]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/cpu.c
cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVM
[mirror_ubuntu-eoan-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/smt.h>
14 #include <linux/unistd.h>
15 #include <linux/cpu.h>
16 #include <linux/oom.h>
17 #include <linux/rcupdate.h>
18 #include <linux/export.h>
19 #include <linux/bug.h>
20 #include <linux/kthread.h>
21 #include <linux/stop_machine.h>
22 #include <linux/mutex.h>
23 #include <linux/gfp.h>
24 #include <linux/suspend.h>
25 #include <linux/lockdep.h>
26 #include <linux/tick.h>
27 #include <linux/irq.h>
28 #include <linux/nmi.h>
29 #include <linux/smpboot.h>
30 #include <linux/relay.h>
31 #include <linux/slab.h>
32 #include <linux/percpu-rwsem.h>
33
34 #include <trace/events/power.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/cpuhp.h>
37
38 #include "smpboot.h"
39
40 /**
41 * cpuhp_cpu_state - Per cpu hotplug state storage
42 * @state: The current cpu state
43 * @target: The target state
44 * @thread: Pointer to the hotplug thread
45 * @should_run: Thread should execute
46 * @rollback: Perform a rollback
47 * @single: Single callback invocation
48 * @bringup: Single callback bringup or teardown selector
49 * @cb_state: The state for a single callback (install/uninstall)
50 * @result: Result of the operation
51 * @done_up: Signal completion to the issuer of the task for cpu-up
52 * @done_down: Signal completion to the issuer of the task for cpu-down
53 */
54 struct cpuhp_cpu_state {
55 enum cpuhp_state state;
56 enum cpuhp_state target;
57 enum cpuhp_state fail;
58 #ifdef CONFIG_SMP
59 struct task_struct *thread;
60 bool should_run;
61 bool rollback;
62 bool single;
63 bool bringup;
64 bool booted_once;
65 struct hlist_node *node;
66 struct hlist_node *last;
67 enum cpuhp_state cb_state;
68 int result;
69 struct completion done_up;
70 struct completion done_down;
71 #endif
72 };
73
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 .fail = CPUHP_INVALID,
76 };
77
78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 static struct lockdep_map cpuhp_state_up_map =
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
81 static struct lockdep_map cpuhp_state_down_map =
82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
83
84
85 static inline void cpuhp_lock_acquire(bool bringup)
86 {
87 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
88 }
89
90 static inline void cpuhp_lock_release(bool bringup)
91 {
92 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 #else
95
96 static inline void cpuhp_lock_acquire(bool bringup) { }
97 static inline void cpuhp_lock_release(bool bringup) { }
98
99 #endif
100
101 /**
102 * cpuhp_step - Hotplug state machine step
103 * @name: Name of the step
104 * @startup: Startup function of the step
105 * @teardown: Teardown function of the step
106 * @cant_stop: Bringup/teardown can't be stopped at this step
107 */
108 struct cpuhp_step {
109 const char *name;
110 union {
111 int (*single)(unsigned int cpu);
112 int (*multi)(unsigned int cpu,
113 struct hlist_node *node);
114 } startup;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } teardown;
120 struct hlist_head list;
121 bool cant_stop;
122 bool multi_instance;
123 };
124
125 static DEFINE_MUTEX(cpuhp_state_mutex);
126 static struct cpuhp_step cpuhp_hp_states[];
127
128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
129 {
130 return cpuhp_hp_states + state;
131 }
132
133 /**
134 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
135 * @cpu: The cpu for which the callback should be invoked
136 * @state: The state to do callbacks for
137 * @bringup: True if the bringup callback should be invoked
138 * @node: For multi-instance, do a single entry callback for install/remove
139 * @lastp: For multi-instance rollback, remember how far we got
140 *
141 * Called from cpu hotplug and from the state register machinery.
142 */
143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 bool bringup, struct hlist_node *node,
145 struct hlist_node **lastp)
146 {
147 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148 struct cpuhp_step *step = cpuhp_get_step(state);
149 int (*cbm)(unsigned int cpu, struct hlist_node *node);
150 int (*cb)(unsigned int cpu);
151 int ret, cnt;
152
153 if (st->fail == state) {
154 st->fail = CPUHP_INVALID;
155
156 if (!(bringup ? step->startup.single : step->teardown.single))
157 return 0;
158
159 return -EAGAIN;
160 }
161
162 if (!step->multi_instance) {
163 WARN_ON_ONCE(lastp && *lastp);
164 cb = bringup ? step->startup.single : step->teardown.single;
165 if (!cb)
166 return 0;
167 trace_cpuhp_enter(cpu, st->target, state, cb);
168 ret = cb(cpu);
169 trace_cpuhp_exit(cpu, st->state, state, ret);
170 return ret;
171 }
172 cbm = bringup ? step->startup.multi : step->teardown.multi;
173 if (!cbm)
174 return 0;
175
176 /* Single invocation for instance add/remove */
177 if (node) {
178 WARN_ON_ONCE(lastp && *lastp);
179 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
180 ret = cbm(cpu, node);
181 trace_cpuhp_exit(cpu, st->state, state, ret);
182 return ret;
183 }
184
185 /* State transition. Invoke on all instances */
186 cnt = 0;
187 hlist_for_each(node, &step->list) {
188 if (lastp && node == *lastp)
189 break;
190
191 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
192 ret = cbm(cpu, node);
193 trace_cpuhp_exit(cpu, st->state, state, ret);
194 if (ret) {
195 if (!lastp)
196 goto err;
197
198 *lastp = node;
199 return ret;
200 }
201 cnt++;
202 }
203 if (lastp)
204 *lastp = NULL;
205 return 0;
206 err:
207 /* Rollback the instances if one failed */
208 cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 if (!cbm)
210 return ret;
211
212 hlist_for_each(node, &step->list) {
213 if (!cnt--)
214 break;
215
216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 ret = cbm(cpu, node);
218 trace_cpuhp_exit(cpu, st->state, state, ret);
219 /*
220 * Rollback must not fail,
221 */
222 WARN_ON_ONCE(ret);
223 }
224 return ret;
225 }
226
227 #ifdef CONFIG_SMP
228 static bool cpuhp_is_ap_state(enum cpuhp_state state)
229 {
230 /*
231 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
232 * purposes as that state is handled explicitly in cpu_down.
233 */
234 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
235 }
236
237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
238 {
239 struct completion *done = bringup ? &st->done_up : &st->done_down;
240 wait_for_completion(done);
241 }
242
243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
244 {
245 struct completion *done = bringup ? &st->done_up : &st->done_down;
246 complete(done);
247 }
248
249 /*
250 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
251 */
252 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
253 {
254 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
255 }
256
257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
258 static DEFINE_MUTEX(cpu_add_remove_lock);
259 bool cpuhp_tasks_frozen;
260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
261
262 /*
263 * The following two APIs (cpu_maps_update_begin/done) must be used when
264 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265 */
266 void cpu_maps_update_begin(void)
267 {
268 mutex_lock(&cpu_add_remove_lock);
269 }
270
271 void cpu_maps_update_done(void)
272 {
273 mutex_unlock(&cpu_add_remove_lock);
274 }
275
276 /*
277 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278 * Should always be manipulated under cpu_add_remove_lock
279 */
280 static int cpu_hotplug_disabled;
281
282 #ifdef CONFIG_HOTPLUG_CPU
283
284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
285
286 void cpus_read_lock(void)
287 {
288 percpu_down_read(&cpu_hotplug_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpus_read_lock);
291
292 int cpus_read_trylock(void)
293 {
294 return percpu_down_read_trylock(&cpu_hotplug_lock);
295 }
296 EXPORT_SYMBOL_GPL(cpus_read_trylock);
297
298 void cpus_read_unlock(void)
299 {
300 percpu_up_read(&cpu_hotplug_lock);
301 }
302 EXPORT_SYMBOL_GPL(cpus_read_unlock);
303
304 void cpus_write_lock(void)
305 {
306 percpu_down_write(&cpu_hotplug_lock);
307 }
308
309 void cpus_write_unlock(void)
310 {
311 percpu_up_write(&cpu_hotplug_lock);
312 }
313
314 void lockdep_assert_cpus_held(void)
315 {
316 percpu_rwsem_assert_held(&cpu_hotplug_lock);
317 }
318
319 static void lockdep_acquire_cpus_lock(void)
320 {
321 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
322 }
323
324 static void lockdep_release_cpus_lock(void)
325 {
326 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
327 }
328
329 /*
330 * Wait for currently running CPU hotplug operations to complete (if any) and
331 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
332 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
333 * hotplug path before performing hotplug operations. So acquiring that lock
334 * guarantees mutual exclusion from any currently running hotplug operations.
335 */
336 void cpu_hotplug_disable(void)
337 {
338 cpu_maps_update_begin();
339 cpu_hotplug_disabled++;
340 cpu_maps_update_done();
341 }
342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
343
344 static void __cpu_hotplug_enable(void)
345 {
346 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
347 return;
348 cpu_hotplug_disabled--;
349 }
350
351 void cpu_hotplug_enable(void)
352 {
353 cpu_maps_update_begin();
354 __cpu_hotplug_enable();
355 cpu_maps_update_done();
356 }
357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
358
359 #else
360
361 static void lockdep_acquire_cpus_lock(void)
362 {
363 }
364
365 static void lockdep_release_cpus_lock(void)
366 {
367 }
368
369 #endif /* CONFIG_HOTPLUG_CPU */
370
371 /*
372 * Architectures that need SMT-specific errata handling during SMT hotplug
373 * should override this.
374 */
375 void __weak arch_smt_update(void) { }
376
377 #ifdef CONFIG_HOTPLUG_SMT
378 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
379
380 void __init cpu_smt_disable(bool force)
381 {
382 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
383 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
384 return;
385
386 if (force) {
387 pr_info("SMT: Force disabled\n");
388 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
389 } else {
390 pr_info("SMT: disabled\n");
391 cpu_smt_control = CPU_SMT_DISABLED;
392 }
393 }
394
395 /*
396 * The decision whether SMT is supported can only be done after the full
397 * CPU identification. Called from architecture code.
398 */
399 void __init cpu_smt_check_topology(void)
400 {
401 if (!topology_smt_supported())
402 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
403 }
404
405 static int __init smt_cmdline_disable(char *str)
406 {
407 cpu_smt_disable(str && !strcmp(str, "force"));
408 return 0;
409 }
410 early_param("nosmt", smt_cmdline_disable);
411
412 static inline bool cpu_smt_allowed(unsigned int cpu)
413 {
414 if (cpu_smt_control == CPU_SMT_ENABLED)
415 return true;
416
417 if (topology_is_primary_thread(cpu))
418 return true;
419
420 /*
421 * On x86 it's required to boot all logical CPUs at least once so
422 * that the init code can get a chance to set CR4.MCE on each
423 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
424 * core will shutdown the machine.
425 */
426 return !per_cpu(cpuhp_state, cpu).booted_once;
427 }
428 #else
429 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
430 #endif
431
432 static inline enum cpuhp_state
433 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
434 {
435 enum cpuhp_state prev_state = st->state;
436
437 st->rollback = false;
438 st->last = NULL;
439
440 st->target = target;
441 st->single = false;
442 st->bringup = st->state < target;
443
444 return prev_state;
445 }
446
447 static inline void
448 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
449 {
450 st->rollback = true;
451
452 /*
453 * If we have st->last we need to undo partial multi_instance of this
454 * state first. Otherwise start undo at the previous state.
455 */
456 if (!st->last) {
457 if (st->bringup)
458 st->state--;
459 else
460 st->state++;
461 }
462
463 st->target = prev_state;
464 st->bringup = !st->bringup;
465 }
466
467 /* Regular hotplug invocation of the AP hotplug thread */
468 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
469 {
470 if (!st->single && st->state == st->target)
471 return;
472
473 st->result = 0;
474 /*
475 * Make sure the above stores are visible before should_run becomes
476 * true. Paired with the mb() above in cpuhp_thread_fun()
477 */
478 smp_mb();
479 st->should_run = true;
480 wake_up_process(st->thread);
481 wait_for_ap_thread(st, st->bringup);
482 }
483
484 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
485 {
486 enum cpuhp_state prev_state;
487 int ret;
488
489 prev_state = cpuhp_set_state(st, target);
490 __cpuhp_kick_ap(st);
491 if ((ret = st->result)) {
492 cpuhp_reset_state(st, prev_state);
493 __cpuhp_kick_ap(st);
494 }
495
496 return ret;
497 }
498
499 static int bringup_wait_for_ap(unsigned int cpu)
500 {
501 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
502
503 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
504 wait_for_ap_thread(st, true);
505 if (WARN_ON_ONCE((!cpu_online(cpu))))
506 return -ECANCELED;
507
508 /* Unpark the stopper thread and the hotplug thread of the target cpu */
509 stop_machine_unpark(cpu);
510 kthread_unpark(st->thread);
511
512 /*
513 * SMT soft disabling on X86 requires to bring the CPU out of the
514 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
515 * CPU marked itself as booted_once in cpu_notify_starting() so the
516 * cpu_smt_allowed() check will now return false if this is not the
517 * primary sibling.
518 */
519 if (!cpu_smt_allowed(cpu))
520 return -ECANCELED;
521
522 if (st->target <= CPUHP_AP_ONLINE_IDLE)
523 return 0;
524
525 return cpuhp_kick_ap(st, st->target);
526 }
527
528 static int bringup_cpu(unsigned int cpu)
529 {
530 struct task_struct *idle = idle_thread_get(cpu);
531 int ret;
532
533 /*
534 * Some architectures have to walk the irq descriptors to
535 * setup the vector space for the cpu which comes online.
536 * Prevent irq alloc/free across the bringup.
537 */
538 irq_lock_sparse();
539
540 /* Arch-specific enabling code. */
541 ret = __cpu_up(cpu, idle);
542 irq_unlock_sparse();
543 if (ret)
544 return ret;
545 return bringup_wait_for_ap(cpu);
546 }
547
548 /*
549 * Hotplug state machine related functions
550 */
551
552 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
553 {
554 for (st->state--; st->state > st->target; st->state--)
555 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
556 }
557
558 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
559 enum cpuhp_state target)
560 {
561 enum cpuhp_state prev_state = st->state;
562 int ret = 0;
563
564 while (st->state < target) {
565 st->state++;
566 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
567 if (ret) {
568 st->target = prev_state;
569 undo_cpu_up(cpu, st);
570 break;
571 }
572 }
573 return ret;
574 }
575
576 /*
577 * The cpu hotplug threads manage the bringup and teardown of the cpus
578 */
579 static void cpuhp_create(unsigned int cpu)
580 {
581 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
582
583 init_completion(&st->done_up);
584 init_completion(&st->done_down);
585 }
586
587 static int cpuhp_should_run(unsigned int cpu)
588 {
589 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
590
591 return st->should_run;
592 }
593
594 /*
595 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
596 * callbacks when a state gets [un]installed at runtime.
597 *
598 * Each invocation of this function by the smpboot thread does a single AP
599 * state callback.
600 *
601 * It has 3 modes of operation:
602 * - single: runs st->cb_state
603 * - up: runs ++st->state, while st->state < st->target
604 * - down: runs st->state--, while st->state > st->target
605 *
606 * When complete or on error, should_run is cleared and the completion is fired.
607 */
608 static void cpuhp_thread_fun(unsigned int cpu)
609 {
610 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
611 bool bringup = st->bringup;
612 enum cpuhp_state state;
613
614 if (WARN_ON_ONCE(!st->should_run))
615 return;
616
617 /*
618 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
619 * that if we see ->should_run we also see the rest of the state.
620 */
621 smp_mb();
622
623 /*
624 * The BP holds the hotplug lock, but we're now running on the AP,
625 * ensure that anybody asserting the lock is held, will actually find
626 * it so.
627 */
628 lockdep_acquire_cpus_lock();
629 cpuhp_lock_acquire(bringup);
630
631 if (st->single) {
632 state = st->cb_state;
633 st->should_run = false;
634 } else {
635 if (bringup) {
636 st->state++;
637 state = st->state;
638 st->should_run = (st->state < st->target);
639 WARN_ON_ONCE(st->state > st->target);
640 } else {
641 state = st->state;
642 st->state--;
643 st->should_run = (st->state > st->target);
644 WARN_ON_ONCE(st->state < st->target);
645 }
646 }
647
648 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
649
650 if (cpuhp_is_atomic_state(state)) {
651 local_irq_disable();
652 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
653 local_irq_enable();
654
655 /*
656 * STARTING/DYING must not fail!
657 */
658 WARN_ON_ONCE(st->result);
659 } else {
660 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
661 }
662
663 if (st->result) {
664 /*
665 * If we fail on a rollback, we're up a creek without no
666 * paddle, no way forward, no way back. We loose, thanks for
667 * playing.
668 */
669 WARN_ON_ONCE(st->rollback);
670 st->should_run = false;
671 }
672
673 cpuhp_lock_release(bringup);
674 lockdep_release_cpus_lock();
675
676 if (!st->should_run)
677 complete_ap_thread(st, bringup);
678 }
679
680 /* Invoke a single callback on a remote cpu */
681 static int
682 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
683 struct hlist_node *node)
684 {
685 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
686 int ret;
687
688 if (!cpu_online(cpu))
689 return 0;
690
691 cpuhp_lock_acquire(false);
692 cpuhp_lock_release(false);
693
694 cpuhp_lock_acquire(true);
695 cpuhp_lock_release(true);
696
697 /*
698 * If we are up and running, use the hotplug thread. For early calls
699 * we invoke the thread function directly.
700 */
701 if (!st->thread)
702 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
703
704 st->rollback = false;
705 st->last = NULL;
706
707 st->node = node;
708 st->bringup = bringup;
709 st->cb_state = state;
710 st->single = true;
711
712 __cpuhp_kick_ap(st);
713
714 /*
715 * If we failed and did a partial, do a rollback.
716 */
717 if ((ret = st->result) && st->last) {
718 st->rollback = true;
719 st->bringup = !bringup;
720
721 __cpuhp_kick_ap(st);
722 }
723
724 /*
725 * Clean up the leftovers so the next hotplug operation wont use stale
726 * data.
727 */
728 st->node = st->last = NULL;
729 return ret;
730 }
731
732 static int cpuhp_kick_ap_work(unsigned int cpu)
733 {
734 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
735 enum cpuhp_state prev_state = st->state;
736 int ret;
737
738 cpuhp_lock_acquire(false);
739 cpuhp_lock_release(false);
740
741 cpuhp_lock_acquire(true);
742 cpuhp_lock_release(true);
743
744 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
745 ret = cpuhp_kick_ap(st, st->target);
746 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
747
748 return ret;
749 }
750
751 static struct smp_hotplug_thread cpuhp_threads = {
752 .store = &cpuhp_state.thread,
753 .create = &cpuhp_create,
754 .thread_should_run = cpuhp_should_run,
755 .thread_fn = cpuhp_thread_fun,
756 .thread_comm = "cpuhp/%u",
757 .selfparking = true,
758 };
759
760 void __init cpuhp_threads_init(void)
761 {
762 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
763 kthread_unpark(this_cpu_read(cpuhp_state.thread));
764 }
765
766 #ifdef CONFIG_HOTPLUG_CPU
767 /**
768 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
769 * @cpu: a CPU id
770 *
771 * This function walks all processes, finds a valid mm struct for each one and
772 * then clears a corresponding bit in mm's cpumask. While this all sounds
773 * trivial, there are various non-obvious corner cases, which this function
774 * tries to solve in a safe manner.
775 *
776 * Also note that the function uses a somewhat relaxed locking scheme, so it may
777 * be called only for an already offlined CPU.
778 */
779 void clear_tasks_mm_cpumask(int cpu)
780 {
781 struct task_struct *p;
782
783 /*
784 * This function is called after the cpu is taken down and marked
785 * offline, so its not like new tasks will ever get this cpu set in
786 * their mm mask. -- Peter Zijlstra
787 * Thus, we may use rcu_read_lock() here, instead of grabbing
788 * full-fledged tasklist_lock.
789 */
790 WARN_ON(cpu_online(cpu));
791 rcu_read_lock();
792 for_each_process(p) {
793 struct task_struct *t;
794
795 /*
796 * Main thread might exit, but other threads may still have
797 * a valid mm. Find one.
798 */
799 t = find_lock_task_mm(p);
800 if (!t)
801 continue;
802 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
803 task_unlock(t);
804 }
805 rcu_read_unlock();
806 }
807
808 /* Take this CPU down. */
809 static int take_cpu_down(void *_param)
810 {
811 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
812 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
813 int err, cpu = smp_processor_id();
814 int ret;
815
816 /* Ensure this CPU doesn't handle any more interrupts. */
817 err = __cpu_disable();
818 if (err < 0)
819 return err;
820
821 /*
822 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
823 * do this step again.
824 */
825 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
826 st->state--;
827 /* Invoke the former CPU_DYING callbacks */
828 for (; st->state > target; st->state--) {
829 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
830 /*
831 * DYING must not fail!
832 */
833 WARN_ON_ONCE(ret);
834 }
835
836 /* Give up timekeeping duties */
837 tick_handover_do_timer();
838 /* Park the stopper thread */
839 stop_machine_park(cpu);
840 return 0;
841 }
842
843 static int takedown_cpu(unsigned int cpu)
844 {
845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
846 int err;
847
848 /* Park the smpboot threads */
849 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
850
851 /*
852 * Prevent irq alloc/free while the dying cpu reorganizes the
853 * interrupt affinities.
854 */
855 irq_lock_sparse();
856
857 /*
858 * So now all preempt/rcu users must observe !cpu_active().
859 */
860 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
861 if (err) {
862 /* CPU refused to die */
863 irq_unlock_sparse();
864 /* Unpark the hotplug thread so we can rollback there */
865 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
866 return err;
867 }
868 BUG_ON(cpu_online(cpu));
869
870 /*
871 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
872 * all runnable tasks from the CPU, there's only the idle task left now
873 * that the migration thread is done doing the stop_machine thing.
874 *
875 * Wait for the stop thread to go away.
876 */
877 wait_for_ap_thread(st, false);
878 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
879
880 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
881 irq_unlock_sparse();
882
883 hotplug_cpu__broadcast_tick_pull(cpu);
884 /* This actually kills the CPU. */
885 __cpu_die(cpu);
886
887 tick_cleanup_dead_cpu(cpu);
888 rcutree_migrate_callbacks(cpu);
889 return 0;
890 }
891
892 static void cpuhp_complete_idle_dead(void *arg)
893 {
894 struct cpuhp_cpu_state *st = arg;
895
896 complete_ap_thread(st, false);
897 }
898
899 void cpuhp_report_idle_dead(void)
900 {
901 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
902
903 BUG_ON(st->state != CPUHP_AP_OFFLINE);
904 rcu_report_dead(smp_processor_id());
905 st->state = CPUHP_AP_IDLE_DEAD;
906 /*
907 * We cannot call complete after rcu_report_dead() so we delegate it
908 * to an online cpu.
909 */
910 smp_call_function_single(cpumask_first(cpu_online_mask),
911 cpuhp_complete_idle_dead, st, 0);
912 }
913
914 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
915 {
916 for (st->state++; st->state < st->target; st->state++)
917 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
918 }
919
920 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
921 enum cpuhp_state target)
922 {
923 enum cpuhp_state prev_state = st->state;
924 int ret = 0;
925
926 for (; st->state > target; st->state--) {
927 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
928 if (ret) {
929 st->target = prev_state;
930 if (st->state < prev_state)
931 undo_cpu_down(cpu, st);
932 break;
933 }
934 }
935 return ret;
936 }
937
938 /* Requires cpu_add_remove_lock to be held */
939 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
940 enum cpuhp_state target)
941 {
942 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
943 int prev_state, ret = 0;
944
945 if (num_online_cpus() == 1)
946 return -EBUSY;
947
948 if (!cpu_present(cpu))
949 return -EINVAL;
950
951 cpus_write_lock();
952
953 cpuhp_tasks_frozen = tasks_frozen;
954
955 prev_state = cpuhp_set_state(st, target);
956 /*
957 * If the current CPU state is in the range of the AP hotplug thread,
958 * then we need to kick the thread.
959 */
960 if (st->state > CPUHP_TEARDOWN_CPU) {
961 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
962 ret = cpuhp_kick_ap_work(cpu);
963 /*
964 * The AP side has done the error rollback already. Just
965 * return the error code..
966 */
967 if (ret)
968 goto out;
969
970 /*
971 * We might have stopped still in the range of the AP hotplug
972 * thread. Nothing to do anymore.
973 */
974 if (st->state > CPUHP_TEARDOWN_CPU)
975 goto out;
976
977 st->target = target;
978 }
979 /*
980 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
981 * to do the further cleanups.
982 */
983 ret = cpuhp_down_callbacks(cpu, st, target);
984 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
985 cpuhp_reset_state(st, prev_state);
986 __cpuhp_kick_ap(st);
987 }
988
989 out:
990 cpus_write_unlock();
991 /*
992 * Do post unplug cleanup. This is still protected against
993 * concurrent CPU hotplug via cpu_add_remove_lock.
994 */
995 lockup_detector_cleanup();
996 arch_smt_update();
997 return ret;
998 }
999
1000 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1001 {
1002 if (cpu_hotplug_disabled)
1003 return -EBUSY;
1004 return _cpu_down(cpu, 0, target);
1005 }
1006
1007 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1008 {
1009 int err;
1010
1011 cpu_maps_update_begin();
1012 err = cpu_down_maps_locked(cpu, target);
1013 cpu_maps_update_done();
1014 return err;
1015 }
1016
1017 int cpu_down(unsigned int cpu)
1018 {
1019 return do_cpu_down(cpu, CPUHP_OFFLINE);
1020 }
1021 EXPORT_SYMBOL(cpu_down);
1022
1023 #else
1024 #define takedown_cpu NULL
1025 #endif /*CONFIG_HOTPLUG_CPU*/
1026
1027 /**
1028 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1029 * @cpu: cpu that just started
1030 *
1031 * It must be called by the arch code on the new cpu, before the new cpu
1032 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1033 */
1034 void notify_cpu_starting(unsigned int cpu)
1035 {
1036 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1037 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1038 int ret;
1039
1040 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1041 st->booted_once = true;
1042 while (st->state < target) {
1043 st->state++;
1044 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1045 /*
1046 * STARTING must not fail!
1047 */
1048 WARN_ON_ONCE(ret);
1049 }
1050 }
1051
1052 /*
1053 * Called from the idle task. Wake up the controlling task which brings the
1054 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1055 * the rest of the online bringup to the hotplug thread.
1056 */
1057 void cpuhp_online_idle(enum cpuhp_state state)
1058 {
1059 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1060
1061 /* Happens for the boot cpu */
1062 if (state != CPUHP_AP_ONLINE_IDLE)
1063 return;
1064
1065 st->state = CPUHP_AP_ONLINE_IDLE;
1066 complete_ap_thread(st, true);
1067 }
1068
1069 /* Requires cpu_add_remove_lock to be held */
1070 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1071 {
1072 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1073 struct task_struct *idle;
1074 int ret = 0;
1075
1076 cpus_write_lock();
1077
1078 if (!cpu_present(cpu)) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /*
1084 * The caller of do_cpu_up might have raced with another
1085 * caller. Ignore it for now.
1086 */
1087 if (st->state >= target)
1088 goto out;
1089
1090 if (st->state == CPUHP_OFFLINE) {
1091 /* Let it fail before we try to bring the cpu up */
1092 idle = idle_thread_get(cpu);
1093 if (IS_ERR(idle)) {
1094 ret = PTR_ERR(idle);
1095 goto out;
1096 }
1097 }
1098
1099 cpuhp_tasks_frozen = tasks_frozen;
1100
1101 cpuhp_set_state(st, target);
1102 /*
1103 * If the current CPU state is in the range of the AP hotplug thread,
1104 * then we need to kick the thread once more.
1105 */
1106 if (st->state > CPUHP_BRINGUP_CPU) {
1107 ret = cpuhp_kick_ap_work(cpu);
1108 /*
1109 * The AP side has done the error rollback already. Just
1110 * return the error code..
1111 */
1112 if (ret)
1113 goto out;
1114 }
1115
1116 /*
1117 * Try to reach the target state. We max out on the BP at
1118 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1119 * responsible for bringing it up to the target state.
1120 */
1121 target = min((int)target, CPUHP_BRINGUP_CPU);
1122 ret = cpuhp_up_callbacks(cpu, st, target);
1123 out:
1124 cpus_write_unlock();
1125 arch_smt_update();
1126 return ret;
1127 }
1128
1129 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1130 {
1131 int err = 0;
1132
1133 if (!cpu_possible(cpu)) {
1134 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1135 cpu);
1136 #if defined(CONFIG_IA64)
1137 pr_err("please check additional_cpus= boot parameter\n");
1138 #endif
1139 return -EINVAL;
1140 }
1141
1142 err = try_online_node(cpu_to_node(cpu));
1143 if (err)
1144 return err;
1145
1146 cpu_maps_update_begin();
1147
1148 if (cpu_hotplug_disabled) {
1149 err = -EBUSY;
1150 goto out;
1151 }
1152 if (!cpu_smt_allowed(cpu)) {
1153 err = -EPERM;
1154 goto out;
1155 }
1156
1157 err = _cpu_up(cpu, 0, target);
1158 out:
1159 cpu_maps_update_done();
1160 return err;
1161 }
1162
1163 int cpu_up(unsigned int cpu)
1164 {
1165 return do_cpu_up(cpu, CPUHP_ONLINE);
1166 }
1167 EXPORT_SYMBOL_GPL(cpu_up);
1168
1169 #ifdef CONFIG_PM_SLEEP_SMP
1170 static cpumask_var_t frozen_cpus;
1171
1172 int freeze_secondary_cpus(int primary)
1173 {
1174 int cpu, error = 0;
1175
1176 cpu_maps_update_begin();
1177 if (!cpu_online(primary))
1178 primary = cpumask_first(cpu_online_mask);
1179 /*
1180 * We take down all of the non-boot CPUs in one shot to avoid races
1181 * with the userspace trying to use the CPU hotplug at the same time
1182 */
1183 cpumask_clear(frozen_cpus);
1184
1185 pr_info("Disabling non-boot CPUs ...\n");
1186 for_each_online_cpu(cpu) {
1187 if (cpu == primary)
1188 continue;
1189 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1190 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1191 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1192 if (!error)
1193 cpumask_set_cpu(cpu, frozen_cpus);
1194 else {
1195 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1196 break;
1197 }
1198 }
1199
1200 if (!error)
1201 BUG_ON(num_online_cpus() > 1);
1202 else
1203 pr_err("Non-boot CPUs are not disabled\n");
1204
1205 /*
1206 * Make sure the CPUs won't be enabled by someone else. We need to do
1207 * this even in case of failure as all disable_nonboot_cpus() users are
1208 * supposed to do enable_nonboot_cpus() on the failure path.
1209 */
1210 cpu_hotplug_disabled++;
1211
1212 cpu_maps_update_done();
1213 return error;
1214 }
1215
1216 void __weak arch_enable_nonboot_cpus_begin(void)
1217 {
1218 }
1219
1220 void __weak arch_enable_nonboot_cpus_end(void)
1221 {
1222 }
1223
1224 void enable_nonboot_cpus(void)
1225 {
1226 int cpu, error;
1227
1228 /* Allow everyone to use the CPU hotplug again */
1229 cpu_maps_update_begin();
1230 __cpu_hotplug_enable();
1231 if (cpumask_empty(frozen_cpus))
1232 goto out;
1233
1234 pr_info("Enabling non-boot CPUs ...\n");
1235
1236 arch_enable_nonboot_cpus_begin();
1237
1238 for_each_cpu(cpu, frozen_cpus) {
1239 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1240 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1241 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1242 if (!error) {
1243 pr_info("CPU%d is up\n", cpu);
1244 continue;
1245 }
1246 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1247 }
1248
1249 arch_enable_nonboot_cpus_end();
1250
1251 cpumask_clear(frozen_cpus);
1252 out:
1253 cpu_maps_update_done();
1254 }
1255
1256 static int __init alloc_frozen_cpus(void)
1257 {
1258 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1259 return -ENOMEM;
1260 return 0;
1261 }
1262 core_initcall(alloc_frozen_cpus);
1263
1264 /*
1265 * When callbacks for CPU hotplug notifications are being executed, we must
1266 * ensure that the state of the system with respect to the tasks being frozen
1267 * or not, as reported by the notification, remains unchanged *throughout the
1268 * duration* of the execution of the callbacks.
1269 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1270 *
1271 * This synchronization is implemented by mutually excluding regular CPU
1272 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1273 * Hibernate notifications.
1274 */
1275 static int
1276 cpu_hotplug_pm_callback(struct notifier_block *nb,
1277 unsigned long action, void *ptr)
1278 {
1279 switch (action) {
1280
1281 case PM_SUSPEND_PREPARE:
1282 case PM_HIBERNATION_PREPARE:
1283 cpu_hotplug_disable();
1284 break;
1285
1286 case PM_POST_SUSPEND:
1287 case PM_POST_HIBERNATION:
1288 cpu_hotplug_enable();
1289 break;
1290
1291 default:
1292 return NOTIFY_DONE;
1293 }
1294
1295 return NOTIFY_OK;
1296 }
1297
1298
1299 static int __init cpu_hotplug_pm_sync_init(void)
1300 {
1301 /*
1302 * cpu_hotplug_pm_callback has higher priority than x86
1303 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1304 * to disable cpu hotplug to avoid cpu hotplug race.
1305 */
1306 pm_notifier(cpu_hotplug_pm_callback, 0);
1307 return 0;
1308 }
1309 core_initcall(cpu_hotplug_pm_sync_init);
1310
1311 #endif /* CONFIG_PM_SLEEP_SMP */
1312
1313 int __boot_cpu_id;
1314
1315 #endif /* CONFIG_SMP */
1316
1317 /* Boot processor state steps */
1318 static struct cpuhp_step cpuhp_hp_states[] = {
1319 [CPUHP_OFFLINE] = {
1320 .name = "offline",
1321 .startup.single = NULL,
1322 .teardown.single = NULL,
1323 },
1324 #ifdef CONFIG_SMP
1325 [CPUHP_CREATE_THREADS]= {
1326 .name = "threads:prepare",
1327 .startup.single = smpboot_create_threads,
1328 .teardown.single = NULL,
1329 .cant_stop = true,
1330 },
1331 [CPUHP_PERF_PREPARE] = {
1332 .name = "perf:prepare",
1333 .startup.single = perf_event_init_cpu,
1334 .teardown.single = perf_event_exit_cpu,
1335 },
1336 [CPUHP_WORKQUEUE_PREP] = {
1337 .name = "workqueue:prepare",
1338 .startup.single = workqueue_prepare_cpu,
1339 .teardown.single = NULL,
1340 },
1341 [CPUHP_HRTIMERS_PREPARE] = {
1342 .name = "hrtimers:prepare",
1343 .startup.single = hrtimers_prepare_cpu,
1344 .teardown.single = hrtimers_dead_cpu,
1345 },
1346 [CPUHP_SMPCFD_PREPARE] = {
1347 .name = "smpcfd:prepare",
1348 .startup.single = smpcfd_prepare_cpu,
1349 .teardown.single = smpcfd_dead_cpu,
1350 },
1351 [CPUHP_RELAY_PREPARE] = {
1352 .name = "relay:prepare",
1353 .startup.single = relay_prepare_cpu,
1354 .teardown.single = NULL,
1355 },
1356 [CPUHP_SLAB_PREPARE] = {
1357 .name = "slab:prepare",
1358 .startup.single = slab_prepare_cpu,
1359 .teardown.single = slab_dead_cpu,
1360 },
1361 [CPUHP_RCUTREE_PREP] = {
1362 .name = "RCU/tree:prepare",
1363 .startup.single = rcutree_prepare_cpu,
1364 .teardown.single = rcutree_dead_cpu,
1365 },
1366 /*
1367 * On the tear-down path, timers_dead_cpu() must be invoked
1368 * before blk_mq_queue_reinit_notify() from notify_dead(),
1369 * otherwise a RCU stall occurs.
1370 */
1371 [CPUHP_TIMERS_PREPARE] = {
1372 .name = "timers:prepare",
1373 .startup.single = timers_prepare_cpu,
1374 .teardown.single = timers_dead_cpu,
1375 },
1376 /* Kicks the plugged cpu into life */
1377 [CPUHP_BRINGUP_CPU] = {
1378 .name = "cpu:bringup",
1379 .startup.single = bringup_cpu,
1380 .teardown.single = NULL,
1381 .cant_stop = true,
1382 },
1383 /* Final state before CPU kills itself */
1384 [CPUHP_AP_IDLE_DEAD] = {
1385 .name = "idle:dead",
1386 },
1387 /*
1388 * Last state before CPU enters the idle loop to die. Transient state
1389 * for synchronization.
1390 */
1391 [CPUHP_AP_OFFLINE] = {
1392 .name = "ap:offline",
1393 .cant_stop = true,
1394 },
1395 /* First state is scheduler control. Interrupts are disabled */
1396 [CPUHP_AP_SCHED_STARTING] = {
1397 .name = "sched:starting",
1398 .startup.single = sched_cpu_starting,
1399 .teardown.single = sched_cpu_dying,
1400 },
1401 [CPUHP_AP_RCUTREE_DYING] = {
1402 .name = "RCU/tree:dying",
1403 .startup.single = NULL,
1404 .teardown.single = rcutree_dying_cpu,
1405 },
1406 [CPUHP_AP_SMPCFD_DYING] = {
1407 .name = "smpcfd:dying",
1408 .startup.single = NULL,
1409 .teardown.single = smpcfd_dying_cpu,
1410 },
1411 /* Entry state on starting. Interrupts enabled from here on. Transient
1412 * state for synchronsization */
1413 [CPUHP_AP_ONLINE] = {
1414 .name = "ap:online",
1415 },
1416 /*
1417 * Handled on controll processor until the plugged processor manages
1418 * this itself.
1419 */
1420 [CPUHP_TEARDOWN_CPU] = {
1421 .name = "cpu:teardown",
1422 .startup.single = NULL,
1423 .teardown.single = takedown_cpu,
1424 .cant_stop = true,
1425 },
1426 /* Handle smpboot threads park/unpark */
1427 [CPUHP_AP_SMPBOOT_THREADS] = {
1428 .name = "smpboot/threads:online",
1429 .startup.single = smpboot_unpark_threads,
1430 .teardown.single = smpboot_park_threads,
1431 },
1432 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1433 .name = "irq/affinity:online",
1434 .startup.single = irq_affinity_online_cpu,
1435 .teardown.single = NULL,
1436 },
1437 [CPUHP_AP_PERF_ONLINE] = {
1438 .name = "perf:online",
1439 .startup.single = perf_event_init_cpu,
1440 .teardown.single = perf_event_exit_cpu,
1441 },
1442 [CPUHP_AP_WATCHDOG_ONLINE] = {
1443 .name = "lockup_detector:online",
1444 .startup.single = lockup_detector_online_cpu,
1445 .teardown.single = lockup_detector_offline_cpu,
1446 },
1447 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1448 .name = "workqueue:online",
1449 .startup.single = workqueue_online_cpu,
1450 .teardown.single = workqueue_offline_cpu,
1451 },
1452 [CPUHP_AP_RCUTREE_ONLINE] = {
1453 .name = "RCU/tree:online",
1454 .startup.single = rcutree_online_cpu,
1455 .teardown.single = rcutree_offline_cpu,
1456 },
1457 #endif
1458 /*
1459 * The dynamically registered state space is here
1460 */
1461
1462 #ifdef CONFIG_SMP
1463 /* Last state is scheduler control setting the cpu active */
1464 [CPUHP_AP_ACTIVE] = {
1465 .name = "sched:active",
1466 .startup.single = sched_cpu_activate,
1467 .teardown.single = sched_cpu_deactivate,
1468 },
1469 #endif
1470
1471 /* CPU is fully up and running. */
1472 [CPUHP_ONLINE] = {
1473 .name = "online",
1474 .startup.single = NULL,
1475 .teardown.single = NULL,
1476 },
1477 };
1478
1479 /* Sanity check for callbacks */
1480 static int cpuhp_cb_check(enum cpuhp_state state)
1481 {
1482 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1483 return -EINVAL;
1484 return 0;
1485 }
1486
1487 /*
1488 * Returns a free for dynamic slot assignment of the Online state. The states
1489 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1490 * by having no name assigned.
1491 */
1492 static int cpuhp_reserve_state(enum cpuhp_state state)
1493 {
1494 enum cpuhp_state i, end;
1495 struct cpuhp_step *step;
1496
1497 switch (state) {
1498 case CPUHP_AP_ONLINE_DYN:
1499 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1500 end = CPUHP_AP_ONLINE_DYN_END;
1501 break;
1502 case CPUHP_BP_PREPARE_DYN:
1503 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1504 end = CPUHP_BP_PREPARE_DYN_END;
1505 break;
1506 default:
1507 return -EINVAL;
1508 }
1509
1510 for (i = state; i <= end; i++, step++) {
1511 if (!step->name)
1512 return i;
1513 }
1514 WARN(1, "No more dynamic states available for CPU hotplug\n");
1515 return -ENOSPC;
1516 }
1517
1518 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1519 int (*startup)(unsigned int cpu),
1520 int (*teardown)(unsigned int cpu),
1521 bool multi_instance)
1522 {
1523 /* (Un)Install the callbacks for further cpu hotplug operations */
1524 struct cpuhp_step *sp;
1525 int ret = 0;
1526
1527 /*
1528 * If name is NULL, then the state gets removed.
1529 *
1530 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1531 * the first allocation from these dynamic ranges, so the removal
1532 * would trigger a new allocation and clear the wrong (already
1533 * empty) state, leaving the callbacks of the to be cleared state
1534 * dangling, which causes wreckage on the next hotplug operation.
1535 */
1536 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1537 state == CPUHP_BP_PREPARE_DYN)) {
1538 ret = cpuhp_reserve_state(state);
1539 if (ret < 0)
1540 return ret;
1541 state = ret;
1542 }
1543 sp = cpuhp_get_step(state);
1544 if (name && sp->name)
1545 return -EBUSY;
1546
1547 sp->startup.single = startup;
1548 sp->teardown.single = teardown;
1549 sp->name = name;
1550 sp->multi_instance = multi_instance;
1551 INIT_HLIST_HEAD(&sp->list);
1552 return ret;
1553 }
1554
1555 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1556 {
1557 return cpuhp_get_step(state)->teardown.single;
1558 }
1559
1560 /*
1561 * Call the startup/teardown function for a step either on the AP or
1562 * on the current CPU.
1563 */
1564 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1565 struct hlist_node *node)
1566 {
1567 struct cpuhp_step *sp = cpuhp_get_step(state);
1568 int ret;
1569
1570 /*
1571 * If there's nothing to do, we done.
1572 * Relies on the union for multi_instance.
1573 */
1574 if ((bringup && !sp->startup.single) ||
1575 (!bringup && !sp->teardown.single))
1576 return 0;
1577 /*
1578 * The non AP bound callbacks can fail on bringup. On teardown
1579 * e.g. module removal we crash for now.
1580 */
1581 #ifdef CONFIG_SMP
1582 if (cpuhp_is_ap_state(state))
1583 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1584 else
1585 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1586 #else
1587 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1588 #endif
1589 BUG_ON(ret && !bringup);
1590 return ret;
1591 }
1592
1593 /*
1594 * Called from __cpuhp_setup_state on a recoverable failure.
1595 *
1596 * Note: The teardown callbacks for rollback are not allowed to fail!
1597 */
1598 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1599 struct hlist_node *node)
1600 {
1601 int cpu;
1602
1603 /* Roll back the already executed steps on the other cpus */
1604 for_each_present_cpu(cpu) {
1605 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1606 int cpustate = st->state;
1607
1608 if (cpu >= failedcpu)
1609 break;
1610
1611 /* Did we invoke the startup call on that cpu ? */
1612 if (cpustate >= state)
1613 cpuhp_issue_call(cpu, state, false, node);
1614 }
1615 }
1616
1617 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1618 struct hlist_node *node,
1619 bool invoke)
1620 {
1621 struct cpuhp_step *sp;
1622 int cpu;
1623 int ret;
1624
1625 lockdep_assert_cpus_held();
1626
1627 sp = cpuhp_get_step(state);
1628 if (sp->multi_instance == false)
1629 return -EINVAL;
1630
1631 mutex_lock(&cpuhp_state_mutex);
1632
1633 if (!invoke || !sp->startup.multi)
1634 goto add_node;
1635
1636 /*
1637 * Try to call the startup callback for each present cpu
1638 * depending on the hotplug state of the cpu.
1639 */
1640 for_each_present_cpu(cpu) {
1641 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1642 int cpustate = st->state;
1643
1644 if (cpustate < state)
1645 continue;
1646
1647 ret = cpuhp_issue_call(cpu, state, true, node);
1648 if (ret) {
1649 if (sp->teardown.multi)
1650 cpuhp_rollback_install(cpu, state, node);
1651 goto unlock;
1652 }
1653 }
1654 add_node:
1655 ret = 0;
1656 hlist_add_head(node, &sp->list);
1657 unlock:
1658 mutex_unlock(&cpuhp_state_mutex);
1659 return ret;
1660 }
1661
1662 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1663 bool invoke)
1664 {
1665 int ret;
1666
1667 cpus_read_lock();
1668 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1669 cpus_read_unlock();
1670 return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1673
1674 /**
1675 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1676 * @state: The state to setup
1677 * @invoke: If true, the startup function is invoked for cpus where
1678 * cpu state >= @state
1679 * @startup: startup callback function
1680 * @teardown: teardown callback function
1681 * @multi_instance: State is set up for multiple instances which get
1682 * added afterwards.
1683 *
1684 * The caller needs to hold cpus read locked while calling this function.
1685 * Returns:
1686 * On success:
1687 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1688 * 0 for all other states
1689 * On failure: proper (negative) error code
1690 */
1691 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1692 const char *name, bool invoke,
1693 int (*startup)(unsigned int cpu),
1694 int (*teardown)(unsigned int cpu),
1695 bool multi_instance)
1696 {
1697 int cpu, ret = 0;
1698 bool dynstate;
1699
1700 lockdep_assert_cpus_held();
1701
1702 if (cpuhp_cb_check(state) || !name)
1703 return -EINVAL;
1704
1705 mutex_lock(&cpuhp_state_mutex);
1706
1707 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1708 multi_instance);
1709
1710 dynstate = state == CPUHP_AP_ONLINE_DYN;
1711 if (ret > 0 && dynstate) {
1712 state = ret;
1713 ret = 0;
1714 }
1715
1716 if (ret || !invoke || !startup)
1717 goto out;
1718
1719 /*
1720 * Try to call the startup callback for each present cpu
1721 * depending on the hotplug state of the cpu.
1722 */
1723 for_each_present_cpu(cpu) {
1724 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1725 int cpustate = st->state;
1726
1727 if (cpustate < state)
1728 continue;
1729
1730 ret = cpuhp_issue_call(cpu, state, true, NULL);
1731 if (ret) {
1732 if (teardown)
1733 cpuhp_rollback_install(cpu, state, NULL);
1734 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1735 goto out;
1736 }
1737 }
1738 out:
1739 mutex_unlock(&cpuhp_state_mutex);
1740 /*
1741 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1742 * dynamically allocated state in case of success.
1743 */
1744 if (!ret && dynstate)
1745 return state;
1746 return ret;
1747 }
1748 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1749
1750 int __cpuhp_setup_state(enum cpuhp_state state,
1751 const char *name, bool invoke,
1752 int (*startup)(unsigned int cpu),
1753 int (*teardown)(unsigned int cpu),
1754 bool multi_instance)
1755 {
1756 int ret;
1757
1758 cpus_read_lock();
1759 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1760 teardown, multi_instance);
1761 cpus_read_unlock();
1762 return ret;
1763 }
1764 EXPORT_SYMBOL(__cpuhp_setup_state);
1765
1766 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1767 struct hlist_node *node, bool invoke)
1768 {
1769 struct cpuhp_step *sp = cpuhp_get_step(state);
1770 int cpu;
1771
1772 BUG_ON(cpuhp_cb_check(state));
1773
1774 if (!sp->multi_instance)
1775 return -EINVAL;
1776
1777 cpus_read_lock();
1778 mutex_lock(&cpuhp_state_mutex);
1779
1780 if (!invoke || !cpuhp_get_teardown_cb(state))
1781 goto remove;
1782 /*
1783 * Call the teardown callback for each present cpu depending
1784 * on the hotplug state of the cpu. This function is not
1785 * allowed to fail currently!
1786 */
1787 for_each_present_cpu(cpu) {
1788 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1789 int cpustate = st->state;
1790
1791 if (cpustate >= state)
1792 cpuhp_issue_call(cpu, state, false, node);
1793 }
1794
1795 remove:
1796 hlist_del(node);
1797 mutex_unlock(&cpuhp_state_mutex);
1798 cpus_read_unlock();
1799
1800 return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1803
1804 /**
1805 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1806 * @state: The state to remove
1807 * @invoke: If true, the teardown function is invoked for cpus where
1808 * cpu state >= @state
1809 *
1810 * The caller needs to hold cpus read locked while calling this function.
1811 * The teardown callback is currently not allowed to fail. Think
1812 * about module removal!
1813 */
1814 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1815 {
1816 struct cpuhp_step *sp = cpuhp_get_step(state);
1817 int cpu;
1818
1819 BUG_ON(cpuhp_cb_check(state));
1820
1821 lockdep_assert_cpus_held();
1822
1823 mutex_lock(&cpuhp_state_mutex);
1824 if (sp->multi_instance) {
1825 WARN(!hlist_empty(&sp->list),
1826 "Error: Removing state %d which has instances left.\n",
1827 state);
1828 goto remove;
1829 }
1830
1831 if (!invoke || !cpuhp_get_teardown_cb(state))
1832 goto remove;
1833
1834 /*
1835 * Call the teardown callback for each present cpu depending
1836 * on the hotplug state of the cpu. This function is not
1837 * allowed to fail currently!
1838 */
1839 for_each_present_cpu(cpu) {
1840 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1841 int cpustate = st->state;
1842
1843 if (cpustate >= state)
1844 cpuhp_issue_call(cpu, state, false, NULL);
1845 }
1846 remove:
1847 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1848 mutex_unlock(&cpuhp_state_mutex);
1849 }
1850 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1851
1852 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1853 {
1854 cpus_read_lock();
1855 __cpuhp_remove_state_cpuslocked(state, invoke);
1856 cpus_read_unlock();
1857 }
1858 EXPORT_SYMBOL(__cpuhp_remove_state);
1859
1860 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1861 static ssize_t show_cpuhp_state(struct device *dev,
1862 struct device_attribute *attr, char *buf)
1863 {
1864 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1865
1866 return sprintf(buf, "%d\n", st->state);
1867 }
1868 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1869
1870 static ssize_t write_cpuhp_target(struct device *dev,
1871 struct device_attribute *attr,
1872 const char *buf, size_t count)
1873 {
1874 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1875 struct cpuhp_step *sp;
1876 int target, ret;
1877
1878 ret = kstrtoint(buf, 10, &target);
1879 if (ret)
1880 return ret;
1881
1882 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1883 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1884 return -EINVAL;
1885 #else
1886 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1887 return -EINVAL;
1888 #endif
1889
1890 ret = lock_device_hotplug_sysfs();
1891 if (ret)
1892 return ret;
1893
1894 mutex_lock(&cpuhp_state_mutex);
1895 sp = cpuhp_get_step(target);
1896 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1897 mutex_unlock(&cpuhp_state_mutex);
1898 if (ret)
1899 goto out;
1900
1901 if (st->state < target)
1902 ret = do_cpu_up(dev->id, target);
1903 else
1904 ret = do_cpu_down(dev->id, target);
1905 out:
1906 unlock_device_hotplug();
1907 return ret ? ret : count;
1908 }
1909
1910 static ssize_t show_cpuhp_target(struct device *dev,
1911 struct device_attribute *attr, char *buf)
1912 {
1913 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1914
1915 return sprintf(buf, "%d\n", st->target);
1916 }
1917 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1918
1919
1920 static ssize_t write_cpuhp_fail(struct device *dev,
1921 struct device_attribute *attr,
1922 const char *buf, size_t count)
1923 {
1924 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1925 struct cpuhp_step *sp;
1926 int fail, ret;
1927
1928 ret = kstrtoint(buf, 10, &fail);
1929 if (ret)
1930 return ret;
1931
1932 /*
1933 * Cannot fail STARTING/DYING callbacks.
1934 */
1935 if (cpuhp_is_atomic_state(fail))
1936 return -EINVAL;
1937
1938 /*
1939 * Cannot fail anything that doesn't have callbacks.
1940 */
1941 mutex_lock(&cpuhp_state_mutex);
1942 sp = cpuhp_get_step(fail);
1943 if (!sp->startup.single && !sp->teardown.single)
1944 ret = -EINVAL;
1945 mutex_unlock(&cpuhp_state_mutex);
1946 if (ret)
1947 return ret;
1948
1949 st->fail = fail;
1950
1951 return count;
1952 }
1953
1954 static ssize_t show_cpuhp_fail(struct device *dev,
1955 struct device_attribute *attr, char *buf)
1956 {
1957 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1958
1959 return sprintf(buf, "%d\n", st->fail);
1960 }
1961
1962 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1963
1964 static struct attribute *cpuhp_cpu_attrs[] = {
1965 &dev_attr_state.attr,
1966 &dev_attr_target.attr,
1967 &dev_attr_fail.attr,
1968 NULL
1969 };
1970
1971 static const struct attribute_group cpuhp_cpu_attr_group = {
1972 .attrs = cpuhp_cpu_attrs,
1973 .name = "hotplug",
1974 NULL
1975 };
1976
1977 static ssize_t show_cpuhp_states(struct device *dev,
1978 struct device_attribute *attr, char *buf)
1979 {
1980 ssize_t cur, res = 0;
1981 int i;
1982
1983 mutex_lock(&cpuhp_state_mutex);
1984 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1985 struct cpuhp_step *sp = cpuhp_get_step(i);
1986
1987 if (sp->name) {
1988 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1989 buf += cur;
1990 res += cur;
1991 }
1992 }
1993 mutex_unlock(&cpuhp_state_mutex);
1994 return res;
1995 }
1996 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1997
1998 static struct attribute *cpuhp_cpu_root_attrs[] = {
1999 &dev_attr_states.attr,
2000 NULL
2001 };
2002
2003 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2004 .attrs = cpuhp_cpu_root_attrs,
2005 .name = "hotplug",
2006 NULL
2007 };
2008
2009 #ifdef CONFIG_HOTPLUG_SMT
2010
2011 static const char *smt_states[] = {
2012 [CPU_SMT_ENABLED] = "on",
2013 [CPU_SMT_DISABLED] = "off",
2014 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2015 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2016 };
2017
2018 static ssize_t
2019 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2020 {
2021 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2022 }
2023
2024 static void cpuhp_offline_cpu_device(unsigned int cpu)
2025 {
2026 struct device *dev = get_cpu_device(cpu);
2027
2028 dev->offline = true;
2029 /* Tell user space about the state change */
2030 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2031 }
2032
2033 static void cpuhp_online_cpu_device(unsigned int cpu)
2034 {
2035 struct device *dev = get_cpu_device(cpu);
2036
2037 dev->offline = false;
2038 /* Tell user space about the state change */
2039 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2040 }
2041
2042 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2043 {
2044 int cpu, ret = 0;
2045
2046 cpu_maps_update_begin();
2047 for_each_online_cpu(cpu) {
2048 if (topology_is_primary_thread(cpu))
2049 continue;
2050 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2051 if (ret)
2052 break;
2053 /*
2054 * As this needs to hold the cpu maps lock it's impossible
2055 * to call device_offline() because that ends up calling
2056 * cpu_down() which takes cpu maps lock. cpu maps lock
2057 * needs to be held as this might race against in kernel
2058 * abusers of the hotplug machinery (thermal management).
2059 *
2060 * So nothing would update device:offline state. That would
2061 * leave the sysfs entry stale and prevent onlining after
2062 * smt control has been changed to 'off' again. This is
2063 * called under the sysfs hotplug lock, so it is properly
2064 * serialized against the regular offline usage.
2065 */
2066 cpuhp_offline_cpu_device(cpu);
2067 }
2068 if (!ret)
2069 cpu_smt_control = ctrlval;
2070 cpu_maps_update_done();
2071 return ret;
2072 }
2073
2074 static int cpuhp_smt_enable(void)
2075 {
2076 int cpu, ret = 0;
2077
2078 cpu_maps_update_begin();
2079 cpu_smt_control = CPU_SMT_ENABLED;
2080 for_each_present_cpu(cpu) {
2081 /* Skip online CPUs and CPUs on offline nodes */
2082 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2083 continue;
2084 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2085 if (ret)
2086 break;
2087 /* See comment in cpuhp_smt_disable() */
2088 cpuhp_online_cpu_device(cpu);
2089 }
2090 cpu_maps_update_done();
2091 return ret;
2092 }
2093
2094 static ssize_t
2095 store_smt_control(struct device *dev, struct device_attribute *attr,
2096 const char *buf, size_t count)
2097 {
2098 int ctrlval, ret;
2099
2100 if (sysfs_streq(buf, "on"))
2101 ctrlval = CPU_SMT_ENABLED;
2102 else if (sysfs_streq(buf, "off"))
2103 ctrlval = CPU_SMT_DISABLED;
2104 else if (sysfs_streq(buf, "forceoff"))
2105 ctrlval = CPU_SMT_FORCE_DISABLED;
2106 else
2107 return -EINVAL;
2108
2109 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2110 return -EPERM;
2111
2112 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2113 return -ENODEV;
2114
2115 ret = lock_device_hotplug_sysfs();
2116 if (ret)
2117 return ret;
2118
2119 if (ctrlval != cpu_smt_control) {
2120 switch (ctrlval) {
2121 case CPU_SMT_ENABLED:
2122 ret = cpuhp_smt_enable();
2123 break;
2124 case CPU_SMT_DISABLED:
2125 case CPU_SMT_FORCE_DISABLED:
2126 ret = cpuhp_smt_disable(ctrlval);
2127 break;
2128 }
2129 }
2130
2131 unlock_device_hotplug();
2132 return ret ? ret : count;
2133 }
2134 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2135
2136 static ssize_t
2137 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2138 {
2139 bool active = topology_max_smt_threads() > 1;
2140
2141 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2142 }
2143 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2144
2145 static struct attribute *cpuhp_smt_attrs[] = {
2146 &dev_attr_control.attr,
2147 &dev_attr_active.attr,
2148 NULL
2149 };
2150
2151 static const struct attribute_group cpuhp_smt_attr_group = {
2152 .attrs = cpuhp_smt_attrs,
2153 .name = "smt",
2154 NULL
2155 };
2156
2157 static int __init cpu_smt_state_init(void)
2158 {
2159 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2160 &cpuhp_smt_attr_group);
2161 }
2162
2163 #else
2164 static inline int cpu_smt_state_init(void) { return 0; }
2165 #endif
2166
2167 static int __init cpuhp_sysfs_init(void)
2168 {
2169 int cpu, ret;
2170
2171 ret = cpu_smt_state_init();
2172 if (ret)
2173 return ret;
2174
2175 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2176 &cpuhp_cpu_root_attr_group);
2177 if (ret)
2178 return ret;
2179
2180 for_each_possible_cpu(cpu) {
2181 struct device *dev = get_cpu_device(cpu);
2182
2183 if (!dev)
2184 continue;
2185 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2186 if (ret)
2187 return ret;
2188 }
2189 return 0;
2190 }
2191 device_initcall(cpuhp_sysfs_init);
2192 #endif
2193
2194 /*
2195 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2196 * represents all NR_CPUS bits binary values of 1<<nr.
2197 *
2198 * It is used by cpumask_of() to get a constant address to a CPU
2199 * mask value that has a single bit set only.
2200 */
2201
2202 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2203 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2204 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2205 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2206 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2207
2208 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2209
2210 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2211 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2212 #if BITS_PER_LONG > 32
2213 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2214 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2215 #endif
2216 };
2217 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2218
2219 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2220 EXPORT_SYMBOL(cpu_all_bits);
2221
2222 #ifdef CONFIG_INIT_ALL_POSSIBLE
2223 struct cpumask __cpu_possible_mask __read_mostly
2224 = {CPU_BITS_ALL};
2225 #else
2226 struct cpumask __cpu_possible_mask __read_mostly;
2227 #endif
2228 EXPORT_SYMBOL(__cpu_possible_mask);
2229
2230 struct cpumask __cpu_online_mask __read_mostly;
2231 EXPORT_SYMBOL(__cpu_online_mask);
2232
2233 struct cpumask __cpu_present_mask __read_mostly;
2234 EXPORT_SYMBOL(__cpu_present_mask);
2235
2236 struct cpumask __cpu_active_mask __read_mostly;
2237 EXPORT_SYMBOL(__cpu_active_mask);
2238
2239 void init_cpu_present(const struct cpumask *src)
2240 {
2241 cpumask_copy(&__cpu_present_mask, src);
2242 }
2243
2244 void init_cpu_possible(const struct cpumask *src)
2245 {
2246 cpumask_copy(&__cpu_possible_mask, src);
2247 }
2248
2249 void init_cpu_online(const struct cpumask *src)
2250 {
2251 cpumask_copy(&__cpu_online_mask, src);
2252 }
2253
2254 /*
2255 * Activate the first processor.
2256 */
2257 void __init boot_cpu_init(void)
2258 {
2259 int cpu = smp_processor_id();
2260
2261 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2262 set_cpu_online(cpu, true);
2263 set_cpu_active(cpu, true);
2264 set_cpu_present(cpu, true);
2265 set_cpu_possible(cpu, true);
2266
2267 #ifdef CONFIG_SMP
2268 __boot_cpu_id = cpu;
2269 #endif
2270 }
2271
2272 /*
2273 * Must be called _AFTER_ setting up the per_cpu areas
2274 */
2275 void __init boot_cpu_hotplug_init(void)
2276 {
2277 #ifdef CONFIG_SMP
2278 this_cpu_write(cpuhp_state.booted_once, true);
2279 #endif
2280 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2281 }