]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cpu.c
ntb: ntb_test: ensure the link is up before trying to configure the mws
[mirror_ubuntu-artful-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35
36 #include "smpboot.h"
37
38 /**
39 * cpuhp_cpu_state - Per cpu hotplug state storage
40 * @state: The current cpu state
41 * @target: The target state
42 * @thread: Pointer to the hotplug thread
43 * @should_run: Thread should execute
44 * @rollback: Perform a rollback
45 * @single: Single callback invocation
46 * @bringup: Single callback bringup or teardown selector
47 * @cb_state: The state for a single callback (install/uninstall)
48 * @result: Result of the operation
49 * @done: Signal completion to the issuer of the task
50 */
51 struct cpuhp_cpu_state {
52 enum cpuhp_state state;
53 enum cpuhp_state target;
54 #ifdef CONFIG_SMP
55 struct task_struct *thread;
56 bool should_run;
57 bool rollback;
58 bool single;
59 bool bringup;
60 struct hlist_node *node;
61 enum cpuhp_state cb_state;
62 int result;
63 struct completion done;
64 #endif
65 };
66
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
68
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72 STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
74
75 /**
76 * cpuhp_step - Hotplug state machine step
77 * @name: Name of the step
78 * @startup: Startup function of the step
79 * @teardown: Teardown function of the step
80 * @skip_onerr: Do not invoke the functions on error rollback
81 * Will go away once the notifiers are gone
82 * @cant_stop: Bringup/teardown can't be stopped at this step
83 */
84 struct cpuhp_step {
85 const char *name;
86 union {
87 int (*single)(unsigned int cpu);
88 int (*multi)(unsigned int cpu,
89 struct hlist_node *node);
90 } startup;
91 union {
92 int (*single)(unsigned int cpu);
93 int (*multi)(unsigned int cpu,
94 struct hlist_node *node);
95 } teardown;
96 struct hlist_head list;
97 bool skip_onerr;
98 bool cant_stop;
99 bool multi_instance;
100 };
101
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
105
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
107 {
108 /*
109 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110 * purposes as that state is handled explicitly in cpu_down.
111 */
112 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
113 }
114
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
116 {
117 struct cpuhp_step *sp;
118
119 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120 return sp + state;
121 }
122
123 /**
124 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125 * @cpu: The cpu for which the callback should be invoked
126 * @step: The step in the state machine
127 * @bringup: True if the bringup callback should be invoked
128 *
129 * Called from cpu hotplug and from the state register machinery.
130 */
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132 bool bringup, struct hlist_node *node)
133 {
134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135 struct cpuhp_step *step = cpuhp_get_step(state);
136 int (*cbm)(unsigned int cpu, struct hlist_node *node);
137 int (*cb)(unsigned int cpu);
138 int ret, cnt;
139
140 if (!step->multi_instance) {
141 cb = bringup ? step->startup.single : step->teardown.single;
142 if (!cb)
143 return 0;
144 trace_cpuhp_enter(cpu, st->target, state, cb);
145 ret = cb(cpu);
146 trace_cpuhp_exit(cpu, st->state, state, ret);
147 return ret;
148 }
149 cbm = bringup ? step->startup.multi : step->teardown.multi;
150 if (!cbm)
151 return 0;
152
153 /* Single invocation for instance add/remove */
154 if (node) {
155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 ret = cbm(cpu, node);
157 trace_cpuhp_exit(cpu, st->state, state, ret);
158 return ret;
159 }
160
161 /* State transition. Invoke on all instances */
162 cnt = 0;
163 hlist_for_each(node, &step->list) {
164 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165 ret = cbm(cpu, node);
166 trace_cpuhp_exit(cpu, st->state, state, ret);
167 if (ret)
168 goto err;
169 cnt++;
170 }
171 return 0;
172 err:
173 /* Rollback the instances if one failed */
174 cbm = !bringup ? step->startup.multi : step->teardown.multi;
175 if (!cbm)
176 return ret;
177
178 hlist_for_each(node, &step->list) {
179 if (!cnt--)
180 break;
181 cbm(cpu, node);
182 }
183 return ret;
184 }
185
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
191
192 /*
193 * The following two APIs (cpu_maps_update_begin/done) must be used when
194 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
195 */
196 void cpu_maps_update_begin(void)
197 {
198 mutex_lock(&cpu_add_remove_lock);
199 }
200
201 void cpu_maps_update_done(void)
202 {
203 mutex_unlock(&cpu_add_remove_lock);
204 }
205
206 /*
207 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208 * Should always be manipulated under cpu_add_remove_lock
209 */
210 static int cpu_hotplug_disabled;
211
212 #ifdef CONFIG_HOTPLUG_CPU
213
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
215
216 void cpus_read_lock(void)
217 {
218 percpu_down_read(&cpu_hotplug_lock);
219 }
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
221
222 void cpus_read_unlock(void)
223 {
224 percpu_up_read(&cpu_hotplug_lock);
225 }
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
227
228 void cpus_write_lock(void)
229 {
230 percpu_down_write(&cpu_hotplug_lock);
231 }
232
233 void cpus_write_unlock(void)
234 {
235 percpu_up_write(&cpu_hotplug_lock);
236 }
237
238 void lockdep_assert_cpus_held(void)
239 {
240 percpu_rwsem_assert_held(&cpu_hotplug_lock);
241 }
242
243 /*
244 * Wait for currently running CPU hotplug operations to complete (if any) and
245 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247 * hotplug path before performing hotplug operations. So acquiring that lock
248 * guarantees mutual exclusion from any currently running hotplug operations.
249 */
250 void cpu_hotplug_disable(void)
251 {
252 cpu_maps_update_begin();
253 cpu_hotplug_disabled++;
254 cpu_maps_update_done();
255 }
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
257
258 static void __cpu_hotplug_enable(void)
259 {
260 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261 return;
262 cpu_hotplug_disabled--;
263 }
264
265 void cpu_hotplug_enable(void)
266 {
267 cpu_maps_update_begin();
268 __cpu_hotplug_enable();
269 cpu_maps_update_done();
270 }
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif /* CONFIG_HOTPLUG_CPU */
273
274 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st);
275
276 static int bringup_wait_for_ap(unsigned int cpu)
277 {
278 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
279
280 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
281 wait_for_completion(&st->done);
282 BUG_ON(!cpu_online(cpu));
283
284 /* Unpark the stopper thread and the hotplug thread of the target cpu */
285 stop_machine_unpark(cpu);
286 kthread_unpark(st->thread);
287
288 /* Should we go further up ? */
289 if (st->target > CPUHP_AP_ONLINE_IDLE) {
290 __cpuhp_kick_ap_work(st);
291 wait_for_completion(&st->done);
292 }
293 return st->result;
294 }
295
296 static int bringup_cpu(unsigned int cpu)
297 {
298 struct task_struct *idle = idle_thread_get(cpu);
299 int ret;
300
301 /*
302 * Some architectures have to walk the irq descriptors to
303 * setup the vector space for the cpu which comes online.
304 * Prevent irq alloc/free across the bringup.
305 */
306 irq_lock_sparse();
307
308 /* Arch-specific enabling code. */
309 ret = __cpu_up(cpu, idle);
310 irq_unlock_sparse();
311 if (ret)
312 return ret;
313 return bringup_wait_for_ap(cpu);
314 }
315
316 /*
317 * Hotplug state machine related functions
318 */
319 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
320 {
321 for (st->state++; st->state < st->target; st->state++) {
322 struct cpuhp_step *step = cpuhp_get_step(st->state);
323
324 if (!step->skip_onerr)
325 cpuhp_invoke_callback(cpu, st->state, true, NULL);
326 }
327 }
328
329 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
330 enum cpuhp_state target)
331 {
332 enum cpuhp_state prev_state = st->state;
333 int ret = 0;
334
335 for (; st->state > target; st->state--) {
336 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
337 if (ret) {
338 st->target = prev_state;
339 undo_cpu_down(cpu, st);
340 break;
341 }
342 }
343 return ret;
344 }
345
346 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
347 {
348 for (st->state--; st->state > st->target; st->state--) {
349 struct cpuhp_step *step = cpuhp_get_step(st->state);
350
351 if (!step->skip_onerr)
352 cpuhp_invoke_callback(cpu, st->state, false, NULL);
353 }
354 }
355
356 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
357 enum cpuhp_state target)
358 {
359 enum cpuhp_state prev_state = st->state;
360 int ret = 0;
361
362 while (st->state < target) {
363 st->state++;
364 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
365 if (ret) {
366 st->target = prev_state;
367 undo_cpu_up(cpu, st);
368 break;
369 }
370 }
371 return ret;
372 }
373
374 /*
375 * The cpu hotplug threads manage the bringup and teardown of the cpus
376 */
377 static void cpuhp_create(unsigned int cpu)
378 {
379 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
380
381 init_completion(&st->done);
382 }
383
384 static int cpuhp_should_run(unsigned int cpu)
385 {
386 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
387
388 return st->should_run;
389 }
390
391 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
392 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
393 {
394 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
395
396 return cpuhp_down_callbacks(cpu, st, target);
397 }
398
399 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
400 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
401 {
402 return cpuhp_up_callbacks(cpu, st, st->target);
403 }
404
405 /*
406 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
407 * callbacks when a state gets [un]installed at runtime.
408 */
409 static void cpuhp_thread_fun(unsigned int cpu)
410 {
411 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
412 int ret = 0;
413
414 /*
415 * Paired with the mb() in cpuhp_kick_ap_work and
416 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
417 */
418 smp_mb();
419 if (!st->should_run)
420 return;
421
422 st->should_run = false;
423
424 lock_map_acquire(&cpuhp_state_lock_map);
425 /* Single callback invocation for [un]install ? */
426 if (st->single) {
427 if (st->cb_state < CPUHP_AP_ONLINE) {
428 local_irq_disable();
429 ret = cpuhp_invoke_callback(cpu, st->cb_state,
430 st->bringup, st->node);
431 local_irq_enable();
432 } else {
433 ret = cpuhp_invoke_callback(cpu, st->cb_state,
434 st->bringup, st->node);
435 }
436 } else if (st->rollback) {
437 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
438
439 undo_cpu_down(cpu, st);
440 st->rollback = false;
441 } else {
442 /* Cannot happen .... */
443 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
444
445 /* Regular hotplug work */
446 if (st->state < st->target)
447 ret = cpuhp_ap_online(cpu, st);
448 else if (st->state > st->target)
449 ret = cpuhp_ap_offline(cpu, st);
450 }
451 lock_map_release(&cpuhp_state_lock_map);
452 st->result = ret;
453 complete(&st->done);
454 }
455
456 /* Invoke a single callback on a remote cpu */
457 static int
458 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
459 struct hlist_node *node)
460 {
461 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
462
463 if (!cpu_online(cpu))
464 return 0;
465
466 lock_map_acquire(&cpuhp_state_lock_map);
467 lock_map_release(&cpuhp_state_lock_map);
468
469 /*
470 * If we are up and running, use the hotplug thread. For early calls
471 * we invoke the thread function directly.
472 */
473 if (!st->thread)
474 return cpuhp_invoke_callback(cpu, state, bringup, node);
475
476 st->cb_state = state;
477 st->single = true;
478 st->bringup = bringup;
479 st->node = node;
480
481 /*
482 * Make sure the above stores are visible before should_run becomes
483 * true. Paired with the mb() above in cpuhp_thread_fun()
484 */
485 smp_mb();
486 st->should_run = true;
487 wake_up_process(st->thread);
488 wait_for_completion(&st->done);
489 return st->result;
490 }
491
492 /* Regular hotplug invocation of the AP hotplug thread */
493 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
494 {
495 st->result = 0;
496 st->single = false;
497 /*
498 * Make sure the above stores are visible before should_run becomes
499 * true. Paired with the mb() above in cpuhp_thread_fun()
500 */
501 smp_mb();
502 st->should_run = true;
503 wake_up_process(st->thread);
504 }
505
506 static int cpuhp_kick_ap_work(unsigned int cpu)
507 {
508 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
509 enum cpuhp_state state = st->state;
510
511 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
512 lock_map_acquire(&cpuhp_state_lock_map);
513 lock_map_release(&cpuhp_state_lock_map);
514 __cpuhp_kick_ap_work(st);
515 wait_for_completion(&st->done);
516 trace_cpuhp_exit(cpu, st->state, state, st->result);
517 return st->result;
518 }
519
520 static struct smp_hotplug_thread cpuhp_threads = {
521 .store = &cpuhp_state.thread,
522 .create = &cpuhp_create,
523 .thread_should_run = cpuhp_should_run,
524 .thread_fn = cpuhp_thread_fun,
525 .thread_comm = "cpuhp/%u",
526 .selfparking = true,
527 };
528
529 void __init cpuhp_threads_init(void)
530 {
531 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
532 kthread_unpark(this_cpu_read(cpuhp_state.thread));
533 }
534
535 #ifdef CONFIG_HOTPLUG_CPU
536 /**
537 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
538 * @cpu: a CPU id
539 *
540 * This function walks all processes, finds a valid mm struct for each one and
541 * then clears a corresponding bit in mm's cpumask. While this all sounds
542 * trivial, there are various non-obvious corner cases, which this function
543 * tries to solve in a safe manner.
544 *
545 * Also note that the function uses a somewhat relaxed locking scheme, so it may
546 * be called only for an already offlined CPU.
547 */
548 void clear_tasks_mm_cpumask(int cpu)
549 {
550 struct task_struct *p;
551
552 /*
553 * This function is called after the cpu is taken down and marked
554 * offline, so its not like new tasks will ever get this cpu set in
555 * their mm mask. -- Peter Zijlstra
556 * Thus, we may use rcu_read_lock() here, instead of grabbing
557 * full-fledged tasklist_lock.
558 */
559 WARN_ON(cpu_online(cpu));
560 rcu_read_lock();
561 for_each_process(p) {
562 struct task_struct *t;
563
564 /*
565 * Main thread might exit, but other threads may still have
566 * a valid mm. Find one.
567 */
568 t = find_lock_task_mm(p);
569 if (!t)
570 continue;
571 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
572 task_unlock(t);
573 }
574 rcu_read_unlock();
575 }
576
577 /* Take this CPU down. */
578 static int take_cpu_down(void *_param)
579 {
580 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
581 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
582 int err, cpu = smp_processor_id();
583
584 /* Ensure this CPU doesn't handle any more interrupts. */
585 err = __cpu_disable();
586 if (err < 0)
587 return err;
588
589 /*
590 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
591 * do this step again.
592 */
593 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
594 st->state--;
595 /* Invoke the former CPU_DYING callbacks */
596 for (; st->state > target; st->state--)
597 cpuhp_invoke_callback(cpu, st->state, false, NULL);
598
599 /* Give up timekeeping duties */
600 tick_handover_do_timer();
601 /* Park the stopper thread */
602 stop_machine_park(cpu);
603 return 0;
604 }
605
606 static int takedown_cpu(unsigned int cpu)
607 {
608 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
609 int err;
610
611 /* Park the smpboot threads */
612 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
613 smpboot_park_threads(cpu);
614
615 /*
616 * Prevent irq alloc/free while the dying cpu reorganizes the
617 * interrupt affinities.
618 */
619 irq_lock_sparse();
620
621 /*
622 * So now all preempt/rcu users must observe !cpu_active().
623 */
624 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
625 if (err) {
626 /* CPU refused to die */
627 irq_unlock_sparse();
628 /* Unpark the hotplug thread so we can rollback there */
629 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
630 return err;
631 }
632 BUG_ON(cpu_online(cpu));
633
634 /*
635 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
636 * runnable tasks from the cpu, there's only the idle task left now
637 * that the migration thread is done doing the stop_machine thing.
638 *
639 * Wait for the stop thread to go away.
640 */
641 wait_for_completion(&st->done);
642 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
643
644 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
645 irq_unlock_sparse();
646
647 hotplug_cpu__broadcast_tick_pull(cpu);
648 /* This actually kills the CPU. */
649 __cpu_die(cpu);
650
651 tick_cleanup_dead_cpu(cpu);
652 return 0;
653 }
654
655 static void cpuhp_complete_idle_dead(void *arg)
656 {
657 struct cpuhp_cpu_state *st = arg;
658
659 complete(&st->done);
660 }
661
662 void cpuhp_report_idle_dead(void)
663 {
664 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
665
666 BUG_ON(st->state != CPUHP_AP_OFFLINE);
667 rcu_report_dead(smp_processor_id());
668 st->state = CPUHP_AP_IDLE_DEAD;
669 /*
670 * We cannot call complete after rcu_report_dead() so we delegate it
671 * to an online cpu.
672 */
673 smp_call_function_single(cpumask_first(cpu_online_mask),
674 cpuhp_complete_idle_dead, st, 0);
675 }
676
677 #else
678 #define takedown_cpu NULL
679 #endif
680
681 #ifdef CONFIG_HOTPLUG_CPU
682
683 /* Requires cpu_add_remove_lock to be held */
684 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
685 enum cpuhp_state target)
686 {
687 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
688 int prev_state, ret = 0;
689
690 if (num_online_cpus() == 1)
691 return -EBUSY;
692
693 if (!cpu_present(cpu))
694 return -EINVAL;
695
696 cpus_write_lock();
697
698 cpuhp_tasks_frozen = tasks_frozen;
699
700 prev_state = st->state;
701 st->target = target;
702 /*
703 * If the current CPU state is in the range of the AP hotplug thread,
704 * then we need to kick the thread.
705 */
706 if (st->state > CPUHP_TEARDOWN_CPU) {
707 ret = cpuhp_kick_ap_work(cpu);
708 /*
709 * The AP side has done the error rollback already. Just
710 * return the error code..
711 */
712 if (ret)
713 goto out;
714
715 /*
716 * We might have stopped still in the range of the AP hotplug
717 * thread. Nothing to do anymore.
718 */
719 if (st->state > CPUHP_TEARDOWN_CPU)
720 goto out;
721 }
722 /*
723 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
724 * to do the further cleanups.
725 */
726 ret = cpuhp_down_callbacks(cpu, st, target);
727 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
728 st->target = prev_state;
729 st->rollback = true;
730 cpuhp_kick_ap_work(cpu);
731 }
732
733 out:
734 cpus_write_unlock();
735 return ret;
736 }
737
738 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
739 {
740 int err;
741
742 cpu_maps_update_begin();
743
744 if (cpu_hotplug_disabled) {
745 err = -EBUSY;
746 goto out;
747 }
748
749 err = _cpu_down(cpu, 0, target);
750
751 out:
752 cpu_maps_update_done();
753 return err;
754 }
755 int cpu_down(unsigned int cpu)
756 {
757 return do_cpu_down(cpu, CPUHP_OFFLINE);
758 }
759 EXPORT_SYMBOL(cpu_down);
760 #endif /*CONFIG_HOTPLUG_CPU*/
761
762 /**
763 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
764 * @cpu: cpu that just started
765 *
766 * It must be called by the arch code on the new cpu, before the new cpu
767 * enables interrupts and before the "boot" cpu returns from __cpu_up().
768 */
769 void notify_cpu_starting(unsigned int cpu)
770 {
771 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
772 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
773
774 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
775 while (st->state < target) {
776 st->state++;
777 cpuhp_invoke_callback(cpu, st->state, true, NULL);
778 }
779 }
780
781 /*
782 * Called from the idle task. Wake up the controlling task which brings the
783 * stopper and the hotplug thread of the upcoming CPU up and then delegates
784 * the rest of the online bringup to the hotplug thread.
785 */
786 void cpuhp_online_idle(enum cpuhp_state state)
787 {
788 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
789
790 /* Happens for the boot cpu */
791 if (state != CPUHP_AP_ONLINE_IDLE)
792 return;
793
794 st->state = CPUHP_AP_ONLINE_IDLE;
795 complete(&st->done);
796 }
797
798 /* Requires cpu_add_remove_lock to be held */
799 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
800 {
801 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
802 struct task_struct *idle;
803 int ret = 0;
804
805 cpus_write_lock();
806
807 if (!cpu_present(cpu)) {
808 ret = -EINVAL;
809 goto out;
810 }
811
812 /*
813 * The caller of do_cpu_up might have raced with another
814 * caller. Ignore it for now.
815 */
816 if (st->state >= target)
817 goto out;
818
819 if (st->state == CPUHP_OFFLINE) {
820 /* Let it fail before we try to bring the cpu up */
821 idle = idle_thread_get(cpu);
822 if (IS_ERR(idle)) {
823 ret = PTR_ERR(idle);
824 goto out;
825 }
826 }
827
828 cpuhp_tasks_frozen = tasks_frozen;
829
830 st->target = target;
831 /*
832 * If the current CPU state is in the range of the AP hotplug thread,
833 * then we need to kick the thread once more.
834 */
835 if (st->state > CPUHP_BRINGUP_CPU) {
836 ret = cpuhp_kick_ap_work(cpu);
837 /*
838 * The AP side has done the error rollback already. Just
839 * return the error code..
840 */
841 if (ret)
842 goto out;
843 }
844
845 /*
846 * Try to reach the target state. We max out on the BP at
847 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
848 * responsible for bringing it up to the target state.
849 */
850 target = min((int)target, CPUHP_BRINGUP_CPU);
851 ret = cpuhp_up_callbacks(cpu, st, target);
852 out:
853 cpus_write_unlock();
854 return ret;
855 }
856
857 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
858 {
859 int err = 0;
860
861 if (!cpu_possible(cpu)) {
862 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
863 cpu);
864 #if defined(CONFIG_IA64)
865 pr_err("please check additional_cpus= boot parameter\n");
866 #endif
867 return -EINVAL;
868 }
869
870 err = try_online_node(cpu_to_node(cpu));
871 if (err)
872 return err;
873
874 cpu_maps_update_begin();
875
876 if (cpu_hotplug_disabled) {
877 err = -EBUSY;
878 goto out;
879 }
880
881 err = _cpu_up(cpu, 0, target);
882 out:
883 cpu_maps_update_done();
884 return err;
885 }
886
887 int cpu_up(unsigned int cpu)
888 {
889 return do_cpu_up(cpu, CPUHP_ONLINE);
890 }
891 EXPORT_SYMBOL_GPL(cpu_up);
892
893 #ifdef CONFIG_PM_SLEEP_SMP
894 static cpumask_var_t frozen_cpus;
895
896 int freeze_secondary_cpus(int primary)
897 {
898 int cpu, error = 0;
899
900 cpu_maps_update_begin();
901 if (!cpu_online(primary))
902 primary = cpumask_first(cpu_online_mask);
903 /*
904 * We take down all of the non-boot CPUs in one shot to avoid races
905 * with the userspace trying to use the CPU hotplug at the same time
906 */
907 cpumask_clear(frozen_cpus);
908
909 pr_info("Disabling non-boot CPUs ...\n");
910 for_each_online_cpu(cpu) {
911 if (cpu == primary)
912 continue;
913 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
914 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
915 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
916 if (!error)
917 cpumask_set_cpu(cpu, frozen_cpus);
918 else {
919 pr_err("Error taking CPU%d down: %d\n", cpu, error);
920 break;
921 }
922 }
923
924 if (!error)
925 BUG_ON(num_online_cpus() > 1);
926 else
927 pr_err("Non-boot CPUs are not disabled\n");
928
929 /*
930 * Make sure the CPUs won't be enabled by someone else. We need to do
931 * this even in case of failure as all disable_nonboot_cpus() users are
932 * supposed to do enable_nonboot_cpus() on the failure path.
933 */
934 cpu_hotplug_disabled++;
935
936 cpu_maps_update_done();
937 return error;
938 }
939
940 void __weak arch_enable_nonboot_cpus_begin(void)
941 {
942 }
943
944 void __weak arch_enable_nonboot_cpus_end(void)
945 {
946 }
947
948 void enable_nonboot_cpus(void)
949 {
950 int cpu, error;
951
952 /* Allow everyone to use the CPU hotplug again */
953 cpu_maps_update_begin();
954 __cpu_hotplug_enable();
955 if (cpumask_empty(frozen_cpus))
956 goto out;
957
958 pr_info("Enabling non-boot CPUs ...\n");
959
960 arch_enable_nonboot_cpus_begin();
961
962 for_each_cpu(cpu, frozen_cpus) {
963 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
964 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
965 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
966 if (!error) {
967 pr_info("CPU%d is up\n", cpu);
968 continue;
969 }
970 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
971 }
972
973 arch_enable_nonboot_cpus_end();
974
975 cpumask_clear(frozen_cpus);
976 out:
977 cpu_maps_update_done();
978 }
979
980 static int __init alloc_frozen_cpus(void)
981 {
982 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
983 return -ENOMEM;
984 return 0;
985 }
986 core_initcall(alloc_frozen_cpus);
987
988 /*
989 * When callbacks for CPU hotplug notifications are being executed, we must
990 * ensure that the state of the system with respect to the tasks being frozen
991 * or not, as reported by the notification, remains unchanged *throughout the
992 * duration* of the execution of the callbacks.
993 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
994 *
995 * This synchronization is implemented by mutually excluding regular CPU
996 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
997 * Hibernate notifications.
998 */
999 static int
1000 cpu_hotplug_pm_callback(struct notifier_block *nb,
1001 unsigned long action, void *ptr)
1002 {
1003 switch (action) {
1004
1005 case PM_SUSPEND_PREPARE:
1006 case PM_HIBERNATION_PREPARE:
1007 cpu_hotplug_disable();
1008 break;
1009
1010 case PM_POST_SUSPEND:
1011 case PM_POST_HIBERNATION:
1012 cpu_hotplug_enable();
1013 break;
1014
1015 default:
1016 return NOTIFY_DONE;
1017 }
1018
1019 return NOTIFY_OK;
1020 }
1021
1022
1023 static int __init cpu_hotplug_pm_sync_init(void)
1024 {
1025 /*
1026 * cpu_hotplug_pm_callback has higher priority than x86
1027 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1028 * to disable cpu hotplug to avoid cpu hotplug race.
1029 */
1030 pm_notifier(cpu_hotplug_pm_callback, 0);
1031 return 0;
1032 }
1033 core_initcall(cpu_hotplug_pm_sync_init);
1034
1035 #endif /* CONFIG_PM_SLEEP_SMP */
1036
1037 int __boot_cpu_id;
1038
1039 #endif /* CONFIG_SMP */
1040
1041 /* Boot processor state steps */
1042 static struct cpuhp_step cpuhp_bp_states[] = {
1043 [CPUHP_OFFLINE] = {
1044 .name = "offline",
1045 .startup.single = NULL,
1046 .teardown.single = NULL,
1047 },
1048 #ifdef CONFIG_SMP
1049 [CPUHP_CREATE_THREADS]= {
1050 .name = "threads:prepare",
1051 .startup.single = smpboot_create_threads,
1052 .teardown.single = NULL,
1053 .cant_stop = true,
1054 },
1055 [CPUHP_PERF_PREPARE] = {
1056 .name = "perf:prepare",
1057 .startup.single = perf_event_init_cpu,
1058 .teardown.single = perf_event_exit_cpu,
1059 },
1060 [CPUHP_WORKQUEUE_PREP] = {
1061 .name = "workqueue:prepare",
1062 .startup.single = workqueue_prepare_cpu,
1063 .teardown.single = NULL,
1064 },
1065 [CPUHP_HRTIMERS_PREPARE] = {
1066 .name = "hrtimers:prepare",
1067 .startup.single = hrtimers_prepare_cpu,
1068 .teardown.single = hrtimers_dead_cpu,
1069 },
1070 [CPUHP_SMPCFD_PREPARE] = {
1071 .name = "smpcfd:prepare",
1072 .startup.single = smpcfd_prepare_cpu,
1073 .teardown.single = smpcfd_dead_cpu,
1074 },
1075 [CPUHP_RELAY_PREPARE] = {
1076 .name = "relay:prepare",
1077 .startup.single = relay_prepare_cpu,
1078 .teardown.single = NULL,
1079 },
1080 [CPUHP_SLAB_PREPARE] = {
1081 .name = "slab:prepare",
1082 .startup.single = slab_prepare_cpu,
1083 .teardown.single = slab_dead_cpu,
1084 },
1085 [CPUHP_RCUTREE_PREP] = {
1086 .name = "RCU/tree:prepare",
1087 .startup.single = rcutree_prepare_cpu,
1088 .teardown.single = rcutree_dead_cpu,
1089 },
1090 /*
1091 * On the tear-down path, timers_dead_cpu() must be invoked
1092 * before blk_mq_queue_reinit_notify() from notify_dead(),
1093 * otherwise a RCU stall occurs.
1094 */
1095 [CPUHP_TIMERS_DEAD] = {
1096 .name = "timers:dead",
1097 .startup.single = NULL,
1098 .teardown.single = timers_dead_cpu,
1099 },
1100 /* Kicks the plugged cpu into life */
1101 [CPUHP_BRINGUP_CPU] = {
1102 .name = "cpu:bringup",
1103 .startup.single = bringup_cpu,
1104 .teardown.single = NULL,
1105 .cant_stop = true,
1106 },
1107 [CPUHP_AP_SMPCFD_DYING] = {
1108 .name = "smpcfd:dying",
1109 .startup.single = NULL,
1110 .teardown.single = smpcfd_dying_cpu,
1111 },
1112 /*
1113 * Handled on controll processor until the plugged processor manages
1114 * this itself.
1115 */
1116 [CPUHP_TEARDOWN_CPU] = {
1117 .name = "cpu:teardown",
1118 .startup.single = NULL,
1119 .teardown.single = takedown_cpu,
1120 .cant_stop = true,
1121 },
1122 #else
1123 [CPUHP_BRINGUP_CPU] = { },
1124 #endif
1125 };
1126
1127 /* Application processor state steps */
1128 static struct cpuhp_step cpuhp_ap_states[] = {
1129 #ifdef CONFIG_SMP
1130 /* Final state before CPU kills itself */
1131 [CPUHP_AP_IDLE_DEAD] = {
1132 .name = "idle:dead",
1133 },
1134 /*
1135 * Last state before CPU enters the idle loop to die. Transient state
1136 * for synchronization.
1137 */
1138 [CPUHP_AP_OFFLINE] = {
1139 .name = "ap:offline",
1140 .cant_stop = true,
1141 },
1142 /* First state is scheduler control. Interrupts are disabled */
1143 [CPUHP_AP_SCHED_STARTING] = {
1144 .name = "sched:starting",
1145 .startup.single = sched_cpu_starting,
1146 .teardown.single = sched_cpu_dying,
1147 },
1148 [CPUHP_AP_RCUTREE_DYING] = {
1149 .name = "RCU/tree:dying",
1150 .startup.single = NULL,
1151 .teardown.single = rcutree_dying_cpu,
1152 },
1153 /* Entry state on starting. Interrupts enabled from here on. Transient
1154 * state for synchronsization */
1155 [CPUHP_AP_ONLINE] = {
1156 .name = "ap:online",
1157 },
1158 /* Handle smpboot threads park/unpark */
1159 [CPUHP_AP_SMPBOOT_THREADS] = {
1160 .name = "smpboot/threads:online",
1161 .startup.single = smpboot_unpark_threads,
1162 .teardown.single = NULL,
1163 },
1164 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1165 .name = "irq/affinity:online",
1166 .startup.single = irq_affinity_online_cpu,
1167 .teardown.single = NULL,
1168 },
1169 [CPUHP_AP_PERF_ONLINE] = {
1170 .name = "perf:online",
1171 .startup.single = perf_event_init_cpu,
1172 .teardown.single = perf_event_exit_cpu,
1173 },
1174 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1175 .name = "workqueue:online",
1176 .startup.single = workqueue_online_cpu,
1177 .teardown.single = workqueue_offline_cpu,
1178 },
1179 [CPUHP_AP_RCUTREE_ONLINE] = {
1180 .name = "RCU/tree:online",
1181 .startup.single = rcutree_online_cpu,
1182 .teardown.single = rcutree_offline_cpu,
1183 },
1184 #endif
1185 /*
1186 * The dynamically registered state space is here
1187 */
1188
1189 #ifdef CONFIG_SMP
1190 /* Last state is scheduler control setting the cpu active */
1191 [CPUHP_AP_ACTIVE] = {
1192 .name = "sched:active",
1193 .startup.single = sched_cpu_activate,
1194 .teardown.single = sched_cpu_deactivate,
1195 },
1196 #endif
1197
1198 /* CPU is fully up and running. */
1199 [CPUHP_ONLINE] = {
1200 .name = "online",
1201 .startup.single = NULL,
1202 .teardown.single = NULL,
1203 },
1204 };
1205
1206 /* Sanity check for callbacks */
1207 static int cpuhp_cb_check(enum cpuhp_state state)
1208 {
1209 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1210 return -EINVAL;
1211 return 0;
1212 }
1213
1214 /*
1215 * Returns a free for dynamic slot assignment of the Online state. The states
1216 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1217 * by having no name assigned.
1218 */
1219 static int cpuhp_reserve_state(enum cpuhp_state state)
1220 {
1221 enum cpuhp_state i, end;
1222 struct cpuhp_step *step;
1223
1224 switch (state) {
1225 case CPUHP_AP_ONLINE_DYN:
1226 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1227 end = CPUHP_AP_ONLINE_DYN_END;
1228 break;
1229 case CPUHP_BP_PREPARE_DYN:
1230 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1231 end = CPUHP_BP_PREPARE_DYN_END;
1232 break;
1233 default:
1234 return -EINVAL;
1235 }
1236
1237 for (i = state; i <= end; i++, step++) {
1238 if (!step->name)
1239 return i;
1240 }
1241 WARN(1, "No more dynamic states available for CPU hotplug\n");
1242 return -ENOSPC;
1243 }
1244
1245 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1246 int (*startup)(unsigned int cpu),
1247 int (*teardown)(unsigned int cpu),
1248 bool multi_instance)
1249 {
1250 /* (Un)Install the callbacks for further cpu hotplug operations */
1251 struct cpuhp_step *sp;
1252 int ret = 0;
1253
1254 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1255 ret = cpuhp_reserve_state(state);
1256 if (ret < 0)
1257 return ret;
1258 state = ret;
1259 }
1260 sp = cpuhp_get_step(state);
1261 if (name && sp->name)
1262 return -EBUSY;
1263
1264 sp->startup.single = startup;
1265 sp->teardown.single = teardown;
1266 sp->name = name;
1267 sp->multi_instance = multi_instance;
1268 INIT_HLIST_HEAD(&sp->list);
1269 return ret;
1270 }
1271
1272 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1273 {
1274 return cpuhp_get_step(state)->teardown.single;
1275 }
1276
1277 /*
1278 * Call the startup/teardown function for a step either on the AP or
1279 * on the current CPU.
1280 */
1281 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1282 struct hlist_node *node)
1283 {
1284 struct cpuhp_step *sp = cpuhp_get_step(state);
1285 int ret;
1286
1287 if ((bringup && !sp->startup.single) ||
1288 (!bringup && !sp->teardown.single))
1289 return 0;
1290 /*
1291 * The non AP bound callbacks can fail on bringup. On teardown
1292 * e.g. module removal we crash for now.
1293 */
1294 #ifdef CONFIG_SMP
1295 if (cpuhp_is_ap_state(state))
1296 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1297 else
1298 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1299 #else
1300 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1301 #endif
1302 BUG_ON(ret && !bringup);
1303 return ret;
1304 }
1305
1306 /*
1307 * Called from __cpuhp_setup_state on a recoverable failure.
1308 *
1309 * Note: The teardown callbacks for rollback are not allowed to fail!
1310 */
1311 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1312 struct hlist_node *node)
1313 {
1314 int cpu;
1315
1316 /* Roll back the already executed steps on the other cpus */
1317 for_each_present_cpu(cpu) {
1318 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1319 int cpustate = st->state;
1320
1321 if (cpu >= failedcpu)
1322 break;
1323
1324 /* Did we invoke the startup call on that cpu ? */
1325 if (cpustate >= state)
1326 cpuhp_issue_call(cpu, state, false, node);
1327 }
1328 }
1329
1330 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1331 struct hlist_node *node,
1332 bool invoke)
1333 {
1334 struct cpuhp_step *sp;
1335 int cpu;
1336 int ret;
1337
1338 lockdep_assert_cpus_held();
1339
1340 sp = cpuhp_get_step(state);
1341 if (sp->multi_instance == false)
1342 return -EINVAL;
1343
1344 mutex_lock(&cpuhp_state_mutex);
1345
1346 if (!invoke || !sp->startup.multi)
1347 goto add_node;
1348
1349 /*
1350 * Try to call the startup callback for each present cpu
1351 * depending on the hotplug state of the cpu.
1352 */
1353 for_each_present_cpu(cpu) {
1354 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1355 int cpustate = st->state;
1356
1357 if (cpustate < state)
1358 continue;
1359
1360 ret = cpuhp_issue_call(cpu, state, true, node);
1361 if (ret) {
1362 if (sp->teardown.multi)
1363 cpuhp_rollback_install(cpu, state, node);
1364 goto unlock;
1365 }
1366 }
1367 add_node:
1368 ret = 0;
1369 hlist_add_head(node, &sp->list);
1370 unlock:
1371 mutex_unlock(&cpuhp_state_mutex);
1372 return ret;
1373 }
1374
1375 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1376 bool invoke)
1377 {
1378 int ret;
1379
1380 cpus_read_lock();
1381 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1382 cpus_read_unlock();
1383 return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1386
1387 /**
1388 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1389 * @state: The state to setup
1390 * @invoke: If true, the startup function is invoked for cpus where
1391 * cpu state >= @state
1392 * @startup: startup callback function
1393 * @teardown: teardown callback function
1394 * @multi_instance: State is set up for multiple instances which get
1395 * added afterwards.
1396 *
1397 * The caller needs to hold cpus read locked while calling this function.
1398 * Returns:
1399 * On success:
1400 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1401 * 0 for all other states
1402 * On failure: proper (negative) error code
1403 */
1404 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1405 const char *name, bool invoke,
1406 int (*startup)(unsigned int cpu),
1407 int (*teardown)(unsigned int cpu),
1408 bool multi_instance)
1409 {
1410 int cpu, ret = 0;
1411 bool dynstate;
1412
1413 lockdep_assert_cpus_held();
1414
1415 if (cpuhp_cb_check(state) || !name)
1416 return -EINVAL;
1417
1418 mutex_lock(&cpuhp_state_mutex);
1419
1420 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1421 multi_instance);
1422
1423 dynstate = state == CPUHP_AP_ONLINE_DYN;
1424 if (ret > 0 && dynstate) {
1425 state = ret;
1426 ret = 0;
1427 }
1428
1429 if (ret || !invoke || !startup)
1430 goto out;
1431
1432 /*
1433 * Try to call the startup callback for each present cpu
1434 * depending on the hotplug state of the cpu.
1435 */
1436 for_each_present_cpu(cpu) {
1437 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1438 int cpustate = st->state;
1439
1440 if (cpustate < state)
1441 continue;
1442
1443 ret = cpuhp_issue_call(cpu, state, true, NULL);
1444 if (ret) {
1445 if (teardown)
1446 cpuhp_rollback_install(cpu, state, NULL);
1447 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1448 goto out;
1449 }
1450 }
1451 out:
1452 mutex_unlock(&cpuhp_state_mutex);
1453 /*
1454 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1455 * dynamically allocated state in case of success.
1456 */
1457 if (!ret && dynstate)
1458 return state;
1459 return ret;
1460 }
1461 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1462
1463 int __cpuhp_setup_state(enum cpuhp_state state,
1464 const char *name, bool invoke,
1465 int (*startup)(unsigned int cpu),
1466 int (*teardown)(unsigned int cpu),
1467 bool multi_instance)
1468 {
1469 int ret;
1470
1471 cpus_read_lock();
1472 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1473 teardown, multi_instance);
1474 cpus_read_unlock();
1475 return ret;
1476 }
1477 EXPORT_SYMBOL(__cpuhp_setup_state);
1478
1479 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1480 struct hlist_node *node, bool invoke)
1481 {
1482 struct cpuhp_step *sp = cpuhp_get_step(state);
1483 int cpu;
1484
1485 BUG_ON(cpuhp_cb_check(state));
1486
1487 if (!sp->multi_instance)
1488 return -EINVAL;
1489
1490 cpus_read_lock();
1491 mutex_lock(&cpuhp_state_mutex);
1492
1493 if (!invoke || !cpuhp_get_teardown_cb(state))
1494 goto remove;
1495 /*
1496 * Call the teardown callback for each present cpu depending
1497 * on the hotplug state of the cpu. This function is not
1498 * allowed to fail currently!
1499 */
1500 for_each_present_cpu(cpu) {
1501 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1502 int cpustate = st->state;
1503
1504 if (cpustate >= state)
1505 cpuhp_issue_call(cpu, state, false, node);
1506 }
1507
1508 remove:
1509 hlist_del(node);
1510 mutex_unlock(&cpuhp_state_mutex);
1511 cpus_read_unlock();
1512
1513 return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1516
1517 /**
1518 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1519 * @state: The state to remove
1520 * @invoke: If true, the teardown function is invoked for cpus where
1521 * cpu state >= @state
1522 *
1523 * The caller needs to hold cpus read locked while calling this function.
1524 * The teardown callback is currently not allowed to fail. Think
1525 * about module removal!
1526 */
1527 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1528 {
1529 struct cpuhp_step *sp = cpuhp_get_step(state);
1530 int cpu;
1531
1532 BUG_ON(cpuhp_cb_check(state));
1533
1534 lockdep_assert_cpus_held();
1535
1536 mutex_lock(&cpuhp_state_mutex);
1537 if (sp->multi_instance) {
1538 WARN(!hlist_empty(&sp->list),
1539 "Error: Removing state %d which has instances left.\n",
1540 state);
1541 goto remove;
1542 }
1543
1544 if (!invoke || !cpuhp_get_teardown_cb(state))
1545 goto remove;
1546
1547 /*
1548 * Call the teardown callback for each present cpu depending
1549 * on the hotplug state of the cpu. This function is not
1550 * allowed to fail currently!
1551 */
1552 for_each_present_cpu(cpu) {
1553 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1554 int cpustate = st->state;
1555
1556 if (cpustate >= state)
1557 cpuhp_issue_call(cpu, state, false, NULL);
1558 }
1559 remove:
1560 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1561 mutex_unlock(&cpuhp_state_mutex);
1562 }
1563 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1564
1565 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1566 {
1567 cpus_read_lock();
1568 __cpuhp_remove_state_cpuslocked(state, invoke);
1569 cpus_read_unlock();
1570 }
1571 EXPORT_SYMBOL(__cpuhp_remove_state);
1572
1573 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1574 static ssize_t show_cpuhp_state(struct device *dev,
1575 struct device_attribute *attr, char *buf)
1576 {
1577 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1578
1579 return sprintf(buf, "%d\n", st->state);
1580 }
1581 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1582
1583 static ssize_t write_cpuhp_target(struct device *dev,
1584 struct device_attribute *attr,
1585 const char *buf, size_t count)
1586 {
1587 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1588 struct cpuhp_step *sp;
1589 int target, ret;
1590
1591 ret = kstrtoint(buf, 10, &target);
1592 if (ret)
1593 return ret;
1594
1595 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1596 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1597 return -EINVAL;
1598 #else
1599 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1600 return -EINVAL;
1601 #endif
1602
1603 ret = lock_device_hotplug_sysfs();
1604 if (ret)
1605 return ret;
1606
1607 mutex_lock(&cpuhp_state_mutex);
1608 sp = cpuhp_get_step(target);
1609 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1610 mutex_unlock(&cpuhp_state_mutex);
1611 if (ret)
1612 goto out;
1613
1614 if (st->state < target)
1615 ret = do_cpu_up(dev->id, target);
1616 else
1617 ret = do_cpu_down(dev->id, target);
1618 out:
1619 unlock_device_hotplug();
1620 return ret ? ret : count;
1621 }
1622
1623 static ssize_t show_cpuhp_target(struct device *dev,
1624 struct device_attribute *attr, char *buf)
1625 {
1626 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1627
1628 return sprintf(buf, "%d\n", st->target);
1629 }
1630 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1631
1632 static struct attribute *cpuhp_cpu_attrs[] = {
1633 &dev_attr_state.attr,
1634 &dev_attr_target.attr,
1635 NULL
1636 };
1637
1638 static const struct attribute_group cpuhp_cpu_attr_group = {
1639 .attrs = cpuhp_cpu_attrs,
1640 .name = "hotplug",
1641 NULL
1642 };
1643
1644 static ssize_t show_cpuhp_states(struct device *dev,
1645 struct device_attribute *attr, char *buf)
1646 {
1647 ssize_t cur, res = 0;
1648 int i;
1649
1650 mutex_lock(&cpuhp_state_mutex);
1651 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1652 struct cpuhp_step *sp = cpuhp_get_step(i);
1653
1654 if (sp->name) {
1655 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1656 buf += cur;
1657 res += cur;
1658 }
1659 }
1660 mutex_unlock(&cpuhp_state_mutex);
1661 return res;
1662 }
1663 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1664
1665 static struct attribute *cpuhp_cpu_root_attrs[] = {
1666 &dev_attr_states.attr,
1667 NULL
1668 };
1669
1670 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1671 .attrs = cpuhp_cpu_root_attrs,
1672 .name = "hotplug",
1673 NULL
1674 };
1675
1676 static int __init cpuhp_sysfs_init(void)
1677 {
1678 int cpu, ret;
1679
1680 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1681 &cpuhp_cpu_root_attr_group);
1682 if (ret)
1683 return ret;
1684
1685 for_each_possible_cpu(cpu) {
1686 struct device *dev = get_cpu_device(cpu);
1687
1688 if (!dev)
1689 continue;
1690 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1691 if (ret)
1692 return ret;
1693 }
1694 return 0;
1695 }
1696 device_initcall(cpuhp_sysfs_init);
1697 #endif
1698
1699 /*
1700 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1701 * represents all NR_CPUS bits binary values of 1<<nr.
1702 *
1703 * It is used by cpumask_of() to get a constant address to a CPU
1704 * mask value that has a single bit set only.
1705 */
1706
1707 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1708 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1709 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1710 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1711 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1712
1713 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1714
1715 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1716 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1717 #if BITS_PER_LONG > 32
1718 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1719 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1720 #endif
1721 };
1722 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1723
1724 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1725 EXPORT_SYMBOL(cpu_all_bits);
1726
1727 #ifdef CONFIG_INIT_ALL_POSSIBLE
1728 struct cpumask __cpu_possible_mask __read_mostly
1729 = {CPU_BITS_ALL};
1730 #else
1731 struct cpumask __cpu_possible_mask __read_mostly;
1732 #endif
1733 EXPORT_SYMBOL(__cpu_possible_mask);
1734
1735 struct cpumask __cpu_online_mask __read_mostly;
1736 EXPORT_SYMBOL(__cpu_online_mask);
1737
1738 struct cpumask __cpu_present_mask __read_mostly;
1739 EXPORT_SYMBOL(__cpu_present_mask);
1740
1741 struct cpumask __cpu_active_mask __read_mostly;
1742 EXPORT_SYMBOL(__cpu_active_mask);
1743
1744 void init_cpu_present(const struct cpumask *src)
1745 {
1746 cpumask_copy(&__cpu_present_mask, src);
1747 }
1748
1749 void init_cpu_possible(const struct cpumask *src)
1750 {
1751 cpumask_copy(&__cpu_possible_mask, src);
1752 }
1753
1754 void init_cpu_online(const struct cpumask *src)
1755 {
1756 cpumask_copy(&__cpu_online_mask, src);
1757 }
1758
1759 /*
1760 * Activate the first processor.
1761 */
1762 void __init boot_cpu_init(void)
1763 {
1764 int cpu = smp_processor_id();
1765
1766 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1767 set_cpu_online(cpu, true);
1768 set_cpu_active(cpu, true);
1769 set_cpu_present(cpu, true);
1770 set_cpu_possible(cpu, true);
1771
1772 #ifdef CONFIG_SMP
1773 __boot_cpu_id = cpu;
1774 #endif
1775 }
1776
1777 /*
1778 * Must be called _AFTER_ setting up the per_cpu areas
1779 */
1780 void __init boot_cpu_state_init(void)
1781 {
1782 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1783 }