]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cpu.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30
31 #include <trace/events/power.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/cpuhp.h>
34
35 #include "smpboot.h"
36
37 /**
38 * cpuhp_cpu_state - Per cpu hotplug state storage
39 * @state: The current cpu state
40 * @target: The target state
41 * @thread: Pointer to the hotplug thread
42 * @should_run: Thread should execute
43 * @rollback: Perform a rollback
44 * @single: Single callback invocation
45 * @bringup: Single callback bringup or teardown selector
46 * @cb_state: The state for a single callback (install/uninstall)
47 * @result: Result of the operation
48 * @done: Signal completion to the issuer of the task
49 */
50 struct cpuhp_cpu_state {
51 enum cpuhp_state state;
52 enum cpuhp_state target;
53 #ifdef CONFIG_SMP
54 struct task_struct *thread;
55 bool should_run;
56 bool rollback;
57 bool single;
58 bool bringup;
59 struct hlist_node *node;
60 enum cpuhp_state cb_state;
61 int result;
62 struct completion done;
63 #endif
64 };
65
66 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
67
68 /**
69 * cpuhp_step - Hotplug state machine step
70 * @name: Name of the step
71 * @startup: Startup function of the step
72 * @teardown: Teardown function of the step
73 * @skip_onerr: Do not invoke the functions on error rollback
74 * Will go away once the notifiers are gone
75 * @cant_stop: Bringup/teardown can't be stopped at this step
76 */
77 struct cpuhp_step {
78 const char *name;
79 union {
80 int (*single)(unsigned int cpu);
81 int (*multi)(unsigned int cpu,
82 struct hlist_node *node);
83 } startup;
84 union {
85 int (*single)(unsigned int cpu);
86 int (*multi)(unsigned int cpu,
87 struct hlist_node *node);
88 } teardown;
89 struct hlist_head list;
90 bool skip_onerr;
91 bool cant_stop;
92 bool multi_instance;
93 };
94
95 static DEFINE_MUTEX(cpuhp_state_mutex);
96 static struct cpuhp_step cpuhp_bp_states[];
97 static struct cpuhp_step cpuhp_ap_states[];
98
99 static bool cpuhp_is_ap_state(enum cpuhp_state state)
100 {
101 /*
102 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
103 * purposes as that state is handled explicitly in cpu_down.
104 */
105 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
106 }
107
108 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
109 {
110 struct cpuhp_step *sp;
111
112 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
113 return sp + state;
114 }
115
116 /**
117 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
118 * @cpu: The cpu for which the callback should be invoked
119 * @step: The step in the state machine
120 * @bringup: True if the bringup callback should be invoked
121 *
122 * Called from cpu hotplug and from the state register machinery.
123 */
124 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
125 bool bringup, struct hlist_node *node)
126 {
127 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
128 struct cpuhp_step *step = cpuhp_get_step(state);
129 int (*cbm)(unsigned int cpu, struct hlist_node *node);
130 int (*cb)(unsigned int cpu);
131 int ret, cnt;
132
133 if (!step->multi_instance) {
134 cb = bringup ? step->startup.single : step->teardown.single;
135 if (!cb)
136 return 0;
137 trace_cpuhp_enter(cpu, st->target, state, cb);
138 ret = cb(cpu);
139 trace_cpuhp_exit(cpu, st->state, state, ret);
140 return ret;
141 }
142 cbm = bringup ? step->startup.multi : step->teardown.multi;
143 if (!cbm)
144 return 0;
145
146 /* Single invocation for instance add/remove */
147 if (node) {
148 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
149 ret = cbm(cpu, node);
150 trace_cpuhp_exit(cpu, st->state, state, ret);
151 return ret;
152 }
153
154 /* State transition. Invoke on all instances */
155 cnt = 0;
156 hlist_for_each(node, &step->list) {
157 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
158 ret = cbm(cpu, node);
159 trace_cpuhp_exit(cpu, st->state, state, ret);
160 if (ret)
161 goto err;
162 cnt++;
163 }
164 return 0;
165 err:
166 /* Rollback the instances if one failed */
167 cbm = !bringup ? step->startup.multi : step->teardown.multi;
168 if (!cbm)
169 return ret;
170
171 hlist_for_each(node, &step->list) {
172 if (!cnt--)
173 break;
174 cbm(cpu, node);
175 }
176 return ret;
177 }
178
179 #ifdef CONFIG_SMP
180 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
181 static DEFINE_MUTEX(cpu_add_remove_lock);
182 bool cpuhp_tasks_frozen;
183 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
184
185 /*
186 * The following two APIs (cpu_maps_update_begin/done) must be used when
187 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
188 */
189 void cpu_maps_update_begin(void)
190 {
191 mutex_lock(&cpu_add_remove_lock);
192 }
193
194 void cpu_maps_update_done(void)
195 {
196 mutex_unlock(&cpu_add_remove_lock);
197 }
198
199 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
200 * Should always be manipulated under cpu_add_remove_lock
201 */
202 static int cpu_hotplug_disabled;
203
204 #ifdef CONFIG_HOTPLUG_CPU
205
206 static struct {
207 struct task_struct *active_writer;
208 /* wait queue to wake up the active_writer */
209 wait_queue_head_t wq;
210 /* verifies that no writer will get active while readers are active */
211 struct mutex lock;
212 /*
213 * Also blocks the new readers during
214 * an ongoing cpu hotplug operation.
215 */
216 atomic_t refcount;
217
218 #ifdef CONFIG_DEBUG_LOCK_ALLOC
219 struct lockdep_map dep_map;
220 #endif
221 } cpu_hotplug = {
222 .active_writer = NULL,
223 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
224 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
227 #endif
228 };
229
230 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
231 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
232 #define cpuhp_lock_acquire_tryread() \
233 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
234 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
235 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
236
237
238 void get_online_cpus(void)
239 {
240 might_sleep();
241 if (cpu_hotplug.active_writer == current)
242 return;
243 cpuhp_lock_acquire_read();
244 mutex_lock(&cpu_hotplug.lock);
245 atomic_inc(&cpu_hotplug.refcount);
246 mutex_unlock(&cpu_hotplug.lock);
247 }
248 EXPORT_SYMBOL_GPL(get_online_cpus);
249
250 void put_online_cpus(void)
251 {
252 int refcount;
253
254 if (cpu_hotplug.active_writer == current)
255 return;
256
257 refcount = atomic_dec_return(&cpu_hotplug.refcount);
258 if (WARN_ON(refcount < 0)) /* try to fix things up */
259 atomic_inc(&cpu_hotplug.refcount);
260
261 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
262 wake_up(&cpu_hotplug.wq);
263
264 cpuhp_lock_release();
265
266 }
267 EXPORT_SYMBOL_GPL(put_online_cpus);
268
269 /*
270 * This ensures that the hotplug operation can begin only when the
271 * refcount goes to zero.
272 *
273 * Note that during a cpu-hotplug operation, the new readers, if any,
274 * will be blocked by the cpu_hotplug.lock
275 *
276 * Since cpu_hotplug_begin() is always called after invoking
277 * cpu_maps_update_begin(), we can be sure that only one writer is active.
278 *
279 * Note that theoretically, there is a possibility of a livelock:
280 * - Refcount goes to zero, last reader wakes up the sleeping
281 * writer.
282 * - Last reader unlocks the cpu_hotplug.lock.
283 * - A new reader arrives at this moment, bumps up the refcount.
284 * - The writer acquires the cpu_hotplug.lock finds the refcount
285 * non zero and goes to sleep again.
286 *
287 * However, this is very difficult to achieve in practice since
288 * get_online_cpus() not an api which is called all that often.
289 *
290 */
291 void cpu_hotplug_begin(void)
292 {
293 DEFINE_WAIT(wait);
294
295 cpu_hotplug.active_writer = current;
296 cpuhp_lock_acquire();
297
298 for (;;) {
299 mutex_lock(&cpu_hotplug.lock);
300 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
301 if (likely(!atomic_read(&cpu_hotplug.refcount)))
302 break;
303 mutex_unlock(&cpu_hotplug.lock);
304 schedule();
305 }
306 finish_wait(&cpu_hotplug.wq, &wait);
307 }
308
309 void cpu_hotplug_done(void)
310 {
311 cpu_hotplug.active_writer = NULL;
312 mutex_unlock(&cpu_hotplug.lock);
313 cpuhp_lock_release();
314 }
315
316 /*
317 * Wait for currently running CPU hotplug operations to complete (if any) and
318 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
319 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
320 * hotplug path before performing hotplug operations. So acquiring that lock
321 * guarantees mutual exclusion from any currently running hotplug operations.
322 */
323 void cpu_hotplug_disable(void)
324 {
325 cpu_maps_update_begin();
326 cpu_hotplug_disabled++;
327 cpu_maps_update_done();
328 }
329 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
330
331 static void __cpu_hotplug_enable(void)
332 {
333 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
334 return;
335 cpu_hotplug_disabled--;
336 }
337
338 void cpu_hotplug_enable(void)
339 {
340 cpu_maps_update_begin();
341 __cpu_hotplug_enable();
342 cpu_maps_update_done();
343 }
344 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
345 #endif /* CONFIG_HOTPLUG_CPU */
346
347 /* Notifier wrappers for transitioning to state machine */
348
349 static int bringup_wait_for_ap(unsigned int cpu)
350 {
351 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
352
353 wait_for_completion(&st->done);
354 return st->result;
355 }
356
357 static int bringup_cpu(unsigned int cpu)
358 {
359 struct task_struct *idle = idle_thread_get(cpu);
360 int ret;
361
362 /*
363 * Some architectures have to walk the irq descriptors to
364 * setup the vector space for the cpu which comes online.
365 * Prevent irq alloc/free across the bringup.
366 */
367 irq_lock_sparse();
368
369 /* Arch-specific enabling code. */
370 ret = __cpu_up(cpu, idle);
371 irq_unlock_sparse();
372 if (ret)
373 return ret;
374 ret = bringup_wait_for_ap(cpu);
375 BUG_ON(!cpu_online(cpu));
376 return ret;
377 }
378
379 /*
380 * Hotplug state machine related functions
381 */
382 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
383 {
384 for (st->state++; st->state < st->target; st->state++) {
385 struct cpuhp_step *step = cpuhp_get_step(st->state);
386
387 if (!step->skip_onerr)
388 cpuhp_invoke_callback(cpu, st->state, true, NULL);
389 }
390 }
391
392 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
393 enum cpuhp_state target)
394 {
395 enum cpuhp_state prev_state = st->state;
396 int ret = 0;
397
398 for (; st->state > target; st->state--) {
399 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
400 if (ret) {
401 st->target = prev_state;
402 undo_cpu_down(cpu, st);
403 break;
404 }
405 }
406 return ret;
407 }
408
409 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
410 {
411 for (st->state--; st->state > st->target; st->state--) {
412 struct cpuhp_step *step = cpuhp_get_step(st->state);
413
414 if (!step->skip_onerr)
415 cpuhp_invoke_callback(cpu, st->state, false, NULL);
416 }
417 }
418
419 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
420 enum cpuhp_state target)
421 {
422 enum cpuhp_state prev_state = st->state;
423 int ret = 0;
424
425 while (st->state < target) {
426 st->state++;
427 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
428 if (ret) {
429 st->target = prev_state;
430 undo_cpu_up(cpu, st);
431 break;
432 }
433 }
434 return ret;
435 }
436
437 /*
438 * The cpu hotplug threads manage the bringup and teardown of the cpus
439 */
440 static void cpuhp_create(unsigned int cpu)
441 {
442 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
443
444 init_completion(&st->done);
445 }
446
447 static int cpuhp_should_run(unsigned int cpu)
448 {
449 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
450
451 return st->should_run;
452 }
453
454 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
455 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
456 {
457 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
458
459 return cpuhp_down_callbacks(cpu, st, target);
460 }
461
462 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
463 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
464 {
465 return cpuhp_up_callbacks(cpu, st, st->target);
466 }
467
468 /*
469 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
470 * callbacks when a state gets [un]installed at runtime.
471 */
472 static void cpuhp_thread_fun(unsigned int cpu)
473 {
474 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
475 int ret = 0;
476
477 /*
478 * Paired with the mb() in cpuhp_kick_ap_work and
479 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
480 */
481 smp_mb();
482 if (!st->should_run)
483 return;
484
485 st->should_run = false;
486
487 /* Single callback invocation for [un]install ? */
488 if (st->single) {
489 if (st->cb_state < CPUHP_AP_ONLINE) {
490 local_irq_disable();
491 ret = cpuhp_invoke_callback(cpu, st->cb_state,
492 st->bringup, st->node);
493 local_irq_enable();
494 } else {
495 ret = cpuhp_invoke_callback(cpu, st->cb_state,
496 st->bringup, st->node);
497 }
498 } else if (st->rollback) {
499 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
500
501 undo_cpu_down(cpu, st);
502 st->rollback = false;
503 } else {
504 /* Cannot happen .... */
505 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
506
507 /* Regular hotplug work */
508 if (st->state < st->target)
509 ret = cpuhp_ap_online(cpu, st);
510 else if (st->state > st->target)
511 ret = cpuhp_ap_offline(cpu, st);
512 }
513 st->result = ret;
514 complete(&st->done);
515 }
516
517 /* Invoke a single callback on a remote cpu */
518 static int
519 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
520 struct hlist_node *node)
521 {
522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
523
524 if (!cpu_online(cpu))
525 return 0;
526
527 /*
528 * If we are up and running, use the hotplug thread. For early calls
529 * we invoke the thread function directly.
530 */
531 if (!st->thread)
532 return cpuhp_invoke_callback(cpu, state, bringup, node);
533
534 st->cb_state = state;
535 st->single = true;
536 st->bringup = bringup;
537 st->node = node;
538
539 /*
540 * Make sure the above stores are visible before should_run becomes
541 * true. Paired with the mb() above in cpuhp_thread_fun()
542 */
543 smp_mb();
544 st->should_run = true;
545 wake_up_process(st->thread);
546 wait_for_completion(&st->done);
547 return st->result;
548 }
549
550 /* Regular hotplug invocation of the AP hotplug thread */
551 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
552 {
553 st->result = 0;
554 st->single = false;
555 /*
556 * Make sure the above stores are visible before should_run becomes
557 * true. Paired with the mb() above in cpuhp_thread_fun()
558 */
559 smp_mb();
560 st->should_run = true;
561 wake_up_process(st->thread);
562 }
563
564 static int cpuhp_kick_ap_work(unsigned int cpu)
565 {
566 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
567 enum cpuhp_state state = st->state;
568
569 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
570 __cpuhp_kick_ap_work(st);
571 wait_for_completion(&st->done);
572 trace_cpuhp_exit(cpu, st->state, state, st->result);
573 return st->result;
574 }
575
576 static struct smp_hotplug_thread cpuhp_threads = {
577 .store = &cpuhp_state.thread,
578 .create = &cpuhp_create,
579 .thread_should_run = cpuhp_should_run,
580 .thread_fn = cpuhp_thread_fun,
581 .thread_comm = "cpuhp/%u",
582 .selfparking = true,
583 };
584
585 void __init cpuhp_threads_init(void)
586 {
587 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
588 kthread_unpark(this_cpu_read(cpuhp_state.thread));
589 }
590
591 #ifdef CONFIG_HOTPLUG_CPU
592 /**
593 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
594 * @cpu: a CPU id
595 *
596 * This function walks all processes, finds a valid mm struct for each one and
597 * then clears a corresponding bit in mm's cpumask. While this all sounds
598 * trivial, there are various non-obvious corner cases, which this function
599 * tries to solve in a safe manner.
600 *
601 * Also note that the function uses a somewhat relaxed locking scheme, so it may
602 * be called only for an already offlined CPU.
603 */
604 void clear_tasks_mm_cpumask(int cpu)
605 {
606 struct task_struct *p;
607
608 /*
609 * This function is called after the cpu is taken down and marked
610 * offline, so its not like new tasks will ever get this cpu set in
611 * their mm mask. -- Peter Zijlstra
612 * Thus, we may use rcu_read_lock() here, instead of grabbing
613 * full-fledged tasklist_lock.
614 */
615 WARN_ON(cpu_online(cpu));
616 rcu_read_lock();
617 for_each_process(p) {
618 struct task_struct *t;
619
620 /*
621 * Main thread might exit, but other threads may still have
622 * a valid mm. Find one.
623 */
624 t = find_lock_task_mm(p);
625 if (!t)
626 continue;
627 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
628 task_unlock(t);
629 }
630 rcu_read_unlock();
631 }
632
633 static inline void check_for_tasks(int dead_cpu)
634 {
635 struct task_struct *g, *p;
636
637 read_lock(&tasklist_lock);
638 for_each_process_thread(g, p) {
639 if (!p->on_rq)
640 continue;
641 /*
642 * We do the check with unlocked task_rq(p)->lock.
643 * Order the reading to do not warn about a task,
644 * which was running on this cpu in the past, and
645 * it's just been woken on another cpu.
646 */
647 rmb();
648 if (task_cpu(p) != dead_cpu)
649 continue;
650
651 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
652 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
653 }
654 read_unlock(&tasklist_lock);
655 }
656
657 /* Take this CPU down. */
658 static int take_cpu_down(void *_param)
659 {
660 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
661 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
662 int err, cpu = smp_processor_id();
663
664 /* Ensure this CPU doesn't handle any more interrupts. */
665 err = __cpu_disable();
666 if (err < 0)
667 return err;
668
669 /*
670 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
671 * do this step again.
672 */
673 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
674 st->state--;
675 /* Invoke the former CPU_DYING callbacks */
676 for (; st->state > target; st->state--)
677 cpuhp_invoke_callback(cpu, st->state, false, NULL);
678
679 /* Give up timekeeping duties */
680 tick_handover_do_timer();
681 /* Park the stopper thread */
682 stop_machine_park(cpu);
683 return 0;
684 }
685
686 static int takedown_cpu(unsigned int cpu)
687 {
688 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
689 int err;
690
691 /* Park the smpboot threads */
692 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
693 smpboot_park_threads(cpu);
694
695 /*
696 * Prevent irq alloc/free while the dying cpu reorganizes the
697 * interrupt affinities.
698 */
699 irq_lock_sparse();
700
701 /*
702 * So now all preempt/rcu users must observe !cpu_active().
703 */
704 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
705 if (err) {
706 /* CPU refused to die */
707 irq_unlock_sparse();
708 /* Unpark the hotplug thread so we can rollback there */
709 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
710 return err;
711 }
712 BUG_ON(cpu_online(cpu));
713
714 /*
715 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
716 * runnable tasks from the cpu, there's only the idle task left now
717 * that the migration thread is done doing the stop_machine thing.
718 *
719 * Wait for the stop thread to go away.
720 */
721 wait_for_completion(&st->done);
722 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
723
724 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
725 irq_unlock_sparse();
726
727 hotplug_cpu__broadcast_tick_pull(cpu);
728 /* This actually kills the CPU. */
729 __cpu_die(cpu);
730
731 tick_cleanup_dead_cpu(cpu);
732 return 0;
733 }
734
735 static void cpuhp_complete_idle_dead(void *arg)
736 {
737 struct cpuhp_cpu_state *st = arg;
738
739 complete(&st->done);
740 }
741
742 void cpuhp_report_idle_dead(void)
743 {
744 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
745
746 BUG_ON(st->state != CPUHP_AP_OFFLINE);
747 rcu_report_dead(smp_processor_id());
748 st->state = CPUHP_AP_IDLE_DEAD;
749 /*
750 * We cannot call complete after rcu_report_dead() so we delegate it
751 * to an online cpu.
752 */
753 smp_call_function_single(cpumask_first(cpu_online_mask),
754 cpuhp_complete_idle_dead, st, 0);
755 }
756
757 #else
758 #define takedown_cpu NULL
759 #endif
760
761 #ifdef CONFIG_HOTPLUG_CPU
762
763 /* Requires cpu_add_remove_lock to be held */
764 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
765 enum cpuhp_state target)
766 {
767 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
768 int prev_state, ret = 0;
769
770 if (num_online_cpus() == 1)
771 return -EBUSY;
772
773 if (!cpu_present(cpu))
774 return -EINVAL;
775
776 cpu_hotplug_begin();
777
778 cpuhp_tasks_frozen = tasks_frozen;
779
780 prev_state = st->state;
781 st->target = target;
782 /*
783 * If the current CPU state is in the range of the AP hotplug thread,
784 * then we need to kick the thread.
785 */
786 if (st->state > CPUHP_TEARDOWN_CPU) {
787 ret = cpuhp_kick_ap_work(cpu);
788 /*
789 * The AP side has done the error rollback already. Just
790 * return the error code..
791 */
792 if (ret)
793 goto out;
794
795 /*
796 * We might have stopped still in the range of the AP hotplug
797 * thread. Nothing to do anymore.
798 */
799 if (st->state > CPUHP_TEARDOWN_CPU)
800 goto out;
801 }
802 /*
803 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
804 * to do the further cleanups.
805 */
806 ret = cpuhp_down_callbacks(cpu, st, target);
807 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
808 st->target = prev_state;
809 st->rollback = true;
810 cpuhp_kick_ap_work(cpu);
811 }
812
813 out:
814 cpu_hotplug_done();
815 return ret;
816 }
817
818 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
819 {
820 int err;
821
822 cpu_maps_update_begin();
823
824 if (cpu_hotplug_disabled) {
825 err = -EBUSY;
826 goto out;
827 }
828
829 err = _cpu_down(cpu, 0, target);
830
831 out:
832 cpu_maps_update_done();
833 return err;
834 }
835 int cpu_down(unsigned int cpu)
836 {
837 return do_cpu_down(cpu, CPUHP_OFFLINE);
838 }
839 EXPORT_SYMBOL(cpu_down);
840 #endif /*CONFIG_HOTPLUG_CPU*/
841
842 /**
843 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
844 * @cpu: cpu that just started
845 *
846 * It must be called by the arch code on the new cpu, before the new cpu
847 * enables interrupts and before the "boot" cpu returns from __cpu_up().
848 */
849 void notify_cpu_starting(unsigned int cpu)
850 {
851 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
852 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
853
854 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
855 while (st->state < target) {
856 st->state++;
857 cpuhp_invoke_callback(cpu, st->state, true, NULL);
858 }
859 }
860
861 /*
862 * Called from the idle task. We need to set active here, so we can kick off
863 * the stopper thread and unpark the smpboot threads. If the target state is
864 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
865 * cpu further.
866 */
867 void cpuhp_online_idle(enum cpuhp_state state)
868 {
869 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
870 unsigned int cpu = smp_processor_id();
871
872 /* Happens for the boot cpu */
873 if (state != CPUHP_AP_ONLINE_IDLE)
874 return;
875
876 st->state = CPUHP_AP_ONLINE_IDLE;
877
878 /* Unpark the stopper thread and the hotplug thread of this cpu */
879 stop_machine_unpark(cpu);
880 kthread_unpark(st->thread);
881
882 /* Should we go further up ? */
883 if (st->target > CPUHP_AP_ONLINE_IDLE)
884 __cpuhp_kick_ap_work(st);
885 else
886 complete(&st->done);
887 }
888
889 /* Requires cpu_add_remove_lock to be held */
890 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
891 {
892 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
893 struct task_struct *idle;
894 int ret = 0;
895
896 cpu_hotplug_begin();
897
898 if (!cpu_present(cpu)) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 /*
904 * The caller of do_cpu_up might have raced with another
905 * caller. Ignore it for now.
906 */
907 if (st->state >= target)
908 goto out;
909
910 if (st->state == CPUHP_OFFLINE) {
911 /* Let it fail before we try to bring the cpu up */
912 idle = idle_thread_get(cpu);
913 if (IS_ERR(idle)) {
914 ret = PTR_ERR(idle);
915 goto out;
916 }
917 }
918
919 cpuhp_tasks_frozen = tasks_frozen;
920
921 st->target = target;
922 /*
923 * If the current CPU state is in the range of the AP hotplug thread,
924 * then we need to kick the thread once more.
925 */
926 if (st->state > CPUHP_BRINGUP_CPU) {
927 ret = cpuhp_kick_ap_work(cpu);
928 /*
929 * The AP side has done the error rollback already. Just
930 * return the error code..
931 */
932 if (ret)
933 goto out;
934 }
935
936 /*
937 * Try to reach the target state. We max out on the BP at
938 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
939 * responsible for bringing it up to the target state.
940 */
941 target = min((int)target, CPUHP_BRINGUP_CPU);
942 ret = cpuhp_up_callbacks(cpu, st, target);
943 out:
944 cpu_hotplug_done();
945 return ret;
946 }
947
948 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
949 {
950 int err = 0;
951
952 if (!cpu_possible(cpu)) {
953 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
954 cpu);
955 #if defined(CONFIG_IA64)
956 pr_err("please check additional_cpus= boot parameter\n");
957 #endif
958 return -EINVAL;
959 }
960
961 err = try_online_node(cpu_to_node(cpu));
962 if (err)
963 return err;
964
965 cpu_maps_update_begin();
966
967 if (cpu_hotplug_disabled) {
968 err = -EBUSY;
969 goto out;
970 }
971
972 err = _cpu_up(cpu, 0, target);
973 out:
974 cpu_maps_update_done();
975 return err;
976 }
977
978 int cpu_up(unsigned int cpu)
979 {
980 return do_cpu_up(cpu, CPUHP_ONLINE);
981 }
982 EXPORT_SYMBOL_GPL(cpu_up);
983
984 #ifdef CONFIG_PM_SLEEP_SMP
985 static cpumask_var_t frozen_cpus;
986
987 int freeze_secondary_cpus(int primary)
988 {
989 int cpu, error = 0;
990
991 cpu_maps_update_begin();
992 if (!cpu_online(primary))
993 primary = cpumask_first(cpu_online_mask);
994 /*
995 * We take down all of the non-boot CPUs in one shot to avoid races
996 * with the userspace trying to use the CPU hotplug at the same time
997 */
998 cpumask_clear(frozen_cpus);
999
1000 pr_info("Disabling non-boot CPUs ...\n");
1001 for_each_online_cpu(cpu) {
1002 if (cpu == primary)
1003 continue;
1004 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1005 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1006 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1007 if (!error)
1008 cpumask_set_cpu(cpu, frozen_cpus);
1009 else {
1010 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1011 break;
1012 }
1013 }
1014
1015 if (!error)
1016 BUG_ON(num_online_cpus() > 1);
1017 else
1018 pr_err("Non-boot CPUs are not disabled\n");
1019
1020 /*
1021 * Make sure the CPUs won't be enabled by someone else. We need to do
1022 * this even in case of failure as all disable_nonboot_cpus() users are
1023 * supposed to do enable_nonboot_cpus() on the failure path.
1024 */
1025 cpu_hotplug_disabled++;
1026
1027 cpu_maps_update_done();
1028 return error;
1029 }
1030
1031 void __weak arch_enable_nonboot_cpus_begin(void)
1032 {
1033 }
1034
1035 void __weak arch_enable_nonboot_cpus_end(void)
1036 {
1037 }
1038
1039 void enable_nonboot_cpus(void)
1040 {
1041 int cpu, error;
1042
1043 /* Allow everyone to use the CPU hotplug again */
1044 cpu_maps_update_begin();
1045 __cpu_hotplug_enable();
1046 if (cpumask_empty(frozen_cpus))
1047 goto out;
1048
1049 pr_info("Enabling non-boot CPUs ...\n");
1050
1051 arch_enable_nonboot_cpus_begin();
1052
1053 for_each_cpu(cpu, frozen_cpus) {
1054 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1055 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1056 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1057 if (!error) {
1058 pr_info("CPU%d is up\n", cpu);
1059 continue;
1060 }
1061 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1062 }
1063
1064 arch_enable_nonboot_cpus_end();
1065
1066 cpumask_clear(frozen_cpus);
1067 out:
1068 cpu_maps_update_done();
1069 }
1070
1071 static int __init alloc_frozen_cpus(void)
1072 {
1073 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1074 return -ENOMEM;
1075 return 0;
1076 }
1077 core_initcall(alloc_frozen_cpus);
1078
1079 /*
1080 * When callbacks for CPU hotplug notifications are being executed, we must
1081 * ensure that the state of the system with respect to the tasks being frozen
1082 * or not, as reported by the notification, remains unchanged *throughout the
1083 * duration* of the execution of the callbacks.
1084 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1085 *
1086 * This synchronization is implemented by mutually excluding regular CPU
1087 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1088 * Hibernate notifications.
1089 */
1090 static int
1091 cpu_hotplug_pm_callback(struct notifier_block *nb,
1092 unsigned long action, void *ptr)
1093 {
1094 switch (action) {
1095
1096 case PM_SUSPEND_PREPARE:
1097 case PM_HIBERNATION_PREPARE:
1098 cpu_hotplug_disable();
1099 break;
1100
1101 case PM_POST_SUSPEND:
1102 case PM_POST_HIBERNATION:
1103 cpu_hotplug_enable();
1104 break;
1105
1106 default:
1107 return NOTIFY_DONE;
1108 }
1109
1110 return NOTIFY_OK;
1111 }
1112
1113
1114 static int __init cpu_hotplug_pm_sync_init(void)
1115 {
1116 /*
1117 * cpu_hotplug_pm_callback has higher priority than x86
1118 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1119 * to disable cpu hotplug to avoid cpu hotplug race.
1120 */
1121 pm_notifier(cpu_hotplug_pm_callback, 0);
1122 return 0;
1123 }
1124 core_initcall(cpu_hotplug_pm_sync_init);
1125
1126 #endif /* CONFIG_PM_SLEEP_SMP */
1127
1128 #endif /* CONFIG_SMP */
1129
1130 /* Boot processor state steps */
1131 static struct cpuhp_step cpuhp_bp_states[] = {
1132 [CPUHP_OFFLINE] = {
1133 .name = "offline",
1134 .startup.single = NULL,
1135 .teardown.single = NULL,
1136 },
1137 #ifdef CONFIG_SMP
1138 [CPUHP_CREATE_THREADS]= {
1139 .name = "threads:prepare",
1140 .startup.single = smpboot_create_threads,
1141 .teardown.single = NULL,
1142 .cant_stop = true,
1143 },
1144 [CPUHP_PERF_PREPARE] = {
1145 .name = "perf:prepare",
1146 .startup.single = perf_event_init_cpu,
1147 .teardown.single = perf_event_exit_cpu,
1148 },
1149 [CPUHP_WORKQUEUE_PREP] = {
1150 .name = "workqueue:prepare",
1151 .startup.single = workqueue_prepare_cpu,
1152 .teardown.single = NULL,
1153 },
1154 [CPUHP_HRTIMERS_PREPARE] = {
1155 .name = "hrtimers:prepare",
1156 .startup.single = hrtimers_prepare_cpu,
1157 .teardown.single = hrtimers_dead_cpu,
1158 },
1159 [CPUHP_SMPCFD_PREPARE] = {
1160 .name = "smpcfd:prepare",
1161 .startup.single = smpcfd_prepare_cpu,
1162 .teardown.single = smpcfd_dead_cpu,
1163 },
1164 [CPUHP_RELAY_PREPARE] = {
1165 .name = "relay:prepare",
1166 .startup.single = relay_prepare_cpu,
1167 .teardown.single = NULL,
1168 },
1169 [CPUHP_SLAB_PREPARE] = {
1170 .name = "slab:prepare",
1171 .startup.single = slab_prepare_cpu,
1172 .teardown.single = slab_dead_cpu,
1173 },
1174 [CPUHP_RCUTREE_PREP] = {
1175 .name = "RCU/tree:prepare",
1176 .startup.single = rcutree_prepare_cpu,
1177 .teardown.single = rcutree_dead_cpu,
1178 },
1179 /*
1180 * On the tear-down path, timers_dead_cpu() must be invoked
1181 * before blk_mq_queue_reinit_notify() from notify_dead(),
1182 * otherwise a RCU stall occurs.
1183 */
1184 [CPUHP_TIMERS_DEAD] = {
1185 .name = "timers:dead",
1186 .startup.single = NULL,
1187 .teardown.single = timers_dead_cpu,
1188 },
1189 /* Kicks the plugged cpu into life */
1190 [CPUHP_BRINGUP_CPU] = {
1191 .name = "cpu:bringup",
1192 .startup.single = bringup_cpu,
1193 .teardown.single = NULL,
1194 .cant_stop = true,
1195 },
1196 [CPUHP_AP_SMPCFD_DYING] = {
1197 .name = "smpcfd:dying",
1198 .startup.single = NULL,
1199 .teardown.single = smpcfd_dying_cpu,
1200 },
1201 /*
1202 * Handled on controll processor until the plugged processor manages
1203 * this itself.
1204 */
1205 [CPUHP_TEARDOWN_CPU] = {
1206 .name = "cpu:teardown",
1207 .startup.single = NULL,
1208 .teardown.single = takedown_cpu,
1209 .cant_stop = true,
1210 },
1211 #else
1212 [CPUHP_BRINGUP_CPU] = { },
1213 #endif
1214 };
1215
1216 /* Application processor state steps */
1217 static struct cpuhp_step cpuhp_ap_states[] = {
1218 #ifdef CONFIG_SMP
1219 /* Final state before CPU kills itself */
1220 [CPUHP_AP_IDLE_DEAD] = {
1221 .name = "idle:dead",
1222 },
1223 /*
1224 * Last state before CPU enters the idle loop to die. Transient state
1225 * for synchronization.
1226 */
1227 [CPUHP_AP_OFFLINE] = {
1228 .name = "ap:offline",
1229 .cant_stop = true,
1230 },
1231 /* First state is scheduler control. Interrupts are disabled */
1232 [CPUHP_AP_SCHED_STARTING] = {
1233 .name = "sched:starting",
1234 .startup.single = sched_cpu_starting,
1235 .teardown.single = sched_cpu_dying,
1236 },
1237 [CPUHP_AP_RCUTREE_DYING] = {
1238 .name = "RCU/tree:dying",
1239 .startup.single = NULL,
1240 .teardown.single = rcutree_dying_cpu,
1241 },
1242 /* Entry state on starting. Interrupts enabled from here on. Transient
1243 * state for synchronsization */
1244 [CPUHP_AP_ONLINE] = {
1245 .name = "ap:online",
1246 },
1247 /* Handle smpboot threads park/unpark */
1248 [CPUHP_AP_SMPBOOT_THREADS] = {
1249 .name = "smpboot/threads:online",
1250 .startup.single = smpboot_unpark_threads,
1251 .teardown.single = NULL,
1252 },
1253 [CPUHP_AP_PERF_ONLINE] = {
1254 .name = "perf:online",
1255 .startup.single = perf_event_init_cpu,
1256 .teardown.single = perf_event_exit_cpu,
1257 },
1258 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1259 .name = "workqueue:online",
1260 .startup.single = workqueue_online_cpu,
1261 .teardown.single = workqueue_offline_cpu,
1262 },
1263 [CPUHP_AP_RCUTREE_ONLINE] = {
1264 .name = "RCU/tree:online",
1265 .startup.single = rcutree_online_cpu,
1266 .teardown.single = rcutree_offline_cpu,
1267 },
1268 #endif
1269 /*
1270 * The dynamically registered state space is here
1271 */
1272
1273 #ifdef CONFIG_SMP
1274 /* Last state is scheduler control setting the cpu active */
1275 [CPUHP_AP_ACTIVE] = {
1276 .name = "sched:active",
1277 .startup.single = sched_cpu_activate,
1278 .teardown.single = sched_cpu_deactivate,
1279 },
1280 #endif
1281
1282 /* CPU is fully up and running. */
1283 [CPUHP_ONLINE] = {
1284 .name = "online",
1285 .startup.single = NULL,
1286 .teardown.single = NULL,
1287 },
1288 };
1289
1290 /* Sanity check for callbacks */
1291 static int cpuhp_cb_check(enum cpuhp_state state)
1292 {
1293 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1294 return -EINVAL;
1295 return 0;
1296 }
1297
1298 /*
1299 * Returns a free for dynamic slot assignment of the Online state. The states
1300 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1301 * by having no name assigned.
1302 */
1303 static int cpuhp_reserve_state(enum cpuhp_state state)
1304 {
1305 enum cpuhp_state i, end;
1306 struct cpuhp_step *step;
1307
1308 switch (state) {
1309 case CPUHP_AP_ONLINE_DYN:
1310 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1311 end = CPUHP_AP_ONLINE_DYN_END;
1312 break;
1313 case CPUHP_BP_PREPARE_DYN:
1314 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1315 end = CPUHP_BP_PREPARE_DYN_END;
1316 break;
1317 default:
1318 return -EINVAL;
1319 }
1320
1321 for (i = state; i <= end; i++, step++) {
1322 if (!step->name)
1323 return i;
1324 }
1325 WARN(1, "No more dynamic states available for CPU hotplug\n");
1326 return -ENOSPC;
1327 }
1328
1329 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1330 int (*startup)(unsigned int cpu),
1331 int (*teardown)(unsigned int cpu),
1332 bool multi_instance)
1333 {
1334 /* (Un)Install the callbacks for further cpu hotplug operations */
1335 struct cpuhp_step *sp;
1336 int ret = 0;
1337
1338 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1339 ret = cpuhp_reserve_state(state);
1340 if (ret < 0)
1341 return ret;
1342 state = ret;
1343 }
1344 sp = cpuhp_get_step(state);
1345 if (name && sp->name)
1346 return -EBUSY;
1347
1348 sp->startup.single = startup;
1349 sp->teardown.single = teardown;
1350 sp->name = name;
1351 sp->multi_instance = multi_instance;
1352 INIT_HLIST_HEAD(&sp->list);
1353 return ret;
1354 }
1355
1356 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1357 {
1358 return cpuhp_get_step(state)->teardown.single;
1359 }
1360
1361 /*
1362 * Call the startup/teardown function for a step either on the AP or
1363 * on the current CPU.
1364 */
1365 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1366 struct hlist_node *node)
1367 {
1368 struct cpuhp_step *sp = cpuhp_get_step(state);
1369 int ret;
1370
1371 if ((bringup && !sp->startup.single) ||
1372 (!bringup && !sp->teardown.single))
1373 return 0;
1374 /*
1375 * The non AP bound callbacks can fail on bringup. On teardown
1376 * e.g. module removal we crash for now.
1377 */
1378 #ifdef CONFIG_SMP
1379 if (cpuhp_is_ap_state(state))
1380 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1381 else
1382 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1383 #else
1384 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1385 #endif
1386 BUG_ON(ret && !bringup);
1387 return ret;
1388 }
1389
1390 /*
1391 * Called from __cpuhp_setup_state on a recoverable failure.
1392 *
1393 * Note: The teardown callbacks for rollback are not allowed to fail!
1394 */
1395 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1396 struct hlist_node *node)
1397 {
1398 int cpu;
1399
1400 /* Roll back the already executed steps on the other cpus */
1401 for_each_present_cpu(cpu) {
1402 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1403 int cpustate = st->state;
1404
1405 if (cpu >= failedcpu)
1406 break;
1407
1408 /* Did we invoke the startup call on that cpu ? */
1409 if (cpustate >= state)
1410 cpuhp_issue_call(cpu, state, false, node);
1411 }
1412 }
1413
1414 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1415 bool invoke)
1416 {
1417 struct cpuhp_step *sp;
1418 int cpu;
1419 int ret;
1420
1421 sp = cpuhp_get_step(state);
1422 if (sp->multi_instance == false)
1423 return -EINVAL;
1424
1425 get_online_cpus();
1426 mutex_lock(&cpuhp_state_mutex);
1427
1428 if (!invoke || !sp->startup.multi)
1429 goto add_node;
1430
1431 /*
1432 * Try to call the startup callback for each present cpu
1433 * depending on the hotplug state of the cpu.
1434 */
1435 for_each_present_cpu(cpu) {
1436 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1437 int cpustate = st->state;
1438
1439 if (cpustate < state)
1440 continue;
1441
1442 ret = cpuhp_issue_call(cpu, state, true, node);
1443 if (ret) {
1444 if (sp->teardown.multi)
1445 cpuhp_rollback_install(cpu, state, node);
1446 goto unlock;
1447 }
1448 }
1449 add_node:
1450 ret = 0;
1451 hlist_add_head(node, &sp->list);
1452 unlock:
1453 mutex_unlock(&cpuhp_state_mutex);
1454 put_online_cpus();
1455 return ret;
1456 }
1457 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1458
1459 /**
1460 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1461 * @state: The state to setup
1462 * @invoke: If true, the startup function is invoked for cpus where
1463 * cpu state >= @state
1464 * @startup: startup callback function
1465 * @teardown: teardown callback function
1466 * @multi_instance: State is set up for multiple instances which get
1467 * added afterwards.
1468 *
1469 * Returns:
1470 * On success:
1471 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1472 * 0 for all other states
1473 * On failure: proper (negative) error code
1474 */
1475 int __cpuhp_setup_state(enum cpuhp_state state,
1476 const char *name, bool invoke,
1477 int (*startup)(unsigned int cpu),
1478 int (*teardown)(unsigned int cpu),
1479 bool multi_instance)
1480 {
1481 int cpu, ret = 0;
1482 bool dynstate;
1483
1484 if (cpuhp_cb_check(state) || !name)
1485 return -EINVAL;
1486
1487 get_online_cpus();
1488 mutex_lock(&cpuhp_state_mutex);
1489
1490 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1491 multi_instance);
1492
1493 dynstate = state == CPUHP_AP_ONLINE_DYN;
1494 if (ret > 0 && dynstate) {
1495 state = ret;
1496 ret = 0;
1497 }
1498
1499 if (ret || !invoke || !startup)
1500 goto out;
1501
1502 /*
1503 * Try to call the startup callback for each present cpu
1504 * depending on the hotplug state of the cpu.
1505 */
1506 for_each_present_cpu(cpu) {
1507 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1508 int cpustate = st->state;
1509
1510 if (cpustate < state)
1511 continue;
1512
1513 ret = cpuhp_issue_call(cpu, state, true, NULL);
1514 if (ret) {
1515 if (teardown)
1516 cpuhp_rollback_install(cpu, state, NULL);
1517 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1518 goto out;
1519 }
1520 }
1521 out:
1522 mutex_unlock(&cpuhp_state_mutex);
1523 put_online_cpus();
1524 /*
1525 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1526 * dynamically allocated state in case of success.
1527 */
1528 if (!ret && dynstate)
1529 return state;
1530 return ret;
1531 }
1532 EXPORT_SYMBOL(__cpuhp_setup_state);
1533
1534 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1535 struct hlist_node *node, bool invoke)
1536 {
1537 struct cpuhp_step *sp = cpuhp_get_step(state);
1538 int cpu;
1539
1540 BUG_ON(cpuhp_cb_check(state));
1541
1542 if (!sp->multi_instance)
1543 return -EINVAL;
1544
1545 get_online_cpus();
1546 mutex_lock(&cpuhp_state_mutex);
1547
1548 if (!invoke || !cpuhp_get_teardown_cb(state))
1549 goto remove;
1550 /*
1551 * Call the teardown callback for each present cpu depending
1552 * on the hotplug state of the cpu. This function is not
1553 * allowed to fail currently!
1554 */
1555 for_each_present_cpu(cpu) {
1556 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1557 int cpustate = st->state;
1558
1559 if (cpustate >= state)
1560 cpuhp_issue_call(cpu, state, false, node);
1561 }
1562
1563 remove:
1564 hlist_del(node);
1565 mutex_unlock(&cpuhp_state_mutex);
1566 put_online_cpus();
1567
1568 return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1571
1572 /**
1573 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1574 * @state: The state to remove
1575 * @invoke: If true, the teardown function is invoked for cpus where
1576 * cpu state >= @state
1577 *
1578 * The teardown callback is currently not allowed to fail. Think
1579 * about module removal!
1580 */
1581 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1582 {
1583 struct cpuhp_step *sp = cpuhp_get_step(state);
1584 int cpu;
1585
1586 BUG_ON(cpuhp_cb_check(state));
1587
1588 get_online_cpus();
1589
1590 mutex_lock(&cpuhp_state_mutex);
1591 if (sp->multi_instance) {
1592 WARN(!hlist_empty(&sp->list),
1593 "Error: Removing state %d which has instances left.\n",
1594 state);
1595 goto remove;
1596 }
1597
1598 if (!invoke || !cpuhp_get_teardown_cb(state))
1599 goto remove;
1600
1601 /*
1602 * Call the teardown callback for each present cpu depending
1603 * on the hotplug state of the cpu. This function is not
1604 * allowed to fail currently!
1605 */
1606 for_each_present_cpu(cpu) {
1607 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1608 int cpustate = st->state;
1609
1610 if (cpustate >= state)
1611 cpuhp_issue_call(cpu, state, false, NULL);
1612 }
1613 remove:
1614 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1615 mutex_unlock(&cpuhp_state_mutex);
1616 put_online_cpus();
1617 }
1618 EXPORT_SYMBOL(__cpuhp_remove_state);
1619
1620 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1621 static ssize_t show_cpuhp_state(struct device *dev,
1622 struct device_attribute *attr, char *buf)
1623 {
1624 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1625
1626 return sprintf(buf, "%d\n", st->state);
1627 }
1628 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1629
1630 static ssize_t write_cpuhp_target(struct device *dev,
1631 struct device_attribute *attr,
1632 const char *buf, size_t count)
1633 {
1634 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1635 struct cpuhp_step *sp;
1636 int target, ret;
1637
1638 ret = kstrtoint(buf, 10, &target);
1639 if (ret)
1640 return ret;
1641
1642 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1643 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1644 return -EINVAL;
1645 #else
1646 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1647 return -EINVAL;
1648 #endif
1649
1650 ret = lock_device_hotplug_sysfs();
1651 if (ret)
1652 return ret;
1653
1654 mutex_lock(&cpuhp_state_mutex);
1655 sp = cpuhp_get_step(target);
1656 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1657 mutex_unlock(&cpuhp_state_mutex);
1658 if (ret)
1659 return ret;
1660
1661 if (st->state < target)
1662 ret = do_cpu_up(dev->id, target);
1663 else
1664 ret = do_cpu_down(dev->id, target);
1665
1666 unlock_device_hotplug();
1667 return ret ? ret : count;
1668 }
1669
1670 static ssize_t show_cpuhp_target(struct device *dev,
1671 struct device_attribute *attr, char *buf)
1672 {
1673 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1674
1675 return sprintf(buf, "%d\n", st->target);
1676 }
1677 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1678
1679 static struct attribute *cpuhp_cpu_attrs[] = {
1680 &dev_attr_state.attr,
1681 &dev_attr_target.attr,
1682 NULL
1683 };
1684
1685 static struct attribute_group cpuhp_cpu_attr_group = {
1686 .attrs = cpuhp_cpu_attrs,
1687 .name = "hotplug",
1688 NULL
1689 };
1690
1691 static ssize_t show_cpuhp_states(struct device *dev,
1692 struct device_attribute *attr, char *buf)
1693 {
1694 ssize_t cur, res = 0;
1695 int i;
1696
1697 mutex_lock(&cpuhp_state_mutex);
1698 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1699 struct cpuhp_step *sp = cpuhp_get_step(i);
1700
1701 if (sp->name) {
1702 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1703 buf += cur;
1704 res += cur;
1705 }
1706 }
1707 mutex_unlock(&cpuhp_state_mutex);
1708 return res;
1709 }
1710 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1711
1712 static struct attribute *cpuhp_cpu_root_attrs[] = {
1713 &dev_attr_states.attr,
1714 NULL
1715 };
1716
1717 static struct attribute_group cpuhp_cpu_root_attr_group = {
1718 .attrs = cpuhp_cpu_root_attrs,
1719 .name = "hotplug",
1720 NULL
1721 };
1722
1723 static int __init cpuhp_sysfs_init(void)
1724 {
1725 int cpu, ret;
1726
1727 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1728 &cpuhp_cpu_root_attr_group);
1729 if (ret)
1730 return ret;
1731
1732 for_each_possible_cpu(cpu) {
1733 struct device *dev = get_cpu_device(cpu);
1734
1735 if (!dev)
1736 continue;
1737 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1738 if (ret)
1739 return ret;
1740 }
1741 return 0;
1742 }
1743 device_initcall(cpuhp_sysfs_init);
1744 #endif
1745
1746 /*
1747 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1748 * represents all NR_CPUS bits binary values of 1<<nr.
1749 *
1750 * It is used by cpumask_of() to get a constant address to a CPU
1751 * mask value that has a single bit set only.
1752 */
1753
1754 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1755 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1756 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1757 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1758 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1759
1760 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1761
1762 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1763 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1764 #if BITS_PER_LONG > 32
1765 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1766 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1767 #endif
1768 };
1769 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1770
1771 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1772 EXPORT_SYMBOL(cpu_all_bits);
1773
1774 #ifdef CONFIG_INIT_ALL_POSSIBLE
1775 struct cpumask __cpu_possible_mask __read_mostly
1776 = {CPU_BITS_ALL};
1777 #else
1778 struct cpumask __cpu_possible_mask __read_mostly;
1779 #endif
1780 EXPORT_SYMBOL(__cpu_possible_mask);
1781
1782 struct cpumask __cpu_online_mask __read_mostly;
1783 EXPORT_SYMBOL(__cpu_online_mask);
1784
1785 struct cpumask __cpu_present_mask __read_mostly;
1786 EXPORT_SYMBOL(__cpu_present_mask);
1787
1788 struct cpumask __cpu_active_mask __read_mostly;
1789 EXPORT_SYMBOL(__cpu_active_mask);
1790
1791 void init_cpu_present(const struct cpumask *src)
1792 {
1793 cpumask_copy(&__cpu_present_mask, src);
1794 }
1795
1796 void init_cpu_possible(const struct cpumask *src)
1797 {
1798 cpumask_copy(&__cpu_possible_mask, src);
1799 }
1800
1801 void init_cpu_online(const struct cpumask *src)
1802 {
1803 cpumask_copy(&__cpu_online_mask, src);
1804 }
1805
1806 /*
1807 * Activate the first processor.
1808 */
1809 void __init boot_cpu_init(void)
1810 {
1811 int cpu = smp_processor_id();
1812
1813 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1814 set_cpu_online(cpu, true);
1815 set_cpu_active(cpu, true);
1816 set_cpu_present(cpu, true);
1817 set_cpu_possible(cpu, true);
1818 }
1819
1820 /*
1821 * Must be called _AFTER_ setting up the per_cpu areas
1822 */
1823 void __init boot_cpu_state_init(void)
1824 {
1825 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1826 }