]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/cpu.c
cpu/hotplug: Make bringup/teardown of smp threads symmetric
[mirror_ubuntu-jammy-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40 * cpuhp_cpu_state - Per cpu hotplug state storage
41 * @state: The current cpu state
42 * @target: The target state
43 * @thread: Pointer to the hotplug thread
44 * @should_run: Thread should execute
45 * @rollback: Perform a rollback
46 * @single: Single callback invocation
47 * @bringup: Single callback bringup or teardown selector
48 * @cb_state: The state for a single callback (install/uninstall)
49 * @result: Result of the operation
50 * @done_up: Signal completion to the issuer of the task for cpu-up
51 * @done_down: Signal completion to the issuer of the task for cpu-down
52 */
53 struct cpuhp_cpu_state {
54 enum cpuhp_state state;
55 enum cpuhp_state target;
56 enum cpuhp_state fail;
57 #ifdef CONFIG_SMP
58 struct task_struct *thread;
59 bool should_run;
60 bool rollback;
61 bool single;
62 bool bringup;
63 struct hlist_node *node;
64 struct hlist_node *last;
65 enum cpuhp_state cb_state;
66 int result;
67 struct completion done_up;
68 struct completion done_down;
69 #endif
70 };
71
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73 .fail = CPUHP_INVALID,
74 };
75
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81
82
83 static inline void cpuhp_lock_acquire(bool bringup)
84 {
85 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87
88 static inline void cpuhp_lock_release(bool bringup)
89 {
90 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93
94 static inline void cpuhp_lock_acquire(bool bringup) { }
95 static inline void cpuhp_lock_release(bool bringup) { }
96
97 #endif
98
99 /**
100 * cpuhp_step - Hotplug state machine step
101 * @name: Name of the step
102 * @startup: Startup function of the step
103 * @teardown: Teardown function of the step
104 * @skip_onerr: Do not invoke the functions on error rollback
105 * Will go away once the notifiers are gone
106 * @cant_stop: Bringup/teardown can't be stopped at this step
107 */
108 struct cpuhp_step {
109 const char *name;
110 union {
111 int (*single)(unsigned int cpu);
112 int (*multi)(unsigned int cpu,
113 struct hlist_node *node);
114 } startup;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } teardown;
120 struct hlist_head list;
121 bool skip_onerr;
122 bool cant_stop;
123 bool multi_instance;
124 };
125
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_hp_states[];
128
129 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
130 {
131 return cpuhp_hp_states + state;
132 }
133
134 /**
135 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
136 * @cpu: The cpu for which the callback should be invoked
137 * @state: The state to do callbacks for
138 * @bringup: True if the bringup callback should be invoked
139 * @node: For multi-instance, do a single entry callback for install/remove
140 * @lastp: For multi-instance rollback, remember how far we got
141 *
142 * Called from cpu hotplug and from the state register machinery.
143 */
144 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
145 bool bringup, struct hlist_node *node,
146 struct hlist_node **lastp)
147 {
148 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
149 struct cpuhp_step *step = cpuhp_get_step(state);
150 int (*cbm)(unsigned int cpu, struct hlist_node *node);
151 int (*cb)(unsigned int cpu);
152 int ret, cnt;
153
154 if (st->fail == state) {
155 st->fail = CPUHP_INVALID;
156
157 if (!(bringup ? step->startup.single : step->teardown.single))
158 return 0;
159
160 return -EAGAIN;
161 }
162
163 if (!step->multi_instance) {
164 WARN_ON_ONCE(lastp && *lastp);
165 cb = bringup ? step->startup.single : step->teardown.single;
166 if (!cb)
167 return 0;
168 trace_cpuhp_enter(cpu, st->target, state, cb);
169 ret = cb(cpu);
170 trace_cpuhp_exit(cpu, st->state, state, ret);
171 return ret;
172 }
173 cbm = bringup ? step->startup.multi : step->teardown.multi;
174 if (!cbm)
175 return 0;
176
177 /* Single invocation for instance add/remove */
178 if (node) {
179 WARN_ON_ONCE(lastp && *lastp);
180 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
181 ret = cbm(cpu, node);
182 trace_cpuhp_exit(cpu, st->state, state, ret);
183 return ret;
184 }
185
186 /* State transition. Invoke on all instances */
187 cnt = 0;
188 hlist_for_each(node, &step->list) {
189 if (lastp && node == *lastp)
190 break;
191
192 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 ret = cbm(cpu, node);
194 trace_cpuhp_exit(cpu, st->state, state, ret);
195 if (ret) {
196 if (!lastp)
197 goto err;
198
199 *lastp = node;
200 return ret;
201 }
202 cnt++;
203 }
204 if (lastp)
205 *lastp = NULL;
206 return 0;
207 err:
208 /* Rollback the instances if one failed */
209 cbm = !bringup ? step->startup.multi : step->teardown.multi;
210 if (!cbm)
211 return ret;
212
213 hlist_for_each(node, &step->list) {
214 if (!cnt--)
215 break;
216
217 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
218 ret = cbm(cpu, node);
219 trace_cpuhp_exit(cpu, st->state, state, ret);
220 /*
221 * Rollback must not fail,
222 */
223 WARN_ON_ONCE(ret);
224 }
225 return ret;
226 }
227
228 #ifdef CONFIG_SMP
229 static bool cpuhp_is_ap_state(enum cpuhp_state state)
230 {
231 /*
232 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
233 * purposes as that state is handled explicitly in cpu_down.
234 */
235 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
236 }
237
238 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
239 {
240 struct completion *done = bringup ? &st->done_up : &st->done_down;
241 wait_for_completion(done);
242 }
243
244 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 {
246 struct completion *done = bringup ? &st->done_up : &st->done_down;
247 complete(done);
248 }
249
250 /*
251 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
252 */
253 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
254 {
255 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
256 }
257
258 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
259 static DEFINE_MUTEX(cpu_add_remove_lock);
260 bool cpuhp_tasks_frozen;
261 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
262
263 /*
264 * The following two APIs (cpu_maps_update_begin/done) must be used when
265 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
266 */
267 void cpu_maps_update_begin(void)
268 {
269 mutex_lock(&cpu_add_remove_lock);
270 }
271
272 void cpu_maps_update_done(void)
273 {
274 mutex_unlock(&cpu_add_remove_lock);
275 }
276
277 /*
278 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
279 * Should always be manipulated under cpu_add_remove_lock
280 */
281 static int cpu_hotplug_disabled;
282
283 #ifdef CONFIG_HOTPLUG_CPU
284
285 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
286
287 void cpus_read_lock(void)
288 {
289 percpu_down_read(&cpu_hotplug_lock);
290 }
291 EXPORT_SYMBOL_GPL(cpus_read_lock);
292
293 void cpus_read_unlock(void)
294 {
295 percpu_up_read(&cpu_hotplug_lock);
296 }
297 EXPORT_SYMBOL_GPL(cpus_read_unlock);
298
299 void cpus_write_lock(void)
300 {
301 percpu_down_write(&cpu_hotplug_lock);
302 }
303
304 void cpus_write_unlock(void)
305 {
306 percpu_up_write(&cpu_hotplug_lock);
307 }
308
309 void lockdep_assert_cpus_held(void)
310 {
311 percpu_rwsem_assert_held(&cpu_hotplug_lock);
312 }
313
314 /*
315 * Wait for currently running CPU hotplug operations to complete (if any) and
316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318 * hotplug path before performing hotplug operations. So acquiring that lock
319 * guarantees mutual exclusion from any currently running hotplug operations.
320 */
321 void cpu_hotplug_disable(void)
322 {
323 cpu_maps_update_begin();
324 cpu_hotplug_disabled++;
325 cpu_maps_update_done();
326 }
327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
328
329 static void __cpu_hotplug_enable(void)
330 {
331 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
332 return;
333 cpu_hotplug_disabled--;
334 }
335
336 void cpu_hotplug_enable(void)
337 {
338 cpu_maps_update_begin();
339 __cpu_hotplug_enable();
340 cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
343 #endif /* CONFIG_HOTPLUG_CPU */
344
345 static inline enum cpuhp_state
346 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
347 {
348 enum cpuhp_state prev_state = st->state;
349
350 st->rollback = false;
351 st->last = NULL;
352
353 st->target = target;
354 st->single = false;
355 st->bringup = st->state < target;
356
357 return prev_state;
358 }
359
360 static inline void
361 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
362 {
363 st->rollback = true;
364
365 /*
366 * If we have st->last we need to undo partial multi_instance of this
367 * state first. Otherwise start undo at the previous state.
368 */
369 if (!st->last) {
370 if (st->bringup)
371 st->state--;
372 else
373 st->state++;
374 }
375
376 st->target = prev_state;
377 st->bringup = !st->bringup;
378 }
379
380 /* Regular hotplug invocation of the AP hotplug thread */
381 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
382 {
383 if (!st->single && st->state == st->target)
384 return;
385
386 st->result = 0;
387 /*
388 * Make sure the above stores are visible before should_run becomes
389 * true. Paired with the mb() above in cpuhp_thread_fun()
390 */
391 smp_mb();
392 st->should_run = true;
393 wake_up_process(st->thread);
394 wait_for_ap_thread(st, st->bringup);
395 }
396
397 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
398 {
399 enum cpuhp_state prev_state;
400 int ret;
401
402 prev_state = cpuhp_set_state(st, target);
403 __cpuhp_kick_ap(st);
404 if ((ret = st->result)) {
405 cpuhp_reset_state(st, prev_state);
406 __cpuhp_kick_ap(st);
407 }
408
409 return ret;
410 }
411
412 static int bringup_wait_for_ap(unsigned int cpu)
413 {
414 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
415
416 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
417 wait_for_ap_thread(st, true);
418 if (WARN_ON_ONCE((!cpu_online(cpu))))
419 return -ECANCELED;
420
421 /* Unpark the stopper thread and the hotplug thread of the target cpu */
422 stop_machine_unpark(cpu);
423 kthread_unpark(st->thread);
424
425 if (st->target <= CPUHP_AP_ONLINE_IDLE)
426 return 0;
427
428 return cpuhp_kick_ap(st, st->target);
429 }
430
431 static int bringup_cpu(unsigned int cpu)
432 {
433 struct task_struct *idle = idle_thread_get(cpu);
434 int ret;
435
436 /*
437 * Some architectures have to walk the irq descriptors to
438 * setup the vector space for the cpu which comes online.
439 * Prevent irq alloc/free across the bringup.
440 */
441 irq_lock_sparse();
442
443 /* Arch-specific enabling code. */
444 ret = __cpu_up(cpu, idle);
445 irq_unlock_sparse();
446 if (ret)
447 return ret;
448 return bringup_wait_for_ap(cpu);
449 }
450
451 /*
452 * Hotplug state machine related functions
453 */
454
455 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
456 {
457 for (st->state--; st->state > st->target; st->state--) {
458 struct cpuhp_step *step = cpuhp_get_step(st->state);
459
460 if (!step->skip_onerr)
461 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
462 }
463 }
464
465 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
466 enum cpuhp_state target)
467 {
468 enum cpuhp_state prev_state = st->state;
469 int ret = 0;
470
471 while (st->state < target) {
472 st->state++;
473 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
474 if (ret) {
475 st->target = prev_state;
476 undo_cpu_up(cpu, st);
477 break;
478 }
479 }
480 return ret;
481 }
482
483 /*
484 * The cpu hotplug threads manage the bringup and teardown of the cpus
485 */
486 static void cpuhp_create(unsigned int cpu)
487 {
488 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
489
490 init_completion(&st->done_up);
491 init_completion(&st->done_down);
492 }
493
494 static int cpuhp_should_run(unsigned int cpu)
495 {
496 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
497
498 return st->should_run;
499 }
500
501 /*
502 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
503 * callbacks when a state gets [un]installed at runtime.
504 *
505 * Each invocation of this function by the smpboot thread does a single AP
506 * state callback.
507 *
508 * It has 3 modes of operation:
509 * - single: runs st->cb_state
510 * - up: runs ++st->state, while st->state < st->target
511 * - down: runs st->state--, while st->state > st->target
512 *
513 * When complete or on error, should_run is cleared and the completion is fired.
514 */
515 static void cpuhp_thread_fun(unsigned int cpu)
516 {
517 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
518 bool bringup = st->bringup;
519 enum cpuhp_state state;
520
521 /*
522 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
523 * that if we see ->should_run we also see the rest of the state.
524 */
525 smp_mb();
526
527 if (WARN_ON_ONCE(!st->should_run))
528 return;
529
530 cpuhp_lock_acquire(bringup);
531
532 if (st->single) {
533 state = st->cb_state;
534 st->should_run = false;
535 } else {
536 if (bringup) {
537 st->state++;
538 state = st->state;
539 st->should_run = (st->state < st->target);
540 WARN_ON_ONCE(st->state > st->target);
541 } else {
542 state = st->state;
543 st->state--;
544 st->should_run = (st->state > st->target);
545 WARN_ON_ONCE(st->state < st->target);
546 }
547 }
548
549 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
550
551 if (st->rollback) {
552 struct cpuhp_step *step = cpuhp_get_step(state);
553 if (step->skip_onerr)
554 goto next;
555 }
556
557 if (cpuhp_is_atomic_state(state)) {
558 local_irq_disable();
559 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
560 local_irq_enable();
561
562 /*
563 * STARTING/DYING must not fail!
564 */
565 WARN_ON_ONCE(st->result);
566 } else {
567 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
568 }
569
570 if (st->result) {
571 /*
572 * If we fail on a rollback, we're up a creek without no
573 * paddle, no way forward, no way back. We loose, thanks for
574 * playing.
575 */
576 WARN_ON_ONCE(st->rollback);
577 st->should_run = false;
578 }
579
580 next:
581 cpuhp_lock_release(bringup);
582
583 if (!st->should_run)
584 complete_ap_thread(st, bringup);
585 }
586
587 /* Invoke a single callback on a remote cpu */
588 static int
589 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
590 struct hlist_node *node)
591 {
592 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
593 int ret;
594
595 if (!cpu_online(cpu))
596 return 0;
597
598 cpuhp_lock_acquire(false);
599 cpuhp_lock_release(false);
600
601 cpuhp_lock_acquire(true);
602 cpuhp_lock_release(true);
603
604 /*
605 * If we are up and running, use the hotplug thread. For early calls
606 * we invoke the thread function directly.
607 */
608 if (!st->thread)
609 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
610
611 st->rollback = false;
612 st->last = NULL;
613
614 st->node = node;
615 st->bringup = bringup;
616 st->cb_state = state;
617 st->single = true;
618
619 __cpuhp_kick_ap(st);
620
621 /*
622 * If we failed and did a partial, do a rollback.
623 */
624 if ((ret = st->result) && st->last) {
625 st->rollback = true;
626 st->bringup = !bringup;
627
628 __cpuhp_kick_ap(st);
629 }
630
631 /*
632 * Clean up the leftovers so the next hotplug operation wont use stale
633 * data.
634 */
635 st->node = st->last = NULL;
636 return ret;
637 }
638
639 static int cpuhp_kick_ap_work(unsigned int cpu)
640 {
641 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
642 enum cpuhp_state prev_state = st->state;
643 int ret;
644
645 cpuhp_lock_acquire(false);
646 cpuhp_lock_release(false);
647
648 cpuhp_lock_acquire(true);
649 cpuhp_lock_release(true);
650
651 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
652 ret = cpuhp_kick_ap(st, st->target);
653 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
654
655 return ret;
656 }
657
658 static struct smp_hotplug_thread cpuhp_threads = {
659 .store = &cpuhp_state.thread,
660 .create = &cpuhp_create,
661 .thread_should_run = cpuhp_should_run,
662 .thread_fn = cpuhp_thread_fun,
663 .thread_comm = "cpuhp/%u",
664 .selfparking = true,
665 };
666
667 void __init cpuhp_threads_init(void)
668 {
669 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
670 kthread_unpark(this_cpu_read(cpuhp_state.thread));
671 }
672
673 #ifdef CONFIG_HOTPLUG_CPU
674 /**
675 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
676 * @cpu: a CPU id
677 *
678 * This function walks all processes, finds a valid mm struct for each one and
679 * then clears a corresponding bit in mm's cpumask. While this all sounds
680 * trivial, there are various non-obvious corner cases, which this function
681 * tries to solve in a safe manner.
682 *
683 * Also note that the function uses a somewhat relaxed locking scheme, so it may
684 * be called only for an already offlined CPU.
685 */
686 void clear_tasks_mm_cpumask(int cpu)
687 {
688 struct task_struct *p;
689
690 /*
691 * This function is called after the cpu is taken down and marked
692 * offline, so its not like new tasks will ever get this cpu set in
693 * their mm mask. -- Peter Zijlstra
694 * Thus, we may use rcu_read_lock() here, instead of grabbing
695 * full-fledged tasklist_lock.
696 */
697 WARN_ON(cpu_online(cpu));
698 rcu_read_lock();
699 for_each_process(p) {
700 struct task_struct *t;
701
702 /*
703 * Main thread might exit, but other threads may still have
704 * a valid mm. Find one.
705 */
706 t = find_lock_task_mm(p);
707 if (!t)
708 continue;
709 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
710 task_unlock(t);
711 }
712 rcu_read_unlock();
713 }
714
715 /* Take this CPU down. */
716 static int take_cpu_down(void *_param)
717 {
718 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
719 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
720 int err, cpu = smp_processor_id();
721 int ret;
722
723 /* Ensure this CPU doesn't handle any more interrupts. */
724 err = __cpu_disable();
725 if (err < 0)
726 return err;
727
728 /*
729 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
730 * do this step again.
731 */
732 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
733 st->state--;
734 /* Invoke the former CPU_DYING callbacks */
735 for (; st->state > target; st->state--) {
736 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
737 /*
738 * DYING must not fail!
739 */
740 WARN_ON_ONCE(ret);
741 }
742
743 /* Give up timekeeping duties */
744 tick_handover_do_timer();
745 /* Park the stopper thread */
746 stop_machine_park(cpu);
747 return 0;
748 }
749
750 static int takedown_cpu(unsigned int cpu)
751 {
752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
753 int err;
754
755 /* Park the smpboot threads */
756 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
757
758 /*
759 * Prevent irq alloc/free while the dying cpu reorganizes the
760 * interrupt affinities.
761 */
762 irq_lock_sparse();
763
764 /*
765 * So now all preempt/rcu users must observe !cpu_active().
766 */
767 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
768 if (err) {
769 /* CPU refused to die */
770 irq_unlock_sparse();
771 /* Unpark the hotplug thread so we can rollback there */
772 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
773 return err;
774 }
775 BUG_ON(cpu_online(cpu));
776
777 /*
778 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
779 * all runnable tasks from the CPU, there's only the idle task left now
780 * that the migration thread is done doing the stop_machine thing.
781 *
782 * Wait for the stop thread to go away.
783 */
784 wait_for_ap_thread(st, false);
785 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
786
787 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
788 irq_unlock_sparse();
789
790 hotplug_cpu__broadcast_tick_pull(cpu);
791 /* This actually kills the CPU. */
792 __cpu_die(cpu);
793
794 tick_cleanup_dead_cpu(cpu);
795 rcutree_migrate_callbacks(cpu);
796 return 0;
797 }
798
799 static void cpuhp_complete_idle_dead(void *arg)
800 {
801 struct cpuhp_cpu_state *st = arg;
802
803 complete_ap_thread(st, false);
804 }
805
806 void cpuhp_report_idle_dead(void)
807 {
808 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
809
810 BUG_ON(st->state != CPUHP_AP_OFFLINE);
811 rcu_report_dead(smp_processor_id());
812 st->state = CPUHP_AP_IDLE_DEAD;
813 /*
814 * We cannot call complete after rcu_report_dead() so we delegate it
815 * to an online cpu.
816 */
817 smp_call_function_single(cpumask_first(cpu_online_mask),
818 cpuhp_complete_idle_dead, st, 0);
819 }
820
821 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
822 {
823 for (st->state++; st->state < st->target; st->state++) {
824 struct cpuhp_step *step = cpuhp_get_step(st->state);
825
826 if (!step->skip_onerr)
827 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
828 }
829 }
830
831 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
832 enum cpuhp_state target)
833 {
834 enum cpuhp_state prev_state = st->state;
835 int ret = 0;
836
837 for (; st->state > target; st->state--) {
838 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
839 if (ret) {
840 st->target = prev_state;
841 undo_cpu_down(cpu, st);
842 break;
843 }
844 }
845 return ret;
846 }
847
848 /* Requires cpu_add_remove_lock to be held */
849 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
850 enum cpuhp_state target)
851 {
852 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
853 int prev_state, ret = 0;
854
855 if (num_online_cpus() == 1)
856 return -EBUSY;
857
858 if (!cpu_present(cpu))
859 return -EINVAL;
860
861 cpus_write_lock();
862
863 cpuhp_tasks_frozen = tasks_frozen;
864
865 prev_state = cpuhp_set_state(st, target);
866 /*
867 * If the current CPU state is in the range of the AP hotplug thread,
868 * then we need to kick the thread.
869 */
870 if (st->state > CPUHP_TEARDOWN_CPU) {
871 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
872 ret = cpuhp_kick_ap_work(cpu);
873 /*
874 * The AP side has done the error rollback already. Just
875 * return the error code..
876 */
877 if (ret)
878 goto out;
879
880 /*
881 * We might have stopped still in the range of the AP hotplug
882 * thread. Nothing to do anymore.
883 */
884 if (st->state > CPUHP_TEARDOWN_CPU)
885 goto out;
886
887 st->target = target;
888 }
889 /*
890 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
891 * to do the further cleanups.
892 */
893 ret = cpuhp_down_callbacks(cpu, st, target);
894 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
895 cpuhp_reset_state(st, prev_state);
896 __cpuhp_kick_ap(st);
897 }
898
899 out:
900 cpus_write_unlock();
901 /*
902 * Do post unplug cleanup. This is still protected against
903 * concurrent CPU hotplug via cpu_add_remove_lock.
904 */
905 lockup_detector_cleanup();
906 return ret;
907 }
908
909 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
910 {
911 int err;
912
913 cpu_maps_update_begin();
914
915 if (cpu_hotplug_disabled) {
916 err = -EBUSY;
917 goto out;
918 }
919
920 err = _cpu_down(cpu, 0, target);
921
922 out:
923 cpu_maps_update_done();
924 return err;
925 }
926
927 int cpu_down(unsigned int cpu)
928 {
929 return do_cpu_down(cpu, CPUHP_OFFLINE);
930 }
931 EXPORT_SYMBOL(cpu_down);
932
933 #else
934 #define takedown_cpu NULL
935 #endif /*CONFIG_HOTPLUG_CPU*/
936
937 /**
938 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
939 * @cpu: cpu that just started
940 *
941 * It must be called by the arch code on the new cpu, before the new cpu
942 * enables interrupts and before the "boot" cpu returns from __cpu_up().
943 */
944 void notify_cpu_starting(unsigned int cpu)
945 {
946 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
947 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
948 int ret;
949
950 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
951 while (st->state < target) {
952 st->state++;
953 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
954 /*
955 * STARTING must not fail!
956 */
957 WARN_ON_ONCE(ret);
958 }
959 }
960
961 /*
962 * Called from the idle task. Wake up the controlling task which brings the
963 * stopper and the hotplug thread of the upcoming CPU up and then delegates
964 * the rest of the online bringup to the hotplug thread.
965 */
966 void cpuhp_online_idle(enum cpuhp_state state)
967 {
968 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
969
970 /* Happens for the boot cpu */
971 if (state != CPUHP_AP_ONLINE_IDLE)
972 return;
973
974 st->state = CPUHP_AP_ONLINE_IDLE;
975 complete_ap_thread(st, true);
976 }
977
978 /* Requires cpu_add_remove_lock to be held */
979 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
980 {
981 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
982 struct task_struct *idle;
983 int ret = 0;
984
985 cpus_write_lock();
986
987 if (!cpu_present(cpu)) {
988 ret = -EINVAL;
989 goto out;
990 }
991
992 /*
993 * The caller of do_cpu_up might have raced with another
994 * caller. Ignore it for now.
995 */
996 if (st->state >= target)
997 goto out;
998
999 if (st->state == CPUHP_OFFLINE) {
1000 /* Let it fail before we try to bring the cpu up */
1001 idle = idle_thread_get(cpu);
1002 if (IS_ERR(idle)) {
1003 ret = PTR_ERR(idle);
1004 goto out;
1005 }
1006 }
1007
1008 cpuhp_tasks_frozen = tasks_frozen;
1009
1010 cpuhp_set_state(st, target);
1011 /*
1012 * If the current CPU state is in the range of the AP hotplug thread,
1013 * then we need to kick the thread once more.
1014 */
1015 if (st->state > CPUHP_BRINGUP_CPU) {
1016 ret = cpuhp_kick_ap_work(cpu);
1017 /*
1018 * The AP side has done the error rollback already. Just
1019 * return the error code..
1020 */
1021 if (ret)
1022 goto out;
1023 }
1024
1025 /*
1026 * Try to reach the target state. We max out on the BP at
1027 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1028 * responsible for bringing it up to the target state.
1029 */
1030 target = min((int)target, CPUHP_BRINGUP_CPU);
1031 ret = cpuhp_up_callbacks(cpu, st, target);
1032 out:
1033 cpus_write_unlock();
1034 return ret;
1035 }
1036
1037 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1038 {
1039 int err = 0;
1040
1041 if (!cpu_possible(cpu)) {
1042 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1043 cpu);
1044 #if defined(CONFIG_IA64)
1045 pr_err("please check additional_cpus= boot parameter\n");
1046 #endif
1047 return -EINVAL;
1048 }
1049
1050 err = try_online_node(cpu_to_node(cpu));
1051 if (err)
1052 return err;
1053
1054 cpu_maps_update_begin();
1055
1056 if (cpu_hotplug_disabled) {
1057 err = -EBUSY;
1058 goto out;
1059 }
1060
1061 err = _cpu_up(cpu, 0, target);
1062 out:
1063 cpu_maps_update_done();
1064 return err;
1065 }
1066
1067 int cpu_up(unsigned int cpu)
1068 {
1069 return do_cpu_up(cpu, CPUHP_ONLINE);
1070 }
1071 EXPORT_SYMBOL_GPL(cpu_up);
1072
1073 #ifdef CONFIG_PM_SLEEP_SMP
1074 static cpumask_var_t frozen_cpus;
1075
1076 int freeze_secondary_cpus(int primary)
1077 {
1078 int cpu, error = 0;
1079
1080 cpu_maps_update_begin();
1081 if (!cpu_online(primary))
1082 primary = cpumask_first(cpu_online_mask);
1083 /*
1084 * We take down all of the non-boot CPUs in one shot to avoid races
1085 * with the userspace trying to use the CPU hotplug at the same time
1086 */
1087 cpumask_clear(frozen_cpus);
1088
1089 pr_info("Disabling non-boot CPUs ...\n");
1090 for_each_online_cpu(cpu) {
1091 if (cpu == primary)
1092 continue;
1093 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1094 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1095 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1096 if (!error)
1097 cpumask_set_cpu(cpu, frozen_cpus);
1098 else {
1099 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1100 break;
1101 }
1102 }
1103
1104 if (!error)
1105 BUG_ON(num_online_cpus() > 1);
1106 else
1107 pr_err("Non-boot CPUs are not disabled\n");
1108
1109 /*
1110 * Make sure the CPUs won't be enabled by someone else. We need to do
1111 * this even in case of failure as all disable_nonboot_cpus() users are
1112 * supposed to do enable_nonboot_cpus() on the failure path.
1113 */
1114 cpu_hotplug_disabled++;
1115
1116 cpu_maps_update_done();
1117 return error;
1118 }
1119
1120 void __weak arch_enable_nonboot_cpus_begin(void)
1121 {
1122 }
1123
1124 void __weak arch_enable_nonboot_cpus_end(void)
1125 {
1126 }
1127
1128 void enable_nonboot_cpus(void)
1129 {
1130 int cpu, error;
1131
1132 /* Allow everyone to use the CPU hotplug again */
1133 cpu_maps_update_begin();
1134 __cpu_hotplug_enable();
1135 if (cpumask_empty(frozen_cpus))
1136 goto out;
1137
1138 pr_info("Enabling non-boot CPUs ...\n");
1139
1140 arch_enable_nonboot_cpus_begin();
1141
1142 for_each_cpu(cpu, frozen_cpus) {
1143 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1144 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1145 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1146 if (!error) {
1147 pr_info("CPU%d is up\n", cpu);
1148 continue;
1149 }
1150 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1151 }
1152
1153 arch_enable_nonboot_cpus_end();
1154
1155 cpumask_clear(frozen_cpus);
1156 out:
1157 cpu_maps_update_done();
1158 }
1159
1160 static int __init alloc_frozen_cpus(void)
1161 {
1162 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1163 return -ENOMEM;
1164 return 0;
1165 }
1166 core_initcall(alloc_frozen_cpus);
1167
1168 /*
1169 * When callbacks for CPU hotplug notifications are being executed, we must
1170 * ensure that the state of the system with respect to the tasks being frozen
1171 * or not, as reported by the notification, remains unchanged *throughout the
1172 * duration* of the execution of the callbacks.
1173 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1174 *
1175 * This synchronization is implemented by mutually excluding regular CPU
1176 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1177 * Hibernate notifications.
1178 */
1179 static int
1180 cpu_hotplug_pm_callback(struct notifier_block *nb,
1181 unsigned long action, void *ptr)
1182 {
1183 switch (action) {
1184
1185 case PM_SUSPEND_PREPARE:
1186 case PM_HIBERNATION_PREPARE:
1187 cpu_hotplug_disable();
1188 break;
1189
1190 case PM_POST_SUSPEND:
1191 case PM_POST_HIBERNATION:
1192 cpu_hotplug_enable();
1193 break;
1194
1195 default:
1196 return NOTIFY_DONE;
1197 }
1198
1199 return NOTIFY_OK;
1200 }
1201
1202
1203 static int __init cpu_hotplug_pm_sync_init(void)
1204 {
1205 /*
1206 * cpu_hotplug_pm_callback has higher priority than x86
1207 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1208 * to disable cpu hotplug to avoid cpu hotplug race.
1209 */
1210 pm_notifier(cpu_hotplug_pm_callback, 0);
1211 return 0;
1212 }
1213 core_initcall(cpu_hotplug_pm_sync_init);
1214
1215 #endif /* CONFIG_PM_SLEEP_SMP */
1216
1217 int __boot_cpu_id;
1218
1219 #endif /* CONFIG_SMP */
1220
1221 /* Boot processor state steps */
1222 static struct cpuhp_step cpuhp_hp_states[] = {
1223 [CPUHP_OFFLINE] = {
1224 .name = "offline",
1225 .startup.single = NULL,
1226 .teardown.single = NULL,
1227 },
1228 #ifdef CONFIG_SMP
1229 [CPUHP_CREATE_THREADS]= {
1230 .name = "threads:prepare",
1231 .startup.single = smpboot_create_threads,
1232 .teardown.single = NULL,
1233 .cant_stop = true,
1234 },
1235 [CPUHP_PERF_PREPARE] = {
1236 .name = "perf:prepare",
1237 .startup.single = perf_event_init_cpu,
1238 .teardown.single = perf_event_exit_cpu,
1239 },
1240 [CPUHP_WORKQUEUE_PREP] = {
1241 .name = "workqueue:prepare",
1242 .startup.single = workqueue_prepare_cpu,
1243 .teardown.single = NULL,
1244 },
1245 [CPUHP_HRTIMERS_PREPARE] = {
1246 .name = "hrtimers:prepare",
1247 .startup.single = hrtimers_prepare_cpu,
1248 .teardown.single = hrtimers_dead_cpu,
1249 },
1250 [CPUHP_SMPCFD_PREPARE] = {
1251 .name = "smpcfd:prepare",
1252 .startup.single = smpcfd_prepare_cpu,
1253 .teardown.single = smpcfd_dead_cpu,
1254 },
1255 [CPUHP_RELAY_PREPARE] = {
1256 .name = "relay:prepare",
1257 .startup.single = relay_prepare_cpu,
1258 .teardown.single = NULL,
1259 },
1260 [CPUHP_SLAB_PREPARE] = {
1261 .name = "slab:prepare",
1262 .startup.single = slab_prepare_cpu,
1263 .teardown.single = slab_dead_cpu,
1264 },
1265 [CPUHP_RCUTREE_PREP] = {
1266 .name = "RCU/tree:prepare",
1267 .startup.single = rcutree_prepare_cpu,
1268 .teardown.single = rcutree_dead_cpu,
1269 },
1270 /*
1271 * On the tear-down path, timers_dead_cpu() must be invoked
1272 * before blk_mq_queue_reinit_notify() from notify_dead(),
1273 * otherwise a RCU stall occurs.
1274 */
1275 [CPUHP_TIMERS_PREPARE] = {
1276 .name = "timers:dead",
1277 .startup.single = timers_prepare_cpu,
1278 .teardown.single = timers_dead_cpu,
1279 },
1280 /* Kicks the plugged cpu into life */
1281 [CPUHP_BRINGUP_CPU] = {
1282 .name = "cpu:bringup",
1283 .startup.single = bringup_cpu,
1284 .teardown.single = NULL,
1285 .cant_stop = true,
1286 },
1287 /* Final state before CPU kills itself */
1288 [CPUHP_AP_IDLE_DEAD] = {
1289 .name = "idle:dead",
1290 },
1291 /*
1292 * Last state before CPU enters the idle loop to die. Transient state
1293 * for synchronization.
1294 */
1295 [CPUHP_AP_OFFLINE] = {
1296 .name = "ap:offline",
1297 .cant_stop = true,
1298 },
1299 /* First state is scheduler control. Interrupts are disabled */
1300 [CPUHP_AP_SCHED_STARTING] = {
1301 .name = "sched:starting",
1302 .startup.single = sched_cpu_starting,
1303 .teardown.single = sched_cpu_dying,
1304 },
1305 [CPUHP_AP_RCUTREE_DYING] = {
1306 .name = "RCU/tree:dying",
1307 .startup.single = NULL,
1308 .teardown.single = rcutree_dying_cpu,
1309 },
1310 [CPUHP_AP_SMPCFD_DYING] = {
1311 .name = "smpcfd:dying",
1312 .startup.single = NULL,
1313 .teardown.single = smpcfd_dying_cpu,
1314 },
1315 /* Entry state on starting. Interrupts enabled from here on. Transient
1316 * state for synchronsization */
1317 [CPUHP_AP_ONLINE] = {
1318 .name = "ap:online",
1319 },
1320 /*
1321 * Handled on controll processor until the plugged processor manages
1322 * this itself.
1323 */
1324 [CPUHP_TEARDOWN_CPU] = {
1325 .name = "cpu:teardown",
1326 .startup.single = NULL,
1327 .teardown.single = takedown_cpu,
1328 .cant_stop = true,
1329 },
1330 /* Handle smpboot threads park/unpark */
1331 [CPUHP_AP_SMPBOOT_THREADS] = {
1332 .name = "smpboot/threads:online",
1333 .startup.single = smpboot_unpark_threads,
1334 .teardown.single = smpboot_park_threads,
1335 },
1336 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1337 .name = "irq/affinity:online",
1338 .startup.single = irq_affinity_online_cpu,
1339 .teardown.single = NULL,
1340 },
1341 [CPUHP_AP_PERF_ONLINE] = {
1342 .name = "perf:online",
1343 .startup.single = perf_event_init_cpu,
1344 .teardown.single = perf_event_exit_cpu,
1345 },
1346 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1347 .name = "workqueue:online",
1348 .startup.single = workqueue_online_cpu,
1349 .teardown.single = workqueue_offline_cpu,
1350 },
1351 [CPUHP_AP_RCUTREE_ONLINE] = {
1352 .name = "RCU/tree:online",
1353 .startup.single = rcutree_online_cpu,
1354 .teardown.single = rcutree_offline_cpu,
1355 },
1356 #endif
1357 /*
1358 * The dynamically registered state space is here
1359 */
1360
1361 #ifdef CONFIG_SMP
1362 /* Last state is scheduler control setting the cpu active */
1363 [CPUHP_AP_ACTIVE] = {
1364 .name = "sched:active",
1365 .startup.single = sched_cpu_activate,
1366 .teardown.single = sched_cpu_deactivate,
1367 },
1368 #endif
1369
1370 /* CPU is fully up and running. */
1371 [CPUHP_ONLINE] = {
1372 .name = "online",
1373 .startup.single = NULL,
1374 .teardown.single = NULL,
1375 },
1376 };
1377
1378 /* Sanity check for callbacks */
1379 static int cpuhp_cb_check(enum cpuhp_state state)
1380 {
1381 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1382 return -EINVAL;
1383 return 0;
1384 }
1385
1386 /*
1387 * Returns a free for dynamic slot assignment of the Online state. The states
1388 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1389 * by having no name assigned.
1390 */
1391 static int cpuhp_reserve_state(enum cpuhp_state state)
1392 {
1393 enum cpuhp_state i, end;
1394 struct cpuhp_step *step;
1395
1396 switch (state) {
1397 case CPUHP_AP_ONLINE_DYN:
1398 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1399 end = CPUHP_AP_ONLINE_DYN_END;
1400 break;
1401 case CPUHP_BP_PREPARE_DYN:
1402 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1403 end = CPUHP_BP_PREPARE_DYN_END;
1404 break;
1405 default:
1406 return -EINVAL;
1407 }
1408
1409 for (i = state; i <= end; i++, step++) {
1410 if (!step->name)
1411 return i;
1412 }
1413 WARN(1, "No more dynamic states available for CPU hotplug\n");
1414 return -ENOSPC;
1415 }
1416
1417 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1418 int (*startup)(unsigned int cpu),
1419 int (*teardown)(unsigned int cpu),
1420 bool multi_instance)
1421 {
1422 /* (Un)Install the callbacks for further cpu hotplug operations */
1423 struct cpuhp_step *sp;
1424 int ret = 0;
1425
1426 /*
1427 * If name is NULL, then the state gets removed.
1428 *
1429 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1430 * the first allocation from these dynamic ranges, so the removal
1431 * would trigger a new allocation and clear the wrong (already
1432 * empty) state, leaving the callbacks of the to be cleared state
1433 * dangling, which causes wreckage on the next hotplug operation.
1434 */
1435 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1436 state == CPUHP_BP_PREPARE_DYN)) {
1437 ret = cpuhp_reserve_state(state);
1438 if (ret < 0)
1439 return ret;
1440 state = ret;
1441 }
1442 sp = cpuhp_get_step(state);
1443 if (name && sp->name)
1444 return -EBUSY;
1445
1446 sp->startup.single = startup;
1447 sp->teardown.single = teardown;
1448 sp->name = name;
1449 sp->multi_instance = multi_instance;
1450 INIT_HLIST_HEAD(&sp->list);
1451 return ret;
1452 }
1453
1454 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1455 {
1456 return cpuhp_get_step(state)->teardown.single;
1457 }
1458
1459 /*
1460 * Call the startup/teardown function for a step either on the AP or
1461 * on the current CPU.
1462 */
1463 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1464 struct hlist_node *node)
1465 {
1466 struct cpuhp_step *sp = cpuhp_get_step(state);
1467 int ret;
1468
1469 /*
1470 * If there's nothing to do, we done.
1471 * Relies on the union for multi_instance.
1472 */
1473 if ((bringup && !sp->startup.single) ||
1474 (!bringup && !sp->teardown.single))
1475 return 0;
1476 /*
1477 * The non AP bound callbacks can fail on bringup. On teardown
1478 * e.g. module removal we crash for now.
1479 */
1480 #ifdef CONFIG_SMP
1481 if (cpuhp_is_ap_state(state))
1482 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1483 else
1484 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1485 #else
1486 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1487 #endif
1488 BUG_ON(ret && !bringup);
1489 return ret;
1490 }
1491
1492 /*
1493 * Called from __cpuhp_setup_state on a recoverable failure.
1494 *
1495 * Note: The teardown callbacks for rollback are not allowed to fail!
1496 */
1497 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1498 struct hlist_node *node)
1499 {
1500 int cpu;
1501
1502 /* Roll back the already executed steps on the other cpus */
1503 for_each_present_cpu(cpu) {
1504 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1505 int cpustate = st->state;
1506
1507 if (cpu >= failedcpu)
1508 break;
1509
1510 /* Did we invoke the startup call on that cpu ? */
1511 if (cpustate >= state)
1512 cpuhp_issue_call(cpu, state, false, node);
1513 }
1514 }
1515
1516 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1517 struct hlist_node *node,
1518 bool invoke)
1519 {
1520 struct cpuhp_step *sp;
1521 int cpu;
1522 int ret;
1523
1524 lockdep_assert_cpus_held();
1525
1526 sp = cpuhp_get_step(state);
1527 if (sp->multi_instance == false)
1528 return -EINVAL;
1529
1530 mutex_lock(&cpuhp_state_mutex);
1531
1532 if (!invoke || !sp->startup.multi)
1533 goto add_node;
1534
1535 /*
1536 * Try to call the startup callback for each present cpu
1537 * depending on the hotplug state of the cpu.
1538 */
1539 for_each_present_cpu(cpu) {
1540 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1541 int cpustate = st->state;
1542
1543 if (cpustate < state)
1544 continue;
1545
1546 ret = cpuhp_issue_call(cpu, state, true, node);
1547 if (ret) {
1548 if (sp->teardown.multi)
1549 cpuhp_rollback_install(cpu, state, node);
1550 goto unlock;
1551 }
1552 }
1553 add_node:
1554 ret = 0;
1555 hlist_add_head(node, &sp->list);
1556 unlock:
1557 mutex_unlock(&cpuhp_state_mutex);
1558 return ret;
1559 }
1560
1561 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1562 bool invoke)
1563 {
1564 int ret;
1565
1566 cpus_read_lock();
1567 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1568 cpus_read_unlock();
1569 return ret;
1570 }
1571 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1572
1573 /**
1574 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1575 * @state: The state to setup
1576 * @invoke: If true, the startup function is invoked for cpus where
1577 * cpu state >= @state
1578 * @startup: startup callback function
1579 * @teardown: teardown callback function
1580 * @multi_instance: State is set up for multiple instances which get
1581 * added afterwards.
1582 *
1583 * The caller needs to hold cpus read locked while calling this function.
1584 * Returns:
1585 * On success:
1586 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1587 * 0 for all other states
1588 * On failure: proper (negative) error code
1589 */
1590 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1591 const char *name, bool invoke,
1592 int (*startup)(unsigned int cpu),
1593 int (*teardown)(unsigned int cpu),
1594 bool multi_instance)
1595 {
1596 int cpu, ret = 0;
1597 bool dynstate;
1598
1599 lockdep_assert_cpus_held();
1600
1601 if (cpuhp_cb_check(state) || !name)
1602 return -EINVAL;
1603
1604 mutex_lock(&cpuhp_state_mutex);
1605
1606 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1607 multi_instance);
1608
1609 dynstate = state == CPUHP_AP_ONLINE_DYN;
1610 if (ret > 0 && dynstate) {
1611 state = ret;
1612 ret = 0;
1613 }
1614
1615 if (ret || !invoke || !startup)
1616 goto out;
1617
1618 /*
1619 * Try to call the startup callback for each present cpu
1620 * depending on the hotplug state of the cpu.
1621 */
1622 for_each_present_cpu(cpu) {
1623 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1624 int cpustate = st->state;
1625
1626 if (cpustate < state)
1627 continue;
1628
1629 ret = cpuhp_issue_call(cpu, state, true, NULL);
1630 if (ret) {
1631 if (teardown)
1632 cpuhp_rollback_install(cpu, state, NULL);
1633 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1634 goto out;
1635 }
1636 }
1637 out:
1638 mutex_unlock(&cpuhp_state_mutex);
1639 /*
1640 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1641 * dynamically allocated state in case of success.
1642 */
1643 if (!ret && dynstate)
1644 return state;
1645 return ret;
1646 }
1647 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1648
1649 int __cpuhp_setup_state(enum cpuhp_state state,
1650 const char *name, bool invoke,
1651 int (*startup)(unsigned int cpu),
1652 int (*teardown)(unsigned int cpu),
1653 bool multi_instance)
1654 {
1655 int ret;
1656
1657 cpus_read_lock();
1658 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1659 teardown, multi_instance);
1660 cpus_read_unlock();
1661 return ret;
1662 }
1663 EXPORT_SYMBOL(__cpuhp_setup_state);
1664
1665 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1666 struct hlist_node *node, bool invoke)
1667 {
1668 struct cpuhp_step *sp = cpuhp_get_step(state);
1669 int cpu;
1670
1671 BUG_ON(cpuhp_cb_check(state));
1672
1673 if (!sp->multi_instance)
1674 return -EINVAL;
1675
1676 cpus_read_lock();
1677 mutex_lock(&cpuhp_state_mutex);
1678
1679 if (!invoke || !cpuhp_get_teardown_cb(state))
1680 goto remove;
1681 /*
1682 * Call the teardown callback for each present cpu depending
1683 * on the hotplug state of the cpu. This function is not
1684 * allowed to fail currently!
1685 */
1686 for_each_present_cpu(cpu) {
1687 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1688 int cpustate = st->state;
1689
1690 if (cpustate >= state)
1691 cpuhp_issue_call(cpu, state, false, node);
1692 }
1693
1694 remove:
1695 hlist_del(node);
1696 mutex_unlock(&cpuhp_state_mutex);
1697 cpus_read_unlock();
1698
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1702
1703 /**
1704 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1705 * @state: The state to remove
1706 * @invoke: If true, the teardown function is invoked for cpus where
1707 * cpu state >= @state
1708 *
1709 * The caller needs to hold cpus read locked while calling this function.
1710 * The teardown callback is currently not allowed to fail. Think
1711 * about module removal!
1712 */
1713 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1714 {
1715 struct cpuhp_step *sp = cpuhp_get_step(state);
1716 int cpu;
1717
1718 BUG_ON(cpuhp_cb_check(state));
1719
1720 lockdep_assert_cpus_held();
1721
1722 mutex_lock(&cpuhp_state_mutex);
1723 if (sp->multi_instance) {
1724 WARN(!hlist_empty(&sp->list),
1725 "Error: Removing state %d which has instances left.\n",
1726 state);
1727 goto remove;
1728 }
1729
1730 if (!invoke || !cpuhp_get_teardown_cb(state))
1731 goto remove;
1732
1733 /*
1734 * Call the teardown callback for each present cpu depending
1735 * on the hotplug state of the cpu. This function is not
1736 * allowed to fail currently!
1737 */
1738 for_each_present_cpu(cpu) {
1739 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1740 int cpustate = st->state;
1741
1742 if (cpustate >= state)
1743 cpuhp_issue_call(cpu, state, false, NULL);
1744 }
1745 remove:
1746 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1747 mutex_unlock(&cpuhp_state_mutex);
1748 }
1749 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1750
1751 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1752 {
1753 cpus_read_lock();
1754 __cpuhp_remove_state_cpuslocked(state, invoke);
1755 cpus_read_unlock();
1756 }
1757 EXPORT_SYMBOL(__cpuhp_remove_state);
1758
1759 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1760 static ssize_t show_cpuhp_state(struct device *dev,
1761 struct device_attribute *attr, char *buf)
1762 {
1763 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1764
1765 return sprintf(buf, "%d\n", st->state);
1766 }
1767 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1768
1769 static ssize_t write_cpuhp_target(struct device *dev,
1770 struct device_attribute *attr,
1771 const char *buf, size_t count)
1772 {
1773 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1774 struct cpuhp_step *sp;
1775 int target, ret;
1776
1777 ret = kstrtoint(buf, 10, &target);
1778 if (ret)
1779 return ret;
1780
1781 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1782 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1783 return -EINVAL;
1784 #else
1785 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1786 return -EINVAL;
1787 #endif
1788
1789 ret = lock_device_hotplug_sysfs();
1790 if (ret)
1791 return ret;
1792
1793 mutex_lock(&cpuhp_state_mutex);
1794 sp = cpuhp_get_step(target);
1795 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1796 mutex_unlock(&cpuhp_state_mutex);
1797 if (ret)
1798 goto out;
1799
1800 if (st->state < target)
1801 ret = do_cpu_up(dev->id, target);
1802 else
1803 ret = do_cpu_down(dev->id, target);
1804 out:
1805 unlock_device_hotplug();
1806 return ret ? ret : count;
1807 }
1808
1809 static ssize_t show_cpuhp_target(struct device *dev,
1810 struct device_attribute *attr, char *buf)
1811 {
1812 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1813
1814 return sprintf(buf, "%d\n", st->target);
1815 }
1816 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1817
1818
1819 static ssize_t write_cpuhp_fail(struct device *dev,
1820 struct device_attribute *attr,
1821 const char *buf, size_t count)
1822 {
1823 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1824 struct cpuhp_step *sp;
1825 int fail, ret;
1826
1827 ret = kstrtoint(buf, 10, &fail);
1828 if (ret)
1829 return ret;
1830
1831 /*
1832 * Cannot fail STARTING/DYING callbacks.
1833 */
1834 if (cpuhp_is_atomic_state(fail))
1835 return -EINVAL;
1836
1837 /*
1838 * Cannot fail anything that doesn't have callbacks.
1839 */
1840 mutex_lock(&cpuhp_state_mutex);
1841 sp = cpuhp_get_step(fail);
1842 if (!sp->startup.single && !sp->teardown.single)
1843 ret = -EINVAL;
1844 mutex_unlock(&cpuhp_state_mutex);
1845 if (ret)
1846 return ret;
1847
1848 st->fail = fail;
1849
1850 return count;
1851 }
1852
1853 static ssize_t show_cpuhp_fail(struct device *dev,
1854 struct device_attribute *attr, char *buf)
1855 {
1856 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1857
1858 return sprintf(buf, "%d\n", st->fail);
1859 }
1860
1861 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1862
1863 static struct attribute *cpuhp_cpu_attrs[] = {
1864 &dev_attr_state.attr,
1865 &dev_attr_target.attr,
1866 &dev_attr_fail.attr,
1867 NULL
1868 };
1869
1870 static const struct attribute_group cpuhp_cpu_attr_group = {
1871 .attrs = cpuhp_cpu_attrs,
1872 .name = "hotplug",
1873 NULL
1874 };
1875
1876 static ssize_t show_cpuhp_states(struct device *dev,
1877 struct device_attribute *attr, char *buf)
1878 {
1879 ssize_t cur, res = 0;
1880 int i;
1881
1882 mutex_lock(&cpuhp_state_mutex);
1883 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1884 struct cpuhp_step *sp = cpuhp_get_step(i);
1885
1886 if (sp->name) {
1887 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1888 buf += cur;
1889 res += cur;
1890 }
1891 }
1892 mutex_unlock(&cpuhp_state_mutex);
1893 return res;
1894 }
1895 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1896
1897 static struct attribute *cpuhp_cpu_root_attrs[] = {
1898 &dev_attr_states.attr,
1899 NULL
1900 };
1901
1902 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1903 .attrs = cpuhp_cpu_root_attrs,
1904 .name = "hotplug",
1905 NULL
1906 };
1907
1908 static int __init cpuhp_sysfs_init(void)
1909 {
1910 int cpu, ret;
1911
1912 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1913 &cpuhp_cpu_root_attr_group);
1914 if (ret)
1915 return ret;
1916
1917 for_each_possible_cpu(cpu) {
1918 struct device *dev = get_cpu_device(cpu);
1919
1920 if (!dev)
1921 continue;
1922 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1923 if (ret)
1924 return ret;
1925 }
1926 return 0;
1927 }
1928 device_initcall(cpuhp_sysfs_init);
1929 #endif
1930
1931 /*
1932 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1933 * represents all NR_CPUS bits binary values of 1<<nr.
1934 *
1935 * It is used by cpumask_of() to get a constant address to a CPU
1936 * mask value that has a single bit set only.
1937 */
1938
1939 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1940 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1941 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1942 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1943 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1944
1945 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1946
1947 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1948 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1949 #if BITS_PER_LONG > 32
1950 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1951 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1952 #endif
1953 };
1954 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1955
1956 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1957 EXPORT_SYMBOL(cpu_all_bits);
1958
1959 #ifdef CONFIG_INIT_ALL_POSSIBLE
1960 struct cpumask __cpu_possible_mask __read_mostly
1961 = {CPU_BITS_ALL};
1962 #else
1963 struct cpumask __cpu_possible_mask __read_mostly;
1964 #endif
1965 EXPORT_SYMBOL(__cpu_possible_mask);
1966
1967 struct cpumask __cpu_online_mask __read_mostly;
1968 EXPORT_SYMBOL(__cpu_online_mask);
1969
1970 struct cpumask __cpu_present_mask __read_mostly;
1971 EXPORT_SYMBOL(__cpu_present_mask);
1972
1973 struct cpumask __cpu_active_mask __read_mostly;
1974 EXPORT_SYMBOL(__cpu_active_mask);
1975
1976 void init_cpu_present(const struct cpumask *src)
1977 {
1978 cpumask_copy(&__cpu_present_mask, src);
1979 }
1980
1981 void init_cpu_possible(const struct cpumask *src)
1982 {
1983 cpumask_copy(&__cpu_possible_mask, src);
1984 }
1985
1986 void init_cpu_online(const struct cpumask *src)
1987 {
1988 cpumask_copy(&__cpu_online_mask, src);
1989 }
1990
1991 /*
1992 * Activate the first processor.
1993 */
1994 void __init boot_cpu_init(void)
1995 {
1996 int cpu = smp_processor_id();
1997
1998 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1999 set_cpu_online(cpu, true);
2000 set_cpu_active(cpu, true);
2001 set_cpu_present(cpu, true);
2002 set_cpu_possible(cpu, true);
2003
2004 #ifdef CONFIG_SMP
2005 __boot_cpu_id = cpu;
2006 #endif
2007 }
2008
2009 /*
2010 * Must be called _AFTER_ setting up the per_cpu areas
2011 */
2012 void __init boot_cpu_state_init(void)
2013 {
2014 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2015 }