]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cpu.c
UBUNTU: Ubuntu-raspi2-4.10.0-1003.5
[mirror_ubuntu-zesty-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
28
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
32
33 #include "smpboot.h"
34
35 /**
36 * cpuhp_cpu_state - Per cpu hotplug state storage
37 * @state: The current cpu state
38 * @target: The target state
39 * @thread: Pointer to the hotplug thread
40 * @should_run: Thread should execute
41 * @rollback: Perform a rollback
42 * @single: Single callback invocation
43 * @bringup: Single callback bringup or teardown selector
44 * @cb_state: The state for a single callback (install/uninstall)
45 * @result: Result of the operation
46 * @done: Signal completion to the issuer of the task
47 */
48 struct cpuhp_cpu_state {
49 enum cpuhp_state state;
50 enum cpuhp_state target;
51 #ifdef CONFIG_SMP
52 struct task_struct *thread;
53 bool should_run;
54 bool rollback;
55 bool single;
56 bool bringup;
57 struct hlist_node *node;
58 enum cpuhp_state cb_state;
59 int result;
60 struct completion done;
61 #endif
62 };
63
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
65
66 /**
67 * cpuhp_step - Hotplug state machine step
68 * @name: Name of the step
69 * @startup: Startup function of the step
70 * @teardown: Teardown function of the step
71 * @skip_onerr: Do not invoke the functions on error rollback
72 * Will go away once the notifiers are gone
73 * @cant_stop: Bringup/teardown can't be stopped at this step
74 */
75 struct cpuhp_step {
76 const char *name;
77 union {
78 int (*single)(unsigned int cpu);
79 int (*multi)(unsigned int cpu,
80 struct hlist_node *node);
81 } startup;
82 union {
83 int (*single)(unsigned int cpu);
84 int (*multi)(unsigned int cpu,
85 struct hlist_node *node);
86 } teardown;
87 struct hlist_head list;
88 bool skip_onerr;
89 bool cant_stop;
90 bool multi_instance;
91 };
92
93 static DEFINE_MUTEX(cpuhp_state_mutex);
94 static struct cpuhp_step cpuhp_bp_states[];
95 static struct cpuhp_step cpuhp_ap_states[];
96
97 static bool cpuhp_is_ap_state(enum cpuhp_state state)
98 {
99 /*
100 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
101 * purposes as that state is handled explicitly in cpu_down.
102 */
103 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
104 }
105
106 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
107 {
108 struct cpuhp_step *sp;
109
110 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
111 return sp + state;
112 }
113
114 /**
115 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
116 * @cpu: The cpu for which the callback should be invoked
117 * @step: The step in the state machine
118 * @bringup: True if the bringup callback should be invoked
119 *
120 * Called from cpu hotplug and from the state register machinery.
121 */
122 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
123 bool bringup, struct hlist_node *node)
124 {
125 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
126 struct cpuhp_step *step = cpuhp_get_step(state);
127 int (*cbm)(unsigned int cpu, struct hlist_node *node);
128 int (*cb)(unsigned int cpu);
129 int ret, cnt;
130
131 if (!step->multi_instance) {
132 cb = bringup ? step->startup.single : step->teardown.single;
133 if (!cb)
134 return 0;
135 trace_cpuhp_enter(cpu, st->target, state, cb);
136 ret = cb(cpu);
137 trace_cpuhp_exit(cpu, st->state, state, ret);
138 return ret;
139 }
140 cbm = bringup ? step->startup.multi : step->teardown.multi;
141 if (!cbm)
142 return 0;
143
144 /* Single invocation for instance add/remove */
145 if (node) {
146 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
147 ret = cbm(cpu, node);
148 trace_cpuhp_exit(cpu, st->state, state, ret);
149 return ret;
150 }
151
152 /* State transition. Invoke on all instances */
153 cnt = 0;
154 hlist_for_each(node, &step->list) {
155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 ret = cbm(cpu, node);
157 trace_cpuhp_exit(cpu, st->state, state, ret);
158 if (ret)
159 goto err;
160 cnt++;
161 }
162 return 0;
163 err:
164 /* Rollback the instances if one failed */
165 cbm = !bringup ? step->startup.multi : step->teardown.multi;
166 if (!cbm)
167 return ret;
168
169 hlist_for_each(node, &step->list) {
170 if (!cnt--)
171 break;
172 cbm(cpu, node);
173 }
174 return ret;
175 }
176
177 #ifdef CONFIG_SMP
178 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
179 static DEFINE_MUTEX(cpu_add_remove_lock);
180 bool cpuhp_tasks_frozen;
181 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
182
183 /*
184 * The following two APIs (cpu_maps_update_begin/done) must be used when
185 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
186 */
187 void cpu_maps_update_begin(void)
188 {
189 mutex_lock(&cpu_add_remove_lock);
190 }
191
192 void cpu_maps_update_done(void)
193 {
194 mutex_unlock(&cpu_add_remove_lock);
195 }
196
197 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
198 * Should always be manipulated under cpu_add_remove_lock
199 */
200 static int cpu_hotplug_disabled;
201
202 #ifdef CONFIG_HOTPLUG_CPU
203
204 static struct {
205 struct task_struct *active_writer;
206 /* wait queue to wake up the active_writer */
207 wait_queue_head_t wq;
208 /* verifies that no writer will get active while readers are active */
209 struct mutex lock;
210 /*
211 * Also blocks the new readers during
212 * an ongoing cpu hotplug operation.
213 */
214 atomic_t refcount;
215
216 #ifdef CONFIG_DEBUG_LOCK_ALLOC
217 struct lockdep_map dep_map;
218 #endif
219 } cpu_hotplug = {
220 .active_writer = NULL,
221 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
222 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
223 #ifdef CONFIG_DEBUG_LOCK_ALLOC
224 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
225 #endif
226 };
227
228 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
229 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
230 #define cpuhp_lock_acquire_tryread() \
231 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
232 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
233 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
234
235
236 void get_online_cpus(void)
237 {
238 might_sleep();
239 if (cpu_hotplug.active_writer == current)
240 return;
241 cpuhp_lock_acquire_read();
242 mutex_lock(&cpu_hotplug.lock);
243 atomic_inc(&cpu_hotplug.refcount);
244 mutex_unlock(&cpu_hotplug.lock);
245 }
246 EXPORT_SYMBOL_GPL(get_online_cpus);
247
248 void put_online_cpus(void)
249 {
250 int refcount;
251
252 if (cpu_hotplug.active_writer == current)
253 return;
254
255 refcount = atomic_dec_return(&cpu_hotplug.refcount);
256 if (WARN_ON(refcount < 0)) /* try to fix things up */
257 atomic_inc(&cpu_hotplug.refcount);
258
259 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
260 wake_up(&cpu_hotplug.wq);
261
262 cpuhp_lock_release();
263
264 }
265 EXPORT_SYMBOL_GPL(put_online_cpus);
266
267 /*
268 * This ensures that the hotplug operation can begin only when the
269 * refcount goes to zero.
270 *
271 * Note that during a cpu-hotplug operation, the new readers, if any,
272 * will be blocked by the cpu_hotplug.lock
273 *
274 * Since cpu_hotplug_begin() is always called after invoking
275 * cpu_maps_update_begin(), we can be sure that only one writer is active.
276 *
277 * Note that theoretically, there is a possibility of a livelock:
278 * - Refcount goes to zero, last reader wakes up the sleeping
279 * writer.
280 * - Last reader unlocks the cpu_hotplug.lock.
281 * - A new reader arrives at this moment, bumps up the refcount.
282 * - The writer acquires the cpu_hotplug.lock finds the refcount
283 * non zero and goes to sleep again.
284 *
285 * However, this is very difficult to achieve in practice since
286 * get_online_cpus() not an api which is called all that often.
287 *
288 */
289 void cpu_hotplug_begin(void)
290 {
291 DEFINE_WAIT(wait);
292
293 cpu_hotplug.active_writer = current;
294 cpuhp_lock_acquire();
295
296 for (;;) {
297 mutex_lock(&cpu_hotplug.lock);
298 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
299 if (likely(!atomic_read(&cpu_hotplug.refcount)))
300 break;
301 mutex_unlock(&cpu_hotplug.lock);
302 schedule();
303 }
304 finish_wait(&cpu_hotplug.wq, &wait);
305 }
306
307 void cpu_hotplug_done(void)
308 {
309 cpu_hotplug.active_writer = NULL;
310 mutex_unlock(&cpu_hotplug.lock);
311 cpuhp_lock_release();
312 }
313
314 /*
315 * Wait for currently running CPU hotplug operations to complete (if any) and
316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318 * hotplug path before performing hotplug operations. So acquiring that lock
319 * guarantees mutual exclusion from any currently running hotplug operations.
320 */
321 void cpu_hotplug_disable(void)
322 {
323 cpu_maps_update_begin();
324 cpu_hotplug_disabled++;
325 cpu_maps_update_done();
326 }
327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
328
329 static void __cpu_hotplug_enable(void)
330 {
331 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
332 return;
333 cpu_hotplug_disabled--;
334 }
335
336 void cpu_hotplug_enable(void)
337 {
338 cpu_maps_update_begin();
339 __cpu_hotplug_enable();
340 cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
343 #endif /* CONFIG_HOTPLUG_CPU */
344
345 /* Notifier wrappers for transitioning to state machine */
346
347 static int bringup_wait_for_ap(unsigned int cpu)
348 {
349 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
350
351 wait_for_completion(&st->done);
352 return st->result;
353 }
354
355 static int bringup_cpu(unsigned int cpu)
356 {
357 struct task_struct *idle = idle_thread_get(cpu);
358 int ret;
359
360 /*
361 * Some architectures have to walk the irq descriptors to
362 * setup the vector space for the cpu which comes online.
363 * Prevent irq alloc/free across the bringup.
364 */
365 irq_lock_sparse();
366
367 /* Arch-specific enabling code. */
368 ret = __cpu_up(cpu, idle);
369 irq_unlock_sparse();
370 if (ret)
371 return ret;
372 ret = bringup_wait_for_ap(cpu);
373 BUG_ON(!cpu_online(cpu));
374 return ret;
375 }
376
377 /*
378 * Hotplug state machine related functions
379 */
380 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
381 {
382 for (st->state++; st->state < st->target; st->state++) {
383 struct cpuhp_step *step = cpuhp_get_step(st->state);
384
385 if (!step->skip_onerr)
386 cpuhp_invoke_callback(cpu, st->state, true, NULL);
387 }
388 }
389
390 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
391 enum cpuhp_state target)
392 {
393 enum cpuhp_state prev_state = st->state;
394 int ret = 0;
395
396 for (; st->state > target; st->state--) {
397 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
398 if (ret) {
399 st->target = prev_state;
400 undo_cpu_down(cpu, st);
401 break;
402 }
403 }
404 return ret;
405 }
406
407 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
408 {
409 for (st->state--; st->state > st->target; st->state--) {
410 struct cpuhp_step *step = cpuhp_get_step(st->state);
411
412 if (!step->skip_onerr)
413 cpuhp_invoke_callback(cpu, st->state, false, NULL);
414 }
415 }
416
417 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
418 enum cpuhp_state target)
419 {
420 enum cpuhp_state prev_state = st->state;
421 int ret = 0;
422
423 while (st->state < target) {
424 st->state++;
425 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
426 if (ret) {
427 st->target = prev_state;
428 undo_cpu_up(cpu, st);
429 break;
430 }
431 }
432 return ret;
433 }
434
435 /*
436 * The cpu hotplug threads manage the bringup and teardown of the cpus
437 */
438 static void cpuhp_create(unsigned int cpu)
439 {
440 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
441
442 init_completion(&st->done);
443 }
444
445 static int cpuhp_should_run(unsigned int cpu)
446 {
447 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
448
449 return st->should_run;
450 }
451
452 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
453 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
454 {
455 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
456
457 return cpuhp_down_callbacks(cpu, st, target);
458 }
459
460 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
461 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
462 {
463 return cpuhp_up_callbacks(cpu, st, st->target);
464 }
465
466 /*
467 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
468 * callbacks when a state gets [un]installed at runtime.
469 */
470 static void cpuhp_thread_fun(unsigned int cpu)
471 {
472 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
473 int ret = 0;
474
475 /*
476 * Paired with the mb() in cpuhp_kick_ap_work and
477 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
478 */
479 smp_mb();
480 if (!st->should_run)
481 return;
482
483 st->should_run = false;
484
485 /* Single callback invocation for [un]install ? */
486 if (st->single) {
487 if (st->cb_state < CPUHP_AP_ONLINE) {
488 local_irq_disable();
489 ret = cpuhp_invoke_callback(cpu, st->cb_state,
490 st->bringup, st->node);
491 local_irq_enable();
492 } else {
493 ret = cpuhp_invoke_callback(cpu, st->cb_state,
494 st->bringup, st->node);
495 }
496 } else if (st->rollback) {
497 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
498
499 undo_cpu_down(cpu, st);
500 st->rollback = false;
501 } else {
502 /* Cannot happen .... */
503 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
504
505 /* Regular hotplug work */
506 if (st->state < st->target)
507 ret = cpuhp_ap_online(cpu, st);
508 else if (st->state > st->target)
509 ret = cpuhp_ap_offline(cpu, st);
510 }
511 st->result = ret;
512 complete(&st->done);
513 }
514
515 /* Invoke a single callback on a remote cpu */
516 static int
517 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
518 struct hlist_node *node)
519 {
520 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
521
522 if (!cpu_online(cpu))
523 return 0;
524
525 /*
526 * If we are up and running, use the hotplug thread. For early calls
527 * we invoke the thread function directly.
528 */
529 if (!st->thread)
530 return cpuhp_invoke_callback(cpu, state, bringup, node);
531
532 st->cb_state = state;
533 st->single = true;
534 st->bringup = bringup;
535 st->node = node;
536
537 /*
538 * Make sure the above stores are visible before should_run becomes
539 * true. Paired with the mb() above in cpuhp_thread_fun()
540 */
541 smp_mb();
542 st->should_run = true;
543 wake_up_process(st->thread);
544 wait_for_completion(&st->done);
545 return st->result;
546 }
547
548 /* Regular hotplug invocation of the AP hotplug thread */
549 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
550 {
551 st->result = 0;
552 st->single = false;
553 /*
554 * Make sure the above stores are visible before should_run becomes
555 * true. Paired with the mb() above in cpuhp_thread_fun()
556 */
557 smp_mb();
558 st->should_run = true;
559 wake_up_process(st->thread);
560 }
561
562 static int cpuhp_kick_ap_work(unsigned int cpu)
563 {
564 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
565 enum cpuhp_state state = st->state;
566
567 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
568 __cpuhp_kick_ap_work(st);
569 wait_for_completion(&st->done);
570 trace_cpuhp_exit(cpu, st->state, state, st->result);
571 return st->result;
572 }
573
574 static struct smp_hotplug_thread cpuhp_threads = {
575 .store = &cpuhp_state.thread,
576 .create = &cpuhp_create,
577 .thread_should_run = cpuhp_should_run,
578 .thread_fn = cpuhp_thread_fun,
579 .thread_comm = "cpuhp/%u",
580 .selfparking = true,
581 };
582
583 void __init cpuhp_threads_init(void)
584 {
585 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
586 kthread_unpark(this_cpu_read(cpuhp_state.thread));
587 }
588
589 #ifdef CONFIG_HOTPLUG_CPU
590 /**
591 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
592 * @cpu: a CPU id
593 *
594 * This function walks all processes, finds a valid mm struct for each one and
595 * then clears a corresponding bit in mm's cpumask. While this all sounds
596 * trivial, there are various non-obvious corner cases, which this function
597 * tries to solve in a safe manner.
598 *
599 * Also note that the function uses a somewhat relaxed locking scheme, so it may
600 * be called only for an already offlined CPU.
601 */
602 void clear_tasks_mm_cpumask(int cpu)
603 {
604 struct task_struct *p;
605
606 /*
607 * This function is called after the cpu is taken down and marked
608 * offline, so its not like new tasks will ever get this cpu set in
609 * their mm mask. -- Peter Zijlstra
610 * Thus, we may use rcu_read_lock() here, instead of grabbing
611 * full-fledged tasklist_lock.
612 */
613 WARN_ON(cpu_online(cpu));
614 rcu_read_lock();
615 for_each_process(p) {
616 struct task_struct *t;
617
618 /*
619 * Main thread might exit, but other threads may still have
620 * a valid mm. Find one.
621 */
622 t = find_lock_task_mm(p);
623 if (!t)
624 continue;
625 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
626 task_unlock(t);
627 }
628 rcu_read_unlock();
629 }
630
631 static inline void check_for_tasks(int dead_cpu)
632 {
633 struct task_struct *g, *p;
634
635 read_lock(&tasklist_lock);
636 for_each_process_thread(g, p) {
637 if (!p->on_rq)
638 continue;
639 /*
640 * We do the check with unlocked task_rq(p)->lock.
641 * Order the reading to do not warn about a task,
642 * which was running on this cpu in the past, and
643 * it's just been woken on another cpu.
644 */
645 rmb();
646 if (task_cpu(p) != dead_cpu)
647 continue;
648
649 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
650 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
651 }
652 read_unlock(&tasklist_lock);
653 }
654
655 /* Take this CPU down. */
656 static int take_cpu_down(void *_param)
657 {
658 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
659 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
660 int err, cpu = smp_processor_id();
661
662 /* Ensure this CPU doesn't handle any more interrupts. */
663 err = __cpu_disable();
664 if (err < 0)
665 return err;
666
667 /*
668 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
669 * do this step again.
670 */
671 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
672 st->state--;
673 /* Invoke the former CPU_DYING callbacks */
674 for (; st->state > target; st->state--)
675 cpuhp_invoke_callback(cpu, st->state, false, NULL);
676
677 /* Give up timekeeping duties */
678 tick_handover_do_timer();
679 /* Park the stopper thread */
680 stop_machine_park(cpu);
681 return 0;
682 }
683
684 static int takedown_cpu(unsigned int cpu)
685 {
686 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
687 int err;
688
689 /* Park the smpboot threads */
690 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
691 smpboot_park_threads(cpu);
692
693 /*
694 * Prevent irq alloc/free while the dying cpu reorganizes the
695 * interrupt affinities.
696 */
697 irq_lock_sparse();
698
699 /*
700 * So now all preempt/rcu users must observe !cpu_active().
701 */
702 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
703 if (err) {
704 /* CPU refused to die */
705 irq_unlock_sparse();
706 /* Unpark the hotplug thread so we can rollback there */
707 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
708 return err;
709 }
710 BUG_ON(cpu_online(cpu));
711
712 /*
713 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
714 * runnable tasks from the cpu, there's only the idle task left now
715 * that the migration thread is done doing the stop_machine thing.
716 *
717 * Wait for the stop thread to go away.
718 */
719 wait_for_completion(&st->done);
720 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
721
722 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
723 irq_unlock_sparse();
724
725 hotplug_cpu__broadcast_tick_pull(cpu);
726 /* This actually kills the CPU. */
727 __cpu_die(cpu);
728
729 tick_cleanup_dead_cpu(cpu);
730 return 0;
731 }
732
733 static void cpuhp_complete_idle_dead(void *arg)
734 {
735 struct cpuhp_cpu_state *st = arg;
736
737 complete(&st->done);
738 }
739
740 void cpuhp_report_idle_dead(void)
741 {
742 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
743
744 BUG_ON(st->state != CPUHP_AP_OFFLINE);
745 rcu_report_dead(smp_processor_id());
746 st->state = CPUHP_AP_IDLE_DEAD;
747 /*
748 * We cannot call complete after rcu_report_dead() so we delegate it
749 * to an online cpu.
750 */
751 smp_call_function_single(cpumask_first(cpu_online_mask),
752 cpuhp_complete_idle_dead, st, 0);
753 }
754
755 #else
756 #define takedown_cpu NULL
757 #endif
758
759 #ifdef CONFIG_HOTPLUG_CPU
760
761 /* Requires cpu_add_remove_lock to be held */
762 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
763 enum cpuhp_state target)
764 {
765 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
766 int prev_state, ret = 0;
767
768 if (num_online_cpus() == 1)
769 return -EBUSY;
770
771 if (!cpu_present(cpu))
772 return -EINVAL;
773
774 cpu_hotplug_begin();
775
776 cpuhp_tasks_frozen = tasks_frozen;
777
778 prev_state = st->state;
779 st->target = target;
780 /*
781 * If the current CPU state is in the range of the AP hotplug thread,
782 * then we need to kick the thread.
783 */
784 if (st->state > CPUHP_TEARDOWN_CPU) {
785 ret = cpuhp_kick_ap_work(cpu);
786 /*
787 * The AP side has done the error rollback already. Just
788 * return the error code..
789 */
790 if (ret)
791 goto out;
792
793 /*
794 * We might have stopped still in the range of the AP hotplug
795 * thread. Nothing to do anymore.
796 */
797 if (st->state > CPUHP_TEARDOWN_CPU)
798 goto out;
799 }
800 /*
801 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
802 * to do the further cleanups.
803 */
804 ret = cpuhp_down_callbacks(cpu, st, target);
805 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
806 st->target = prev_state;
807 st->rollback = true;
808 cpuhp_kick_ap_work(cpu);
809 }
810
811 out:
812 cpu_hotplug_done();
813 return ret;
814 }
815
816 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
817 {
818 int err;
819
820 cpu_maps_update_begin();
821
822 if (cpu_hotplug_disabled) {
823 err = -EBUSY;
824 goto out;
825 }
826
827 err = _cpu_down(cpu, 0, target);
828
829 out:
830 cpu_maps_update_done();
831 return err;
832 }
833 int cpu_down(unsigned int cpu)
834 {
835 return do_cpu_down(cpu, CPUHP_OFFLINE);
836 }
837 EXPORT_SYMBOL(cpu_down);
838 #endif /*CONFIG_HOTPLUG_CPU*/
839
840 /**
841 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
842 * @cpu: cpu that just started
843 *
844 * It must be called by the arch code on the new cpu, before the new cpu
845 * enables interrupts and before the "boot" cpu returns from __cpu_up().
846 */
847 void notify_cpu_starting(unsigned int cpu)
848 {
849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
851
852 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
853 while (st->state < target) {
854 st->state++;
855 cpuhp_invoke_callback(cpu, st->state, true, NULL);
856 }
857 }
858
859 /*
860 * Called from the idle task. We need to set active here, so we can kick off
861 * the stopper thread and unpark the smpboot threads. If the target state is
862 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
863 * cpu further.
864 */
865 void cpuhp_online_idle(enum cpuhp_state state)
866 {
867 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
868 unsigned int cpu = smp_processor_id();
869
870 /* Happens for the boot cpu */
871 if (state != CPUHP_AP_ONLINE_IDLE)
872 return;
873
874 st->state = CPUHP_AP_ONLINE_IDLE;
875
876 /* Unpark the stopper thread and the hotplug thread of this cpu */
877 stop_machine_unpark(cpu);
878 kthread_unpark(st->thread);
879
880 /* Should we go further up ? */
881 if (st->target > CPUHP_AP_ONLINE_IDLE)
882 __cpuhp_kick_ap_work(st);
883 else
884 complete(&st->done);
885 }
886
887 /* Requires cpu_add_remove_lock to be held */
888 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
889 {
890 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
891 struct task_struct *idle;
892 int ret = 0;
893
894 cpu_hotplug_begin();
895
896 if (!cpu_present(cpu)) {
897 ret = -EINVAL;
898 goto out;
899 }
900
901 /*
902 * The caller of do_cpu_up might have raced with another
903 * caller. Ignore it for now.
904 */
905 if (st->state >= target)
906 goto out;
907
908 if (st->state == CPUHP_OFFLINE) {
909 /* Let it fail before we try to bring the cpu up */
910 idle = idle_thread_get(cpu);
911 if (IS_ERR(idle)) {
912 ret = PTR_ERR(idle);
913 goto out;
914 }
915 }
916
917 cpuhp_tasks_frozen = tasks_frozen;
918
919 st->target = target;
920 /*
921 * If the current CPU state is in the range of the AP hotplug thread,
922 * then we need to kick the thread once more.
923 */
924 if (st->state > CPUHP_BRINGUP_CPU) {
925 ret = cpuhp_kick_ap_work(cpu);
926 /*
927 * The AP side has done the error rollback already. Just
928 * return the error code..
929 */
930 if (ret)
931 goto out;
932 }
933
934 /*
935 * Try to reach the target state. We max out on the BP at
936 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
937 * responsible for bringing it up to the target state.
938 */
939 target = min((int)target, CPUHP_BRINGUP_CPU);
940 ret = cpuhp_up_callbacks(cpu, st, target);
941 out:
942 cpu_hotplug_done();
943 return ret;
944 }
945
946 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
947 {
948 int err = 0;
949
950 if (!cpu_possible(cpu)) {
951 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
952 cpu);
953 #if defined(CONFIG_IA64)
954 pr_err("please check additional_cpus= boot parameter\n");
955 #endif
956 return -EINVAL;
957 }
958
959 err = try_online_node(cpu_to_node(cpu));
960 if (err)
961 return err;
962
963 cpu_maps_update_begin();
964
965 if (cpu_hotplug_disabled) {
966 err = -EBUSY;
967 goto out;
968 }
969
970 err = _cpu_up(cpu, 0, target);
971 out:
972 cpu_maps_update_done();
973 return err;
974 }
975
976 int cpu_up(unsigned int cpu)
977 {
978 return do_cpu_up(cpu, CPUHP_ONLINE);
979 }
980 EXPORT_SYMBOL_GPL(cpu_up);
981
982 #ifdef CONFIG_PM_SLEEP_SMP
983 static cpumask_var_t frozen_cpus;
984
985 int freeze_secondary_cpus(int primary)
986 {
987 int cpu, error = 0;
988
989 cpu_maps_update_begin();
990 if (!cpu_online(primary))
991 primary = cpumask_first(cpu_online_mask);
992 /*
993 * We take down all of the non-boot CPUs in one shot to avoid races
994 * with the userspace trying to use the CPU hotplug at the same time
995 */
996 cpumask_clear(frozen_cpus);
997
998 pr_info("Disabling non-boot CPUs ...\n");
999 for_each_online_cpu(cpu) {
1000 if (cpu == primary)
1001 continue;
1002 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1003 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1004 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1005 if (!error)
1006 cpumask_set_cpu(cpu, frozen_cpus);
1007 else {
1008 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1009 break;
1010 }
1011 }
1012
1013 if (!error)
1014 BUG_ON(num_online_cpus() > 1);
1015 else
1016 pr_err("Non-boot CPUs are not disabled\n");
1017
1018 /*
1019 * Make sure the CPUs won't be enabled by someone else. We need to do
1020 * this even in case of failure as all disable_nonboot_cpus() users are
1021 * supposed to do enable_nonboot_cpus() on the failure path.
1022 */
1023 cpu_hotplug_disabled++;
1024
1025 cpu_maps_update_done();
1026 return error;
1027 }
1028
1029 void __weak arch_enable_nonboot_cpus_begin(void)
1030 {
1031 }
1032
1033 void __weak arch_enable_nonboot_cpus_end(void)
1034 {
1035 }
1036
1037 void enable_nonboot_cpus(void)
1038 {
1039 int cpu, error;
1040
1041 /* Allow everyone to use the CPU hotplug again */
1042 cpu_maps_update_begin();
1043 __cpu_hotplug_enable();
1044 if (cpumask_empty(frozen_cpus))
1045 goto out;
1046
1047 pr_info("Enabling non-boot CPUs ...\n");
1048
1049 arch_enable_nonboot_cpus_begin();
1050
1051 for_each_cpu(cpu, frozen_cpus) {
1052 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1053 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1054 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1055 if (!error) {
1056 pr_info("CPU%d is up\n", cpu);
1057 continue;
1058 }
1059 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1060 }
1061
1062 arch_enable_nonboot_cpus_end();
1063
1064 cpumask_clear(frozen_cpus);
1065 out:
1066 cpu_maps_update_done();
1067 }
1068
1069 static int __init alloc_frozen_cpus(void)
1070 {
1071 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1072 return -ENOMEM;
1073 return 0;
1074 }
1075 core_initcall(alloc_frozen_cpus);
1076
1077 /*
1078 * When callbacks for CPU hotplug notifications are being executed, we must
1079 * ensure that the state of the system with respect to the tasks being frozen
1080 * or not, as reported by the notification, remains unchanged *throughout the
1081 * duration* of the execution of the callbacks.
1082 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1083 *
1084 * This synchronization is implemented by mutually excluding regular CPU
1085 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1086 * Hibernate notifications.
1087 */
1088 static int
1089 cpu_hotplug_pm_callback(struct notifier_block *nb,
1090 unsigned long action, void *ptr)
1091 {
1092 switch (action) {
1093
1094 case PM_SUSPEND_PREPARE:
1095 case PM_HIBERNATION_PREPARE:
1096 cpu_hotplug_disable();
1097 break;
1098
1099 case PM_POST_SUSPEND:
1100 case PM_POST_HIBERNATION:
1101 cpu_hotplug_enable();
1102 break;
1103
1104 default:
1105 return NOTIFY_DONE;
1106 }
1107
1108 return NOTIFY_OK;
1109 }
1110
1111
1112 static int __init cpu_hotplug_pm_sync_init(void)
1113 {
1114 /*
1115 * cpu_hotplug_pm_callback has higher priority than x86
1116 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1117 * to disable cpu hotplug to avoid cpu hotplug race.
1118 */
1119 pm_notifier(cpu_hotplug_pm_callback, 0);
1120 return 0;
1121 }
1122 core_initcall(cpu_hotplug_pm_sync_init);
1123
1124 #endif /* CONFIG_PM_SLEEP_SMP */
1125
1126 #endif /* CONFIG_SMP */
1127
1128 /* Boot processor state steps */
1129 static struct cpuhp_step cpuhp_bp_states[] = {
1130 [CPUHP_OFFLINE] = {
1131 .name = "offline",
1132 .startup.single = NULL,
1133 .teardown.single = NULL,
1134 },
1135 #ifdef CONFIG_SMP
1136 [CPUHP_CREATE_THREADS]= {
1137 .name = "threads:prepare",
1138 .startup.single = smpboot_create_threads,
1139 .teardown.single = NULL,
1140 .cant_stop = true,
1141 },
1142 [CPUHP_PERF_PREPARE] = {
1143 .name = "perf:prepare",
1144 .startup.single = perf_event_init_cpu,
1145 .teardown.single = perf_event_exit_cpu,
1146 },
1147 [CPUHP_WORKQUEUE_PREP] = {
1148 .name = "workqueue:prepare",
1149 .startup.single = workqueue_prepare_cpu,
1150 .teardown.single = NULL,
1151 },
1152 [CPUHP_HRTIMERS_PREPARE] = {
1153 .name = "hrtimers:prepare",
1154 .startup.single = hrtimers_prepare_cpu,
1155 .teardown.single = hrtimers_dead_cpu,
1156 },
1157 [CPUHP_SMPCFD_PREPARE] = {
1158 .name = "smpcfd:prepare",
1159 .startup.single = smpcfd_prepare_cpu,
1160 .teardown.single = smpcfd_dead_cpu,
1161 },
1162 [CPUHP_RELAY_PREPARE] = {
1163 .name = "relay:prepare",
1164 .startup.single = relay_prepare_cpu,
1165 .teardown.single = NULL,
1166 },
1167 [CPUHP_SLAB_PREPARE] = {
1168 .name = "slab:prepare",
1169 .startup.single = slab_prepare_cpu,
1170 .teardown.single = slab_dead_cpu,
1171 },
1172 [CPUHP_RCUTREE_PREP] = {
1173 .name = "RCU/tree:prepare",
1174 .startup.single = rcutree_prepare_cpu,
1175 .teardown.single = rcutree_dead_cpu,
1176 },
1177 /*
1178 * On the tear-down path, timers_dead_cpu() must be invoked
1179 * before blk_mq_queue_reinit_notify() from notify_dead(),
1180 * otherwise a RCU stall occurs.
1181 */
1182 [CPUHP_TIMERS_DEAD] = {
1183 .name = "timers:dead",
1184 .startup.single = NULL,
1185 .teardown.single = timers_dead_cpu,
1186 },
1187 /* Kicks the plugged cpu into life */
1188 [CPUHP_BRINGUP_CPU] = {
1189 .name = "cpu:bringup",
1190 .startup.single = bringup_cpu,
1191 .teardown.single = NULL,
1192 .cant_stop = true,
1193 },
1194 [CPUHP_AP_SMPCFD_DYING] = {
1195 .name = "smpcfd:dying",
1196 .startup.single = NULL,
1197 .teardown.single = smpcfd_dying_cpu,
1198 },
1199 /*
1200 * Handled on controll processor until the plugged processor manages
1201 * this itself.
1202 */
1203 [CPUHP_TEARDOWN_CPU] = {
1204 .name = "cpu:teardown",
1205 .startup.single = NULL,
1206 .teardown.single = takedown_cpu,
1207 .cant_stop = true,
1208 },
1209 #else
1210 [CPUHP_BRINGUP_CPU] = { },
1211 #endif
1212 };
1213
1214 /* Application processor state steps */
1215 static struct cpuhp_step cpuhp_ap_states[] = {
1216 #ifdef CONFIG_SMP
1217 /* Final state before CPU kills itself */
1218 [CPUHP_AP_IDLE_DEAD] = {
1219 .name = "idle:dead",
1220 },
1221 /*
1222 * Last state before CPU enters the idle loop to die. Transient state
1223 * for synchronization.
1224 */
1225 [CPUHP_AP_OFFLINE] = {
1226 .name = "ap:offline",
1227 .cant_stop = true,
1228 },
1229 /* First state is scheduler control. Interrupts are disabled */
1230 [CPUHP_AP_SCHED_STARTING] = {
1231 .name = "sched:starting",
1232 .startup.single = sched_cpu_starting,
1233 .teardown.single = sched_cpu_dying,
1234 },
1235 [CPUHP_AP_RCUTREE_DYING] = {
1236 .name = "RCU/tree:dying",
1237 .startup.single = NULL,
1238 .teardown.single = rcutree_dying_cpu,
1239 },
1240 /* Entry state on starting. Interrupts enabled from here on. Transient
1241 * state for synchronsization */
1242 [CPUHP_AP_ONLINE] = {
1243 .name = "ap:online",
1244 },
1245 /* Handle smpboot threads park/unpark */
1246 [CPUHP_AP_SMPBOOT_THREADS] = {
1247 .name = "smpboot/threads:online",
1248 .startup.single = smpboot_unpark_threads,
1249 .teardown.single = NULL,
1250 },
1251 [CPUHP_AP_PERF_ONLINE] = {
1252 .name = "perf:online",
1253 .startup.single = perf_event_init_cpu,
1254 .teardown.single = perf_event_exit_cpu,
1255 },
1256 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1257 .name = "workqueue:online",
1258 .startup.single = workqueue_online_cpu,
1259 .teardown.single = workqueue_offline_cpu,
1260 },
1261 [CPUHP_AP_RCUTREE_ONLINE] = {
1262 .name = "RCU/tree:online",
1263 .startup.single = rcutree_online_cpu,
1264 .teardown.single = rcutree_offline_cpu,
1265 },
1266 #endif
1267 /*
1268 * The dynamically registered state space is here
1269 */
1270
1271 #ifdef CONFIG_SMP
1272 /* Last state is scheduler control setting the cpu active */
1273 [CPUHP_AP_ACTIVE] = {
1274 .name = "sched:active",
1275 .startup.single = sched_cpu_activate,
1276 .teardown.single = sched_cpu_deactivate,
1277 },
1278 #endif
1279
1280 /* CPU is fully up and running. */
1281 [CPUHP_ONLINE] = {
1282 .name = "online",
1283 .startup.single = NULL,
1284 .teardown.single = NULL,
1285 },
1286 };
1287
1288 /* Sanity check for callbacks */
1289 static int cpuhp_cb_check(enum cpuhp_state state)
1290 {
1291 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1292 return -EINVAL;
1293 return 0;
1294 }
1295
1296 /*
1297 * Returns a free for dynamic slot assignment of the Online state. The states
1298 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1299 * by having no name assigned.
1300 */
1301 static int cpuhp_reserve_state(enum cpuhp_state state)
1302 {
1303 enum cpuhp_state i, end;
1304 struct cpuhp_step *step;
1305
1306 switch (state) {
1307 case CPUHP_AP_ONLINE_DYN:
1308 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1309 end = CPUHP_AP_ONLINE_DYN_END;
1310 break;
1311 case CPUHP_BP_PREPARE_DYN:
1312 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1313 end = CPUHP_BP_PREPARE_DYN_END;
1314 break;
1315 default:
1316 return -EINVAL;
1317 }
1318
1319 for (i = state; i <= end; i++, step++) {
1320 if (!step->name)
1321 return i;
1322 }
1323 WARN(1, "No more dynamic states available for CPU hotplug\n");
1324 return -ENOSPC;
1325 }
1326
1327 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1328 int (*startup)(unsigned int cpu),
1329 int (*teardown)(unsigned int cpu),
1330 bool multi_instance)
1331 {
1332 /* (Un)Install the callbacks for further cpu hotplug operations */
1333 struct cpuhp_step *sp;
1334 int ret = 0;
1335
1336 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1337 ret = cpuhp_reserve_state(state);
1338 if (ret < 0)
1339 return ret;
1340 state = ret;
1341 }
1342 sp = cpuhp_get_step(state);
1343 if (name && sp->name)
1344 return -EBUSY;
1345
1346 sp->startup.single = startup;
1347 sp->teardown.single = teardown;
1348 sp->name = name;
1349 sp->multi_instance = multi_instance;
1350 INIT_HLIST_HEAD(&sp->list);
1351 return ret;
1352 }
1353
1354 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1355 {
1356 return cpuhp_get_step(state)->teardown.single;
1357 }
1358
1359 /*
1360 * Call the startup/teardown function for a step either on the AP or
1361 * on the current CPU.
1362 */
1363 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1364 struct hlist_node *node)
1365 {
1366 struct cpuhp_step *sp = cpuhp_get_step(state);
1367 int ret;
1368
1369 if ((bringup && !sp->startup.single) ||
1370 (!bringup && !sp->teardown.single))
1371 return 0;
1372 /*
1373 * The non AP bound callbacks can fail on bringup. On teardown
1374 * e.g. module removal we crash for now.
1375 */
1376 #ifdef CONFIG_SMP
1377 if (cpuhp_is_ap_state(state))
1378 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1379 else
1380 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1381 #else
1382 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1383 #endif
1384 BUG_ON(ret && !bringup);
1385 return ret;
1386 }
1387
1388 /*
1389 * Called from __cpuhp_setup_state on a recoverable failure.
1390 *
1391 * Note: The teardown callbacks for rollback are not allowed to fail!
1392 */
1393 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1394 struct hlist_node *node)
1395 {
1396 int cpu;
1397
1398 /* Roll back the already executed steps on the other cpus */
1399 for_each_present_cpu(cpu) {
1400 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1401 int cpustate = st->state;
1402
1403 if (cpu >= failedcpu)
1404 break;
1405
1406 /* Did we invoke the startup call on that cpu ? */
1407 if (cpustate >= state)
1408 cpuhp_issue_call(cpu, state, false, node);
1409 }
1410 }
1411
1412 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1413 bool invoke)
1414 {
1415 struct cpuhp_step *sp;
1416 int cpu;
1417 int ret;
1418
1419 sp = cpuhp_get_step(state);
1420 if (sp->multi_instance == false)
1421 return -EINVAL;
1422
1423 get_online_cpus();
1424 mutex_lock(&cpuhp_state_mutex);
1425
1426 if (!invoke || !sp->startup.multi)
1427 goto add_node;
1428
1429 /*
1430 * Try to call the startup callback for each present cpu
1431 * depending on the hotplug state of the cpu.
1432 */
1433 for_each_present_cpu(cpu) {
1434 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1435 int cpustate = st->state;
1436
1437 if (cpustate < state)
1438 continue;
1439
1440 ret = cpuhp_issue_call(cpu, state, true, node);
1441 if (ret) {
1442 if (sp->teardown.multi)
1443 cpuhp_rollback_install(cpu, state, node);
1444 goto unlock;
1445 }
1446 }
1447 add_node:
1448 ret = 0;
1449 hlist_add_head(node, &sp->list);
1450 unlock:
1451 mutex_unlock(&cpuhp_state_mutex);
1452 put_online_cpus();
1453 return ret;
1454 }
1455 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1456
1457 /**
1458 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1459 * @state: The state to setup
1460 * @invoke: If true, the startup function is invoked for cpus where
1461 * cpu state >= @state
1462 * @startup: startup callback function
1463 * @teardown: teardown callback function
1464 * @multi_instance: State is set up for multiple instances which get
1465 * added afterwards.
1466 *
1467 * Returns:
1468 * On success:
1469 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1470 * 0 for all other states
1471 * On failure: proper (negative) error code
1472 */
1473 int __cpuhp_setup_state(enum cpuhp_state state,
1474 const char *name, bool invoke,
1475 int (*startup)(unsigned int cpu),
1476 int (*teardown)(unsigned int cpu),
1477 bool multi_instance)
1478 {
1479 int cpu, ret = 0;
1480 bool dynstate;
1481
1482 if (cpuhp_cb_check(state) || !name)
1483 return -EINVAL;
1484
1485 get_online_cpus();
1486 mutex_lock(&cpuhp_state_mutex);
1487
1488 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1489 multi_instance);
1490
1491 dynstate = state == CPUHP_AP_ONLINE_DYN;
1492 if (ret > 0 && dynstate) {
1493 state = ret;
1494 ret = 0;
1495 }
1496
1497 if (ret || !invoke || !startup)
1498 goto out;
1499
1500 /*
1501 * Try to call the startup callback for each present cpu
1502 * depending on the hotplug state of the cpu.
1503 */
1504 for_each_present_cpu(cpu) {
1505 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1506 int cpustate = st->state;
1507
1508 if (cpustate < state)
1509 continue;
1510
1511 ret = cpuhp_issue_call(cpu, state, true, NULL);
1512 if (ret) {
1513 if (teardown)
1514 cpuhp_rollback_install(cpu, state, NULL);
1515 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1516 goto out;
1517 }
1518 }
1519 out:
1520 mutex_unlock(&cpuhp_state_mutex);
1521 put_online_cpus();
1522 /*
1523 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1524 * dynamically allocated state in case of success.
1525 */
1526 if (!ret && dynstate)
1527 return state;
1528 return ret;
1529 }
1530 EXPORT_SYMBOL(__cpuhp_setup_state);
1531
1532 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1533 struct hlist_node *node, bool invoke)
1534 {
1535 struct cpuhp_step *sp = cpuhp_get_step(state);
1536 int cpu;
1537
1538 BUG_ON(cpuhp_cb_check(state));
1539
1540 if (!sp->multi_instance)
1541 return -EINVAL;
1542
1543 get_online_cpus();
1544 mutex_lock(&cpuhp_state_mutex);
1545
1546 if (!invoke || !cpuhp_get_teardown_cb(state))
1547 goto remove;
1548 /*
1549 * Call the teardown callback for each present cpu depending
1550 * on the hotplug state of the cpu. This function is not
1551 * allowed to fail currently!
1552 */
1553 for_each_present_cpu(cpu) {
1554 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1555 int cpustate = st->state;
1556
1557 if (cpustate >= state)
1558 cpuhp_issue_call(cpu, state, false, node);
1559 }
1560
1561 remove:
1562 hlist_del(node);
1563 mutex_unlock(&cpuhp_state_mutex);
1564 put_online_cpus();
1565
1566 return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1569
1570 /**
1571 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1572 * @state: The state to remove
1573 * @invoke: If true, the teardown function is invoked for cpus where
1574 * cpu state >= @state
1575 *
1576 * The teardown callback is currently not allowed to fail. Think
1577 * about module removal!
1578 */
1579 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1580 {
1581 struct cpuhp_step *sp = cpuhp_get_step(state);
1582 int cpu;
1583
1584 BUG_ON(cpuhp_cb_check(state));
1585
1586 get_online_cpus();
1587
1588 mutex_lock(&cpuhp_state_mutex);
1589 if (sp->multi_instance) {
1590 WARN(!hlist_empty(&sp->list),
1591 "Error: Removing state %d which has instances left.\n",
1592 state);
1593 goto remove;
1594 }
1595
1596 if (!invoke || !cpuhp_get_teardown_cb(state))
1597 goto remove;
1598
1599 /*
1600 * Call the teardown callback for each present cpu depending
1601 * on the hotplug state of the cpu. This function is not
1602 * allowed to fail currently!
1603 */
1604 for_each_present_cpu(cpu) {
1605 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1606 int cpustate = st->state;
1607
1608 if (cpustate >= state)
1609 cpuhp_issue_call(cpu, state, false, NULL);
1610 }
1611 remove:
1612 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1613 mutex_unlock(&cpuhp_state_mutex);
1614 put_online_cpus();
1615 }
1616 EXPORT_SYMBOL(__cpuhp_remove_state);
1617
1618 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1619 static ssize_t show_cpuhp_state(struct device *dev,
1620 struct device_attribute *attr, char *buf)
1621 {
1622 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1623
1624 return sprintf(buf, "%d\n", st->state);
1625 }
1626 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1627
1628 static ssize_t write_cpuhp_target(struct device *dev,
1629 struct device_attribute *attr,
1630 const char *buf, size_t count)
1631 {
1632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1633 struct cpuhp_step *sp;
1634 int target, ret;
1635
1636 ret = kstrtoint(buf, 10, &target);
1637 if (ret)
1638 return ret;
1639
1640 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1641 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1642 return -EINVAL;
1643 #else
1644 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1645 return -EINVAL;
1646 #endif
1647
1648 ret = lock_device_hotplug_sysfs();
1649 if (ret)
1650 return ret;
1651
1652 mutex_lock(&cpuhp_state_mutex);
1653 sp = cpuhp_get_step(target);
1654 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1655 mutex_unlock(&cpuhp_state_mutex);
1656 if (ret)
1657 return ret;
1658
1659 if (st->state < target)
1660 ret = do_cpu_up(dev->id, target);
1661 else
1662 ret = do_cpu_down(dev->id, target);
1663
1664 unlock_device_hotplug();
1665 return ret ? ret : count;
1666 }
1667
1668 static ssize_t show_cpuhp_target(struct device *dev,
1669 struct device_attribute *attr, char *buf)
1670 {
1671 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1672
1673 return sprintf(buf, "%d\n", st->target);
1674 }
1675 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1676
1677 static struct attribute *cpuhp_cpu_attrs[] = {
1678 &dev_attr_state.attr,
1679 &dev_attr_target.attr,
1680 NULL
1681 };
1682
1683 static struct attribute_group cpuhp_cpu_attr_group = {
1684 .attrs = cpuhp_cpu_attrs,
1685 .name = "hotplug",
1686 NULL
1687 };
1688
1689 static ssize_t show_cpuhp_states(struct device *dev,
1690 struct device_attribute *attr, char *buf)
1691 {
1692 ssize_t cur, res = 0;
1693 int i;
1694
1695 mutex_lock(&cpuhp_state_mutex);
1696 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1697 struct cpuhp_step *sp = cpuhp_get_step(i);
1698
1699 if (sp->name) {
1700 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1701 buf += cur;
1702 res += cur;
1703 }
1704 }
1705 mutex_unlock(&cpuhp_state_mutex);
1706 return res;
1707 }
1708 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1709
1710 static struct attribute *cpuhp_cpu_root_attrs[] = {
1711 &dev_attr_states.attr,
1712 NULL
1713 };
1714
1715 static struct attribute_group cpuhp_cpu_root_attr_group = {
1716 .attrs = cpuhp_cpu_root_attrs,
1717 .name = "hotplug",
1718 NULL
1719 };
1720
1721 static int __init cpuhp_sysfs_init(void)
1722 {
1723 int cpu, ret;
1724
1725 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1726 &cpuhp_cpu_root_attr_group);
1727 if (ret)
1728 return ret;
1729
1730 for_each_possible_cpu(cpu) {
1731 struct device *dev = get_cpu_device(cpu);
1732
1733 if (!dev)
1734 continue;
1735 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1736 if (ret)
1737 return ret;
1738 }
1739 return 0;
1740 }
1741 device_initcall(cpuhp_sysfs_init);
1742 #endif
1743
1744 /*
1745 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1746 * represents all NR_CPUS bits binary values of 1<<nr.
1747 *
1748 * It is used by cpumask_of() to get a constant address to a CPU
1749 * mask value that has a single bit set only.
1750 */
1751
1752 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1753 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1754 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1755 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1756 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1757
1758 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1759
1760 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1761 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1762 #if BITS_PER_LONG > 32
1763 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1764 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1765 #endif
1766 };
1767 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1768
1769 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1770 EXPORT_SYMBOL(cpu_all_bits);
1771
1772 #ifdef CONFIG_INIT_ALL_POSSIBLE
1773 struct cpumask __cpu_possible_mask __read_mostly
1774 = {CPU_BITS_ALL};
1775 #else
1776 struct cpumask __cpu_possible_mask __read_mostly;
1777 #endif
1778 EXPORT_SYMBOL(__cpu_possible_mask);
1779
1780 struct cpumask __cpu_online_mask __read_mostly;
1781 EXPORT_SYMBOL(__cpu_online_mask);
1782
1783 struct cpumask __cpu_present_mask __read_mostly;
1784 EXPORT_SYMBOL(__cpu_present_mask);
1785
1786 struct cpumask __cpu_active_mask __read_mostly;
1787 EXPORT_SYMBOL(__cpu_active_mask);
1788
1789 void init_cpu_present(const struct cpumask *src)
1790 {
1791 cpumask_copy(&__cpu_present_mask, src);
1792 }
1793
1794 void init_cpu_possible(const struct cpumask *src)
1795 {
1796 cpumask_copy(&__cpu_possible_mask, src);
1797 }
1798
1799 void init_cpu_online(const struct cpumask *src)
1800 {
1801 cpumask_copy(&__cpu_online_mask, src);
1802 }
1803
1804 /*
1805 * Activate the first processor.
1806 */
1807 void __init boot_cpu_init(void)
1808 {
1809 int cpu = smp_processor_id();
1810
1811 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1812 set_cpu_online(cpu, true);
1813 set_cpu_active(cpu, true);
1814 set_cpu_present(cpu, true);
1815 set_cpu_possible(cpu, true);
1816 }
1817
1818 /*
1819 * Must be called _AFTER_ setting up the per_cpu areas
1820 */
1821 void __init boot_cpu_state_init(void)
1822 {
1823 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1824 }