]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cpu.c
ceph: fetch inline data when getting Fcr cap refs
[mirror_ubuntu-zesty-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <trace/events/power.h>
24
25 #include "smpboot.h"
26
27 #ifdef CONFIG_SMP
28 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
29 static DEFINE_MUTEX(cpu_add_remove_lock);
30
31 /*
32 * The following two APIs (cpu_maps_update_begin/done) must be used when
33 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
34 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
35 * hotplug callback (un)registration performed using __register_cpu_notifier()
36 * or __unregister_cpu_notifier().
37 */
38 void cpu_maps_update_begin(void)
39 {
40 mutex_lock(&cpu_add_remove_lock);
41 }
42 EXPORT_SYMBOL(cpu_notifier_register_begin);
43
44 void cpu_maps_update_done(void)
45 {
46 mutex_unlock(&cpu_add_remove_lock);
47 }
48 EXPORT_SYMBOL(cpu_notifier_register_done);
49
50 static RAW_NOTIFIER_HEAD(cpu_chain);
51
52 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
53 * Should always be manipulated under cpu_add_remove_lock
54 */
55 static int cpu_hotplug_disabled;
56
57 #ifdef CONFIG_HOTPLUG_CPU
58
59 static struct {
60 struct task_struct *active_writer;
61 struct mutex lock; /* Synchronizes accesses to refcount, */
62 /*
63 * Also blocks the new readers during
64 * an ongoing cpu hotplug operation.
65 */
66 int refcount;
67 /* And allows lockless put_online_cpus(). */
68 atomic_t puts_pending;
69
70 #ifdef CONFIG_DEBUG_LOCK_ALLOC
71 struct lockdep_map dep_map;
72 #endif
73 } cpu_hotplug = {
74 .active_writer = NULL,
75 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
76 .refcount = 0,
77 #ifdef CONFIG_DEBUG_LOCK_ALLOC
78 .dep_map = {.name = "cpu_hotplug.lock" },
79 #endif
80 };
81
82 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
83 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
84 #define cpuhp_lock_acquire_tryread() \
85 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
86 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
87 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
88
89 void get_online_cpus(void)
90 {
91 might_sleep();
92 if (cpu_hotplug.active_writer == current)
93 return;
94 cpuhp_lock_acquire_read();
95 mutex_lock(&cpu_hotplug.lock);
96 cpu_hotplug.refcount++;
97 mutex_unlock(&cpu_hotplug.lock);
98 }
99 EXPORT_SYMBOL_GPL(get_online_cpus);
100
101 bool try_get_online_cpus(void)
102 {
103 if (cpu_hotplug.active_writer == current)
104 return true;
105 if (!mutex_trylock(&cpu_hotplug.lock))
106 return false;
107 cpuhp_lock_acquire_tryread();
108 cpu_hotplug.refcount++;
109 mutex_unlock(&cpu_hotplug.lock);
110 return true;
111 }
112 EXPORT_SYMBOL_GPL(try_get_online_cpus);
113
114 void put_online_cpus(void)
115 {
116 if (cpu_hotplug.active_writer == current)
117 return;
118 if (!mutex_trylock(&cpu_hotplug.lock)) {
119 atomic_inc(&cpu_hotplug.puts_pending);
120 cpuhp_lock_release();
121 return;
122 }
123
124 if (WARN_ON(!cpu_hotplug.refcount))
125 cpu_hotplug.refcount++; /* try to fix things up */
126
127 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
128 wake_up_process(cpu_hotplug.active_writer);
129 mutex_unlock(&cpu_hotplug.lock);
130 cpuhp_lock_release();
131
132 }
133 EXPORT_SYMBOL_GPL(put_online_cpus);
134
135 /*
136 * This ensures that the hotplug operation can begin only when the
137 * refcount goes to zero.
138 *
139 * Note that during a cpu-hotplug operation, the new readers, if any,
140 * will be blocked by the cpu_hotplug.lock
141 *
142 * Since cpu_hotplug_begin() is always called after invoking
143 * cpu_maps_update_begin(), we can be sure that only one writer is active.
144 *
145 * Note that theoretically, there is a possibility of a livelock:
146 * - Refcount goes to zero, last reader wakes up the sleeping
147 * writer.
148 * - Last reader unlocks the cpu_hotplug.lock.
149 * - A new reader arrives at this moment, bumps up the refcount.
150 * - The writer acquires the cpu_hotplug.lock finds the refcount
151 * non zero and goes to sleep again.
152 *
153 * However, this is very difficult to achieve in practice since
154 * get_online_cpus() not an api which is called all that often.
155 *
156 */
157 void cpu_hotplug_begin(void)
158 {
159 cpu_hotplug.active_writer = current;
160
161 cpuhp_lock_acquire();
162 for (;;) {
163 mutex_lock(&cpu_hotplug.lock);
164 if (atomic_read(&cpu_hotplug.puts_pending)) {
165 int delta;
166
167 delta = atomic_xchg(&cpu_hotplug.puts_pending, 0);
168 cpu_hotplug.refcount -= delta;
169 }
170 if (likely(!cpu_hotplug.refcount))
171 break;
172 __set_current_state(TASK_UNINTERRUPTIBLE);
173 mutex_unlock(&cpu_hotplug.lock);
174 schedule();
175 }
176 }
177
178 void cpu_hotplug_done(void)
179 {
180 cpu_hotplug.active_writer = NULL;
181 mutex_unlock(&cpu_hotplug.lock);
182 cpuhp_lock_release();
183 }
184
185 /*
186 * Wait for currently running CPU hotplug operations to complete (if any) and
187 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
188 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
189 * hotplug path before performing hotplug operations. So acquiring that lock
190 * guarantees mutual exclusion from any currently running hotplug operations.
191 */
192 void cpu_hotplug_disable(void)
193 {
194 cpu_maps_update_begin();
195 cpu_hotplug_disabled = 1;
196 cpu_maps_update_done();
197 }
198
199 void cpu_hotplug_enable(void)
200 {
201 cpu_maps_update_begin();
202 cpu_hotplug_disabled = 0;
203 cpu_maps_update_done();
204 }
205
206 #endif /* CONFIG_HOTPLUG_CPU */
207
208 /* Need to know about CPUs going up/down? */
209 int __ref register_cpu_notifier(struct notifier_block *nb)
210 {
211 int ret;
212 cpu_maps_update_begin();
213 ret = raw_notifier_chain_register(&cpu_chain, nb);
214 cpu_maps_update_done();
215 return ret;
216 }
217
218 int __ref __register_cpu_notifier(struct notifier_block *nb)
219 {
220 return raw_notifier_chain_register(&cpu_chain, nb);
221 }
222
223 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
224 int *nr_calls)
225 {
226 int ret;
227
228 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
229 nr_calls);
230
231 return notifier_to_errno(ret);
232 }
233
234 static int cpu_notify(unsigned long val, void *v)
235 {
236 return __cpu_notify(val, v, -1, NULL);
237 }
238
239 #ifdef CONFIG_HOTPLUG_CPU
240
241 static void cpu_notify_nofail(unsigned long val, void *v)
242 {
243 BUG_ON(cpu_notify(val, v));
244 }
245 EXPORT_SYMBOL(register_cpu_notifier);
246 EXPORT_SYMBOL(__register_cpu_notifier);
247
248 void __ref unregister_cpu_notifier(struct notifier_block *nb)
249 {
250 cpu_maps_update_begin();
251 raw_notifier_chain_unregister(&cpu_chain, nb);
252 cpu_maps_update_done();
253 }
254 EXPORT_SYMBOL(unregister_cpu_notifier);
255
256 void __ref __unregister_cpu_notifier(struct notifier_block *nb)
257 {
258 raw_notifier_chain_unregister(&cpu_chain, nb);
259 }
260 EXPORT_SYMBOL(__unregister_cpu_notifier);
261
262 /**
263 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
264 * @cpu: a CPU id
265 *
266 * This function walks all processes, finds a valid mm struct for each one and
267 * then clears a corresponding bit in mm's cpumask. While this all sounds
268 * trivial, there are various non-obvious corner cases, which this function
269 * tries to solve in a safe manner.
270 *
271 * Also note that the function uses a somewhat relaxed locking scheme, so it may
272 * be called only for an already offlined CPU.
273 */
274 void clear_tasks_mm_cpumask(int cpu)
275 {
276 struct task_struct *p;
277
278 /*
279 * This function is called after the cpu is taken down and marked
280 * offline, so its not like new tasks will ever get this cpu set in
281 * their mm mask. -- Peter Zijlstra
282 * Thus, we may use rcu_read_lock() here, instead of grabbing
283 * full-fledged tasklist_lock.
284 */
285 WARN_ON(cpu_online(cpu));
286 rcu_read_lock();
287 for_each_process(p) {
288 struct task_struct *t;
289
290 /*
291 * Main thread might exit, but other threads may still have
292 * a valid mm. Find one.
293 */
294 t = find_lock_task_mm(p);
295 if (!t)
296 continue;
297 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
298 task_unlock(t);
299 }
300 rcu_read_unlock();
301 }
302
303 static inline void check_for_tasks(int dead_cpu)
304 {
305 struct task_struct *g, *p;
306
307 read_lock_irq(&tasklist_lock);
308 do_each_thread(g, p) {
309 if (!p->on_rq)
310 continue;
311 /*
312 * We do the check with unlocked task_rq(p)->lock.
313 * Order the reading to do not warn about a task,
314 * which was running on this cpu in the past, and
315 * it's just been woken on another cpu.
316 */
317 rmb();
318 if (task_cpu(p) != dead_cpu)
319 continue;
320
321 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
322 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
323 } while_each_thread(g, p);
324 read_unlock_irq(&tasklist_lock);
325 }
326
327 struct take_cpu_down_param {
328 unsigned long mod;
329 void *hcpu;
330 };
331
332 /* Take this CPU down. */
333 static int __ref take_cpu_down(void *_param)
334 {
335 struct take_cpu_down_param *param = _param;
336 int err;
337
338 /* Ensure this CPU doesn't handle any more interrupts. */
339 err = __cpu_disable();
340 if (err < 0)
341 return err;
342
343 cpu_notify(CPU_DYING | param->mod, param->hcpu);
344 /* Park the stopper thread */
345 kthread_park(current);
346 return 0;
347 }
348
349 /* Requires cpu_add_remove_lock to be held */
350 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
351 {
352 int err, nr_calls = 0;
353 void *hcpu = (void *)(long)cpu;
354 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
355 struct take_cpu_down_param tcd_param = {
356 .mod = mod,
357 .hcpu = hcpu,
358 };
359
360 if (num_online_cpus() == 1)
361 return -EBUSY;
362
363 if (!cpu_online(cpu))
364 return -EINVAL;
365
366 cpu_hotplug_begin();
367
368 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
369 if (err) {
370 nr_calls--;
371 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
372 pr_warn("%s: attempt to take down CPU %u failed\n",
373 __func__, cpu);
374 goto out_release;
375 }
376
377 /*
378 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
379 * and RCU users of this state to go away such that all new such users
380 * will observe it.
381 *
382 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
383 * not imply sync_sched(), so explicitly call both.
384 *
385 * Do sync before park smpboot threads to take care the rcu boost case.
386 */
387 #ifdef CONFIG_PREEMPT
388 synchronize_sched();
389 #endif
390 synchronize_rcu();
391
392 smpboot_park_threads(cpu);
393
394 /*
395 * So now all preempt/rcu users must observe !cpu_active().
396 */
397
398 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
399 if (err) {
400 /* CPU didn't die: tell everyone. Can't complain. */
401 smpboot_unpark_threads(cpu);
402 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
403 goto out_release;
404 }
405 BUG_ON(cpu_online(cpu));
406
407 /*
408 * The migration_call() CPU_DYING callback will have removed all
409 * runnable tasks from the cpu, there's only the idle task left now
410 * that the migration thread is done doing the stop_machine thing.
411 *
412 * Wait for the stop thread to go away.
413 */
414 while (!idle_cpu(cpu))
415 cpu_relax();
416
417 /* This actually kills the CPU. */
418 __cpu_die(cpu);
419
420 /* CPU is completely dead: tell everyone. Too late to complain. */
421 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
422
423 check_for_tasks(cpu);
424
425 out_release:
426 cpu_hotplug_done();
427 if (!err)
428 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
429 return err;
430 }
431
432 int __ref cpu_down(unsigned int cpu)
433 {
434 int err;
435
436 cpu_maps_update_begin();
437
438 if (cpu_hotplug_disabled) {
439 err = -EBUSY;
440 goto out;
441 }
442
443 err = _cpu_down(cpu, 0);
444
445 out:
446 cpu_maps_update_done();
447 return err;
448 }
449 EXPORT_SYMBOL(cpu_down);
450 #endif /*CONFIG_HOTPLUG_CPU*/
451
452 /* Requires cpu_add_remove_lock to be held */
453 static int _cpu_up(unsigned int cpu, int tasks_frozen)
454 {
455 int ret, nr_calls = 0;
456 void *hcpu = (void *)(long)cpu;
457 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
458 struct task_struct *idle;
459
460 cpu_hotplug_begin();
461
462 if (cpu_online(cpu) || !cpu_present(cpu)) {
463 ret = -EINVAL;
464 goto out;
465 }
466
467 idle = idle_thread_get(cpu);
468 if (IS_ERR(idle)) {
469 ret = PTR_ERR(idle);
470 goto out;
471 }
472
473 ret = smpboot_create_threads(cpu);
474 if (ret)
475 goto out;
476
477 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
478 if (ret) {
479 nr_calls--;
480 pr_warn("%s: attempt to bring up CPU %u failed\n",
481 __func__, cpu);
482 goto out_notify;
483 }
484
485 /* Arch-specific enabling code. */
486 ret = __cpu_up(cpu, idle);
487 if (ret != 0)
488 goto out_notify;
489 BUG_ON(!cpu_online(cpu));
490
491 /* Wake the per cpu threads */
492 smpboot_unpark_threads(cpu);
493
494 /* Now call notifier in preparation. */
495 cpu_notify(CPU_ONLINE | mod, hcpu);
496
497 out_notify:
498 if (ret != 0)
499 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
500 out:
501 cpu_hotplug_done();
502
503 return ret;
504 }
505
506 int cpu_up(unsigned int cpu)
507 {
508 int err = 0;
509
510 if (!cpu_possible(cpu)) {
511 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
512 cpu);
513 #if defined(CONFIG_IA64)
514 pr_err("please check additional_cpus= boot parameter\n");
515 #endif
516 return -EINVAL;
517 }
518
519 err = try_online_node(cpu_to_node(cpu));
520 if (err)
521 return err;
522
523 cpu_maps_update_begin();
524
525 if (cpu_hotplug_disabled) {
526 err = -EBUSY;
527 goto out;
528 }
529
530 err = _cpu_up(cpu, 0);
531
532 out:
533 cpu_maps_update_done();
534 return err;
535 }
536 EXPORT_SYMBOL_GPL(cpu_up);
537
538 #ifdef CONFIG_PM_SLEEP_SMP
539 static cpumask_var_t frozen_cpus;
540
541 int disable_nonboot_cpus(void)
542 {
543 int cpu, first_cpu, error = 0;
544
545 cpu_maps_update_begin();
546 first_cpu = cpumask_first(cpu_online_mask);
547 /*
548 * We take down all of the non-boot CPUs in one shot to avoid races
549 * with the userspace trying to use the CPU hotplug at the same time
550 */
551 cpumask_clear(frozen_cpus);
552
553 pr_info("Disabling non-boot CPUs ...\n");
554 for_each_online_cpu(cpu) {
555 if (cpu == first_cpu)
556 continue;
557 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
558 error = _cpu_down(cpu, 1);
559 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
560 if (!error)
561 cpumask_set_cpu(cpu, frozen_cpus);
562 else {
563 pr_err("Error taking CPU%d down: %d\n", cpu, error);
564 break;
565 }
566 }
567
568 if (!error) {
569 BUG_ON(num_online_cpus() > 1);
570 /* Make sure the CPUs won't be enabled by someone else */
571 cpu_hotplug_disabled = 1;
572 } else {
573 pr_err("Non-boot CPUs are not disabled\n");
574 }
575 cpu_maps_update_done();
576 return error;
577 }
578
579 void __weak arch_enable_nonboot_cpus_begin(void)
580 {
581 }
582
583 void __weak arch_enable_nonboot_cpus_end(void)
584 {
585 }
586
587 void __ref enable_nonboot_cpus(void)
588 {
589 int cpu, error;
590
591 /* Allow everyone to use the CPU hotplug again */
592 cpu_maps_update_begin();
593 cpu_hotplug_disabled = 0;
594 if (cpumask_empty(frozen_cpus))
595 goto out;
596
597 pr_info("Enabling non-boot CPUs ...\n");
598
599 arch_enable_nonboot_cpus_begin();
600
601 for_each_cpu(cpu, frozen_cpus) {
602 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
603 error = _cpu_up(cpu, 1);
604 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
605 if (!error) {
606 pr_info("CPU%d is up\n", cpu);
607 continue;
608 }
609 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
610 }
611
612 arch_enable_nonboot_cpus_end();
613
614 cpumask_clear(frozen_cpus);
615 out:
616 cpu_maps_update_done();
617 }
618
619 static int __init alloc_frozen_cpus(void)
620 {
621 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
622 return -ENOMEM;
623 return 0;
624 }
625 core_initcall(alloc_frozen_cpus);
626
627 /*
628 * When callbacks for CPU hotplug notifications are being executed, we must
629 * ensure that the state of the system with respect to the tasks being frozen
630 * or not, as reported by the notification, remains unchanged *throughout the
631 * duration* of the execution of the callbacks.
632 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
633 *
634 * This synchronization is implemented by mutually excluding regular CPU
635 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
636 * Hibernate notifications.
637 */
638 static int
639 cpu_hotplug_pm_callback(struct notifier_block *nb,
640 unsigned long action, void *ptr)
641 {
642 switch (action) {
643
644 case PM_SUSPEND_PREPARE:
645 case PM_HIBERNATION_PREPARE:
646 cpu_hotplug_disable();
647 break;
648
649 case PM_POST_SUSPEND:
650 case PM_POST_HIBERNATION:
651 cpu_hotplug_enable();
652 break;
653
654 default:
655 return NOTIFY_DONE;
656 }
657
658 return NOTIFY_OK;
659 }
660
661
662 static int __init cpu_hotplug_pm_sync_init(void)
663 {
664 /*
665 * cpu_hotplug_pm_callback has higher priority than x86
666 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
667 * to disable cpu hotplug to avoid cpu hotplug race.
668 */
669 pm_notifier(cpu_hotplug_pm_callback, 0);
670 return 0;
671 }
672 core_initcall(cpu_hotplug_pm_sync_init);
673
674 #endif /* CONFIG_PM_SLEEP_SMP */
675
676 /**
677 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
678 * @cpu: cpu that just started
679 *
680 * This function calls the cpu_chain notifiers with CPU_STARTING.
681 * It must be called by the arch code on the new cpu, before the new cpu
682 * enables interrupts and before the "boot" cpu returns from __cpu_up().
683 */
684 void notify_cpu_starting(unsigned int cpu)
685 {
686 unsigned long val = CPU_STARTING;
687
688 #ifdef CONFIG_PM_SLEEP_SMP
689 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
690 val = CPU_STARTING_FROZEN;
691 #endif /* CONFIG_PM_SLEEP_SMP */
692 cpu_notify(val, (void *)(long)cpu);
693 }
694
695 #endif /* CONFIG_SMP */
696
697 /*
698 * cpu_bit_bitmap[] is a special, "compressed" data structure that
699 * represents all NR_CPUS bits binary values of 1<<nr.
700 *
701 * It is used by cpumask_of() to get a constant address to a CPU
702 * mask value that has a single bit set only.
703 */
704
705 /* cpu_bit_bitmap[0] is empty - so we can back into it */
706 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
707 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
708 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
709 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
710
711 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
712
713 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
714 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
715 #if BITS_PER_LONG > 32
716 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
717 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
718 #endif
719 };
720 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
721
722 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
723 EXPORT_SYMBOL(cpu_all_bits);
724
725 #ifdef CONFIG_INIT_ALL_POSSIBLE
726 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
727 = CPU_BITS_ALL;
728 #else
729 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
730 #endif
731 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
732 EXPORT_SYMBOL(cpu_possible_mask);
733
734 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
735 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
736 EXPORT_SYMBOL(cpu_online_mask);
737
738 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
739 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
740 EXPORT_SYMBOL(cpu_present_mask);
741
742 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
743 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
744 EXPORT_SYMBOL(cpu_active_mask);
745
746 void set_cpu_possible(unsigned int cpu, bool possible)
747 {
748 if (possible)
749 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
750 else
751 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
752 }
753
754 void set_cpu_present(unsigned int cpu, bool present)
755 {
756 if (present)
757 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
758 else
759 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
760 }
761
762 void set_cpu_online(unsigned int cpu, bool online)
763 {
764 if (online) {
765 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
766 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
767 } else {
768 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
769 }
770 }
771
772 void set_cpu_active(unsigned int cpu, bool active)
773 {
774 if (active)
775 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
776 else
777 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
778 }
779
780 void init_cpu_present(const struct cpumask *src)
781 {
782 cpumask_copy(to_cpumask(cpu_present_bits), src);
783 }
784
785 void init_cpu_possible(const struct cpumask *src)
786 {
787 cpumask_copy(to_cpumask(cpu_possible_bits), src);
788 }
789
790 void init_cpu_online(const struct cpumask *src)
791 {
792 cpumask_copy(to_cpumask(cpu_online_bits), src);
793 }