]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cpu.c
init/Kconfig: move the trusted keyring config option to general setup
[mirror_ubuntu-bionic-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23
24 #include "smpboot.h"
25
26 #ifdef CONFIG_SMP
27 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
28 static DEFINE_MUTEX(cpu_add_remove_lock);
29
30 /*
31 * The following two APIs (cpu_maps_update_begin/done) must be used when
32 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
33 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
34 * hotplug callback (un)registration performed using __register_cpu_notifier()
35 * or __unregister_cpu_notifier().
36 */
37 void cpu_maps_update_begin(void)
38 {
39 mutex_lock(&cpu_add_remove_lock);
40 }
41 EXPORT_SYMBOL(cpu_notifier_register_begin);
42
43 void cpu_maps_update_done(void)
44 {
45 mutex_unlock(&cpu_add_remove_lock);
46 }
47 EXPORT_SYMBOL(cpu_notifier_register_done);
48
49 static RAW_NOTIFIER_HEAD(cpu_chain);
50
51 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
52 * Should always be manipulated under cpu_add_remove_lock
53 */
54 static int cpu_hotplug_disabled;
55
56 #ifdef CONFIG_HOTPLUG_CPU
57
58 static struct {
59 struct task_struct *active_writer;
60 struct mutex lock; /* Synchronizes accesses to refcount, */
61 /*
62 * Also blocks the new readers during
63 * an ongoing cpu hotplug operation.
64 */
65 int refcount;
66
67 #ifdef CONFIG_DEBUG_LOCK_ALLOC
68 struct lockdep_map dep_map;
69 #endif
70 } cpu_hotplug = {
71 .active_writer = NULL,
72 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
73 .refcount = 0,
74 #ifdef CONFIG_DEBUG_LOCK_ALLOC
75 .dep_map = {.name = "cpu_hotplug.lock" },
76 #endif
77 };
78
79 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
80 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
81 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
82 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
83
84 void get_online_cpus(void)
85 {
86 might_sleep();
87 if (cpu_hotplug.active_writer == current)
88 return;
89 cpuhp_lock_acquire_read();
90 mutex_lock(&cpu_hotplug.lock);
91 cpu_hotplug.refcount++;
92 mutex_unlock(&cpu_hotplug.lock);
93
94 }
95 EXPORT_SYMBOL_GPL(get_online_cpus);
96
97 void put_online_cpus(void)
98 {
99 if (cpu_hotplug.active_writer == current)
100 return;
101 mutex_lock(&cpu_hotplug.lock);
102
103 if (WARN_ON(!cpu_hotplug.refcount))
104 cpu_hotplug.refcount++; /* try to fix things up */
105
106 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
107 wake_up_process(cpu_hotplug.active_writer);
108 mutex_unlock(&cpu_hotplug.lock);
109 cpuhp_lock_release();
110
111 }
112 EXPORT_SYMBOL_GPL(put_online_cpus);
113
114 /*
115 * This ensures that the hotplug operation can begin only when the
116 * refcount goes to zero.
117 *
118 * Note that during a cpu-hotplug operation, the new readers, if any,
119 * will be blocked by the cpu_hotplug.lock
120 *
121 * Since cpu_hotplug_begin() is always called after invoking
122 * cpu_maps_update_begin(), we can be sure that only one writer is active.
123 *
124 * Note that theoretically, there is a possibility of a livelock:
125 * - Refcount goes to zero, last reader wakes up the sleeping
126 * writer.
127 * - Last reader unlocks the cpu_hotplug.lock.
128 * - A new reader arrives at this moment, bumps up the refcount.
129 * - The writer acquires the cpu_hotplug.lock finds the refcount
130 * non zero and goes to sleep again.
131 *
132 * However, this is very difficult to achieve in practice since
133 * get_online_cpus() not an api which is called all that often.
134 *
135 */
136 void cpu_hotplug_begin(void)
137 {
138 cpu_hotplug.active_writer = current;
139
140 cpuhp_lock_acquire();
141 for (;;) {
142 mutex_lock(&cpu_hotplug.lock);
143 if (likely(!cpu_hotplug.refcount))
144 break;
145 __set_current_state(TASK_UNINTERRUPTIBLE);
146 mutex_unlock(&cpu_hotplug.lock);
147 schedule();
148 }
149 }
150
151 void cpu_hotplug_done(void)
152 {
153 cpu_hotplug.active_writer = NULL;
154 mutex_unlock(&cpu_hotplug.lock);
155 cpuhp_lock_release();
156 }
157
158 /*
159 * Wait for currently running CPU hotplug operations to complete (if any) and
160 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
161 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
162 * hotplug path before performing hotplug operations. So acquiring that lock
163 * guarantees mutual exclusion from any currently running hotplug operations.
164 */
165 void cpu_hotplug_disable(void)
166 {
167 cpu_maps_update_begin();
168 cpu_hotplug_disabled = 1;
169 cpu_maps_update_done();
170 }
171
172 void cpu_hotplug_enable(void)
173 {
174 cpu_maps_update_begin();
175 cpu_hotplug_disabled = 0;
176 cpu_maps_update_done();
177 }
178
179 #endif /* CONFIG_HOTPLUG_CPU */
180
181 /* Need to know about CPUs going up/down? */
182 int __ref register_cpu_notifier(struct notifier_block *nb)
183 {
184 int ret;
185 cpu_maps_update_begin();
186 ret = raw_notifier_chain_register(&cpu_chain, nb);
187 cpu_maps_update_done();
188 return ret;
189 }
190
191 int __ref __register_cpu_notifier(struct notifier_block *nb)
192 {
193 return raw_notifier_chain_register(&cpu_chain, nb);
194 }
195
196 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
197 int *nr_calls)
198 {
199 int ret;
200
201 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
202 nr_calls);
203
204 return notifier_to_errno(ret);
205 }
206
207 static int cpu_notify(unsigned long val, void *v)
208 {
209 return __cpu_notify(val, v, -1, NULL);
210 }
211
212 #ifdef CONFIG_HOTPLUG_CPU
213
214 static void cpu_notify_nofail(unsigned long val, void *v)
215 {
216 BUG_ON(cpu_notify(val, v));
217 }
218 EXPORT_SYMBOL(register_cpu_notifier);
219 EXPORT_SYMBOL(__register_cpu_notifier);
220
221 void __ref unregister_cpu_notifier(struct notifier_block *nb)
222 {
223 cpu_maps_update_begin();
224 raw_notifier_chain_unregister(&cpu_chain, nb);
225 cpu_maps_update_done();
226 }
227 EXPORT_SYMBOL(unregister_cpu_notifier);
228
229 void __ref __unregister_cpu_notifier(struct notifier_block *nb)
230 {
231 raw_notifier_chain_unregister(&cpu_chain, nb);
232 }
233 EXPORT_SYMBOL(__unregister_cpu_notifier);
234
235 /**
236 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
237 * @cpu: a CPU id
238 *
239 * This function walks all processes, finds a valid mm struct for each one and
240 * then clears a corresponding bit in mm's cpumask. While this all sounds
241 * trivial, there are various non-obvious corner cases, which this function
242 * tries to solve in a safe manner.
243 *
244 * Also note that the function uses a somewhat relaxed locking scheme, so it may
245 * be called only for an already offlined CPU.
246 */
247 void clear_tasks_mm_cpumask(int cpu)
248 {
249 struct task_struct *p;
250
251 /*
252 * This function is called after the cpu is taken down and marked
253 * offline, so its not like new tasks will ever get this cpu set in
254 * their mm mask. -- Peter Zijlstra
255 * Thus, we may use rcu_read_lock() here, instead of grabbing
256 * full-fledged tasklist_lock.
257 */
258 WARN_ON(cpu_online(cpu));
259 rcu_read_lock();
260 for_each_process(p) {
261 struct task_struct *t;
262
263 /*
264 * Main thread might exit, but other threads may still have
265 * a valid mm. Find one.
266 */
267 t = find_lock_task_mm(p);
268 if (!t)
269 continue;
270 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
271 task_unlock(t);
272 }
273 rcu_read_unlock();
274 }
275
276 static inline void check_for_tasks(int cpu)
277 {
278 struct task_struct *p;
279 cputime_t utime, stime;
280
281 write_lock_irq(&tasklist_lock);
282 for_each_process(p) {
283 task_cputime(p, &utime, &stime);
284 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
285 (utime || stime))
286 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
287 "(state = %ld, flags = %x)\n",
288 p->comm, task_pid_nr(p), cpu,
289 p->state, p->flags);
290 }
291 write_unlock_irq(&tasklist_lock);
292 }
293
294 struct take_cpu_down_param {
295 unsigned long mod;
296 void *hcpu;
297 };
298
299 /* Take this CPU down. */
300 static int __ref take_cpu_down(void *_param)
301 {
302 struct take_cpu_down_param *param = _param;
303 int err;
304
305 /* Ensure this CPU doesn't handle any more interrupts. */
306 err = __cpu_disable();
307 if (err < 0)
308 return err;
309
310 cpu_notify(CPU_DYING | param->mod, param->hcpu);
311 /* Park the stopper thread */
312 kthread_park(current);
313 return 0;
314 }
315
316 /* Requires cpu_add_remove_lock to be held */
317 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
318 {
319 int err, nr_calls = 0;
320 void *hcpu = (void *)(long)cpu;
321 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
322 struct take_cpu_down_param tcd_param = {
323 .mod = mod,
324 .hcpu = hcpu,
325 };
326
327 if (num_online_cpus() == 1)
328 return -EBUSY;
329
330 if (!cpu_online(cpu))
331 return -EINVAL;
332
333 cpu_hotplug_begin();
334
335 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
336 if (err) {
337 nr_calls--;
338 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
339 printk("%s: attempt to take down CPU %u failed\n",
340 __func__, cpu);
341 goto out_release;
342 }
343
344 /*
345 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
346 * and RCU users of this state to go away such that all new such users
347 * will observe it.
348 *
349 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
350 * not imply sync_sched(), so explicitly call both.
351 *
352 * Do sync before park smpboot threads to take care the rcu boost case.
353 */
354 #ifdef CONFIG_PREEMPT
355 synchronize_sched();
356 #endif
357 synchronize_rcu();
358
359 smpboot_park_threads(cpu);
360
361 /*
362 * So now all preempt/rcu users must observe !cpu_active().
363 */
364
365 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
366 if (err) {
367 /* CPU didn't die: tell everyone. Can't complain. */
368 smpboot_unpark_threads(cpu);
369 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
370 goto out_release;
371 }
372 BUG_ON(cpu_online(cpu));
373
374 /*
375 * The migration_call() CPU_DYING callback will have removed all
376 * runnable tasks from the cpu, there's only the idle task left now
377 * that the migration thread is done doing the stop_machine thing.
378 *
379 * Wait for the stop thread to go away.
380 */
381 while (!idle_cpu(cpu))
382 cpu_relax();
383
384 /* This actually kills the CPU. */
385 __cpu_die(cpu);
386
387 /* CPU is completely dead: tell everyone. Too late to complain. */
388 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
389
390 check_for_tasks(cpu);
391
392 out_release:
393 cpu_hotplug_done();
394 if (!err)
395 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
396 return err;
397 }
398
399 int __ref cpu_down(unsigned int cpu)
400 {
401 int err;
402
403 cpu_maps_update_begin();
404
405 if (cpu_hotplug_disabled) {
406 err = -EBUSY;
407 goto out;
408 }
409
410 err = _cpu_down(cpu, 0);
411
412 out:
413 cpu_maps_update_done();
414 return err;
415 }
416 EXPORT_SYMBOL(cpu_down);
417 #endif /*CONFIG_HOTPLUG_CPU*/
418
419 /* Requires cpu_add_remove_lock to be held */
420 static int _cpu_up(unsigned int cpu, int tasks_frozen)
421 {
422 int ret, nr_calls = 0;
423 void *hcpu = (void *)(long)cpu;
424 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
425 struct task_struct *idle;
426
427 cpu_hotplug_begin();
428
429 if (cpu_online(cpu) || !cpu_present(cpu)) {
430 ret = -EINVAL;
431 goto out;
432 }
433
434 idle = idle_thread_get(cpu);
435 if (IS_ERR(idle)) {
436 ret = PTR_ERR(idle);
437 goto out;
438 }
439
440 ret = smpboot_create_threads(cpu);
441 if (ret)
442 goto out;
443
444 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
445 if (ret) {
446 nr_calls--;
447 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
448 __func__, cpu);
449 goto out_notify;
450 }
451
452 /* Arch-specific enabling code. */
453 ret = __cpu_up(cpu, idle);
454 if (ret != 0)
455 goto out_notify;
456 BUG_ON(!cpu_online(cpu));
457
458 /* Wake the per cpu threads */
459 smpboot_unpark_threads(cpu);
460
461 /* Now call notifier in preparation. */
462 cpu_notify(CPU_ONLINE | mod, hcpu);
463
464 out_notify:
465 if (ret != 0)
466 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
467 out:
468 cpu_hotplug_done();
469
470 return ret;
471 }
472
473 int cpu_up(unsigned int cpu)
474 {
475 int err = 0;
476
477 if (!cpu_possible(cpu)) {
478 printk(KERN_ERR "can't online cpu %d because it is not "
479 "configured as may-hotadd at boot time\n", cpu);
480 #if defined(CONFIG_IA64)
481 printk(KERN_ERR "please check additional_cpus= boot "
482 "parameter\n");
483 #endif
484 return -EINVAL;
485 }
486
487 err = try_online_node(cpu_to_node(cpu));
488 if (err)
489 return err;
490
491 cpu_maps_update_begin();
492
493 if (cpu_hotplug_disabled) {
494 err = -EBUSY;
495 goto out;
496 }
497
498 err = _cpu_up(cpu, 0);
499
500 out:
501 cpu_maps_update_done();
502 return err;
503 }
504 EXPORT_SYMBOL_GPL(cpu_up);
505
506 #ifdef CONFIG_PM_SLEEP_SMP
507 static cpumask_var_t frozen_cpus;
508
509 int disable_nonboot_cpus(void)
510 {
511 int cpu, first_cpu, error = 0;
512
513 cpu_maps_update_begin();
514 first_cpu = cpumask_first(cpu_online_mask);
515 /*
516 * We take down all of the non-boot CPUs in one shot to avoid races
517 * with the userspace trying to use the CPU hotplug at the same time
518 */
519 cpumask_clear(frozen_cpus);
520
521 printk("Disabling non-boot CPUs ...\n");
522 for_each_online_cpu(cpu) {
523 if (cpu == first_cpu)
524 continue;
525 error = _cpu_down(cpu, 1);
526 if (!error)
527 cpumask_set_cpu(cpu, frozen_cpus);
528 else {
529 printk(KERN_ERR "Error taking CPU%d down: %d\n",
530 cpu, error);
531 break;
532 }
533 }
534
535 if (!error) {
536 BUG_ON(num_online_cpus() > 1);
537 /* Make sure the CPUs won't be enabled by someone else */
538 cpu_hotplug_disabled = 1;
539 } else {
540 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
541 }
542 cpu_maps_update_done();
543 return error;
544 }
545
546 void __weak arch_enable_nonboot_cpus_begin(void)
547 {
548 }
549
550 void __weak arch_enable_nonboot_cpus_end(void)
551 {
552 }
553
554 void __ref enable_nonboot_cpus(void)
555 {
556 int cpu, error;
557
558 /* Allow everyone to use the CPU hotplug again */
559 cpu_maps_update_begin();
560 cpu_hotplug_disabled = 0;
561 if (cpumask_empty(frozen_cpus))
562 goto out;
563
564 printk(KERN_INFO "Enabling non-boot CPUs ...\n");
565
566 arch_enable_nonboot_cpus_begin();
567
568 for_each_cpu(cpu, frozen_cpus) {
569 error = _cpu_up(cpu, 1);
570 if (!error) {
571 printk(KERN_INFO "CPU%d is up\n", cpu);
572 continue;
573 }
574 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
575 }
576
577 arch_enable_nonboot_cpus_end();
578
579 cpumask_clear(frozen_cpus);
580 out:
581 cpu_maps_update_done();
582 }
583
584 static int __init alloc_frozen_cpus(void)
585 {
586 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
587 return -ENOMEM;
588 return 0;
589 }
590 core_initcall(alloc_frozen_cpus);
591
592 /*
593 * When callbacks for CPU hotplug notifications are being executed, we must
594 * ensure that the state of the system with respect to the tasks being frozen
595 * or not, as reported by the notification, remains unchanged *throughout the
596 * duration* of the execution of the callbacks.
597 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
598 *
599 * This synchronization is implemented by mutually excluding regular CPU
600 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
601 * Hibernate notifications.
602 */
603 static int
604 cpu_hotplug_pm_callback(struct notifier_block *nb,
605 unsigned long action, void *ptr)
606 {
607 switch (action) {
608
609 case PM_SUSPEND_PREPARE:
610 case PM_HIBERNATION_PREPARE:
611 cpu_hotplug_disable();
612 break;
613
614 case PM_POST_SUSPEND:
615 case PM_POST_HIBERNATION:
616 cpu_hotplug_enable();
617 break;
618
619 default:
620 return NOTIFY_DONE;
621 }
622
623 return NOTIFY_OK;
624 }
625
626
627 static int __init cpu_hotplug_pm_sync_init(void)
628 {
629 /*
630 * cpu_hotplug_pm_callback has higher priority than x86
631 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
632 * to disable cpu hotplug to avoid cpu hotplug race.
633 */
634 pm_notifier(cpu_hotplug_pm_callback, 0);
635 return 0;
636 }
637 core_initcall(cpu_hotplug_pm_sync_init);
638
639 #endif /* CONFIG_PM_SLEEP_SMP */
640
641 /**
642 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
643 * @cpu: cpu that just started
644 *
645 * This function calls the cpu_chain notifiers with CPU_STARTING.
646 * It must be called by the arch code on the new cpu, before the new cpu
647 * enables interrupts and before the "boot" cpu returns from __cpu_up().
648 */
649 void notify_cpu_starting(unsigned int cpu)
650 {
651 unsigned long val = CPU_STARTING;
652
653 #ifdef CONFIG_PM_SLEEP_SMP
654 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
655 val = CPU_STARTING_FROZEN;
656 #endif /* CONFIG_PM_SLEEP_SMP */
657 cpu_notify(val, (void *)(long)cpu);
658 }
659
660 #endif /* CONFIG_SMP */
661
662 /*
663 * cpu_bit_bitmap[] is a special, "compressed" data structure that
664 * represents all NR_CPUS bits binary values of 1<<nr.
665 *
666 * It is used by cpumask_of() to get a constant address to a CPU
667 * mask value that has a single bit set only.
668 */
669
670 /* cpu_bit_bitmap[0] is empty - so we can back into it */
671 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
672 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
673 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
674 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
675
676 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
677
678 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
679 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
680 #if BITS_PER_LONG > 32
681 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
682 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
683 #endif
684 };
685 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
686
687 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
688 EXPORT_SYMBOL(cpu_all_bits);
689
690 #ifdef CONFIG_INIT_ALL_POSSIBLE
691 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
692 = CPU_BITS_ALL;
693 #else
694 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
695 #endif
696 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
697 EXPORT_SYMBOL(cpu_possible_mask);
698
699 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
700 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
701 EXPORT_SYMBOL(cpu_online_mask);
702
703 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
704 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
705 EXPORT_SYMBOL(cpu_present_mask);
706
707 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
708 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
709 EXPORT_SYMBOL(cpu_active_mask);
710
711 void set_cpu_possible(unsigned int cpu, bool possible)
712 {
713 if (possible)
714 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
715 else
716 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
717 }
718
719 void set_cpu_present(unsigned int cpu, bool present)
720 {
721 if (present)
722 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
723 else
724 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
725 }
726
727 void set_cpu_online(unsigned int cpu, bool online)
728 {
729 if (online)
730 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
731 else
732 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
733 }
734
735 void set_cpu_active(unsigned int cpu, bool active)
736 {
737 if (active)
738 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
739 else
740 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
741 }
742
743 void init_cpu_present(const struct cpumask *src)
744 {
745 cpumask_copy(to_cpumask(cpu_present_bits), src);
746 }
747
748 void init_cpu_possible(const struct cpumask *src)
749 {
750 cpumask_copy(to_cpumask(cpu_possible_bits), src);
751 }
752
753 void init_cpu_online(const struct cpumask *src)
754 {
755 cpumask_copy(to_cpumask(cpu_online_bits), src);
756 }