]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cpu.c
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35
36 #include "smpboot.h"
37
38 /**
39 * cpuhp_cpu_state - Per cpu hotplug state storage
40 * @state: The current cpu state
41 * @target: The target state
42 * @thread: Pointer to the hotplug thread
43 * @should_run: Thread should execute
44 * @rollback: Perform a rollback
45 * @single: Single callback invocation
46 * @bringup: Single callback bringup or teardown selector
47 * @cb_state: The state for a single callback (install/uninstall)
48 * @result: Result of the operation
49 * @done: Signal completion to the issuer of the task
50 */
51 struct cpuhp_cpu_state {
52 enum cpuhp_state state;
53 enum cpuhp_state target;
54 #ifdef CONFIG_SMP
55 struct task_struct *thread;
56 bool should_run;
57 bool rollback;
58 bool single;
59 bool bringup;
60 struct hlist_node *node;
61 enum cpuhp_state cb_state;
62 int result;
63 struct completion done;
64 #endif
65 };
66
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
68
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72 STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
74
75 /**
76 * cpuhp_step - Hotplug state machine step
77 * @name: Name of the step
78 * @startup: Startup function of the step
79 * @teardown: Teardown function of the step
80 * @skip_onerr: Do not invoke the functions on error rollback
81 * Will go away once the notifiers are gone
82 * @cant_stop: Bringup/teardown can't be stopped at this step
83 */
84 struct cpuhp_step {
85 const char *name;
86 union {
87 int (*single)(unsigned int cpu);
88 int (*multi)(unsigned int cpu,
89 struct hlist_node *node);
90 } startup;
91 union {
92 int (*single)(unsigned int cpu);
93 int (*multi)(unsigned int cpu,
94 struct hlist_node *node);
95 } teardown;
96 struct hlist_head list;
97 bool skip_onerr;
98 bool cant_stop;
99 bool multi_instance;
100 };
101
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
105
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
107 {
108 /*
109 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110 * purposes as that state is handled explicitly in cpu_down.
111 */
112 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
113 }
114
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
116 {
117 struct cpuhp_step *sp;
118
119 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120 return sp + state;
121 }
122
123 /**
124 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125 * @cpu: The cpu for which the callback should be invoked
126 * @step: The step in the state machine
127 * @bringup: True if the bringup callback should be invoked
128 *
129 * Called from cpu hotplug and from the state register machinery.
130 */
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132 bool bringup, struct hlist_node *node)
133 {
134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135 struct cpuhp_step *step = cpuhp_get_step(state);
136 int (*cbm)(unsigned int cpu, struct hlist_node *node);
137 int (*cb)(unsigned int cpu);
138 int ret, cnt;
139
140 if (!step->multi_instance) {
141 cb = bringup ? step->startup.single : step->teardown.single;
142 if (!cb)
143 return 0;
144 trace_cpuhp_enter(cpu, st->target, state, cb);
145 ret = cb(cpu);
146 trace_cpuhp_exit(cpu, st->state, state, ret);
147 return ret;
148 }
149 cbm = bringup ? step->startup.multi : step->teardown.multi;
150 if (!cbm)
151 return 0;
152
153 /* Single invocation for instance add/remove */
154 if (node) {
155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 ret = cbm(cpu, node);
157 trace_cpuhp_exit(cpu, st->state, state, ret);
158 return ret;
159 }
160
161 /* State transition. Invoke on all instances */
162 cnt = 0;
163 hlist_for_each(node, &step->list) {
164 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165 ret = cbm(cpu, node);
166 trace_cpuhp_exit(cpu, st->state, state, ret);
167 if (ret)
168 goto err;
169 cnt++;
170 }
171 return 0;
172 err:
173 /* Rollback the instances if one failed */
174 cbm = !bringup ? step->startup.multi : step->teardown.multi;
175 if (!cbm)
176 return ret;
177
178 hlist_for_each(node, &step->list) {
179 if (!cnt--)
180 break;
181 cbm(cpu, node);
182 }
183 return ret;
184 }
185
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
191
192 /*
193 * The following two APIs (cpu_maps_update_begin/done) must be used when
194 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
195 */
196 void cpu_maps_update_begin(void)
197 {
198 mutex_lock(&cpu_add_remove_lock);
199 }
200
201 void cpu_maps_update_done(void)
202 {
203 mutex_unlock(&cpu_add_remove_lock);
204 }
205
206 /*
207 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208 * Should always be manipulated under cpu_add_remove_lock
209 */
210 static int cpu_hotplug_disabled;
211
212 #ifdef CONFIG_HOTPLUG_CPU
213
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
215
216 void cpus_read_lock(void)
217 {
218 percpu_down_read(&cpu_hotplug_lock);
219 }
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
221
222 void cpus_read_unlock(void)
223 {
224 percpu_up_read(&cpu_hotplug_lock);
225 }
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
227
228 void cpus_write_lock(void)
229 {
230 percpu_down_write(&cpu_hotplug_lock);
231 }
232
233 void cpus_write_unlock(void)
234 {
235 percpu_up_write(&cpu_hotplug_lock);
236 }
237
238 void lockdep_assert_cpus_held(void)
239 {
240 percpu_rwsem_assert_held(&cpu_hotplug_lock);
241 }
242
243 /*
244 * Wait for currently running CPU hotplug operations to complete (if any) and
245 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247 * hotplug path before performing hotplug operations. So acquiring that lock
248 * guarantees mutual exclusion from any currently running hotplug operations.
249 */
250 void cpu_hotplug_disable(void)
251 {
252 cpu_maps_update_begin();
253 cpu_hotplug_disabled++;
254 cpu_maps_update_done();
255 }
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
257
258 static void __cpu_hotplug_enable(void)
259 {
260 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261 return;
262 cpu_hotplug_disabled--;
263 }
264
265 void cpu_hotplug_enable(void)
266 {
267 cpu_maps_update_begin();
268 __cpu_hotplug_enable();
269 cpu_maps_update_done();
270 }
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif /* CONFIG_HOTPLUG_CPU */
273
274 static int bringup_wait_for_ap(unsigned int cpu)
275 {
276 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
277
278 wait_for_completion(&st->done);
279 return st->result;
280 }
281
282 static int bringup_cpu(unsigned int cpu)
283 {
284 struct task_struct *idle = idle_thread_get(cpu);
285 int ret;
286
287 /*
288 * Some architectures have to walk the irq descriptors to
289 * setup the vector space for the cpu which comes online.
290 * Prevent irq alloc/free across the bringup.
291 */
292 irq_lock_sparse();
293
294 /* Arch-specific enabling code. */
295 ret = __cpu_up(cpu, idle);
296 irq_unlock_sparse();
297 if (ret)
298 return ret;
299 ret = bringup_wait_for_ap(cpu);
300 BUG_ON(!cpu_online(cpu));
301 return ret;
302 }
303
304 /*
305 * Hotplug state machine related functions
306 */
307 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
308 {
309 for (st->state++; st->state < st->target; st->state++) {
310 struct cpuhp_step *step = cpuhp_get_step(st->state);
311
312 if (!step->skip_onerr)
313 cpuhp_invoke_callback(cpu, st->state, true, NULL);
314 }
315 }
316
317 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
318 enum cpuhp_state target)
319 {
320 enum cpuhp_state prev_state = st->state;
321 int ret = 0;
322
323 for (; st->state > target; st->state--) {
324 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
325 if (ret) {
326 st->target = prev_state;
327 undo_cpu_down(cpu, st);
328 break;
329 }
330 }
331 return ret;
332 }
333
334 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
335 {
336 for (st->state--; st->state > st->target; st->state--) {
337 struct cpuhp_step *step = cpuhp_get_step(st->state);
338
339 if (!step->skip_onerr)
340 cpuhp_invoke_callback(cpu, st->state, false, NULL);
341 }
342 }
343
344 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
345 enum cpuhp_state target)
346 {
347 enum cpuhp_state prev_state = st->state;
348 int ret = 0;
349
350 while (st->state < target) {
351 st->state++;
352 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
353 if (ret) {
354 st->target = prev_state;
355 undo_cpu_up(cpu, st);
356 break;
357 }
358 }
359 return ret;
360 }
361
362 /*
363 * The cpu hotplug threads manage the bringup and teardown of the cpus
364 */
365 static void cpuhp_create(unsigned int cpu)
366 {
367 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
368
369 init_completion(&st->done);
370 }
371
372 static int cpuhp_should_run(unsigned int cpu)
373 {
374 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
375
376 return st->should_run;
377 }
378
379 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
380 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
381 {
382 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
383
384 return cpuhp_down_callbacks(cpu, st, target);
385 }
386
387 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
388 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
389 {
390 return cpuhp_up_callbacks(cpu, st, st->target);
391 }
392
393 /*
394 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
395 * callbacks when a state gets [un]installed at runtime.
396 */
397 static void cpuhp_thread_fun(unsigned int cpu)
398 {
399 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
400 int ret = 0;
401
402 /*
403 * Paired with the mb() in cpuhp_kick_ap_work and
404 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
405 */
406 smp_mb();
407 if (!st->should_run)
408 return;
409
410 st->should_run = false;
411
412 lock_map_acquire(&cpuhp_state_lock_map);
413 /* Single callback invocation for [un]install ? */
414 if (st->single) {
415 if (st->cb_state < CPUHP_AP_ONLINE) {
416 local_irq_disable();
417 ret = cpuhp_invoke_callback(cpu, st->cb_state,
418 st->bringup, st->node);
419 local_irq_enable();
420 } else {
421 ret = cpuhp_invoke_callback(cpu, st->cb_state,
422 st->bringup, st->node);
423 }
424 } else if (st->rollback) {
425 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
426
427 undo_cpu_down(cpu, st);
428 st->rollback = false;
429 } else {
430 /* Cannot happen .... */
431 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
432
433 /* Regular hotplug work */
434 if (st->state < st->target)
435 ret = cpuhp_ap_online(cpu, st);
436 else if (st->state > st->target)
437 ret = cpuhp_ap_offline(cpu, st);
438 }
439 lock_map_release(&cpuhp_state_lock_map);
440 st->result = ret;
441 complete(&st->done);
442 }
443
444 /* Invoke a single callback on a remote cpu */
445 static int
446 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
447 struct hlist_node *node)
448 {
449 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
450
451 if (!cpu_online(cpu))
452 return 0;
453
454 lock_map_acquire(&cpuhp_state_lock_map);
455 lock_map_release(&cpuhp_state_lock_map);
456
457 /*
458 * If we are up and running, use the hotplug thread. For early calls
459 * we invoke the thread function directly.
460 */
461 if (!st->thread)
462 return cpuhp_invoke_callback(cpu, state, bringup, node);
463
464 st->cb_state = state;
465 st->single = true;
466 st->bringup = bringup;
467 st->node = node;
468
469 /*
470 * Make sure the above stores are visible before should_run becomes
471 * true. Paired with the mb() above in cpuhp_thread_fun()
472 */
473 smp_mb();
474 st->should_run = true;
475 wake_up_process(st->thread);
476 wait_for_completion(&st->done);
477 return st->result;
478 }
479
480 /* Regular hotplug invocation of the AP hotplug thread */
481 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
482 {
483 st->result = 0;
484 st->single = false;
485 /*
486 * Make sure the above stores are visible before should_run becomes
487 * true. Paired with the mb() above in cpuhp_thread_fun()
488 */
489 smp_mb();
490 st->should_run = true;
491 wake_up_process(st->thread);
492 }
493
494 static int cpuhp_kick_ap_work(unsigned int cpu)
495 {
496 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
497 enum cpuhp_state state = st->state;
498
499 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
500 lock_map_acquire(&cpuhp_state_lock_map);
501 lock_map_release(&cpuhp_state_lock_map);
502 __cpuhp_kick_ap_work(st);
503 wait_for_completion(&st->done);
504 trace_cpuhp_exit(cpu, st->state, state, st->result);
505 return st->result;
506 }
507
508 static struct smp_hotplug_thread cpuhp_threads = {
509 .store = &cpuhp_state.thread,
510 .create = &cpuhp_create,
511 .thread_should_run = cpuhp_should_run,
512 .thread_fn = cpuhp_thread_fun,
513 .thread_comm = "cpuhp/%u",
514 .selfparking = true,
515 };
516
517 void __init cpuhp_threads_init(void)
518 {
519 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
520 kthread_unpark(this_cpu_read(cpuhp_state.thread));
521 }
522
523 #ifdef CONFIG_HOTPLUG_CPU
524 /**
525 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
526 * @cpu: a CPU id
527 *
528 * This function walks all processes, finds a valid mm struct for each one and
529 * then clears a corresponding bit in mm's cpumask. While this all sounds
530 * trivial, there are various non-obvious corner cases, which this function
531 * tries to solve in a safe manner.
532 *
533 * Also note that the function uses a somewhat relaxed locking scheme, so it may
534 * be called only for an already offlined CPU.
535 */
536 void clear_tasks_mm_cpumask(int cpu)
537 {
538 struct task_struct *p;
539
540 /*
541 * This function is called after the cpu is taken down and marked
542 * offline, so its not like new tasks will ever get this cpu set in
543 * their mm mask. -- Peter Zijlstra
544 * Thus, we may use rcu_read_lock() here, instead of grabbing
545 * full-fledged tasklist_lock.
546 */
547 WARN_ON(cpu_online(cpu));
548 rcu_read_lock();
549 for_each_process(p) {
550 struct task_struct *t;
551
552 /*
553 * Main thread might exit, but other threads may still have
554 * a valid mm. Find one.
555 */
556 t = find_lock_task_mm(p);
557 if (!t)
558 continue;
559 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
560 task_unlock(t);
561 }
562 rcu_read_unlock();
563 }
564
565 /* Take this CPU down. */
566 static int take_cpu_down(void *_param)
567 {
568 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
569 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
570 int err, cpu = smp_processor_id();
571
572 /* Ensure this CPU doesn't handle any more interrupts. */
573 err = __cpu_disable();
574 if (err < 0)
575 return err;
576
577 /*
578 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
579 * do this step again.
580 */
581 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
582 st->state--;
583 /* Invoke the former CPU_DYING callbacks */
584 for (; st->state > target; st->state--)
585 cpuhp_invoke_callback(cpu, st->state, false, NULL);
586
587 /* Give up timekeeping duties */
588 tick_handover_do_timer();
589 /* Park the stopper thread */
590 stop_machine_park(cpu);
591 return 0;
592 }
593
594 static int takedown_cpu(unsigned int cpu)
595 {
596 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597 int err;
598
599 /* Park the smpboot threads */
600 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
601 smpboot_park_threads(cpu);
602
603 /*
604 * Prevent irq alloc/free while the dying cpu reorganizes the
605 * interrupt affinities.
606 */
607 irq_lock_sparse();
608
609 /*
610 * So now all preempt/rcu users must observe !cpu_active().
611 */
612 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
613 if (err) {
614 /* CPU refused to die */
615 irq_unlock_sparse();
616 /* Unpark the hotplug thread so we can rollback there */
617 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
618 return err;
619 }
620 BUG_ON(cpu_online(cpu));
621
622 /*
623 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
624 * runnable tasks from the cpu, there's only the idle task left now
625 * that the migration thread is done doing the stop_machine thing.
626 *
627 * Wait for the stop thread to go away.
628 */
629 wait_for_completion(&st->done);
630 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
631
632 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
633 irq_unlock_sparse();
634
635 hotplug_cpu__broadcast_tick_pull(cpu);
636 /* This actually kills the CPU. */
637 __cpu_die(cpu);
638
639 tick_cleanup_dead_cpu(cpu);
640 return 0;
641 }
642
643 static void cpuhp_complete_idle_dead(void *arg)
644 {
645 struct cpuhp_cpu_state *st = arg;
646
647 complete(&st->done);
648 }
649
650 void cpuhp_report_idle_dead(void)
651 {
652 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
653
654 BUG_ON(st->state != CPUHP_AP_OFFLINE);
655 rcu_report_dead(smp_processor_id());
656 st->state = CPUHP_AP_IDLE_DEAD;
657 /*
658 * We cannot call complete after rcu_report_dead() so we delegate it
659 * to an online cpu.
660 */
661 smp_call_function_single(cpumask_first(cpu_online_mask),
662 cpuhp_complete_idle_dead, st, 0);
663 }
664
665 #else
666 #define takedown_cpu NULL
667 #endif
668
669 #ifdef CONFIG_HOTPLUG_CPU
670
671 /* Requires cpu_add_remove_lock to be held */
672 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
673 enum cpuhp_state target)
674 {
675 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
676 int prev_state, ret = 0;
677
678 if (num_online_cpus() == 1)
679 return -EBUSY;
680
681 if (!cpu_present(cpu))
682 return -EINVAL;
683
684 cpus_write_lock();
685
686 cpuhp_tasks_frozen = tasks_frozen;
687
688 prev_state = st->state;
689 st->target = target;
690 /*
691 * If the current CPU state is in the range of the AP hotplug thread,
692 * then we need to kick the thread.
693 */
694 if (st->state > CPUHP_TEARDOWN_CPU) {
695 ret = cpuhp_kick_ap_work(cpu);
696 /*
697 * The AP side has done the error rollback already. Just
698 * return the error code..
699 */
700 if (ret)
701 goto out;
702
703 /*
704 * We might have stopped still in the range of the AP hotplug
705 * thread. Nothing to do anymore.
706 */
707 if (st->state > CPUHP_TEARDOWN_CPU)
708 goto out;
709 }
710 /*
711 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
712 * to do the further cleanups.
713 */
714 ret = cpuhp_down_callbacks(cpu, st, target);
715 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
716 st->target = prev_state;
717 st->rollback = true;
718 cpuhp_kick_ap_work(cpu);
719 }
720
721 out:
722 cpus_write_unlock();
723 return ret;
724 }
725
726 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
727 {
728 int err;
729
730 cpu_maps_update_begin();
731
732 if (cpu_hotplug_disabled) {
733 err = -EBUSY;
734 goto out;
735 }
736
737 err = _cpu_down(cpu, 0, target);
738
739 out:
740 cpu_maps_update_done();
741 return err;
742 }
743 int cpu_down(unsigned int cpu)
744 {
745 return do_cpu_down(cpu, CPUHP_OFFLINE);
746 }
747 EXPORT_SYMBOL(cpu_down);
748 #endif /*CONFIG_HOTPLUG_CPU*/
749
750 /**
751 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
752 * @cpu: cpu that just started
753 *
754 * It must be called by the arch code on the new cpu, before the new cpu
755 * enables interrupts and before the "boot" cpu returns from __cpu_up().
756 */
757 void notify_cpu_starting(unsigned int cpu)
758 {
759 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
760 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
761
762 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
763 while (st->state < target) {
764 st->state++;
765 cpuhp_invoke_callback(cpu, st->state, true, NULL);
766 }
767 }
768
769 /*
770 * Called from the idle task. We need to set active here, so we can kick off
771 * the stopper thread and unpark the smpboot threads. If the target state is
772 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
773 * cpu further.
774 */
775 void cpuhp_online_idle(enum cpuhp_state state)
776 {
777 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
778 unsigned int cpu = smp_processor_id();
779
780 /* Happens for the boot cpu */
781 if (state != CPUHP_AP_ONLINE_IDLE)
782 return;
783
784 st->state = CPUHP_AP_ONLINE_IDLE;
785
786 /* Unpark the stopper thread and the hotplug thread of this cpu */
787 stop_machine_unpark(cpu);
788 kthread_unpark(st->thread);
789
790 /* Should we go further up ? */
791 if (st->target > CPUHP_AP_ONLINE_IDLE)
792 __cpuhp_kick_ap_work(st);
793 else
794 complete(&st->done);
795 }
796
797 /* Requires cpu_add_remove_lock to be held */
798 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
799 {
800 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
801 struct task_struct *idle;
802 int ret = 0;
803
804 cpus_write_lock();
805
806 if (!cpu_present(cpu)) {
807 ret = -EINVAL;
808 goto out;
809 }
810
811 /*
812 * The caller of do_cpu_up might have raced with another
813 * caller. Ignore it for now.
814 */
815 if (st->state >= target)
816 goto out;
817
818 if (st->state == CPUHP_OFFLINE) {
819 /* Let it fail before we try to bring the cpu up */
820 idle = idle_thread_get(cpu);
821 if (IS_ERR(idle)) {
822 ret = PTR_ERR(idle);
823 goto out;
824 }
825 }
826
827 cpuhp_tasks_frozen = tasks_frozen;
828
829 st->target = target;
830 /*
831 * If the current CPU state is in the range of the AP hotplug thread,
832 * then we need to kick the thread once more.
833 */
834 if (st->state > CPUHP_BRINGUP_CPU) {
835 ret = cpuhp_kick_ap_work(cpu);
836 /*
837 * The AP side has done the error rollback already. Just
838 * return the error code..
839 */
840 if (ret)
841 goto out;
842 }
843
844 /*
845 * Try to reach the target state. We max out on the BP at
846 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
847 * responsible for bringing it up to the target state.
848 */
849 target = min((int)target, CPUHP_BRINGUP_CPU);
850 ret = cpuhp_up_callbacks(cpu, st, target);
851 out:
852 cpus_write_unlock();
853 return ret;
854 }
855
856 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
857 {
858 int err = 0;
859
860 if (!cpu_possible(cpu)) {
861 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
862 cpu);
863 #if defined(CONFIG_IA64)
864 pr_err("please check additional_cpus= boot parameter\n");
865 #endif
866 return -EINVAL;
867 }
868
869 err = try_online_node(cpu_to_node(cpu));
870 if (err)
871 return err;
872
873 cpu_maps_update_begin();
874
875 if (cpu_hotplug_disabled) {
876 err = -EBUSY;
877 goto out;
878 }
879
880 err = _cpu_up(cpu, 0, target);
881 out:
882 cpu_maps_update_done();
883 return err;
884 }
885
886 int cpu_up(unsigned int cpu)
887 {
888 return do_cpu_up(cpu, CPUHP_ONLINE);
889 }
890 EXPORT_SYMBOL_GPL(cpu_up);
891
892 #ifdef CONFIG_PM_SLEEP_SMP
893 static cpumask_var_t frozen_cpus;
894
895 int freeze_secondary_cpus(int primary)
896 {
897 int cpu, error = 0;
898
899 cpu_maps_update_begin();
900 if (!cpu_online(primary))
901 primary = cpumask_first(cpu_online_mask);
902 /*
903 * We take down all of the non-boot CPUs in one shot to avoid races
904 * with the userspace trying to use the CPU hotplug at the same time
905 */
906 cpumask_clear(frozen_cpus);
907
908 pr_info("Disabling non-boot CPUs ...\n");
909 for_each_online_cpu(cpu) {
910 if (cpu == primary)
911 continue;
912 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
913 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
914 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
915 if (!error)
916 cpumask_set_cpu(cpu, frozen_cpus);
917 else {
918 pr_err("Error taking CPU%d down: %d\n", cpu, error);
919 break;
920 }
921 }
922
923 if (!error)
924 BUG_ON(num_online_cpus() > 1);
925 else
926 pr_err("Non-boot CPUs are not disabled\n");
927
928 /*
929 * Make sure the CPUs won't be enabled by someone else. We need to do
930 * this even in case of failure as all disable_nonboot_cpus() users are
931 * supposed to do enable_nonboot_cpus() on the failure path.
932 */
933 cpu_hotplug_disabled++;
934
935 cpu_maps_update_done();
936 return error;
937 }
938
939 void __weak arch_enable_nonboot_cpus_begin(void)
940 {
941 }
942
943 void __weak arch_enable_nonboot_cpus_end(void)
944 {
945 }
946
947 void enable_nonboot_cpus(void)
948 {
949 int cpu, error;
950
951 /* Allow everyone to use the CPU hotplug again */
952 cpu_maps_update_begin();
953 __cpu_hotplug_enable();
954 if (cpumask_empty(frozen_cpus))
955 goto out;
956
957 pr_info("Enabling non-boot CPUs ...\n");
958
959 arch_enable_nonboot_cpus_begin();
960
961 for_each_cpu(cpu, frozen_cpus) {
962 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
963 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
964 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
965 if (!error) {
966 pr_info("CPU%d is up\n", cpu);
967 continue;
968 }
969 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
970 }
971
972 arch_enable_nonboot_cpus_end();
973
974 cpumask_clear(frozen_cpus);
975 out:
976 cpu_maps_update_done();
977 }
978
979 static int __init alloc_frozen_cpus(void)
980 {
981 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
982 return -ENOMEM;
983 return 0;
984 }
985 core_initcall(alloc_frozen_cpus);
986
987 /*
988 * When callbacks for CPU hotplug notifications are being executed, we must
989 * ensure that the state of the system with respect to the tasks being frozen
990 * or not, as reported by the notification, remains unchanged *throughout the
991 * duration* of the execution of the callbacks.
992 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
993 *
994 * This synchronization is implemented by mutually excluding regular CPU
995 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
996 * Hibernate notifications.
997 */
998 static int
999 cpu_hotplug_pm_callback(struct notifier_block *nb,
1000 unsigned long action, void *ptr)
1001 {
1002 switch (action) {
1003
1004 case PM_SUSPEND_PREPARE:
1005 case PM_HIBERNATION_PREPARE:
1006 cpu_hotplug_disable();
1007 break;
1008
1009 case PM_POST_SUSPEND:
1010 case PM_POST_HIBERNATION:
1011 cpu_hotplug_enable();
1012 break;
1013
1014 default:
1015 return NOTIFY_DONE;
1016 }
1017
1018 return NOTIFY_OK;
1019 }
1020
1021
1022 static int __init cpu_hotplug_pm_sync_init(void)
1023 {
1024 /*
1025 * cpu_hotplug_pm_callback has higher priority than x86
1026 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1027 * to disable cpu hotplug to avoid cpu hotplug race.
1028 */
1029 pm_notifier(cpu_hotplug_pm_callback, 0);
1030 return 0;
1031 }
1032 core_initcall(cpu_hotplug_pm_sync_init);
1033
1034 #endif /* CONFIG_PM_SLEEP_SMP */
1035
1036 int __boot_cpu_id;
1037
1038 #endif /* CONFIG_SMP */
1039
1040 /* Boot processor state steps */
1041 static struct cpuhp_step cpuhp_bp_states[] = {
1042 [CPUHP_OFFLINE] = {
1043 .name = "offline",
1044 .startup.single = NULL,
1045 .teardown.single = NULL,
1046 },
1047 #ifdef CONFIG_SMP
1048 [CPUHP_CREATE_THREADS]= {
1049 .name = "threads:prepare",
1050 .startup.single = smpboot_create_threads,
1051 .teardown.single = NULL,
1052 .cant_stop = true,
1053 },
1054 [CPUHP_PERF_PREPARE] = {
1055 .name = "perf:prepare",
1056 .startup.single = perf_event_init_cpu,
1057 .teardown.single = perf_event_exit_cpu,
1058 },
1059 [CPUHP_WORKQUEUE_PREP] = {
1060 .name = "workqueue:prepare",
1061 .startup.single = workqueue_prepare_cpu,
1062 .teardown.single = NULL,
1063 },
1064 [CPUHP_HRTIMERS_PREPARE] = {
1065 .name = "hrtimers:prepare",
1066 .startup.single = hrtimers_prepare_cpu,
1067 .teardown.single = hrtimers_dead_cpu,
1068 },
1069 [CPUHP_SMPCFD_PREPARE] = {
1070 .name = "smpcfd:prepare",
1071 .startup.single = smpcfd_prepare_cpu,
1072 .teardown.single = smpcfd_dead_cpu,
1073 },
1074 [CPUHP_RELAY_PREPARE] = {
1075 .name = "relay:prepare",
1076 .startup.single = relay_prepare_cpu,
1077 .teardown.single = NULL,
1078 },
1079 [CPUHP_SLAB_PREPARE] = {
1080 .name = "slab:prepare",
1081 .startup.single = slab_prepare_cpu,
1082 .teardown.single = slab_dead_cpu,
1083 },
1084 [CPUHP_RCUTREE_PREP] = {
1085 .name = "RCU/tree:prepare",
1086 .startup.single = rcutree_prepare_cpu,
1087 .teardown.single = rcutree_dead_cpu,
1088 },
1089 /*
1090 * On the tear-down path, timers_dead_cpu() must be invoked
1091 * before blk_mq_queue_reinit_notify() from notify_dead(),
1092 * otherwise a RCU stall occurs.
1093 */
1094 [CPUHP_TIMERS_DEAD] = {
1095 .name = "timers:dead",
1096 .startup.single = NULL,
1097 .teardown.single = timers_dead_cpu,
1098 },
1099 /* Kicks the plugged cpu into life */
1100 [CPUHP_BRINGUP_CPU] = {
1101 .name = "cpu:bringup",
1102 .startup.single = bringup_cpu,
1103 .teardown.single = NULL,
1104 .cant_stop = true,
1105 },
1106 [CPUHP_AP_SMPCFD_DYING] = {
1107 .name = "smpcfd:dying",
1108 .startup.single = NULL,
1109 .teardown.single = smpcfd_dying_cpu,
1110 },
1111 /*
1112 * Handled on controll processor until the plugged processor manages
1113 * this itself.
1114 */
1115 [CPUHP_TEARDOWN_CPU] = {
1116 .name = "cpu:teardown",
1117 .startup.single = NULL,
1118 .teardown.single = takedown_cpu,
1119 .cant_stop = true,
1120 },
1121 #else
1122 [CPUHP_BRINGUP_CPU] = { },
1123 #endif
1124 };
1125
1126 /* Application processor state steps */
1127 static struct cpuhp_step cpuhp_ap_states[] = {
1128 #ifdef CONFIG_SMP
1129 /* Final state before CPU kills itself */
1130 [CPUHP_AP_IDLE_DEAD] = {
1131 .name = "idle:dead",
1132 },
1133 /*
1134 * Last state before CPU enters the idle loop to die. Transient state
1135 * for synchronization.
1136 */
1137 [CPUHP_AP_OFFLINE] = {
1138 .name = "ap:offline",
1139 .cant_stop = true,
1140 },
1141 /* First state is scheduler control. Interrupts are disabled */
1142 [CPUHP_AP_SCHED_STARTING] = {
1143 .name = "sched:starting",
1144 .startup.single = sched_cpu_starting,
1145 .teardown.single = sched_cpu_dying,
1146 },
1147 [CPUHP_AP_RCUTREE_DYING] = {
1148 .name = "RCU/tree:dying",
1149 .startup.single = NULL,
1150 .teardown.single = rcutree_dying_cpu,
1151 },
1152 /* Entry state on starting. Interrupts enabled from here on. Transient
1153 * state for synchronsization */
1154 [CPUHP_AP_ONLINE] = {
1155 .name = "ap:online",
1156 },
1157 /* Handle smpboot threads park/unpark */
1158 [CPUHP_AP_SMPBOOT_THREADS] = {
1159 .name = "smpboot/threads:online",
1160 .startup.single = smpboot_unpark_threads,
1161 .teardown.single = NULL,
1162 },
1163 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1164 .name = "irq/affinity:online",
1165 .startup.single = irq_affinity_online_cpu,
1166 .teardown.single = NULL,
1167 },
1168 [CPUHP_AP_PERF_ONLINE] = {
1169 .name = "perf:online",
1170 .startup.single = perf_event_init_cpu,
1171 .teardown.single = perf_event_exit_cpu,
1172 },
1173 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1174 .name = "workqueue:online",
1175 .startup.single = workqueue_online_cpu,
1176 .teardown.single = workqueue_offline_cpu,
1177 },
1178 [CPUHP_AP_RCUTREE_ONLINE] = {
1179 .name = "RCU/tree:online",
1180 .startup.single = rcutree_online_cpu,
1181 .teardown.single = rcutree_offline_cpu,
1182 },
1183 #endif
1184 /*
1185 * The dynamically registered state space is here
1186 */
1187
1188 #ifdef CONFIG_SMP
1189 /* Last state is scheduler control setting the cpu active */
1190 [CPUHP_AP_ACTIVE] = {
1191 .name = "sched:active",
1192 .startup.single = sched_cpu_activate,
1193 .teardown.single = sched_cpu_deactivate,
1194 },
1195 #endif
1196
1197 /* CPU is fully up and running. */
1198 [CPUHP_ONLINE] = {
1199 .name = "online",
1200 .startup.single = NULL,
1201 .teardown.single = NULL,
1202 },
1203 };
1204
1205 /* Sanity check for callbacks */
1206 static int cpuhp_cb_check(enum cpuhp_state state)
1207 {
1208 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1209 return -EINVAL;
1210 return 0;
1211 }
1212
1213 /*
1214 * Returns a free for dynamic slot assignment of the Online state. The states
1215 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1216 * by having no name assigned.
1217 */
1218 static int cpuhp_reserve_state(enum cpuhp_state state)
1219 {
1220 enum cpuhp_state i, end;
1221 struct cpuhp_step *step;
1222
1223 switch (state) {
1224 case CPUHP_AP_ONLINE_DYN:
1225 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1226 end = CPUHP_AP_ONLINE_DYN_END;
1227 break;
1228 case CPUHP_BP_PREPARE_DYN:
1229 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1230 end = CPUHP_BP_PREPARE_DYN_END;
1231 break;
1232 default:
1233 return -EINVAL;
1234 }
1235
1236 for (i = state; i <= end; i++, step++) {
1237 if (!step->name)
1238 return i;
1239 }
1240 WARN(1, "No more dynamic states available for CPU hotplug\n");
1241 return -ENOSPC;
1242 }
1243
1244 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1245 int (*startup)(unsigned int cpu),
1246 int (*teardown)(unsigned int cpu),
1247 bool multi_instance)
1248 {
1249 /* (Un)Install the callbacks for further cpu hotplug operations */
1250 struct cpuhp_step *sp;
1251 int ret = 0;
1252
1253 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1254 ret = cpuhp_reserve_state(state);
1255 if (ret < 0)
1256 return ret;
1257 state = ret;
1258 }
1259 sp = cpuhp_get_step(state);
1260 if (name && sp->name)
1261 return -EBUSY;
1262
1263 sp->startup.single = startup;
1264 sp->teardown.single = teardown;
1265 sp->name = name;
1266 sp->multi_instance = multi_instance;
1267 INIT_HLIST_HEAD(&sp->list);
1268 return ret;
1269 }
1270
1271 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1272 {
1273 return cpuhp_get_step(state)->teardown.single;
1274 }
1275
1276 /*
1277 * Call the startup/teardown function for a step either on the AP or
1278 * on the current CPU.
1279 */
1280 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1281 struct hlist_node *node)
1282 {
1283 struct cpuhp_step *sp = cpuhp_get_step(state);
1284 int ret;
1285
1286 if ((bringup && !sp->startup.single) ||
1287 (!bringup && !sp->teardown.single))
1288 return 0;
1289 /*
1290 * The non AP bound callbacks can fail on bringup. On teardown
1291 * e.g. module removal we crash for now.
1292 */
1293 #ifdef CONFIG_SMP
1294 if (cpuhp_is_ap_state(state))
1295 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1296 else
1297 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1298 #else
1299 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1300 #endif
1301 BUG_ON(ret && !bringup);
1302 return ret;
1303 }
1304
1305 /*
1306 * Called from __cpuhp_setup_state on a recoverable failure.
1307 *
1308 * Note: The teardown callbacks for rollback are not allowed to fail!
1309 */
1310 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1311 struct hlist_node *node)
1312 {
1313 int cpu;
1314
1315 /* Roll back the already executed steps on the other cpus */
1316 for_each_present_cpu(cpu) {
1317 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1318 int cpustate = st->state;
1319
1320 if (cpu >= failedcpu)
1321 break;
1322
1323 /* Did we invoke the startup call on that cpu ? */
1324 if (cpustate >= state)
1325 cpuhp_issue_call(cpu, state, false, node);
1326 }
1327 }
1328
1329 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1330 struct hlist_node *node,
1331 bool invoke)
1332 {
1333 struct cpuhp_step *sp;
1334 int cpu;
1335 int ret;
1336
1337 lockdep_assert_cpus_held();
1338
1339 sp = cpuhp_get_step(state);
1340 if (sp->multi_instance == false)
1341 return -EINVAL;
1342
1343 mutex_lock(&cpuhp_state_mutex);
1344
1345 if (!invoke || !sp->startup.multi)
1346 goto add_node;
1347
1348 /*
1349 * Try to call the startup callback for each present cpu
1350 * depending on the hotplug state of the cpu.
1351 */
1352 for_each_present_cpu(cpu) {
1353 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1354 int cpustate = st->state;
1355
1356 if (cpustate < state)
1357 continue;
1358
1359 ret = cpuhp_issue_call(cpu, state, true, node);
1360 if (ret) {
1361 if (sp->teardown.multi)
1362 cpuhp_rollback_install(cpu, state, node);
1363 goto unlock;
1364 }
1365 }
1366 add_node:
1367 ret = 0;
1368 hlist_add_head(node, &sp->list);
1369 unlock:
1370 mutex_unlock(&cpuhp_state_mutex);
1371 return ret;
1372 }
1373
1374 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1375 bool invoke)
1376 {
1377 int ret;
1378
1379 cpus_read_lock();
1380 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1381 cpus_read_unlock();
1382 return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1385
1386 /**
1387 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1388 * @state: The state to setup
1389 * @invoke: If true, the startup function is invoked for cpus where
1390 * cpu state >= @state
1391 * @startup: startup callback function
1392 * @teardown: teardown callback function
1393 * @multi_instance: State is set up for multiple instances which get
1394 * added afterwards.
1395 *
1396 * The caller needs to hold cpus read locked while calling this function.
1397 * Returns:
1398 * On success:
1399 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1400 * 0 for all other states
1401 * On failure: proper (negative) error code
1402 */
1403 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1404 const char *name, bool invoke,
1405 int (*startup)(unsigned int cpu),
1406 int (*teardown)(unsigned int cpu),
1407 bool multi_instance)
1408 {
1409 int cpu, ret = 0;
1410 bool dynstate;
1411
1412 lockdep_assert_cpus_held();
1413
1414 if (cpuhp_cb_check(state) || !name)
1415 return -EINVAL;
1416
1417 mutex_lock(&cpuhp_state_mutex);
1418
1419 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1420 multi_instance);
1421
1422 dynstate = state == CPUHP_AP_ONLINE_DYN;
1423 if (ret > 0 && dynstate) {
1424 state = ret;
1425 ret = 0;
1426 }
1427
1428 if (ret || !invoke || !startup)
1429 goto out;
1430
1431 /*
1432 * Try to call the startup callback for each present cpu
1433 * depending on the hotplug state of the cpu.
1434 */
1435 for_each_present_cpu(cpu) {
1436 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1437 int cpustate = st->state;
1438
1439 if (cpustate < state)
1440 continue;
1441
1442 ret = cpuhp_issue_call(cpu, state, true, NULL);
1443 if (ret) {
1444 if (teardown)
1445 cpuhp_rollback_install(cpu, state, NULL);
1446 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1447 goto out;
1448 }
1449 }
1450 out:
1451 mutex_unlock(&cpuhp_state_mutex);
1452 /*
1453 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1454 * dynamically allocated state in case of success.
1455 */
1456 if (!ret && dynstate)
1457 return state;
1458 return ret;
1459 }
1460 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1461
1462 int __cpuhp_setup_state(enum cpuhp_state state,
1463 const char *name, bool invoke,
1464 int (*startup)(unsigned int cpu),
1465 int (*teardown)(unsigned int cpu),
1466 bool multi_instance)
1467 {
1468 int ret;
1469
1470 cpus_read_lock();
1471 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1472 teardown, multi_instance);
1473 cpus_read_unlock();
1474 return ret;
1475 }
1476 EXPORT_SYMBOL(__cpuhp_setup_state);
1477
1478 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1479 struct hlist_node *node, bool invoke)
1480 {
1481 struct cpuhp_step *sp = cpuhp_get_step(state);
1482 int cpu;
1483
1484 BUG_ON(cpuhp_cb_check(state));
1485
1486 if (!sp->multi_instance)
1487 return -EINVAL;
1488
1489 cpus_read_lock();
1490 mutex_lock(&cpuhp_state_mutex);
1491
1492 if (!invoke || !cpuhp_get_teardown_cb(state))
1493 goto remove;
1494 /*
1495 * Call the teardown callback for each present cpu depending
1496 * on the hotplug state of the cpu. This function is not
1497 * allowed to fail currently!
1498 */
1499 for_each_present_cpu(cpu) {
1500 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1501 int cpustate = st->state;
1502
1503 if (cpustate >= state)
1504 cpuhp_issue_call(cpu, state, false, node);
1505 }
1506
1507 remove:
1508 hlist_del(node);
1509 mutex_unlock(&cpuhp_state_mutex);
1510 cpus_read_unlock();
1511
1512 return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1515
1516 /**
1517 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1518 * @state: The state to remove
1519 * @invoke: If true, the teardown function is invoked for cpus where
1520 * cpu state >= @state
1521 *
1522 * The caller needs to hold cpus read locked while calling this function.
1523 * The teardown callback is currently not allowed to fail. Think
1524 * about module removal!
1525 */
1526 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1527 {
1528 struct cpuhp_step *sp = cpuhp_get_step(state);
1529 int cpu;
1530
1531 BUG_ON(cpuhp_cb_check(state));
1532
1533 lockdep_assert_cpus_held();
1534
1535 mutex_lock(&cpuhp_state_mutex);
1536 if (sp->multi_instance) {
1537 WARN(!hlist_empty(&sp->list),
1538 "Error: Removing state %d which has instances left.\n",
1539 state);
1540 goto remove;
1541 }
1542
1543 if (!invoke || !cpuhp_get_teardown_cb(state))
1544 goto remove;
1545
1546 /*
1547 * Call the teardown callback for each present cpu depending
1548 * on the hotplug state of the cpu. This function is not
1549 * allowed to fail currently!
1550 */
1551 for_each_present_cpu(cpu) {
1552 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1553 int cpustate = st->state;
1554
1555 if (cpustate >= state)
1556 cpuhp_issue_call(cpu, state, false, NULL);
1557 }
1558 remove:
1559 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1560 mutex_unlock(&cpuhp_state_mutex);
1561 }
1562 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1563
1564 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1565 {
1566 cpus_read_lock();
1567 __cpuhp_remove_state_cpuslocked(state, invoke);
1568 cpus_read_unlock();
1569 }
1570 EXPORT_SYMBOL(__cpuhp_remove_state);
1571
1572 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1573 static ssize_t show_cpuhp_state(struct device *dev,
1574 struct device_attribute *attr, char *buf)
1575 {
1576 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1577
1578 return sprintf(buf, "%d\n", st->state);
1579 }
1580 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1581
1582 static ssize_t write_cpuhp_target(struct device *dev,
1583 struct device_attribute *attr,
1584 const char *buf, size_t count)
1585 {
1586 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1587 struct cpuhp_step *sp;
1588 int target, ret;
1589
1590 ret = kstrtoint(buf, 10, &target);
1591 if (ret)
1592 return ret;
1593
1594 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1595 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1596 return -EINVAL;
1597 #else
1598 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1599 return -EINVAL;
1600 #endif
1601
1602 ret = lock_device_hotplug_sysfs();
1603 if (ret)
1604 return ret;
1605
1606 mutex_lock(&cpuhp_state_mutex);
1607 sp = cpuhp_get_step(target);
1608 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1609 mutex_unlock(&cpuhp_state_mutex);
1610 if (ret)
1611 goto out;
1612
1613 if (st->state < target)
1614 ret = do_cpu_up(dev->id, target);
1615 else
1616 ret = do_cpu_down(dev->id, target);
1617 out:
1618 unlock_device_hotplug();
1619 return ret ? ret : count;
1620 }
1621
1622 static ssize_t show_cpuhp_target(struct device *dev,
1623 struct device_attribute *attr, char *buf)
1624 {
1625 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1626
1627 return sprintf(buf, "%d\n", st->target);
1628 }
1629 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1630
1631 static struct attribute *cpuhp_cpu_attrs[] = {
1632 &dev_attr_state.attr,
1633 &dev_attr_target.attr,
1634 NULL
1635 };
1636
1637 static const struct attribute_group cpuhp_cpu_attr_group = {
1638 .attrs = cpuhp_cpu_attrs,
1639 .name = "hotplug",
1640 NULL
1641 };
1642
1643 static ssize_t show_cpuhp_states(struct device *dev,
1644 struct device_attribute *attr, char *buf)
1645 {
1646 ssize_t cur, res = 0;
1647 int i;
1648
1649 mutex_lock(&cpuhp_state_mutex);
1650 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1651 struct cpuhp_step *sp = cpuhp_get_step(i);
1652
1653 if (sp->name) {
1654 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1655 buf += cur;
1656 res += cur;
1657 }
1658 }
1659 mutex_unlock(&cpuhp_state_mutex);
1660 return res;
1661 }
1662 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1663
1664 static struct attribute *cpuhp_cpu_root_attrs[] = {
1665 &dev_attr_states.attr,
1666 NULL
1667 };
1668
1669 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1670 .attrs = cpuhp_cpu_root_attrs,
1671 .name = "hotplug",
1672 NULL
1673 };
1674
1675 static int __init cpuhp_sysfs_init(void)
1676 {
1677 int cpu, ret;
1678
1679 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1680 &cpuhp_cpu_root_attr_group);
1681 if (ret)
1682 return ret;
1683
1684 for_each_possible_cpu(cpu) {
1685 struct device *dev = get_cpu_device(cpu);
1686
1687 if (!dev)
1688 continue;
1689 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1690 if (ret)
1691 return ret;
1692 }
1693 return 0;
1694 }
1695 device_initcall(cpuhp_sysfs_init);
1696 #endif
1697
1698 /*
1699 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1700 * represents all NR_CPUS bits binary values of 1<<nr.
1701 *
1702 * It is used by cpumask_of() to get a constant address to a CPU
1703 * mask value that has a single bit set only.
1704 */
1705
1706 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1707 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1708 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1709 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1710 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1711
1712 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1713
1714 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1715 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1716 #if BITS_PER_LONG > 32
1717 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1718 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1719 #endif
1720 };
1721 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1722
1723 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1724 EXPORT_SYMBOL(cpu_all_bits);
1725
1726 #ifdef CONFIG_INIT_ALL_POSSIBLE
1727 struct cpumask __cpu_possible_mask __read_mostly
1728 = {CPU_BITS_ALL};
1729 #else
1730 struct cpumask __cpu_possible_mask __read_mostly;
1731 #endif
1732 EXPORT_SYMBOL(__cpu_possible_mask);
1733
1734 struct cpumask __cpu_online_mask __read_mostly;
1735 EXPORT_SYMBOL(__cpu_online_mask);
1736
1737 struct cpumask __cpu_present_mask __read_mostly;
1738 EXPORT_SYMBOL(__cpu_present_mask);
1739
1740 struct cpumask __cpu_active_mask __read_mostly;
1741 EXPORT_SYMBOL(__cpu_active_mask);
1742
1743 void init_cpu_present(const struct cpumask *src)
1744 {
1745 cpumask_copy(&__cpu_present_mask, src);
1746 }
1747
1748 void init_cpu_possible(const struct cpumask *src)
1749 {
1750 cpumask_copy(&__cpu_possible_mask, src);
1751 }
1752
1753 void init_cpu_online(const struct cpumask *src)
1754 {
1755 cpumask_copy(&__cpu_online_mask, src);
1756 }
1757
1758 /*
1759 * Activate the first processor.
1760 */
1761 void __init boot_cpu_init(void)
1762 {
1763 int cpu = smp_processor_id();
1764
1765 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1766 set_cpu_online(cpu, true);
1767 set_cpu_active(cpu, true);
1768 set_cpu_present(cpu, true);
1769 set_cpu_possible(cpu, true);
1770
1771 #ifdef CONFIG_SMP
1772 __boot_cpu_id = cpu;
1773 #endif
1774 }
1775
1776 /*
1777 * Must be called _AFTER_ setting up the per_cpu areas
1778 */
1779 void __init boot_cpu_state_init(void)
1780 {
1781 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1782 }