]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/cpu.c
Merge tag '9p-for-5.13-rc1' of git://github.com/martinetd/linux
[mirror_ubuntu-jammy-kernel.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
39
40 #include "smpboot.h"
41
42 /**
43 * cpuhp_cpu_state - Per cpu hotplug state storage
44 * @state: The current cpu state
45 * @target: The target state
46 * @thread: Pointer to the hotplug thread
47 * @should_run: Thread should execute
48 * @rollback: Perform a rollback
49 * @single: Single callback invocation
50 * @bringup: Single callback bringup or teardown selector
51 * @cb_state: The state for a single callback (install/uninstall)
52 * @result: Result of the operation
53 * @done_up: Signal completion to the issuer of the task for cpu-up
54 * @done_down: Signal completion to the issuer of the task for cpu-down
55 */
56 struct cpuhp_cpu_state {
57 enum cpuhp_state state;
58 enum cpuhp_state target;
59 enum cpuhp_state fail;
60 #ifdef CONFIG_SMP
61 struct task_struct *thread;
62 bool should_run;
63 bool rollback;
64 bool single;
65 bool bringup;
66 int cpu;
67 struct hlist_node *node;
68 struct hlist_node *last;
69 enum cpuhp_state cb_state;
70 int result;
71 struct completion done_up;
72 struct completion done_down;
73 #endif
74 };
75
76 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
77 .fail = CPUHP_INVALID,
78 };
79
80 #ifdef CONFIG_SMP
81 cpumask_t cpus_booted_once_mask;
82 #endif
83
84 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
85 static struct lockdep_map cpuhp_state_up_map =
86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
87 static struct lockdep_map cpuhp_state_down_map =
88 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
89
90
91 static inline void cpuhp_lock_acquire(bool bringup)
92 {
93 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
94 }
95
96 static inline void cpuhp_lock_release(bool bringup)
97 {
98 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
99 }
100 #else
101
102 static inline void cpuhp_lock_acquire(bool bringup) { }
103 static inline void cpuhp_lock_release(bool bringup) { }
104
105 #endif
106
107 /**
108 * cpuhp_step - Hotplug state machine step
109 * @name: Name of the step
110 * @startup: Startup function of the step
111 * @teardown: Teardown function of the step
112 * @cant_stop: Bringup/teardown can't be stopped at this step
113 */
114 struct cpuhp_step {
115 const char *name;
116 union {
117 int (*single)(unsigned int cpu);
118 int (*multi)(unsigned int cpu,
119 struct hlist_node *node);
120 } startup;
121 union {
122 int (*single)(unsigned int cpu);
123 int (*multi)(unsigned int cpu,
124 struct hlist_node *node);
125 } teardown;
126 struct hlist_head list;
127 bool cant_stop;
128 bool multi_instance;
129 };
130
131 static DEFINE_MUTEX(cpuhp_state_mutex);
132 static struct cpuhp_step cpuhp_hp_states[];
133
134 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
135 {
136 return cpuhp_hp_states + state;
137 }
138
139 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
140 {
141 return bringup ? !step->startup.single : !step->teardown.single;
142 }
143
144 /**
145 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
146 * @cpu: The cpu for which the callback should be invoked
147 * @state: The state to do callbacks for
148 * @bringup: True if the bringup callback should be invoked
149 * @node: For multi-instance, do a single entry callback for install/remove
150 * @lastp: For multi-instance rollback, remember how far we got
151 *
152 * Called from cpu hotplug and from the state register machinery.
153 */
154 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
155 bool bringup, struct hlist_node *node,
156 struct hlist_node **lastp)
157 {
158 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
159 struct cpuhp_step *step = cpuhp_get_step(state);
160 int (*cbm)(unsigned int cpu, struct hlist_node *node);
161 int (*cb)(unsigned int cpu);
162 int ret, cnt;
163
164 if (st->fail == state) {
165 st->fail = CPUHP_INVALID;
166 return -EAGAIN;
167 }
168
169 if (cpuhp_step_empty(bringup, step)) {
170 WARN_ON_ONCE(1);
171 return 0;
172 }
173
174 if (!step->multi_instance) {
175 WARN_ON_ONCE(lastp && *lastp);
176 cb = bringup ? step->startup.single : step->teardown.single;
177
178 trace_cpuhp_enter(cpu, st->target, state, cb);
179 ret = cb(cpu);
180 trace_cpuhp_exit(cpu, st->state, state, ret);
181 return ret;
182 }
183 cbm = bringup ? step->startup.multi : step->teardown.multi;
184
185 /* Single invocation for instance add/remove */
186 if (node) {
187 WARN_ON_ONCE(lastp && *lastp);
188 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
189 ret = cbm(cpu, node);
190 trace_cpuhp_exit(cpu, st->state, state, ret);
191 return ret;
192 }
193
194 /* State transition. Invoke on all instances */
195 cnt = 0;
196 hlist_for_each(node, &step->list) {
197 if (lastp && node == *lastp)
198 break;
199
200 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
201 ret = cbm(cpu, node);
202 trace_cpuhp_exit(cpu, st->state, state, ret);
203 if (ret) {
204 if (!lastp)
205 goto err;
206
207 *lastp = node;
208 return ret;
209 }
210 cnt++;
211 }
212 if (lastp)
213 *lastp = NULL;
214 return 0;
215 err:
216 /* Rollback the instances if one failed */
217 cbm = !bringup ? step->startup.multi : step->teardown.multi;
218 if (!cbm)
219 return ret;
220
221 hlist_for_each(node, &step->list) {
222 if (!cnt--)
223 break;
224
225 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
226 ret = cbm(cpu, node);
227 trace_cpuhp_exit(cpu, st->state, state, ret);
228 /*
229 * Rollback must not fail,
230 */
231 WARN_ON_ONCE(ret);
232 }
233 return ret;
234 }
235
236 #ifdef CONFIG_SMP
237 static bool cpuhp_is_ap_state(enum cpuhp_state state)
238 {
239 /*
240 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
241 * purposes as that state is handled explicitly in cpu_down.
242 */
243 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
244 }
245
246 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
247 {
248 struct completion *done = bringup ? &st->done_up : &st->done_down;
249 wait_for_completion(done);
250 }
251
252 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
253 {
254 struct completion *done = bringup ? &st->done_up : &st->done_down;
255 complete(done);
256 }
257
258 /*
259 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
260 */
261 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
262 {
263 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
264 }
265
266 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
267 static DEFINE_MUTEX(cpu_add_remove_lock);
268 bool cpuhp_tasks_frozen;
269 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
270
271 /*
272 * The following two APIs (cpu_maps_update_begin/done) must be used when
273 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
274 */
275 void cpu_maps_update_begin(void)
276 {
277 mutex_lock(&cpu_add_remove_lock);
278 }
279
280 void cpu_maps_update_done(void)
281 {
282 mutex_unlock(&cpu_add_remove_lock);
283 }
284
285 /*
286 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
287 * Should always be manipulated under cpu_add_remove_lock
288 */
289 static int cpu_hotplug_disabled;
290
291 #ifdef CONFIG_HOTPLUG_CPU
292
293 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
294
295 void cpus_read_lock(void)
296 {
297 percpu_down_read(&cpu_hotplug_lock);
298 }
299 EXPORT_SYMBOL_GPL(cpus_read_lock);
300
301 int cpus_read_trylock(void)
302 {
303 return percpu_down_read_trylock(&cpu_hotplug_lock);
304 }
305 EXPORT_SYMBOL_GPL(cpus_read_trylock);
306
307 void cpus_read_unlock(void)
308 {
309 percpu_up_read(&cpu_hotplug_lock);
310 }
311 EXPORT_SYMBOL_GPL(cpus_read_unlock);
312
313 void cpus_write_lock(void)
314 {
315 percpu_down_write(&cpu_hotplug_lock);
316 }
317
318 void cpus_write_unlock(void)
319 {
320 percpu_up_write(&cpu_hotplug_lock);
321 }
322
323 void lockdep_assert_cpus_held(void)
324 {
325 /*
326 * We can't have hotplug operations before userspace starts running,
327 * and some init codepaths will knowingly not take the hotplug lock.
328 * This is all valid, so mute lockdep until it makes sense to report
329 * unheld locks.
330 */
331 if (system_state < SYSTEM_RUNNING)
332 return;
333
334 percpu_rwsem_assert_held(&cpu_hotplug_lock);
335 }
336
337 #ifdef CONFIG_LOCKDEP
338 int lockdep_is_cpus_held(void)
339 {
340 return percpu_rwsem_is_held(&cpu_hotplug_lock);
341 }
342 #endif
343
344 static void lockdep_acquire_cpus_lock(void)
345 {
346 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
347 }
348
349 static void lockdep_release_cpus_lock(void)
350 {
351 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
352 }
353
354 /*
355 * Wait for currently running CPU hotplug operations to complete (if any) and
356 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
357 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
358 * hotplug path before performing hotplug operations. So acquiring that lock
359 * guarantees mutual exclusion from any currently running hotplug operations.
360 */
361 void cpu_hotplug_disable(void)
362 {
363 cpu_maps_update_begin();
364 cpu_hotplug_disabled++;
365 cpu_maps_update_done();
366 }
367 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
368
369 static void __cpu_hotplug_enable(void)
370 {
371 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
372 return;
373 cpu_hotplug_disabled--;
374 }
375
376 void cpu_hotplug_enable(void)
377 {
378 cpu_maps_update_begin();
379 __cpu_hotplug_enable();
380 cpu_maps_update_done();
381 }
382 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
383
384 #else
385
386 static void lockdep_acquire_cpus_lock(void)
387 {
388 }
389
390 static void lockdep_release_cpus_lock(void)
391 {
392 }
393
394 #endif /* CONFIG_HOTPLUG_CPU */
395
396 /*
397 * Architectures that need SMT-specific errata handling during SMT hotplug
398 * should override this.
399 */
400 void __weak arch_smt_update(void) { }
401
402 #ifdef CONFIG_HOTPLUG_SMT
403 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
404
405 void __init cpu_smt_disable(bool force)
406 {
407 if (!cpu_smt_possible())
408 return;
409
410 if (force) {
411 pr_info("SMT: Force disabled\n");
412 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
413 } else {
414 pr_info("SMT: disabled\n");
415 cpu_smt_control = CPU_SMT_DISABLED;
416 }
417 }
418
419 /*
420 * The decision whether SMT is supported can only be done after the full
421 * CPU identification. Called from architecture code.
422 */
423 void __init cpu_smt_check_topology(void)
424 {
425 if (!topology_smt_supported())
426 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
427 }
428
429 static int __init smt_cmdline_disable(char *str)
430 {
431 cpu_smt_disable(str && !strcmp(str, "force"));
432 return 0;
433 }
434 early_param("nosmt", smt_cmdline_disable);
435
436 static inline bool cpu_smt_allowed(unsigned int cpu)
437 {
438 if (cpu_smt_control == CPU_SMT_ENABLED)
439 return true;
440
441 if (topology_is_primary_thread(cpu))
442 return true;
443
444 /*
445 * On x86 it's required to boot all logical CPUs at least once so
446 * that the init code can get a chance to set CR4.MCE on each
447 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
448 * core will shutdown the machine.
449 */
450 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
451 }
452
453 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
454 bool cpu_smt_possible(void)
455 {
456 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
457 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
458 }
459 EXPORT_SYMBOL_GPL(cpu_smt_possible);
460 #else
461 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
462 #endif
463
464 static inline enum cpuhp_state
465 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
466 {
467 enum cpuhp_state prev_state = st->state;
468 bool bringup = st->state < target;
469
470 st->rollback = false;
471 st->last = NULL;
472
473 st->target = target;
474 st->single = false;
475 st->bringup = bringup;
476 if (cpu_dying(st->cpu) != !bringup)
477 set_cpu_dying(st->cpu, !bringup);
478
479 return prev_state;
480 }
481
482 static inline void
483 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
484 {
485 bool bringup = !st->bringup;
486
487 st->target = prev_state;
488
489 /*
490 * Already rolling back. No need invert the bringup value or to change
491 * the current state.
492 */
493 if (st->rollback)
494 return;
495
496 st->rollback = true;
497
498 /*
499 * If we have st->last we need to undo partial multi_instance of this
500 * state first. Otherwise start undo at the previous state.
501 */
502 if (!st->last) {
503 if (st->bringup)
504 st->state--;
505 else
506 st->state++;
507 }
508
509 st->bringup = bringup;
510 if (cpu_dying(st->cpu) != !bringup)
511 set_cpu_dying(st->cpu, !bringup);
512 }
513
514 /* Regular hotplug invocation of the AP hotplug thread */
515 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
516 {
517 if (!st->single && st->state == st->target)
518 return;
519
520 st->result = 0;
521 /*
522 * Make sure the above stores are visible before should_run becomes
523 * true. Paired with the mb() above in cpuhp_thread_fun()
524 */
525 smp_mb();
526 st->should_run = true;
527 wake_up_process(st->thread);
528 wait_for_ap_thread(st, st->bringup);
529 }
530
531 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
532 {
533 enum cpuhp_state prev_state;
534 int ret;
535
536 prev_state = cpuhp_set_state(st, target);
537 __cpuhp_kick_ap(st);
538 if ((ret = st->result)) {
539 cpuhp_reset_state(st, prev_state);
540 __cpuhp_kick_ap(st);
541 }
542
543 return ret;
544 }
545
546 static int bringup_wait_for_ap(unsigned int cpu)
547 {
548 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
549
550 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
551 wait_for_ap_thread(st, true);
552 if (WARN_ON_ONCE((!cpu_online(cpu))))
553 return -ECANCELED;
554
555 /* Unpark the hotplug thread of the target cpu */
556 kthread_unpark(st->thread);
557
558 /*
559 * SMT soft disabling on X86 requires to bring the CPU out of the
560 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
561 * CPU marked itself as booted_once in notify_cpu_starting() so the
562 * cpu_smt_allowed() check will now return false if this is not the
563 * primary sibling.
564 */
565 if (!cpu_smt_allowed(cpu))
566 return -ECANCELED;
567
568 if (st->target <= CPUHP_AP_ONLINE_IDLE)
569 return 0;
570
571 return cpuhp_kick_ap(st, st->target);
572 }
573
574 static int bringup_cpu(unsigned int cpu)
575 {
576 struct task_struct *idle = idle_thread_get(cpu);
577 int ret;
578
579 /*
580 * Some architectures have to walk the irq descriptors to
581 * setup the vector space for the cpu which comes online.
582 * Prevent irq alloc/free across the bringup.
583 */
584 irq_lock_sparse();
585
586 /* Arch-specific enabling code. */
587 ret = __cpu_up(cpu, idle);
588 irq_unlock_sparse();
589 if (ret)
590 return ret;
591 return bringup_wait_for_ap(cpu);
592 }
593
594 static int finish_cpu(unsigned int cpu)
595 {
596 struct task_struct *idle = idle_thread_get(cpu);
597 struct mm_struct *mm = idle->active_mm;
598
599 /*
600 * idle_task_exit() will have switched to &init_mm, now
601 * clean up any remaining active_mm state.
602 */
603 if (mm != &init_mm)
604 idle->active_mm = &init_mm;
605 mmdrop(mm);
606 return 0;
607 }
608
609 /*
610 * Hotplug state machine related functions
611 */
612
613 /*
614 * Get the next state to run. Empty ones will be skipped. Returns true if a
615 * state must be run.
616 *
617 * st->state will be modified ahead of time, to match state_to_run, as if it
618 * has already ran.
619 */
620 static bool cpuhp_next_state(bool bringup,
621 enum cpuhp_state *state_to_run,
622 struct cpuhp_cpu_state *st,
623 enum cpuhp_state target)
624 {
625 do {
626 if (bringup) {
627 if (st->state >= target)
628 return false;
629
630 *state_to_run = ++st->state;
631 } else {
632 if (st->state <= target)
633 return false;
634
635 *state_to_run = st->state--;
636 }
637
638 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
639 break;
640 } while (true);
641
642 return true;
643 }
644
645 static int cpuhp_invoke_callback_range(bool bringup,
646 unsigned int cpu,
647 struct cpuhp_cpu_state *st,
648 enum cpuhp_state target)
649 {
650 enum cpuhp_state state;
651 int err = 0;
652
653 while (cpuhp_next_state(bringup, &state, st, target)) {
654 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
655 if (err)
656 break;
657 }
658
659 return err;
660 }
661
662 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
663 {
664 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
665 return true;
666 /*
667 * When CPU hotplug is disabled, then taking the CPU down is not
668 * possible because takedown_cpu() and the architecture and
669 * subsystem specific mechanisms are not available. So the CPU
670 * which would be completely unplugged again needs to stay around
671 * in the current state.
672 */
673 return st->state <= CPUHP_BRINGUP_CPU;
674 }
675
676 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
677 enum cpuhp_state target)
678 {
679 enum cpuhp_state prev_state = st->state;
680 int ret = 0;
681
682 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
683 if (ret) {
684 cpuhp_reset_state(st, prev_state);
685 if (can_rollback_cpu(st))
686 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
687 prev_state));
688 }
689 return ret;
690 }
691
692 /*
693 * The cpu hotplug threads manage the bringup and teardown of the cpus
694 */
695 static void cpuhp_create(unsigned int cpu)
696 {
697 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
698
699 init_completion(&st->done_up);
700 init_completion(&st->done_down);
701 st->cpu = cpu;
702 }
703
704 static int cpuhp_should_run(unsigned int cpu)
705 {
706 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
707
708 return st->should_run;
709 }
710
711 /*
712 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
713 * callbacks when a state gets [un]installed at runtime.
714 *
715 * Each invocation of this function by the smpboot thread does a single AP
716 * state callback.
717 *
718 * It has 3 modes of operation:
719 * - single: runs st->cb_state
720 * - up: runs ++st->state, while st->state < st->target
721 * - down: runs st->state--, while st->state > st->target
722 *
723 * When complete or on error, should_run is cleared and the completion is fired.
724 */
725 static void cpuhp_thread_fun(unsigned int cpu)
726 {
727 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
728 bool bringup = st->bringup;
729 enum cpuhp_state state;
730
731 if (WARN_ON_ONCE(!st->should_run))
732 return;
733
734 /*
735 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
736 * that if we see ->should_run we also see the rest of the state.
737 */
738 smp_mb();
739
740 /*
741 * The BP holds the hotplug lock, but we're now running on the AP,
742 * ensure that anybody asserting the lock is held, will actually find
743 * it so.
744 */
745 lockdep_acquire_cpus_lock();
746 cpuhp_lock_acquire(bringup);
747
748 if (st->single) {
749 state = st->cb_state;
750 st->should_run = false;
751 } else {
752 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
753 if (!st->should_run)
754 goto end;
755 }
756
757 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
758
759 if (cpuhp_is_atomic_state(state)) {
760 local_irq_disable();
761 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
762 local_irq_enable();
763
764 /*
765 * STARTING/DYING must not fail!
766 */
767 WARN_ON_ONCE(st->result);
768 } else {
769 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
770 }
771
772 if (st->result) {
773 /*
774 * If we fail on a rollback, we're up a creek without no
775 * paddle, no way forward, no way back. We loose, thanks for
776 * playing.
777 */
778 WARN_ON_ONCE(st->rollback);
779 st->should_run = false;
780 }
781
782 end:
783 cpuhp_lock_release(bringup);
784 lockdep_release_cpus_lock();
785
786 if (!st->should_run)
787 complete_ap_thread(st, bringup);
788 }
789
790 /* Invoke a single callback on a remote cpu */
791 static int
792 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
793 struct hlist_node *node)
794 {
795 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
796 int ret;
797
798 if (!cpu_online(cpu))
799 return 0;
800
801 cpuhp_lock_acquire(false);
802 cpuhp_lock_release(false);
803
804 cpuhp_lock_acquire(true);
805 cpuhp_lock_release(true);
806
807 /*
808 * If we are up and running, use the hotplug thread. For early calls
809 * we invoke the thread function directly.
810 */
811 if (!st->thread)
812 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
813
814 st->rollback = false;
815 st->last = NULL;
816
817 st->node = node;
818 st->bringup = bringup;
819 st->cb_state = state;
820 st->single = true;
821
822 __cpuhp_kick_ap(st);
823
824 /*
825 * If we failed and did a partial, do a rollback.
826 */
827 if ((ret = st->result) && st->last) {
828 st->rollback = true;
829 st->bringup = !bringup;
830
831 __cpuhp_kick_ap(st);
832 }
833
834 /*
835 * Clean up the leftovers so the next hotplug operation wont use stale
836 * data.
837 */
838 st->node = st->last = NULL;
839 return ret;
840 }
841
842 static int cpuhp_kick_ap_work(unsigned int cpu)
843 {
844 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
845 enum cpuhp_state prev_state = st->state;
846 int ret;
847
848 cpuhp_lock_acquire(false);
849 cpuhp_lock_release(false);
850
851 cpuhp_lock_acquire(true);
852 cpuhp_lock_release(true);
853
854 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
855 ret = cpuhp_kick_ap(st, st->target);
856 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
857
858 return ret;
859 }
860
861 static struct smp_hotplug_thread cpuhp_threads = {
862 .store = &cpuhp_state.thread,
863 .create = &cpuhp_create,
864 .thread_should_run = cpuhp_should_run,
865 .thread_fn = cpuhp_thread_fun,
866 .thread_comm = "cpuhp/%u",
867 .selfparking = true,
868 };
869
870 void __init cpuhp_threads_init(void)
871 {
872 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
873 kthread_unpark(this_cpu_read(cpuhp_state.thread));
874 }
875
876 #ifdef CONFIG_HOTPLUG_CPU
877 #ifndef arch_clear_mm_cpumask_cpu
878 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
879 #endif
880
881 /**
882 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
883 * @cpu: a CPU id
884 *
885 * This function walks all processes, finds a valid mm struct for each one and
886 * then clears a corresponding bit in mm's cpumask. While this all sounds
887 * trivial, there are various non-obvious corner cases, which this function
888 * tries to solve in a safe manner.
889 *
890 * Also note that the function uses a somewhat relaxed locking scheme, so it may
891 * be called only for an already offlined CPU.
892 */
893 void clear_tasks_mm_cpumask(int cpu)
894 {
895 struct task_struct *p;
896
897 /*
898 * This function is called after the cpu is taken down and marked
899 * offline, so its not like new tasks will ever get this cpu set in
900 * their mm mask. -- Peter Zijlstra
901 * Thus, we may use rcu_read_lock() here, instead of grabbing
902 * full-fledged tasklist_lock.
903 */
904 WARN_ON(cpu_online(cpu));
905 rcu_read_lock();
906 for_each_process(p) {
907 struct task_struct *t;
908
909 /*
910 * Main thread might exit, but other threads may still have
911 * a valid mm. Find one.
912 */
913 t = find_lock_task_mm(p);
914 if (!t)
915 continue;
916 arch_clear_mm_cpumask_cpu(cpu, t->mm);
917 task_unlock(t);
918 }
919 rcu_read_unlock();
920 }
921
922 /* Take this CPU down. */
923 static int take_cpu_down(void *_param)
924 {
925 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
926 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
927 int err, cpu = smp_processor_id();
928 int ret;
929
930 /* Ensure this CPU doesn't handle any more interrupts. */
931 err = __cpu_disable();
932 if (err < 0)
933 return err;
934
935 /*
936 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
937 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
938 */
939 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
940
941 /* Invoke the former CPU_DYING callbacks */
942 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
943
944 /*
945 * DYING must not fail!
946 */
947 WARN_ON_ONCE(ret);
948
949 /* Give up timekeeping duties */
950 tick_handover_do_timer();
951 /* Remove CPU from timer broadcasting */
952 tick_offline_cpu(cpu);
953 /* Park the stopper thread */
954 stop_machine_park(cpu);
955 return 0;
956 }
957
958 static int takedown_cpu(unsigned int cpu)
959 {
960 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
961 int err;
962
963 /* Park the smpboot threads */
964 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
965
966 /*
967 * Prevent irq alloc/free while the dying cpu reorganizes the
968 * interrupt affinities.
969 */
970 irq_lock_sparse();
971
972 /*
973 * So now all preempt/rcu users must observe !cpu_active().
974 */
975 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
976 if (err) {
977 /* CPU refused to die */
978 irq_unlock_sparse();
979 /* Unpark the hotplug thread so we can rollback there */
980 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
981 return err;
982 }
983 BUG_ON(cpu_online(cpu));
984
985 /*
986 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
987 * all runnable tasks from the CPU, there's only the idle task left now
988 * that the migration thread is done doing the stop_machine thing.
989 *
990 * Wait for the stop thread to go away.
991 */
992 wait_for_ap_thread(st, false);
993 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
994
995 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
996 irq_unlock_sparse();
997
998 hotplug_cpu__broadcast_tick_pull(cpu);
999 /* This actually kills the CPU. */
1000 __cpu_die(cpu);
1001
1002 tick_cleanup_dead_cpu(cpu);
1003 rcutree_migrate_callbacks(cpu);
1004 return 0;
1005 }
1006
1007 static void cpuhp_complete_idle_dead(void *arg)
1008 {
1009 struct cpuhp_cpu_state *st = arg;
1010
1011 complete_ap_thread(st, false);
1012 }
1013
1014 void cpuhp_report_idle_dead(void)
1015 {
1016 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1017
1018 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1019 rcu_report_dead(smp_processor_id());
1020 st->state = CPUHP_AP_IDLE_DEAD;
1021 /*
1022 * We cannot call complete after rcu_report_dead() so we delegate it
1023 * to an online cpu.
1024 */
1025 smp_call_function_single(cpumask_first(cpu_online_mask),
1026 cpuhp_complete_idle_dead, st, 0);
1027 }
1028
1029 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1030 enum cpuhp_state target)
1031 {
1032 enum cpuhp_state prev_state = st->state;
1033 int ret = 0;
1034
1035 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1036 if (ret) {
1037
1038 cpuhp_reset_state(st, prev_state);
1039
1040 if (st->state < prev_state)
1041 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1042 prev_state));
1043 }
1044
1045 return ret;
1046 }
1047
1048 /* Requires cpu_add_remove_lock to be held */
1049 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1050 enum cpuhp_state target)
1051 {
1052 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1053 int prev_state, ret = 0;
1054
1055 if (num_online_cpus() == 1)
1056 return -EBUSY;
1057
1058 if (!cpu_present(cpu))
1059 return -EINVAL;
1060
1061 cpus_write_lock();
1062
1063 cpuhp_tasks_frozen = tasks_frozen;
1064
1065 prev_state = cpuhp_set_state(st, target);
1066 /*
1067 * If the current CPU state is in the range of the AP hotplug thread,
1068 * then we need to kick the thread.
1069 */
1070 if (st->state > CPUHP_TEARDOWN_CPU) {
1071 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1072 ret = cpuhp_kick_ap_work(cpu);
1073 /*
1074 * The AP side has done the error rollback already. Just
1075 * return the error code..
1076 */
1077 if (ret)
1078 goto out;
1079
1080 /*
1081 * We might have stopped still in the range of the AP hotplug
1082 * thread. Nothing to do anymore.
1083 */
1084 if (st->state > CPUHP_TEARDOWN_CPU)
1085 goto out;
1086
1087 st->target = target;
1088 }
1089 /*
1090 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1091 * to do the further cleanups.
1092 */
1093 ret = cpuhp_down_callbacks(cpu, st, target);
1094 if (ret && st->state < prev_state) {
1095 if (st->state == CPUHP_TEARDOWN_CPU) {
1096 cpuhp_reset_state(st, prev_state);
1097 __cpuhp_kick_ap(st);
1098 } else {
1099 WARN(1, "DEAD callback error for CPU%d", cpu);
1100 }
1101 }
1102
1103 out:
1104 cpus_write_unlock();
1105 /*
1106 * Do post unplug cleanup. This is still protected against
1107 * concurrent CPU hotplug via cpu_add_remove_lock.
1108 */
1109 lockup_detector_cleanup();
1110 arch_smt_update();
1111 return ret;
1112 }
1113
1114 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1115 {
1116 if (cpu_hotplug_disabled)
1117 return -EBUSY;
1118 return _cpu_down(cpu, 0, target);
1119 }
1120
1121 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1122 {
1123 int err;
1124
1125 cpu_maps_update_begin();
1126 err = cpu_down_maps_locked(cpu, target);
1127 cpu_maps_update_done();
1128 return err;
1129 }
1130
1131 /**
1132 * cpu_device_down - Bring down a cpu device
1133 * @dev: Pointer to the cpu device to offline
1134 *
1135 * This function is meant to be used by device core cpu subsystem only.
1136 *
1137 * Other subsystems should use remove_cpu() instead.
1138 */
1139 int cpu_device_down(struct device *dev)
1140 {
1141 return cpu_down(dev->id, CPUHP_OFFLINE);
1142 }
1143
1144 int remove_cpu(unsigned int cpu)
1145 {
1146 int ret;
1147
1148 lock_device_hotplug();
1149 ret = device_offline(get_cpu_device(cpu));
1150 unlock_device_hotplug();
1151
1152 return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(remove_cpu);
1155
1156 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1157 {
1158 unsigned int cpu;
1159 int error;
1160
1161 cpu_maps_update_begin();
1162
1163 /*
1164 * Make certain the cpu I'm about to reboot on is online.
1165 *
1166 * This is inline to what migrate_to_reboot_cpu() already do.
1167 */
1168 if (!cpu_online(primary_cpu))
1169 primary_cpu = cpumask_first(cpu_online_mask);
1170
1171 for_each_online_cpu(cpu) {
1172 if (cpu == primary_cpu)
1173 continue;
1174
1175 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1176 if (error) {
1177 pr_err("Failed to offline CPU%d - error=%d",
1178 cpu, error);
1179 break;
1180 }
1181 }
1182
1183 /*
1184 * Ensure all but the reboot CPU are offline.
1185 */
1186 BUG_ON(num_online_cpus() > 1);
1187
1188 /*
1189 * Make sure the CPUs won't be enabled by someone else after this
1190 * point. Kexec will reboot to a new kernel shortly resetting
1191 * everything along the way.
1192 */
1193 cpu_hotplug_disabled++;
1194
1195 cpu_maps_update_done();
1196 }
1197
1198 #else
1199 #define takedown_cpu NULL
1200 #endif /*CONFIG_HOTPLUG_CPU*/
1201
1202 /**
1203 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1204 * @cpu: cpu that just started
1205 *
1206 * It must be called by the arch code on the new cpu, before the new cpu
1207 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1208 */
1209 void notify_cpu_starting(unsigned int cpu)
1210 {
1211 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1212 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1213 int ret;
1214
1215 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1216 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1217 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1218
1219 /*
1220 * STARTING must not fail!
1221 */
1222 WARN_ON_ONCE(ret);
1223 }
1224
1225 /*
1226 * Called from the idle task. Wake up the controlling task which brings the
1227 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1228 * online bringup to the hotplug thread.
1229 */
1230 void cpuhp_online_idle(enum cpuhp_state state)
1231 {
1232 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1233
1234 /* Happens for the boot cpu */
1235 if (state != CPUHP_AP_ONLINE_IDLE)
1236 return;
1237
1238 /*
1239 * Unpart the stopper thread before we start the idle loop (and start
1240 * scheduling); this ensures the stopper task is always available.
1241 */
1242 stop_machine_unpark(smp_processor_id());
1243
1244 st->state = CPUHP_AP_ONLINE_IDLE;
1245 complete_ap_thread(st, true);
1246 }
1247
1248 /* Requires cpu_add_remove_lock to be held */
1249 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1250 {
1251 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1252 struct task_struct *idle;
1253 int ret = 0;
1254
1255 cpus_write_lock();
1256
1257 if (!cpu_present(cpu)) {
1258 ret = -EINVAL;
1259 goto out;
1260 }
1261
1262 /*
1263 * The caller of cpu_up() might have raced with another
1264 * caller. Nothing to do.
1265 */
1266 if (st->state >= target)
1267 goto out;
1268
1269 if (st->state == CPUHP_OFFLINE) {
1270 /* Let it fail before we try to bring the cpu up */
1271 idle = idle_thread_get(cpu);
1272 if (IS_ERR(idle)) {
1273 ret = PTR_ERR(idle);
1274 goto out;
1275 }
1276 }
1277
1278 cpuhp_tasks_frozen = tasks_frozen;
1279
1280 cpuhp_set_state(st, target);
1281 /*
1282 * If the current CPU state is in the range of the AP hotplug thread,
1283 * then we need to kick the thread once more.
1284 */
1285 if (st->state > CPUHP_BRINGUP_CPU) {
1286 ret = cpuhp_kick_ap_work(cpu);
1287 /*
1288 * The AP side has done the error rollback already. Just
1289 * return the error code..
1290 */
1291 if (ret)
1292 goto out;
1293 }
1294
1295 /*
1296 * Try to reach the target state. We max out on the BP at
1297 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1298 * responsible for bringing it up to the target state.
1299 */
1300 target = min((int)target, CPUHP_BRINGUP_CPU);
1301 ret = cpuhp_up_callbacks(cpu, st, target);
1302 out:
1303 cpus_write_unlock();
1304 arch_smt_update();
1305 return ret;
1306 }
1307
1308 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1309 {
1310 int err = 0;
1311
1312 if (!cpu_possible(cpu)) {
1313 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1314 cpu);
1315 #if defined(CONFIG_IA64)
1316 pr_err("please check additional_cpus= boot parameter\n");
1317 #endif
1318 return -EINVAL;
1319 }
1320
1321 err = try_online_node(cpu_to_node(cpu));
1322 if (err)
1323 return err;
1324
1325 cpu_maps_update_begin();
1326
1327 if (cpu_hotplug_disabled) {
1328 err = -EBUSY;
1329 goto out;
1330 }
1331 if (!cpu_smt_allowed(cpu)) {
1332 err = -EPERM;
1333 goto out;
1334 }
1335
1336 err = _cpu_up(cpu, 0, target);
1337 out:
1338 cpu_maps_update_done();
1339 return err;
1340 }
1341
1342 /**
1343 * cpu_device_up - Bring up a cpu device
1344 * @dev: Pointer to the cpu device to online
1345 *
1346 * This function is meant to be used by device core cpu subsystem only.
1347 *
1348 * Other subsystems should use add_cpu() instead.
1349 */
1350 int cpu_device_up(struct device *dev)
1351 {
1352 return cpu_up(dev->id, CPUHP_ONLINE);
1353 }
1354
1355 int add_cpu(unsigned int cpu)
1356 {
1357 int ret;
1358
1359 lock_device_hotplug();
1360 ret = device_online(get_cpu_device(cpu));
1361 unlock_device_hotplug();
1362
1363 return ret;
1364 }
1365 EXPORT_SYMBOL_GPL(add_cpu);
1366
1367 /**
1368 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1369 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1370 *
1371 * On some architectures like arm64, we can hibernate on any CPU, but on
1372 * wake up the CPU we hibernated on might be offline as a side effect of
1373 * using maxcpus= for example.
1374 */
1375 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1376 {
1377 int ret;
1378
1379 if (!cpu_online(sleep_cpu)) {
1380 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1381 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1382 if (ret) {
1383 pr_err("Failed to bring hibernate-CPU up!\n");
1384 return ret;
1385 }
1386 }
1387 return 0;
1388 }
1389
1390 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1391 {
1392 unsigned int cpu;
1393
1394 for_each_present_cpu(cpu) {
1395 if (num_online_cpus() >= setup_max_cpus)
1396 break;
1397 if (!cpu_online(cpu))
1398 cpu_up(cpu, CPUHP_ONLINE);
1399 }
1400 }
1401
1402 #ifdef CONFIG_PM_SLEEP_SMP
1403 static cpumask_var_t frozen_cpus;
1404
1405 int freeze_secondary_cpus(int primary)
1406 {
1407 int cpu, error = 0;
1408
1409 cpu_maps_update_begin();
1410 if (primary == -1) {
1411 primary = cpumask_first(cpu_online_mask);
1412 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1413 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1414 } else {
1415 if (!cpu_online(primary))
1416 primary = cpumask_first(cpu_online_mask);
1417 }
1418
1419 /*
1420 * We take down all of the non-boot CPUs in one shot to avoid races
1421 * with the userspace trying to use the CPU hotplug at the same time
1422 */
1423 cpumask_clear(frozen_cpus);
1424
1425 pr_info("Disabling non-boot CPUs ...\n");
1426 for_each_online_cpu(cpu) {
1427 if (cpu == primary)
1428 continue;
1429
1430 if (pm_wakeup_pending()) {
1431 pr_info("Wakeup pending. Abort CPU freeze\n");
1432 error = -EBUSY;
1433 break;
1434 }
1435
1436 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1437 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1438 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1439 if (!error)
1440 cpumask_set_cpu(cpu, frozen_cpus);
1441 else {
1442 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1443 break;
1444 }
1445 }
1446
1447 if (!error)
1448 BUG_ON(num_online_cpus() > 1);
1449 else
1450 pr_err("Non-boot CPUs are not disabled\n");
1451
1452 /*
1453 * Make sure the CPUs won't be enabled by someone else. We need to do
1454 * this even in case of failure as all freeze_secondary_cpus() users are
1455 * supposed to do thaw_secondary_cpus() on the failure path.
1456 */
1457 cpu_hotplug_disabled++;
1458
1459 cpu_maps_update_done();
1460 return error;
1461 }
1462
1463 void __weak arch_thaw_secondary_cpus_begin(void)
1464 {
1465 }
1466
1467 void __weak arch_thaw_secondary_cpus_end(void)
1468 {
1469 }
1470
1471 void thaw_secondary_cpus(void)
1472 {
1473 int cpu, error;
1474
1475 /* Allow everyone to use the CPU hotplug again */
1476 cpu_maps_update_begin();
1477 __cpu_hotplug_enable();
1478 if (cpumask_empty(frozen_cpus))
1479 goto out;
1480
1481 pr_info("Enabling non-boot CPUs ...\n");
1482
1483 arch_thaw_secondary_cpus_begin();
1484
1485 for_each_cpu(cpu, frozen_cpus) {
1486 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1487 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1488 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1489 if (!error) {
1490 pr_info("CPU%d is up\n", cpu);
1491 continue;
1492 }
1493 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1494 }
1495
1496 arch_thaw_secondary_cpus_end();
1497
1498 cpumask_clear(frozen_cpus);
1499 out:
1500 cpu_maps_update_done();
1501 }
1502
1503 static int __init alloc_frozen_cpus(void)
1504 {
1505 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1506 return -ENOMEM;
1507 return 0;
1508 }
1509 core_initcall(alloc_frozen_cpus);
1510
1511 /*
1512 * When callbacks for CPU hotplug notifications are being executed, we must
1513 * ensure that the state of the system with respect to the tasks being frozen
1514 * or not, as reported by the notification, remains unchanged *throughout the
1515 * duration* of the execution of the callbacks.
1516 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1517 *
1518 * This synchronization is implemented by mutually excluding regular CPU
1519 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1520 * Hibernate notifications.
1521 */
1522 static int
1523 cpu_hotplug_pm_callback(struct notifier_block *nb,
1524 unsigned long action, void *ptr)
1525 {
1526 switch (action) {
1527
1528 case PM_SUSPEND_PREPARE:
1529 case PM_HIBERNATION_PREPARE:
1530 cpu_hotplug_disable();
1531 break;
1532
1533 case PM_POST_SUSPEND:
1534 case PM_POST_HIBERNATION:
1535 cpu_hotplug_enable();
1536 break;
1537
1538 default:
1539 return NOTIFY_DONE;
1540 }
1541
1542 return NOTIFY_OK;
1543 }
1544
1545
1546 static int __init cpu_hotplug_pm_sync_init(void)
1547 {
1548 /*
1549 * cpu_hotplug_pm_callback has higher priority than x86
1550 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1551 * to disable cpu hotplug to avoid cpu hotplug race.
1552 */
1553 pm_notifier(cpu_hotplug_pm_callback, 0);
1554 return 0;
1555 }
1556 core_initcall(cpu_hotplug_pm_sync_init);
1557
1558 #endif /* CONFIG_PM_SLEEP_SMP */
1559
1560 int __boot_cpu_id;
1561
1562 #endif /* CONFIG_SMP */
1563
1564 /* Boot processor state steps */
1565 static struct cpuhp_step cpuhp_hp_states[] = {
1566 [CPUHP_OFFLINE] = {
1567 .name = "offline",
1568 .startup.single = NULL,
1569 .teardown.single = NULL,
1570 },
1571 #ifdef CONFIG_SMP
1572 [CPUHP_CREATE_THREADS]= {
1573 .name = "threads:prepare",
1574 .startup.single = smpboot_create_threads,
1575 .teardown.single = NULL,
1576 .cant_stop = true,
1577 },
1578 [CPUHP_PERF_PREPARE] = {
1579 .name = "perf:prepare",
1580 .startup.single = perf_event_init_cpu,
1581 .teardown.single = perf_event_exit_cpu,
1582 },
1583 [CPUHP_WORKQUEUE_PREP] = {
1584 .name = "workqueue:prepare",
1585 .startup.single = workqueue_prepare_cpu,
1586 .teardown.single = NULL,
1587 },
1588 [CPUHP_HRTIMERS_PREPARE] = {
1589 .name = "hrtimers:prepare",
1590 .startup.single = hrtimers_prepare_cpu,
1591 .teardown.single = hrtimers_dead_cpu,
1592 },
1593 [CPUHP_SMPCFD_PREPARE] = {
1594 .name = "smpcfd:prepare",
1595 .startup.single = smpcfd_prepare_cpu,
1596 .teardown.single = smpcfd_dead_cpu,
1597 },
1598 [CPUHP_RELAY_PREPARE] = {
1599 .name = "relay:prepare",
1600 .startup.single = relay_prepare_cpu,
1601 .teardown.single = NULL,
1602 },
1603 [CPUHP_SLAB_PREPARE] = {
1604 .name = "slab:prepare",
1605 .startup.single = slab_prepare_cpu,
1606 .teardown.single = slab_dead_cpu,
1607 },
1608 [CPUHP_RCUTREE_PREP] = {
1609 .name = "RCU/tree:prepare",
1610 .startup.single = rcutree_prepare_cpu,
1611 .teardown.single = rcutree_dead_cpu,
1612 },
1613 /*
1614 * On the tear-down path, timers_dead_cpu() must be invoked
1615 * before blk_mq_queue_reinit_notify() from notify_dead(),
1616 * otherwise a RCU stall occurs.
1617 */
1618 [CPUHP_TIMERS_PREPARE] = {
1619 .name = "timers:prepare",
1620 .startup.single = timers_prepare_cpu,
1621 .teardown.single = timers_dead_cpu,
1622 },
1623 /* Kicks the plugged cpu into life */
1624 [CPUHP_BRINGUP_CPU] = {
1625 .name = "cpu:bringup",
1626 .startup.single = bringup_cpu,
1627 .teardown.single = finish_cpu,
1628 .cant_stop = true,
1629 },
1630 /* Final state before CPU kills itself */
1631 [CPUHP_AP_IDLE_DEAD] = {
1632 .name = "idle:dead",
1633 },
1634 /*
1635 * Last state before CPU enters the idle loop to die. Transient state
1636 * for synchronization.
1637 */
1638 [CPUHP_AP_OFFLINE] = {
1639 .name = "ap:offline",
1640 .cant_stop = true,
1641 },
1642 /* First state is scheduler control. Interrupts are disabled */
1643 [CPUHP_AP_SCHED_STARTING] = {
1644 .name = "sched:starting",
1645 .startup.single = sched_cpu_starting,
1646 .teardown.single = sched_cpu_dying,
1647 },
1648 [CPUHP_AP_RCUTREE_DYING] = {
1649 .name = "RCU/tree:dying",
1650 .startup.single = NULL,
1651 .teardown.single = rcutree_dying_cpu,
1652 },
1653 [CPUHP_AP_SMPCFD_DYING] = {
1654 .name = "smpcfd:dying",
1655 .startup.single = NULL,
1656 .teardown.single = smpcfd_dying_cpu,
1657 },
1658 /* Entry state on starting. Interrupts enabled from here on. Transient
1659 * state for synchronsization */
1660 [CPUHP_AP_ONLINE] = {
1661 .name = "ap:online",
1662 },
1663 /*
1664 * Handled on control processor until the plugged processor manages
1665 * this itself.
1666 */
1667 [CPUHP_TEARDOWN_CPU] = {
1668 .name = "cpu:teardown",
1669 .startup.single = NULL,
1670 .teardown.single = takedown_cpu,
1671 .cant_stop = true,
1672 },
1673
1674 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1675 .name = "sched:waitempty",
1676 .startup.single = NULL,
1677 .teardown.single = sched_cpu_wait_empty,
1678 },
1679
1680 /* Handle smpboot threads park/unpark */
1681 [CPUHP_AP_SMPBOOT_THREADS] = {
1682 .name = "smpboot/threads:online",
1683 .startup.single = smpboot_unpark_threads,
1684 .teardown.single = smpboot_park_threads,
1685 },
1686 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1687 .name = "irq/affinity:online",
1688 .startup.single = irq_affinity_online_cpu,
1689 .teardown.single = NULL,
1690 },
1691 [CPUHP_AP_PERF_ONLINE] = {
1692 .name = "perf:online",
1693 .startup.single = perf_event_init_cpu,
1694 .teardown.single = perf_event_exit_cpu,
1695 },
1696 [CPUHP_AP_WATCHDOG_ONLINE] = {
1697 .name = "lockup_detector:online",
1698 .startup.single = lockup_detector_online_cpu,
1699 .teardown.single = lockup_detector_offline_cpu,
1700 },
1701 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1702 .name = "workqueue:online",
1703 .startup.single = workqueue_online_cpu,
1704 .teardown.single = workqueue_offline_cpu,
1705 },
1706 [CPUHP_AP_RCUTREE_ONLINE] = {
1707 .name = "RCU/tree:online",
1708 .startup.single = rcutree_online_cpu,
1709 .teardown.single = rcutree_offline_cpu,
1710 },
1711 #endif
1712 /*
1713 * The dynamically registered state space is here
1714 */
1715
1716 #ifdef CONFIG_SMP
1717 /* Last state is scheduler control setting the cpu active */
1718 [CPUHP_AP_ACTIVE] = {
1719 .name = "sched:active",
1720 .startup.single = sched_cpu_activate,
1721 .teardown.single = sched_cpu_deactivate,
1722 },
1723 #endif
1724
1725 /* CPU is fully up and running. */
1726 [CPUHP_ONLINE] = {
1727 .name = "online",
1728 .startup.single = NULL,
1729 .teardown.single = NULL,
1730 },
1731 };
1732
1733 /* Sanity check for callbacks */
1734 static int cpuhp_cb_check(enum cpuhp_state state)
1735 {
1736 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1737 return -EINVAL;
1738 return 0;
1739 }
1740
1741 /*
1742 * Returns a free for dynamic slot assignment of the Online state. The states
1743 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1744 * by having no name assigned.
1745 */
1746 static int cpuhp_reserve_state(enum cpuhp_state state)
1747 {
1748 enum cpuhp_state i, end;
1749 struct cpuhp_step *step;
1750
1751 switch (state) {
1752 case CPUHP_AP_ONLINE_DYN:
1753 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1754 end = CPUHP_AP_ONLINE_DYN_END;
1755 break;
1756 case CPUHP_BP_PREPARE_DYN:
1757 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1758 end = CPUHP_BP_PREPARE_DYN_END;
1759 break;
1760 default:
1761 return -EINVAL;
1762 }
1763
1764 for (i = state; i <= end; i++, step++) {
1765 if (!step->name)
1766 return i;
1767 }
1768 WARN(1, "No more dynamic states available for CPU hotplug\n");
1769 return -ENOSPC;
1770 }
1771
1772 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1773 int (*startup)(unsigned int cpu),
1774 int (*teardown)(unsigned int cpu),
1775 bool multi_instance)
1776 {
1777 /* (Un)Install the callbacks for further cpu hotplug operations */
1778 struct cpuhp_step *sp;
1779 int ret = 0;
1780
1781 /*
1782 * If name is NULL, then the state gets removed.
1783 *
1784 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1785 * the first allocation from these dynamic ranges, so the removal
1786 * would trigger a new allocation and clear the wrong (already
1787 * empty) state, leaving the callbacks of the to be cleared state
1788 * dangling, which causes wreckage on the next hotplug operation.
1789 */
1790 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1791 state == CPUHP_BP_PREPARE_DYN)) {
1792 ret = cpuhp_reserve_state(state);
1793 if (ret < 0)
1794 return ret;
1795 state = ret;
1796 }
1797 sp = cpuhp_get_step(state);
1798 if (name && sp->name)
1799 return -EBUSY;
1800
1801 sp->startup.single = startup;
1802 sp->teardown.single = teardown;
1803 sp->name = name;
1804 sp->multi_instance = multi_instance;
1805 INIT_HLIST_HEAD(&sp->list);
1806 return ret;
1807 }
1808
1809 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1810 {
1811 return cpuhp_get_step(state)->teardown.single;
1812 }
1813
1814 /*
1815 * Call the startup/teardown function for a step either on the AP or
1816 * on the current CPU.
1817 */
1818 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1819 struct hlist_node *node)
1820 {
1821 struct cpuhp_step *sp = cpuhp_get_step(state);
1822 int ret;
1823
1824 /*
1825 * If there's nothing to do, we done.
1826 * Relies on the union for multi_instance.
1827 */
1828 if (cpuhp_step_empty(bringup, sp))
1829 return 0;
1830 /*
1831 * The non AP bound callbacks can fail on bringup. On teardown
1832 * e.g. module removal we crash for now.
1833 */
1834 #ifdef CONFIG_SMP
1835 if (cpuhp_is_ap_state(state))
1836 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1837 else
1838 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1839 #else
1840 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1841 #endif
1842 BUG_ON(ret && !bringup);
1843 return ret;
1844 }
1845
1846 /*
1847 * Called from __cpuhp_setup_state on a recoverable failure.
1848 *
1849 * Note: The teardown callbacks for rollback are not allowed to fail!
1850 */
1851 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1852 struct hlist_node *node)
1853 {
1854 int cpu;
1855
1856 /* Roll back the already executed steps on the other cpus */
1857 for_each_present_cpu(cpu) {
1858 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1859 int cpustate = st->state;
1860
1861 if (cpu >= failedcpu)
1862 break;
1863
1864 /* Did we invoke the startup call on that cpu ? */
1865 if (cpustate >= state)
1866 cpuhp_issue_call(cpu, state, false, node);
1867 }
1868 }
1869
1870 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1871 struct hlist_node *node,
1872 bool invoke)
1873 {
1874 struct cpuhp_step *sp;
1875 int cpu;
1876 int ret;
1877
1878 lockdep_assert_cpus_held();
1879
1880 sp = cpuhp_get_step(state);
1881 if (sp->multi_instance == false)
1882 return -EINVAL;
1883
1884 mutex_lock(&cpuhp_state_mutex);
1885
1886 if (!invoke || !sp->startup.multi)
1887 goto add_node;
1888
1889 /*
1890 * Try to call the startup callback for each present cpu
1891 * depending on the hotplug state of the cpu.
1892 */
1893 for_each_present_cpu(cpu) {
1894 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1895 int cpustate = st->state;
1896
1897 if (cpustate < state)
1898 continue;
1899
1900 ret = cpuhp_issue_call(cpu, state, true, node);
1901 if (ret) {
1902 if (sp->teardown.multi)
1903 cpuhp_rollback_install(cpu, state, node);
1904 goto unlock;
1905 }
1906 }
1907 add_node:
1908 ret = 0;
1909 hlist_add_head(node, &sp->list);
1910 unlock:
1911 mutex_unlock(&cpuhp_state_mutex);
1912 return ret;
1913 }
1914
1915 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1916 bool invoke)
1917 {
1918 int ret;
1919
1920 cpus_read_lock();
1921 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1922 cpus_read_unlock();
1923 return ret;
1924 }
1925 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1926
1927 /**
1928 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1929 * @state: The state to setup
1930 * @invoke: If true, the startup function is invoked for cpus where
1931 * cpu state >= @state
1932 * @startup: startup callback function
1933 * @teardown: teardown callback function
1934 * @multi_instance: State is set up for multiple instances which get
1935 * added afterwards.
1936 *
1937 * The caller needs to hold cpus read locked while calling this function.
1938 * Returns:
1939 * On success:
1940 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1941 * 0 for all other states
1942 * On failure: proper (negative) error code
1943 */
1944 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1945 const char *name, bool invoke,
1946 int (*startup)(unsigned int cpu),
1947 int (*teardown)(unsigned int cpu),
1948 bool multi_instance)
1949 {
1950 int cpu, ret = 0;
1951 bool dynstate;
1952
1953 lockdep_assert_cpus_held();
1954
1955 if (cpuhp_cb_check(state) || !name)
1956 return -EINVAL;
1957
1958 mutex_lock(&cpuhp_state_mutex);
1959
1960 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1961 multi_instance);
1962
1963 dynstate = state == CPUHP_AP_ONLINE_DYN;
1964 if (ret > 0 && dynstate) {
1965 state = ret;
1966 ret = 0;
1967 }
1968
1969 if (ret || !invoke || !startup)
1970 goto out;
1971
1972 /*
1973 * Try to call the startup callback for each present cpu
1974 * depending on the hotplug state of the cpu.
1975 */
1976 for_each_present_cpu(cpu) {
1977 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1978 int cpustate = st->state;
1979
1980 if (cpustate < state)
1981 continue;
1982
1983 ret = cpuhp_issue_call(cpu, state, true, NULL);
1984 if (ret) {
1985 if (teardown)
1986 cpuhp_rollback_install(cpu, state, NULL);
1987 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1988 goto out;
1989 }
1990 }
1991 out:
1992 mutex_unlock(&cpuhp_state_mutex);
1993 /*
1994 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1995 * dynamically allocated state in case of success.
1996 */
1997 if (!ret && dynstate)
1998 return state;
1999 return ret;
2000 }
2001 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2002
2003 int __cpuhp_setup_state(enum cpuhp_state state,
2004 const char *name, bool invoke,
2005 int (*startup)(unsigned int cpu),
2006 int (*teardown)(unsigned int cpu),
2007 bool multi_instance)
2008 {
2009 int ret;
2010
2011 cpus_read_lock();
2012 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2013 teardown, multi_instance);
2014 cpus_read_unlock();
2015 return ret;
2016 }
2017 EXPORT_SYMBOL(__cpuhp_setup_state);
2018
2019 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2020 struct hlist_node *node, bool invoke)
2021 {
2022 struct cpuhp_step *sp = cpuhp_get_step(state);
2023 int cpu;
2024
2025 BUG_ON(cpuhp_cb_check(state));
2026
2027 if (!sp->multi_instance)
2028 return -EINVAL;
2029
2030 cpus_read_lock();
2031 mutex_lock(&cpuhp_state_mutex);
2032
2033 if (!invoke || !cpuhp_get_teardown_cb(state))
2034 goto remove;
2035 /*
2036 * Call the teardown callback for each present cpu depending
2037 * on the hotplug state of the cpu. This function is not
2038 * allowed to fail currently!
2039 */
2040 for_each_present_cpu(cpu) {
2041 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2042 int cpustate = st->state;
2043
2044 if (cpustate >= state)
2045 cpuhp_issue_call(cpu, state, false, node);
2046 }
2047
2048 remove:
2049 hlist_del(node);
2050 mutex_unlock(&cpuhp_state_mutex);
2051 cpus_read_unlock();
2052
2053 return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2056
2057 /**
2058 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2059 * @state: The state to remove
2060 * @invoke: If true, the teardown function is invoked for cpus where
2061 * cpu state >= @state
2062 *
2063 * The caller needs to hold cpus read locked while calling this function.
2064 * The teardown callback is currently not allowed to fail. Think
2065 * about module removal!
2066 */
2067 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2068 {
2069 struct cpuhp_step *sp = cpuhp_get_step(state);
2070 int cpu;
2071
2072 BUG_ON(cpuhp_cb_check(state));
2073
2074 lockdep_assert_cpus_held();
2075
2076 mutex_lock(&cpuhp_state_mutex);
2077 if (sp->multi_instance) {
2078 WARN(!hlist_empty(&sp->list),
2079 "Error: Removing state %d which has instances left.\n",
2080 state);
2081 goto remove;
2082 }
2083
2084 if (!invoke || !cpuhp_get_teardown_cb(state))
2085 goto remove;
2086
2087 /*
2088 * Call the teardown callback for each present cpu depending
2089 * on the hotplug state of the cpu. This function is not
2090 * allowed to fail currently!
2091 */
2092 for_each_present_cpu(cpu) {
2093 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2094 int cpustate = st->state;
2095
2096 if (cpustate >= state)
2097 cpuhp_issue_call(cpu, state, false, NULL);
2098 }
2099 remove:
2100 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2101 mutex_unlock(&cpuhp_state_mutex);
2102 }
2103 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2104
2105 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2106 {
2107 cpus_read_lock();
2108 __cpuhp_remove_state_cpuslocked(state, invoke);
2109 cpus_read_unlock();
2110 }
2111 EXPORT_SYMBOL(__cpuhp_remove_state);
2112
2113 #ifdef CONFIG_HOTPLUG_SMT
2114 static void cpuhp_offline_cpu_device(unsigned int cpu)
2115 {
2116 struct device *dev = get_cpu_device(cpu);
2117
2118 dev->offline = true;
2119 /* Tell user space about the state change */
2120 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2121 }
2122
2123 static void cpuhp_online_cpu_device(unsigned int cpu)
2124 {
2125 struct device *dev = get_cpu_device(cpu);
2126
2127 dev->offline = false;
2128 /* Tell user space about the state change */
2129 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2130 }
2131
2132 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2133 {
2134 int cpu, ret = 0;
2135
2136 cpu_maps_update_begin();
2137 for_each_online_cpu(cpu) {
2138 if (topology_is_primary_thread(cpu))
2139 continue;
2140 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2141 if (ret)
2142 break;
2143 /*
2144 * As this needs to hold the cpu maps lock it's impossible
2145 * to call device_offline() because that ends up calling
2146 * cpu_down() which takes cpu maps lock. cpu maps lock
2147 * needs to be held as this might race against in kernel
2148 * abusers of the hotplug machinery (thermal management).
2149 *
2150 * So nothing would update device:offline state. That would
2151 * leave the sysfs entry stale and prevent onlining after
2152 * smt control has been changed to 'off' again. This is
2153 * called under the sysfs hotplug lock, so it is properly
2154 * serialized against the regular offline usage.
2155 */
2156 cpuhp_offline_cpu_device(cpu);
2157 }
2158 if (!ret)
2159 cpu_smt_control = ctrlval;
2160 cpu_maps_update_done();
2161 return ret;
2162 }
2163
2164 int cpuhp_smt_enable(void)
2165 {
2166 int cpu, ret = 0;
2167
2168 cpu_maps_update_begin();
2169 cpu_smt_control = CPU_SMT_ENABLED;
2170 for_each_present_cpu(cpu) {
2171 /* Skip online CPUs and CPUs on offline nodes */
2172 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2173 continue;
2174 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2175 if (ret)
2176 break;
2177 /* See comment in cpuhp_smt_disable() */
2178 cpuhp_online_cpu_device(cpu);
2179 }
2180 cpu_maps_update_done();
2181 return ret;
2182 }
2183 #endif
2184
2185 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2186 static ssize_t show_cpuhp_state(struct device *dev,
2187 struct device_attribute *attr, char *buf)
2188 {
2189 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2190
2191 return sprintf(buf, "%d\n", st->state);
2192 }
2193 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2194
2195 static ssize_t write_cpuhp_target(struct device *dev,
2196 struct device_attribute *attr,
2197 const char *buf, size_t count)
2198 {
2199 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2200 struct cpuhp_step *sp;
2201 int target, ret;
2202
2203 ret = kstrtoint(buf, 10, &target);
2204 if (ret)
2205 return ret;
2206
2207 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2208 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2209 return -EINVAL;
2210 #else
2211 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2212 return -EINVAL;
2213 #endif
2214
2215 ret = lock_device_hotplug_sysfs();
2216 if (ret)
2217 return ret;
2218
2219 mutex_lock(&cpuhp_state_mutex);
2220 sp = cpuhp_get_step(target);
2221 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2222 mutex_unlock(&cpuhp_state_mutex);
2223 if (ret)
2224 goto out;
2225
2226 if (st->state < target)
2227 ret = cpu_up(dev->id, target);
2228 else
2229 ret = cpu_down(dev->id, target);
2230 out:
2231 unlock_device_hotplug();
2232 return ret ? ret : count;
2233 }
2234
2235 static ssize_t show_cpuhp_target(struct device *dev,
2236 struct device_attribute *attr, char *buf)
2237 {
2238 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239
2240 return sprintf(buf, "%d\n", st->target);
2241 }
2242 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2243
2244
2245 static ssize_t write_cpuhp_fail(struct device *dev,
2246 struct device_attribute *attr,
2247 const char *buf, size_t count)
2248 {
2249 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2250 struct cpuhp_step *sp;
2251 int fail, ret;
2252
2253 ret = kstrtoint(buf, 10, &fail);
2254 if (ret)
2255 return ret;
2256
2257 if (fail == CPUHP_INVALID) {
2258 st->fail = fail;
2259 return count;
2260 }
2261
2262 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2263 return -EINVAL;
2264
2265 /*
2266 * Cannot fail STARTING/DYING callbacks.
2267 */
2268 if (cpuhp_is_atomic_state(fail))
2269 return -EINVAL;
2270
2271 /*
2272 * DEAD callbacks cannot fail...
2273 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2274 * triggering STARTING callbacks, a failure in this state would
2275 * hinder rollback.
2276 */
2277 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2278 return -EINVAL;
2279
2280 /*
2281 * Cannot fail anything that doesn't have callbacks.
2282 */
2283 mutex_lock(&cpuhp_state_mutex);
2284 sp = cpuhp_get_step(fail);
2285 if (!sp->startup.single && !sp->teardown.single)
2286 ret = -EINVAL;
2287 mutex_unlock(&cpuhp_state_mutex);
2288 if (ret)
2289 return ret;
2290
2291 st->fail = fail;
2292
2293 return count;
2294 }
2295
2296 static ssize_t show_cpuhp_fail(struct device *dev,
2297 struct device_attribute *attr, char *buf)
2298 {
2299 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2300
2301 return sprintf(buf, "%d\n", st->fail);
2302 }
2303
2304 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2305
2306 static struct attribute *cpuhp_cpu_attrs[] = {
2307 &dev_attr_state.attr,
2308 &dev_attr_target.attr,
2309 &dev_attr_fail.attr,
2310 NULL
2311 };
2312
2313 static const struct attribute_group cpuhp_cpu_attr_group = {
2314 .attrs = cpuhp_cpu_attrs,
2315 .name = "hotplug",
2316 NULL
2317 };
2318
2319 static ssize_t show_cpuhp_states(struct device *dev,
2320 struct device_attribute *attr, char *buf)
2321 {
2322 ssize_t cur, res = 0;
2323 int i;
2324
2325 mutex_lock(&cpuhp_state_mutex);
2326 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2327 struct cpuhp_step *sp = cpuhp_get_step(i);
2328
2329 if (sp->name) {
2330 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2331 buf += cur;
2332 res += cur;
2333 }
2334 }
2335 mutex_unlock(&cpuhp_state_mutex);
2336 return res;
2337 }
2338 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2339
2340 static struct attribute *cpuhp_cpu_root_attrs[] = {
2341 &dev_attr_states.attr,
2342 NULL
2343 };
2344
2345 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2346 .attrs = cpuhp_cpu_root_attrs,
2347 .name = "hotplug",
2348 NULL
2349 };
2350
2351 #ifdef CONFIG_HOTPLUG_SMT
2352
2353 static ssize_t
2354 __store_smt_control(struct device *dev, struct device_attribute *attr,
2355 const char *buf, size_t count)
2356 {
2357 int ctrlval, ret;
2358
2359 if (sysfs_streq(buf, "on"))
2360 ctrlval = CPU_SMT_ENABLED;
2361 else if (sysfs_streq(buf, "off"))
2362 ctrlval = CPU_SMT_DISABLED;
2363 else if (sysfs_streq(buf, "forceoff"))
2364 ctrlval = CPU_SMT_FORCE_DISABLED;
2365 else
2366 return -EINVAL;
2367
2368 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2369 return -EPERM;
2370
2371 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2372 return -ENODEV;
2373
2374 ret = lock_device_hotplug_sysfs();
2375 if (ret)
2376 return ret;
2377
2378 if (ctrlval != cpu_smt_control) {
2379 switch (ctrlval) {
2380 case CPU_SMT_ENABLED:
2381 ret = cpuhp_smt_enable();
2382 break;
2383 case CPU_SMT_DISABLED:
2384 case CPU_SMT_FORCE_DISABLED:
2385 ret = cpuhp_smt_disable(ctrlval);
2386 break;
2387 }
2388 }
2389
2390 unlock_device_hotplug();
2391 return ret ? ret : count;
2392 }
2393
2394 #else /* !CONFIG_HOTPLUG_SMT */
2395 static ssize_t
2396 __store_smt_control(struct device *dev, struct device_attribute *attr,
2397 const char *buf, size_t count)
2398 {
2399 return -ENODEV;
2400 }
2401 #endif /* CONFIG_HOTPLUG_SMT */
2402
2403 static const char *smt_states[] = {
2404 [CPU_SMT_ENABLED] = "on",
2405 [CPU_SMT_DISABLED] = "off",
2406 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2407 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2408 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2409 };
2410
2411 static ssize_t
2412 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2413 {
2414 const char *state = smt_states[cpu_smt_control];
2415
2416 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2417 }
2418
2419 static ssize_t
2420 store_smt_control(struct device *dev, struct device_attribute *attr,
2421 const char *buf, size_t count)
2422 {
2423 return __store_smt_control(dev, attr, buf, count);
2424 }
2425 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2426
2427 static ssize_t
2428 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2429 {
2430 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2431 }
2432 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2433
2434 static struct attribute *cpuhp_smt_attrs[] = {
2435 &dev_attr_control.attr,
2436 &dev_attr_active.attr,
2437 NULL
2438 };
2439
2440 static const struct attribute_group cpuhp_smt_attr_group = {
2441 .attrs = cpuhp_smt_attrs,
2442 .name = "smt",
2443 NULL
2444 };
2445
2446 static int __init cpu_smt_sysfs_init(void)
2447 {
2448 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2449 &cpuhp_smt_attr_group);
2450 }
2451
2452 static int __init cpuhp_sysfs_init(void)
2453 {
2454 int cpu, ret;
2455
2456 ret = cpu_smt_sysfs_init();
2457 if (ret)
2458 return ret;
2459
2460 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2461 &cpuhp_cpu_root_attr_group);
2462 if (ret)
2463 return ret;
2464
2465 for_each_possible_cpu(cpu) {
2466 struct device *dev = get_cpu_device(cpu);
2467
2468 if (!dev)
2469 continue;
2470 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2471 if (ret)
2472 return ret;
2473 }
2474 return 0;
2475 }
2476 device_initcall(cpuhp_sysfs_init);
2477 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2478
2479 /*
2480 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2481 * represents all NR_CPUS bits binary values of 1<<nr.
2482 *
2483 * It is used by cpumask_of() to get a constant address to a CPU
2484 * mask value that has a single bit set only.
2485 */
2486
2487 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2488 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2489 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2490 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2491 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2492
2493 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2494
2495 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2496 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2497 #if BITS_PER_LONG > 32
2498 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2499 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2500 #endif
2501 };
2502 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2503
2504 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2505 EXPORT_SYMBOL(cpu_all_bits);
2506
2507 #ifdef CONFIG_INIT_ALL_POSSIBLE
2508 struct cpumask __cpu_possible_mask __read_mostly
2509 = {CPU_BITS_ALL};
2510 #else
2511 struct cpumask __cpu_possible_mask __read_mostly;
2512 #endif
2513 EXPORT_SYMBOL(__cpu_possible_mask);
2514
2515 struct cpumask __cpu_online_mask __read_mostly;
2516 EXPORT_SYMBOL(__cpu_online_mask);
2517
2518 struct cpumask __cpu_present_mask __read_mostly;
2519 EXPORT_SYMBOL(__cpu_present_mask);
2520
2521 struct cpumask __cpu_active_mask __read_mostly;
2522 EXPORT_SYMBOL(__cpu_active_mask);
2523
2524 struct cpumask __cpu_dying_mask __read_mostly;
2525 EXPORT_SYMBOL(__cpu_dying_mask);
2526
2527 atomic_t __num_online_cpus __read_mostly;
2528 EXPORT_SYMBOL(__num_online_cpus);
2529
2530 void init_cpu_present(const struct cpumask *src)
2531 {
2532 cpumask_copy(&__cpu_present_mask, src);
2533 }
2534
2535 void init_cpu_possible(const struct cpumask *src)
2536 {
2537 cpumask_copy(&__cpu_possible_mask, src);
2538 }
2539
2540 void init_cpu_online(const struct cpumask *src)
2541 {
2542 cpumask_copy(&__cpu_online_mask, src);
2543 }
2544
2545 void set_cpu_online(unsigned int cpu, bool online)
2546 {
2547 /*
2548 * atomic_inc/dec() is required to handle the horrid abuse of this
2549 * function by the reboot and kexec code which invoke it from
2550 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2551 * regular CPU hotplug is properly serialized.
2552 *
2553 * Note, that the fact that __num_online_cpus is of type atomic_t
2554 * does not protect readers which are not serialized against
2555 * concurrent hotplug operations.
2556 */
2557 if (online) {
2558 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2559 atomic_inc(&__num_online_cpus);
2560 } else {
2561 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2562 atomic_dec(&__num_online_cpus);
2563 }
2564 }
2565
2566 /*
2567 * Activate the first processor.
2568 */
2569 void __init boot_cpu_init(void)
2570 {
2571 int cpu = smp_processor_id();
2572
2573 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2574 set_cpu_online(cpu, true);
2575 set_cpu_active(cpu, true);
2576 set_cpu_present(cpu, true);
2577 set_cpu_possible(cpu, true);
2578
2579 #ifdef CONFIG_SMP
2580 __boot_cpu_id = cpu;
2581 #endif
2582 }
2583
2584 /*
2585 * Must be called _AFTER_ setting up the per_cpu areas
2586 */
2587 void __init boot_cpu_hotplug_init(void)
2588 {
2589 #ifdef CONFIG_SMP
2590 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2591 #endif
2592 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2593 }
2594
2595 /*
2596 * These are used for a global "mitigations=" cmdline option for toggling
2597 * optional CPU mitigations.
2598 */
2599 enum cpu_mitigations {
2600 CPU_MITIGATIONS_OFF,
2601 CPU_MITIGATIONS_AUTO,
2602 CPU_MITIGATIONS_AUTO_NOSMT,
2603 };
2604
2605 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2606 CPU_MITIGATIONS_AUTO;
2607
2608 static int __init mitigations_parse_cmdline(char *arg)
2609 {
2610 if (!strcmp(arg, "off"))
2611 cpu_mitigations = CPU_MITIGATIONS_OFF;
2612 else if (!strcmp(arg, "auto"))
2613 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2614 else if (!strcmp(arg, "auto,nosmt"))
2615 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2616 else
2617 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2618 arg);
2619
2620 return 0;
2621 }
2622 early_param("mitigations", mitigations_parse_cmdline);
2623
2624 /* mitigations=off */
2625 bool cpu_mitigations_off(void)
2626 {
2627 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2628 }
2629 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2630
2631 /* mitigations=auto,nosmt */
2632 bool cpu_mitigations_auto_nosmt(void)
2633 {
2634 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2635 }
2636 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);