]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/cpu.c
Merge tag 'riscv-for-linus-5.12-mw1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
39
40 #include "smpboot.h"
41
42 /**
43 * cpuhp_cpu_state - Per cpu hotplug state storage
44 * @state: The current cpu state
45 * @target: The target state
46 * @thread: Pointer to the hotplug thread
47 * @should_run: Thread should execute
48 * @rollback: Perform a rollback
49 * @single: Single callback invocation
50 * @bringup: Single callback bringup or teardown selector
51 * @cb_state: The state for a single callback (install/uninstall)
52 * @result: Result of the operation
53 * @done_up: Signal completion to the issuer of the task for cpu-up
54 * @done_down: Signal completion to the issuer of the task for cpu-down
55 */
56 struct cpuhp_cpu_state {
57 enum cpuhp_state state;
58 enum cpuhp_state target;
59 enum cpuhp_state fail;
60 #ifdef CONFIG_SMP
61 struct task_struct *thread;
62 bool should_run;
63 bool rollback;
64 bool single;
65 bool bringup;
66 struct hlist_node *node;
67 struct hlist_node *last;
68 enum cpuhp_state cb_state;
69 int result;
70 struct completion done_up;
71 struct completion done_down;
72 #endif
73 };
74
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 .fail = CPUHP_INVALID,
77 };
78
79 #ifdef CONFIG_SMP
80 cpumask_t cpus_booted_once_mask;
81 #endif
82
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map =
85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
86 static struct lockdep_map cpuhp_state_down_map =
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
88
89
90 static inline void cpuhp_lock_acquire(bool bringup)
91 {
92 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94
95 static inline void cpuhp_lock_release(bool bringup)
96 {
97 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
98 }
99 #else
100
101 static inline void cpuhp_lock_acquire(bool bringup) { }
102 static inline void cpuhp_lock_release(bool bringup) { }
103
104 #endif
105
106 /**
107 * cpuhp_step - Hotplug state machine step
108 * @name: Name of the step
109 * @startup: Startup function of the step
110 * @teardown: Teardown function of the step
111 * @cant_stop: Bringup/teardown can't be stopped at this step
112 */
113 struct cpuhp_step {
114 const char *name;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } startup;
120 union {
121 int (*single)(unsigned int cpu);
122 int (*multi)(unsigned int cpu,
123 struct hlist_node *node);
124 } teardown;
125 struct hlist_head list;
126 bool cant_stop;
127 bool multi_instance;
128 };
129
130 static DEFINE_MUTEX(cpuhp_state_mutex);
131 static struct cpuhp_step cpuhp_hp_states[];
132
133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
134 {
135 return cpuhp_hp_states + state;
136 }
137
138 /**
139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140 * @cpu: The cpu for which the callback should be invoked
141 * @state: The state to do callbacks for
142 * @bringup: True if the bringup callback should be invoked
143 * @node: For multi-instance, do a single entry callback for install/remove
144 * @lastp: For multi-instance rollback, remember how far we got
145 *
146 * Called from cpu hotplug and from the state register machinery.
147 */
148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
149 bool bringup, struct hlist_node *node,
150 struct hlist_node **lastp)
151 {
152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
153 struct cpuhp_step *step = cpuhp_get_step(state);
154 int (*cbm)(unsigned int cpu, struct hlist_node *node);
155 int (*cb)(unsigned int cpu);
156 int ret, cnt;
157
158 if (st->fail == state) {
159 st->fail = CPUHP_INVALID;
160
161 if (!(bringup ? step->startup.single : step->teardown.single))
162 return 0;
163
164 return -EAGAIN;
165 }
166
167 if (!step->multi_instance) {
168 WARN_ON_ONCE(lastp && *lastp);
169 cb = bringup ? step->startup.single : step->teardown.single;
170 if (!cb)
171 return 0;
172 trace_cpuhp_enter(cpu, st->target, state, cb);
173 ret = cb(cpu);
174 trace_cpuhp_exit(cpu, st->state, state, ret);
175 return ret;
176 }
177 cbm = bringup ? step->startup.multi : step->teardown.multi;
178 if (!cbm)
179 return 0;
180
181 /* Single invocation for instance add/remove */
182 if (node) {
183 WARN_ON_ONCE(lastp && *lastp);
184 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
185 ret = cbm(cpu, node);
186 trace_cpuhp_exit(cpu, st->state, state, ret);
187 return ret;
188 }
189
190 /* State transition. Invoke on all instances */
191 cnt = 0;
192 hlist_for_each(node, &step->list) {
193 if (lastp && node == *lastp)
194 break;
195
196 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
197 ret = cbm(cpu, node);
198 trace_cpuhp_exit(cpu, st->state, state, ret);
199 if (ret) {
200 if (!lastp)
201 goto err;
202
203 *lastp = node;
204 return ret;
205 }
206 cnt++;
207 }
208 if (lastp)
209 *lastp = NULL;
210 return 0;
211 err:
212 /* Rollback the instances if one failed */
213 cbm = !bringup ? step->startup.multi : step->teardown.multi;
214 if (!cbm)
215 return ret;
216
217 hlist_for_each(node, &step->list) {
218 if (!cnt--)
219 break;
220
221 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
222 ret = cbm(cpu, node);
223 trace_cpuhp_exit(cpu, st->state, state, ret);
224 /*
225 * Rollback must not fail,
226 */
227 WARN_ON_ONCE(ret);
228 }
229 return ret;
230 }
231
232 #ifdef CONFIG_SMP
233 static bool cpuhp_is_ap_state(enum cpuhp_state state)
234 {
235 /*
236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 * purposes as that state is handled explicitly in cpu_down.
238 */
239 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
240 }
241
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 struct completion *done = bringup ? &st->done_up : &st->done_down;
245 wait_for_completion(done);
246 }
247
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250 struct completion *done = bringup ? &st->done_up : &st->done_down;
251 complete(done);
252 }
253
254 /*
255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256 */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266
267 /*
268 * The following two APIs (cpu_maps_update_begin/done) must be used when
269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270 */
271 void cpu_maps_update_begin(void)
272 {
273 mutex_lock(&cpu_add_remove_lock);
274 }
275
276 void cpu_maps_update_done(void)
277 {
278 mutex_unlock(&cpu_add_remove_lock);
279 }
280
281 /*
282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283 * Should always be manipulated under cpu_add_remove_lock
284 */
285 static int cpu_hotplug_disabled;
286
287 #ifdef CONFIG_HOTPLUG_CPU
288
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290
291 void cpus_read_lock(void)
292 {
293 percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296
297 int cpus_read_trylock(void)
298 {
299 return percpu_down_read_trylock(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_trylock);
302
303 void cpus_read_unlock(void)
304 {
305 percpu_up_read(&cpu_hotplug_lock);
306 }
307 EXPORT_SYMBOL_GPL(cpus_read_unlock);
308
309 void cpus_write_lock(void)
310 {
311 percpu_down_write(&cpu_hotplug_lock);
312 }
313
314 void cpus_write_unlock(void)
315 {
316 percpu_up_write(&cpu_hotplug_lock);
317 }
318
319 void lockdep_assert_cpus_held(void)
320 {
321 /*
322 * We can't have hotplug operations before userspace starts running,
323 * and some init codepaths will knowingly not take the hotplug lock.
324 * This is all valid, so mute lockdep until it makes sense to report
325 * unheld locks.
326 */
327 if (system_state < SYSTEM_RUNNING)
328 return;
329
330 percpu_rwsem_assert_held(&cpu_hotplug_lock);
331 }
332
333 #ifdef CONFIG_LOCKDEP
334 int lockdep_is_cpus_held(void)
335 {
336 return percpu_rwsem_is_held(&cpu_hotplug_lock);
337 }
338 #endif
339
340 static void lockdep_acquire_cpus_lock(void)
341 {
342 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
343 }
344
345 static void lockdep_release_cpus_lock(void)
346 {
347 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
348 }
349
350 /*
351 * Wait for currently running CPU hotplug operations to complete (if any) and
352 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
353 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
354 * hotplug path before performing hotplug operations. So acquiring that lock
355 * guarantees mutual exclusion from any currently running hotplug operations.
356 */
357 void cpu_hotplug_disable(void)
358 {
359 cpu_maps_update_begin();
360 cpu_hotplug_disabled++;
361 cpu_maps_update_done();
362 }
363 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
364
365 static void __cpu_hotplug_enable(void)
366 {
367 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
368 return;
369 cpu_hotplug_disabled--;
370 }
371
372 void cpu_hotplug_enable(void)
373 {
374 cpu_maps_update_begin();
375 __cpu_hotplug_enable();
376 cpu_maps_update_done();
377 }
378 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
379
380 #else
381
382 static void lockdep_acquire_cpus_lock(void)
383 {
384 }
385
386 static void lockdep_release_cpus_lock(void)
387 {
388 }
389
390 #endif /* CONFIG_HOTPLUG_CPU */
391
392 /*
393 * Architectures that need SMT-specific errata handling during SMT hotplug
394 * should override this.
395 */
396 void __weak arch_smt_update(void) { }
397
398 #ifdef CONFIG_HOTPLUG_SMT
399 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
400
401 void __init cpu_smt_disable(bool force)
402 {
403 if (!cpu_smt_possible())
404 return;
405
406 if (force) {
407 pr_info("SMT: Force disabled\n");
408 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
409 } else {
410 pr_info("SMT: disabled\n");
411 cpu_smt_control = CPU_SMT_DISABLED;
412 }
413 }
414
415 /*
416 * The decision whether SMT is supported can only be done after the full
417 * CPU identification. Called from architecture code.
418 */
419 void __init cpu_smt_check_topology(void)
420 {
421 if (!topology_smt_supported())
422 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
423 }
424
425 static int __init smt_cmdline_disable(char *str)
426 {
427 cpu_smt_disable(str && !strcmp(str, "force"));
428 return 0;
429 }
430 early_param("nosmt", smt_cmdline_disable);
431
432 static inline bool cpu_smt_allowed(unsigned int cpu)
433 {
434 if (cpu_smt_control == CPU_SMT_ENABLED)
435 return true;
436
437 if (topology_is_primary_thread(cpu))
438 return true;
439
440 /*
441 * On x86 it's required to boot all logical CPUs at least once so
442 * that the init code can get a chance to set CR4.MCE on each
443 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
444 * core will shutdown the machine.
445 */
446 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
447 }
448
449 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
450 bool cpu_smt_possible(void)
451 {
452 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
453 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
454 }
455 EXPORT_SYMBOL_GPL(cpu_smt_possible);
456 #else
457 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
458 #endif
459
460 static inline enum cpuhp_state
461 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
462 {
463 enum cpuhp_state prev_state = st->state;
464
465 st->rollback = false;
466 st->last = NULL;
467
468 st->target = target;
469 st->single = false;
470 st->bringup = st->state < target;
471
472 return prev_state;
473 }
474
475 static inline void
476 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
477 {
478 st->rollback = true;
479
480 /*
481 * If we have st->last we need to undo partial multi_instance of this
482 * state first. Otherwise start undo at the previous state.
483 */
484 if (!st->last) {
485 if (st->bringup)
486 st->state--;
487 else
488 st->state++;
489 }
490
491 st->target = prev_state;
492 st->bringup = !st->bringup;
493 }
494
495 /* Regular hotplug invocation of the AP hotplug thread */
496 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
497 {
498 if (!st->single && st->state == st->target)
499 return;
500
501 st->result = 0;
502 /*
503 * Make sure the above stores are visible before should_run becomes
504 * true. Paired with the mb() above in cpuhp_thread_fun()
505 */
506 smp_mb();
507 st->should_run = true;
508 wake_up_process(st->thread);
509 wait_for_ap_thread(st, st->bringup);
510 }
511
512 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
513 {
514 enum cpuhp_state prev_state;
515 int ret;
516
517 prev_state = cpuhp_set_state(st, target);
518 __cpuhp_kick_ap(st);
519 if ((ret = st->result)) {
520 cpuhp_reset_state(st, prev_state);
521 __cpuhp_kick_ap(st);
522 }
523
524 return ret;
525 }
526
527 static int bringup_wait_for_ap(unsigned int cpu)
528 {
529 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
530
531 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
532 wait_for_ap_thread(st, true);
533 if (WARN_ON_ONCE((!cpu_online(cpu))))
534 return -ECANCELED;
535
536 /* Unpark the hotplug thread of the target cpu */
537 kthread_unpark(st->thread);
538
539 /*
540 * SMT soft disabling on X86 requires to bring the CPU out of the
541 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
542 * CPU marked itself as booted_once in notify_cpu_starting() so the
543 * cpu_smt_allowed() check will now return false if this is not the
544 * primary sibling.
545 */
546 if (!cpu_smt_allowed(cpu))
547 return -ECANCELED;
548
549 if (st->target <= CPUHP_AP_ONLINE_IDLE)
550 return 0;
551
552 return cpuhp_kick_ap(st, st->target);
553 }
554
555 static int bringup_cpu(unsigned int cpu)
556 {
557 struct task_struct *idle = idle_thread_get(cpu);
558 int ret;
559
560 /*
561 * Some architectures have to walk the irq descriptors to
562 * setup the vector space for the cpu which comes online.
563 * Prevent irq alloc/free across the bringup.
564 */
565 irq_lock_sparse();
566
567 /* Arch-specific enabling code. */
568 ret = __cpu_up(cpu, idle);
569 irq_unlock_sparse();
570 if (ret)
571 return ret;
572 return bringup_wait_for_ap(cpu);
573 }
574
575 static int finish_cpu(unsigned int cpu)
576 {
577 struct task_struct *idle = idle_thread_get(cpu);
578 struct mm_struct *mm = idle->active_mm;
579
580 /*
581 * idle_task_exit() will have switched to &init_mm, now
582 * clean up any remaining active_mm state.
583 */
584 if (mm != &init_mm)
585 idle->active_mm = &init_mm;
586 mmdrop(mm);
587 return 0;
588 }
589
590 /*
591 * Hotplug state machine related functions
592 */
593
594 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
595 {
596 for (st->state--; st->state > st->target; st->state--)
597 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
598 }
599
600 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
601 {
602 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
603 return true;
604 /*
605 * When CPU hotplug is disabled, then taking the CPU down is not
606 * possible because takedown_cpu() and the architecture and
607 * subsystem specific mechanisms are not available. So the CPU
608 * which would be completely unplugged again needs to stay around
609 * in the current state.
610 */
611 return st->state <= CPUHP_BRINGUP_CPU;
612 }
613
614 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
615 enum cpuhp_state target)
616 {
617 enum cpuhp_state prev_state = st->state;
618 int ret = 0;
619
620 while (st->state < target) {
621 st->state++;
622 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
623 if (ret) {
624 if (can_rollback_cpu(st)) {
625 st->target = prev_state;
626 undo_cpu_up(cpu, st);
627 }
628 break;
629 }
630 }
631 return ret;
632 }
633
634 /*
635 * The cpu hotplug threads manage the bringup and teardown of the cpus
636 */
637 static void cpuhp_create(unsigned int cpu)
638 {
639 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
640
641 init_completion(&st->done_up);
642 init_completion(&st->done_down);
643 }
644
645 static int cpuhp_should_run(unsigned int cpu)
646 {
647 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
648
649 return st->should_run;
650 }
651
652 /*
653 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
654 * callbacks when a state gets [un]installed at runtime.
655 *
656 * Each invocation of this function by the smpboot thread does a single AP
657 * state callback.
658 *
659 * It has 3 modes of operation:
660 * - single: runs st->cb_state
661 * - up: runs ++st->state, while st->state < st->target
662 * - down: runs st->state--, while st->state > st->target
663 *
664 * When complete or on error, should_run is cleared and the completion is fired.
665 */
666 static void cpuhp_thread_fun(unsigned int cpu)
667 {
668 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
669 bool bringup = st->bringup;
670 enum cpuhp_state state;
671
672 if (WARN_ON_ONCE(!st->should_run))
673 return;
674
675 /*
676 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
677 * that if we see ->should_run we also see the rest of the state.
678 */
679 smp_mb();
680
681 /*
682 * The BP holds the hotplug lock, but we're now running on the AP,
683 * ensure that anybody asserting the lock is held, will actually find
684 * it so.
685 */
686 lockdep_acquire_cpus_lock();
687 cpuhp_lock_acquire(bringup);
688
689 if (st->single) {
690 state = st->cb_state;
691 st->should_run = false;
692 } else {
693 if (bringup) {
694 st->state++;
695 state = st->state;
696 st->should_run = (st->state < st->target);
697 WARN_ON_ONCE(st->state > st->target);
698 } else {
699 state = st->state;
700 st->state--;
701 st->should_run = (st->state > st->target);
702 WARN_ON_ONCE(st->state < st->target);
703 }
704 }
705
706 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
707
708 if (cpuhp_is_atomic_state(state)) {
709 local_irq_disable();
710 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
711 local_irq_enable();
712
713 /*
714 * STARTING/DYING must not fail!
715 */
716 WARN_ON_ONCE(st->result);
717 } else {
718 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
719 }
720
721 if (st->result) {
722 /*
723 * If we fail on a rollback, we're up a creek without no
724 * paddle, no way forward, no way back. We loose, thanks for
725 * playing.
726 */
727 WARN_ON_ONCE(st->rollback);
728 st->should_run = false;
729 }
730
731 cpuhp_lock_release(bringup);
732 lockdep_release_cpus_lock();
733
734 if (!st->should_run)
735 complete_ap_thread(st, bringup);
736 }
737
738 /* Invoke a single callback on a remote cpu */
739 static int
740 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
741 struct hlist_node *node)
742 {
743 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
744 int ret;
745
746 if (!cpu_online(cpu))
747 return 0;
748
749 cpuhp_lock_acquire(false);
750 cpuhp_lock_release(false);
751
752 cpuhp_lock_acquire(true);
753 cpuhp_lock_release(true);
754
755 /*
756 * If we are up and running, use the hotplug thread. For early calls
757 * we invoke the thread function directly.
758 */
759 if (!st->thread)
760 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
761
762 st->rollback = false;
763 st->last = NULL;
764
765 st->node = node;
766 st->bringup = bringup;
767 st->cb_state = state;
768 st->single = true;
769
770 __cpuhp_kick_ap(st);
771
772 /*
773 * If we failed and did a partial, do a rollback.
774 */
775 if ((ret = st->result) && st->last) {
776 st->rollback = true;
777 st->bringup = !bringup;
778
779 __cpuhp_kick_ap(st);
780 }
781
782 /*
783 * Clean up the leftovers so the next hotplug operation wont use stale
784 * data.
785 */
786 st->node = st->last = NULL;
787 return ret;
788 }
789
790 static int cpuhp_kick_ap_work(unsigned int cpu)
791 {
792 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
793 enum cpuhp_state prev_state = st->state;
794 int ret;
795
796 cpuhp_lock_acquire(false);
797 cpuhp_lock_release(false);
798
799 cpuhp_lock_acquire(true);
800 cpuhp_lock_release(true);
801
802 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
803 ret = cpuhp_kick_ap(st, st->target);
804 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
805
806 return ret;
807 }
808
809 static struct smp_hotplug_thread cpuhp_threads = {
810 .store = &cpuhp_state.thread,
811 .create = &cpuhp_create,
812 .thread_should_run = cpuhp_should_run,
813 .thread_fn = cpuhp_thread_fun,
814 .thread_comm = "cpuhp/%u",
815 .selfparking = true,
816 };
817
818 void __init cpuhp_threads_init(void)
819 {
820 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
821 kthread_unpark(this_cpu_read(cpuhp_state.thread));
822 }
823
824 #ifdef CONFIG_HOTPLUG_CPU
825 #ifndef arch_clear_mm_cpumask_cpu
826 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
827 #endif
828
829 /**
830 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
831 * @cpu: a CPU id
832 *
833 * This function walks all processes, finds a valid mm struct for each one and
834 * then clears a corresponding bit in mm's cpumask. While this all sounds
835 * trivial, there are various non-obvious corner cases, which this function
836 * tries to solve in a safe manner.
837 *
838 * Also note that the function uses a somewhat relaxed locking scheme, so it may
839 * be called only for an already offlined CPU.
840 */
841 void clear_tasks_mm_cpumask(int cpu)
842 {
843 struct task_struct *p;
844
845 /*
846 * This function is called after the cpu is taken down and marked
847 * offline, so its not like new tasks will ever get this cpu set in
848 * their mm mask. -- Peter Zijlstra
849 * Thus, we may use rcu_read_lock() here, instead of grabbing
850 * full-fledged tasklist_lock.
851 */
852 WARN_ON(cpu_online(cpu));
853 rcu_read_lock();
854 for_each_process(p) {
855 struct task_struct *t;
856
857 /*
858 * Main thread might exit, but other threads may still have
859 * a valid mm. Find one.
860 */
861 t = find_lock_task_mm(p);
862 if (!t)
863 continue;
864 arch_clear_mm_cpumask_cpu(cpu, t->mm);
865 task_unlock(t);
866 }
867 rcu_read_unlock();
868 }
869
870 /* Take this CPU down. */
871 static int take_cpu_down(void *_param)
872 {
873 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
874 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
875 int err, cpu = smp_processor_id();
876 int ret;
877
878 /* Ensure this CPU doesn't handle any more interrupts. */
879 err = __cpu_disable();
880 if (err < 0)
881 return err;
882
883 /*
884 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
885 * do this step again.
886 */
887 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
888 st->state--;
889 /* Invoke the former CPU_DYING callbacks */
890 for (; st->state > target; st->state--) {
891 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
892 /*
893 * DYING must not fail!
894 */
895 WARN_ON_ONCE(ret);
896 }
897
898 /* Give up timekeeping duties */
899 tick_handover_do_timer();
900 /* Remove CPU from timer broadcasting */
901 tick_offline_cpu(cpu);
902 /* Park the stopper thread */
903 stop_machine_park(cpu);
904 return 0;
905 }
906
907 static int takedown_cpu(unsigned int cpu)
908 {
909 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
910 int err;
911
912 /* Park the smpboot threads */
913 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
914
915 /*
916 * Prevent irq alloc/free while the dying cpu reorganizes the
917 * interrupt affinities.
918 */
919 irq_lock_sparse();
920
921 /*
922 * So now all preempt/rcu users must observe !cpu_active().
923 */
924 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
925 if (err) {
926 /* CPU refused to die */
927 irq_unlock_sparse();
928 /* Unpark the hotplug thread so we can rollback there */
929 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
930 return err;
931 }
932 BUG_ON(cpu_online(cpu));
933
934 /*
935 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
936 * all runnable tasks from the CPU, there's only the idle task left now
937 * that the migration thread is done doing the stop_machine thing.
938 *
939 * Wait for the stop thread to go away.
940 */
941 wait_for_ap_thread(st, false);
942 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
943
944 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
945 irq_unlock_sparse();
946
947 hotplug_cpu__broadcast_tick_pull(cpu);
948 /* This actually kills the CPU. */
949 __cpu_die(cpu);
950
951 tick_cleanup_dead_cpu(cpu);
952 rcutree_migrate_callbacks(cpu);
953 return 0;
954 }
955
956 static void cpuhp_complete_idle_dead(void *arg)
957 {
958 struct cpuhp_cpu_state *st = arg;
959
960 complete_ap_thread(st, false);
961 }
962
963 void cpuhp_report_idle_dead(void)
964 {
965 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
966
967 BUG_ON(st->state != CPUHP_AP_OFFLINE);
968 rcu_report_dead(smp_processor_id());
969 st->state = CPUHP_AP_IDLE_DEAD;
970 /*
971 * We cannot call complete after rcu_report_dead() so we delegate it
972 * to an online cpu.
973 */
974 smp_call_function_single(cpumask_first(cpu_online_mask),
975 cpuhp_complete_idle_dead, st, 0);
976 }
977
978 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
979 {
980 for (st->state++; st->state < st->target; st->state++)
981 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
982 }
983
984 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
985 enum cpuhp_state target)
986 {
987 enum cpuhp_state prev_state = st->state;
988 int ret = 0;
989
990 for (; st->state > target; st->state--) {
991 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
992 if (ret) {
993 st->target = prev_state;
994 if (st->state < prev_state)
995 undo_cpu_down(cpu, st);
996 break;
997 }
998 }
999 return ret;
1000 }
1001
1002 /* Requires cpu_add_remove_lock to be held */
1003 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1004 enum cpuhp_state target)
1005 {
1006 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1007 int prev_state, ret = 0;
1008
1009 if (num_online_cpus() == 1)
1010 return -EBUSY;
1011
1012 if (!cpu_present(cpu))
1013 return -EINVAL;
1014
1015 cpus_write_lock();
1016
1017 cpuhp_tasks_frozen = tasks_frozen;
1018
1019 prev_state = cpuhp_set_state(st, target);
1020 /*
1021 * If the current CPU state is in the range of the AP hotplug thread,
1022 * then we need to kick the thread.
1023 */
1024 if (st->state > CPUHP_TEARDOWN_CPU) {
1025 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1026 ret = cpuhp_kick_ap_work(cpu);
1027 /*
1028 * The AP side has done the error rollback already. Just
1029 * return the error code..
1030 */
1031 if (ret)
1032 goto out;
1033
1034 /*
1035 * We might have stopped still in the range of the AP hotplug
1036 * thread. Nothing to do anymore.
1037 */
1038 if (st->state > CPUHP_TEARDOWN_CPU)
1039 goto out;
1040
1041 st->target = target;
1042 }
1043 /*
1044 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1045 * to do the further cleanups.
1046 */
1047 ret = cpuhp_down_callbacks(cpu, st, target);
1048 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1049 cpuhp_reset_state(st, prev_state);
1050 __cpuhp_kick_ap(st);
1051 }
1052
1053 out:
1054 cpus_write_unlock();
1055 /*
1056 * Do post unplug cleanup. This is still protected against
1057 * concurrent CPU hotplug via cpu_add_remove_lock.
1058 */
1059 lockup_detector_cleanup();
1060 arch_smt_update();
1061 return ret;
1062 }
1063
1064 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1065 {
1066 if (cpu_hotplug_disabled)
1067 return -EBUSY;
1068 return _cpu_down(cpu, 0, target);
1069 }
1070
1071 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1072 {
1073 int err;
1074
1075 cpu_maps_update_begin();
1076 err = cpu_down_maps_locked(cpu, target);
1077 cpu_maps_update_done();
1078 return err;
1079 }
1080
1081 /**
1082 * cpu_device_down - Bring down a cpu device
1083 * @dev: Pointer to the cpu device to offline
1084 *
1085 * This function is meant to be used by device core cpu subsystem only.
1086 *
1087 * Other subsystems should use remove_cpu() instead.
1088 */
1089 int cpu_device_down(struct device *dev)
1090 {
1091 return cpu_down(dev->id, CPUHP_OFFLINE);
1092 }
1093
1094 int remove_cpu(unsigned int cpu)
1095 {
1096 int ret;
1097
1098 lock_device_hotplug();
1099 ret = device_offline(get_cpu_device(cpu));
1100 unlock_device_hotplug();
1101
1102 return ret;
1103 }
1104 EXPORT_SYMBOL_GPL(remove_cpu);
1105
1106 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1107 {
1108 unsigned int cpu;
1109 int error;
1110
1111 cpu_maps_update_begin();
1112
1113 /*
1114 * Make certain the cpu I'm about to reboot on is online.
1115 *
1116 * This is inline to what migrate_to_reboot_cpu() already do.
1117 */
1118 if (!cpu_online(primary_cpu))
1119 primary_cpu = cpumask_first(cpu_online_mask);
1120
1121 for_each_online_cpu(cpu) {
1122 if (cpu == primary_cpu)
1123 continue;
1124
1125 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1126 if (error) {
1127 pr_err("Failed to offline CPU%d - error=%d",
1128 cpu, error);
1129 break;
1130 }
1131 }
1132
1133 /*
1134 * Ensure all but the reboot CPU are offline.
1135 */
1136 BUG_ON(num_online_cpus() > 1);
1137
1138 /*
1139 * Make sure the CPUs won't be enabled by someone else after this
1140 * point. Kexec will reboot to a new kernel shortly resetting
1141 * everything along the way.
1142 */
1143 cpu_hotplug_disabled++;
1144
1145 cpu_maps_update_done();
1146 }
1147
1148 #else
1149 #define takedown_cpu NULL
1150 #endif /*CONFIG_HOTPLUG_CPU*/
1151
1152 /**
1153 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1154 * @cpu: cpu that just started
1155 *
1156 * It must be called by the arch code on the new cpu, before the new cpu
1157 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1158 */
1159 void notify_cpu_starting(unsigned int cpu)
1160 {
1161 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1162 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1163 int ret;
1164
1165 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1166 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1167 while (st->state < target) {
1168 st->state++;
1169 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1170 /*
1171 * STARTING must not fail!
1172 */
1173 WARN_ON_ONCE(ret);
1174 }
1175 }
1176
1177 /*
1178 * Called from the idle task. Wake up the controlling task which brings the
1179 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1180 * online bringup to the hotplug thread.
1181 */
1182 void cpuhp_online_idle(enum cpuhp_state state)
1183 {
1184 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1185
1186 /* Happens for the boot cpu */
1187 if (state != CPUHP_AP_ONLINE_IDLE)
1188 return;
1189
1190 /*
1191 * Unpart the stopper thread before we start the idle loop (and start
1192 * scheduling); this ensures the stopper task is always available.
1193 */
1194 stop_machine_unpark(smp_processor_id());
1195
1196 st->state = CPUHP_AP_ONLINE_IDLE;
1197 complete_ap_thread(st, true);
1198 }
1199
1200 /* Requires cpu_add_remove_lock to be held */
1201 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1202 {
1203 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1204 struct task_struct *idle;
1205 int ret = 0;
1206
1207 cpus_write_lock();
1208
1209 if (!cpu_present(cpu)) {
1210 ret = -EINVAL;
1211 goto out;
1212 }
1213
1214 /*
1215 * The caller of cpu_up() might have raced with another
1216 * caller. Nothing to do.
1217 */
1218 if (st->state >= target)
1219 goto out;
1220
1221 if (st->state == CPUHP_OFFLINE) {
1222 /* Let it fail before we try to bring the cpu up */
1223 idle = idle_thread_get(cpu);
1224 if (IS_ERR(idle)) {
1225 ret = PTR_ERR(idle);
1226 goto out;
1227 }
1228 }
1229
1230 cpuhp_tasks_frozen = tasks_frozen;
1231
1232 cpuhp_set_state(st, target);
1233 /*
1234 * If the current CPU state is in the range of the AP hotplug thread,
1235 * then we need to kick the thread once more.
1236 */
1237 if (st->state > CPUHP_BRINGUP_CPU) {
1238 ret = cpuhp_kick_ap_work(cpu);
1239 /*
1240 * The AP side has done the error rollback already. Just
1241 * return the error code..
1242 */
1243 if (ret)
1244 goto out;
1245 }
1246
1247 /*
1248 * Try to reach the target state. We max out on the BP at
1249 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1250 * responsible for bringing it up to the target state.
1251 */
1252 target = min((int)target, CPUHP_BRINGUP_CPU);
1253 ret = cpuhp_up_callbacks(cpu, st, target);
1254 out:
1255 cpus_write_unlock();
1256 arch_smt_update();
1257 return ret;
1258 }
1259
1260 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1261 {
1262 int err = 0;
1263
1264 if (!cpu_possible(cpu)) {
1265 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1266 cpu);
1267 #if defined(CONFIG_IA64)
1268 pr_err("please check additional_cpus= boot parameter\n");
1269 #endif
1270 return -EINVAL;
1271 }
1272
1273 err = try_online_node(cpu_to_node(cpu));
1274 if (err)
1275 return err;
1276
1277 cpu_maps_update_begin();
1278
1279 if (cpu_hotplug_disabled) {
1280 err = -EBUSY;
1281 goto out;
1282 }
1283 if (!cpu_smt_allowed(cpu)) {
1284 err = -EPERM;
1285 goto out;
1286 }
1287
1288 err = _cpu_up(cpu, 0, target);
1289 out:
1290 cpu_maps_update_done();
1291 return err;
1292 }
1293
1294 /**
1295 * cpu_device_up - Bring up a cpu device
1296 * @dev: Pointer to the cpu device to online
1297 *
1298 * This function is meant to be used by device core cpu subsystem only.
1299 *
1300 * Other subsystems should use add_cpu() instead.
1301 */
1302 int cpu_device_up(struct device *dev)
1303 {
1304 return cpu_up(dev->id, CPUHP_ONLINE);
1305 }
1306
1307 int add_cpu(unsigned int cpu)
1308 {
1309 int ret;
1310
1311 lock_device_hotplug();
1312 ret = device_online(get_cpu_device(cpu));
1313 unlock_device_hotplug();
1314
1315 return ret;
1316 }
1317 EXPORT_SYMBOL_GPL(add_cpu);
1318
1319 /**
1320 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1321 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1322 *
1323 * On some architectures like arm64, we can hibernate on any CPU, but on
1324 * wake up the CPU we hibernated on might be offline as a side effect of
1325 * using maxcpus= for example.
1326 */
1327 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1328 {
1329 int ret;
1330
1331 if (!cpu_online(sleep_cpu)) {
1332 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1333 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1334 if (ret) {
1335 pr_err("Failed to bring hibernate-CPU up!\n");
1336 return ret;
1337 }
1338 }
1339 return 0;
1340 }
1341
1342 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1343 {
1344 unsigned int cpu;
1345
1346 for_each_present_cpu(cpu) {
1347 if (num_online_cpus() >= setup_max_cpus)
1348 break;
1349 if (!cpu_online(cpu))
1350 cpu_up(cpu, CPUHP_ONLINE);
1351 }
1352 }
1353
1354 #ifdef CONFIG_PM_SLEEP_SMP
1355 static cpumask_var_t frozen_cpus;
1356
1357 int freeze_secondary_cpus(int primary)
1358 {
1359 int cpu, error = 0;
1360
1361 cpu_maps_update_begin();
1362 if (primary == -1) {
1363 primary = cpumask_first(cpu_online_mask);
1364 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1365 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1366 } else {
1367 if (!cpu_online(primary))
1368 primary = cpumask_first(cpu_online_mask);
1369 }
1370
1371 /*
1372 * We take down all of the non-boot CPUs in one shot to avoid races
1373 * with the userspace trying to use the CPU hotplug at the same time
1374 */
1375 cpumask_clear(frozen_cpus);
1376
1377 pr_info("Disabling non-boot CPUs ...\n");
1378 for_each_online_cpu(cpu) {
1379 if (cpu == primary)
1380 continue;
1381
1382 if (pm_wakeup_pending()) {
1383 pr_info("Wakeup pending. Abort CPU freeze\n");
1384 error = -EBUSY;
1385 break;
1386 }
1387
1388 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1389 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1390 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1391 if (!error)
1392 cpumask_set_cpu(cpu, frozen_cpus);
1393 else {
1394 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1395 break;
1396 }
1397 }
1398
1399 if (!error)
1400 BUG_ON(num_online_cpus() > 1);
1401 else
1402 pr_err("Non-boot CPUs are not disabled\n");
1403
1404 /*
1405 * Make sure the CPUs won't be enabled by someone else. We need to do
1406 * this even in case of failure as all freeze_secondary_cpus() users are
1407 * supposed to do thaw_secondary_cpus() on the failure path.
1408 */
1409 cpu_hotplug_disabled++;
1410
1411 cpu_maps_update_done();
1412 return error;
1413 }
1414
1415 void __weak arch_thaw_secondary_cpus_begin(void)
1416 {
1417 }
1418
1419 void __weak arch_thaw_secondary_cpus_end(void)
1420 {
1421 }
1422
1423 void thaw_secondary_cpus(void)
1424 {
1425 int cpu, error;
1426
1427 /* Allow everyone to use the CPU hotplug again */
1428 cpu_maps_update_begin();
1429 __cpu_hotplug_enable();
1430 if (cpumask_empty(frozen_cpus))
1431 goto out;
1432
1433 pr_info("Enabling non-boot CPUs ...\n");
1434
1435 arch_thaw_secondary_cpus_begin();
1436
1437 for_each_cpu(cpu, frozen_cpus) {
1438 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1439 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1440 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1441 if (!error) {
1442 pr_info("CPU%d is up\n", cpu);
1443 continue;
1444 }
1445 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1446 }
1447
1448 arch_thaw_secondary_cpus_end();
1449
1450 cpumask_clear(frozen_cpus);
1451 out:
1452 cpu_maps_update_done();
1453 }
1454
1455 static int __init alloc_frozen_cpus(void)
1456 {
1457 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1458 return -ENOMEM;
1459 return 0;
1460 }
1461 core_initcall(alloc_frozen_cpus);
1462
1463 /*
1464 * When callbacks for CPU hotplug notifications are being executed, we must
1465 * ensure that the state of the system with respect to the tasks being frozen
1466 * or not, as reported by the notification, remains unchanged *throughout the
1467 * duration* of the execution of the callbacks.
1468 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1469 *
1470 * This synchronization is implemented by mutually excluding regular CPU
1471 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1472 * Hibernate notifications.
1473 */
1474 static int
1475 cpu_hotplug_pm_callback(struct notifier_block *nb,
1476 unsigned long action, void *ptr)
1477 {
1478 switch (action) {
1479
1480 case PM_SUSPEND_PREPARE:
1481 case PM_HIBERNATION_PREPARE:
1482 cpu_hotplug_disable();
1483 break;
1484
1485 case PM_POST_SUSPEND:
1486 case PM_POST_HIBERNATION:
1487 cpu_hotplug_enable();
1488 break;
1489
1490 default:
1491 return NOTIFY_DONE;
1492 }
1493
1494 return NOTIFY_OK;
1495 }
1496
1497
1498 static int __init cpu_hotplug_pm_sync_init(void)
1499 {
1500 /*
1501 * cpu_hotplug_pm_callback has higher priority than x86
1502 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1503 * to disable cpu hotplug to avoid cpu hotplug race.
1504 */
1505 pm_notifier(cpu_hotplug_pm_callback, 0);
1506 return 0;
1507 }
1508 core_initcall(cpu_hotplug_pm_sync_init);
1509
1510 #endif /* CONFIG_PM_SLEEP_SMP */
1511
1512 int __boot_cpu_id;
1513
1514 #endif /* CONFIG_SMP */
1515
1516 /* Boot processor state steps */
1517 static struct cpuhp_step cpuhp_hp_states[] = {
1518 [CPUHP_OFFLINE] = {
1519 .name = "offline",
1520 .startup.single = NULL,
1521 .teardown.single = NULL,
1522 },
1523 #ifdef CONFIG_SMP
1524 [CPUHP_CREATE_THREADS]= {
1525 .name = "threads:prepare",
1526 .startup.single = smpboot_create_threads,
1527 .teardown.single = NULL,
1528 .cant_stop = true,
1529 },
1530 [CPUHP_PERF_PREPARE] = {
1531 .name = "perf:prepare",
1532 .startup.single = perf_event_init_cpu,
1533 .teardown.single = perf_event_exit_cpu,
1534 },
1535 [CPUHP_WORKQUEUE_PREP] = {
1536 .name = "workqueue:prepare",
1537 .startup.single = workqueue_prepare_cpu,
1538 .teardown.single = NULL,
1539 },
1540 [CPUHP_HRTIMERS_PREPARE] = {
1541 .name = "hrtimers:prepare",
1542 .startup.single = hrtimers_prepare_cpu,
1543 .teardown.single = hrtimers_dead_cpu,
1544 },
1545 [CPUHP_SMPCFD_PREPARE] = {
1546 .name = "smpcfd:prepare",
1547 .startup.single = smpcfd_prepare_cpu,
1548 .teardown.single = smpcfd_dead_cpu,
1549 },
1550 [CPUHP_RELAY_PREPARE] = {
1551 .name = "relay:prepare",
1552 .startup.single = relay_prepare_cpu,
1553 .teardown.single = NULL,
1554 },
1555 [CPUHP_SLAB_PREPARE] = {
1556 .name = "slab:prepare",
1557 .startup.single = slab_prepare_cpu,
1558 .teardown.single = slab_dead_cpu,
1559 },
1560 [CPUHP_RCUTREE_PREP] = {
1561 .name = "RCU/tree:prepare",
1562 .startup.single = rcutree_prepare_cpu,
1563 .teardown.single = rcutree_dead_cpu,
1564 },
1565 /*
1566 * On the tear-down path, timers_dead_cpu() must be invoked
1567 * before blk_mq_queue_reinit_notify() from notify_dead(),
1568 * otherwise a RCU stall occurs.
1569 */
1570 [CPUHP_TIMERS_PREPARE] = {
1571 .name = "timers:prepare",
1572 .startup.single = timers_prepare_cpu,
1573 .teardown.single = timers_dead_cpu,
1574 },
1575 /* Kicks the plugged cpu into life */
1576 [CPUHP_BRINGUP_CPU] = {
1577 .name = "cpu:bringup",
1578 .startup.single = bringup_cpu,
1579 .teardown.single = finish_cpu,
1580 .cant_stop = true,
1581 },
1582 /* Final state before CPU kills itself */
1583 [CPUHP_AP_IDLE_DEAD] = {
1584 .name = "idle:dead",
1585 },
1586 /*
1587 * Last state before CPU enters the idle loop to die. Transient state
1588 * for synchronization.
1589 */
1590 [CPUHP_AP_OFFLINE] = {
1591 .name = "ap:offline",
1592 .cant_stop = true,
1593 },
1594 /* First state is scheduler control. Interrupts are disabled */
1595 [CPUHP_AP_SCHED_STARTING] = {
1596 .name = "sched:starting",
1597 .startup.single = sched_cpu_starting,
1598 .teardown.single = sched_cpu_dying,
1599 },
1600 [CPUHP_AP_RCUTREE_DYING] = {
1601 .name = "RCU/tree:dying",
1602 .startup.single = NULL,
1603 .teardown.single = rcutree_dying_cpu,
1604 },
1605 [CPUHP_AP_SMPCFD_DYING] = {
1606 .name = "smpcfd:dying",
1607 .startup.single = NULL,
1608 .teardown.single = smpcfd_dying_cpu,
1609 },
1610 /* Entry state on starting. Interrupts enabled from here on. Transient
1611 * state for synchronsization */
1612 [CPUHP_AP_ONLINE] = {
1613 .name = "ap:online",
1614 },
1615 /*
1616 * Handled on control processor until the plugged processor manages
1617 * this itself.
1618 */
1619 [CPUHP_TEARDOWN_CPU] = {
1620 .name = "cpu:teardown",
1621 .startup.single = NULL,
1622 .teardown.single = takedown_cpu,
1623 .cant_stop = true,
1624 },
1625
1626 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1627 .name = "sched:waitempty",
1628 .startup.single = NULL,
1629 .teardown.single = sched_cpu_wait_empty,
1630 },
1631
1632 /* Handle smpboot threads park/unpark */
1633 [CPUHP_AP_SMPBOOT_THREADS] = {
1634 .name = "smpboot/threads:online",
1635 .startup.single = smpboot_unpark_threads,
1636 .teardown.single = smpboot_park_threads,
1637 },
1638 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1639 .name = "irq/affinity:online",
1640 .startup.single = irq_affinity_online_cpu,
1641 .teardown.single = NULL,
1642 },
1643 [CPUHP_AP_PERF_ONLINE] = {
1644 .name = "perf:online",
1645 .startup.single = perf_event_init_cpu,
1646 .teardown.single = perf_event_exit_cpu,
1647 },
1648 [CPUHP_AP_WATCHDOG_ONLINE] = {
1649 .name = "lockup_detector:online",
1650 .startup.single = lockup_detector_online_cpu,
1651 .teardown.single = lockup_detector_offline_cpu,
1652 },
1653 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1654 .name = "workqueue:online",
1655 .startup.single = workqueue_online_cpu,
1656 .teardown.single = workqueue_offline_cpu,
1657 },
1658 [CPUHP_AP_RCUTREE_ONLINE] = {
1659 .name = "RCU/tree:online",
1660 .startup.single = rcutree_online_cpu,
1661 .teardown.single = rcutree_offline_cpu,
1662 },
1663 #endif
1664 /*
1665 * The dynamically registered state space is here
1666 */
1667
1668 #ifdef CONFIG_SMP
1669 /* Last state is scheduler control setting the cpu active */
1670 [CPUHP_AP_ACTIVE] = {
1671 .name = "sched:active",
1672 .startup.single = sched_cpu_activate,
1673 .teardown.single = sched_cpu_deactivate,
1674 },
1675 #endif
1676
1677 /* CPU is fully up and running. */
1678 [CPUHP_ONLINE] = {
1679 .name = "online",
1680 .startup.single = NULL,
1681 .teardown.single = NULL,
1682 },
1683 };
1684
1685 /* Sanity check for callbacks */
1686 static int cpuhp_cb_check(enum cpuhp_state state)
1687 {
1688 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1689 return -EINVAL;
1690 return 0;
1691 }
1692
1693 /*
1694 * Returns a free for dynamic slot assignment of the Online state. The states
1695 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1696 * by having no name assigned.
1697 */
1698 static int cpuhp_reserve_state(enum cpuhp_state state)
1699 {
1700 enum cpuhp_state i, end;
1701 struct cpuhp_step *step;
1702
1703 switch (state) {
1704 case CPUHP_AP_ONLINE_DYN:
1705 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1706 end = CPUHP_AP_ONLINE_DYN_END;
1707 break;
1708 case CPUHP_BP_PREPARE_DYN:
1709 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1710 end = CPUHP_BP_PREPARE_DYN_END;
1711 break;
1712 default:
1713 return -EINVAL;
1714 }
1715
1716 for (i = state; i <= end; i++, step++) {
1717 if (!step->name)
1718 return i;
1719 }
1720 WARN(1, "No more dynamic states available for CPU hotplug\n");
1721 return -ENOSPC;
1722 }
1723
1724 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1725 int (*startup)(unsigned int cpu),
1726 int (*teardown)(unsigned int cpu),
1727 bool multi_instance)
1728 {
1729 /* (Un)Install the callbacks for further cpu hotplug operations */
1730 struct cpuhp_step *sp;
1731 int ret = 0;
1732
1733 /*
1734 * If name is NULL, then the state gets removed.
1735 *
1736 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1737 * the first allocation from these dynamic ranges, so the removal
1738 * would trigger a new allocation and clear the wrong (already
1739 * empty) state, leaving the callbacks of the to be cleared state
1740 * dangling, which causes wreckage on the next hotplug operation.
1741 */
1742 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1743 state == CPUHP_BP_PREPARE_DYN)) {
1744 ret = cpuhp_reserve_state(state);
1745 if (ret < 0)
1746 return ret;
1747 state = ret;
1748 }
1749 sp = cpuhp_get_step(state);
1750 if (name && sp->name)
1751 return -EBUSY;
1752
1753 sp->startup.single = startup;
1754 sp->teardown.single = teardown;
1755 sp->name = name;
1756 sp->multi_instance = multi_instance;
1757 INIT_HLIST_HEAD(&sp->list);
1758 return ret;
1759 }
1760
1761 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1762 {
1763 return cpuhp_get_step(state)->teardown.single;
1764 }
1765
1766 /*
1767 * Call the startup/teardown function for a step either on the AP or
1768 * on the current CPU.
1769 */
1770 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1771 struct hlist_node *node)
1772 {
1773 struct cpuhp_step *sp = cpuhp_get_step(state);
1774 int ret;
1775
1776 /*
1777 * If there's nothing to do, we done.
1778 * Relies on the union for multi_instance.
1779 */
1780 if ((bringup && !sp->startup.single) ||
1781 (!bringup && !sp->teardown.single))
1782 return 0;
1783 /*
1784 * The non AP bound callbacks can fail on bringup. On teardown
1785 * e.g. module removal we crash for now.
1786 */
1787 #ifdef CONFIG_SMP
1788 if (cpuhp_is_ap_state(state))
1789 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1790 else
1791 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1792 #else
1793 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1794 #endif
1795 BUG_ON(ret && !bringup);
1796 return ret;
1797 }
1798
1799 /*
1800 * Called from __cpuhp_setup_state on a recoverable failure.
1801 *
1802 * Note: The teardown callbacks for rollback are not allowed to fail!
1803 */
1804 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1805 struct hlist_node *node)
1806 {
1807 int cpu;
1808
1809 /* Roll back the already executed steps on the other cpus */
1810 for_each_present_cpu(cpu) {
1811 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1812 int cpustate = st->state;
1813
1814 if (cpu >= failedcpu)
1815 break;
1816
1817 /* Did we invoke the startup call on that cpu ? */
1818 if (cpustate >= state)
1819 cpuhp_issue_call(cpu, state, false, node);
1820 }
1821 }
1822
1823 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1824 struct hlist_node *node,
1825 bool invoke)
1826 {
1827 struct cpuhp_step *sp;
1828 int cpu;
1829 int ret;
1830
1831 lockdep_assert_cpus_held();
1832
1833 sp = cpuhp_get_step(state);
1834 if (sp->multi_instance == false)
1835 return -EINVAL;
1836
1837 mutex_lock(&cpuhp_state_mutex);
1838
1839 if (!invoke || !sp->startup.multi)
1840 goto add_node;
1841
1842 /*
1843 * Try to call the startup callback for each present cpu
1844 * depending on the hotplug state of the cpu.
1845 */
1846 for_each_present_cpu(cpu) {
1847 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1848 int cpustate = st->state;
1849
1850 if (cpustate < state)
1851 continue;
1852
1853 ret = cpuhp_issue_call(cpu, state, true, node);
1854 if (ret) {
1855 if (sp->teardown.multi)
1856 cpuhp_rollback_install(cpu, state, node);
1857 goto unlock;
1858 }
1859 }
1860 add_node:
1861 ret = 0;
1862 hlist_add_head(node, &sp->list);
1863 unlock:
1864 mutex_unlock(&cpuhp_state_mutex);
1865 return ret;
1866 }
1867
1868 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1869 bool invoke)
1870 {
1871 int ret;
1872
1873 cpus_read_lock();
1874 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1875 cpus_read_unlock();
1876 return ret;
1877 }
1878 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1879
1880 /**
1881 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1882 * @state: The state to setup
1883 * @invoke: If true, the startup function is invoked for cpus where
1884 * cpu state >= @state
1885 * @startup: startup callback function
1886 * @teardown: teardown callback function
1887 * @multi_instance: State is set up for multiple instances which get
1888 * added afterwards.
1889 *
1890 * The caller needs to hold cpus read locked while calling this function.
1891 * Returns:
1892 * On success:
1893 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1894 * 0 for all other states
1895 * On failure: proper (negative) error code
1896 */
1897 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1898 const char *name, bool invoke,
1899 int (*startup)(unsigned int cpu),
1900 int (*teardown)(unsigned int cpu),
1901 bool multi_instance)
1902 {
1903 int cpu, ret = 0;
1904 bool dynstate;
1905
1906 lockdep_assert_cpus_held();
1907
1908 if (cpuhp_cb_check(state) || !name)
1909 return -EINVAL;
1910
1911 mutex_lock(&cpuhp_state_mutex);
1912
1913 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1914 multi_instance);
1915
1916 dynstate = state == CPUHP_AP_ONLINE_DYN;
1917 if (ret > 0 && dynstate) {
1918 state = ret;
1919 ret = 0;
1920 }
1921
1922 if (ret || !invoke || !startup)
1923 goto out;
1924
1925 /*
1926 * Try to call the startup callback for each present cpu
1927 * depending on the hotplug state of the cpu.
1928 */
1929 for_each_present_cpu(cpu) {
1930 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1931 int cpustate = st->state;
1932
1933 if (cpustate < state)
1934 continue;
1935
1936 ret = cpuhp_issue_call(cpu, state, true, NULL);
1937 if (ret) {
1938 if (teardown)
1939 cpuhp_rollback_install(cpu, state, NULL);
1940 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1941 goto out;
1942 }
1943 }
1944 out:
1945 mutex_unlock(&cpuhp_state_mutex);
1946 /*
1947 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1948 * dynamically allocated state in case of success.
1949 */
1950 if (!ret && dynstate)
1951 return state;
1952 return ret;
1953 }
1954 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1955
1956 int __cpuhp_setup_state(enum cpuhp_state state,
1957 const char *name, bool invoke,
1958 int (*startup)(unsigned int cpu),
1959 int (*teardown)(unsigned int cpu),
1960 bool multi_instance)
1961 {
1962 int ret;
1963
1964 cpus_read_lock();
1965 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1966 teardown, multi_instance);
1967 cpus_read_unlock();
1968 return ret;
1969 }
1970 EXPORT_SYMBOL(__cpuhp_setup_state);
1971
1972 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1973 struct hlist_node *node, bool invoke)
1974 {
1975 struct cpuhp_step *sp = cpuhp_get_step(state);
1976 int cpu;
1977
1978 BUG_ON(cpuhp_cb_check(state));
1979
1980 if (!sp->multi_instance)
1981 return -EINVAL;
1982
1983 cpus_read_lock();
1984 mutex_lock(&cpuhp_state_mutex);
1985
1986 if (!invoke || !cpuhp_get_teardown_cb(state))
1987 goto remove;
1988 /*
1989 * Call the teardown callback for each present cpu depending
1990 * on the hotplug state of the cpu. This function is not
1991 * allowed to fail currently!
1992 */
1993 for_each_present_cpu(cpu) {
1994 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1995 int cpustate = st->state;
1996
1997 if (cpustate >= state)
1998 cpuhp_issue_call(cpu, state, false, node);
1999 }
2000
2001 remove:
2002 hlist_del(node);
2003 mutex_unlock(&cpuhp_state_mutex);
2004 cpus_read_unlock();
2005
2006 return 0;
2007 }
2008 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2009
2010 /**
2011 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2012 * @state: The state to remove
2013 * @invoke: If true, the teardown function is invoked for cpus where
2014 * cpu state >= @state
2015 *
2016 * The caller needs to hold cpus read locked while calling this function.
2017 * The teardown callback is currently not allowed to fail. Think
2018 * about module removal!
2019 */
2020 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2021 {
2022 struct cpuhp_step *sp = cpuhp_get_step(state);
2023 int cpu;
2024
2025 BUG_ON(cpuhp_cb_check(state));
2026
2027 lockdep_assert_cpus_held();
2028
2029 mutex_lock(&cpuhp_state_mutex);
2030 if (sp->multi_instance) {
2031 WARN(!hlist_empty(&sp->list),
2032 "Error: Removing state %d which has instances left.\n",
2033 state);
2034 goto remove;
2035 }
2036
2037 if (!invoke || !cpuhp_get_teardown_cb(state))
2038 goto remove;
2039
2040 /*
2041 * Call the teardown callback for each present cpu depending
2042 * on the hotplug state of the cpu. This function is not
2043 * allowed to fail currently!
2044 */
2045 for_each_present_cpu(cpu) {
2046 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2047 int cpustate = st->state;
2048
2049 if (cpustate >= state)
2050 cpuhp_issue_call(cpu, state, false, NULL);
2051 }
2052 remove:
2053 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2054 mutex_unlock(&cpuhp_state_mutex);
2055 }
2056 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2057
2058 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2059 {
2060 cpus_read_lock();
2061 __cpuhp_remove_state_cpuslocked(state, invoke);
2062 cpus_read_unlock();
2063 }
2064 EXPORT_SYMBOL(__cpuhp_remove_state);
2065
2066 #ifdef CONFIG_HOTPLUG_SMT
2067 static void cpuhp_offline_cpu_device(unsigned int cpu)
2068 {
2069 struct device *dev = get_cpu_device(cpu);
2070
2071 dev->offline = true;
2072 /* Tell user space about the state change */
2073 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2074 }
2075
2076 static void cpuhp_online_cpu_device(unsigned int cpu)
2077 {
2078 struct device *dev = get_cpu_device(cpu);
2079
2080 dev->offline = false;
2081 /* Tell user space about the state change */
2082 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2083 }
2084
2085 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2086 {
2087 int cpu, ret = 0;
2088
2089 cpu_maps_update_begin();
2090 for_each_online_cpu(cpu) {
2091 if (topology_is_primary_thread(cpu))
2092 continue;
2093 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2094 if (ret)
2095 break;
2096 /*
2097 * As this needs to hold the cpu maps lock it's impossible
2098 * to call device_offline() because that ends up calling
2099 * cpu_down() which takes cpu maps lock. cpu maps lock
2100 * needs to be held as this might race against in kernel
2101 * abusers of the hotplug machinery (thermal management).
2102 *
2103 * So nothing would update device:offline state. That would
2104 * leave the sysfs entry stale and prevent onlining after
2105 * smt control has been changed to 'off' again. This is
2106 * called under the sysfs hotplug lock, so it is properly
2107 * serialized against the regular offline usage.
2108 */
2109 cpuhp_offline_cpu_device(cpu);
2110 }
2111 if (!ret)
2112 cpu_smt_control = ctrlval;
2113 cpu_maps_update_done();
2114 return ret;
2115 }
2116
2117 int cpuhp_smt_enable(void)
2118 {
2119 int cpu, ret = 0;
2120
2121 cpu_maps_update_begin();
2122 cpu_smt_control = CPU_SMT_ENABLED;
2123 for_each_present_cpu(cpu) {
2124 /* Skip online CPUs and CPUs on offline nodes */
2125 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2126 continue;
2127 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2128 if (ret)
2129 break;
2130 /* See comment in cpuhp_smt_disable() */
2131 cpuhp_online_cpu_device(cpu);
2132 }
2133 cpu_maps_update_done();
2134 return ret;
2135 }
2136 #endif
2137
2138 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2139 static ssize_t show_cpuhp_state(struct device *dev,
2140 struct device_attribute *attr, char *buf)
2141 {
2142 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2143
2144 return sprintf(buf, "%d\n", st->state);
2145 }
2146 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2147
2148 static ssize_t write_cpuhp_target(struct device *dev,
2149 struct device_attribute *attr,
2150 const char *buf, size_t count)
2151 {
2152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2153 struct cpuhp_step *sp;
2154 int target, ret;
2155
2156 ret = kstrtoint(buf, 10, &target);
2157 if (ret)
2158 return ret;
2159
2160 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2161 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2162 return -EINVAL;
2163 #else
2164 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2165 return -EINVAL;
2166 #endif
2167
2168 ret = lock_device_hotplug_sysfs();
2169 if (ret)
2170 return ret;
2171
2172 mutex_lock(&cpuhp_state_mutex);
2173 sp = cpuhp_get_step(target);
2174 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2175 mutex_unlock(&cpuhp_state_mutex);
2176 if (ret)
2177 goto out;
2178
2179 if (st->state < target)
2180 ret = cpu_up(dev->id, target);
2181 else
2182 ret = cpu_down(dev->id, target);
2183 out:
2184 unlock_device_hotplug();
2185 return ret ? ret : count;
2186 }
2187
2188 static ssize_t show_cpuhp_target(struct device *dev,
2189 struct device_attribute *attr, char *buf)
2190 {
2191 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2192
2193 return sprintf(buf, "%d\n", st->target);
2194 }
2195 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2196
2197
2198 static ssize_t write_cpuhp_fail(struct device *dev,
2199 struct device_attribute *attr,
2200 const char *buf, size_t count)
2201 {
2202 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2203 struct cpuhp_step *sp;
2204 int fail, ret;
2205
2206 ret = kstrtoint(buf, 10, &fail);
2207 if (ret)
2208 return ret;
2209
2210 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2211 return -EINVAL;
2212
2213 /*
2214 * Cannot fail STARTING/DYING callbacks.
2215 */
2216 if (cpuhp_is_atomic_state(fail))
2217 return -EINVAL;
2218
2219 /*
2220 * Cannot fail anything that doesn't have callbacks.
2221 */
2222 mutex_lock(&cpuhp_state_mutex);
2223 sp = cpuhp_get_step(fail);
2224 if (!sp->startup.single && !sp->teardown.single)
2225 ret = -EINVAL;
2226 mutex_unlock(&cpuhp_state_mutex);
2227 if (ret)
2228 return ret;
2229
2230 st->fail = fail;
2231
2232 return count;
2233 }
2234
2235 static ssize_t show_cpuhp_fail(struct device *dev,
2236 struct device_attribute *attr, char *buf)
2237 {
2238 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239
2240 return sprintf(buf, "%d\n", st->fail);
2241 }
2242
2243 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2244
2245 static struct attribute *cpuhp_cpu_attrs[] = {
2246 &dev_attr_state.attr,
2247 &dev_attr_target.attr,
2248 &dev_attr_fail.attr,
2249 NULL
2250 };
2251
2252 static const struct attribute_group cpuhp_cpu_attr_group = {
2253 .attrs = cpuhp_cpu_attrs,
2254 .name = "hotplug",
2255 NULL
2256 };
2257
2258 static ssize_t show_cpuhp_states(struct device *dev,
2259 struct device_attribute *attr, char *buf)
2260 {
2261 ssize_t cur, res = 0;
2262 int i;
2263
2264 mutex_lock(&cpuhp_state_mutex);
2265 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2266 struct cpuhp_step *sp = cpuhp_get_step(i);
2267
2268 if (sp->name) {
2269 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2270 buf += cur;
2271 res += cur;
2272 }
2273 }
2274 mutex_unlock(&cpuhp_state_mutex);
2275 return res;
2276 }
2277 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2278
2279 static struct attribute *cpuhp_cpu_root_attrs[] = {
2280 &dev_attr_states.attr,
2281 NULL
2282 };
2283
2284 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2285 .attrs = cpuhp_cpu_root_attrs,
2286 .name = "hotplug",
2287 NULL
2288 };
2289
2290 #ifdef CONFIG_HOTPLUG_SMT
2291
2292 static ssize_t
2293 __store_smt_control(struct device *dev, struct device_attribute *attr,
2294 const char *buf, size_t count)
2295 {
2296 int ctrlval, ret;
2297
2298 if (sysfs_streq(buf, "on"))
2299 ctrlval = CPU_SMT_ENABLED;
2300 else if (sysfs_streq(buf, "off"))
2301 ctrlval = CPU_SMT_DISABLED;
2302 else if (sysfs_streq(buf, "forceoff"))
2303 ctrlval = CPU_SMT_FORCE_DISABLED;
2304 else
2305 return -EINVAL;
2306
2307 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2308 return -EPERM;
2309
2310 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2311 return -ENODEV;
2312
2313 ret = lock_device_hotplug_sysfs();
2314 if (ret)
2315 return ret;
2316
2317 if (ctrlval != cpu_smt_control) {
2318 switch (ctrlval) {
2319 case CPU_SMT_ENABLED:
2320 ret = cpuhp_smt_enable();
2321 break;
2322 case CPU_SMT_DISABLED:
2323 case CPU_SMT_FORCE_DISABLED:
2324 ret = cpuhp_smt_disable(ctrlval);
2325 break;
2326 }
2327 }
2328
2329 unlock_device_hotplug();
2330 return ret ? ret : count;
2331 }
2332
2333 #else /* !CONFIG_HOTPLUG_SMT */
2334 static ssize_t
2335 __store_smt_control(struct device *dev, struct device_attribute *attr,
2336 const char *buf, size_t count)
2337 {
2338 return -ENODEV;
2339 }
2340 #endif /* CONFIG_HOTPLUG_SMT */
2341
2342 static const char *smt_states[] = {
2343 [CPU_SMT_ENABLED] = "on",
2344 [CPU_SMT_DISABLED] = "off",
2345 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2346 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2347 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2348 };
2349
2350 static ssize_t
2351 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2352 {
2353 const char *state = smt_states[cpu_smt_control];
2354
2355 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2356 }
2357
2358 static ssize_t
2359 store_smt_control(struct device *dev, struct device_attribute *attr,
2360 const char *buf, size_t count)
2361 {
2362 return __store_smt_control(dev, attr, buf, count);
2363 }
2364 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2365
2366 static ssize_t
2367 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2368 {
2369 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2370 }
2371 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2372
2373 static struct attribute *cpuhp_smt_attrs[] = {
2374 &dev_attr_control.attr,
2375 &dev_attr_active.attr,
2376 NULL
2377 };
2378
2379 static const struct attribute_group cpuhp_smt_attr_group = {
2380 .attrs = cpuhp_smt_attrs,
2381 .name = "smt",
2382 NULL
2383 };
2384
2385 static int __init cpu_smt_sysfs_init(void)
2386 {
2387 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2388 &cpuhp_smt_attr_group);
2389 }
2390
2391 static int __init cpuhp_sysfs_init(void)
2392 {
2393 int cpu, ret;
2394
2395 ret = cpu_smt_sysfs_init();
2396 if (ret)
2397 return ret;
2398
2399 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2400 &cpuhp_cpu_root_attr_group);
2401 if (ret)
2402 return ret;
2403
2404 for_each_possible_cpu(cpu) {
2405 struct device *dev = get_cpu_device(cpu);
2406
2407 if (!dev)
2408 continue;
2409 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2410 if (ret)
2411 return ret;
2412 }
2413 return 0;
2414 }
2415 device_initcall(cpuhp_sysfs_init);
2416 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2417
2418 /*
2419 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2420 * represents all NR_CPUS bits binary values of 1<<nr.
2421 *
2422 * It is used by cpumask_of() to get a constant address to a CPU
2423 * mask value that has a single bit set only.
2424 */
2425
2426 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2427 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2428 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2429 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2430 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2431
2432 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2433
2434 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2435 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2436 #if BITS_PER_LONG > 32
2437 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2438 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2439 #endif
2440 };
2441 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2442
2443 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2444 EXPORT_SYMBOL(cpu_all_bits);
2445
2446 #ifdef CONFIG_INIT_ALL_POSSIBLE
2447 struct cpumask __cpu_possible_mask __read_mostly
2448 = {CPU_BITS_ALL};
2449 #else
2450 struct cpumask __cpu_possible_mask __read_mostly;
2451 #endif
2452 EXPORT_SYMBOL(__cpu_possible_mask);
2453
2454 struct cpumask __cpu_online_mask __read_mostly;
2455 EXPORT_SYMBOL(__cpu_online_mask);
2456
2457 struct cpumask __cpu_present_mask __read_mostly;
2458 EXPORT_SYMBOL(__cpu_present_mask);
2459
2460 struct cpumask __cpu_active_mask __read_mostly;
2461 EXPORT_SYMBOL(__cpu_active_mask);
2462
2463 atomic_t __num_online_cpus __read_mostly;
2464 EXPORT_SYMBOL(__num_online_cpus);
2465
2466 void init_cpu_present(const struct cpumask *src)
2467 {
2468 cpumask_copy(&__cpu_present_mask, src);
2469 }
2470
2471 void init_cpu_possible(const struct cpumask *src)
2472 {
2473 cpumask_copy(&__cpu_possible_mask, src);
2474 }
2475
2476 void init_cpu_online(const struct cpumask *src)
2477 {
2478 cpumask_copy(&__cpu_online_mask, src);
2479 }
2480
2481 void set_cpu_online(unsigned int cpu, bool online)
2482 {
2483 /*
2484 * atomic_inc/dec() is required to handle the horrid abuse of this
2485 * function by the reboot and kexec code which invoke it from
2486 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2487 * regular CPU hotplug is properly serialized.
2488 *
2489 * Note, that the fact that __num_online_cpus is of type atomic_t
2490 * does not protect readers which are not serialized against
2491 * concurrent hotplug operations.
2492 */
2493 if (online) {
2494 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2495 atomic_inc(&__num_online_cpus);
2496 } else {
2497 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2498 atomic_dec(&__num_online_cpus);
2499 }
2500 }
2501
2502 /*
2503 * Activate the first processor.
2504 */
2505 void __init boot_cpu_init(void)
2506 {
2507 int cpu = smp_processor_id();
2508
2509 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2510 set_cpu_online(cpu, true);
2511 set_cpu_active(cpu, true);
2512 set_cpu_present(cpu, true);
2513 set_cpu_possible(cpu, true);
2514
2515 #ifdef CONFIG_SMP
2516 __boot_cpu_id = cpu;
2517 #endif
2518 }
2519
2520 /*
2521 * Must be called _AFTER_ setting up the per_cpu areas
2522 */
2523 void __init boot_cpu_hotplug_init(void)
2524 {
2525 #ifdef CONFIG_SMP
2526 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2527 #endif
2528 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2529 }
2530
2531 /*
2532 * These are used for a global "mitigations=" cmdline option for toggling
2533 * optional CPU mitigations.
2534 */
2535 enum cpu_mitigations {
2536 CPU_MITIGATIONS_OFF,
2537 CPU_MITIGATIONS_AUTO,
2538 CPU_MITIGATIONS_AUTO_NOSMT,
2539 };
2540
2541 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2542 CPU_MITIGATIONS_AUTO;
2543
2544 static int __init mitigations_parse_cmdline(char *arg)
2545 {
2546 if (!strcmp(arg, "off"))
2547 cpu_mitigations = CPU_MITIGATIONS_OFF;
2548 else if (!strcmp(arg, "auto"))
2549 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2550 else if (!strcmp(arg, "auto,nosmt"))
2551 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2552 else
2553 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2554 arg);
2555
2556 return 0;
2557 }
2558 early_param("mitigations", mitigations_parse_cmdline);
2559
2560 /* mitigations=off */
2561 bool cpu_mitigations_off(void)
2562 {
2563 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2564 }
2565 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2566
2567 /* mitigations=auto,nosmt */
2568 bool cpu_mitigations_auto_nosmt(void)
2569 {
2570 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2571 }
2572 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);