]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cpu.c
Merge tag 'for-linus-4.14b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35
36 #include "smpboot.h"
37
38 /**
39 * cpuhp_cpu_state - Per cpu hotplug state storage
40 * @state: The current cpu state
41 * @target: The target state
42 * @thread: Pointer to the hotplug thread
43 * @should_run: Thread should execute
44 * @rollback: Perform a rollback
45 * @single: Single callback invocation
46 * @bringup: Single callback bringup or teardown selector
47 * @cb_state: The state for a single callback (install/uninstall)
48 * @result: Result of the operation
49 * @done: Signal completion to the issuer of the task
50 */
51 struct cpuhp_cpu_state {
52 enum cpuhp_state state;
53 enum cpuhp_state target;
54 #ifdef CONFIG_SMP
55 struct task_struct *thread;
56 bool should_run;
57 bool rollback;
58 bool single;
59 bool bringup;
60 struct hlist_node *node;
61 enum cpuhp_state cb_state;
62 int result;
63 struct completion done;
64 #endif
65 };
66
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
68
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72 STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
74
75 /**
76 * cpuhp_step - Hotplug state machine step
77 * @name: Name of the step
78 * @startup: Startup function of the step
79 * @teardown: Teardown function of the step
80 * @skip_onerr: Do not invoke the functions on error rollback
81 * Will go away once the notifiers are gone
82 * @cant_stop: Bringup/teardown can't be stopped at this step
83 */
84 struct cpuhp_step {
85 const char *name;
86 union {
87 int (*single)(unsigned int cpu);
88 int (*multi)(unsigned int cpu,
89 struct hlist_node *node);
90 } startup;
91 union {
92 int (*single)(unsigned int cpu);
93 int (*multi)(unsigned int cpu,
94 struct hlist_node *node);
95 } teardown;
96 struct hlist_head list;
97 bool skip_onerr;
98 bool cant_stop;
99 bool multi_instance;
100 };
101
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
105
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
107 {
108 /*
109 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110 * purposes as that state is handled explicitly in cpu_down.
111 */
112 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
113 }
114
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
116 {
117 struct cpuhp_step *sp;
118
119 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120 return sp + state;
121 }
122
123 /**
124 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125 * @cpu: The cpu for which the callback should be invoked
126 * @step: The step in the state machine
127 * @bringup: True if the bringup callback should be invoked
128 *
129 * Called from cpu hotplug and from the state register machinery.
130 */
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132 bool bringup, struct hlist_node *node)
133 {
134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135 struct cpuhp_step *step = cpuhp_get_step(state);
136 int (*cbm)(unsigned int cpu, struct hlist_node *node);
137 int (*cb)(unsigned int cpu);
138 int ret, cnt;
139
140 if (!step->multi_instance) {
141 cb = bringup ? step->startup.single : step->teardown.single;
142 if (!cb)
143 return 0;
144 trace_cpuhp_enter(cpu, st->target, state, cb);
145 ret = cb(cpu);
146 trace_cpuhp_exit(cpu, st->state, state, ret);
147 return ret;
148 }
149 cbm = bringup ? step->startup.multi : step->teardown.multi;
150 if (!cbm)
151 return 0;
152
153 /* Single invocation for instance add/remove */
154 if (node) {
155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 ret = cbm(cpu, node);
157 trace_cpuhp_exit(cpu, st->state, state, ret);
158 return ret;
159 }
160
161 /* State transition. Invoke on all instances */
162 cnt = 0;
163 hlist_for_each(node, &step->list) {
164 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165 ret = cbm(cpu, node);
166 trace_cpuhp_exit(cpu, st->state, state, ret);
167 if (ret)
168 goto err;
169 cnt++;
170 }
171 return 0;
172 err:
173 /* Rollback the instances if one failed */
174 cbm = !bringup ? step->startup.multi : step->teardown.multi;
175 if (!cbm)
176 return ret;
177
178 hlist_for_each(node, &step->list) {
179 if (!cnt--)
180 break;
181 cbm(cpu, node);
182 }
183 return ret;
184 }
185
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
191
192 /*
193 * The following two APIs (cpu_maps_update_begin/done) must be used when
194 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
195 */
196 void cpu_maps_update_begin(void)
197 {
198 mutex_lock(&cpu_add_remove_lock);
199 }
200
201 void cpu_maps_update_done(void)
202 {
203 mutex_unlock(&cpu_add_remove_lock);
204 }
205
206 /*
207 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208 * Should always be manipulated under cpu_add_remove_lock
209 */
210 static int cpu_hotplug_disabled;
211
212 #ifdef CONFIG_HOTPLUG_CPU
213
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
215
216 void cpus_read_lock(void)
217 {
218 percpu_down_read(&cpu_hotplug_lock);
219 }
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
221
222 void cpus_read_unlock(void)
223 {
224 percpu_up_read(&cpu_hotplug_lock);
225 }
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
227
228 void cpus_write_lock(void)
229 {
230 percpu_down_write(&cpu_hotplug_lock);
231 }
232
233 void cpus_write_unlock(void)
234 {
235 percpu_up_write(&cpu_hotplug_lock);
236 }
237
238 void lockdep_assert_cpus_held(void)
239 {
240 percpu_rwsem_assert_held(&cpu_hotplug_lock);
241 }
242
243 /*
244 * Wait for currently running CPU hotplug operations to complete (if any) and
245 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247 * hotplug path before performing hotplug operations. So acquiring that lock
248 * guarantees mutual exclusion from any currently running hotplug operations.
249 */
250 void cpu_hotplug_disable(void)
251 {
252 cpu_maps_update_begin();
253 cpu_hotplug_disabled++;
254 cpu_maps_update_done();
255 }
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
257
258 static void __cpu_hotplug_enable(void)
259 {
260 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261 return;
262 cpu_hotplug_disabled--;
263 }
264
265 void cpu_hotplug_enable(void)
266 {
267 cpu_maps_update_begin();
268 __cpu_hotplug_enable();
269 cpu_maps_update_done();
270 }
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif /* CONFIG_HOTPLUG_CPU */
273
274 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st);
275
276 static int bringup_wait_for_ap(unsigned int cpu)
277 {
278 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
279
280 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
281 wait_for_completion(&st->done);
282 if (WARN_ON_ONCE((!cpu_online(cpu))))
283 return -ECANCELED;
284
285 /* Unpark the stopper thread and the hotplug thread of the target cpu */
286 stop_machine_unpark(cpu);
287 kthread_unpark(st->thread);
288
289 /* Should we go further up ? */
290 if (st->target > CPUHP_AP_ONLINE_IDLE) {
291 __cpuhp_kick_ap_work(st);
292 wait_for_completion(&st->done);
293 }
294 return st->result;
295 }
296
297 static int bringup_cpu(unsigned int cpu)
298 {
299 struct task_struct *idle = idle_thread_get(cpu);
300 int ret;
301
302 /*
303 * Some architectures have to walk the irq descriptors to
304 * setup the vector space for the cpu which comes online.
305 * Prevent irq alloc/free across the bringup.
306 */
307 irq_lock_sparse();
308
309 /* Arch-specific enabling code. */
310 ret = __cpu_up(cpu, idle);
311 irq_unlock_sparse();
312 if (ret)
313 return ret;
314 return bringup_wait_for_ap(cpu);
315 }
316
317 /*
318 * Hotplug state machine related functions
319 */
320 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
321 {
322 for (st->state++; st->state < st->target; st->state++) {
323 struct cpuhp_step *step = cpuhp_get_step(st->state);
324
325 if (!step->skip_onerr)
326 cpuhp_invoke_callback(cpu, st->state, true, NULL);
327 }
328 }
329
330 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
331 enum cpuhp_state target)
332 {
333 enum cpuhp_state prev_state = st->state;
334 int ret = 0;
335
336 for (; st->state > target; st->state--) {
337 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
338 if (ret) {
339 st->target = prev_state;
340 undo_cpu_down(cpu, st);
341 break;
342 }
343 }
344 return ret;
345 }
346
347 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
348 {
349 for (st->state--; st->state > st->target; st->state--) {
350 struct cpuhp_step *step = cpuhp_get_step(st->state);
351
352 if (!step->skip_onerr)
353 cpuhp_invoke_callback(cpu, st->state, false, NULL);
354 }
355 }
356
357 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
358 enum cpuhp_state target)
359 {
360 enum cpuhp_state prev_state = st->state;
361 int ret = 0;
362
363 while (st->state < target) {
364 st->state++;
365 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
366 if (ret) {
367 st->target = prev_state;
368 undo_cpu_up(cpu, st);
369 break;
370 }
371 }
372 return ret;
373 }
374
375 /*
376 * The cpu hotplug threads manage the bringup and teardown of the cpus
377 */
378 static void cpuhp_create(unsigned int cpu)
379 {
380 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
381
382 init_completion(&st->done);
383 }
384
385 static int cpuhp_should_run(unsigned int cpu)
386 {
387 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
388
389 return st->should_run;
390 }
391
392 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
393 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
394 {
395 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
396
397 return cpuhp_down_callbacks(cpu, st, target);
398 }
399
400 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
401 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
402 {
403 return cpuhp_up_callbacks(cpu, st, st->target);
404 }
405
406 /*
407 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
408 * callbacks when a state gets [un]installed at runtime.
409 */
410 static void cpuhp_thread_fun(unsigned int cpu)
411 {
412 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
413 int ret = 0;
414
415 /*
416 * Paired with the mb() in cpuhp_kick_ap_work and
417 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
418 */
419 smp_mb();
420 if (!st->should_run)
421 return;
422
423 st->should_run = false;
424
425 lock_map_acquire(&cpuhp_state_lock_map);
426 /* Single callback invocation for [un]install ? */
427 if (st->single) {
428 if (st->cb_state < CPUHP_AP_ONLINE) {
429 local_irq_disable();
430 ret = cpuhp_invoke_callback(cpu, st->cb_state,
431 st->bringup, st->node);
432 local_irq_enable();
433 } else {
434 ret = cpuhp_invoke_callback(cpu, st->cb_state,
435 st->bringup, st->node);
436 }
437 } else if (st->rollback) {
438 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
439
440 undo_cpu_down(cpu, st);
441 st->rollback = false;
442 } else {
443 /* Cannot happen .... */
444 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
445
446 /* Regular hotplug work */
447 if (st->state < st->target)
448 ret = cpuhp_ap_online(cpu, st);
449 else if (st->state > st->target)
450 ret = cpuhp_ap_offline(cpu, st);
451 }
452 lock_map_release(&cpuhp_state_lock_map);
453 st->result = ret;
454 complete(&st->done);
455 }
456
457 /* Invoke a single callback on a remote cpu */
458 static int
459 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
460 struct hlist_node *node)
461 {
462 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
463
464 if (!cpu_online(cpu))
465 return 0;
466
467 lock_map_acquire(&cpuhp_state_lock_map);
468 lock_map_release(&cpuhp_state_lock_map);
469
470 /*
471 * If we are up and running, use the hotplug thread. For early calls
472 * we invoke the thread function directly.
473 */
474 if (!st->thread)
475 return cpuhp_invoke_callback(cpu, state, bringup, node);
476
477 st->cb_state = state;
478 st->single = true;
479 st->bringup = bringup;
480 st->node = node;
481
482 /*
483 * Make sure the above stores are visible before should_run becomes
484 * true. Paired with the mb() above in cpuhp_thread_fun()
485 */
486 smp_mb();
487 st->should_run = true;
488 wake_up_process(st->thread);
489 wait_for_completion(&st->done);
490 return st->result;
491 }
492
493 /* Regular hotplug invocation of the AP hotplug thread */
494 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
495 {
496 st->result = 0;
497 st->single = false;
498 /*
499 * Make sure the above stores are visible before should_run becomes
500 * true. Paired with the mb() above in cpuhp_thread_fun()
501 */
502 smp_mb();
503 st->should_run = true;
504 wake_up_process(st->thread);
505 }
506
507 static int cpuhp_kick_ap_work(unsigned int cpu)
508 {
509 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
510 enum cpuhp_state state = st->state;
511
512 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
513 lock_map_acquire(&cpuhp_state_lock_map);
514 lock_map_release(&cpuhp_state_lock_map);
515 __cpuhp_kick_ap_work(st);
516 wait_for_completion(&st->done);
517 trace_cpuhp_exit(cpu, st->state, state, st->result);
518 return st->result;
519 }
520
521 static struct smp_hotplug_thread cpuhp_threads = {
522 .store = &cpuhp_state.thread,
523 .create = &cpuhp_create,
524 .thread_should_run = cpuhp_should_run,
525 .thread_fn = cpuhp_thread_fun,
526 .thread_comm = "cpuhp/%u",
527 .selfparking = true,
528 };
529
530 void __init cpuhp_threads_init(void)
531 {
532 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
533 kthread_unpark(this_cpu_read(cpuhp_state.thread));
534 }
535
536 #ifdef CONFIG_HOTPLUG_CPU
537 /**
538 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
539 * @cpu: a CPU id
540 *
541 * This function walks all processes, finds a valid mm struct for each one and
542 * then clears a corresponding bit in mm's cpumask. While this all sounds
543 * trivial, there are various non-obvious corner cases, which this function
544 * tries to solve in a safe manner.
545 *
546 * Also note that the function uses a somewhat relaxed locking scheme, so it may
547 * be called only for an already offlined CPU.
548 */
549 void clear_tasks_mm_cpumask(int cpu)
550 {
551 struct task_struct *p;
552
553 /*
554 * This function is called after the cpu is taken down and marked
555 * offline, so its not like new tasks will ever get this cpu set in
556 * their mm mask. -- Peter Zijlstra
557 * Thus, we may use rcu_read_lock() here, instead of grabbing
558 * full-fledged tasklist_lock.
559 */
560 WARN_ON(cpu_online(cpu));
561 rcu_read_lock();
562 for_each_process(p) {
563 struct task_struct *t;
564
565 /*
566 * Main thread might exit, but other threads may still have
567 * a valid mm. Find one.
568 */
569 t = find_lock_task_mm(p);
570 if (!t)
571 continue;
572 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
573 task_unlock(t);
574 }
575 rcu_read_unlock();
576 }
577
578 /* Take this CPU down. */
579 static int take_cpu_down(void *_param)
580 {
581 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
582 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
583 int err, cpu = smp_processor_id();
584
585 /* Ensure this CPU doesn't handle any more interrupts. */
586 err = __cpu_disable();
587 if (err < 0)
588 return err;
589
590 /*
591 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
592 * do this step again.
593 */
594 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
595 st->state--;
596 /* Invoke the former CPU_DYING callbacks */
597 for (; st->state > target; st->state--)
598 cpuhp_invoke_callback(cpu, st->state, false, NULL);
599
600 /* Give up timekeeping duties */
601 tick_handover_do_timer();
602 /* Park the stopper thread */
603 stop_machine_park(cpu);
604 return 0;
605 }
606
607 static int takedown_cpu(unsigned int cpu)
608 {
609 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
610 int err;
611
612 /* Park the smpboot threads */
613 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
614 smpboot_park_threads(cpu);
615
616 /*
617 * Prevent irq alloc/free while the dying cpu reorganizes the
618 * interrupt affinities.
619 */
620 irq_lock_sparse();
621
622 /*
623 * So now all preempt/rcu users must observe !cpu_active().
624 */
625 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
626 if (err) {
627 /* CPU refused to die */
628 irq_unlock_sparse();
629 /* Unpark the hotplug thread so we can rollback there */
630 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
631 return err;
632 }
633 BUG_ON(cpu_online(cpu));
634
635 /*
636 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
637 * runnable tasks from the cpu, there's only the idle task left now
638 * that the migration thread is done doing the stop_machine thing.
639 *
640 * Wait for the stop thread to go away.
641 */
642 wait_for_completion(&st->done);
643 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
644
645 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
646 irq_unlock_sparse();
647
648 hotplug_cpu__broadcast_tick_pull(cpu);
649 /* This actually kills the CPU. */
650 __cpu_die(cpu);
651
652 tick_cleanup_dead_cpu(cpu);
653 rcutree_migrate_callbacks(cpu);
654 return 0;
655 }
656
657 static void cpuhp_complete_idle_dead(void *arg)
658 {
659 struct cpuhp_cpu_state *st = arg;
660
661 complete(&st->done);
662 }
663
664 void cpuhp_report_idle_dead(void)
665 {
666 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
667
668 BUG_ON(st->state != CPUHP_AP_OFFLINE);
669 rcu_report_dead(smp_processor_id());
670 st->state = CPUHP_AP_IDLE_DEAD;
671 /*
672 * We cannot call complete after rcu_report_dead() so we delegate it
673 * to an online cpu.
674 */
675 smp_call_function_single(cpumask_first(cpu_online_mask),
676 cpuhp_complete_idle_dead, st, 0);
677 }
678
679 #else
680 #define takedown_cpu NULL
681 #endif
682
683 #ifdef CONFIG_HOTPLUG_CPU
684
685 /* Requires cpu_add_remove_lock to be held */
686 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
687 enum cpuhp_state target)
688 {
689 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
690 int prev_state, ret = 0;
691
692 if (num_online_cpus() == 1)
693 return -EBUSY;
694
695 if (!cpu_present(cpu))
696 return -EINVAL;
697
698 cpus_write_lock();
699
700 cpuhp_tasks_frozen = tasks_frozen;
701
702 prev_state = st->state;
703 st->target = target;
704 /*
705 * If the current CPU state is in the range of the AP hotplug thread,
706 * then we need to kick the thread.
707 */
708 if (st->state > CPUHP_TEARDOWN_CPU) {
709 ret = cpuhp_kick_ap_work(cpu);
710 /*
711 * The AP side has done the error rollback already. Just
712 * return the error code..
713 */
714 if (ret)
715 goto out;
716
717 /*
718 * We might have stopped still in the range of the AP hotplug
719 * thread. Nothing to do anymore.
720 */
721 if (st->state > CPUHP_TEARDOWN_CPU)
722 goto out;
723 }
724 /*
725 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
726 * to do the further cleanups.
727 */
728 ret = cpuhp_down_callbacks(cpu, st, target);
729 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
730 st->target = prev_state;
731 st->rollback = true;
732 cpuhp_kick_ap_work(cpu);
733 }
734
735 out:
736 cpus_write_unlock();
737 return ret;
738 }
739
740 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
741 {
742 int err;
743
744 cpu_maps_update_begin();
745
746 if (cpu_hotplug_disabled) {
747 err = -EBUSY;
748 goto out;
749 }
750
751 err = _cpu_down(cpu, 0, target);
752
753 out:
754 cpu_maps_update_done();
755 return err;
756 }
757 int cpu_down(unsigned int cpu)
758 {
759 return do_cpu_down(cpu, CPUHP_OFFLINE);
760 }
761 EXPORT_SYMBOL(cpu_down);
762 #endif /*CONFIG_HOTPLUG_CPU*/
763
764 /**
765 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
766 * @cpu: cpu that just started
767 *
768 * It must be called by the arch code on the new cpu, before the new cpu
769 * enables interrupts and before the "boot" cpu returns from __cpu_up().
770 */
771 void notify_cpu_starting(unsigned int cpu)
772 {
773 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
774 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
775
776 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
777 while (st->state < target) {
778 st->state++;
779 cpuhp_invoke_callback(cpu, st->state, true, NULL);
780 }
781 }
782
783 /*
784 * Called from the idle task. Wake up the controlling task which brings the
785 * stopper and the hotplug thread of the upcoming CPU up and then delegates
786 * the rest of the online bringup to the hotplug thread.
787 */
788 void cpuhp_online_idle(enum cpuhp_state state)
789 {
790 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
791
792 /* Happens for the boot cpu */
793 if (state != CPUHP_AP_ONLINE_IDLE)
794 return;
795
796 st->state = CPUHP_AP_ONLINE_IDLE;
797 complete(&st->done);
798 }
799
800 /* Requires cpu_add_remove_lock to be held */
801 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
802 {
803 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
804 struct task_struct *idle;
805 int ret = 0;
806
807 cpus_write_lock();
808
809 if (!cpu_present(cpu)) {
810 ret = -EINVAL;
811 goto out;
812 }
813
814 /*
815 * The caller of do_cpu_up might have raced with another
816 * caller. Ignore it for now.
817 */
818 if (st->state >= target)
819 goto out;
820
821 if (st->state == CPUHP_OFFLINE) {
822 /* Let it fail before we try to bring the cpu up */
823 idle = idle_thread_get(cpu);
824 if (IS_ERR(idle)) {
825 ret = PTR_ERR(idle);
826 goto out;
827 }
828 }
829
830 cpuhp_tasks_frozen = tasks_frozen;
831
832 st->target = target;
833 /*
834 * If the current CPU state is in the range of the AP hotplug thread,
835 * then we need to kick the thread once more.
836 */
837 if (st->state > CPUHP_BRINGUP_CPU) {
838 ret = cpuhp_kick_ap_work(cpu);
839 /*
840 * The AP side has done the error rollback already. Just
841 * return the error code..
842 */
843 if (ret)
844 goto out;
845 }
846
847 /*
848 * Try to reach the target state. We max out on the BP at
849 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
850 * responsible for bringing it up to the target state.
851 */
852 target = min((int)target, CPUHP_BRINGUP_CPU);
853 ret = cpuhp_up_callbacks(cpu, st, target);
854 out:
855 cpus_write_unlock();
856 return ret;
857 }
858
859 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
860 {
861 int err = 0;
862
863 if (!cpu_possible(cpu)) {
864 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
865 cpu);
866 #if defined(CONFIG_IA64)
867 pr_err("please check additional_cpus= boot parameter\n");
868 #endif
869 return -EINVAL;
870 }
871
872 err = try_online_node(cpu_to_node(cpu));
873 if (err)
874 return err;
875
876 cpu_maps_update_begin();
877
878 if (cpu_hotplug_disabled) {
879 err = -EBUSY;
880 goto out;
881 }
882
883 err = _cpu_up(cpu, 0, target);
884 out:
885 cpu_maps_update_done();
886 return err;
887 }
888
889 int cpu_up(unsigned int cpu)
890 {
891 return do_cpu_up(cpu, CPUHP_ONLINE);
892 }
893 EXPORT_SYMBOL_GPL(cpu_up);
894
895 #ifdef CONFIG_PM_SLEEP_SMP
896 static cpumask_var_t frozen_cpus;
897
898 int freeze_secondary_cpus(int primary)
899 {
900 int cpu, error = 0;
901
902 cpu_maps_update_begin();
903 if (!cpu_online(primary))
904 primary = cpumask_first(cpu_online_mask);
905 /*
906 * We take down all of the non-boot CPUs in one shot to avoid races
907 * with the userspace trying to use the CPU hotplug at the same time
908 */
909 cpumask_clear(frozen_cpus);
910
911 pr_info("Disabling non-boot CPUs ...\n");
912 for_each_online_cpu(cpu) {
913 if (cpu == primary)
914 continue;
915 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
916 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
917 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
918 if (!error)
919 cpumask_set_cpu(cpu, frozen_cpus);
920 else {
921 pr_err("Error taking CPU%d down: %d\n", cpu, error);
922 break;
923 }
924 }
925
926 if (!error)
927 BUG_ON(num_online_cpus() > 1);
928 else
929 pr_err("Non-boot CPUs are not disabled\n");
930
931 /*
932 * Make sure the CPUs won't be enabled by someone else. We need to do
933 * this even in case of failure as all disable_nonboot_cpus() users are
934 * supposed to do enable_nonboot_cpus() on the failure path.
935 */
936 cpu_hotplug_disabled++;
937
938 cpu_maps_update_done();
939 return error;
940 }
941
942 void __weak arch_enable_nonboot_cpus_begin(void)
943 {
944 }
945
946 void __weak arch_enable_nonboot_cpus_end(void)
947 {
948 }
949
950 void enable_nonboot_cpus(void)
951 {
952 int cpu, error;
953
954 /* Allow everyone to use the CPU hotplug again */
955 cpu_maps_update_begin();
956 __cpu_hotplug_enable();
957 if (cpumask_empty(frozen_cpus))
958 goto out;
959
960 pr_info("Enabling non-boot CPUs ...\n");
961
962 arch_enable_nonboot_cpus_begin();
963
964 for_each_cpu(cpu, frozen_cpus) {
965 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
966 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
967 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
968 if (!error) {
969 pr_info("CPU%d is up\n", cpu);
970 continue;
971 }
972 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
973 }
974
975 arch_enable_nonboot_cpus_end();
976
977 cpumask_clear(frozen_cpus);
978 out:
979 cpu_maps_update_done();
980 }
981
982 static int __init alloc_frozen_cpus(void)
983 {
984 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
985 return -ENOMEM;
986 return 0;
987 }
988 core_initcall(alloc_frozen_cpus);
989
990 /*
991 * When callbacks for CPU hotplug notifications are being executed, we must
992 * ensure that the state of the system with respect to the tasks being frozen
993 * or not, as reported by the notification, remains unchanged *throughout the
994 * duration* of the execution of the callbacks.
995 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
996 *
997 * This synchronization is implemented by mutually excluding regular CPU
998 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
999 * Hibernate notifications.
1000 */
1001 static int
1002 cpu_hotplug_pm_callback(struct notifier_block *nb,
1003 unsigned long action, void *ptr)
1004 {
1005 switch (action) {
1006
1007 case PM_SUSPEND_PREPARE:
1008 case PM_HIBERNATION_PREPARE:
1009 cpu_hotplug_disable();
1010 break;
1011
1012 case PM_POST_SUSPEND:
1013 case PM_POST_HIBERNATION:
1014 cpu_hotplug_enable();
1015 break;
1016
1017 default:
1018 return NOTIFY_DONE;
1019 }
1020
1021 return NOTIFY_OK;
1022 }
1023
1024
1025 static int __init cpu_hotplug_pm_sync_init(void)
1026 {
1027 /*
1028 * cpu_hotplug_pm_callback has higher priority than x86
1029 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1030 * to disable cpu hotplug to avoid cpu hotplug race.
1031 */
1032 pm_notifier(cpu_hotplug_pm_callback, 0);
1033 return 0;
1034 }
1035 core_initcall(cpu_hotplug_pm_sync_init);
1036
1037 #endif /* CONFIG_PM_SLEEP_SMP */
1038
1039 int __boot_cpu_id;
1040
1041 #endif /* CONFIG_SMP */
1042
1043 /* Boot processor state steps */
1044 static struct cpuhp_step cpuhp_bp_states[] = {
1045 [CPUHP_OFFLINE] = {
1046 .name = "offline",
1047 .startup.single = NULL,
1048 .teardown.single = NULL,
1049 },
1050 #ifdef CONFIG_SMP
1051 [CPUHP_CREATE_THREADS]= {
1052 .name = "threads:prepare",
1053 .startup.single = smpboot_create_threads,
1054 .teardown.single = NULL,
1055 .cant_stop = true,
1056 },
1057 [CPUHP_PERF_PREPARE] = {
1058 .name = "perf:prepare",
1059 .startup.single = perf_event_init_cpu,
1060 .teardown.single = perf_event_exit_cpu,
1061 },
1062 [CPUHP_WORKQUEUE_PREP] = {
1063 .name = "workqueue:prepare",
1064 .startup.single = workqueue_prepare_cpu,
1065 .teardown.single = NULL,
1066 },
1067 [CPUHP_HRTIMERS_PREPARE] = {
1068 .name = "hrtimers:prepare",
1069 .startup.single = hrtimers_prepare_cpu,
1070 .teardown.single = hrtimers_dead_cpu,
1071 },
1072 [CPUHP_SMPCFD_PREPARE] = {
1073 .name = "smpcfd:prepare",
1074 .startup.single = smpcfd_prepare_cpu,
1075 .teardown.single = smpcfd_dead_cpu,
1076 },
1077 [CPUHP_RELAY_PREPARE] = {
1078 .name = "relay:prepare",
1079 .startup.single = relay_prepare_cpu,
1080 .teardown.single = NULL,
1081 },
1082 [CPUHP_SLAB_PREPARE] = {
1083 .name = "slab:prepare",
1084 .startup.single = slab_prepare_cpu,
1085 .teardown.single = slab_dead_cpu,
1086 },
1087 [CPUHP_RCUTREE_PREP] = {
1088 .name = "RCU/tree:prepare",
1089 .startup.single = rcutree_prepare_cpu,
1090 .teardown.single = rcutree_dead_cpu,
1091 },
1092 /*
1093 * On the tear-down path, timers_dead_cpu() must be invoked
1094 * before blk_mq_queue_reinit_notify() from notify_dead(),
1095 * otherwise a RCU stall occurs.
1096 */
1097 [CPUHP_TIMERS_DEAD] = {
1098 .name = "timers:dead",
1099 .startup.single = NULL,
1100 .teardown.single = timers_dead_cpu,
1101 },
1102 /* Kicks the plugged cpu into life */
1103 [CPUHP_BRINGUP_CPU] = {
1104 .name = "cpu:bringup",
1105 .startup.single = bringup_cpu,
1106 .teardown.single = NULL,
1107 .cant_stop = true,
1108 },
1109 [CPUHP_AP_SMPCFD_DYING] = {
1110 .name = "smpcfd:dying",
1111 .startup.single = NULL,
1112 .teardown.single = smpcfd_dying_cpu,
1113 },
1114 /*
1115 * Handled on controll processor until the plugged processor manages
1116 * this itself.
1117 */
1118 [CPUHP_TEARDOWN_CPU] = {
1119 .name = "cpu:teardown",
1120 .startup.single = NULL,
1121 .teardown.single = takedown_cpu,
1122 .cant_stop = true,
1123 },
1124 #else
1125 [CPUHP_BRINGUP_CPU] = { },
1126 #endif
1127 };
1128
1129 /* Application processor state steps */
1130 static struct cpuhp_step cpuhp_ap_states[] = {
1131 #ifdef CONFIG_SMP
1132 /* Final state before CPU kills itself */
1133 [CPUHP_AP_IDLE_DEAD] = {
1134 .name = "idle:dead",
1135 },
1136 /*
1137 * Last state before CPU enters the idle loop to die. Transient state
1138 * for synchronization.
1139 */
1140 [CPUHP_AP_OFFLINE] = {
1141 .name = "ap:offline",
1142 .cant_stop = true,
1143 },
1144 /* First state is scheduler control. Interrupts are disabled */
1145 [CPUHP_AP_SCHED_STARTING] = {
1146 .name = "sched:starting",
1147 .startup.single = sched_cpu_starting,
1148 .teardown.single = sched_cpu_dying,
1149 },
1150 [CPUHP_AP_RCUTREE_DYING] = {
1151 .name = "RCU/tree:dying",
1152 .startup.single = NULL,
1153 .teardown.single = rcutree_dying_cpu,
1154 },
1155 /* Entry state on starting. Interrupts enabled from here on. Transient
1156 * state for synchronsization */
1157 [CPUHP_AP_ONLINE] = {
1158 .name = "ap:online",
1159 },
1160 /* Handle smpboot threads park/unpark */
1161 [CPUHP_AP_SMPBOOT_THREADS] = {
1162 .name = "smpboot/threads:online",
1163 .startup.single = smpboot_unpark_threads,
1164 .teardown.single = NULL,
1165 },
1166 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1167 .name = "irq/affinity:online",
1168 .startup.single = irq_affinity_online_cpu,
1169 .teardown.single = NULL,
1170 },
1171 [CPUHP_AP_PERF_ONLINE] = {
1172 .name = "perf:online",
1173 .startup.single = perf_event_init_cpu,
1174 .teardown.single = perf_event_exit_cpu,
1175 },
1176 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1177 .name = "workqueue:online",
1178 .startup.single = workqueue_online_cpu,
1179 .teardown.single = workqueue_offline_cpu,
1180 },
1181 [CPUHP_AP_RCUTREE_ONLINE] = {
1182 .name = "RCU/tree:online",
1183 .startup.single = rcutree_online_cpu,
1184 .teardown.single = rcutree_offline_cpu,
1185 },
1186 #endif
1187 /*
1188 * The dynamically registered state space is here
1189 */
1190
1191 #ifdef CONFIG_SMP
1192 /* Last state is scheduler control setting the cpu active */
1193 [CPUHP_AP_ACTIVE] = {
1194 .name = "sched:active",
1195 .startup.single = sched_cpu_activate,
1196 .teardown.single = sched_cpu_deactivate,
1197 },
1198 #endif
1199
1200 /* CPU is fully up and running. */
1201 [CPUHP_ONLINE] = {
1202 .name = "online",
1203 .startup.single = NULL,
1204 .teardown.single = NULL,
1205 },
1206 };
1207
1208 /* Sanity check for callbacks */
1209 static int cpuhp_cb_check(enum cpuhp_state state)
1210 {
1211 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1212 return -EINVAL;
1213 return 0;
1214 }
1215
1216 /*
1217 * Returns a free for dynamic slot assignment of the Online state. The states
1218 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1219 * by having no name assigned.
1220 */
1221 static int cpuhp_reserve_state(enum cpuhp_state state)
1222 {
1223 enum cpuhp_state i, end;
1224 struct cpuhp_step *step;
1225
1226 switch (state) {
1227 case CPUHP_AP_ONLINE_DYN:
1228 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1229 end = CPUHP_AP_ONLINE_DYN_END;
1230 break;
1231 case CPUHP_BP_PREPARE_DYN:
1232 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1233 end = CPUHP_BP_PREPARE_DYN_END;
1234 break;
1235 default:
1236 return -EINVAL;
1237 }
1238
1239 for (i = state; i <= end; i++, step++) {
1240 if (!step->name)
1241 return i;
1242 }
1243 WARN(1, "No more dynamic states available for CPU hotplug\n");
1244 return -ENOSPC;
1245 }
1246
1247 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1248 int (*startup)(unsigned int cpu),
1249 int (*teardown)(unsigned int cpu),
1250 bool multi_instance)
1251 {
1252 /* (Un)Install the callbacks for further cpu hotplug operations */
1253 struct cpuhp_step *sp;
1254 int ret = 0;
1255
1256 /*
1257 * If name is NULL, then the state gets removed.
1258 *
1259 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1260 * the first allocation from these dynamic ranges, so the removal
1261 * would trigger a new allocation and clear the wrong (already
1262 * empty) state, leaving the callbacks of the to be cleared state
1263 * dangling, which causes wreckage on the next hotplug operation.
1264 */
1265 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1266 state == CPUHP_BP_PREPARE_DYN)) {
1267 ret = cpuhp_reserve_state(state);
1268 if (ret < 0)
1269 return ret;
1270 state = ret;
1271 }
1272 sp = cpuhp_get_step(state);
1273 if (name && sp->name)
1274 return -EBUSY;
1275
1276 sp->startup.single = startup;
1277 sp->teardown.single = teardown;
1278 sp->name = name;
1279 sp->multi_instance = multi_instance;
1280 INIT_HLIST_HEAD(&sp->list);
1281 return ret;
1282 }
1283
1284 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1285 {
1286 return cpuhp_get_step(state)->teardown.single;
1287 }
1288
1289 /*
1290 * Call the startup/teardown function for a step either on the AP or
1291 * on the current CPU.
1292 */
1293 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1294 struct hlist_node *node)
1295 {
1296 struct cpuhp_step *sp = cpuhp_get_step(state);
1297 int ret;
1298
1299 if ((bringup && !sp->startup.single) ||
1300 (!bringup && !sp->teardown.single))
1301 return 0;
1302 /*
1303 * The non AP bound callbacks can fail on bringup. On teardown
1304 * e.g. module removal we crash for now.
1305 */
1306 #ifdef CONFIG_SMP
1307 if (cpuhp_is_ap_state(state))
1308 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1309 else
1310 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1311 #else
1312 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1313 #endif
1314 BUG_ON(ret && !bringup);
1315 return ret;
1316 }
1317
1318 /*
1319 * Called from __cpuhp_setup_state on a recoverable failure.
1320 *
1321 * Note: The teardown callbacks for rollback are not allowed to fail!
1322 */
1323 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1324 struct hlist_node *node)
1325 {
1326 int cpu;
1327
1328 /* Roll back the already executed steps on the other cpus */
1329 for_each_present_cpu(cpu) {
1330 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331 int cpustate = st->state;
1332
1333 if (cpu >= failedcpu)
1334 break;
1335
1336 /* Did we invoke the startup call on that cpu ? */
1337 if (cpustate >= state)
1338 cpuhp_issue_call(cpu, state, false, node);
1339 }
1340 }
1341
1342 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1343 struct hlist_node *node,
1344 bool invoke)
1345 {
1346 struct cpuhp_step *sp;
1347 int cpu;
1348 int ret;
1349
1350 lockdep_assert_cpus_held();
1351
1352 sp = cpuhp_get_step(state);
1353 if (sp->multi_instance == false)
1354 return -EINVAL;
1355
1356 mutex_lock(&cpuhp_state_mutex);
1357
1358 if (!invoke || !sp->startup.multi)
1359 goto add_node;
1360
1361 /*
1362 * Try to call the startup callback for each present cpu
1363 * depending on the hotplug state of the cpu.
1364 */
1365 for_each_present_cpu(cpu) {
1366 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1367 int cpustate = st->state;
1368
1369 if (cpustate < state)
1370 continue;
1371
1372 ret = cpuhp_issue_call(cpu, state, true, node);
1373 if (ret) {
1374 if (sp->teardown.multi)
1375 cpuhp_rollback_install(cpu, state, node);
1376 goto unlock;
1377 }
1378 }
1379 add_node:
1380 ret = 0;
1381 hlist_add_head(node, &sp->list);
1382 unlock:
1383 mutex_unlock(&cpuhp_state_mutex);
1384 return ret;
1385 }
1386
1387 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1388 bool invoke)
1389 {
1390 int ret;
1391
1392 cpus_read_lock();
1393 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1394 cpus_read_unlock();
1395 return ret;
1396 }
1397 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1398
1399 /**
1400 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1401 * @state: The state to setup
1402 * @invoke: If true, the startup function is invoked for cpus where
1403 * cpu state >= @state
1404 * @startup: startup callback function
1405 * @teardown: teardown callback function
1406 * @multi_instance: State is set up for multiple instances which get
1407 * added afterwards.
1408 *
1409 * The caller needs to hold cpus read locked while calling this function.
1410 * Returns:
1411 * On success:
1412 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1413 * 0 for all other states
1414 * On failure: proper (negative) error code
1415 */
1416 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1417 const char *name, bool invoke,
1418 int (*startup)(unsigned int cpu),
1419 int (*teardown)(unsigned int cpu),
1420 bool multi_instance)
1421 {
1422 int cpu, ret = 0;
1423 bool dynstate;
1424
1425 lockdep_assert_cpus_held();
1426
1427 if (cpuhp_cb_check(state) || !name)
1428 return -EINVAL;
1429
1430 mutex_lock(&cpuhp_state_mutex);
1431
1432 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1433 multi_instance);
1434
1435 dynstate = state == CPUHP_AP_ONLINE_DYN;
1436 if (ret > 0 && dynstate) {
1437 state = ret;
1438 ret = 0;
1439 }
1440
1441 if (ret || !invoke || !startup)
1442 goto out;
1443
1444 /*
1445 * Try to call the startup callback for each present cpu
1446 * depending on the hotplug state of the cpu.
1447 */
1448 for_each_present_cpu(cpu) {
1449 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1450 int cpustate = st->state;
1451
1452 if (cpustate < state)
1453 continue;
1454
1455 ret = cpuhp_issue_call(cpu, state, true, NULL);
1456 if (ret) {
1457 if (teardown)
1458 cpuhp_rollback_install(cpu, state, NULL);
1459 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1460 goto out;
1461 }
1462 }
1463 out:
1464 mutex_unlock(&cpuhp_state_mutex);
1465 /*
1466 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1467 * dynamically allocated state in case of success.
1468 */
1469 if (!ret && dynstate)
1470 return state;
1471 return ret;
1472 }
1473 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1474
1475 int __cpuhp_setup_state(enum cpuhp_state state,
1476 const char *name, bool invoke,
1477 int (*startup)(unsigned int cpu),
1478 int (*teardown)(unsigned int cpu),
1479 bool multi_instance)
1480 {
1481 int ret;
1482
1483 cpus_read_lock();
1484 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1485 teardown, multi_instance);
1486 cpus_read_unlock();
1487 return ret;
1488 }
1489 EXPORT_SYMBOL(__cpuhp_setup_state);
1490
1491 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1492 struct hlist_node *node, bool invoke)
1493 {
1494 struct cpuhp_step *sp = cpuhp_get_step(state);
1495 int cpu;
1496
1497 BUG_ON(cpuhp_cb_check(state));
1498
1499 if (!sp->multi_instance)
1500 return -EINVAL;
1501
1502 cpus_read_lock();
1503 mutex_lock(&cpuhp_state_mutex);
1504
1505 if (!invoke || !cpuhp_get_teardown_cb(state))
1506 goto remove;
1507 /*
1508 * Call the teardown callback for each present cpu depending
1509 * on the hotplug state of the cpu. This function is not
1510 * allowed to fail currently!
1511 */
1512 for_each_present_cpu(cpu) {
1513 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1514 int cpustate = st->state;
1515
1516 if (cpustate >= state)
1517 cpuhp_issue_call(cpu, state, false, node);
1518 }
1519
1520 remove:
1521 hlist_del(node);
1522 mutex_unlock(&cpuhp_state_mutex);
1523 cpus_read_unlock();
1524
1525 return 0;
1526 }
1527 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1528
1529 /**
1530 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1531 * @state: The state to remove
1532 * @invoke: If true, the teardown function is invoked for cpus where
1533 * cpu state >= @state
1534 *
1535 * The caller needs to hold cpus read locked while calling this function.
1536 * The teardown callback is currently not allowed to fail. Think
1537 * about module removal!
1538 */
1539 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1540 {
1541 struct cpuhp_step *sp = cpuhp_get_step(state);
1542 int cpu;
1543
1544 BUG_ON(cpuhp_cb_check(state));
1545
1546 lockdep_assert_cpus_held();
1547
1548 mutex_lock(&cpuhp_state_mutex);
1549 if (sp->multi_instance) {
1550 WARN(!hlist_empty(&sp->list),
1551 "Error: Removing state %d which has instances left.\n",
1552 state);
1553 goto remove;
1554 }
1555
1556 if (!invoke || !cpuhp_get_teardown_cb(state))
1557 goto remove;
1558
1559 /*
1560 * Call the teardown callback for each present cpu depending
1561 * on the hotplug state of the cpu. This function is not
1562 * allowed to fail currently!
1563 */
1564 for_each_present_cpu(cpu) {
1565 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1566 int cpustate = st->state;
1567
1568 if (cpustate >= state)
1569 cpuhp_issue_call(cpu, state, false, NULL);
1570 }
1571 remove:
1572 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1573 mutex_unlock(&cpuhp_state_mutex);
1574 }
1575 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1576
1577 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1578 {
1579 cpus_read_lock();
1580 __cpuhp_remove_state_cpuslocked(state, invoke);
1581 cpus_read_unlock();
1582 }
1583 EXPORT_SYMBOL(__cpuhp_remove_state);
1584
1585 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1586 static ssize_t show_cpuhp_state(struct device *dev,
1587 struct device_attribute *attr, char *buf)
1588 {
1589 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1590
1591 return sprintf(buf, "%d\n", st->state);
1592 }
1593 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1594
1595 static ssize_t write_cpuhp_target(struct device *dev,
1596 struct device_attribute *attr,
1597 const char *buf, size_t count)
1598 {
1599 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1600 struct cpuhp_step *sp;
1601 int target, ret;
1602
1603 ret = kstrtoint(buf, 10, &target);
1604 if (ret)
1605 return ret;
1606
1607 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1608 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1609 return -EINVAL;
1610 #else
1611 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1612 return -EINVAL;
1613 #endif
1614
1615 ret = lock_device_hotplug_sysfs();
1616 if (ret)
1617 return ret;
1618
1619 mutex_lock(&cpuhp_state_mutex);
1620 sp = cpuhp_get_step(target);
1621 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1622 mutex_unlock(&cpuhp_state_mutex);
1623 if (ret)
1624 goto out;
1625
1626 if (st->state < target)
1627 ret = do_cpu_up(dev->id, target);
1628 else
1629 ret = do_cpu_down(dev->id, target);
1630 out:
1631 unlock_device_hotplug();
1632 return ret ? ret : count;
1633 }
1634
1635 static ssize_t show_cpuhp_target(struct device *dev,
1636 struct device_attribute *attr, char *buf)
1637 {
1638 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1639
1640 return sprintf(buf, "%d\n", st->target);
1641 }
1642 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1643
1644 static struct attribute *cpuhp_cpu_attrs[] = {
1645 &dev_attr_state.attr,
1646 &dev_attr_target.attr,
1647 NULL
1648 };
1649
1650 static const struct attribute_group cpuhp_cpu_attr_group = {
1651 .attrs = cpuhp_cpu_attrs,
1652 .name = "hotplug",
1653 NULL
1654 };
1655
1656 static ssize_t show_cpuhp_states(struct device *dev,
1657 struct device_attribute *attr, char *buf)
1658 {
1659 ssize_t cur, res = 0;
1660 int i;
1661
1662 mutex_lock(&cpuhp_state_mutex);
1663 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1664 struct cpuhp_step *sp = cpuhp_get_step(i);
1665
1666 if (sp->name) {
1667 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1668 buf += cur;
1669 res += cur;
1670 }
1671 }
1672 mutex_unlock(&cpuhp_state_mutex);
1673 return res;
1674 }
1675 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1676
1677 static struct attribute *cpuhp_cpu_root_attrs[] = {
1678 &dev_attr_states.attr,
1679 NULL
1680 };
1681
1682 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1683 .attrs = cpuhp_cpu_root_attrs,
1684 .name = "hotplug",
1685 NULL
1686 };
1687
1688 static int __init cpuhp_sysfs_init(void)
1689 {
1690 int cpu, ret;
1691
1692 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1693 &cpuhp_cpu_root_attr_group);
1694 if (ret)
1695 return ret;
1696
1697 for_each_possible_cpu(cpu) {
1698 struct device *dev = get_cpu_device(cpu);
1699
1700 if (!dev)
1701 continue;
1702 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1703 if (ret)
1704 return ret;
1705 }
1706 return 0;
1707 }
1708 device_initcall(cpuhp_sysfs_init);
1709 #endif
1710
1711 /*
1712 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1713 * represents all NR_CPUS bits binary values of 1<<nr.
1714 *
1715 * It is used by cpumask_of() to get a constant address to a CPU
1716 * mask value that has a single bit set only.
1717 */
1718
1719 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1720 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1721 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1722 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1723 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1724
1725 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1726
1727 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1728 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1729 #if BITS_PER_LONG > 32
1730 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1731 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1732 #endif
1733 };
1734 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1735
1736 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1737 EXPORT_SYMBOL(cpu_all_bits);
1738
1739 #ifdef CONFIG_INIT_ALL_POSSIBLE
1740 struct cpumask __cpu_possible_mask __read_mostly
1741 = {CPU_BITS_ALL};
1742 #else
1743 struct cpumask __cpu_possible_mask __read_mostly;
1744 #endif
1745 EXPORT_SYMBOL(__cpu_possible_mask);
1746
1747 struct cpumask __cpu_online_mask __read_mostly;
1748 EXPORT_SYMBOL(__cpu_online_mask);
1749
1750 struct cpumask __cpu_present_mask __read_mostly;
1751 EXPORT_SYMBOL(__cpu_present_mask);
1752
1753 struct cpumask __cpu_active_mask __read_mostly;
1754 EXPORT_SYMBOL(__cpu_active_mask);
1755
1756 void init_cpu_present(const struct cpumask *src)
1757 {
1758 cpumask_copy(&__cpu_present_mask, src);
1759 }
1760
1761 void init_cpu_possible(const struct cpumask *src)
1762 {
1763 cpumask_copy(&__cpu_possible_mask, src);
1764 }
1765
1766 void init_cpu_online(const struct cpumask *src)
1767 {
1768 cpumask_copy(&__cpu_online_mask, src);
1769 }
1770
1771 /*
1772 * Activate the first processor.
1773 */
1774 void __init boot_cpu_init(void)
1775 {
1776 int cpu = smp_processor_id();
1777
1778 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1779 set_cpu_online(cpu, true);
1780 set_cpu_active(cpu, true);
1781 set_cpu_present(cpu, true);
1782 set_cpu_possible(cpu, true);
1783
1784 #ifdef CONFIG_SMP
1785 __boot_cpu_id = cpu;
1786 #endif
1787 }
1788
1789 /*
1790 * Must be called _AFTER_ setting up the per_cpu areas
1791 */
1792 void __init boot_cpu_state_init(void)
1793 {
1794 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1795 }