]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/cpu.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
39
40 #include "smpboot.h"
41
42 /**
43 * cpuhp_cpu_state - Per cpu hotplug state storage
44 * @state: The current cpu state
45 * @target: The target state
46 * @thread: Pointer to the hotplug thread
47 * @should_run: Thread should execute
48 * @rollback: Perform a rollback
49 * @single: Single callback invocation
50 * @bringup: Single callback bringup or teardown selector
51 * @cb_state: The state for a single callback (install/uninstall)
52 * @result: Result of the operation
53 * @done_up: Signal completion to the issuer of the task for cpu-up
54 * @done_down: Signal completion to the issuer of the task for cpu-down
55 */
56 struct cpuhp_cpu_state {
57 enum cpuhp_state state;
58 enum cpuhp_state target;
59 enum cpuhp_state fail;
60 #ifdef CONFIG_SMP
61 struct task_struct *thread;
62 bool should_run;
63 bool rollback;
64 bool single;
65 bool bringup;
66 struct hlist_node *node;
67 struct hlist_node *last;
68 enum cpuhp_state cb_state;
69 int result;
70 struct completion done_up;
71 struct completion done_down;
72 #endif
73 };
74
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 .fail = CPUHP_INVALID,
77 };
78
79 #ifdef CONFIG_SMP
80 cpumask_t cpus_booted_once_mask;
81 #endif
82
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map =
85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
86 static struct lockdep_map cpuhp_state_down_map =
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
88
89
90 static inline void cpuhp_lock_acquire(bool bringup)
91 {
92 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94
95 static inline void cpuhp_lock_release(bool bringup)
96 {
97 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
98 }
99 #else
100
101 static inline void cpuhp_lock_acquire(bool bringup) { }
102 static inline void cpuhp_lock_release(bool bringup) { }
103
104 #endif
105
106 /**
107 * cpuhp_step - Hotplug state machine step
108 * @name: Name of the step
109 * @startup: Startup function of the step
110 * @teardown: Teardown function of the step
111 * @cant_stop: Bringup/teardown can't be stopped at this step
112 */
113 struct cpuhp_step {
114 const char *name;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } startup;
120 union {
121 int (*single)(unsigned int cpu);
122 int (*multi)(unsigned int cpu,
123 struct hlist_node *node);
124 } teardown;
125 struct hlist_head list;
126 bool cant_stop;
127 bool multi_instance;
128 };
129
130 static DEFINE_MUTEX(cpuhp_state_mutex);
131 static struct cpuhp_step cpuhp_hp_states[];
132
133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
134 {
135 return cpuhp_hp_states + state;
136 }
137
138 /**
139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140 * @cpu: The cpu for which the callback should be invoked
141 * @state: The state to do callbacks for
142 * @bringup: True if the bringup callback should be invoked
143 * @node: For multi-instance, do a single entry callback for install/remove
144 * @lastp: For multi-instance rollback, remember how far we got
145 *
146 * Called from cpu hotplug and from the state register machinery.
147 */
148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
149 bool bringup, struct hlist_node *node,
150 struct hlist_node **lastp)
151 {
152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
153 struct cpuhp_step *step = cpuhp_get_step(state);
154 int (*cbm)(unsigned int cpu, struct hlist_node *node);
155 int (*cb)(unsigned int cpu);
156 int ret, cnt;
157
158 if (st->fail == state) {
159 st->fail = CPUHP_INVALID;
160
161 if (!(bringup ? step->startup.single : step->teardown.single))
162 return 0;
163
164 return -EAGAIN;
165 }
166
167 if (!step->multi_instance) {
168 WARN_ON_ONCE(lastp && *lastp);
169 cb = bringup ? step->startup.single : step->teardown.single;
170 if (!cb)
171 return 0;
172 trace_cpuhp_enter(cpu, st->target, state, cb);
173 ret = cb(cpu);
174 trace_cpuhp_exit(cpu, st->state, state, ret);
175 return ret;
176 }
177 cbm = bringup ? step->startup.multi : step->teardown.multi;
178 if (!cbm)
179 return 0;
180
181 /* Single invocation for instance add/remove */
182 if (node) {
183 WARN_ON_ONCE(lastp && *lastp);
184 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
185 ret = cbm(cpu, node);
186 trace_cpuhp_exit(cpu, st->state, state, ret);
187 return ret;
188 }
189
190 /* State transition. Invoke on all instances */
191 cnt = 0;
192 hlist_for_each(node, &step->list) {
193 if (lastp && node == *lastp)
194 break;
195
196 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
197 ret = cbm(cpu, node);
198 trace_cpuhp_exit(cpu, st->state, state, ret);
199 if (ret) {
200 if (!lastp)
201 goto err;
202
203 *lastp = node;
204 return ret;
205 }
206 cnt++;
207 }
208 if (lastp)
209 *lastp = NULL;
210 return 0;
211 err:
212 /* Rollback the instances if one failed */
213 cbm = !bringup ? step->startup.multi : step->teardown.multi;
214 if (!cbm)
215 return ret;
216
217 hlist_for_each(node, &step->list) {
218 if (!cnt--)
219 break;
220
221 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
222 ret = cbm(cpu, node);
223 trace_cpuhp_exit(cpu, st->state, state, ret);
224 /*
225 * Rollback must not fail,
226 */
227 WARN_ON_ONCE(ret);
228 }
229 return ret;
230 }
231
232 #ifdef CONFIG_SMP
233 static bool cpuhp_is_ap_state(enum cpuhp_state state)
234 {
235 /*
236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 * purposes as that state is handled explicitly in cpu_down.
238 */
239 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
240 }
241
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 struct completion *done = bringup ? &st->done_up : &st->done_down;
245 wait_for_completion(done);
246 }
247
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250 struct completion *done = bringup ? &st->done_up : &st->done_down;
251 complete(done);
252 }
253
254 /*
255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256 */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266
267 /*
268 * The following two APIs (cpu_maps_update_begin/done) must be used when
269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270 */
271 void cpu_maps_update_begin(void)
272 {
273 mutex_lock(&cpu_add_remove_lock);
274 }
275
276 void cpu_maps_update_done(void)
277 {
278 mutex_unlock(&cpu_add_remove_lock);
279 }
280
281 /*
282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283 * Should always be manipulated under cpu_add_remove_lock
284 */
285 static int cpu_hotplug_disabled;
286
287 #ifdef CONFIG_HOTPLUG_CPU
288
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290
291 void cpus_read_lock(void)
292 {
293 percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296
297 int cpus_read_trylock(void)
298 {
299 return percpu_down_read_trylock(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_trylock);
302
303 void cpus_read_unlock(void)
304 {
305 percpu_up_read(&cpu_hotplug_lock);
306 }
307 EXPORT_SYMBOL_GPL(cpus_read_unlock);
308
309 void cpus_write_lock(void)
310 {
311 percpu_down_write(&cpu_hotplug_lock);
312 }
313
314 void cpus_write_unlock(void)
315 {
316 percpu_up_write(&cpu_hotplug_lock);
317 }
318
319 void lockdep_assert_cpus_held(void)
320 {
321 /*
322 * We can't have hotplug operations before userspace starts running,
323 * and some init codepaths will knowingly not take the hotplug lock.
324 * This is all valid, so mute lockdep until it makes sense to report
325 * unheld locks.
326 */
327 if (system_state < SYSTEM_RUNNING)
328 return;
329
330 percpu_rwsem_assert_held(&cpu_hotplug_lock);
331 }
332
333 static void lockdep_acquire_cpus_lock(void)
334 {
335 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
336 }
337
338 static void lockdep_release_cpus_lock(void)
339 {
340 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
341 }
342
343 /*
344 * Wait for currently running CPU hotplug operations to complete (if any) and
345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
347 * hotplug path before performing hotplug operations. So acquiring that lock
348 * guarantees mutual exclusion from any currently running hotplug operations.
349 */
350 void cpu_hotplug_disable(void)
351 {
352 cpu_maps_update_begin();
353 cpu_hotplug_disabled++;
354 cpu_maps_update_done();
355 }
356 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
357
358 static void __cpu_hotplug_enable(void)
359 {
360 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
361 return;
362 cpu_hotplug_disabled--;
363 }
364
365 void cpu_hotplug_enable(void)
366 {
367 cpu_maps_update_begin();
368 __cpu_hotplug_enable();
369 cpu_maps_update_done();
370 }
371 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
372
373 #else
374
375 static void lockdep_acquire_cpus_lock(void)
376 {
377 }
378
379 static void lockdep_release_cpus_lock(void)
380 {
381 }
382
383 #endif /* CONFIG_HOTPLUG_CPU */
384
385 /*
386 * Architectures that need SMT-specific errata handling during SMT hotplug
387 * should override this.
388 */
389 void __weak arch_smt_update(void) { }
390
391 #ifdef CONFIG_HOTPLUG_SMT
392 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
393
394 void __init cpu_smt_disable(bool force)
395 {
396 if (!cpu_smt_possible())
397 return;
398
399 if (force) {
400 pr_info("SMT: Force disabled\n");
401 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
402 } else {
403 pr_info("SMT: disabled\n");
404 cpu_smt_control = CPU_SMT_DISABLED;
405 }
406 }
407
408 /*
409 * The decision whether SMT is supported can only be done after the full
410 * CPU identification. Called from architecture code.
411 */
412 void __init cpu_smt_check_topology(void)
413 {
414 if (!topology_smt_supported())
415 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
416 }
417
418 static int __init smt_cmdline_disable(char *str)
419 {
420 cpu_smt_disable(str && !strcmp(str, "force"));
421 return 0;
422 }
423 early_param("nosmt", smt_cmdline_disable);
424
425 static inline bool cpu_smt_allowed(unsigned int cpu)
426 {
427 if (cpu_smt_control == CPU_SMT_ENABLED)
428 return true;
429
430 if (topology_is_primary_thread(cpu))
431 return true;
432
433 /*
434 * On x86 it's required to boot all logical CPUs at least once so
435 * that the init code can get a chance to set CR4.MCE on each
436 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
437 * core will shutdown the machine.
438 */
439 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
440 }
441
442 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
443 bool cpu_smt_possible(void)
444 {
445 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
446 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
447 }
448 EXPORT_SYMBOL_GPL(cpu_smt_possible);
449 #else
450 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
451 #endif
452
453 static inline enum cpuhp_state
454 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
455 {
456 enum cpuhp_state prev_state = st->state;
457
458 st->rollback = false;
459 st->last = NULL;
460
461 st->target = target;
462 st->single = false;
463 st->bringup = st->state < target;
464
465 return prev_state;
466 }
467
468 static inline void
469 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
470 {
471 st->rollback = true;
472
473 /*
474 * If we have st->last we need to undo partial multi_instance of this
475 * state first. Otherwise start undo at the previous state.
476 */
477 if (!st->last) {
478 if (st->bringup)
479 st->state--;
480 else
481 st->state++;
482 }
483
484 st->target = prev_state;
485 st->bringup = !st->bringup;
486 }
487
488 /* Regular hotplug invocation of the AP hotplug thread */
489 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
490 {
491 if (!st->single && st->state == st->target)
492 return;
493
494 st->result = 0;
495 /*
496 * Make sure the above stores are visible before should_run becomes
497 * true. Paired with the mb() above in cpuhp_thread_fun()
498 */
499 smp_mb();
500 st->should_run = true;
501 wake_up_process(st->thread);
502 wait_for_ap_thread(st, st->bringup);
503 }
504
505 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
506 {
507 enum cpuhp_state prev_state;
508 int ret;
509
510 prev_state = cpuhp_set_state(st, target);
511 __cpuhp_kick_ap(st);
512 if ((ret = st->result)) {
513 cpuhp_reset_state(st, prev_state);
514 __cpuhp_kick_ap(st);
515 }
516
517 return ret;
518 }
519
520 static int bringup_wait_for_ap(unsigned int cpu)
521 {
522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
523
524 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
525 wait_for_ap_thread(st, true);
526 if (WARN_ON_ONCE((!cpu_online(cpu))))
527 return -ECANCELED;
528
529 /* Unpark the hotplug thread of the target cpu */
530 kthread_unpark(st->thread);
531
532 /*
533 * SMT soft disabling on X86 requires to bring the CPU out of the
534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
535 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 * cpu_smt_allowed() check will now return false if this is not the
537 * primary sibling.
538 */
539 if (!cpu_smt_allowed(cpu))
540 return -ECANCELED;
541
542 if (st->target <= CPUHP_AP_ONLINE_IDLE)
543 return 0;
544
545 return cpuhp_kick_ap(st, st->target);
546 }
547
548 static int bringup_cpu(unsigned int cpu)
549 {
550 struct task_struct *idle = idle_thread_get(cpu);
551 int ret;
552
553 /*
554 * Some architectures have to walk the irq descriptors to
555 * setup the vector space for the cpu which comes online.
556 * Prevent irq alloc/free across the bringup.
557 */
558 irq_lock_sparse();
559
560 /* Arch-specific enabling code. */
561 ret = __cpu_up(cpu, idle);
562 irq_unlock_sparse();
563 if (ret)
564 return ret;
565 return bringup_wait_for_ap(cpu);
566 }
567
568 static int finish_cpu(unsigned int cpu)
569 {
570 struct task_struct *idle = idle_thread_get(cpu);
571 struct mm_struct *mm = idle->active_mm;
572
573 /*
574 * idle_task_exit() will have switched to &init_mm, now
575 * clean up any remaining active_mm state.
576 */
577 if (mm != &init_mm)
578 idle->active_mm = &init_mm;
579 mmdrop(mm);
580 return 0;
581 }
582
583 /*
584 * Hotplug state machine related functions
585 */
586
587 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
588 {
589 for (st->state--; st->state > st->target; st->state--)
590 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
591 }
592
593 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
594 {
595 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
596 return true;
597 /*
598 * When CPU hotplug is disabled, then taking the CPU down is not
599 * possible because takedown_cpu() and the architecture and
600 * subsystem specific mechanisms are not available. So the CPU
601 * which would be completely unplugged again needs to stay around
602 * in the current state.
603 */
604 return st->state <= CPUHP_BRINGUP_CPU;
605 }
606
607 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
608 enum cpuhp_state target)
609 {
610 enum cpuhp_state prev_state = st->state;
611 int ret = 0;
612
613 while (st->state < target) {
614 st->state++;
615 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
616 if (ret) {
617 if (can_rollback_cpu(st)) {
618 st->target = prev_state;
619 undo_cpu_up(cpu, st);
620 }
621 break;
622 }
623 }
624 return ret;
625 }
626
627 /*
628 * The cpu hotplug threads manage the bringup and teardown of the cpus
629 */
630 static void cpuhp_create(unsigned int cpu)
631 {
632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
633
634 init_completion(&st->done_up);
635 init_completion(&st->done_down);
636 }
637
638 static int cpuhp_should_run(unsigned int cpu)
639 {
640 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
641
642 return st->should_run;
643 }
644
645 /*
646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
647 * callbacks when a state gets [un]installed at runtime.
648 *
649 * Each invocation of this function by the smpboot thread does a single AP
650 * state callback.
651 *
652 * It has 3 modes of operation:
653 * - single: runs st->cb_state
654 * - up: runs ++st->state, while st->state < st->target
655 * - down: runs st->state--, while st->state > st->target
656 *
657 * When complete or on error, should_run is cleared and the completion is fired.
658 */
659 static void cpuhp_thread_fun(unsigned int cpu)
660 {
661 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
662 bool bringup = st->bringup;
663 enum cpuhp_state state;
664
665 if (WARN_ON_ONCE(!st->should_run))
666 return;
667
668 /*
669 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
670 * that if we see ->should_run we also see the rest of the state.
671 */
672 smp_mb();
673
674 /*
675 * The BP holds the hotplug lock, but we're now running on the AP,
676 * ensure that anybody asserting the lock is held, will actually find
677 * it so.
678 */
679 lockdep_acquire_cpus_lock();
680 cpuhp_lock_acquire(bringup);
681
682 if (st->single) {
683 state = st->cb_state;
684 st->should_run = false;
685 } else {
686 if (bringup) {
687 st->state++;
688 state = st->state;
689 st->should_run = (st->state < st->target);
690 WARN_ON_ONCE(st->state > st->target);
691 } else {
692 state = st->state;
693 st->state--;
694 st->should_run = (st->state > st->target);
695 WARN_ON_ONCE(st->state < st->target);
696 }
697 }
698
699 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
700
701 if (cpuhp_is_atomic_state(state)) {
702 local_irq_disable();
703 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
704 local_irq_enable();
705
706 /*
707 * STARTING/DYING must not fail!
708 */
709 WARN_ON_ONCE(st->result);
710 } else {
711 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
712 }
713
714 if (st->result) {
715 /*
716 * If we fail on a rollback, we're up a creek without no
717 * paddle, no way forward, no way back. We loose, thanks for
718 * playing.
719 */
720 WARN_ON_ONCE(st->rollback);
721 st->should_run = false;
722 }
723
724 cpuhp_lock_release(bringup);
725 lockdep_release_cpus_lock();
726
727 if (!st->should_run)
728 complete_ap_thread(st, bringup);
729 }
730
731 /* Invoke a single callback on a remote cpu */
732 static int
733 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
734 struct hlist_node *node)
735 {
736 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
737 int ret;
738
739 if (!cpu_online(cpu))
740 return 0;
741
742 cpuhp_lock_acquire(false);
743 cpuhp_lock_release(false);
744
745 cpuhp_lock_acquire(true);
746 cpuhp_lock_release(true);
747
748 /*
749 * If we are up and running, use the hotplug thread. For early calls
750 * we invoke the thread function directly.
751 */
752 if (!st->thread)
753 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
754
755 st->rollback = false;
756 st->last = NULL;
757
758 st->node = node;
759 st->bringup = bringup;
760 st->cb_state = state;
761 st->single = true;
762
763 __cpuhp_kick_ap(st);
764
765 /*
766 * If we failed and did a partial, do a rollback.
767 */
768 if ((ret = st->result) && st->last) {
769 st->rollback = true;
770 st->bringup = !bringup;
771
772 __cpuhp_kick_ap(st);
773 }
774
775 /*
776 * Clean up the leftovers so the next hotplug operation wont use stale
777 * data.
778 */
779 st->node = st->last = NULL;
780 return ret;
781 }
782
783 static int cpuhp_kick_ap_work(unsigned int cpu)
784 {
785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786 enum cpuhp_state prev_state = st->state;
787 int ret;
788
789 cpuhp_lock_acquire(false);
790 cpuhp_lock_release(false);
791
792 cpuhp_lock_acquire(true);
793 cpuhp_lock_release(true);
794
795 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
796 ret = cpuhp_kick_ap(st, st->target);
797 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
798
799 return ret;
800 }
801
802 static struct smp_hotplug_thread cpuhp_threads = {
803 .store = &cpuhp_state.thread,
804 .create = &cpuhp_create,
805 .thread_should_run = cpuhp_should_run,
806 .thread_fn = cpuhp_thread_fun,
807 .thread_comm = "cpuhp/%u",
808 .selfparking = true,
809 };
810
811 void __init cpuhp_threads_init(void)
812 {
813 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
814 kthread_unpark(this_cpu_read(cpuhp_state.thread));
815 }
816
817 #ifdef CONFIG_HOTPLUG_CPU
818 #ifndef arch_clear_mm_cpumask_cpu
819 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
820 #endif
821
822 /**
823 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
824 * @cpu: a CPU id
825 *
826 * This function walks all processes, finds a valid mm struct for each one and
827 * then clears a corresponding bit in mm's cpumask. While this all sounds
828 * trivial, there are various non-obvious corner cases, which this function
829 * tries to solve in a safe manner.
830 *
831 * Also note that the function uses a somewhat relaxed locking scheme, so it may
832 * be called only for an already offlined CPU.
833 */
834 void clear_tasks_mm_cpumask(int cpu)
835 {
836 struct task_struct *p;
837
838 /*
839 * This function is called after the cpu is taken down and marked
840 * offline, so its not like new tasks will ever get this cpu set in
841 * their mm mask. -- Peter Zijlstra
842 * Thus, we may use rcu_read_lock() here, instead of grabbing
843 * full-fledged tasklist_lock.
844 */
845 WARN_ON(cpu_online(cpu));
846 rcu_read_lock();
847 for_each_process(p) {
848 struct task_struct *t;
849
850 /*
851 * Main thread might exit, but other threads may still have
852 * a valid mm. Find one.
853 */
854 t = find_lock_task_mm(p);
855 if (!t)
856 continue;
857 arch_clear_mm_cpumask_cpu(cpu, t->mm);
858 task_unlock(t);
859 }
860 rcu_read_unlock();
861 }
862
863 /* Take this CPU down. */
864 static int take_cpu_down(void *_param)
865 {
866 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
867 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
868 int err, cpu = smp_processor_id();
869 int ret;
870
871 /* Ensure this CPU doesn't handle any more interrupts. */
872 err = __cpu_disable();
873 if (err < 0)
874 return err;
875
876 /*
877 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
878 * do this step again.
879 */
880 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
881 st->state--;
882 /* Invoke the former CPU_DYING callbacks */
883 for (; st->state > target; st->state--) {
884 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
885 /*
886 * DYING must not fail!
887 */
888 WARN_ON_ONCE(ret);
889 }
890
891 /* Give up timekeeping duties */
892 tick_handover_do_timer();
893 /* Remove CPU from timer broadcasting */
894 tick_offline_cpu(cpu);
895 /* Park the stopper thread */
896 stop_machine_park(cpu);
897 return 0;
898 }
899
900 static int takedown_cpu(unsigned int cpu)
901 {
902 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
903 int err;
904
905 /* Park the smpboot threads */
906 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
907
908 /*
909 * Prevent irq alloc/free while the dying cpu reorganizes the
910 * interrupt affinities.
911 */
912 irq_lock_sparse();
913
914 /*
915 * So now all preempt/rcu users must observe !cpu_active().
916 */
917 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
918 if (err) {
919 /* CPU refused to die */
920 irq_unlock_sparse();
921 /* Unpark the hotplug thread so we can rollback there */
922 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
923 return err;
924 }
925 BUG_ON(cpu_online(cpu));
926
927 /*
928 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
929 * all runnable tasks from the CPU, there's only the idle task left now
930 * that the migration thread is done doing the stop_machine thing.
931 *
932 * Wait for the stop thread to go away.
933 */
934 wait_for_ap_thread(st, false);
935 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
936
937 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
938 irq_unlock_sparse();
939
940 hotplug_cpu__broadcast_tick_pull(cpu);
941 /* This actually kills the CPU. */
942 __cpu_die(cpu);
943
944 tick_cleanup_dead_cpu(cpu);
945 rcutree_migrate_callbacks(cpu);
946 return 0;
947 }
948
949 static void cpuhp_complete_idle_dead(void *arg)
950 {
951 struct cpuhp_cpu_state *st = arg;
952
953 complete_ap_thread(st, false);
954 }
955
956 void cpuhp_report_idle_dead(void)
957 {
958 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
959
960 BUG_ON(st->state != CPUHP_AP_OFFLINE);
961 rcu_report_dead(smp_processor_id());
962 st->state = CPUHP_AP_IDLE_DEAD;
963 /*
964 * We cannot call complete after rcu_report_dead() so we delegate it
965 * to an online cpu.
966 */
967 smp_call_function_single(cpumask_first(cpu_online_mask),
968 cpuhp_complete_idle_dead, st, 0);
969 }
970
971 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
972 {
973 for (st->state++; st->state < st->target; st->state++)
974 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
975 }
976
977 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
978 enum cpuhp_state target)
979 {
980 enum cpuhp_state prev_state = st->state;
981 int ret = 0;
982
983 for (; st->state > target; st->state--) {
984 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
985 if (ret) {
986 st->target = prev_state;
987 if (st->state < prev_state)
988 undo_cpu_down(cpu, st);
989 break;
990 }
991 }
992 return ret;
993 }
994
995 /* Requires cpu_add_remove_lock to be held */
996 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
997 enum cpuhp_state target)
998 {
999 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1000 int prev_state, ret = 0;
1001
1002 if (num_online_cpus() == 1)
1003 return -EBUSY;
1004
1005 if (!cpu_present(cpu))
1006 return -EINVAL;
1007
1008 cpus_write_lock();
1009
1010 cpuhp_tasks_frozen = tasks_frozen;
1011
1012 prev_state = cpuhp_set_state(st, target);
1013 /*
1014 * If the current CPU state is in the range of the AP hotplug thread,
1015 * then we need to kick the thread.
1016 */
1017 if (st->state > CPUHP_TEARDOWN_CPU) {
1018 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1019 ret = cpuhp_kick_ap_work(cpu);
1020 /*
1021 * The AP side has done the error rollback already. Just
1022 * return the error code..
1023 */
1024 if (ret)
1025 goto out;
1026
1027 /*
1028 * We might have stopped still in the range of the AP hotplug
1029 * thread. Nothing to do anymore.
1030 */
1031 if (st->state > CPUHP_TEARDOWN_CPU)
1032 goto out;
1033
1034 st->target = target;
1035 }
1036 /*
1037 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1038 * to do the further cleanups.
1039 */
1040 ret = cpuhp_down_callbacks(cpu, st, target);
1041 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1042 cpuhp_reset_state(st, prev_state);
1043 __cpuhp_kick_ap(st);
1044 }
1045
1046 out:
1047 cpus_write_unlock();
1048 /*
1049 * Do post unplug cleanup. This is still protected against
1050 * concurrent CPU hotplug via cpu_add_remove_lock.
1051 */
1052 lockup_detector_cleanup();
1053 arch_smt_update();
1054 return ret;
1055 }
1056
1057 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1058 {
1059 if (cpu_hotplug_disabled)
1060 return -EBUSY;
1061 return _cpu_down(cpu, 0, target);
1062 }
1063
1064 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1065 {
1066 int err;
1067
1068 cpu_maps_update_begin();
1069 err = cpu_down_maps_locked(cpu, target);
1070 cpu_maps_update_done();
1071 return err;
1072 }
1073
1074 /**
1075 * cpu_device_down - Bring down a cpu device
1076 * @dev: Pointer to the cpu device to offline
1077 *
1078 * This function is meant to be used by device core cpu subsystem only.
1079 *
1080 * Other subsystems should use remove_cpu() instead.
1081 */
1082 int cpu_device_down(struct device *dev)
1083 {
1084 return cpu_down(dev->id, CPUHP_OFFLINE);
1085 }
1086
1087 int remove_cpu(unsigned int cpu)
1088 {
1089 int ret;
1090
1091 lock_device_hotplug();
1092 ret = device_offline(get_cpu_device(cpu));
1093 unlock_device_hotplug();
1094
1095 return ret;
1096 }
1097 EXPORT_SYMBOL_GPL(remove_cpu);
1098
1099 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1100 {
1101 unsigned int cpu;
1102 int error;
1103
1104 cpu_maps_update_begin();
1105
1106 /*
1107 * Make certain the cpu I'm about to reboot on is online.
1108 *
1109 * This is inline to what migrate_to_reboot_cpu() already do.
1110 */
1111 if (!cpu_online(primary_cpu))
1112 primary_cpu = cpumask_first(cpu_online_mask);
1113
1114 for_each_online_cpu(cpu) {
1115 if (cpu == primary_cpu)
1116 continue;
1117
1118 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1119 if (error) {
1120 pr_err("Failed to offline CPU%d - error=%d",
1121 cpu, error);
1122 break;
1123 }
1124 }
1125
1126 /*
1127 * Ensure all but the reboot CPU are offline.
1128 */
1129 BUG_ON(num_online_cpus() > 1);
1130
1131 /*
1132 * Make sure the CPUs won't be enabled by someone else after this
1133 * point. Kexec will reboot to a new kernel shortly resetting
1134 * everything along the way.
1135 */
1136 cpu_hotplug_disabled++;
1137
1138 cpu_maps_update_done();
1139 }
1140
1141 #else
1142 #define takedown_cpu NULL
1143 #endif /*CONFIG_HOTPLUG_CPU*/
1144
1145 /**
1146 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1147 * @cpu: cpu that just started
1148 *
1149 * It must be called by the arch code on the new cpu, before the new cpu
1150 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1151 */
1152 void notify_cpu_starting(unsigned int cpu)
1153 {
1154 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1155 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1156 int ret;
1157
1158 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1159 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1160 while (st->state < target) {
1161 st->state++;
1162 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1163 /*
1164 * STARTING must not fail!
1165 */
1166 WARN_ON_ONCE(ret);
1167 }
1168 }
1169
1170 /*
1171 * Called from the idle task. Wake up the controlling task which brings the
1172 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1173 * online bringup to the hotplug thread.
1174 */
1175 void cpuhp_online_idle(enum cpuhp_state state)
1176 {
1177 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1178
1179 /* Happens for the boot cpu */
1180 if (state != CPUHP_AP_ONLINE_IDLE)
1181 return;
1182
1183 /*
1184 * Unpart the stopper thread before we start the idle loop (and start
1185 * scheduling); this ensures the stopper task is always available.
1186 */
1187 stop_machine_unpark(smp_processor_id());
1188
1189 st->state = CPUHP_AP_ONLINE_IDLE;
1190 complete_ap_thread(st, true);
1191 }
1192
1193 /* Requires cpu_add_remove_lock to be held */
1194 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1195 {
1196 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1197 struct task_struct *idle;
1198 int ret = 0;
1199
1200 cpus_write_lock();
1201
1202 if (!cpu_present(cpu)) {
1203 ret = -EINVAL;
1204 goto out;
1205 }
1206
1207 /*
1208 * The caller of cpu_up() might have raced with another
1209 * caller. Nothing to do.
1210 */
1211 if (st->state >= target)
1212 goto out;
1213
1214 if (st->state == CPUHP_OFFLINE) {
1215 /* Let it fail before we try to bring the cpu up */
1216 idle = idle_thread_get(cpu);
1217 if (IS_ERR(idle)) {
1218 ret = PTR_ERR(idle);
1219 goto out;
1220 }
1221 }
1222
1223 cpuhp_tasks_frozen = tasks_frozen;
1224
1225 cpuhp_set_state(st, target);
1226 /*
1227 * If the current CPU state is in the range of the AP hotplug thread,
1228 * then we need to kick the thread once more.
1229 */
1230 if (st->state > CPUHP_BRINGUP_CPU) {
1231 ret = cpuhp_kick_ap_work(cpu);
1232 /*
1233 * The AP side has done the error rollback already. Just
1234 * return the error code..
1235 */
1236 if (ret)
1237 goto out;
1238 }
1239
1240 /*
1241 * Try to reach the target state. We max out on the BP at
1242 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1243 * responsible for bringing it up to the target state.
1244 */
1245 target = min((int)target, CPUHP_BRINGUP_CPU);
1246 ret = cpuhp_up_callbacks(cpu, st, target);
1247 out:
1248 cpus_write_unlock();
1249 arch_smt_update();
1250 return ret;
1251 }
1252
1253 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1254 {
1255 int err = 0;
1256
1257 if (!cpu_possible(cpu)) {
1258 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1259 cpu);
1260 #if defined(CONFIG_IA64)
1261 pr_err("please check additional_cpus= boot parameter\n");
1262 #endif
1263 return -EINVAL;
1264 }
1265
1266 err = try_online_node(cpu_to_node(cpu));
1267 if (err)
1268 return err;
1269
1270 cpu_maps_update_begin();
1271
1272 if (cpu_hotplug_disabled) {
1273 err = -EBUSY;
1274 goto out;
1275 }
1276 if (!cpu_smt_allowed(cpu)) {
1277 err = -EPERM;
1278 goto out;
1279 }
1280
1281 err = _cpu_up(cpu, 0, target);
1282 out:
1283 cpu_maps_update_done();
1284 return err;
1285 }
1286
1287 /**
1288 * cpu_device_up - Bring up a cpu device
1289 * @dev: Pointer to the cpu device to online
1290 *
1291 * This function is meant to be used by device core cpu subsystem only.
1292 *
1293 * Other subsystems should use add_cpu() instead.
1294 */
1295 int cpu_device_up(struct device *dev)
1296 {
1297 return cpu_up(dev->id, CPUHP_ONLINE);
1298 }
1299
1300 int add_cpu(unsigned int cpu)
1301 {
1302 int ret;
1303
1304 lock_device_hotplug();
1305 ret = device_online(get_cpu_device(cpu));
1306 unlock_device_hotplug();
1307
1308 return ret;
1309 }
1310 EXPORT_SYMBOL_GPL(add_cpu);
1311
1312 /**
1313 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1314 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1315 *
1316 * On some architectures like arm64, we can hibernate on any CPU, but on
1317 * wake up the CPU we hibernated on might be offline as a side effect of
1318 * using maxcpus= for example.
1319 */
1320 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1321 {
1322 int ret;
1323
1324 if (!cpu_online(sleep_cpu)) {
1325 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1326 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1327 if (ret) {
1328 pr_err("Failed to bring hibernate-CPU up!\n");
1329 return ret;
1330 }
1331 }
1332 return 0;
1333 }
1334
1335 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1336 {
1337 unsigned int cpu;
1338
1339 for_each_present_cpu(cpu) {
1340 if (num_online_cpus() >= setup_max_cpus)
1341 break;
1342 if (!cpu_online(cpu))
1343 cpu_up(cpu, CPUHP_ONLINE);
1344 }
1345 }
1346
1347 #ifdef CONFIG_PM_SLEEP_SMP
1348 static cpumask_var_t frozen_cpus;
1349
1350 int freeze_secondary_cpus(int primary)
1351 {
1352 int cpu, error = 0;
1353
1354 cpu_maps_update_begin();
1355 if (primary == -1) {
1356 primary = cpumask_first(cpu_online_mask);
1357 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1358 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1359 } else {
1360 if (!cpu_online(primary))
1361 primary = cpumask_first(cpu_online_mask);
1362 }
1363
1364 /*
1365 * We take down all of the non-boot CPUs in one shot to avoid races
1366 * with the userspace trying to use the CPU hotplug at the same time
1367 */
1368 cpumask_clear(frozen_cpus);
1369
1370 pr_info("Disabling non-boot CPUs ...\n");
1371 for_each_online_cpu(cpu) {
1372 if (cpu == primary)
1373 continue;
1374
1375 if (pm_wakeup_pending()) {
1376 pr_info("Wakeup pending. Abort CPU freeze\n");
1377 error = -EBUSY;
1378 break;
1379 }
1380
1381 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1382 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1383 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1384 if (!error)
1385 cpumask_set_cpu(cpu, frozen_cpus);
1386 else {
1387 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1388 break;
1389 }
1390 }
1391
1392 if (!error)
1393 BUG_ON(num_online_cpus() > 1);
1394 else
1395 pr_err("Non-boot CPUs are not disabled\n");
1396
1397 /*
1398 * Make sure the CPUs won't be enabled by someone else. We need to do
1399 * this even in case of failure as all freeze_secondary_cpus() users are
1400 * supposed to do thaw_secondary_cpus() on the failure path.
1401 */
1402 cpu_hotplug_disabled++;
1403
1404 cpu_maps_update_done();
1405 return error;
1406 }
1407
1408 void __weak arch_thaw_secondary_cpus_begin(void)
1409 {
1410 }
1411
1412 void __weak arch_thaw_secondary_cpus_end(void)
1413 {
1414 }
1415
1416 void thaw_secondary_cpus(void)
1417 {
1418 int cpu, error;
1419
1420 /* Allow everyone to use the CPU hotplug again */
1421 cpu_maps_update_begin();
1422 __cpu_hotplug_enable();
1423 if (cpumask_empty(frozen_cpus))
1424 goto out;
1425
1426 pr_info("Enabling non-boot CPUs ...\n");
1427
1428 arch_thaw_secondary_cpus_begin();
1429
1430 for_each_cpu(cpu, frozen_cpus) {
1431 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1432 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1433 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1434 if (!error) {
1435 pr_info("CPU%d is up\n", cpu);
1436 continue;
1437 }
1438 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1439 }
1440
1441 arch_thaw_secondary_cpus_end();
1442
1443 cpumask_clear(frozen_cpus);
1444 out:
1445 cpu_maps_update_done();
1446 }
1447
1448 static int __init alloc_frozen_cpus(void)
1449 {
1450 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1451 return -ENOMEM;
1452 return 0;
1453 }
1454 core_initcall(alloc_frozen_cpus);
1455
1456 /*
1457 * When callbacks for CPU hotplug notifications are being executed, we must
1458 * ensure that the state of the system with respect to the tasks being frozen
1459 * or not, as reported by the notification, remains unchanged *throughout the
1460 * duration* of the execution of the callbacks.
1461 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1462 *
1463 * This synchronization is implemented by mutually excluding regular CPU
1464 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1465 * Hibernate notifications.
1466 */
1467 static int
1468 cpu_hotplug_pm_callback(struct notifier_block *nb,
1469 unsigned long action, void *ptr)
1470 {
1471 switch (action) {
1472
1473 case PM_SUSPEND_PREPARE:
1474 case PM_HIBERNATION_PREPARE:
1475 cpu_hotplug_disable();
1476 break;
1477
1478 case PM_POST_SUSPEND:
1479 case PM_POST_HIBERNATION:
1480 cpu_hotplug_enable();
1481 break;
1482
1483 default:
1484 return NOTIFY_DONE;
1485 }
1486
1487 return NOTIFY_OK;
1488 }
1489
1490
1491 static int __init cpu_hotplug_pm_sync_init(void)
1492 {
1493 /*
1494 * cpu_hotplug_pm_callback has higher priority than x86
1495 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1496 * to disable cpu hotplug to avoid cpu hotplug race.
1497 */
1498 pm_notifier(cpu_hotplug_pm_callback, 0);
1499 return 0;
1500 }
1501 core_initcall(cpu_hotplug_pm_sync_init);
1502
1503 #endif /* CONFIG_PM_SLEEP_SMP */
1504
1505 int __boot_cpu_id;
1506
1507 #endif /* CONFIG_SMP */
1508
1509 /* Boot processor state steps */
1510 static struct cpuhp_step cpuhp_hp_states[] = {
1511 [CPUHP_OFFLINE] = {
1512 .name = "offline",
1513 .startup.single = NULL,
1514 .teardown.single = NULL,
1515 },
1516 #ifdef CONFIG_SMP
1517 [CPUHP_CREATE_THREADS]= {
1518 .name = "threads:prepare",
1519 .startup.single = smpboot_create_threads,
1520 .teardown.single = NULL,
1521 .cant_stop = true,
1522 },
1523 [CPUHP_PERF_PREPARE] = {
1524 .name = "perf:prepare",
1525 .startup.single = perf_event_init_cpu,
1526 .teardown.single = perf_event_exit_cpu,
1527 },
1528 [CPUHP_WORKQUEUE_PREP] = {
1529 .name = "workqueue:prepare",
1530 .startup.single = workqueue_prepare_cpu,
1531 .teardown.single = NULL,
1532 },
1533 [CPUHP_HRTIMERS_PREPARE] = {
1534 .name = "hrtimers:prepare",
1535 .startup.single = hrtimers_prepare_cpu,
1536 .teardown.single = hrtimers_dead_cpu,
1537 },
1538 [CPUHP_SMPCFD_PREPARE] = {
1539 .name = "smpcfd:prepare",
1540 .startup.single = smpcfd_prepare_cpu,
1541 .teardown.single = smpcfd_dead_cpu,
1542 },
1543 [CPUHP_RELAY_PREPARE] = {
1544 .name = "relay:prepare",
1545 .startup.single = relay_prepare_cpu,
1546 .teardown.single = NULL,
1547 },
1548 [CPUHP_SLAB_PREPARE] = {
1549 .name = "slab:prepare",
1550 .startup.single = slab_prepare_cpu,
1551 .teardown.single = slab_dead_cpu,
1552 },
1553 [CPUHP_RCUTREE_PREP] = {
1554 .name = "RCU/tree:prepare",
1555 .startup.single = rcutree_prepare_cpu,
1556 .teardown.single = rcutree_dead_cpu,
1557 },
1558 /*
1559 * On the tear-down path, timers_dead_cpu() must be invoked
1560 * before blk_mq_queue_reinit_notify() from notify_dead(),
1561 * otherwise a RCU stall occurs.
1562 */
1563 [CPUHP_TIMERS_PREPARE] = {
1564 .name = "timers:prepare",
1565 .startup.single = timers_prepare_cpu,
1566 .teardown.single = timers_dead_cpu,
1567 },
1568 /* Kicks the plugged cpu into life */
1569 [CPUHP_BRINGUP_CPU] = {
1570 .name = "cpu:bringup",
1571 .startup.single = bringup_cpu,
1572 .teardown.single = finish_cpu,
1573 .cant_stop = true,
1574 },
1575 /* Final state before CPU kills itself */
1576 [CPUHP_AP_IDLE_DEAD] = {
1577 .name = "idle:dead",
1578 },
1579 /*
1580 * Last state before CPU enters the idle loop to die. Transient state
1581 * for synchronization.
1582 */
1583 [CPUHP_AP_OFFLINE] = {
1584 .name = "ap:offline",
1585 .cant_stop = true,
1586 },
1587 /* First state is scheduler control. Interrupts are disabled */
1588 [CPUHP_AP_SCHED_STARTING] = {
1589 .name = "sched:starting",
1590 .startup.single = sched_cpu_starting,
1591 .teardown.single = sched_cpu_dying,
1592 },
1593 [CPUHP_AP_RCUTREE_DYING] = {
1594 .name = "RCU/tree:dying",
1595 .startup.single = NULL,
1596 .teardown.single = rcutree_dying_cpu,
1597 },
1598 [CPUHP_AP_SMPCFD_DYING] = {
1599 .name = "smpcfd:dying",
1600 .startup.single = NULL,
1601 .teardown.single = smpcfd_dying_cpu,
1602 },
1603 /* Entry state on starting. Interrupts enabled from here on. Transient
1604 * state for synchronsization */
1605 [CPUHP_AP_ONLINE] = {
1606 .name = "ap:online",
1607 },
1608 /*
1609 * Handled on control processor until the plugged processor manages
1610 * this itself.
1611 */
1612 [CPUHP_TEARDOWN_CPU] = {
1613 .name = "cpu:teardown",
1614 .startup.single = NULL,
1615 .teardown.single = takedown_cpu,
1616 .cant_stop = true,
1617 },
1618
1619 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1620 .name = "sched:waitempty",
1621 .startup.single = NULL,
1622 .teardown.single = sched_cpu_wait_empty,
1623 },
1624
1625 /* Handle smpboot threads park/unpark */
1626 [CPUHP_AP_SMPBOOT_THREADS] = {
1627 .name = "smpboot/threads:online",
1628 .startup.single = smpboot_unpark_threads,
1629 .teardown.single = smpboot_park_threads,
1630 },
1631 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1632 .name = "irq/affinity:online",
1633 .startup.single = irq_affinity_online_cpu,
1634 .teardown.single = NULL,
1635 },
1636 [CPUHP_AP_PERF_ONLINE] = {
1637 .name = "perf:online",
1638 .startup.single = perf_event_init_cpu,
1639 .teardown.single = perf_event_exit_cpu,
1640 },
1641 [CPUHP_AP_WATCHDOG_ONLINE] = {
1642 .name = "lockup_detector:online",
1643 .startup.single = lockup_detector_online_cpu,
1644 .teardown.single = lockup_detector_offline_cpu,
1645 },
1646 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1647 .name = "workqueue:online",
1648 .startup.single = workqueue_online_cpu,
1649 .teardown.single = workqueue_offline_cpu,
1650 },
1651 [CPUHP_AP_RCUTREE_ONLINE] = {
1652 .name = "RCU/tree:online",
1653 .startup.single = rcutree_online_cpu,
1654 .teardown.single = rcutree_offline_cpu,
1655 },
1656 #endif
1657 /*
1658 * The dynamically registered state space is here
1659 */
1660
1661 #ifdef CONFIG_SMP
1662 /* Last state is scheduler control setting the cpu active */
1663 [CPUHP_AP_ACTIVE] = {
1664 .name = "sched:active",
1665 .startup.single = sched_cpu_activate,
1666 .teardown.single = sched_cpu_deactivate,
1667 },
1668 #endif
1669
1670 /* CPU is fully up and running. */
1671 [CPUHP_ONLINE] = {
1672 .name = "online",
1673 .startup.single = NULL,
1674 .teardown.single = NULL,
1675 },
1676 };
1677
1678 /* Sanity check for callbacks */
1679 static int cpuhp_cb_check(enum cpuhp_state state)
1680 {
1681 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1682 return -EINVAL;
1683 return 0;
1684 }
1685
1686 /*
1687 * Returns a free for dynamic slot assignment of the Online state. The states
1688 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1689 * by having no name assigned.
1690 */
1691 static int cpuhp_reserve_state(enum cpuhp_state state)
1692 {
1693 enum cpuhp_state i, end;
1694 struct cpuhp_step *step;
1695
1696 switch (state) {
1697 case CPUHP_AP_ONLINE_DYN:
1698 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1699 end = CPUHP_AP_ONLINE_DYN_END;
1700 break;
1701 case CPUHP_BP_PREPARE_DYN:
1702 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1703 end = CPUHP_BP_PREPARE_DYN_END;
1704 break;
1705 default:
1706 return -EINVAL;
1707 }
1708
1709 for (i = state; i <= end; i++, step++) {
1710 if (!step->name)
1711 return i;
1712 }
1713 WARN(1, "No more dynamic states available for CPU hotplug\n");
1714 return -ENOSPC;
1715 }
1716
1717 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1718 int (*startup)(unsigned int cpu),
1719 int (*teardown)(unsigned int cpu),
1720 bool multi_instance)
1721 {
1722 /* (Un)Install the callbacks for further cpu hotplug operations */
1723 struct cpuhp_step *sp;
1724 int ret = 0;
1725
1726 /*
1727 * If name is NULL, then the state gets removed.
1728 *
1729 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1730 * the first allocation from these dynamic ranges, so the removal
1731 * would trigger a new allocation and clear the wrong (already
1732 * empty) state, leaving the callbacks of the to be cleared state
1733 * dangling, which causes wreckage on the next hotplug operation.
1734 */
1735 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1736 state == CPUHP_BP_PREPARE_DYN)) {
1737 ret = cpuhp_reserve_state(state);
1738 if (ret < 0)
1739 return ret;
1740 state = ret;
1741 }
1742 sp = cpuhp_get_step(state);
1743 if (name && sp->name)
1744 return -EBUSY;
1745
1746 sp->startup.single = startup;
1747 sp->teardown.single = teardown;
1748 sp->name = name;
1749 sp->multi_instance = multi_instance;
1750 INIT_HLIST_HEAD(&sp->list);
1751 return ret;
1752 }
1753
1754 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1755 {
1756 return cpuhp_get_step(state)->teardown.single;
1757 }
1758
1759 /*
1760 * Call the startup/teardown function for a step either on the AP or
1761 * on the current CPU.
1762 */
1763 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1764 struct hlist_node *node)
1765 {
1766 struct cpuhp_step *sp = cpuhp_get_step(state);
1767 int ret;
1768
1769 /*
1770 * If there's nothing to do, we done.
1771 * Relies on the union for multi_instance.
1772 */
1773 if ((bringup && !sp->startup.single) ||
1774 (!bringup && !sp->teardown.single))
1775 return 0;
1776 /*
1777 * The non AP bound callbacks can fail on bringup. On teardown
1778 * e.g. module removal we crash for now.
1779 */
1780 #ifdef CONFIG_SMP
1781 if (cpuhp_is_ap_state(state))
1782 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1783 else
1784 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1785 #else
1786 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1787 #endif
1788 BUG_ON(ret && !bringup);
1789 return ret;
1790 }
1791
1792 /*
1793 * Called from __cpuhp_setup_state on a recoverable failure.
1794 *
1795 * Note: The teardown callbacks for rollback are not allowed to fail!
1796 */
1797 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1798 struct hlist_node *node)
1799 {
1800 int cpu;
1801
1802 /* Roll back the already executed steps on the other cpus */
1803 for_each_present_cpu(cpu) {
1804 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1805 int cpustate = st->state;
1806
1807 if (cpu >= failedcpu)
1808 break;
1809
1810 /* Did we invoke the startup call on that cpu ? */
1811 if (cpustate >= state)
1812 cpuhp_issue_call(cpu, state, false, node);
1813 }
1814 }
1815
1816 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1817 struct hlist_node *node,
1818 bool invoke)
1819 {
1820 struct cpuhp_step *sp;
1821 int cpu;
1822 int ret;
1823
1824 lockdep_assert_cpus_held();
1825
1826 sp = cpuhp_get_step(state);
1827 if (sp->multi_instance == false)
1828 return -EINVAL;
1829
1830 mutex_lock(&cpuhp_state_mutex);
1831
1832 if (!invoke || !sp->startup.multi)
1833 goto add_node;
1834
1835 /*
1836 * Try to call the startup callback for each present cpu
1837 * depending on the hotplug state of the cpu.
1838 */
1839 for_each_present_cpu(cpu) {
1840 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1841 int cpustate = st->state;
1842
1843 if (cpustate < state)
1844 continue;
1845
1846 ret = cpuhp_issue_call(cpu, state, true, node);
1847 if (ret) {
1848 if (sp->teardown.multi)
1849 cpuhp_rollback_install(cpu, state, node);
1850 goto unlock;
1851 }
1852 }
1853 add_node:
1854 ret = 0;
1855 hlist_add_head(node, &sp->list);
1856 unlock:
1857 mutex_unlock(&cpuhp_state_mutex);
1858 return ret;
1859 }
1860
1861 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1862 bool invoke)
1863 {
1864 int ret;
1865
1866 cpus_read_lock();
1867 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1868 cpus_read_unlock();
1869 return ret;
1870 }
1871 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1872
1873 /**
1874 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1875 * @state: The state to setup
1876 * @invoke: If true, the startup function is invoked for cpus where
1877 * cpu state >= @state
1878 * @startup: startup callback function
1879 * @teardown: teardown callback function
1880 * @multi_instance: State is set up for multiple instances which get
1881 * added afterwards.
1882 *
1883 * The caller needs to hold cpus read locked while calling this function.
1884 * Returns:
1885 * On success:
1886 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1887 * 0 for all other states
1888 * On failure: proper (negative) error code
1889 */
1890 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1891 const char *name, bool invoke,
1892 int (*startup)(unsigned int cpu),
1893 int (*teardown)(unsigned int cpu),
1894 bool multi_instance)
1895 {
1896 int cpu, ret = 0;
1897 bool dynstate;
1898
1899 lockdep_assert_cpus_held();
1900
1901 if (cpuhp_cb_check(state) || !name)
1902 return -EINVAL;
1903
1904 mutex_lock(&cpuhp_state_mutex);
1905
1906 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1907 multi_instance);
1908
1909 dynstate = state == CPUHP_AP_ONLINE_DYN;
1910 if (ret > 0 && dynstate) {
1911 state = ret;
1912 ret = 0;
1913 }
1914
1915 if (ret || !invoke || !startup)
1916 goto out;
1917
1918 /*
1919 * Try to call the startup callback for each present cpu
1920 * depending on the hotplug state of the cpu.
1921 */
1922 for_each_present_cpu(cpu) {
1923 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1924 int cpustate = st->state;
1925
1926 if (cpustate < state)
1927 continue;
1928
1929 ret = cpuhp_issue_call(cpu, state, true, NULL);
1930 if (ret) {
1931 if (teardown)
1932 cpuhp_rollback_install(cpu, state, NULL);
1933 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1934 goto out;
1935 }
1936 }
1937 out:
1938 mutex_unlock(&cpuhp_state_mutex);
1939 /*
1940 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1941 * dynamically allocated state in case of success.
1942 */
1943 if (!ret && dynstate)
1944 return state;
1945 return ret;
1946 }
1947 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1948
1949 int __cpuhp_setup_state(enum cpuhp_state state,
1950 const char *name, bool invoke,
1951 int (*startup)(unsigned int cpu),
1952 int (*teardown)(unsigned int cpu),
1953 bool multi_instance)
1954 {
1955 int ret;
1956
1957 cpus_read_lock();
1958 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1959 teardown, multi_instance);
1960 cpus_read_unlock();
1961 return ret;
1962 }
1963 EXPORT_SYMBOL(__cpuhp_setup_state);
1964
1965 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1966 struct hlist_node *node, bool invoke)
1967 {
1968 struct cpuhp_step *sp = cpuhp_get_step(state);
1969 int cpu;
1970
1971 BUG_ON(cpuhp_cb_check(state));
1972
1973 if (!sp->multi_instance)
1974 return -EINVAL;
1975
1976 cpus_read_lock();
1977 mutex_lock(&cpuhp_state_mutex);
1978
1979 if (!invoke || !cpuhp_get_teardown_cb(state))
1980 goto remove;
1981 /*
1982 * Call the teardown callback for each present cpu depending
1983 * on the hotplug state of the cpu. This function is not
1984 * allowed to fail currently!
1985 */
1986 for_each_present_cpu(cpu) {
1987 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1988 int cpustate = st->state;
1989
1990 if (cpustate >= state)
1991 cpuhp_issue_call(cpu, state, false, node);
1992 }
1993
1994 remove:
1995 hlist_del(node);
1996 mutex_unlock(&cpuhp_state_mutex);
1997 cpus_read_unlock();
1998
1999 return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2002
2003 /**
2004 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2005 * @state: The state to remove
2006 * @invoke: If true, the teardown function is invoked for cpus where
2007 * cpu state >= @state
2008 *
2009 * The caller needs to hold cpus read locked while calling this function.
2010 * The teardown callback is currently not allowed to fail. Think
2011 * about module removal!
2012 */
2013 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2014 {
2015 struct cpuhp_step *sp = cpuhp_get_step(state);
2016 int cpu;
2017
2018 BUG_ON(cpuhp_cb_check(state));
2019
2020 lockdep_assert_cpus_held();
2021
2022 mutex_lock(&cpuhp_state_mutex);
2023 if (sp->multi_instance) {
2024 WARN(!hlist_empty(&sp->list),
2025 "Error: Removing state %d which has instances left.\n",
2026 state);
2027 goto remove;
2028 }
2029
2030 if (!invoke || !cpuhp_get_teardown_cb(state))
2031 goto remove;
2032
2033 /*
2034 * Call the teardown callback for each present cpu depending
2035 * on the hotplug state of the cpu. This function is not
2036 * allowed to fail currently!
2037 */
2038 for_each_present_cpu(cpu) {
2039 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2040 int cpustate = st->state;
2041
2042 if (cpustate >= state)
2043 cpuhp_issue_call(cpu, state, false, NULL);
2044 }
2045 remove:
2046 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2047 mutex_unlock(&cpuhp_state_mutex);
2048 }
2049 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2050
2051 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2052 {
2053 cpus_read_lock();
2054 __cpuhp_remove_state_cpuslocked(state, invoke);
2055 cpus_read_unlock();
2056 }
2057 EXPORT_SYMBOL(__cpuhp_remove_state);
2058
2059 #ifdef CONFIG_HOTPLUG_SMT
2060 static void cpuhp_offline_cpu_device(unsigned int cpu)
2061 {
2062 struct device *dev = get_cpu_device(cpu);
2063
2064 dev->offline = true;
2065 /* Tell user space about the state change */
2066 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2067 }
2068
2069 static void cpuhp_online_cpu_device(unsigned int cpu)
2070 {
2071 struct device *dev = get_cpu_device(cpu);
2072
2073 dev->offline = false;
2074 /* Tell user space about the state change */
2075 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2076 }
2077
2078 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2079 {
2080 int cpu, ret = 0;
2081
2082 cpu_maps_update_begin();
2083 for_each_online_cpu(cpu) {
2084 if (topology_is_primary_thread(cpu))
2085 continue;
2086 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2087 if (ret)
2088 break;
2089 /*
2090 * As this needs to hold the cpu maps lock it's impossible
2091 * to call device_offline() because that ends up calling
2092 * cpu_down() which takes cpu maps lock. cpu maps lock
2093 * needs to be held as this might race against in kernel
2094 * abusers of the hotplug machinery (thermal management).
2095 *
2096 * So nothing would update device:offline state. That would
2097 * leave the sysfs entry stale and prevent onlining after
2098 * smt control has been changed to 'off' again. This is
2099 * called under the sysfs hotplug lock, so it is properly
2100 * serialized against the regular offline usage.
2101 */
2102 cpuhp_offline_cpu_device(cpu);
2103 }
2104 if (!ret)
2105 cpu_smt_control = ctrlval;
2106 cpu_maps_update_done();
2107 return ret;
2108 }
2109
2110 int cpuhp_smt_enable(void)
2111 {
2112 int cpu, ret = 0;
2113
2114 cpu_maps_update_begin();
2115 cpu_smt_control = CPU_SMT_ENABLED;
2116 for_each_present_cpu(cpu) {
2117 /* Skip online CPUs and CPUs on offline nodes */
2118 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2119 continue;
2120 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2121 if (ret)
2122 break;
2123 /* See comment in cpuhp_smt_disable() */
2124 cpuhp_online_cpu_device(cpu);
2125 }
2126 cpu_maps_update_done();
2127 return ret;
2128 }
2129 #endif
2130
2131 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2132 static ssize_t show_cpuhp_state(struct device *dev,
2133 struct device_attribute *attr, char *buf)
2134 {
2135 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2136
2137 return sprintf(buf, "%d\n", st->state);
2138 }
2139 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2140
2141 static ssize_t write_cpuhp_target(struct device *dev,
2142 struct device_attribute *attr,
2143 const char *buf, size_t count)
2144 {
2145 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2146 struct cpuhp_step *sp;
2147 int target, ret;
2148
2149 ret = kstrtoint(buf, 10, &target);
2150 if (ret)
2151 return ret;
2152
2153 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2154 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2155 return -EINVAL;
2156 #else
2157 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2158 return -EINVAL;
2159 #endif
2160
2161 ret = lock_device_hotplug_sysfs();
2162 if (ret)
2163 return ret;
2164
2165 mutex_lock(&cpuhp_state_mutex);
2166 sp = cpuhp_get_step(target);
2167 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2168 mutex_unlock(&cpuhp_state_mutex);
2169 if (ret)
2170 goto out;
2171
2172 if (st->state < target)
2173 ret = cpu_up(dev->id, target);
2174 else
2175 ret = cpu_down(dev->id, target);
2176 out:
2177 unlock_device_hotplug();
2178 return ret ? ret : count;
2179 }
2180
2181 static ssize_t show_cpuhp_target(struct device *dev,
2182 struct device_attribute *attr, char *buf)
2183 {
2184 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2185
2186 return sprintf(buf, "%d\n", st->target);
2187 }
2188 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2189
2190
2191 static ssize_t write_cpuhp_fail(struct device *dev,
2192 struct device_attribute *attr,
2193 const char *buf, size_t count)
2194 {
2195 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2196 struct cpuhp_step *sp;
2197 int fail, ret;
2198
2199 ret = kstrtoint(buf, 10, &fail);
2200 if (ret)
2201 return ret;
2202
2203 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2204 return -EINVAL;
2205
2206 /*
2207 * Cannot fail STARTING/DYING callbacks.
2208 */
2209 if (cpuhp_is_atomic_state(fail))
2210 return -EINVAL;
2211
2212 /*
2213 * Cannot fail anything that doesn't have callbacks.
2214 */
2215 mutex_lock(&cpuhp_state_mutex);
2216 sp = cpuhp_get_step(fail);
2217 if (!sp->startup.single && !sp->teardown.single)
2218 ret = -EINVAL;
2219 mutex_unlock(&cpuhp_state_mutex);
2220 if (ret)
2221 return ret;
2222
2223 st->fail = fail;
2224
2225 return count;
2226 }
2227
2228 static ssize_t show_cpuhp_fail(struct device *dev,
2229 struct device_attribute *attr, char *buf)
2230 {
2231 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2232
2233 return sprintf(buf, "%d\n", st->fail);
2234 }
2235
2236 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2237
2238 static struct attribute *cpuhp_cpu_attrs[] = {
2239 &dev_attr_state.attr,
2240 &dev_attr_target.attr,
2241 &dev_attr_fail.attr,
2242 NULL
2243 };
2244
2245 static const struct attribute_group cpuhp_cpu_attr_group = {
2246 .attrs = cpuhp_cpu_attrs,
2247 .name = "hotplug",
2248 NULL
2249 };
2250
2251 static ssize_t show_cpuhp_states(struct device *dev,
2252 struct device_attribute *attr, char *buf)
2253 {
2254 ssize_t cur, res = 0;
2255 int i;
2256
2257 mutex_lock(&cpuhp_state_mutex);
2258 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2259 struct cpuhp_step *sp = cpuhp_get_step(i);
2260
2261 if (sp->name) {
2262 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2263 buf += cur;
2264 res += cur;
2265 }
2266 }
2267 mutex_unlock(&cpuhp_state_mutex);
2268 return res;
2269 }
2270 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2271
2272 static struct attribute *cpuhp_cpu_root_attrs[] = {
2273 &dev_attr_states.attr,
2274 NULL
2275 };
2276
2277 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2278 .attrs = cpuhp_cpu_root_attrs,
2279 .name = "hotplug",
2280 NULL
2281 };
2282
2283 #ifdef CONFIG_HOTPLUG_SMT
2284
2285 static ssize_t
2286 __store_smt_control(struct device *dev, struct device_attribute *attr,
2287 const char *buf, size_t count)
2288 {
2289 int ctrlval, ret;
2290
2291 if (sysfs_streq(buf, "on"))
2292 ctrlval = CPU_SMT_ENABLED;
2293 else if (sysfs_streq(buf, "off"))
2294 ctrlval = CPU_SMT_DISABLED;
2295 else if (sysfs_streq(buf, "forceoff"))
2296 ctrlval = CPU_SMT_FORCE_DISABLED;
2297 else
2298 return -EINVAL;
2299
2300 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2301 return -EPERM;
2302
2303 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2304 return -ENODEV;
2305
2306 ret = lock_device_hotplug_sysfs();
2307 if (ret)
2308 return ret;
2309
2310 if (ctrlval != cpu_smt_control) {
2311 switch (ctrlval) {
2312 case CPU_SMT_ENABLED:
2313 ret = cpuhp_smt_enable();
2314 break;
2315 case CPU_SMT_DISABLED:
2316 case CPU_SMT_FORCE_DISABLED:
2317 ret = cpuhp_smt_disable(ctrlval);
2318 break;
2319 }
2320 }
2321
2322 unlock_device_hotplug();
2323 return ret ? ret : count;
2324 }
2325
2326 #else /* !CONFIG_HOTPLUG_SMT */
2327 static ssize_t
2328 __store_smt_control(struct device *dev, struct device_attribute *attr,
2329 const char *buf, size_t count)
2330 {
2331 return -ENODEV;
2332 }
2333 #endif /* CONFIG_HOTPLUG_SMT */
2334
2335 static const char *smt_states[] = {
2336 [CPU_SMT_ENABLED] = "on",
2337 [CPU_SMT_DISABLED] = "off",
2338 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2339 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2340 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2341 };
2342
2343 static ssize_t
2344 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2345 {
2346 const char *state = smt_states[cpu_smt_control];
2347
2348 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2349 }
2350
2351 static ssize_t
2352 store_smt_control(struct device *dev, struct device_attribute *attr,
2353 const char *buf, size_t count)
2354 {
2355 return __store_smt_control(dev, attr, buf, count);
2356 }
2357 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2358
2359 static ssize_t
2360 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2361 {
2362 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2363 }
2364 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2365
2366 static struct attribute *cpuhp_smt_attrs[] = {
2367 &dev_attr_control.attr,
2368 &dev_attr_active.attr,
2369 NULL
2370 };
2371
2372 static const struct attribute_group cpuhp_smt_attr_group = {
2373 .attrs = cpuhp_smt_attrs,
2374 .name = "smt",
2375 NULL
2376 };
2377
2378 static int __init cpu_smt_sysfs_init(void)
2379 {
2380 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2381 &cpuhp_smt_attr_group);
2382 }
2383
2384 static int __init cpuhp_sysfs_init(void)
2385 {
2386 int cpu, ret;
2387
2388 ret = cpu_smt_sysfs_init();
2389 if (ret)
2390 return ret;
2391
2392 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2393 &cpuhp_cpu_root_attr_group);
2394 if (ret)
2395 return ret;
2396
2397 for_each_possible_cpu(cpu) {
2398 struct device *dev = get_cpu_device(cpu);
2399
2400 if (!dev)
2401 continue;
2402 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2403 if (ret)
2404 return ret;
2405 }
2406 return 0;
2407 }
2408 device_initcall(cpuhp_sysfs_init);
2409 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2410
2411 /*
2412 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2413 * represents all NR_CPUS bits binary values of 1<<nr.
2414 *
2415 * It is used by cpumask_of() to get a constant address to a CPU
2416 * mask value that has a single bit set only.
2417 */
2418
2419 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2420 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2421 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2422 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2423 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2424
2425 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2426
2427 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2428 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2429 #if BITS_PER_LONG > 32
2430 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2431 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2432 #endif
2433 };
2434 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2435
2436 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2437 EXPORT_SYMBOL(cpu_all_bits);
2438
2439 #ifdef CONFIG_INIT_ALL_POSSIBLE
2440 struct cpumask __cpu_possible_mask __read_mostly
2441 = {CPU_BITS_ALL};
2442 #else
2443 struct cpumask __cpu_possible_mask __read_mostly;
2444 #endif
2445 EXPORT_SYMBOL(__cpu_possible_mask);
2446
2447 struct cpumask __cpu_online_mask __read_mostly;
2448 EXPORT_SYMBOL(__cpu_online_mask);
2449
2450 struct cpumask __cpu_present_mask __read_mostly;
2451 EXPORT_SYMBOL(__cpu_present_mask);
2452
2453 struct cpumask __cpu_active_mask __read_mostly;
2454 EXPORT_SYMBOL(__cpu_active_mask);
2455
2456 atomic_t __num_online_cpus __read_mostly;
2457 EXPORT_SYMBOL(__num_online_cpus);
2458
2459 void init_cpu_present(const struct cpumask *src)
2460 {
2461 cpumask_copy(&__cpu_present_mask, src);
2462 }
2463
2464 void init_cpu_possible(const struct cpumask *src)
2465 {
2466 cpumask_copy(&__cpu_possible_mask, src);
2467 }
2468
2469 void init_cpu_online(const struct cpumask *src)
2470 {
2471 cpumask_copy(&__cpu_online_mask, src);
2472 }
2473
2474 void set_cpu_online(unsigned int cpu, bool online)
2475 {
2476 /*
2477 * atomic_inc/dec() is required to handle the horrid abuse of this
2478 * function by the reboot and kexec code which invoke it from
2479 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2480 * regular CPU hotplug is properly serialized.
2481 *
2482 * Note, that the fact that __num_online_cpus is of type atomic_t
2483 * does not protect readers which are not serialized against
2484 * concurrent hotplug operations.
2485 */
2486 if (online) {
2487 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2488 atomic_inc(&__num_online_cpus);
2489 } else {
2490 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2491 atomic_dec(&__num_online_cpus);
2492 }
2493 }
2494
2495 /*
2496 * Activate the first processor.
2497 */
2498 void __init boot_cpu_init(void)
2499 {
2500 int cpu = smp_processor_id();
2501
2502 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2503 set_cpu_online(cpu, true);
2504 set_cpu_active(cpu, true);
2505 set_cpu_present(cpu, true);
2506 set_cpu_possible(cpu, true);
2507
2508 #ifdef CONFIG_SMP
2509 __boot_cpu_id = cpu;
2510 #endif
2511 }
2512
2513 /*
2514 * Must be called _AFTER_ setting up the per_cpu areas
2515 */
2516 void __init boot_cpu_hotplug_init(void)
2517 {
2518 #ifdef CONFIG_SMP
2519 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2520 #endif
2521 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2522 }
2523
2524 /*
2525 * These are used for a global "mitigations=" cmdline option for toggling
2526 * optional CPU mitigations.
2527 */
2528 enum cpu_mitigations {
2529 CPU_MITIGATIONS_OFF,
2530 CPU_MITIGATIONS_AUTO,
2531 CPU_MITIGATIONS_AUTO_NOSMT,
2532 };
2533
2534 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2535 CPU_MITIGATIONS_AUTO;
2536
2537 static int __init mitigations_parse_cmdline(char *arg)
2538 {
2539 if (!strcmp(arg, "off"))
2540 cpu_mitigations = CPU_MITIGATIONS_OFF;
2541 else if (!strcmp(arg, "auto"))
2542 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2543 else if (!strcmp(arg, "auto,nosmt"))
2544 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2545 else
2546 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2547 arg);
2548
2549 return 0;
2550 }
2551 early_param("mitigations", mitigations_parse_cmdline);
2552
2553 /* mitigations=off */
2554 bool cpu_mitigations_off(void)
2555 {
2556 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2557 }
2558 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2559
2560 /* mitigations=auto,nosmt */
2561 bool cpu_mitigations_auto_nosmt(void)
2562 {
2563 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2564 }
2565 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);