidlists
);
4531 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4533 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
4534 struct cgroup_pidlist
**lp
)
4538 int pid
, n
= 0; /* used for populating the array */
4539 struct css_task_iter it
;
4540 struct task_struct
*tsk
;
4541 struct cgroup_pidlist
*l
;
4543 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4546 * If cgroup gets more users after we read count, we won't have
4547 * enough space - tough. This race is indistinguishable to the
4548 * caller from the case that the additional cgroup users didn't
4549 * show up until sometime later on.
4551 length
= cgroup_task_count(cgrp
);
4552 array
= pidlist_allocate(length
);
4555 /* now, populate the array */
4556 css_task_iter_start(&cgrp
->self
, &it
);
4557 while ((tsk
= css_task_iter_next(&it
))) {
4558 if (unlikely(n
== length
))
4560 /* get tgid or pid for procs or tasks file respectively */
4561 if (type
== CGROUP_FILE_PROCS
)
4562 pid
= task_tgid_vnr(tsk
);
4564 pid
= task_pid_vnr(tsk
);
4565 if (pid
> 0) /* make sure to only use valid results */
4568 css_task_iter_end(&it
);
4570 /* now sort & (if procs) strip out duplicates */
4571 if (cgroup_on_dfl(cgrp
))
4572 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
4574 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
4575 if (type
== CGROUP_FILE_PROCS
)
4576 length
= pidlist_uniq(array
, length
);
4578 l
= cgroup_pidlist_find_create(cgrp
, type
);
4580 pidlist_free(array
);
4584 /* store array, freeing old if necessary */
4585 pidlist_free(l
->list
);
4593 * cgroupstats_build - build and fill cgroupstats
4594 * @stats: cgroupstats to fill information into
4595 * @dentry: A dentry entry belonging to the cgroup for which stats have
4598 * Build and fill cgroupstats so that taskstats can export it to user
4601 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
4603 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
4604 struct cgroup
*cgrp
;
4605 struct css_task_iter it
;
4606 struct task_struct
*tsk
;
4608 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4609 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
4610 kernfs_type(kn
) != KERNFS_DIR
)
4613 mutex_lock(&cgroup_mutex
);
4616 * We aren't being called from kernfs and there's no guarantee on
4617 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4618 * @kn->priv is RCU safe. Let's do the RCU dancing.
4621 cgrp
= rcu_dereference(kn
->priv
);
4622 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4624 mutex_unlock(&cgroup_mutex
);
4629 css_task_iter_start(&cgrp
->self
, &it
);
4630 while ((tsk
= css_task_iter_next(&it
))) {
4631 switch (tsk
->state
) {
4633 stats
->nr_running
++;
4635 case TASK_INTERRUPTIBLE
:
4636 stats
->nr_sleeping
++;
4638 case TASK_UNINTERRUPTIBLE
:
4639 stats
->nr_uninterruptible
++;
4642 stats
->nr_stopped
++;
4645 if (delayacct_is_task_waiting_on_io(tsk
))
4646 stats
->nr_io_wait
++;
4650 css_task_iter_end(&it
);
4652 mutex_unlock(&cgroup_mutex
);
4658 * seq_file methods for the tasks/procs files. The seq_file position is the
4659 * next pid to display; the seq_file iterator is a pointer to the pid
4660 * in the cgroup->l->list array.
4663 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4666 * Initially we receive a position value that corresponds to
4667 * one more than the last pid shown (or 0 on the first call or
4668 * after a seek to the start). Use a binary-search to find the
4669 * next pid to display, if any
4671 struct kernfs_open_file
*of
= s
->private;
4672 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4673 struct cgroup_pidlist
*l
;
4674 enum cgroup_filetype type
= seq_cft(s
)->private;
4675 int index
= 0, pid
= *pos
;
4678 mutex_lock(&cgrp
->pidlist_mutex
);
4681 * !NULL @of->priv indicates that this isn't the first start()
4682 * after open. If the matching pidlist is around, we can use that.
4683 * Look for it. Note that @of->priv can't be used directly. It
4684 * could already have been destroyed.
4687 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4690 * Either this is the first start() after open or the matching
4691 * pidlist has been destroyed inbetween. Create a new one.
4694 ret
= pidlist_array_load(cgrp
, type
,
4695 (struct cgroup_pidlist
**)&of
->priv
);
4697 return ERR_PTR(ret
);
4702 int end
= l
->length
;
4704 while (index
< end
) {
4705 int mid
= (index
+ end
) / 2;
4706 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4709 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4715 /* If we're off the end of the array, we're done */
4716 if (index
>= l
->length
)
4718 /* Update the abstract position to be the actual pid that we found */
4719 iter
= l
->list
+ index
;
4720 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4724 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4726 struct kernfs_open_file
*of
= s
->private;
4727 struct cgroup_pidlist
*l
= of
->priv
;
4730 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4731 CGROUP_PIDLIST_DESTROY_DELAY
);
4732 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4735 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4737 struct kernfs_open_file
*of
= s
->private;
4738 struct cgroup_pidlist
*l
= of
->priv
;
4740 pid_t
*end
= l
->list
+ l
->length
;
4742 * Advance to the next pid in the array. If this goes off the
4749 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4754 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4756 seq_printf(s
, "%d\n", *(int *)v
);
4761 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4764 return notify_on_release(css
->cgroup
);
4767 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4768 struct cftype
*cft
, u64 val
)
4771 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4773 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4777 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4780 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4783 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4784 struct cftype
*cft
, u64 val
)
4787 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4789 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4793 /* cgroup core interface files for the default hierarchy */
4794 static struct cftype cgroup_dfl_base_files
[] = {
4796 .name
= "cgroup.procs",
4797 .file_offset
= offsetof(struct cgroup
, procs_file
),
4798 .seq_start
= cgroup_pidlist_start
,
4799 .seq_next
= cgroup_pidlist_next
,
4800 .seq_stop
= cgroup_pidlist_stop
,
4801 .seq_show
= cgroup_pidlist_show
,
4802 .private = CGROUP_FILE_PROCS
,
4803 .write
= cgroup_procs_write
,
4806 .name
= "cgroup.controllers",
4807 .seq_show
= cgroup_controllers_show
,
4810 .name
= "cgroup.subtree_control",
4811 .seq_show
= cgroup_subtree_control_show
,
4812 .write
= cgroup_subtree_control_write
,
4815 .name
= "cgroup.events",
4816 .flags
= CFTYPE_NOT_ON_ROOT
,
4817 .file_offset
= offsetof(struct cgroup
, events_file
),
4818 .seq_show
= cgroup_events_show
,
4823 /* cgroup core interface files for the legacy hierarchies */
4824 static struct cftype cgroup_legacy_base_files
[] = {
4826 .name
= "cgroup.procs",
4827 .seq_start
= cgroup_pidlist_start
,
4828 .seq_next
= cgroup_pidlist_next
,
4829 .seq_stop
= cgroup_pidlist_stop
,
4830 .seq_show
= cgroup_pidlist_show
,
4831 .private = CGROUP_FILE_PROCS
,
4832 .write
= cgroup_procs_write
,
4835 .name
= "cgroup.clone_children",
4836 .read_u64
= cgroup_clone_children_read
,
4837 .write_u64
= cgroup_clone_children_write
,
4840 .name
= "cgroup.sane_behavior",
4841 .flags
= CFTYPE_ONLY_ON_ROOT
,
4842 .seq_show
= cgroup_sane_behavior_show
,
4846 .seq_start
= cgroup_pidlist_start
,
4847 .seq_next
= cgroup_pidlist_next
,
4848 .seq_stop
= cgroup_pidlist_stop
,
4849 .seq_show
= cgroup_pidlist_show
,
4850 .private = CGROUP_FILE_TASKS
,
4851 .write
= cgroup_tasks_write
,
4854 .name
= "notify_on_release",
4855 .read_u64
= cgroup_read_notify_on_release
,
4856 .write_u64
= cgroup_write_notify_on_release
,
4859 .name
= "release_agent",
4860 .flags
= CFTYPE_ONLY_ON_ROOT
,
4861 .seq_show
= cgroup_release_agent_show
,
4862 .write
= cgroup_release_agent_write
,
4863 .max_write_len
= PATH_MAX
- 1,
4869 * css destruction is four-stage process.
4871 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4872 * Implemented in kill_css().
4874 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4875 * and thus css_tryget_online() is guaranteed to fail, the css can be
4876 * offlined by invoking offline_css(). After offlining, the base ref is
4877 * put. Implemented in css_killed_work_fn().
4879 * 3. When the percpu_ref reaches zero, the only possible remaining
4880 * accessors are inside RCU read sections. css_release() schedules the
4883 * 4. After the grace period, the css can be freed. Implemented in
4884 * css_free_work_fn().
4886 * It is actually hairier because both step 2 and 4 require process context
4887 * and thus involve punting to css->destroy_work adding two additional
4888 * steps to the already complex sequence.
4890 static void css_free_work_fn(struct work_struct
*work
)
4892 struct cgroup_subsys_state
*css
=
4893 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4894 struct cgroup_subsys
*ss
= css
->ss
;
4895 struct cgroup
*cgrp
= css
->cgroup
;
4897 percpu_ref_exit(&css
->refcnt
);
4901 struct cgroup_subsys_state
*parent
= css
->parent
;
4905 cgroup_idr_remove(&ss
->css_idr
, id
);
4911 /* cgroup free path */
4912 atomic_dec(&cgrp
->root
->nr_cgrps
);
4913 cgroup_pidlist_destroy_all(cgrp
);
4914 cancel_work_sync(&cgrp
->release_agent_work
);
4916 if (cgroup_parent(cgrp
)) {
4918 * We get a ref to the parent, and put the ref when
4919 * this cgroup is being freed, so it's guaranteed
4920 * that the parent won't be destroyed before its
4923 cgroup_put(cgroup_parent(cgrp
));
4924 kernfs_put(cgrp
->kn
);
4928 * This is root cgroup's refcnt reaching zero,
4929 * which indicates that the root should be
4932 cgroup_destroy_root(cgrp
->root
);
4937 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4939 struct cgroup_subsys_state
*css
=
4940 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4942 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4943 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4946 static void css_release_work_fn(struct work_struct
*work
)
4948 struct cgroup_subsys_state
*css
=
4949 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4950 struct cgroup_subsys
*ss
= css
->ss
;
4951 struct cgroup
*cgrp
= css
->cgroup
;
4953 mutex_lock(&cgroup_mutex
);
4955 css
->flags
|= CSS_RELEASED
;
4956 list_del_rcu(&css
->sibling
);
4959 /* css release path */
4960 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4961 if (ss
->css_released
)
4962 ss
->css_released(css
);
4964 /* cgroup release path */
4965 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4969 * There are two control paths which try to determine
4970 * cgroup from dentry without going through kernfs -
4971 * cgroupstats_build() and css_tryget_online_from_dir().
4972 * Those are supported by RCU protecting clearing of
4973 * cgrp->kn->priv backpointer.
4976 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
4980 mutex_unlock(&cgroup_mutex
);
4982 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4985 static void css_release(struct percpu_ref
*ref
)
4987 struct cgroup_subsys_state
*css
=
4988 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4990 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4991 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4994 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4995 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4997 lockdep_assert_held(&cgroup_mutex
);
5001 memset(css
, 0, sizeof(*css
));
5004 INIT_LIST_HEAD(&css
->sibling
);
5005 INIT_LIST_HEAD(&css
->children
);
5006 css
->serial_nr
= css_serial_nr_next
++;
5007 atomic_set(&css
->online_cnt
, 0);
5009 if (cgroup_parent(cgrp
)) {
5010 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
5011 css_get(css
->parent
);
5014 BUG_ON(cgroup_css(cgrp
, ss
));
5017 /* invoke ->css_online() on a new CSS and mark it online if successful */
5018 static int online_css(struct cgroup_subsys_state
*css
)
5020 struct cgroup_subsys
*ss
= css
->ss
;
5023 lockdep_assert_held(&cgroup_mutex
);
5026 ret
= ss
->css_online(css
);
5028 css
->flags
|= CSS_ONLINE
;
5029 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
5031 atomic_inc(&css
->online_cnt
);
5033 atomic_inc(&css
->parent
->online_cnt
);
5038 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5039 static void offline_css(struct cgroup_subsys_state
*css
)
5041 struct cgroup_subsys
*ss
= css
->ss
;
5043 lockdep_assert_held(&cgroup_mutex
);
5045 if (!(css
->flags
& CSS_ONLINE
))
5051 if (ss
->css_offline
)
5052 ss
->css_offline(css
);
5054 css
->flags
&= ~CSS_ONLINE
;
5055 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
5057 wake_up_all(&css
->cgroup
->offline_waitq
);
5061 * css_create - create a cgroup_subsys_state
5062 * @cgrp: the cgroup new css will be associated with
5063 * @ss: the subsys of new css
5065 * Create a new css associated with @cgrp - @ss pair. On success, the new
5066 * css is online and installed in @cgrp. This function doesn't create the
5067 * interface files. Returns 0 on success, -errno on failure.
5069 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
5070 struct cgroup_subsys
*ss
)
5072 struct cgroup
*parent
= cgroup_parent(cgrp
);
5073 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
5074 struct cgroup_subsys_state
*css
;
5077 lockdep_assert_held(&cgroup_mutex
);
5079 css
= ss
->css_alloc(parent_css
);
5083 init_and_link_css(css
, ss
, cgrp
);
5085 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
5089 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
5091 goto err_free_percpu_ref
;
5094 /* @css is ready to be brought online now, make it visible */
5095 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
5096 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
5098 err
= online_css(css
);
5102 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
5103 cgroup_parent(parent
)) {
5104 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5105 current
->comm
, current
->pid
, ss
->name
);
5106 if (!strcmp(ss
->name
, "memory"))
5107 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5108 ss
->warned_broken_hierarchy
= true;
5114 list_del_rcu(&css
->sibling
);
5115 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
5116 err_free_percpu_ref
:
5117 percpu_ref_exit(&css
->refcnt
);
5119 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
5120 return ERR_PTR(err
);
5123 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
5125 struct cgroup_root
*root
= parent
->root
;
5126 struct cgroup
*cgrp
, *tcgrp
;
5127 int level
= parent
->level
+ 1;
5130 /* allocate the cgroup and its ID, 0 is reserved for the root */
5131 cgrp
= kzalloc(sizeof(*cgrp
) +
5132 sizeof(cgrp
->ancestor_ids
[0]) * (level
+ 1), GFP_KERNEL
);
5134 return ERR_PTR(-ENOMEM
);
5136 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
5141 * Temporarily set the pointer to NULL, so idr_find() won't return
5142 * a half-baked cgroup.
5144 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
5147 goto out_cancel_ref
;
5150 init_cgroup_housekeeping(cgrp
);
5152 cgrp
->self
.parent
= &parent
->self
;
5154 cgrp
->level
= level
;
5156 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
))
5157 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
5159 if (notify_on_release(parent
))
5160 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
5162 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
5163 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
5165 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
5167 /* allocation complete, commit to creation */
5168 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
5169 atomic_inc(&root
->nr_cgrps
);
5173 * @cgrp is now fully operational. If something fails after this
5174 * point, it'll be released via the normal destruction path.
5176 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
5179 * On the default hierarchy, a child doesn't automatically inherit
5180 * subtree_control from the parent. Each is configured manually.
5182 if (!cgroup_on_dfl(cgrp
))
5183 cgrp
->subtree_control
= cgroup_control(cgrp
);
5185 cgroup_propagate_control(cgrp
);
5187 /* @cgrp doesn't have dir yet so the following will only create csses */
5188 ret
= cgroup_apply_control_enable(cgrp
);
5195 percpu_ref_exit(&cgrp
->self
.refcnt
);
5198 return ERR_PTR(ret
);
5200 cgroup_destroy_locked(cgrp
);
5201 return ERR_PTR(ret
);
5204 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
5207 struct cgroup
*parent
, *cgrp
;
5208 struct kernfs_node
*kn
;
5211 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5212 if (strchr(name
, '\n'))
5215 parent
= cgroup_kn_lock_live(parent_kn
, false);
5219 cgrp
= cgroup_create(parent
);
5221 ret
= PTR_ERR(cgrp
);
5225 /* create the directory */
5226 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
5234 * This extra ref will be put in cgroup_free_fn() and guarantees
5235 * that @cgrp->kn is always accessible.
5239 ret
= cgroup_kn_set_ugid(kn
);
5243 ret
= css_populate_dir(&cgrp
->self
);
5247 ret
= cgroup_apply_control_enable(cgrp
);
5251 /* let's create and online css's */
5252 kernfs_activate(kn
);
5258 cgroup_destroy_locked(cgrp
);
5260 cgroup_kn_unlock(parent_kn
);
5265 * This is called when the refcnt of a css is confirmed to be killed.
5266 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5267 * initate destruction and put the css ref from kill_css().
5269 static void css_killed_work_fn(struct work_struct
*work
)
5271 struct cgroup_subsys_state
*css
=
5272 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5274 mutex_lock(&cgroup_mutex
);
5279 /* @css can't go away while we're holding cgroup_mutex */
5281 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5283 mutex_unlock(&cgroup_mutex
);
5286 /* css kill confirmation processing requires process context, bounce */
5287 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5289 struct cgroup_subsys_state
*css
=
5290 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5292 if (atomic_dec_and_test(&css
->online_cnt
)) {
5293 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5294 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5299 * kill_css - destroy a css
5300 * @css: css to destroy
5302 * This function initiates destruction of @css by removing cgroup interface
5303 * files and putting its base reference. ->css_offline() will be invoked
5304 * asynchronously once css_tryget_online() is guaranteed to fail and when
5305 * the reference count reaches zero, @css will be released.
5307 static void kill_css(struct cgroup_subsys_state
*css
)
5309 lockdep_assert_held(&cgroup_mutex
);
5312 * This must happen before css is disassociated with its cgroup.
5313 * See seq_css() for details.
5318 * Killing would put the base ref, but we need to keep it alive
5319 * until after ->css_offline().
5324 * cgroup core guarantees that, by the time ->css_offline() is
5325 * invoked, no new css reference will be given out via
5326 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5327 * proceed to offlining css's because percpu_ref_kill() doesn't
5328 * guarantee that the ref is seen as killed on all CPUs on return.
5330 * Use percpu_ref_kill_and_confirm() to get notifications as each
5331 * css is confirmed to be seen as killed on all CPUs.
5333 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5337 * cgroup_destroy_locked - the first stage of cgroup destruction
5338 * @cgrp: cgroup to be destroyed
5340 * css's make use of percpu refcnts whose killing latency shouldn't be
5341 * exposed to userland and are RCU protected. Also, cgroup core needs to
5342 * guarantee that css_tryget_online() won't succeed by the time
5343 * ->css_offline() is invoked. To satisfy all the requirements,
5344 * destruction is implemented in the following two steps.
5346 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5347 * userland visible parts and start killing the percpu refcnts of
5348 * css's. Set up so that the next stage will be kicked off once all
5349 * the percpu refcnts are confirmed to be killed.
5351 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5352 * rest of destruction. Once all cgroup references are gone, the
5353 * cgroup is RCU-freed.
5355 * This function implements s1. After this step, @cgrp is gone as far as
5356 * the userland is concerned and a new cgroup with the same name may be
5357 * created. As cgroup doesn't care about the names internally, this
5358 * doesn't cause any problem.
5360 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5361 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5363 struct cgroup_subsys_state
*css
;
5364 struct cgrp_cset_link
*link
;
5367 lockdep_assert_held(&cgroup_mutex
);
5370 * Only migration can raise populated from zero and we're already
5371 * holding cgroup_mutex.
5373 if (cgroup_is_populated(cgrp
))
5377 * Make sure there's no live children. We can't test emptiness of
5378 * ->self.children as dead children linger on it while being
5379 * drained; otherwise, "rmdir parent/child parent" may fail.
5381 if (css_has_online_children(&cgrp
->self
))
5385 * Mark @cgrp and the associated csets dead. The former prevents
5386 * further task migration and child creation by disabling
5387 * cgroup_lock_live_group(). The latter makes the csets ignored by
5388 * the migration path.
5390 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5392 spin_lock_bh(&css_set_lock
);
5393 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5394 link
->cset
->dead
= true;
5395 spin_unlock_bh(&css_set_lock
);
5397 /* initiate massacre of all css's */
5398 for_each_css(css
, ssid
, cgrp
)
5402 * Remove @cgrp directory along with the base files. @cgrp has an
5403 * extra ref on its kn.
5405 kernfs_remove(cgrp
->kn
);
5407 check_for_release(cgroup_parent(cgrp
));
5409 /* put the base reference */
5410 percpu_ref_kill(&cgrp
->self
.refcnt
);
5415 static int cgroup_rmdir(struct kernfs_node
*kn
)
5417 struct cgroup
*cgrp
;
5420 cgrp
= cgroup_kn_lock_live(kn
, false);
5424 ret
= cgroup_destroy_locked(cgrp
);
5426 cgroup_kn_unlock(kn
);
5430 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5431 .remount_fs
= cgroup_remount
,
5432 .show_options
= cgroup_show_options
,
5433 .mkdir
= cgroup_mkdir
,
5434 .rmdir
= cgroup_rmdir
,
5435 .rename
= cgroup_rename
,
5438 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5440 struct cgroup_subsys_state
*css
;
5442 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5444 mutex_lock(&cgroup_mutex
);
5446 idr_init(&ss
->css_idr
);
5447 INIT_LIST_HEAD(&ss
->cfts
);
5449 /* Create the root cgroup state for this subsystem */
5450 ss
->root
= &cgrp_dfl_root
;
5451 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5452 /* We don't handle early failures gracefully */
5453 BUG_ON(IS_ERR(css
));
5454 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5457 * Root csses are never destroyed and we can't initialize
5458 * percpu_ref during early init. Disable refcnting.
5460 css
->flags
|= CSS_NO_REF
;
5463 /* allocation can't be done safely during early init */
5466 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5467 BUG_ON(css
->id
< 0);
5470 /* Update the init_css_set to contain a subsys
5471 * pointer to this state - since the subsystem is
5472 * newly registered, all tasks and hence the
5473 * init_css_set is in the subsystem's root cgroup. */
5474 init_css_set
.subsys
[ss
->id
] = css
;
5476 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5477 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5478 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5479 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5481 /* At system boot, before all subsystems have been
5482 * registered, no tasks have been forked, so we don't
5483 * need to invoke fork callbacks here. */
5484 BUG_ON(!list_empty(&init_task
.tasks
));
5486 BUG_ON(online_css(css
));
5488 mutex_unlock(&cgroup_mutex
);
5492 * cgroup_init_early - cgroup initialization at system boot
5494 * Initialize cgroups at system boot, and initialize any
5495 * subsystems that request early init.
5497 int __init
cgroup_init_early(void)
5499 static struct cgroup_sb_opts __initdata opts
;
5500 struct cgroup_subsys
*ss
;
5503 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5504 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5506 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5508 for_each_subsys(ss
, i
) {
5509 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5510 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5511 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5513 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5514 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5517 ss
->name
= cgroup_subsys_name
[i
];
5518 if (!ss
->legacy_name
)
5519 ss
->legacy_name
= cgroup_subsys_name
[i
];
5522 cgroup_init_subsys(ss
, true);
5527 static u16 cgroup_disable_mask __initdata
;
5530 * cgroup_init - cgroup initialization
5532 * Register cgroup filesystem and /proc file, and initialize
5533 * any subsystems that didn't request early init.
5535 int __init
cgroup_init(void)
5537 struct cgroup_subsys
*ss
;
5540 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5541 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5542 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
5543 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
5545 get_user_ns(init_cgroup_ns
.user_ns
);
5547 mutex_lock(&cgroup_mutex
);
5550 * Add init_css_set to the hash table so that dfl_root can link to
5553 hash_add(css_set_table
, &init_css_set
.hlist
,
5554 css_set_hash(init_css_set
.subsys
));
5556 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5558 mutex_unlock(&cgroup_mutex
);
5560 for_each_subsys(ss
, ssid
) {
5561 if (ss
->early_init
) {
5562 struct cgroup_subsys_state
*css
=
5563 init_css_set
.subsys
[ss
->id
];
5565 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5567 BUG_ON(css
->id
< 0);
5569 cgroup_init_subsys(ss
, false);
5572 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5573 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5576 * Setting dfl_root subsys_mask needs to consider the
5577 * disabled flag and cftype registration needs kmalloc,
5578 * both of which aren't available during early_init.
5580 if (cgroup_disable_mask
& (1 << ssid
)) {
5581 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5582 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5587 if (cgroup_ssid_no_v1(ssid
))
5588 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5591 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5593 if (ss
->implicit_on_dfl
)
5594 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5595 else if (!ss
->dfl_cftypes
)
5596 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5598 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5599 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5601 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5602 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5606 ss
->bind(init_css_set
.subsys
[ssid
]);
5609 /* init_css_set.subsys[] has been updated, re-hash */
5610 hash_del(&init_css_set
.hlist
);
5611 hash_add(css_set_table
, &init_css_set
.hlist
,
5612 css_set_hash(init_css_set
.subsys
));
5614 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5615 WARN_ON(register_filesystem(&cgroup_fs_type
));
5616 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5617 WARN_ON(!proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
));
5622 static int __init
cgroup_wq_init(void)
5625 * There isn't much point in executing destruction path in
5626 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5627 * Use 1 for @max_active.
5629 * We would prefer to do this in cgroup_init() above, but that
5630 * is called before init_workqueues(): so leave this until after.
5632 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5633 BUG_ON(!cgroup_destroy_wq
);
5636 * Used to destroy pidlists and separate to serve as flush domain.
5637 * Cap @max_active to 1 too.
5639 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5641 BUG_ON(!cgroup_pidlist_destroy_wq
);
5645 core_initcall(cgroup_wq_init
);
5648 * proc_cgroup_show()
5649 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5650 * - Used for /proc/<pid>/cgroup.
5652 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5653 struct pid
*pid
, struct task_struct
*tsk
)
5657 struct cgroup_root
*root
;
5660 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5664 mutex_lock(&cgroup_mutex
);
5665 spin_lock_bh(&css_set_lock
);
5667 for_each_root(root
) {
5668 struct cgroup_subsys
*ss
;
5669 struct cgroup
*cgrp
;
5670 int ssid
, count
= 0;
5672 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5675 seq_printf(m
, "%d:", root
->hierarchy_id
);
5676 if (root
!= &cgrp_dfl_root
)
5677 for_each_subsys(ss
, ssid
)
5678 if (root
->subsys_mask
& (1 << ssid
))
5679 seq_printf(m
, "%s%s", count
++ ? "," : "",
5681 if (strlen(root
->name
))
5682 seq_printf(m
, "%sname=%s", count
? "," : "",
5686 cgrp
= task_cgroup_from_root(tsk
, root
);
5689 * On traditional hierarchies, all zombie tasks show up as
5690 * belonging to the root cgroup. On the default hierarchy,
5691 * while a zombie doesn't show up in "cgroup.procs" and
5692 * thus can't be migrated, its /proc/PID/cgroup keeps
5693 * reporting the cgroup it belonged to before exiting. If
5694 * the cgroup is removed before the zombie is reaped,
5695 * " (deleted)" is appended to the cgroup path.
5697 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5698 path
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5699 current
->nsproxy
->cgroup_ns
);
5701 retval
= -ENAMETOOLONG
;
5710 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5711 seq_puts(m
, " (deleted)\n");
5718 spin_unlock_bh(&css_set_lock
);
5719 mutex_unlock(&cgroup_mutex
);
5725 /* Display information about each subsystem and each hierarchy */
5726 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5728 struct cgroup_subsys
*ss
;
5731 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5733 * ideally we don't want subsystems moving around while we do this.
5734 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5735 * subsys/hierarchy state.
5737 mutex_lock(&cgroup_mutex
);
5739 for_each_subsys(ss
, i
)
5740 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5741 ss
->legacy_name
, ss
->root
->hierarchy_id
,
5742 atomic_read(&ss
->root
->nr_cgrps
),
5743 cgroup_ssid_enabled(i
));
5745 mutex_unlock(&cgroup_mutex
);
5749 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5751 return single_open(file
, proc_cgroupstats_show
, NULL
);
5754 static const struct file_operations proc_cgroupstats_operations
= {
5755 .open
= cgroupstats_open
,
5757 .llseek
= seq_lseek
,
5758 .release
= single_release
,
5762 * cgroup_fork - initialize cgroup related fields during copy_process()
5763 * @child: pointer to task_struct of forking parent process.
5765 * A task is associated with the init_css_set until cgroup_post_fork()
5766 * attaches it to the parent's css_set. Empty cg_list indicates that
5767 * @child isn't holding reference to its css_set.
5769 void cgroup_fork(struct task_struct
*child
)
5771 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5772 INIT_LIST_HEAD(&child
->cg_list
);
5776 * cgroup_can_fork - called on a new task before the process is exposed
5777 * @child: the task in question.
5779 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5780 * returns an error, the fork aborts with that error code. This allows for
5781 * a cgroup subsystem to conditionally allow or deny new forks.
5783 int cgroup_can_fork(struct task_struct
*child
)
5785 struct cgroup_subsys
*ss
;
5788 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5789 ret
= ss
->can_fork(child
);
5792 } while_each_subsys_mask();
5797 for_each_subsys(ss
, j
) {
5800 if (ss
->cancel_fork
)
5801 ss
->cancel_fork(child
);
5808 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5809 * @child: the task in question
5811 * This calls the cancel_fork() callbacks if a fork failed *after*
5812 * cgroup_can_fork() succeded.
5814 void cgroup_cancel_fork(struct task_struct
*child
)
5816 struct cgroup_subsys
*ss
;
5819 for_each_subsys(ss
, i
)
5820 if (ss
->cancel_fork
)
5821 ss
->cancel_fork(child
);
5825 * cgroup_post_fork - called on a new task after adding it to the task list
5826 * @child: the task in question
5828 * Adds the task to the list running through its css_set if necessary and
5829 * call the subsystem fork() callbacks. Has to be after the task is
5830 * visible on the task list in case we race with the first call to
5831 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5834 void cgroup_post_fork(struct task_struct
*child
)
5836 struct cgroup_subsys
*ss
;
5840 * This may race against cgroup_enable_task_cg_lists(). As that
5841 * function sets use_task_css_set_links before grabbing
5842 * tasklist_lock and we just went through tasklist_lock to add
5843 * @child, it's guaranteed that either we see the set
5844 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5845 * @child during its iteration.
5847 * If we won the race, @child is associated with %current's
5848 * css_set. Grabbing css_set_lock guarantees both that the
5849 * association is stable, and, on completion of the parent's
5850 * migration, @child is visible in the source of migration or
5851 * already in the destination cgroup. This guarantee is necessary
5852 * when implementing operations which need to migrate all tasks of
5853 * a cgroup to another.
5855 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5856 * will remain in init_css_set. This is safe because all tasks are
5857 * in the init_css_set before cg_links is enabled and there's no
5858 * operation which transfers all tasks out of init_css_set.
5860 if (use_task_css_set_links
) {
5861 struct css_set
*cset
;
5863 spin_lock_bh(&css_set_lock
);
5864 cset
= task_css_set(current
);
5865 if (list_empty(&child
->cg_list
)) {
5867 css_set_move_task(child
, NULL
, cset
, false);
5869 spin_unlock_bh(&css_set_lock
);
5873 * Call ss->fork(). This must happen after @child is linked on
5874 * css_set; otherwise, @child might change state between ->fork()
5875 * and addition to css_set.
5877 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
5879 } while_each_subsys_mask();
5883 * cgroup_exit - detach cgroup from exiting task
5884 * @tsk: pointer to task_struct of exiting process
5886 * Description: Detach cgroup from @tsk and release it.
5888 * Note that cgroups marked notify_on_release force every task in
5889 * them to take the global cgroup_mutex mutex when exiting.
5890 * This could impact scaling on very large systems. Be reluctant to
5891 * use notify_on_release cgroups where very high task exit scaling
5892 * is required on large systems.
5894 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5895 * call cgroup_exit() while the task is still competent to handle
5896 * notify_on_release(), then leave the task attached to the root cgroup in
5897 * each hierarchy for the remainder of its exit. No need to bother with
5898 * init_css_set refcnting. init_css_set never goes away and we can't race
5899 * with migration path - PF_EXITING is visible to migration path.
5901 void cgroup_exit(struct task_struct
*tsk
)
5903 struct cgroup_subsys
*ss
;
5904 struct css_set
*cset
;
5908 * Unlink from @tsk from its css_set. As migration path can't race
5909 * with us, we can check css_set and cg_list without synchronization.
5911 cset
= task_css_set(tsk
);
5913 if (!list_empty(&tsk
->cg_list
)) {
5914 spin_lock_bh(&css_set_lock
);
5915 css_set_move_task(tsk
, cset
, NULL
, false);
5916 spin_unlock_bh(&css_set_lock
);
5921 /* see cgroup_post_fork() for details */
5922 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
5924 } while_each_subsys_mask();
5927 void cgroup_free(struct task_struct
*task
)
5929 struct css_set
*cset
= task_css_set(task
);
5930 struct cgroup_subsys
*ss
;
5933 do_each_subsys_mask(ss
, ssid
, have_free_callback
) {
5935 } while_each_subsys_mask();
5940 static void check_for_release(struct cgroup
*cgrp
)
5942 if (notify_on_release(cgrp
) && !cgroup_is_populated(cgrp
) &&
5943 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
5944 schedule_work(&cgrp
->release_agent_work
);
5948 * Notify userspace when a cgroup is released, by running the
5949 * configured release agent with the name of the cgroup (path
5950 * relative to the root of cgroup file system) as the argument.
5952 * Most likely, this user command will try to rmdir this cgroup.
5954 * This races with the possibility that some other task will be
5955 * attached to this cgroup before it is removed, or that some other
5956 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5957 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5958 * unused, and this cgroup will be reprieved from its death sentence,
5959 * to continue to serve a useful existence. Next time it's released,
5960 * we will get notified again, if it still has 'notify_on_release' set.
5962 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5963 * means only wait until the task is successfully execve()'d. The
5964 * separate release agent task is forked by call_usermodehelper(),
5965 * then control in this thread returns here, without waiting for the
5966 * release agent task. We don't bother to wait because the caller of
5967 * this routine has no use for the exit status of the release agent
5968 * task, so no sense holding our caller up for that.
5970 static void cgroup_release_agent(struct work_struct
*work
)
5972 struct cgroup
*cgrp
=
5973 container_of(work
, struct cgroup
, release_agent_work
);
5974 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
5975 char *argv
[3], *envp
[3];
5977 mutex_lock(&cgroup_mutex
);
5979 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5980 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5981 if (!pathbuf
|| !agentbuf
)
5984 spin_lock_bh(&css_set_lock
);
5985 path
= cgroup_path_ns_locked(cgrp
, pathbuf
, PATH_MAX
, &init_cgroup_ns
);
5986 spin_unlock_bh(&css_set_lock
);
5994 /* minimal command environment */
5996 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5999 mutex_unlock(&cgroup_mutex
);
6000 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
6003 mutex_unlock(&cgroup_mutex
);
6009 static int __init
cgroup_disable(char *str
)
6011 struct cgroup_subsys
*ss
;
6015 while ((token
= strsep(&str
, ",")) != NULL
) {
6019 for_each_subsys(ss
, i
) {
6020 if (strcmp(token
, ss
->name
) &&
6021 strcmp(token
, ss
->legacy_name
))
6023 cgroup_disable_mask
|= 1 << i
;
6028 __setup("cgroup_disable=", cgroup_disable
);
6030 static int __init
cgroup_no_v1(char *str
)
6032 struct cgroup_subsys
*ss
;
6036 while ((token
= strsep(&str
, ",")) != NULL
) {
6040 if (!strcmp(token
, "all")) {
6041 cgroup_no_v1_mask
= U16_MAX
;
6045 for_each_subsys(ss
, i
) {
6046 if (strcmp(token
, ss
->name
) &&
6047 strcmp(token
, ss
->legacy_name
))
6050 cgroup_no_v1_mask
|= 1 << i
;
6055 __setup("cgroup_no_v1=", cgroup_no_v1
);
6058 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6059 * @dentry: directory dentry of interest
6060 * @ss: subsystem of interest
6062 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6063 * to get the corresponding css and return it. If such css doesn't exist
6064 * or can't be pinned, an ERR_PTR value is returned.
6066 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
6067 struct cgroup_subsys
*ss
)
6069 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
6070 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
6071 struct cgroup_subsys_state
*css
= NULL
;
6072 struct cgroup
*cgrp
;
6074 /* is @dentry a cgroup dir? */
6075 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
6076 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
6077 return ERR_PTR(-EBADF
);
6082 * This path doesn't originate from kernfs and @kn could already
6083 * have been or be removed at any point. @kn->priv is RCU
6084 * protected for this access. See css_release_work_fn() for details.
6086 cgrp
= rcu_dereference(kn
->priv
);
6088 css
= cgroup_css(cgrp
, ss
);
6090 if (!css
|| !css_tryget_online(css
))
6091 css
= ERR_PTR(-ENOENT
);
6098 * css_from_id - lookup css by id
6099 * @id: the cgroup id
6100 * @ss: cgroup subsys to be looked into
6102 * Returns the css if there's valid one with @id, otherwise returns NULL.
6103 * Should be called under rcu_read_lock().
6105 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
6107 WARN_ON_ONCE(!rcu_read_lock_held());
6108 return id
> 0 ? idr_find(&ss
->css_idr
, id
) : NULL
;
6112 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6113 * @path: path on the default hierarchy
6115 * Find the cgroup at @path on the default hierarchy, increment its
6116 * reference count and return it. Returns pointer to the found cgroup on
6117 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6118 * if @path points to a non-directory.
6120 struct cgroup
*cgroup_get_from_path(const char *path
)
6122 struct kernfs_node
*kn
;
6123 struct cgroup
*cgrp
;
6125 mutex_lock(&cgroup_mutex
);
6127 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
6129 if (kernfs_type(kn
) == KERNFS_DIR
) {
6133 cgrp
= ERR_PTR(-ENOTDIR
);
6137 cgrp
= ERR_PTR(-ENOENT
);
6140 mutex_unlock(&cgroup_mutex
);
6143 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
6146 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6147 * definition in cgroup-defs.h.
6149 #ifdef CONFIG_SOCK_CGROUP_DATA
6151 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6153 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
6154 static bool cgroup_sk_alloc_disabled __read_mostly
;
6156 void cgroup_sk_alloc_disable(void)
6158 if (cgroup_sk_alloc_disabled
)
6160 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6161 cgroup_sk_alloc_disabled
= true;
6166 #define cgroup_sk_alloc_disabled false
6170 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
6172 if (cgroup_sk_alloc_disabled
)
6178 struct css_set
*cset
;
6180 cset
= task_css_set(current
);
6181 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
6182 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
6191 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
6193 cgroup_put(sock_cgroup_ptr(skcd
));
6196 #endif /* CONFIG_SOCK_CGROUP_DATA */
6198 /* cgroup namespaces */
6200 static struct cgroup_namespace
*alloc_cgroup_ns(void)
6202 struct cgroup_namespace
*new_ns
;
6205 new_ns
= kzalloc(sizeof(struct cgroup_namespace
), GFP_KERNEL
);
6207 return ERR_PTR(-ENOMEM
);
6208 ret
= ns_alloc_inum(&new_ns
->ns
);
6211 return ERR_PTR(ret
);
6213 atomic_set(&new_ns
->count
, 1);
6214 new_ns
->ns
.ops
= &cgroupns_operations
;
6218 void free_cgroup_ns(struct cgroup_namespace
*ns
)
6220 put_css_set(ns
->root_cset
);
6221 put_user_ns(ns
->user_ns
);
6222 ns_free_inum(&ns
->ns
);
6225 EXPORT_SYMBOL(free_cgroup_ns
);
6227 struct cgroup_namespace
*copy_cgroup_ns(unsigned long flags
,
6228 struct user_namespace
*user_ns
,
6229 struct cgroup_namespace
*old_ns
)
6231 struct cgroup_namespace
*new_ns
;
6232 struct css_set
*cset
;
6236 if (!(flags
& CLONE_NEWCGROUP
)) {
6237 get_cgroup_ns(old_ns
);
6241 /* Allow only sysadmin to create cgroup namespace. */
6242 if (!ns_capable(user_ns
, CAP_SYS_ADMIN
))
6243 return ERR_PTR(-EPERM
);
6245 mutex_lock(&cgroup_mutex
);
6246 spin_lock_bh(&css_set_lock
);
6248 cset
= task_css_set(current
);
6251 spin_unlock_bh(&css_set_lock
);
6252 mutex_unlock(&cgroup_mutex
);
6254 new_ns
= alloc_cgroup_ns();
6255 if (IS_ERR(new_ns
)) {
6260 new_ns
->user_ns
= get_user_ns(user_ns
);
6261 new_ns
->root_cset
= cset
;
6266 static inline struct cgroup_namespace
*to_cg_ns(struct ns_common
*ns
)
6268 return container_of(ns
, struct cgroup_namespace
, ns
);
6271 static int cgroupns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
6273 struct cgroup_namespace
*cgroup_ns
= to_cg_ns(ns
);
6275 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
) ||
6276 !ns_capable(cgroup_ns
->user_ns
, CAP_SYS_ADMIN
))
6279 /* Don't need to do anything if we are attaching to our own cgroupns. */
6280 if (cgroup_ns
== nsproxy
->cgroup_ns
)
6283 get_cgroup_ns(cgroup_ns
);
6284 put_cgroup_ns(nsproxy
->cgroup_ns
);
6285 nsproxy
->cgroup_ns
= cgroup_ns
;
6290 static struct ns_common
*cgroupns_get(struct task_struct
*task
)
6292 struct cgroup_namespace
*ns
= NULL
;
6293 struct nsproxy
*nsproxy
;
6296 nsproxy
= task
->nsproxy
;
6298 ns
= nsproxy
->cgroup_ns
;
6303 return ns
? &ns
->ns
: NULL
;
6306 static void cgroupns_put(struct ns_common
*ns
)
6308 put_cgroup_ns(to_cg_ns(ns
));
6311 const struct proc_ns_operations cgroupns_operations
= {
6313 .type
= CLONE_NEWCGROUP
,
6314 .get
= cgroupns_get
,
6315 .put
= cgroupns_put
,
6316 .install
= cgroupns_install
,
6319 static __init
int cgroup_namespaces_init(void)
6323 subsys_initcall(cgroup_namespaces_init
);
6325 #ifdef CONFIG_CGROUP_DEBUG
6326 static struct cgroup_subsys_state
*
6327 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
6329 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
6332 return ERR_PTR(-ENOMEM
);
6337 static void debug_css_free(struct cgroup_subsys_state
*css
)
6342 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
6345 return cgroup_task_count(css
->cgroup
);
6348 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
6351 return (u64
)(unsigned long)current
->cgroups
;
6354 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
6360 count
= atomic_read(&task_css_set(current
)->refcount
);
6365 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
6367 struct cgrp_cset_link
*link
;
6368 struct css_set
*cset
;
6371 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
6375 spin_lock_bh(&css_set_lock
);
6377 cset
= rcu_dereference(current
->cgroups
);
6378 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
6379 struct cgroup
*c
= link
->cgrp
;
6381 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
6382 seq_printf(seq
, "Root %d group %s\n",
6383 c
->root
->hierarchy_id
, name_buf
);
6386 spin_unlock_bh(&css_set_lock
);
6391 #define MAX_TASKS_SHOWN_PER_CSS 25
6392 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
6394 struct cgroup_subsys_state
*css
= seq_css(seq
);
6395 struct cgrp_cset_link
*link
;
6397 spin_lock_bh(&css_set_lock
);
6398 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
6399 struct css_set
*cset
= link
->cset
;
6400 struct task_struct
*task
;
6403 seq_printf(seq
, "css_set %p\n", cset
);
6405 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
6406 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
6408 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
6411 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
6412 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
6414 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
6418 seq_puts(seq
, " ...\n");
6420 spin_unlock_bh(&css_set_lock
);
6424 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
6426 return (!cgroup_is_populated(css
->cgroup
) &&
6427 !css_has_online_children(&css
->cgroup
->self
));
6430 static struct cftype debug_files
[] = {
6432 .name
= "taskcount",
6433 .read_u64
= debug_taskcount_read
,
6437 .name
= "current_css_set",
6438 .read_u64
= current_css_set_read
,
6442 .name
= "current_css_set_refcount",
6443 .read_u64
= current_css_set_refcount_read
,
6447 .name
= "current_css_set_cg_links",
6448 .seq_show
= current_css_set_cg_links_read
,
6452 .name
= "cgroup_css_links",
6453 .seq_show
= cgroup_css_links_read
,
6457 .name
= "releasable",
6458 .read_u64
= releasable_read
,
6464 struct cgroup_subsys debug_cgrp_subsys
= {
6465 .css_alloc
= debug_css_alloc
,
6466 .css_free
= debug_css_free
,
6467 .legacy_cftypes
= debug_files
,
6469 #endif /* CONFIG_CGROUP_DEBUG */