]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cpu.c
Merge tag 'reset-fixes-for-4.14' of git://git.pengutronix.de/git/pza/linux into fixes
[mirror_ubuntu-bionic-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35
36 #include "smpboot.h"
37
38 /**
39 * cpuhp_cpu_state - Per cpu hotplug state storage
40 * @state: The current cpu state
41 * @target: The target state
42 * @thread: Pointer to the hotplug thread
43 * @should_run: Thread should execute
44 * @rollback: Perform a rollback
45 * @single: Single callback invocation
46 * @bringup: Single callback bringup or teardown selector
47 * @cb_state: The state for a single callback (install/uninstall)
48 * @result: Result of the operation
49 * @done_up: Signal completion to the issuer of the task for cpu-up
50 * @done_down: Signal completion to the issuer of the task for cpu-down
51 */
52 struct cpuhp_cpu_state {
53 enum cpuhp_state state;
54 enum cpuhp_state target;
55 enum cpuhp_state fail;
56 #ifdef CONFIG_SMP
57 struct task_struct *thread;
58 bool should_run;
59 bool rollback;
60 bool single;
61 bool bringup;
62 struct hlist_node *node;
63 struct hlist_node *last;
64 enum cpuhp_state cb_state;
65 int result;
66 struct completion done_up;
67 struct completion done_down;
68 #endif
69 };
70
71 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
72 .fail = CPUHP_INVALID,
73 };
74
75 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
76 static struct lockdep_map cpuhp_state_up_map =
77 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
78 static struct lockdep_map cpuhp_state_down_map =
79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
80
81
82 static void inline cpuhp_lock_acquire(bool bringup)
83 {
84 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
85 }
86
87 static void inline cpuhp_lock_release(bool bringup)
88 {
89 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
90 }
91 #else
92
93 static void inline cpuhp_lock_acquire(bool bringup) { }
94 static void inline cpuhp_lock_release(bool bringup) { }
95
96 #endif
97
98 /**
99 * cpuhp_step - Hotplug state machine step
100 * @name: Name of the step
101 * @startup: Startup function of the step
102 * @teardown: Teardown function of the step
103 * @skip_onerr: Do not invoke the functions on error rollback
104 * Will go away once the notifiers are gone
105 * @cant_stop: Bringup/teardown can't be stopped at this step
106 */
107 struct cpuhp_step {
108 const char *name;
109 union {
110 int (*single)(unsigned int cpu);
111 int (*multi)(unsigned int cpu,
112 struct hlist_node *node);
113 } startup;
114 union {
115 int (*single)(unsigned int cpu);
116 int (*multi)(unsigned int cpu,
117 struct hlist_node *node);
118 } teardown;
119 struct hlist_head list;
120 bool skip_onerr;
121 bool cant_stop;
122 bool multi_instance;
123 };
124
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_bp_states[];
127 static struct cpuhp_step cpuhp_ap_states[];
128
129 static bool cpuhp_is_ap_state(enum cpuhp_state state)
130 {
131 /*
132 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
133 * purposes as that state is handled explicitly in cpu_down.
134 */
135 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
136 }
137
138 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
139 {
140 struct cpuhp_step *sp;
141
142 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
143 return sp + state;
144 }
145
146 /**
147 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
148 * @cpu: The cpu for which the callback should be invoked
149 * @state: The state to do callbacks for
150 * @bringup: True if the bringup callback should be invoked
151 * @node: For multi-instance, do a single entry callback for install/remove
152 * @lastp: For multi-instance rollback, remember how far we got
153 *
154 * Called from cpu hotplug and from the state register machinery.
155 */
156 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
157 bool bringup, struct hlist_node *node,
158 struct hlist_node **lastp)
159 {
160 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
161 struct cpuhp_step *step = cpuhp_get_step(state);
162 int (*cbm)(unsigned int cpu, struct hlist_node *node);
163 int (*cb)(unsigned int cpu);
164 int ret, cnt;
165
166 if (st->fail == state) {
167 st->fail = CPUHP_INVALID;
168
169 if (!(bringup ? step->startup.single : step->teardown.single))
170 return 0;
171
172 return -EAGAIN;
173 }
174
175 if (!step->multi_instance) {
176 WARN_ON_ONCE(lastp && *lastp);
177 cb = bringup ? step->startup.single : step->teardown.single;
178 if (!cb)
179 return 0;
180 trace_cpuhp_enter(cpu, st->target, state, cb);
181 ret = cb(cpu);
182 trace_cpuhp_exit(cpu, st->state, state, ret);
183 return ret;
184 }
185 cbm = bringup ? step->startup.multi : step->teardown.multi;
186 if (!cbm)
187 return 0;
188
189 /* Single invocation for instance add/remove */
190 if (node) {
191 WARN_ON_ONCE(lastp && *lastp);
192 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 ret = cbm(cpu, node);
194 trace_cpuhp_exit(cpu, st->state, state, ret);
195 return ret;
196 }
197
198 /* State transition. Invoke on all instances */
199 cnt = 0;
200 hlist_for_each(node, &step->list) {
201 if (lastp && node == *lastp)
202 break;
203
204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 ret = cbm(cpu, node);
206 trace_cpuhp_exit(cpu, st->state, state, ret);
207 if (ret) {
208 if (!lastp)
209 goto err;
210
211 *lastp = node;
212 return ret;
213 }
214 cnt++;
215 }
216 if (lastp)
217 *lastp = NULL;
218 return 0;
219 err:
220 /* Rollback the instances if one failed */
221 cbm = !bringup ? step->startup.multi : step->teardown.multi;
222 if (!cbm)
223 return ret;
224
225 hlist_for_each(node, &step->list) {
226 if (!cnt--)
227 break;
228
229 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
230 ret = cbm(cpu, node);
231 trace_cpuhp_exit(cpu, st->state, state, ret);
232 /*
233 * Rollback must not fail,
234 */
235 WARN_ON_ONCE(ret);
236 }
237 return ret;
238 }
239
240 #ifdef CONFIG_SMP
241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243 struct completion *done = bringup ? &st->done_up : &st->done_down;
244 wait_for_completion(done);
245 }
246
247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 struct completion *done = bringup ? &st->done_up : &st->done_down;
250 complete(done);
251 }
252
253 /*
254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255 */
256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265
266 /*
267 * The following two APIs (cpu_maps_update_begin/done) must be used when
268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269 */
270 void cpu_maps_update_begin(void)
271 {
272 mutex_lock(&cpu_add_remove_lock);
273 }
274
275 void cpu_maps_update_done(void)
276 {
277 mutex_unlock(&cpu_add_remove_lock);
278 }
279
280 /*
281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282 * Should always be manipulated under cpu_add_remove_lock
283 */
284 static int cpu_hotplug_disabled;
285
286 #ifdef CONFIG_HOTPLUG_CPU
287
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289
290 void cpus_read_lock(void)
291 {
292 percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295
296 void cpus_read_unlock(void)
297 {
298 percpu_up_read(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_unlock);
301
302 void cpus_write_lock(void)
303 {
304 percpu_down_write(&cpu_hotplug_lock);
305 }
306
307 void cpus_write_unlock(void)
308 {
309 percpu_up_write(&cpu_hotplug_lock);
310 }
311
312 void lockdep_assert_cpus_held(void)
313 {
314 percpu_rwsem_assert_held(&cpu_hotplug_lock);
315 }
316
317 /*
318 * Wait for currently running CPU hotplug operations to complete (if any) and
319 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
320 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
321 * hotplug path before performing hotplug operations. So acquiring that lock
322 * guarantees mutual exclusion from any currently running hotplug operations.
323 */
324 void cpu_hotplug_disable(void)
325 {
326 cpu_maps_update_begin();
327 cpu_hotplug_disabled++;
328 cpu_maps_update_done();
329 }
330 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
331
332 static void __cpu_hotplug_enable(void)
333 {
334 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
335 return;
336 cpu_hotplug_disabled--;
337 }
338
339 void cpu_hotplug_enable(void)
340 {
341 cpu_maps_update_begin();
342 __cpu_hotplug_enable();
343 cpu_maps_update_done();
344 }
345 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
346 #endif /* CONFIG_HOTPLUG_CPU */
347
348 static inline enum cpuhp_state
349 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
350 {
351 enum cpuhp_state prev_state = st->state;
352
353 st->rollback = false;
354 st->last = NULL;
355
356 st->target = target;
357 st->single = false;
358 st->bringup = st->state < target;
359
360 return prev_state;
361 }
362
363 static inline void
364 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
365 {
366 st->rollback = true;
367
368 /*
369 * If we have st->last we need to undo partial multi_instance of this
370 * state first. Otherwise start undo at the previous state.
371 */
372 if (!st->last) {
373 if (st->bringup)
374 st->state--;
375 else
376 st->state++;
377 }
378
379 st->target = prev_state;
380 st->bringup = !st->bringup;
381 }
382
383 /* Regular hotplug invocation of the AP hotplug thread */
384 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
385 {
386 if (!st->single && st->state == st->target)
387 return;
388
389 st->result = 0;
390 /*
391 * Make sure the above stores are visible before should_run becomes
392 * true. Paired with the mb() above in cpuhp_thread_fun()
393 */
394 smp_mb();
395 st->should_run = true;
396 wake_up_process(st->thread);
397 wait_for_ap_thread(st, st->bringup);
398 }
399
400 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
401 {
402 enum cpuhp_state prev_state;
403 int ret;
404
405 prev_state = cpuhp_set_state(st, target);
406 __cpuhp_kick_ap(st);
407 if ((ret = st->result)) {
408 cpuhp_reset_state(st, prev_state);
409 __cpuhp_kick_ap(st);
410 }
411
412 return ret;
413 }
414
415 static int bringup_wait_for_ap(unsigned int cpu)
416 {
417 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
418
419 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
420 wait_for_ap_thread(st, true);
421 if (WARN_ON_ONCE((!cpu_online(cpu))))
422 return -ECANCELED;
423
424 /* Unpark the stopper thread and the hotplug thread of the target cpu */
425 stop_machine_unpark(cpu);
426 kthread_unpark(st->thread);
427
428 if (st->target <= CPUHP_AP_ONLINE_IDLE)
429 return 0;
430
431 return cpuhp_kick_ap(st, st->target);
432 }
433
434 static int bringup_cpu(unsigned int cpu)
435 {
436 struct task_struct *idle = idle_thread_get(cpu);
437 int ret;
438
439 /*
440 * Some architectures have to walk the irq descriptors to
441 * setup the vector space for the cpu which comes online.
442 * Prevent irq alloc/free across the bringup.
443 */
444 irq_lock_sparse();
445
446 /* Arch-specific enabling code. */
447 ret = __cpu_up(cpu, idle);
448 irq_unlock_sparse();
449 if (ret)
450 return ret;
451 return bringup_wait_for_ap(cpu);
452 }
453
454 /*
455 * Hotplug state machine related functions
456 */
457
458 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
459 {
460 for (st->state--; st->state > st->target; st->state--) {
461 struct cpuhp_step *step = cpuhp_get_step(st->state);
462
463 if (!step->skip_onerr)
464 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
465 }
466 }
467
468 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
469 enum cpuhp_state target)
470 {
471 enum cpuhp_state prev_state = st->state;
472 int ret = 0;
473
474 while (st->state < target) {
475 st->state++;
476 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
477 if (ret) {
478 st->target = prev_state;
479 undo_cpu_up(cpu, st);
480 break;
481 }
482 }
483 return ret;
484 }
485
486 /*
487 * The cpu hotplug threads manage the bringup and teardown of the cpus
488 */
489 static void cpuhp_create(unsigned int cpu)
490 {
491 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
492
493 init_completion(&st->done_up);
494 init_completion(&st->done_down);
495 }
496
497 static int cpuhp_should_run(unsigned int cpu)
498 {
499 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
500
501 return st->should_run;
502 }
503
504 /*
505 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
506 * callbacks when a state gets [un]installed at runtime.
507 *
508 * Each invocation of this function by the smpboot thread does a single AP
509 * state callback.
510 *
511 * It has 3 modes of operation:
512 * - single: runs st->cb_state
513 * - up: runs ++st->state, while st->state < st->target
514 * - down: runs st->state--, while st->state > st->target
515 *
516 * When complete or on error, should_run is cleared and the completion is fired.
517 */
518 static void cpuhp_thread_fun(unsigned int cpu)
519 {
520 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
521 bool bringup = st->bringup;
522 enum cpuhp_state state;
523
524 /*
525 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
526 * that if we see ->should_run we also see the rest of the state.
527 */
528 smp_mb();
529
530 if (WARN_ON_ONCE(!st->should_run))
531 return;
532
533 cpuhp_lock_acquire(bringup);
534
535 if (st->single) {
536 state = st->cb_state;
537 st->should_run = false;
538 } else {
539 if (bringup) {
540 st->state++;
541 state = st->state;
542 st->should_run = (st->state < st->target);
543 WARN_ON_ONCE(st->state > st->target);
544 } else {
545 state = st->state;
546 st->state--;
547 st->should_run = (st->state > st->target);
548 WARN_ON_ONCE(st->state < st->target);
549 }
550 }
551
552 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
553
554 if (st->rollback) {
555 struct cpuhp_step *step = cpuhp_get_step(state);
556 if (step->skip_onerr)
557 goto next;
558 }
559
560 if (cpuhp_is_atomic_state(state)) {
561 local_irq_disable();
562 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
563 local_irq_enable();
564
565 /*
566 * STARTING/DYING must not fail!
567 */
568 WARN_ON_ONCE(st->result);
569 } else {
570 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
571 }
572
573 if (st->result) {
574 /*
575 * If we fail on a rollback, we're up a creek without no
576 * paddle, no way forward, no way back. We loose, thanks for
577 * playing.
578 */
579 WARN_ON_ONCE(st->rollback);
580 st->should_run = false;
581 }
582
583 next:
584 cpuhp_lock_release(bringup);
585
586 if (!st->should_run)
587 complete_ap_thread(st, bringup);
588 }
589
590 /* Invoke a single callback on a remote cpu */
591 static int
592 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
593 struct hlist_node *node)
594 {
595 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
596 int ret;
597
598 if (!cpu_online(cpu))
599 return 0;
600
601 cpuhp_lock_acquire(false);
602 cpuhp_lock_release(false);
603
604 cpuhp_lock_acquire(true);
605 cpuhp_lock_release(true);
606
607 /*
608 * If we are up and running, use the hotplug thread. For early calls
609 * we invoke the thread function directly.
610 */
611 if (!st->thread)
612 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
613
614 st->rollback = false;
615 st->last = NULL;
616
617 st->node = node;
618 st->bringup = bringup;
619 st->cb_state = state;
620 st->single = true;
621
622 __cpuhp_kick_ap(st);
623
624 /*
625 * If we failed and did a partial, do a rollback.
626 */
627 if ((ret = st->result) && st->last) {
628 st->rollback = true;
629 st->bringup = !bringup;
630
631 __cpuhp_kick_ap(st);
632 }
633
634 return ret;
635 }
636
637 static int cpuhp_kick_ap_work(unsigned int cpu)
638 {
639 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
640 enum cpuhp_state prev_state = st->state;
641 int ret;
642
643 cpuhp_lock_acquire(false);
644 cpuhp_lock_release(false);
645
646 cpuhp_lock_acquire(true);
647 cpuhp_lock_release(true);
648
649 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
650 ret = cpuhp_kick_ap(st, st->target);
651 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
652
653 return ret;
654 }
655
656 static struct smp_hotplug_thread cpuhp_threads = {
657 .store = &cpuhp_state.thread,
658 .create = &cpuhp_create,
659 .thread_should_run = cpuhp_should_run,
660 .thread_fn = cpuhp_thread_fun,
661 .thread_comm = "cpuhp/%u",
662 .selfparking = true,
663 };
664
665 void __init cpuhp_threads_init(void)
666 {
667 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
668 kthread_unpark(this_cpu_read(cpuhp_state.thread));
669 }
670
671 #ifdef CONFIG_HOTPLUG_CPU
672 /**
673 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
674 * @cpu: a CPU id
675 *
676 * This function walks all processes, finds a valid mm struct for each one and
677 * then clears a corresponding bit in mm's cpumask. While this all sounds
678 * trivial, there are various non-obvious corner cases, which this function
679 * tries to solve in a safe manner.
680 *
681 * Also note that the function uses a somewhat relaxed locking scheme, so it may
682 * be called only for an already offlined CPU.
683 */
684 void clear_tasks_mm_cpumask(int cpu)
685 {
686 struct task_struct *p;
687
688 /*
689 * This function is called after the cpu is taken down and marked
690 * offline, so its not like new tasks will ever get this cpu set in
691 * their mm mask. -- Peter Zijlstra
692 * Thus, we may use rcu_read_lock() here, instead of grabbing
693 * full-fledged tasklist_lock.
694 */
695 WARN_ON(cpu_online(cpu));
696 rcu_read_lock();
697 for_each_process(p) {
698 struct task_struct *t;
699
700 /*
701 * Main thread might exit, but other threads may still have
702 * a valid mm. Find one.
703 */
704 t = find_lock_task_mm(p);
705 if (!t)
706 continue;
707 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
708 task_unlock(t);
709 }
710 rcu_read_unlock();
711 }
712
713 /* Take this CPU down. */
714 static int take_cpu_down(void *_param)
715 {
716 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
717 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
718 int err, cpu = smp_processor_id();
719 int ret;
720
721 /* Ensure this CPU doesn't handle any more interrupts. */
722 err = __cpu_disable();
723 if (err < 0)
724 return err;
725
726 /*
727 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
728 * do this step again.
729 */
730 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
731 st->state--;
732 /* Invoke the former CPU_DYING callbacks */
733 for (; st->state > target; st->state--) {
734 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
735 /*
736 * DYING must not fail!
737 */
738 WARN_ON_ONCE(ret);
739 }
740
741 /* Give up timekeeping duties */
742 tick_handover_do_timer();
743 /* Park the stopper thread */
744 stop_machine_park(cpu);
745 return 0;
746 }
747
748 static int takedown_cpu(unsigned int cpu)
749 {
750 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
751 int err;
752
753 /* Park the smpboot threads */
754 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
755 smpboot_park_threads(cpu);
756
757 /*
758 * Prevent irq alloc/free while the dying cpu reorganizes the
759 * interrupt affinities.
760 */
761 irq_lock_sparse();
762
763 /*
764 * So now all preempt/rcu users must observe !cpu_active().
765 */
766 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
767 if (err) {
768 /* CPU refused to die */
769 irq_unlock_sparse();
770 /* Unpark the hotplug thread so we can rollback there */
771 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
772 return err;
773 }
774 BUG_ON(cpu_online(cpu));
775
776 /*
777 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
778 * runnable tasks from the cpu, there's only the idle task left now
779 * that the migration thread is done doing the stop_machine thing.
780 *
781 * Wait for the stop thread to go away.
782 */
783 wait_for_ap_thread(st, false);
784 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
785
786 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
787 irq_unlock_sparse();
788
789 hotplug_cpu__broadcast_tick_pull(cpu);
790 /* This actually kills the CPU. */
791 __cpu_die(cpu);
792
793 tick_cleanup_dead_cpu(cpu);
794 rcutree_migrate_callbacks(cpu);
795 return 0;
796 }
797
798 static void cpuhp_complete_idle_dead(void *arg)
799 {
800 struct cpuhp_cpu_state *st = arg;
801
802 complete_ap_thread(st, false);
803 }
804
805 void cpuhp_report_idle_dead(void)
806 {
807 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
808
809 BUG_ON(st->state != CPUHP_AP_OFFLINE);
810 rcu_report_dead(smp_processor_id());
811 st->state = CPUHP_AP_IDLE_DEAD;
812 /*
813 * We cannot call complete after rcu_report_dead() so we delegate it
814 * to an online cpu.
815 */
816 smp_call_function_single(cpumask_first(cpu_online_mask),
817 cpuhp_complete_idle_dead, st, 0);
818 }
819
820 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
821 {
822 for (st->state++; st->state < st->target; st->state++) {
823 struct cpuhp_step *step = cpuhp_get_step(st->state);
824
825 if (!step->skip_onerr)
826 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
827 }
828 }
829
830 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
831 enum cpuhp_state target)
832 {
833 enum cpuhp_state prev_state = st->state;
834 int ret = 0;
835
836 for (; st->state > target; st->state--) {
837 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
838 if (ret) {
839 st->target = prev_state;
840 undo_cpu_down(cpu, st);
841 break;
842 }
843 }
844 return ret;
845 }
846
847 /* Requires cpu_add_remove_lock to be held */
848 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
849 enum cpuhp_state target)
850 {
851 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
852 int prev_state, ret = 0;
853
854 if (num_online_cpus() == 1)
855 return -EBUSY;
856
857 if (!cpu_present(cpu))
858 return -EINVAL;
859
860 cpus_write_lock();
861
862 cpuhp_tasks_frozen = tasks_frozen;
863
864 prev_state = cpuhp_set_state(st, target);
865 /*
866 * If the current CPU state is in the range of the AP hotplug thread,
867 * then we need to kick the thread.
868 */
869 if (st->state > CPUHP_TEARDOWN_CPU) {
870 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
871 ret = cpuhp_kick_ap_work(cpu);
872 /*
873 * The AP side has done the error rollback already. Just
874 * return the error code..
875 */
876 if (ret)
877 goto out;
878
879 /*
880 * We might have stopped still in the range of the AP hotplug
881 * thread. Nothing to do anymore.
882 */
883 if (st->state > CPUHP_TEARDOWN_CPU)
884 goto out;
885
886 st->target = target;
887 }
888 /*
889 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
890 * to do the further cleanups.
891 */
892 ret = cpuhp_down_callbacks(cpu, st, target);
893 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
894 cpuhp_reset_state(st, prev_state);
895 __cpuhp_kick_ap(st);
896 }
897
898 out:
899 cpus_write_unlock();
900 return ret;
901 }
902
903 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
904 {
905 int err;
906
907 cpu_maps_update_begin();
908
909 if (cpu_hotplug_disabled) {
910 err = -EBUSY;
911 goto out;
912 }
913
914 err = _cpu_down(cpu, 0, target);
915
916 out:
917 cpu_maps_update_done();
918 return err;
919 }
920
921 int cpu_down(unsigned int cpu)
922 {
923 return do_cpu_down(cpu, CPUHP_OFFLINE);
924 }
925 EXPORT_SYMBOL(cpu_down);
926
927 #else
928 #define takedown_cpu NULL
929 #endif /*CONFIG_HOTPLUG_CPU*/
930
931 /**
932 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
933 * @cpu: cpu that just started
934 *
935 * It must be called by the arch code on the new cpu, before the new cpu
936 * enables interrupts and before the "boot" cpu returns from __cpu_up().
937 */
938 void notify_cpu_starting(unsigned int cpu)
939 {
940 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
941 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
942 int ret;
943
944 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
945 while (st->state < target) {
946 st->state++;
947 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
948 /*
949 * STARTING must not fail!
950 */
951 WARN_ON_ONCE(ret);
952 }
953 }
954
955 /*
956 * Called from the idle task. Wake up the controlling task which brings the
957 * stopper and the hotplug thread of the upcoming CPU up and then delegates
958 * the rest of the online bringup to the hotplug thread.
959 */
960 void cpuhp_online_idle(enum cpuhp_state state)
961 {
962 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
963
964 /* Happens for the boot cpu */
965 if (state != CPUHP_AP_ONLINE_IDLE)
966 return;
967
968 st->state = CPUHP_AP_ONLINE_IDLE;
969 complete_ap_thread(st, true);
970 }
971
972 /* Requires cpu_add_remove_lock to be held */
973 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
974 {
975 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
976 struct task_struct *idle;
977 int ret = 0;
978
979 cpus_write_lock();
980
981 if (!cpu_present(cpu)) {
982 ret = -EINVAL;
983 goto out;
984 }
985
986 /*
987 * The caller of do_cpu_up might have raced with another
988 * caller. Ignore it for now.
989 */
990 if (st->state >= target)
991 goto out;
992
993 if (st->state == CPUHP_OFFLINE) {
994 /* Let it fail before we try to bring the cpu up */
995 idle = idle_thread_get(cpu);
996 if (IS_ERR(idle)) {
997 ret = PTR_ERR(idle);
998 goto out;
999 }
1000 }
1001
1002 cpuhp_tasks_frozen = tasks_frozen;
1003
1004 cpuhp_set_state(st, target);
1005 /*
1006 * If the current CPU state is in the range of the AP hotplug thread,
1007 * then we need to kick the thread once more.
1008 */
1009 if (st->state > CPUHP_BRINGUP_CPU) {
1010 ret = cpuhp_kick_ap_work(cpu);
1011 /*
1012 * The AP side has done the error rollback already. Just
1013 * return the error code..
1014 */
1015 if (ret)
1016 goto out;
1017 }
1018
1019 /*
1020 * Try to reach the target state. We max out on the BP at
1021 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1022 * responsible for bringing it up to the target state.
1023 */
1024 target = min((int)target, CPUHP_BRINGUP_CPU);
1025 ret = cpuhp_up_callbacks(cpu, st, target);
1026 out:
1027 cpus_write_unlock();
1028 return ret;
1029 }
1030
1031 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1032 {
1033 int err = 0;
1034
1035 if (!cpu_possible(cpu)) {
1036 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1037 cpu);
1038 #if defined(CONFIG_IA64)
1039 pr_err("please check additional_cpus= boot parameter\n");
1040 #endif
1041 return -EINVAL;
1042 }
1043
1044 err = try_online_node(cpu_to_node(cpu));
1045 if (err)
1046 return err;
1047
1048 cpu_maps_update_begin();
1049
1050 if (cpu_hotplug_disabled) {
1051 err = -EBUSY;
1052 goto out;
1053 }
1054
1055 err = _cpu_up(cpu, 0, target);
1056 out:
1057 cpu_maps_update_done();
1058 return err;
1059 }
1060
1061 int cpu_up(unsigned int cpu)
1062 {
1063 return do_cpu_up(cpu, CPUHP_ONLINE);
1064 }
1065 EXPORT_SYMBOL_GPL(cpu_up);
1066
1067 #ifdef CONFIG_PM_SLEEP_SMP
1068 static cpumask_var_t frozen_cpus;
1069
1070 int freeze_secondary_cpus(int primary)
1071 {
1072 int cpu, error = 0;
1073
1074 cpu_maps_update_begin();
1075 if (!cpu_online(primary))
1076 primary = cpumask_first(cpu_online_mask);
1077 /*
1078 * We take down all of the non-boot CPUs in one shot to avoid races
1079 * with the userspace trying to use the CPU hotplug at the same time
1080 */
1081 cpumask_clear(frozen_cpus);
1082
1083 pr_info("Disabling non-boot CPUs ...\n");
1084 for_each_online_cpu(cpu) {
1085 if (cpu == primary)
1086 continue;
1087 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1088 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1089 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1090 if (!error)
1091 cpumask_set_cpu(cpu, frozen_cpus);
1092 else {
1093 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1094 break;
1095 }
1096 }
1097
1098 if (!error)
1099 BUG_ON(num_online_cpus() > 1);
1100 else
1101 pr_err("Non-boot CPUs are not disabled\n");
1102
1103 /*
1104 * Make sure the CPUs won't be enabled by someone else. We need to do
1105 * this even in case of failure as all disable_nonboot_cpus() users are
1106 * supposed to do enable_nonboot_cpus() on the failure path.
1107 */
1108 cpu_hotplug_disabled++;
1109
1110 cpu_maps_update_done();
1111 return error;
1112 }
1113
1114 void __weak arch_enable_nonboot_cpus_begin(void)
1115 {
1116 }
1117
1118 void __weak arch_enable_nonboot_cpus_end(void)
1119 {
1120 }
1121
1122 void enable_nonboot_cpus(void)
1123 {
1124 int cpu, error;
1125
1126 /* Allow everyone to use the CPU hotplug again */
1127 cpu_maps_update_begin();
1128 __cpu_hotplug_enable();
1129 if (cpumask_empty(frozen_cpus))
1130 goto out;
1131
1132 pr_info("Enabling non-boot CPUs ...\n");
1133
1134 arch_enable_nonboot_cpus_begin();
1135
1136 for_each_cpu(cpu, frozen_cpus) {
1137 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1138 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1139 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1140 if (!error) {
1141 pr_info("CPU%d is up\n", cpu);
1142 continue;
1143 }
1144 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1145 }
1146
1147 arch_enable_nonboot_cpus_end();
1148
1149 cpumask_clear(frozen_cpus);
1150 out:
1151 cpu_maps_update_done();
1152 }
1153
1154 static int __init alloc_frozen_cpus(void)
1155 {
1156 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1157 return -ENOMEM;
1158 return 0;
1159 }
1160 core_initcall(alloc_frozen_cpus);
1161
1162 /*
1163 * When callbacks for CPU hotplug notifications are being executed, we must
1164 * ensure that the state of the system with respect to the tasks being frozen
1165 * or not, as reported by the notification, remains unchanged *throughout the
1166 * duration* of the execution of the callbacks.
1167 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1168 *
1169 * This synchronization is implemented by mutually excluding regular CPU
1170 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1171 * Hibernate notifications.
1172 */
1173 static int
1174 cpu_hotplug_pm_callback(struct notifier_block *nb,
1175 unsigned long action, void *ptr)
1176 {
1177 switch (action) {
1178
1179 case PM_SUSPEND_PREPARE:
1180 case PM_HIBERNATION_PREPARE:
1181 cpu_hotplug_disable();
1182 break;
1183
1184 case PM_POST_SUSPEND:
1185 case PM_POST_HIBERNATION:
1186 cpu_hotplug_enable();
1187 break;
1188
1189 default:
1190 return NOTIFY_DONE;
1191 }
1192
1193 return NOTIFY_OK;
1194 }
1195
1196
1197 static int __init cpu_hotplug_pm_sync_init(void)
1198 {
1199 /*
1200 * cpu_hotplug_pm_callback has higher priority than x86
1201 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1202 * to disable cpu hotplug to avoid cpu hotplug race.
1203 */
1204 pm_notifier(cpu_hotplug_pm_callback, 0);
1205 return 0;
1206 }
1207 core_initcall(cpu_hotplug_pm_sync_init);
1208
1209 #endif /* CONFIG_PM_SLEEP_SMP */
1210
1211 int __boot_cpu_id;
1212
1213 #endif /* CONFIG_SMP */
1214
1215 /* Boot processor state steps */
1216 static struct cpuhp_step cpuhp_bp_states[] = {
1217 [CPUHP_OFFLINE] = {
1218 .name = "offline",
1219 .startup.single = NULL,
1220 .teardown.single = NULL,
1221 },
1222 #ifdef CONFIG_SMP
1223 [CPUHP_CREATE_THREADS]= {
1224 .name = "threads:prepare",
1225 .startup.single = smpboot_create_threads,
1226 .teardown.single = NULL,
1227 .cant_stop = true,
1228 },
1229 [CPUHP_PERF_PREPARE] = {
1230 .name = "perf:prepare",
1231 .startup.single = perf_event_init_cpu,
1232 .teardown.single = perf_event_exit_cpu,
1233 },
1234 [CPUHP_WORKQUEUE_PREP] = {
1235 .name = "workqueue:prepare",
1236 .startup.single = workqueue_prepare_cpu,
1237 .teardown.single = NULL,
1238 },
1239 [CPUHP_HRTIMERS_PREPARE] = {
1240 .name = "hrtimers:prepare",
1241 .startup.single = hrtimers_prepare_cpu,
1242 .teardown.single = hrtimers_dead_cpu,
1243 },
1244 [CPUHP_SMPCFD_PREPARE] = {
1245 .name = "smpcfd:prepare",
1246 .startup.single = smpcfd_prepare_cpu,
1247 .teardown.single = smpcfd_dead_cpu,
1248 },
1249 [CPUHP_RELAY_PREPARE] = {
1250 .name = "relay:prepare",
1251 .startup.single = relay_prepare_cpu,
1252 .teardown.single = NULL,
1253 },
1254 [CPUHP_SLAB_PREPARE] = {
1255 .name = "slab:prepare",
1256 .startup.single = slab_prepare_cpu,
1257 .teardown.single = slab_dead_cpu,
1258 },
1259 [CPUHP_RCUTREE_PREP] = {
1260 .name = "RCU/tree:prepare",
1261 .startup.single = rcutree_prepare_cpu,
1262 .teardown.single = rcutree_dead_cpu,
1263 },
1264 /*
1265 * On the tear-down path, timers_dead_cpu() must be invoked
1266 * before blk_mq_queue_reinit_notify() from notify_dead(),
1267 * otherwise a RCU stall occurs.
1268 */
1269 [CPUHP_TIMERS_DEAD] = {
1270 .name = "timers:dead",
1271 .startup.single = NULL,
1272 .teardown.single = timers_dead_cpu,
1273 },
1274 /* Kicks the plugged cpu into life */
1275 [CPUHP_BRINGUP_CPU] = {
1276 .name = "cpu:bringup",
1277 .startup.single = bringup_cpu,
1278 .teardown.single = NULL,
1279 .cant_stop = true,
1280 },
1281 [CPUHP_AP_SMPCFD_DYING] = {
1282 .name = "smpcfd:dying",
1283 .startup.single = NULL,
1284 .teardown.single = smpcfd_dying_cpu,
1285 },
1286 /*
1287 * Handled on controll processor until the plugged processor manages
1288 * this itself.
1289 */
1290 [CPUHP_TEARDOWN_CPU] = {
1291 .name = "cpu:teardown",
1292 .startup.single = NULL,
1293 .teardown.single = takedown_cpu,
1294 .cant_stop = true,
1295 },
1296 #else
1297 [CPUHP_BRINGUP_CPU] = { },
1298 #endif
1299 };
1300
1301 /* Application processor state steps */
1302 static struct cpuhp_step cpuhp_ap_states[] = {
1303 #ifdef CONFIG_SMP
1304 /* Final state before CPU kills itself */
1305 [CPUHP_AP_IDLE_DEAD] = {
1306 .name = "idle:dead",
1307 },
1308 /*
1309 * Last state before CPU enters the idle loop to die. Transient state
1310 * for synchronization.
1311 */
1312 [CPUHP_AP_OFFLINE] = {
1313 .name = "ap:offline",
1314 .cant_stop = true,
1315 },
1316 /* First state is scheduler control. Interrupts are disabled */
1317 [CPUHP_AP_SCHED_STARTING] = {
1318 .name = "sched:starting",
1319 .startup.single = sched_cpu_starting,
1320 .teardown.single = sched_cpu_dying,
1321 },
1322 [CPUHP_AP_RCUTREE_DYING] = {
1323 .name = "RCU/tree:dying",
1324 .startup.single = NULL,
1325 .teardown.single = rcutree_dying_cpu,
1326 },
1327 /* Entry state on starting. Interrupts enabled from here on. Transient
1328 * state for synchronsization */
1329 [CPUHP_AP_ONLINE] = {
1330 .name = "ap:online",
1331 },
1332 /* Handle smpboot threads park/unpark */
1333 [CPUHP_AP_SMPBOOT_THREADS] = {
1334 .name = "smpboot/threads:online",
1335 .startup.single = smpboot_unpark_threads,
1336 .teardown.single = NULL,
1337 },
1338 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1339 .name = "irq/affinity:online",
1340 .startup.single = irq_affinity_online_cpu,
1341 .teardown.single = NULL,
1342 },
1343 [CPUHP_AP_PERF_ONLINE] = {
1344 .name = "perf:online",
1345 .startup.single = perf_event_init_cpu,
1346 .teardown.single = perf_event_exit_cpu,
1347 },
1348 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1349 .name = "workqueue:online",
1350 .startup.single = workqueue_online_cpu,
1351 .teardown.single = workqueue_offline_cpu,
1352 },
1353 [CPUHP_AP_RCUTREE_ONLINE] = {
1354 .name = "RCU/tree:online",
1355 .startup.single = rcutree_online_cpu,
1356 .teardown.single = rcutree_offline_cpu,
1357 },
1358 #endif
1359 /*
1360 * The dynamically registered state space is here
1361 */
1362
1363 #ifdef CONFIG_SMP
1364 /* Last state is scheduler control setting the cpu active */
1365 [CPUHP_AP_ACTIVE] = {
1366 .name = "sched:active",
1367 .startup.single = sched_cpu_activate,
1368 .teardown.single = sched_cpu_deactivate,
1369 },
1370 #endif
1371
1372 /* CPU is fully up and running. */
1373 [CPUHP_ONLINE] = {
1374 .name = "online",
1375 .startup.single = NULL,
1376 .teardown.single = NULL,
1377 },
1378 };
1379
1380 /* Sanity check for callbacks */
1381 static int cpuhp_cb_check(enum cpuhp_state state)
1382 {
1383 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1384 return -EINVAL;
1385 return 0;
1386 }
1387
1388 /*
1389 * Returns a free for dynamic slot assignment of the Online state. The states
1390 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1391 * by having no name assigned.
1392 */
1393 static int cpuhp_reserve_state(enum cpuhp_state state)
1394 {
1395 enum cpuhp_state i, end;
1396 struct cpuhp_step *step;
1397
1398 switch (state) {
1399 case CPUHP_AP_ONLINE_DYN:
1400 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1401 end = CPUHP_AP_ONLINE_DYN_END;
1402 break;
1403 case CPUHP_BP_PREPARE_DYN:
1404 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1405 end = CPUHP_BP_PREPARE_DYN_END;
1406 break;
1407 default:
1408 return -EINVAL;
1409 }
1410
1411 for (i = state; i <= end; i++, step++) {
1412 if (!step->name)
1413 return i;
1414 }
1415 WARN(1, "No more dynamic states available for CPU hotplug\n");
1416 return -ENOSPC;
1417 }
1418
1419 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1420 int (*startup)(unsigned int cpu),
1421 int (*teardown)(unsigned int cpu),
1422 bool multi_instance)
1423 {
1424 /* (Un)Install the callbacks for further cpu hotplug operations */
1425 struct cpuhp_step *sp;
1426 int ret = 0;
1427
1428 /*
1429 * If name is NULL, then the state gets removed.
1430 *
1431 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1432 * the first allocation from these dynamic ranges, so the removal
1433 * would trigger a new allocation and clear the wrong (already
1434 * empty) state, leaving the callbacks of the to be cleared state
1435 * dangling, which causes wreckage on the next hotplug operation.
1436 */
1437 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1438 state == CPUHP_BP_PREPARE_DYN)) {
1439 ret = cpuhp_reserve_state(state);
1440 if (ret < 0)
1441 return ret;
1442 state = ret;
1443 }
1444 sp = cpuhp_get_step(state);
1445 if (name && sp->name)
1446 return -EBUSY;
1447
1448 sp->startup.single = startup;
1449 sp->teardown.single = teardown;
1450 sp->name = name;
1451 sp->multi_instance = multi_instance;
1452 INIT_HLIST_HEAD(&sp->list);
1453 return ret;
1454 }
1455
1456 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1457 {
1458 return cpuhp_get_step(state)->teardown.single;
1459 }
1460
1461 /*
1462 * Call the startup/teardown function for a step either on the AP or
1463 * on the current CPU.
1464 */
1465 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1466 struct hlist_node *node)
1467 {
1468 struct cpuhp_step *sp = cpuhp_get_step(state);
1469 int ret;
1470
1471 /*
1472 * If there's nothing to do, we done.
1473 * Relies on the union for multi_instance.
1474 */
1475 if ((bringup && !sp->startup.single) ||
1476 (!bringup && !sp->teardown.single))
1477 return 0;
1478 /*
1479 * The non AP bound callbacks can fail on bringup. On teardown
1480 * e.g. module removal we crash for now.
1481 */
1482 #ifdef CONFIG_SMP
1483 if (cpuhp_is_ap_state(state))
1484 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1485 else
1486 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1487 #else
1488 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1489 #endif
1490 BUG_ON(ret && !bringup);
1491 return ret;
1492 }
1493
1494 /*
1495 * Called from __cpuhp_setup_state on a recoverable failure.
1496 *
1497 * Note: The teardown callbacks for rollback are not allowed to fail!
1498 */
1499 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1500 struct hlist_node *node)
1501 {
1502 int cpu;
1503
1504 /* Roll back the already executed steps on the other cpus */
1505 for_each_present_cpu(cpu) {
1506 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1507 int cpustate = st->state;
1508
1509 if (cpu >= failedcpu)
1510 break;
1511
1512 /* Did we invoke the startup call on that cpu ? */
1513 if (cpustate >= state)
1514 cpuhp_issue_call(cpu, state, false, node);
1515 }
1516 }
1517
1518 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1519 struct hlist_node *node,
1520 bool invoke)
1521 {
1522 struct cpuhp_step *sp;
1523 int cpu;
1524 int ret;
1525
1526 lockdep_assert_cpus_held();
1527
1528 sp = cpuhp_get_step(state);
1529 if (sp->multi_instance == false)
1530 return -EINVAL;
1531
1532 mutex_lock(&cpuhp_state_mutex);
1533
1534 if (!invoke || !sp->startup.multi)
1535 goto add_node;
1536
1537 /*
1538 * Try to call the startup callback for each present cpu
1539 * depending on the hotplug state of the cpu.
1540 */
1541 for_each_present_cpu(cpu) {
1542 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1543 int cpustate = st->state;
1544
1545 if (cpustate < state)
1546 continue;
1547
1548 ret = cpuhp_issue_call(cpu, state, true, node);
1549 if (ret) {
1550 if (sp->teardown.multi)
1551 cpuhp_rollback_install(cpu, state, node);
1552 goto unlock;
1553 }
1554 }
1555 add_node:
1556 ret = 0;
1557 hlist_add_head(node, &sp->list);
1558 unlock:
1559 mutex_unlock(&cpuhp_state_mutex);
1560 return ret;
1561 }
1562
1563 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1564 bool invoke)
1565 {
1566 int ret;
1567
1568 cpus_read_lock();
1569 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1570 cpus_read_unlock();
1571 return ret;
1572 }
1573 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1574
1575 /**
1576 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1577 * @state: The state to setup
1578 * @invoke: If true, the startup function is invoked for cpus where
1579 * cpu state >= @state
1580 * @startup: startup callback function
1581 * @teardown: teardown callback function
1582 * @multi_instance: State is set up for multiple instances which get
1583 * added afterwards.
1584 *
1585 * The caller needs to hold cpus read locked while calling this function.
1586 * Returns:
1587 * On success:
1588 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1589 * 0 for all other states
1590 * On failure: proper (negative) error code
1591 */
1592 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1593 const char *name, bool invoke,
1594 int (*startup)(unsigned int cpu),
1595 int (*teardown)(unsigned int cpu),
1596 bool multi_instance)
1597 {
1598 int cpu, ret = 0;
1599 bool dynstate;
1600
1601 lockdep_assert_cpus_held();
1602
1603 if (cpuhp_cb_check(state) || !name)
1604 return -EINVAL;
1605
1606 mutex_lock(&cpuhp_state_mutex);
1607
1608 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1609 multi_instance);
1610
1611 dynstate = state == CPUHP_AP_ONLINE_DYN;
1612 if (ret > 0 && dynstate) {
1613 state = ret;
1614 ret = 0;
1615 }
1616
1617 if (ret || !invoke || !startup)
1618 goto out;
1619
1620 /*
1621 * Try to call the startup callback for each present cpu
1622 * depending on the hotplug state of the cpu.
1623 */
1624 for_each_present_cpu(cpu) {
1625 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1626 int cpustate = st->state;
1627
1628 if (cpustate < state)
1629 continue;
1630
1631 ret = cpuhp_issue_call(cpu, state, true, NULL);
1632 if (ret) {
1633 if (teardown)
1634 cpuhp_rollback_install(cpu, state, NULL);
1635 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1636 goto out;
1637 }
1638 }
1639 out:
1640 mutex_unlock(&cpuhp_state_mutex);
1641 /*
1642 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1643 * dynamically allocated state in case of success.
1644 */
1645 if (!ret && dynstate)
1646 return state;
1647 return ret;
1648 }
1649 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1650
1651 int __cpuhp_setup_state(enum cpuhp_state state,
1652 const char *name, bool invoke,
1653 int (*startup)(unsigned int cpu),
1654 int (*teardown)(unsigned int cpu),
1655 bool multi_instance)
1656 {
1657 int ret;
1658
1659 cpus_read_lock();
1660 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1661 teardown, multi_instance);
1662 cpus_read_unlock();
1663 return ret;
1664 }
1665 EXPORT_SYMBOL(__cpuhp_setup_state);
1666
1667 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1668 struct hlist_node *node, bool invoke)
1669 {
1670 struct cpuhp_step *sp = cpuhp_get_step(state);
1671 int cpu;
1672
1673 BUG_ON(cpuhp_cb_check(state));
1674
1675 if (!sp->multi_instance)
1676 return -EINVAL;
1677
1678 cpus_read_lock();
1679 mutex_lock(&cpuhp_state_mutex);
1680
1681 if (!invoke || !cpuhp_get_teardown_cb(state))
1682 goto remove;
1683 /*
1684 * Call the teardown callback for each present cpu depending
1685 * on the hotplug state of the cpu. This function is not
1686 * allowed to fail currently!
1687 */
1688 for_each_present_cpu(cpu) {
1689 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1690 int cpustate = st->state;
1691
1692 if (cpustate >= state)
1693 cpuhp_issue_call(cpu, state, false, node);
1694 }
1695
1696 remove:
1697 hlist_del(node);
1698 mutex_unlock(&cpuhp_state_mutex);
1699 cpus_read_unlock();
1700
1701 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1704
1705 /**
1706 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1707 * @state: The state to remove
1708 * @invoke: If true, the teardown function is invoked for cpus where
1709 * cpu state >= @state
1710 *
1711 * The caller needs to hold cpus read locked while calling this function.
1712 * The teardown callback is currently not allowed to fail. Think
1713 * about module removal!
1714 */
1715 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1716 {
1717 struct cpuhp_step *sp = cpuhp_get_step(state);
1718 int cpu;
1719
1720 BUG_ON(cpuhp_cb_check(state));
1721
1722 lockdep_assert_cpus_held();
1723
1724 mutex_lock(&cpuhp_state_mutex);
1725 if (sp->multi_instance) {
1726 WARN(!hlist_empty(&sp->list),
1727 "Error: Removing state %d which has instances left.\n",
1728 state);
1729 goto remove;
1730 }
1731
1732 if (!invoke || !cpuhp_get_teardown_cb(state))
1733 goto remove;
1734
1735 /*
1736 * Call the teardown callback for each present cpu depending
1737 * on the hotplug state of the cpu. This function is not
1738 * allowed to fail currently!
1739 */
1740 for_each_present_cpu(cpu) {
1741 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1742 int cpustate = st->state;
1743
1744 if (cpustate >= state)
1745 cpuhp_issue_call(cpu, state, false, NULL);
1746 }
1747 remove:
1748 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1749 mutex_unlock(&cpuhp_state_mutex);
1750 }
1751 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1752
1753 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1754 {
1755 cpus_read_lock();
1756 __cpuhp_remove_state_cpuslocked(state, invoke);
1757 cpus_read_unlock();
1758 }
1759 EXPORT_SYMBOL(__cpuhp_remove_state);
1760
1761 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1762 static ssize_t show_cpuhp_state(struct device *dev,
1763 struct device_attribute *attr, char *buf)
1764 {
1765 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1766
1767 return sprintf(buf, "%d\n", st->state);
1768 }
1769 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1770
1771 static ssize_t write_cpuhp_target(struct device *dev,
1772 struct device_attribute *attr,
1773 const char *buf, size_t count)
1774 {
1775 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1776 struct cpuhp_step *sp;
1777 int target, ret;
1778
1779 ret = kstrtoint(buf, 10, &target);
1780 if (ret)
1781 return ret;
1782
1783 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1784 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1785 return -EINVAL;
1786 #else
1787 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1788 return -EINVAL;
1789 #endif
1790
1791 ret = lock_device_hotplug_sysfs();
1792 if (ret)
1793 return ret;
1794
1795 mutex_lock(&cpuhp_state_mutex);
1796 sp = cpuhp_get_step(target);
1797 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1798 mutex_unlock(&cpuhp_state_mutex);
1799 if (ret)
1800 goto out;
1801
1802 if (st->state < target)
1803 ret = do_cpu_up(dev->id, target);
1804 else
1805 ret = do_cpu_down(dev->id, target);
1806 out:
1807 unlock_device_hotplug();
1808 return ret ? ret : count;
1809 }
1810
1811 static ssize_t show_cpuhp_target(struct device *dev,
1812 struct device_attribute *attr, char *buf)
1813 {
1814 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1815
1816 return sprintf(buf, "%d\n", st->target);
1817 }
1818 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1819
1820
1821 static ssize_t write_cpuhp_fail(struct device *dev,
1822 struct device_attribute *attr,
1823 const char *buf, size_t count)
1824 {
1825 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1826 struct cpuhp_step *sp;
1827 int fail, ret;
1828
1829 ret = kstrtoint(buf, 10, &fail);
1830 if (ret)
1831 return ret;
1832
1833 /*
1834 * Cannot fail STARTING/DYING callbacks.
1835 */
1836 if (cpuhp_is_atomic_state(fail))
1837 return -EINVAL;
1838
1839 /*
1840 * Cannot fail anything that doesn't have callbacks.
1841 */
1842 mutex_lock(&cpuhp_state_mutex);
1843 sp = cpuhp_get_step(fail);
1844 if (!sp->startup.single && !sp->teardown.single)
1845 ret = -EINVAL;
1846 mutex_unlock(&cpuhp_state_mutex);
1847 if (ret)
1848 return ret;
1849
1850 st->fail = fail;
1851
1852 return count;
1853 }
1854
1855 static ssize_t show_cpuhp_fail(struct device *dev,
1856 struct device_attribute *attr, char *buf)
1857 {
1858 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1859
1860 return sprintf(buf, "%d\n", st->fail);
1861 }
1862
1863 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1864
1865 static struct attribute *cpuhp_cpu_attrs[] = {
1866 &dev_attr_state.attr,
1867 &dev_attr_target.attr,
1868 &dev_attr_fail.attr,
1869 NULL
1870 };
1871
1872 static const struct attribute_group cpuhp_cpu_attr_group = {
1873 .attrs = cpuhp_cpu_attrs,
1874 .name = "hotplug",
1875 NULL
1876 };
1877
1878 static ssize_t show_cpuhp_states(struct device *dev,
1879 struct device_attribute *attr, char *buf)
1880 {
1881 ssize_t cur, res = 0;
1882 int i;
1883
1884 mutex_lock(&cpuhp_state_mutex);
1885 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1886 struct cpuhp_step *sp = cpuhp_get_step(i);
1887
1888 if (sp->name) {
1889 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1890 buf += cur;
1891 res += cur;
1892 }
1893 }
1894 mutex_unlock(&cpuhp_state_mutex);
1895 return res;
1896 }
1897 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1898
1899 static struct attribute *cpuhp_cpu_root_attrs[] = {
1900 &dev_attr_states.attr,
1901 NULL
1902 };
1903
1904 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1905 .attrs = cpuhp_cpu_root_attrs,
1906 .name = "hotplug",
1907 NULL
1908 };
1909
1910 static int __init cpuhp_sysfs_init(void)
1911 {
1912 int cpu, ret;
1913
1914 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1915 &cpuhp_cpu_root_attr_group);
1916 if (ret)
1917 return ret;
1918
1919 for_each_possible_cpu(cpu) {
1920 struct device *dev = get_cpu_device(cpu);
1921
1922 if (!dev)
1923 continue;
1924 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1925 if (ret)
1926 return ret;
1927 }
1928 return 0;
1929 }
1930 device_initcall(cpuhp_sysfs_init);
1931 #endif
1932
1933 /*
1934 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1935 * represents all NR_CPUS bits binary values of 1<<nr.
1936 *
1937 * It is used by cpumask_of() to get a constant address to a CPU
1938 * mask value that has a single bit set only.
1939 */
1940
1941 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1942 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1943 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1944 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1945 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1946
1947 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1948
1949 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1950 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1951 #if BITS_PER_LONG > 32
1952 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1953 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1954 #endif
1955 };
1956 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1957
1958 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1959 EXPORT_SYMBOL(cpu_all_bits);
1960
1961 #ifdef CONFIG_INIT_ALL_POSSIBLE
1962 struct cpumask __cpu_possible_mask __read_mostly
1963 = {CPU_BITS_ALL};
1964 #else
1965 struct cpumask __cpu_possible_mask __read_mostly;
1966 #endif
1967 EXPORT_SYMBOL(__cpu_possible_mask);
1968
1969 struct cpumask __cpu_online_mask __read_mostly;
1970 EXPORT_SYMBOL(__cpu_online_mask);
1971
1972 struct cpumask __cpu_present_mask __read_mostly;
1973 EXPORT_SYMBOL(__cpu_present_mask);
1974
1975 struct cpumask __cpu_active_mask __read_mostly;
1976 EXPORT_SYMBOL(__cpu_active_mask);
1977
1978 void init_cpu_present(const struct cpumask *src)
1979 {
1980 cpumask_copy(&__cpu_present_mask, src);
1981 }
1982
1983 void init_cpu_possible(const struct cpumask *src)
1984 {
1985 cpumask_copy(&__cpu_possible_mask, src);
1986 }
1987
1988 void init_cpu_online(const struct cpumask *src)
1989 {
1990 cpumask_copy(&__cpu_online_mask, src);
1991 }
1992
1993 /*
1994 * Activate the first processor.
1995 */
1996 void __init boot_cpu_init(void)
1997 {
1998 int cpu = smp_processor_id();
1999
2000 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2001 set_cpu_online(cpu, true);
2002 set_cpu_active(cpu, true);
2003 set_cpu_present(cpu, true);
2004 set_cpu_possible(cpu, true);
2005
2006 #ifdef CONFIG_SMP
2007 __boot_cpu_id = cpu;
2008 #endif
2009 }
2010
2011 /*
2012 * Must be called _AFTER_ setting up the per_cpu areas
2013 */
2014 void __init boot_cpu_state_init(void)
2015 {
2016 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2017 }