]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cpu.c
Merge tag 'sound-3.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[mirror_ubuntu-zesty-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22
23 #include "smpboot.h"
24
25 #ifdef CONFIG_SMP
26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
27 static DEFINE_MUTEX(cpu_add_remove_lock);
28
29 /*
30 * The following two API's must be used when attempting
31 * to serialize the updates to cpu_online_mask, cpu_present_mask.
32 */
33 void cpu_maps_update_begin(void)
34 {
35 mutex_lock(&cpu_add_remove_lock);
36 }
37
38 void cpu_maps_update_done(void)
39 {
40 mutex_unlock(&cpu_add_remove_lock);
41 }
42
43 static RAW_NOTIFIER_HEAD(cpu_chain);
44
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46 * Should always be manipulated under cpu_add_remove_lock
47 */
48 static int cpu_hotplug_disabled;
49
50 #ifdef CONFIG_HOTPLUG_CPU
51
52 static struct {
53 struct task_struct *active_writer;
54 struct mutex lock; /* Synchronizes accesses to refcount, */
55 /*
56 * Also blocks the new readers during
57 * an ongoing cpu hotplug operation.
58 */
59 int refcount;
60 } cpu_hotplug = {
61 .active_writer = NULL,
62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
63 .refcount = 0,
64 };
65
66 void get_online_cpus(void)
67 {
68 might_sleep();
69 if (cpu_hotplug.active_writer == current)
70 return;
71 mutex_lock(&cpu_hotplug.lock);
72 cpu_hotplug.refcount++;
73 mutex_unlock(&cpu_hotplug.lock);
74
75 }
76 EXPORT_SYMBOL_GPL(get_online_cpus);
77
78 void put_online_cpus(void)
79 {
80 if (cpu_hotplug.active_writer == current)
81 return;
82 mutex_lock(&cpu_hotplug.lock);
83
84 if (WARN_ON(!cpu_hotplug.refcount))
85 cpu_hotplug.refcount++; /* try to fix things up */
86
87 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
88 wake_up_process(cpu_hotplug.active_writer);
89 mutex_unlock(&cpu_hotplug.lock);
90
91 }
92 EXPORT_SYMBOL_GPL(put_online_cpus);
93
94 /*
95 * This ensures that the hotplug operation can begin only when the
96 * refcount goes to zero.
97 *
98 * Note that during a cpu-hotplug operation, the new readers, if any,
99 * will be blocked by the cpu_hotplug.lock
100 *
101 * Since cpu_hotplug_begin() is always called after invoking
102 * cpu_maps_update_begin(), we can be sure that only one writer is active.
103 *
104 * Note that theoretically, there is a possibility of a livelock:
105 * - Refcount goes to zero, last reader wakes up the sleeping
106 * writer.
107 * - Last reader unlocks the cpu_hotplug.lock.
108 * - A new reader arrives at this moment, bumps up the refcount.
109 * - The writer acquires the cpu_hotplug.lock finds the refcount
110 * non zero and goes to sleep again.
111 *
112 * However, this is very difficult to achieve in practice since
113 * get_online_cpus() not an api which is called all that often.
114 *
115 */
116 void cpu_hotplug_begin(void)
117 {
118 cpu_hotplug.active_writer = current;
119
120 for (;;) {
121 mutex_lock(&cpu_hotplug.lock);
122 if (likely(!cpu_hotplug.refcount))
123 break;
124 __set_current_state(TASK_UNINTERRUPTIBLE);
125 mutex_unlock(&cpu_hotplug.lock);
126 schedule();
127 }
128 }
129
130 void cpu_hotplug_done(void)
131 {
132 cpu_hotplug.active_writer = NULL;
133 mutex_unlock(&cpu_hotplug.lock);
134 }
135
136 /*
137 * Wait for currently running CPU hotplug operations to complete (if any) and
138 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
139 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
140 * hotplug path before performing hotplug operations. So acquiring that lock
141 * guarantees mutual exclusion from any currently running hotplug operations.
142 */
143 void cpu_hotplug_disable(void)
144 {
145 cpu_maps_update_begin();
146 cpu_hotplug_disabled = 1;
147 cpu_maps_update_done();
148 }
149
150 void cpu_hotplug_enable(void)
151 {
152 cpu_maps_update_begin();
153 cpu_hotplug_disabled = 0;
154 cpu_maps_update_done();
155 }
156
157 #endif /* CONFIG_HOTPLUG_CPU */
158
159 /* Need to know about CPUs going up/down? */
160 int __ref register_cpu_notifier(struct notifier_block *nb)
161 {
162 int ret;
163 cpu_maps_update_begin();
164 ret = raw_notifier_chain_register(&cpu_chain, nb);
165 cpu_maps_update_done();
166 return ret;
167 }
168
169 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
170 int *nr_calls)
171 {
172 int ret;
173
174 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
175 nr_calls);
176
177 return notifier_to_errno(ret);
178 }
179
180 static int cpu_notify(unsigned long val, void *v)
181 {
182 return __cpu_notify(val, v, -1, NULL);
183 }
184
185 #ifdef CONFIG_HOTPLUG_CPU
186
187 static void cpu_notify_nofail(unsigned long val, void *v)
188 {
189 BUG_ON(cpu_notify(val, v));
190 }
191 EXPORT_SYMBOL(register_cpu_notifier);
192
193 void __ref unregister_cpu_notifier(struct notifier_block *nb)
194 {
195 cpu_maps_update_begin();
196 raw_notifier_chain_unregister(&cpu_chain, nb);
197 cpu_maps_update_done();
198 }
199 EXPORT_SYMBOL(unregister_cpu_notifier);
200
201 /**
202 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
203 * @cpu: a CPU id
204 *
205 * This function walks all processes, finds a valid mm struct for each one and
206 * then clears a corresponding bit in mm's cpumask. While this all sounds
207 * trivial, there are various non-obvious corner cases, which this function
208 * tries to solve in a safe manner.
209 *
210 * Also note that the function uses a somewhat relaxed locking scheme, so it may
211 * be called only for an already offlined CPU.
212 */
213 void clear_tasks_mm_cpumask(int cpu)
214 {
215 struct task_struct *p;
216
217 /*
218 * This function is called after the cpu is taken down and marked
219 * offline, so its not like new tasks will ever get this cpu set in
220 * their mm mask. -- Peter Zijlstra
221 * Thus, we may use rcu_read_lock() here, instead of grabbing
222 * full-fledged tasklist_lock.
223 */
224 WARN_ON(cpu_online(cpu));
225 rcu_read_lock();
226 for_each_process(p) {
227 struct task_struct *t;
228
229 /*
230 * Main thread might exit, but other threads may still have
231 * a valid mm. Find one.
232 */
233 t = find_lock_task_mm(p);
234 if (!t)
235 continue;
236 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
237 task_unlock(t);
238 }
239 rcu_read_unlock();
240 }
241
242 static inline void check_for_tasks(int cpu)
243 {
244 struct task_struct *p;
245 cputime_t utime, stime;
246
247 write_lock_irq(&tasklist_lock);
248 for_each_process(p) {
249 task_cputime(p, &utime, &stime);
250 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
251 (utime || stime))
252 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
253 "(state = %ld, flags = %x)\n",
254 p->comm, task_pid_nr(p), cpu,
255 p->state, p->flags);
256 }
257 write_unlock_irq(&tasklist_lock);
258 }
259
260 struct take_cpu_down_param {
261 unsigned long mod;
262 void *hcpu;
263 };
264
265 /* Take this CPU down. */
266 static int __ref take_cpu_down(void *_param)
267 {
268 struct take_cpu_down_param *param = _param;
269 int err;
270
271 /* Ensure this CPU doesn't handle any more interrupts. */
272 err = __cpu_disable();
273 if (err < 0)
274 return err;
275
276 cpu_notify(CPU_DYING | param->mod, param->hcpu);
277 /* Park the stopper thread */
278 kthread_park(current);
279 return 0;
280 }
281
282 /* Requires cpu_add_remove_lock to be held */
283 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
284 {
285 int err, nr_calls = 0;
286 void *hcpu = (void *)(long)cpu;
287 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
288 struct take_cpu_down_param tcd_param = {
289 .mod = mod,
290 .hcpu = hcpu,
291 };
292
293 if (num_online_cpus() == 1)
294 return -EBUSY;
295
296 if (!cpu_online(cpu))
297 return -EINVAL;
298
299 cpu_hotplug_begin();
300
301 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
302 if (err) {
303 nr_calls--;
304 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
305 printk("%s: attempt to take down CPU %u failed\n",
306 __func__, cpu);
307 goto out_release;
308 }
309 smpboot_park_threads(cpu);
310
311 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
312 if (err) {
313 /* CPU didn't die: tell everyone. Can't complain. */
314 smpboot_unpark_threads(cpu);
315 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
316 goto out_release;
317 }
318 BUG_ON(cpu_online(cpu));
319
320 /*
321 * The migration_call() CPU_DYING callback will have removed all
322 * runnable tasks from the cpu, there's only the idle task left now
323 * that the migration thread is done doing the stop_machine thing.
324 *
325 * Wait for the stop thread to go away.
326 */
327 while (!idle_cpu(cpu))
328 cpu_relax();
329
330 /* This actually kills the CPU. */
331 __cpu_die(cpu);
332
333 /* CPU is completely dead: tell everyone. Too late to complain. */
334 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
335
336 check_for_tasks(cpu);
337
338 out_release:
339 cpu_hotplug_done();
340 if (!err)
341 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
342 return err;
343 }
344
345 int __ref cpu_down(unsigned int cpu)
346 {
347 int err;
348
349 cpu_maps_update_begin();
350
351 if (cpu_hotplug_disabled) {
352 err = -EBUSY;
353 goto out;
354 }
355
356 err = _cpu_down(cpu, 0);
357
358 out:
359 cpu_maps_update_done();
360 return err;
361 }
362 EXPORT_SYMBOL(cpu_down);
363 #endif /*CONFIG_HOTPLUG_CPU*/
364
365 /* Requires cpu_add_remove_lock to be held */
366 static int _cpu_up(unsigned int cpu, int tasks_frozen)
367 {
368 int ret, nr_calls = 0;
369 void *hcpu = (void *)(long)cpu;
370 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
371 struct task_struct *idle;
372
373 cpu_hotplug_begin();
374
375 if (cpu_online(cpu) || !cpu_present(cpu)) {
376 ret = -EINVAL;
377 goto out;
378 }
379
380 idle = idle_thread_get(cpu);
381 if (IS_ERR(idle)) {
382 ret = PTR_ERR(idle);
383 goto out;
384 }
385
386 ret = smpboot_create_threads(cpu);
387 if (ret)
388 goto out;
389
390 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
391 if (ret) {
392 nr_calls--;
393 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
394 __func__, cpu);
395 goto out_notify;
396 }
397
398 /* Arch-specific enabling code. */
399 ret = __cpu_up(cpu, idle);
400 if (ret != 0)
401 goto out_notify;
402 BUG_ON(!cpu_online(cpu));
403
404 /* Wake the per cpu threads */
405 smpboot_unpark_threads(cpu);
406
407 /* Now call notifier in preparation. */
408 cpu_notify(CPU_ONLINE | mod, hcpu);
409
410 out_notify:
411 if (ret != 0)
412 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
413 out:
414 cpu_hotplug_done();
415
416 return ret;
417 }
418
419 int cpu_up(unsigned int cpu)
420 {
421 int err = 0;
422
423 #ifdef CONFIG_MEMORY_HOTPLUG
424 int nid;
425 pg_data_t *pgdat;
426 #endif
427
428 if (!cpu_possible(cpu)) {
429 printk(KERN_ERR "can't online cpu %d because it is not "
430 "configured as may-hotadd at boot time\n", cpu);
431 #if defined(CONFIG_IA64)
432 printk(KERN_ERR "please check additional_cpus= boot "
433 "parameter\n");
434 #endif
435 return -EINVAL;
436 }
437
438 #ifdef CONFIG_MEMORY_HOTPLUG
439 nid = cpu_to_node(cpu);
440 if (!node_online(nid)) {
441 err = mem_online_node(nid);
442 if (err)
443 return err;
444 }
445
446 pgdat = NODE_DATA(nid);
447 if (!pgdat) {
448 printk(KERN_ERR
449 "Can't online cpu %d due to NULL pgdat\n", cpu);
450 return -ENOMEM;
451 }
452
453 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
454 mutex_lock(&zonelists_mutex);
455 build_all_zonelists(NULL, NULL);
456 mutex_unlock(&zonelists_mutex);
457 }
458 #endif
459
460 cpu_maps_update_begin();
461
462 if (cpu_hotplug_disabled) {
463 err = -EBUSY;
464 goto out;
465 }
466
467 err = _cpu_up(cpu, 0);
468
469 out:
470 cpu_maps_update_done();
471 return err;
472 }
473 EXPORT_SYMBOL_GPL(cpu_up);
474
475 #ifdef CONFIG_PM_SLEEP_SMP
476 static cpumask_var_t frozen_cpus;
477
478 int disable_nonboot_cpus(void)
479 {
480 int cpu, first_cpu, error = 0;
481
482 cpu_maps_update_begin();
483 first_cpu = cpumask_first(cpu_online_mask);
484 /*
485 * We take down all of the non-boot CPUs in one shot to avoid races
486 * with the userspace trying to use the CPU hotplug at the same time
487 */
488 cpumask_clear(frozen_cpus);
489
490 printk("Disabling non-boot CPUs ...\n");
491 for_each_online_cpu(cpu) {
492 if (cpu == first_cpu)
493 continue;
494 error = _cpu_down(cpu, 1);
495 if (!error)
496 cpumask_set_cpu(cpu, frozen_cpus);
497 else {
498 printk(KERN_ERR "Error taking CPU%d down: %d\n",
499 cpu, error);
500 break;
501 }
502 }
503
504 if (!error) {
505 BUG_ON(num_online_cpus() > 1);
506 /* Make sure the CPUs won't be enabled by someone else */
507 cpu_hotplug_disabled = 1;
508 } else {
509 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
510 }
511 cpu_maps_update_done();
512 return error;
513 }
514
515 void __weak arch_enable_nonboot_cpus_begin(void)
516 {
517 }
518
519 void __weak arch_enable_nonboot_cpus_end(void)
520 {
521 }
522
523 void __ref enable_nonboot_cpus(void)
524 {
525 int cpu, error;
526
527 /* Allow everyone to use the CPU hotplug again */
528 cpu_maps_update_begin();
529 cpu_hotplug_disabled = 0;
530 if (cpumask_empty(frozen_cpus))
531 goto out;
532
533 printk(KERN_INFO "Enabling non-boot CPUs ...\n");
534
535 arch_enable_nonboot_cpus_begin();
536
537 for_each_cpu(cpu, frozen_cpus) {
538 error = _cpu_up(cpu, 1);
539 if (!error) {
540 printk(KERN_INFO "CPU%d is up\n", cpu);
541 continue;
542 }
543 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
544 }
545
546 arch_enable_nonboot_cpus_end();
547
548 cpumask_clear(frozen_cpus);
549 out:
550 cpu_maps_update_done();
551 }
552
553 static int __init alloc_frozen_cpus(void)
554 {
555 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
556 return -ENOMEM;
557 return 0;
558 }
559 core_initcall(alloc_frozen_cpus);
560
561 /*
562 * When callbacks for CPU hotplug notifications are being executed, we must
563 * ensure that the state of the system with respect to the tasks being frozen
564 * or not, as reported by the notification, remains unchanged *throughout the
565 * duration* of the execution of the callbacks.
566 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
567 *
568 * This synchronization is implemented by mutually excluding regular CPU
569 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
570 * Hibernate notifications.
571 */
572 static int
573 cpu_hotplug_pm_callback(struct notifier_block *nb,
574 unsigned long action, void *ptr)
575 {
576 switch (action) {
577
578 case PM_SUSPEND_PREPARE:
579 case PM_HIBERNATION_PREPARE:
580 cpu_hotplug_disable();
581 break;
582
583 case PM_POST_SUSPEND:
584 case PM_POST_HIBERNATION:
585 cpu_hotplug_enable();
586 break;
587
588 default:
589 return NOTIFY_DONE;
590 }
591
592 return NOTIFY_OK;
593 }
594
595
596 static int __init cpu_hotplug_pm_sync_init(void)
597 {
598 /*
599 * cpu_hotplug_pm_callback has higher priority than x86
600 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
601 * to disable cpu hotplug to avoid cpu hotplug race.
602 */
603 pm_notifier(cpu_hotplug_pm_callback, 0);
604 return 0;
605 }
606 core_initcall(cpu_hotplug_pm_sync_init);
607
608 #endif /* CONFIG_PM_SLEEP_SMP */
609
610 /**
611 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
612 * @cpu: cpu that just started
613 *
614 * This function calls the cpu_chain notifiers with CPU_STARTING.
615 * It must be called by the arch code on the new cpu, before the new cpu
616 * enables interrupts and before the "boot" cpu returns from __cpu_up().
617 */
618 void notify_cpu_starting(unsigned int cpu)
619 {
620 unsigned long val = CPU_STARTING;
621
622 #ifdef CONFIG_PM_SLEEP_SMP
623 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
624 val = CPU_STARTING_FROZEN;
625 #endif /* CONFIG_PM_SLEEP_SMP */
626 cpu_notify(val, (void *)(long)cpu);
627 }
628
629 #endif /* CONFIG_SMP */
630
631 /*
632 * cpu_bit_bitmap[] is a special, "compressed" data structure that
633 * represents all NR_CPUS bits binary values of 1<<nr.
634 *
635 * It is used by cpumask_of() to get a constant address to a CPU
636 * mask value that has a single bit set only.
637 */
638
639 /* cpu_bit_bitmap[0] is empty - so we can back into it */
640 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
641 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
642 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
643 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
644
645 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
646
647 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
648 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
649 #if BITS_PER_LONG > 32
650 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
651 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
652 #endif
653 };
654 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
655
656 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
657 EXPORT_SYMBOL(cpu_all_bits);
658
659 #ifdef CONFIG_INIT_ALL_POSSIBLE
660 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
661 = CPU_BITS_ALL;
662 #else
663 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
664 #endif
665 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
666 EXPORT_SYMBOL(cpu_possible_mask);
667
668 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
669 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
670 EXPORT_SYMBOL(cpu_online_mask);
671
672 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
673 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
674 EXPORT_SYMBOL(cpu_present_mask);
675
676 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
677 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
678 EXPORT_SYMBOL(cpu_active_mask);
679
680 void set_cpu_possible(unsigned int cpu, bool possible)
681 {
682 if (possible)
683 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
684 else
685 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
686 }
687
688 void set_cpu_present(unsigned int cpu, bool present)
689 {
690 if (present)
691 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
692 else
693 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
694 }
695
696 void set_cpu_online(unsigned int cpu, bool online)
697 {
698 if (online)
699 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
700 else
701 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
702 }
703
704 void set_cpu_active(unsigned int cpu, bool active)
705 {
706 if (active)
707 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
708 else
709 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
710 }
711
712 void init_cpu_present(const struct cpumask *src)
713 {
714 cpumask_copy(to_cpumask(cpu_present_bits), src);
715 }
716
717 void init_cpu_possible(const struct cpumask *src)
718 {
719 cpumask_copy(to_cpumask(cpu_possible_bits), src);
720 }
721
722 void init_cpu_online(const struct cpumask *src)
723 {
724 cpumask_copy(to_cpumask(cpu_online_bits), src);
725 }