]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cpuset.c
workqueue: use %*pb[l] to format bitmaps including cpumasks and nodemasks
[mirror_ubuntu-zesty-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
107
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
120 struct fmeter fmeter; /* memory_pressure filter */
121
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
128 /* partition number for rebuild_sched_domains() */
129 int pn;
130
131 /* for custom sched domain */
132 int relax_domain_level;
133 };
134
135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136 {
137 return css ? container_of(css, struct cpuset, css) : NULL;
138 }
139
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset *task_cs(struct task_struct *task)
142 {
143 return css_cs(task_css(task, cpuset_cgrp_id));
144 }
145
146 static inline struct cpuset *parent_cs(struct cpuset *cs)
147 {
148 return css_cs(cs->css.parent);
149 }
150
151 #ifdef CONFIG_NUMA
152 static inline bool task_has_mempolicy(struct task_struct *task)
153 {
154 return task->mempolicy;
155 }
156 #else
157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 return false;
160 }
161 #endif
162
163
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 CS_ONLINE,
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
169 CS_MEM_HARDWALL,
170 CS_MEMORY_MIGRATE,
171 CS_SCHED_LOAD_BALANCE,
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
175
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset *cs)
178 {
179 return test_bit(CS_ONLINE, &cs->flags);
180 }
181
182 static inline int is_cpu_exclusive(const struct cpuset *cs)
183 {
184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
185 }
186
187 static inline int is_mem_exclusive(const struct cpuset *cs)
188 {
189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
190 }
191
192 static inline int is_mem_hardwall(const struct cpuset *cs)
193 {
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195 }
196
197 static inline int is_sched_load_balance(const struct cpuset *cs)
198 {
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200 }
201
202 static inline int is_memory_migrate(const struct cpuset *cs)
203 {
204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 }
206
207 static inline int is_spread_page(const struct cpuset *cs)
208 {
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210 }
211
212 static inline int is_spread_slab(const struct cpuset *cs)
213 {
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215 }
216
217 static struct cpuset top_cpuset = {
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
220 };
221
222 /**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234
235 /**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
245 */
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249
250 /*
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
255 *
256 * A task must hold both locks to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_lock and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
264 * everyone else.
265 *
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_lock, as that would risk double tripping on callback_lock
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
271 * If a task is only holding callback_lock, then it has read-only
272 * access to cpusets.
273 *
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
277 *
278 * The cpuset_common_file_read() handlers only hold callback_lock across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
284 */
285
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_SPINLOCK(callback_lock);
288
289 /*
290 * CPU / memory hotplug is handled asynchronously.
291 */
292 static void cpuset_hotplug_workfn(struct work_struct *work);
293 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
294
295 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
296
297 /*
298 * This is ugly, but preserves the userspace API for existing cpuset
299 * users. If someone tries to mount the "cpuset" filesystem, we
300 * silently switch it to mount "cgroup" instead
301 */
302 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 int flags, const char *unused_dev_name, void *data)
304 {
305 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
306 struct dentry *ret = ERR_PTR(-ENODEV);
307 if (cgroup_fs) {
308 char mountopts[] =
309 "cpuset,noprefix,"
310 "release_agent=/sbin/cpuset_release_agent";
311 ret = cgroup_fs->mount(cgroup_fs, flags,
312 unused_dev_name, mountopts);
313 put_filesystem(cgroup_fs);
314 }
315 return ret;
316 }
317
318 static struct file_system_type cpuset_fs_type = {
319 .name = "cpuset",
320 .mount = cpuset_mount,
321 };
322
323 /*
324 * Return in pmask the portion of a cpusets's cpus_allowed that
325 * are online. If none are online, walk up the cpuset hierarchy
326 * until we find one that does have some online cpus. The top
327 * cpuset always has some cpus online.
328 *
329 * One way or another, we guarantee to return some non-empty subset
330 * of cpu_online_mask.
331 *
332 * Call with callback_lock or cpuset_mutex held.
333 */
334 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
335 {
336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
337 cs = parent_cs(cs);
338 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
339 }
340
341 /*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
345 * online mems. The top cpuset always has some mems online.
346 *
347 * One way or another, we guarantee to return some non-empty subset
348 * of node_states[N_MEMORY].
349 *
350 * Call with callback_lock or cpuset_mutex held.
351 */
352 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
353 {
354 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
355 cs = parent_cs(cs);
356 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
357 }
358
359 /*
360 * update task's spread flag if cpuset's page/slab spread flag is set
361 *
362 * Call with callback_lock or cpuset_mutex held.
363 */
364 static void cpuset_update_task_spread_flag(struct cpuset *cs,
365 struct task_struct *tsk)
366 {
367 if (is_spread_page(cs))
368 task_set_spread_page(tsk);
369 else
370 task_clear_spread_page(tsk);
371
372 if (is_spread_slab(cs))
373 task_set_spread_slab(tsk);
374 else
375 task_clear_spread_slab(tsk);
376 }
377
378 /*
379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
380 *
381 * One cpuset is a subset of another if all its allowed CPUs and
382 * Memory Nodes are a subset of the other, and its exclusive flags
383 * are only set if the other's are set. Call holding cpuset_mutex.
384 */
385
386 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
387 {
388 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
389 nodes_subset(p->mems_allowed, q->mems_allowed) &&
390 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
391 is_mem_exclusive(p) <= is_mem_exclusive(q);
392 }
393
394 /**
395 * alloc_trial_cpuset - allocate a trial cpuset
396 * @cs: the cpuset that the trial cpuset duplicates
397 */
398 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
399 {
400 struct cpuset *trial;
401
402 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
403 if (!trial)
404 return NULL;
405
406 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
407 goto free_cs;
408 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
409 goto free_cpus;
410
411 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
412 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
413 return trial;
414
415 free_cpus:
416 free_cpumask_var(trial->cpus_allowed);
417 free_cs:
418 kfree(trial);
419 return NULL;
420 }
421
422 /**
423 * free_trial_cpuset - free the trial cpuset
424 * @trial: the trial cpuset to be freed
425 */
426 static void free_trial_cpuset(struct cpuset *trial)
427 {
428 free_cpumask_var(trial->effective_cpus);
429 free_cpumask_var(trial->cpus_allowed);
430 kfree(trial);
431 }
432
433 /*
434 * validate_change() - Used to validate that any proposed cpuset change
435 * follows the structural rules for cpusets.
436 *
437 * If we replaced the flag and mask values of the current cpuset
438 * (cur) with those values in the trial cpuset (trial), would
439 * our various subset and exclusive rules still be valid? Presumes
440 * cpuset_mutex held.
441 *
442 * 'cur' is the address of an actual, in-use cpuset. Operations
443 * such as list traversal that depend on the actual address of the
444 * cpuset in the list must use cur below, not trial.
445 *
446 * 'trial' is the address of bulk structure copy of cur, with
447 * perhaps one or more of the fields cpus_allowed, mems_allowed,
448 * or flags changed to new, trial values.
449 *
450 * Return 0 if valid, -errno if not.
451 */
452
453 static int validate_change(struct cpuset *cur, struct cpuset *trial)
454 {
455 struct cgroup_subsys_state *css;
456 struct cpuset *c, *par;
457 int ret;
458
459 rcu_read_lock();
460
461 /* Each of our child cpusets must be a subset of us */
462 ret = -EBUSY;
463 cpuset_for_each_child(c, css, cur)
464 if (!is_cpuset_subset(c, trial))
465 goto out;
466
467 /* Remaining checks don't apply to root cpuset */
468 ret = 0;
469 if (cur == &top_cpuset)
470 goto out;
471
472 par = parent_cs(cur);
473
474 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
475 ret = -EACCES;
476 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
477 goto out;
478
479 /*
480 * If either I or some sibling (!= me) is exclusive, we can't
481 * overlap
482 */
483 ret = -EINVAL;
484 cpuset_for_each_child(c, css, par) {
485 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
486 c != cur &&
487 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
488 goto out;
489 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
490 c != cur &&
491 nodes_intersects(trial->mems_allowed, c->mems_allowed))
492 goto out;
493 }
494
495 /*
496 * Cpusets with tasks - existing or newly being attached - can't
497 * be changed to have empty cpus_allowed or mems_allowed.
498 */
499 ret = -ENOSPC;
500 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
501 if (!cpumask_empty(cur->cpus_allowed) &&
502 cpumask_empty(trial->cpus_allowed))
503 goto out;
504 if (!nodes_empty(cur->mems_allowed) &&
505 nodes_empty(trial->mems_allowed))
506 goto out;
507 }
508
509 /*
510 * We can't shrink if we won't have enough room for SCHED_DEADLINE
511 * tasks.
512 */
513 ret = -EBUSY;
514 if (is_cpu_exclusive(cur) &&
515 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
516 trial->cpus_allowed))
517 goto out;
518
519 ret = 0;
520 out:
521 rcu_read_unlock();
522 return ret;
523 }
524
525 #ifdef CONFIG_SMP
526 /*
527 * Helper routine for generate_sched_domains().
528 * Do cpusets a, b have overlapping effective cpus_allowed masks?
529 */
530 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
531 {
532 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
533 }
534
535 static void
536 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
537 {
538 if (dattr->relax_domain_level < c->relax_domain_level)
539 dattr->relax_domain_level = c->relax_domain_level;
540 return;
541 }
542
543 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
544 struct cpuset *root_cs)
545 {
546 struct cpuset *cp;
547 struct cgroup_subsys_state *pos_css;
548
549 rcu_read_lock();
550 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
551 if (cp == root_cs)
552 continue;
553
554 /* skip the whole subtree if @cp doesn't have any CPU */
555 if (cpumask_empty(cp->cpus_allowed)) {
556 pos_css = css_rightmost_descendant(pos_css);
557 continue;
558 }
559
560 if (is_sched_load_balance(cp))
561 update_domain_attr(dattr, cp);
562 }
563 rcu_read_unlock();
564 }
565
566 /*
567 * generate_sched_domains()
568 *
569 * This function builds a partial partition of the systems CPUs
570 * A 'partial partition' is a set of non-overlapping subsets whose
571 * union is a subset of that set.
572 * The output of this function needs to be passed to kernel/sched/core.c
573 * partition_sched_domains() routine, which will rebuild the scheduler's
574 * load balancing domains (sched domains) as specified by that partial
575 * partition.
576 *
577 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
578 * for a background explanation of this.
579 *
580 * Does not return errors, on the theory that the callers of this
581 * routine would rather not worry about failures to rebuild sched
582 * domains when operating in the severe memory shortage situations
583 * that could cause allocation failures below.
584 *
585 * Must be called with cpuset_mutex held.
586 *
587 * The three key local variables below are:
588 * q - a linked-list queue of cpuset pointers, used to implement a
589 * top-down scan of all cpusets. This scan loads a pointer
590 * to each cpuset marked is_sched_load_balance into the
591 * array 'csa'. For our purposes, rebuilding the schedulers
592 * sched domains, we can ignore !is_sched_load_balance cpusets.
593 * csa - (for CpuSet Array) Array of pointers to all the cpusets
594 * that need to be load balanced, for convenient iterative
595 * access by the subsequent code that finds the best partition,
596 * i.e the set of domains (subsets) of CPUs such that the
597 * cpus_allowed of every cpuset marked is_sched_load_balance
598 * is a subset of one of these domains, while there are as
599 * many such domains as possible, each as small as possible.
600 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
601 * the kernel/sched/core.c routine partition_sched_domains() in a
602 * convenient format, that can be easily compared to the prior
603 * value to determine what partition elements (sched domains)
604 * were changed (added or removed.)
605 *
606 * Finding the best partition (set of domains):
607 * The triple nested loops below over i, j, k scan over the
608 * load balanced cpusets (using the array of cpuset pointers in
609 * csa[]) looking for pairs of cpusets that have overlapping
610 * cpus_allowed, but which don't have the same 'pn' partition
611 * number and gives them in the same partition number. It keeps
612 * looping on the 'restart' label until it can no longer find
613 * any such pairs.
614 *
615 * The union of the cpus_allowed masks from the set of
616 * all cpusets having the same 'pn' value then form the one
617 * element of the partition (one sched domain) to be passed to
618 * partition_sched_domains().
619 */
620 static int generate_sched_domains(cpumask_var_t **domains,
621 struct sched_domain_attr **attributes)
622 {
623 struct cpuset *cp; /* scans q */
624 struct cpuset **csa; /* array of all cpuset ptrs */
625 int csn; /* how many cpuset ptrs in csa so far */
626 int i, j, k; /* indices for partition finding loops */
627 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
628 struct sched_domain_attr *dattr; /* attributes for custom domains */
629 int ndoms = 0; /* number of sched domains in result */
630 int nslot; /* next empty doms[] struct cpumask slot */
631 struct cgroup_subsys_state *pos_css;
632
633 doms = NULL;
634 dattr = NULL;
635 csa = NULL;
636
637 /* Special case for the 99% of systems with one, full, sched domain */
638 if (is_sched_load_balance(&top_cpuset)) {
639 ndoms = 1;
640 doms = alloc_sched_domains(ndoms);
641 if (!doms)
642 goto done;
643
644 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
645 if (dattr) {
646 *dattr = SD_ATTR_INIT;
647 update_domain_attr_tree(dattr, &top_cpuset);
648 }
649 cpumask_copy(doms[0], top_cpuset.effective_cpus);
650
651 goto done;
652 }
653
654 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
655 if (!csa)
656 goto done;
657 csn = 0;
658
659 rcu_read_lock();
660 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
661 if (cp == &top_cpuset)
662 continue;
663 /*
664 * Continue traversing beyond @cp iff @cp has some CPUs and
665 * isn't load balancing. The former is obvious. The
666 * latter: All child cpusets contain a subset of the
667 * parent's cpus, so just skip them, and then we call
668 * update_domain_attr_tree() to calc relax_domain_level of
669 * the corresponding sched domain.
670 */
671 if (!cpumask_empty(cp->cpus_allowed) &&
672 !is_sched_load_balance(cp))
673 continue;
674
675 if (is_sched_load_balance(cp))
676 csa[csn++] = cp;
677
678 /* skip @cp's subtree */
679 pos_css = css_rightmost_descendant(pos_css);
680 }
681 rcu_read_unlock();
682
683 for (i = 0; i < csn; i++)
684 csa[i]->pn = i;
685 ndoms = csn;
686
687 restart:
688 /* Find the best partition (set of sched domains) */
689 for (i = 0; i < csn; i++) {
690 struct cpuset *a = csa[i];
691 int apn = a->pn;
692
693 for (j = 0; j < csn; j++) {
694 struct cpuset *b = csa[j];
695 int bpn = b->pn;
696
697 if (apn != bpn && cpusets_overlap(a, b)) {
698 for (k = 0; k < csn; k++) {
699 struct cpuset *c = csa[k];
700
701 if (c->pn == bpn)
702 c->pn = apn;
703 }
704 ndoms--; /* one less element */
705 goto restart;
706 }
707 }
708 }
709
710 /*
711 * Now we know how many domains to create.
712 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
713 */
714 doms = alloc_sched_domains(ndoms);
715 if (!doms)
716 goto done;
717
718 /*
719 * The rest of the code, including the scheduler, can deal with
720 * dattr==NULL case. No need to abort if alloc fails.
721 */
722 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
723
724 for (nslot = 0, i = 0; i < csn; i++) {
725 struct cpuset *a = csa[i];
726 struct cpumask *dp;
727 int apn = a->pn;
728
729 if (apn < 0) {
730 /* Skip completed partitions */
731 continue;
732 }
733
734 dp = doms[nslot];
735
736 if (nslot == ndoms) {
737 static int warnings = 10;
738 if (warnings) {
739 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
740 nslot, ndoms, csn, i, apn);
741 warnings--;
742 }
743 continue;
744 }
745
746 cpumask_clear(dp);
747 if (dattr)
748 *(dattr + nslot) = SD_ATTR_INIT;
749 for (j = i; j < csn; j++) {
750 struct cpuset *b = csa[j];
751
752 if (apn == b->pn) {
753 cpumask_or(dp, dp, b->effective_cpus);
754 if (dattr)
755 update_domain_attr_tree(dattr + nslot, b);
756
757 /* Done with this partition */
758 b->pn = -1;
759 }
760 }
761 nslot++;
762 }
763 BUG_ON(nslot != ndoms);
764
765 done:
766 kfree(csa);
767
768 /*
769 * Fallback to the default domain if kmalloc() failed.
770 * See comments in partition_sched_domains().
771 */
772 if (doms == NULL)
773 ndoms = 1;
774
775 *domains = doms;
776 *attributes = dattr;
777 return ndoms;
778 }
779
780 /*
781 * Rebuild scheduler domains.
782 *
783 * If the flag 'sched_load_balance' of any cpuset with non-empty
784 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
785 * which has that flag enabled, or if any cpuset with a non-empty
786 * 'cpus' is removed, then call this routine to rebuild the
787 * scheduler's dynamic sched domains.
788 *
789 * Call with cpuset_mutex held. Takes get_online_cpus().
790 */
791 static void rebuild_sched_domains_locked(void)
792 {
793 struct sched_domain_attr *attr;
794 cpumask_var_t *doms;
795 int ndoms;
796
797 lockdep_assert_held(&cpuset_mutex);
798 get_online_cpus();
799
800 /*
801 * We have raced with CPU hotplug. Don't do anything to avoid
802 * passing doms with offlined cpu to partition_sched_domains().
803 * Anyways, hotplug work item will rebuild sched domains.
804 */
805 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
806 goto out;
807
808 /* Generate domain masks and attrs */
809 ndoms = generate_sched_domains(&doms, &attr);
810
811 /* Have scheduler rebuild the domains */
812 partition_sched_domains(ndoms, doms, attr);
813 out:
814 put_online_cpus();
815 }
816 #else /* !CONFIG_SMP */
817 static void rebuild_sched_domains_locked(void)
818 {
819 }
820 #endif /* CONFIG_SMP */
821
822 void rebuild_sched_domains(void)
823 {
824 mutex_lock(&cpuset_mutex);
825 rebuild_sched_domains_locked();
826 mutex_unlock(&cpuset_mutex);
827 }
828
829 /**
830 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
831 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
832 *
833 * Iterate through each task of @cs updating its cpus_allowed to the
834 * effective cpuset's. As this function is called with cpuset_mutex held,
835 * cpuset membership stays stable.
836 */
837 static void update_tasks_cpumask(struct cpuset *cs)
838 {
839 struct css_task_iter it;
840 struct task_struct *task;
841
842 css_task_iter_start(&cs->css, &it);
843 while ((task = css_task_iter_next(&it)))
844 set_cpus_allowed_ptr(task, cs->effective_cpus);
845 css_task_iter_end(&it);
846 }
847
848 /*
849 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
850 * @cs: the cpuset to consider
851 * @new_cpus: temp variable for calculating new effective_cpus
852 *
853 * When congifured cpumask is changed, the effective cpumasks of this cpuset
854 * and all its descendants need to be updated.
855 *
856 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
857 *
858 * Called with cpuset_mutex held
859 */
860 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
861 {
862 struct cpuset *cp;
863 struct cgroup_subsys_state *pos_css;
864 bool need_rebuild_sched_domains = false;
865
866 rcu_read_lock();
867 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
868 struct cpuset *parent = parent_cs(cp);
869
870 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
871
872 /*
873 * If it becomes empty, inherit the effective mask of the
874 * parent, which is guaranteed to have some CPUs.
875 */
876 if (cpumask_empty(new_cpus))
877 cpumask_copy(new_cpus, parent->effective_cpus);
878
879 /* Skip the whole subtree if the cpumask remains the same. */
880 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
881 pos_css = css_rightmost_descendant(pos_css);
882 continue;
883 }
884
885 if (!css_tryget_online(&cp->css))
886 continue;
887 rcu_read_unlock();
888
889 spin_lock_irq(&callback_lock);
890 cpumask_copy(cp->effective_cpus, new_cpus);
891 spin_unlock_irq(&callback_lock);
892
893 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
894 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
895
896 update_tasks_cpumask(cp);
897
898 /*
899 * If the effective cpumask of any non-empty cpuset is changed,
900 * we need to rebuild sched domains.
901 */
902 if (!cpumask_empty(cp->cpus_allowed) &&
903 is_sched_load_balance(cp))
904 need_rebuild_sched_domains = true;
905
906 rcu_read_lock();
907 css_put(&cp->css);
908 }
909 rcu_read_unlock();
910
911 if (need_rebuild_sched_domains)
912 rebuild_sched_domains_locked();
913 }
914
915 /**
916 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
917 * @cs: the cpuset to consider
918 * @trialcs: trial cpuset
919 * @buf: buffer of cpu numbers written to this cpuset
920 */
921 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
922 const char *buf)
923 {
924 int retval;
925
926 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
927 if (cs == &top_cpuset)
928 return -EACCES;
929
930 /*
931 * An empty cpus_allowed is ok only if the cpuset has no tasks.
932 * Since cpulist_parse() fails on an empty mask, we special case
933 * that parsing. The validate_change() call ensures that cpusets
934 * with tasks have cpus.
935 */
936 if (!*buf) {
937 cpumask_clear(trialcs->cpus_allowed);
938 } else {
939 retval = cpulist_parse(buf, trialcs->cpus_allowed);
940 if (retval < 0)
941 return retval;
942
943 if (!cpumask_subset(trialcs->cpus_allowed,
944 top_cpuset.cpus_allowed))
945 return -EINVAL;
946 }
947
948 /* Nothing to do if the cpus didn't change */
949 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
950 return 0;
951
952 retval = validate_change(cs, trialcs);
953 if (retval < 0)
954 return retval;
955
956 spin_lock_irq(&callback_lock);
957 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
958 spin_unlock_irq(&callback_lock);
959
960 /* use trialcs->cpus_allowed as a temp variable */
961 update_cpumasks_hier(cs, trialcs->cpus_allowed);
962 return 0;
963 }
964
965 /*
966 * cpuset_migrate_mm
967 *
968 * Migrate memory region from one set of nodes to another.
969 *
970 * Temporarilly set tasks mems_allowed to target nodes of migration,
971 * so that the migration code can allocate pages on these nodes.
972 *
973 * While the mm_struct we are migrating is typically from some
974 * other task, the task_struct mems_allowed that we are hacking
975 * is for our current task, which must allocate new pages for that
976 * migrating memory region.
977 */
978
979 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
980 const nodemask_t *to)
981 {
982 struct task_struct *tsk = current;
983
984 tsk->mems_allowed = *to;
985
986 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
987
988 rcu_read_lock();
989 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
990 rcu_read_unlock();
991 }
992
993 /*
994 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
995 * @tsk: the task to change
996 * @newmems: new nodes that the task will be set
997 *
998 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
999 * we structure updates as setting all new allowed nodes, then clearing newly
1000 * disallowed ones.
1001 */
1002 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1003 nodemask_t *newmems)
1004 {
1005 bool need_loop;
1006
1007 /*
1008 * Allow tasks that have access to memory reserves because they have
1009 * been OOM killed to get memory anywhere.
1010 */
1011 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1012 return;
1013 if (current->flags & PF_EXITING) /* Let dying task have memory */
1014 return;
1015
1016 task_lock(tsk);
1017 /*
1018 * Determine if a loop is necessary if another thread is doing
1019 * read_mems_allowed_begin(). If at least one node remains unchanged and
1020 * tsk does not have a mempolicy, then an empty nodemask will not be
1021 * possible when mems_allowed is larger than a word.
1022 */
1023 need_loop = task_has_mempolicy(tsk) ||
1024 !nodes_intersects(*newmems, tsk->mems_allowed);
1025
1026 if (need_loop) {
1027 local_irq_disable();
1028 write_seqcount_begin(&tsk->mems_allowed_seq);
1029 }
1030
1031 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1032 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1033
1034 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1035 tsk->mems_allowed = *newmems;
1036
1037 if (need_loop) {
1038 write_seqcount_end(&tsk->mems_allowed_seq);
1039 local_irq_enable();
1040 }
1041
1042 task_unlock(tsk);
1043 }
1044
1045 static void *cpuset_being_rebound;
1046
1047 /**
1048 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1049 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1050 *
1051 * Iterate through each task of @cs updating its mems_allowed to the
1052 * effective cpuset's. As this function is called with cpuset_mutex held,
1053 * cpuset membership stays stable.
1054 */
1055 static void update_tasks_nodemask(struct cpuset *cs)
1056 {
1057 static nodemask_t newmems; /* protected by cpuset_mutex */
1058 struct css_task_iter it;
1059 struct task_struct *task;
1060
1061 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1062
1063 guarantee_online_mems(cs, &newmems);
1064
1065 /*
1066 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1067 * take while holding tasklist_lock. Forks can happen - the
1068 * mpol_dup() cpuset_being_rebound check will catch such forks,
1069 * and rebind their vma mempolicies too. Because we still hold
1070 * the global cpuset_mutex, we know that no other rebind effort
1071 * will be contending for the global variable cpuset_being_rebound.
1072 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1073 * is idempotent. Also migrate pages in each mm to new nodes.
1074 */
1075 css_task_iter_start(&cs->css, &it);
1076 while ((task = css_task_iter_next(&it))) {
1077 struct mm_struct *mm;
1078 bool migrate;
1079
1080 cpuset_change_task_nodemask(task, &newmems);
1081
1082 mm = get_task_mm(task);
1083 if (!mm)
1084 continue;
1085
1086 migrate = is_memory_migrate(cs);
1087
1088 mpol_rebind_mm(mm, &cs->mems_allowed);
1089 if (migrate)
1090 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1091 mmput(mm);
1092 }
1093 css_task_iter_end(&it);
1094
1095 /*
1096 * All the tasks' nodemasks have been updated, update
1097 * cs->old_mems_allowed.
1098 */
1099 cs->old_mems_allowed = newmems;
1100
1101 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1102 cpuset_being_rebound = NULL;
1103 }
1104
1105 /*
1106 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1107 * @cs: the cpuset to consider
1108 * @new_mems: a temp variable for calculating new effective_mems
1109 *
1110 * When configured nodemask is changed, the effective nodemasks of this cpuset
1111 * and all its descendants need to be updated.
1112 *
1113 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1114 *
1115 * Called with cpuset_mutex held
1116 */
1117 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1118 {
1119 struct cpuset *cp;
1120 struct cgroup_subsys_state *pos_css;
1121
1122 rcu_read_lock();
1123 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1124 struct cpuset *parent = parent_cs(cp);
1125
1126 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1127
1128 /*
1129 * If it becomes empty, inherit the effective mask of the
1130 * parent, which is guaranteed to have some MEMs.
1131 */
1132 if (nodes_empty(*new_mems))
1133 *new_mems = parent->effective_mems;
1134
1135 /* Skip the whole subtree if the nodemask remains the same. */
1136 if (nodes_equal(*new_mems, cp->effective_mems)) {
1137 pos_css = css_rightmost_descendant(pos_css);
1138 continue;
1139 }
1140
1141 if (!css_tryget_online(&cp->css))
1142 continue;
1143 rcu_read_unlock();
1144
1145 spin_lock_irq(&callback_lock);
1146 cp->effective_mems = *new_mems;
1147 spin_unlock_irq(&callback_lock);
1148
1149 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1150 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1151
1152 update_tasks_nodemask(cp);
1153
1154 rcu_read_lock();
1155 css_put(&cp->css);
1156 }
1157 rcu_read_unlock();
1158 }
1159
1160 /*
1161 * Handle user request to change the 'mems' memory placement
1162 * of a cpuset. Needs to validate the request, update the
1163 * cpusets mems_allowed, and for each task in the cpuset,
1164 * update mems_allowed and rebind task's mempolicy and any vma
1165 * mempolicies and if the cpuset is marked 'memory_migrate',
1166 * migrate the tasks pages to the new memory.
1167 *
1168 * Call with cpuset_mutex held. May take callback_lock during call.
1169 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1170 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1171 * their mempolicies to the cpusets new mems_allowed.
1172 */
1173 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1174 const char *buf)
1175 {
1176 int retval;
1177
1178 /*
1179 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1180 * it's read-only
1181 */
1182 if (cs == &top_cpuset) {
1183 retval = -EACCES;
1184 goto done;
1185 }
1186
1187 /*
1188 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1189 * Since nodelist_parse() fails on an empty mask, we special case
1190 * that parsing. The validate_change() call ensures that cpusets
1191 * with tasks have memory.
1192 */
1193 if (!*buf) {
1194 nodes_clear(trialcs->mems_allowed);
1195 } else {
1196 retval = nodelist_parse(buf, trialcs->mems_allowed);
1197 if (retval < 0)
1198 goto done;
1199
1200 if (!nodes_subset(trialcs->mems_allowed,
1201 top_cpuset.mems_allowed)) {
1202 retval = -EINVAL;
1203 goto done;
1204 }
1205 }
1206
1207 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1208 retval = 0; /* Too easy - nothing to do */
1209 goto done;
1210 }
1211 retval = validate_change(cs, trialcs);
1212 if (retval < 0)
1213 goto done;
1214
1215 spin_lock_irq(&callback_lock);
1216 cs->mems_allowed = trialcs->mems_allowed;
1217 spin_unlock_irq(&callback_lock);
1218
1219 /* use trialcs->mems_allowed as a temp variable */
1220 update_nodemasks_hier(cs, &cs->mems_allowed);
1221 done:
1222 return retval;
1223 }
1224
1225 int current_cpuset_is_being_rebound(void)
1226 {
1227 int ret;
1228
1229 rcu_read_lock();
1230 ret = task_cs(current) == cpuset_being_rebound;
1231 rcu_read_unlock();
1232
1233 return ret;
1234 }
1235
1236 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1237 {
1238 #ifdef CONFIG_SMP
1239 if (val < -1 || val >= sched_domain_level_max)
1240 return -EINVAL;
1241 #endif
1242
1243 if (val != cs->relax_domain_level) {
1244 cs->relax_domain_level = val;
1245 if (!cpumask_empty(cs->cpus_allowed) &&
1246 is_sched_load_balance(cs))
1247 rebuild_sched_domains_locked();
1248 }
1249
1250 return 0;
1251 }
1252
1253 /**
1254 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1255 * @cs: the cpuset in which each task's spread flags needs to be changed
1256 *
1257 * Iterate through each task of @cs updating its spread flags. As this
1258 * function is called with cpuset_mutex held, cpuset membership stays
1259 * stable.
1260 */
1261 static void update_tasks_flags(struct cpuset *cs)
1262 {
1263 struct css_task_iter it;
1264 struct task_struct *task;
1265
1266 css_task_iter_start(&cs->css, &it);
1267 while ((task = css_task_iter_next(&it)))
1268 cpuset_update_task_spread_flag(cs, task);
1269 css_task_iter_end(&it);
1270 }
1271
1272 /*
1273 * update_flag - read a 0 or a 1 in a file and update associated flag
1274 * bit: the bit to update (see cpuset_flagbits_t)
1275 * cs: the cpuset to update
1276 * turning_on: whether the flag is being set or cleared
1277 *
1278 * Call with cpuset_mutex held.
1279 */
1280
1281 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1282 int turning_on)
1283 {
1284 struct cpuset *trialcs;
1285 int balance_flag_changed;
1286 int spread_flag_changed;
1287 int err;
1288
1289 trialcs = alloc_trial_cpuset(cs);
1290 if (!trialcs)
1291 return -ENOMEM;
1292
1293 if (turning_on)
1294 set_bit(bit, &trialcs->flags);
1295 else
1296 clear_bit(bit, &trialcs->flags);
1297
1298 err = validate_change(cs, trialcs);
1299 if (err < 0)
1300 goto out;
1301
1302 balance_flag_changed = (is_sched_load_balance(cs) !=
1303 is_sched_load_balance(trialcs));
1304
1305 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1306 || (is_spread_page(cs) != is_spread_page(trialcs)));
1307
1308 spin_lock_irq(&callback_lock);
1309 cs->flags = trialcs->flags;
1310 spin_unlock_irq(&callback_lock);
1311
1312 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1313 rebuild_sched_domains_locked();
1314
1315 if (spread_flag_changed)
1316 update_tasks_flags(cs);
1317 out:
1318 free_trial_cpuset(trialcs);
1319 return err;
1320 }
1321
1322 /*
1323 * Frequency meter - How fast is some event occurring?
1324 *
1325 * These routines manage a digitally filtered, constant time based,
1326 * event frequency meter. There are four routines:
1327 * fmeter_init() - initialize a frequency meter.
1328 * fmeter_markevent() - called each time the event happens.
1329 * fmeter_getrate() - returns the recent rate of such events.
1330 * fmeter_update() - internal routine used to update fmeter.
1331 *
1332 * A common data structure is passed to each of these routines,
1333 * which is used to keep track of the state required to manage the
1334 * frequency meter and its digital filter.
1335 *
1336 * The filter works on the number of events marked per unit time.
1337 * The filter is single-pole low-pass recursive (IIR). The time unit
1338 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1339 * simulate 3 decimal digits of precision (multiplied by 1000).
1340 *
1341 * With an FM_COEF of 933, and a time base of 1 second, the filter
1342 * has a half-life of 10 seconds, meaning that if the events quit
1343 * happening, then the rate returned from the fmeter_getrate()
1344 * will be cut in half each 10 seconds, until it converges to zero.
1345 *
1346 * It is not worth doing a real infinitely recursive filter. If more
1347 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1348 * just compute FM_MAXTICKS ticks worth, by which point the level
1349 * will be stable.
1350 *
1351 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1352 * arithmetic overflow in the fmeter_update() routine.
1353 *
1354 * Given the simple 32 bit integer arithmetic used, this meter works
1355 * best for reporting rates between one per millisecond (msec) and
1356 * one per 32 (approx) seconds. At constant rates faster than one
1357 * per msec it maxes out at values just under 1,000,000. At constant
1358 * rates between one per msec, and one per second it will stabilize
1359 * to a value N*1000, where N is the rate of events per second.
1360 * At constant rates between one per second and one per 32 seconds,
1361 * it will be choppy, moving up on the seconds that have an event,
1362 * and then decaying until the next event. At rates slower than
1363 * about one in 32 seconds, it decays all the way back to zero between
1364 * each event.
1365 */
1366
1367 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1368 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1369 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1370 #define FM_SCALE 1000 /* faux fixed point scale */
1371
1372 /* Initialize a frequency meter */
1373 static void fmeter_init(struct fmeter *fmp)
1374 {
1375 fmp->cnt = 0;
1376 fmp->val = 0;
1377 fmp->time = 0;
1378 spin_lock_init(&fmp->lock);
1379 }
1380
1381 /* Internal meter update - process cnt events and update value */
1382 static void fmeter_update(struct fmeter *fmp)
1383 {
1384 time_t now = get_seconds();
1385 time_t ticks = now - fmp->time;
1386
1387 if (ticks == 0)
1388 return;
1389
1390 ticks = min(FM_MAXTICKS, ticks);
1391 while (ticks-- > 0)
1392 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1393 fmp->time = now;
1394
1395 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1396 fmp->cnt = 0;
1397 }
1398
1399 /* Process any previous ticks, then bump cnt by one (times scale). */
1400 static void fmeter_markevent(struct fmeter *fmp)
1401 {
1402 spin_lock(&fmp->lock);
1403 fmeter_update(fmp);
1404 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1405 spin_unlock(&fmp->lock);
1406 }
1407
1408 /* Process any previous ticks, then return current value. */
1409 static int fmeter_getrate(struct fmeter *fmp)
1410 {
1411 int val;
1412
1413 spin_lock(&fmp->lock);
1414 fmeter_update(fmp);
1415 val = fmp->val;
1416 spin_unlock(&fmp->lock);
1417 return val;
1418 }
1419
1420 static struct cpuset *cpuset_attach_old_cs;
1421
1422 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1423 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1424 struct cgroup_taskset *tset)
1425 {
1426 struct cpuset *cs = css_cs(css);
1427 struct task_struct *task;
1428 int ret;
1429
1430 /* used later by cpuset_attach() */
1431 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1432
1433 mutex_lock(&cpuset_mutex);
1434
1435 /* allow moving tasks into an empty cpuset if on default hierarchy */
1436 ret = -ENOSPC;
1437 if (!cgroup_on_dfl(css->cgroup) &&
1438 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1439 goto out_unlock;
1440
1441 cgroup_taskset_for_each(task, tset) {
1442 ret = task_can_attach(task, cs->cpus_allowed);
1443 if (ret)
1444 goto out_unlock;
1445 ret = security_task_setscheduler(task);
1446 if (ret)
1447 goto out_unlock;
1448 }
1449
1450 /*
1451 * Mark attach is in progress. This makes validate_change() fail
1452 * changes which zero cpus/mems_allowed.
1453 */
1454 cs->attach_in_progress++;
1455 ret = 0;
1456 out_unlock:
1457 mutex_unlock(&cpuset_mutex);
1458 return ret;
1459 }
1460
1461 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1462 struct cgroup_taskset *tset)
1463 {
1464 mutex_lock(&cpuset_mutex);
1465 css_cs(css)->attach_in_progress--;
1466 mutex_unlock(&cpuset_mutex);
1467 }
1468
1469 /*
1470 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1471 * but we can't allocate it dynamically there. Define it global and
1472 * allocate from cpuset_init().
1473 */
1474 static cpumask_var_t cpus_attach;
1475
1476 static void cpuset_attach(struct cgroup_subsys_state *css,
1477 struct cgroup_taskset *tset)
1478 {
1479 /* static buf protected by cpuset_mutex */
1480 static nodemask_t cpuset_attach_nodemask_to;
1481 struct mm_struct *mm;
1482 struct task_struct *task;
1483 struct task_struct *leader = cgroup_taskset_first(tset);
1484 struct cpuset *cs = css_cs(css);
1485 struct cpuset *oldcs = cpuset_attach_old_cs;
1486
1487 mutex_lock(&cpuset_mutex);
1488
1489 /* prepare for attach */
1490 if (cs == &top_cpuset)
1491 cpumask_copy(cpus_attach, cpu_possible_mask);
1492 else
1493 guarantee_online_cpus(cs, cpus_attach);
1494
1495 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1496
1497 cgroup_taskset_for_each(task, tset) {
1498 /*
1499 * can_attach beforehand should guarantee that this doesn't
1500 * fail. TODO: have a better way to handle failure here
1501 */
1502 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1503
1504 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1505 cpuset_update_task_spread_flag(cs, task);
1506 }
1507
1508 /*
1509 * Change mm, possibly for multiple threads in a threadgroup. This is
1510 * expensive and may sleep.
1511 */
1512 cpuset_attach_nodemask_to = cs->effective_mems;
1513 mm = get_task_mm(leader);
1514 if (mm) {
1515 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1516
1517 /*
1518 * old_mems_allowed is the same with mems_allowed here, except
1519 * if this task is being moved automatically due to hotplug.
1520 * In that case @mems_allowed has been updated and is empty,
1521 * so @old_mems_allowed is the right nodesets that we migrate
1522 * mm from.
1523 */
1524 if (is_memory_migrate(cs)) {
1525 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1526 &cpuset_attach_nodemask_to);
1527 }
1528 mmput(mm);
1529 }
1530
1531 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1532
1533 cs->attach_in_progress--;
1534 if (!cs->attach_in_progress)
1535 wake_up(&cpuset_attach_wq);
1536
1537 mutex_unlock(&cpuset_mutex);
1538 }
1539
1540 /* The various types of files and directories in a cpuset file system */
1541
1542 typedef enum {
1543 FILE_MEMORY_MIGRATE,
1544 FILE_CPULIST,
1545 FILE_MEMLIST,
1546 FILE_EFFECTIVE_CPULIST,
1547 FILE_EFFECTIVE_MEMLIST,
1548 FILE_CPU_EXCLUSIVE,
1549 FILE_MEM_EXCLUSIVE,
1550 FILE_MEM_HARDWALL,
1551 FILE_SCHED_LOAD_BALANCE,
1552 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1553 FILE_MEMORY_PRESSURE_ENABLED,
1554 FILE_MEMORY_PRESSURE,
1555 FILE_SPREAD_PAGE,
1556 FILE_SPREAD_SLAB,
1557 } cpuset_filetype_t;
1558
1559 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1560 u64 val)
1561 {
1562 struct cpuset *cs = css_cs(css);
1563 cpuset_filetype_t type = cft->private;
1564 int retval = 0;
1565
1566 mutex_lock(&cpuset_mutex);
1567 if (!is_cpuset_online(cs)) {
1568 retval = -ENODEV;
1569 goto out_unlock;
1570 }
1571
1572 switch (type) {
1573 case FILE_CPU_EXCLUSIVE:
1574 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1575 break;
1576 case FILE_MEM_EXCLUSIVE:
1577 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1578 break;
1579 case FILE_MEM_HARDWALL:
1580 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1581 break;
1582 case FILE_SCHED_LOAD_BALANCE:
1583 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1584 break;
1585 case FILE_MEMORY_MIGRATE:
1586 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1587 break;
1588 case FILE_MEMORY_PRESSURE_ENABLED:
1589 cpuset_memory_pressure_enabled = !!val;
1590 break;
1591 case FILE_MEMORY_PRESSURE:
1592 retval = -EACCES;
1593 break;
1594 case FILE_SPREAD_PAGE:
1595 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1596 break;
1597 case FILE_SPREAD_SLAB:
1598 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1599 break;
1600 default:
1601 retval = -EINVAL;
1602 break;
1603 }
1604 out_unlock:
1605 mutex_unlock(&cpuset_mutex);
1606 return retval;
1607 }
1608
1609 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1610 s64 val)
1611 {
1612 struct cpuset *cs = css_cs(css);
1613 cpuset_filetype_t type = cft->private;
1614 int retval = -ENODEV;
1615
1616 mutex_lock(&cpuset_mutex);
1617 if (!is_cpuset_online(cs))
1618 goto out_unlock;
1619
1620 switch (type) {
1621 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1622 retval = update_relax_domain_level(cs, val);
1623 break;
1624 default:
1625 retval = -EINVAL;
1626 break;
1627 }
1628 out_unlock:
1629 mutex_unlock(&cpuset_mutex);
1630 return retval;
1631 }
1632
1633 /*
1634 * Common handling for a write to a "cpus" or "mems" file.
1635 */
1636 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1637 char *buf, size_t nbytes, loff_t off)
1638 {
1639 struct cpuset *cs = css_cs(of_css(of));
1640 struct cpuset *trialcs;
1641 int retval = -ENODEV;
1642
1643 buf = strstrip(buf);
1644
1645 /*
1646 * CPU or memory hotunplug may leave @cs w/o any execution
1647 * resources, in which case the hotplug code asynchronously updates
1648 * configuration and transfers all tasks to the nearest ancestor
1649 * which can execute.
1650 *
1651 * As writes to "cpus" or "mems" may restore @cs's execution
1652 * resources, wait for the previously scheduled operations before
1653 * proceeding, so that we don't end up keep removing tasks added
1654 * after execution capability is restored.
1655 *
1656 * cpuset_hotplug_work calls back into cgroup core via
1657 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1658 * operation like this one can lead to a deadlock through kernfs
1659 * active_ref protection. Let's break the protection. Losing the
1660 * protection is okay as we check whether @cs is online after
1661 * grabbing cpuset_mutex anyway. This only happens on the legacy
1662 * hierarchies.
1663 */
1664 css_get(&cs->css);
1665 kernfs_break_active_protection(of->kn);
1666 flush_work(&cpuset_hotplug_work);
1667
1668 mutex_lock(&cpuset_mutex);
1669 if (!is_cpuset_online(cs))
1670 goto out_unlock;
1671
1672 trialcs = alloc_trial_cpuset(cs);
1673 if (!trialcs) {
1674 retval = -ENOMEM;
1675 goto out_unlock;
1676 }
1677
1678 switch (of_cft(of)->private) {
1679 case FILE_CPULIST:
1680 retval = update_cpumask(cs, trialcs, buf);
1681 break;
1682 case FILE_MEMLIST:
1683 retval = update_nodemask(cs, trialcs, buf);
1684 break;
1685 default:
1686 retval = -EINVAL;
1687 break;
1688 }
1689
1690 free_trial_cpuset(trialcs);
1691 out_unlock:
1692 mutex_unlock(&cpuset_mutex);
1693 kernfs_unbreak_active_protection(of->kn);
1694 css_put(&cs->css);
1695 return retval ?: nbytes;
1696 }
1697
1698 /*
1699 * These ascii lists should be read in a single call, by using a user
1700 * buffer large enough to hold the entire map. If read in smaller
1701 * chunks, there is no guarantee of atomicity. Since the display format
1702 * used, list of ranges of sequential numbers, is variable length,
1703 * and since these maps can change value dynamically, one could read
1704 * gibberish by doing partial reads while a list was changing.
1705 */
1706 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1707 {
1708 struct cpuset *cs = css_cs(seq_css(sf));
1709 cpuset_filetype_t type = seq_cft(sf)->private;
1710 int ret = 0;
1711
1712 spin_lock_irq(&callback_lock);
1713
1714 switch (type) {
1715 case FILE_CPULIST:
1716 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1717 break;
1718 case FILE_MEMLIST:
1719 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1720 break;
1721 case FILE_EFFECTIVE_CPULIST:
1722 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1723 break;
1724 case FILE_EFFECTIVE_MEMLIST:
1725 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1726 break;
1727 default:
1728 ret = -EINVAL;
1729 }
1730
1731 spin_unlock_irq(&callback_lock);
1732 return ret;
1733 }
1734
1735 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1736 {
1737 struct cpuset *cs = css_cs(css);
1738 cpuset_filetype_t type = cft->private;
1739 switch (type) {
1740 case FILE_CPU_EXCLUSIVE:
1741 return is_cpu_exclusive(cs);
1742 case FILE_MEM_EXCLUSIVE:
1743 return is_mem_exclusive(cs);
1744 case FILE_MEM_HARDWALL:
1745 return is_mem_hardwall(cs);
1746 case FILE_SCHED_LOAD_BALANCE:
1747 return is_sched_load_balance(cs);
1748 case FILE_MEMORY_MIGRATE:
1749 return is_memory_migrate(cs);
1750 case FILE_MEMORY_PRESSURE_ENABLED:
1751 return cpuset_memory_pressure_enabled;
1752 case FILE_MEMORY_PRESSURE:
1753 return fmeter_getrate(&cs->fmeter);
1754 case FILE_SPREAD_PAGE:
1755 return is_spread_page(cs);
1756 case FILE_SPREAD_SLAB:
1757 return is_spread_slab(cs);
1758 default:
1759 BUG();
1760 }
1761
1762 /* Unreachable but makes gcc happy */
1763 return 0;
1764 }
1765
1766 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1767 {
1768 struct cpuset *cs = css_cs(css);
1769 cpuset_filetype_t type = cft->private;
1770 switch (type) {
1771 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1772 return cs->relax_domain_level;
1773 default:
1774 BUG();
1775 }
1776
1777 /* Unrechable but makes gcc happy */
1778 return 0;
1779 }
1780
1781
1782 /*
1783 * for the common functions, 'private' gives the type of file
1784 */
1785
1786 static struct cftype files[] = {
1787 {
1788 .name = "cpus",
1789 .seq_show = cpuset_common_seq_show,
1790 .write = cpuset_write_resmask,
1791 .max_write_len = (100U + 6 * NR_CPUS),
1792 .private = FILE_CPULIST,
1793 },
1794
1795 {
1796 .name = "mems",
1797 .seq_show = cpuset_common_seq_show,
1798 .write = cpuset_write_resmask,
1799 .max_write_len = (100U + 6 * MAX_NUMNODES),
1800 .private = FILE_MEMLIST,
1801 },
1802
1803 {
1804 .name = "effective_cpus",
1805 .seq_show = cpuset_common_seq_show,
1806 .private = FILE_EFFECTIVE_CPULIST,
1807 },
1808
1809 {
1810 .name = "effective_mems",
1811 .seq_show = cpuset_common_seq_show,
1812 .private = FILE_EFFECTIVE_MEMLIST,
1813 },
1814
1815 {
1816 .name = "cpu_exclusive",
1817 .read_u64 = cpuset_read_u64,
1818 .write_u64 = cpuset_write_u64,
1819 .private = FILE_CPU_EXCLUSIVE,
1820 },
1821
1822 {
1823 .name = "mem_exclusive",
1824 .read_u64 = cpuset_read_u64,
1825 .write_u64 = cpuset_write_u64,
1826 .private = FILE_MEM_EXCLUSIVE,
1827 },
1828
1829 {
1830 .name = "mem_hardwall",
1831 .read_u64 = cpuset_read_u64,
1832 .write_u64 = cpuset_write_u64,
1833 .private = FILE_MEM_HARDWALL,
1834 },
1835
1836 {
1837 .name = "sched_load_balance",
1838 .read_u64 = cpuset_read_u64,
1839 .write_u64 = cpuset_write_u64,
1840 .private = FILE_SCHED_LOAD_BALANCE,
1841 },
1842
1843 {
1844 .name = "sched_relax_domain_level",
1845 .read_s64 = cpuset_read_s64,
1846 .write_s64 = cpuset_write_s64,
1847 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1848 },
1849
1850 {
1851 .name = "memory_migrate",
1852 .read_u64 = cpuset_read_u64,
1853 .write_u64 = cpuset_write_u64,
1854 .private = FILE_MEMORY_MIGRATE,
1855 },
1856
1857 {
1858 .name = "memory_pressure",
1859 .read_u64 = cpuset_read_u64,
1860 .write_u64 = cpuset_write_u64,
1861 .private = FILE_MEMORY_PRESSURE,
1862 .mode = S_IRUGO,
1863 },
1864
1865 {
1866 .name = "memory_spread_page",
1867 .read_u64 = cpuset_read_u64,
1868 .write_u64 = cpuset_write_u64,
1869 .private = FILE_SPREAD_PAGE,
1870 },
1871
1872 {
1873 .name = "memory_spread_slab",
1874 .read_u64 = cpuset_read_u64,
1875 .write_u64 = cpuset_write_u64,
1876 .private = FILE_SPREAD_SLAB,
1877 },
1878
1879 {
1880 .name = "memory_pressure_enabled",
1881 .flags = CFTYPE_ONLY_ON_ROOT,
1882 .read_u64 = cpuset_read_u64,
1883 .write_u64 = cpuset_write_u64,
1884 .private = FILE_MEMORY_PRESSURE_ENABLED,
1885 },
1886
1887 { } /* terminate */
1888 };
1889
1890 /*
1891 * cpuset_css_alloc - allocate a cpuset css
1892 * cgrp: control group that the new cpuset will be part of
1893 */
1894
1895 static struct cgroup_subsys_state *
1896 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1897 {
1898 struct cpuset *cs;
1899
1900 if (!parent_css)
1901 return &top_cpuset.css;
1902
1903 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1904 if (!cs)
1905 return ERR_PTR(-ENOMEM);
1906 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1907 goto free_cs;
1908 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1909 goto free_cpus;
1910
1911 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1912 cpumask_clear(cs->cpus_allowed);
1913 nodes_clear(cs->mems_allowed);
1914 cpumask_clear(cs->effective_cpus);
1915 nodes_clear(cs->effective_mems);
1916 fmeter_init(&cs->fmeter);
1917 cs->relax_domain_level = -1;
1918
1919 return &cs->css;
1920
1921 free_cpus:
1922 free_cpumask_var(cs->cpus_allowed);
1923 free_cs:
1924 kfree(cs);
1925 return ERR_PTR(-ENOMEM);
1926 }
1927
1928 static int cpuset_css_online(struct cgroup_subsys_state *css)
1929 {
1930 struct cpuset *cs = css_cs(css);
1931 struct cpuset *parent = parent_cs(cs);
1932 struct cpuset *tmp_cs;
1933 struct cgroup_subsys_state *pos_css;
1934
1935 if (!parent)
1936 return 0;
1937
1938 mutex_lock(&cpuset_mutex);
1939
1940 set_bit(CS_ONLINE, &cs->flags);
1941 if (is_spread_page(parent))
1942 set_bit(CS_SPREAD_PAGE, &cs->flags);
1943 if (is_spread_slab(parent))
1944 set_bit(CS_SPREAD_SLAB, &cs->flags);
1945
1946 cpuset_inc();
1947
1948 spin_lock_irq(&callback_lock);
1949 if (cgroup_on_dfl(cs->css.cgroup)) {
1950 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1951 cs->effective_mems = parent->effective_mems;
1952 }
1953 spin_unlock_irq(&callback_lock);
1954
1955 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1956 goto out_unlock;
1957
1958 /*
1959 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1960 * set. This flag handling is implemented in cgroup core for
1961 * histrical reasons - the flag may be specified during mount.
1962 *
1963 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1964 * refuse to clone the configuration - thereby refusing the task to
1965 * be entered, and as a result refusing the sys_unshare() or
1966 * clone() which initiated it. If this becomes a problem for some
1967 * users who wish to allow that scenario, then this could be
1968 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1969 * (and likewise for mems) to the new cgroup.
1970 */
1971 rcu_read_lock();
1972 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1973 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1974 rcu_read_unlock();
1975 goto out_unlock;
1976 }
1977 }
1978 rcu_read_unlock();
1979
1980 spin_lock_irq(&callback_lock);
1981 cs->mems_allowed = parent->mems_allowed;
1982 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1983 spin_unlock_irq(&callback_lock);
1984 out_unlock:
1985 mutex_unlock(&cpuset_mutex);
1986 return 0;
1987 }
1988
1989 /*
1990 * If the cpuset being removed has its flag 'sched_load_balance'
1991 * enabled, then simulate turning sched_load_balance off, which
1992 * will call rebuild_sched_domains_locked().
1993 */
1994
1995 static void cpuset_css_offline(struct cgroup_subsys_state *css)
1996 {
1997 struct cpuset *cs = css_cs(css);
1998
1999 mutex_lock(&cpuset_mutex);
2000
2001 if (is_sched_load_balance(cs))
2002 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2003
2004 cpuset_dec();
2005 clear_bit(CS_ONLINE, &cs->flags);
2006
2007 mutex_unlock(&cpuset_mutex);
2008 }
2009
2010 static void cpuset_css_free(struct cgroup_subsys_state *css)
2011 {
2012 struct cpuset *cs = css_cs(css);
2013
2014 free_cpumask_var(cs->effective_cpus);
2015 free_cpumask_var(cs->cpus_allowed);
2016 kfree(cs);
2017 }
2018
2019 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2020 {
2021 mutex_lock(&cpuset_mutex);
2022 spin_lock_irq(&callback_lock);
2023
2024 if (cgroup_on_dfl(root_css->cgroup)) {
2025 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2026 top_cpuset.mems_allowed = node_possible_map;
2027 } else {
2028 cpumask_copy(top_cpuset.cpus_allowed,
2029 top_cpuset.effective_cpus);
2030 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2031 }
2032
2033 spin_unlock_irq(&callback_lock);
2034 mutex_unlock(&cpuset_mutex);
2035 }
2036
2037 struct cgroup_subsys cpuset_cgrp_subsys = {
2038 .css_alloc = cpuset_css_alloc,
2039 .css_online = cpuset_css_online,
2040 .css_offline = cpuset_css_offline,
2041 .css_free = cpuset_css_free,
2042 .can_attach = cpuset_can_attach,
2043 .cancel_attach = cpuset_cancel_attach,
2044 .attach = cpuset_attach,
2045 .bind = cpuset_bind,
2046 .legacy_cftypes = files,
2047 .early_init = 1,
2048 };
2049
2050 /**
2051 * cpuset_init - initialize cpusets at system boot
2052 *
2053 * Description: Initialize top_cpuset and the cpuset internal file system,
2054 **/
2055
2056 int __init cpuset_init(void)
2057 {
2058 int err = 0;
2059
2060 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2061 BUG();
2062 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2063 BUG();
2064
2065 cpumask_setall(top_cpuset.cpus_allowed);
2066 nodes_setall(top_cpuset.mems_allowed);
2067 cpumask_setall(top_cpuset.effective_cpus);
2068 nodes_setall(top_cpuset.effective_mems);
2069
2070 fmeter_init(&top_cpuset.fmeter);
2071 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2072 top_cpuset.relax_domain_level = -1;
2073
2074 err = register_filesystem(&cpuset_fs_type);
2075 if (err < 0)
2076 return err;
2077
2078 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2079 BUG();
2080
2081 return 0;
2082 }
2083
2084 /*
2085 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2086 * or memory nodes, we need to walk over the cpuset hierarchy,
2087 * removing that CPU or node from all cpusets. If this removes the
2088 * last CPU or node from a cpuset, then move the tasks in the empty
2089 * cpuset to its next-highest non-empty parent.
2090 */
2091 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2092 {
2093 struct cpuset *parent;
2094
2095 /*
2096 * Find its next-highest non-empty parent, (top cpuset
2097 * has online cpus, so can't be empty).
2098 */
2099 parent = parent_cs(cs);
2100 while (cpumask_empty(parent->cpus_allowed) ||
2101 nodes_empty(parent->mems_allowed))
2102 parent = parent_cs(parent);
2103
2104 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2105 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2106 pr_cont_cgroup_name(cs->css.cgroup);
2107 pr_cont("\n");
2108 }
2109 }
2110
2111 static void
2112 hotplug_update_tasks_legacy(struct cpuset *cs,
2113 struct cpumask *new_cpus, nodemask_t *new_mems,
2114 bool cpus_updated, bool mems_updated)
2115 {
2116 bool is_empty;
2117
2118 spin_lock_irq(&callback_lock);
2119 cpumask_copy(cs->cpus_allowed, new_cpus);
2120 cpumask_copy(cs->effective_cpus, new_cpus);
2121 cs->mems_allowed = *new_mems;
2122 cs->effective_mems = *new_mems;
2123 spin_unlock_irq(&callback_lock);
2124
2125 /*
2126 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2127 * as the tasks will be migratecd to an ancestor.
2128 */
2129 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2130 update_tasks_cpumask(cs);
2131 if (mems_updated && !nodes_empty(cs->mems_allowed))
2132 update_tasks_nodemask(cs);
2133
2134 is_empty = cpumask_empty(cs->cpus_allowed) ||
2135 nodes_empty(cs->mems_allowed);
2136
2137 mutex_unlock(&cpuset_mutex);
2138
2139 /*
2140 * Move tasks to the nearest ancestor with execution resources,
2141 * This is full cgroup operation which will also call back into
2142 * cpuset. Should be done outside any lock.
2143 */
2144 if (is_empty)
2145 remove_tasks_in_empty_cpuset(cs);
2146
2147 mutex_lock(&cpuset_mutex);
2148 }
2149
2150 static void
2151 hotplug_update_tasks(struct cpuset *cs,
2152 struct cpumask *new_cpus, nodemask_t *new_mems,
2153 bool cpus_updated, bool mems_updated)
2154 {
2155 if (cpumask_empty(new_cpus))
2156 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2157 if (nodes_empty(*new_mems))
2158 *new_mems = parent_cs(cs)->effective_mems;
2159
2160 spin_lock_irq(&callback_lock);
2161 cpumask_copy(cs->effective_cpus, new_cpus);
2162 cs->effective_mems = *new_mems;
2163 spin_unlock_irq(&callback_lock);
2164
2165 if (cpus_updated)
2166 update_tasks_cpumask(cs);
2167 if (mems_updated)
2168 update_tasks_nodemask(cs);
2169 }
2170
2171 /**
2172 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2173 * @cs: cpuset in interest
2174 *
2175 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2176 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2177 * all its tasks are moved to the nearest ancestor with both resources.
2178 */
2179 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2180 {
2181 static cpumask_t new_cpus;
2182 static nodemask_t new_mems;
2183 bool cpus_updated;
2184 bool mems_updated;
2185 retry:
2186 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2187
2188 mutex_lock(&cpuset_mutex);
2189
2190 /*
2191 * We have raced with task attaching. We wait until attaching
2192 * is finished, so we won't attach a task to an empty cpuset.
2193 */
2194 if (cs->attach_in_progress) {
2195 mutex_unlock(&cpuset_mutex);
2196 goto retry;
2197 }
2198
2199 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2200 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2201
2202 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2203 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2204
2205 if (cgroup_on_dfl(cs->css.cgroup))
2206 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2207 cpus_updated, mems_updated);
2208 else
2209 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2210 cpus_updated, mems_updated);
2211
2212 mutex_unlock(&cpuset_mutex);
2213 }
2214
2215 /**
2216 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2217 *
2218 * This function is called after either CPU or memory configuration has
2219 * changed and updates cpuset accordingly. The top_cpuset is always
2220 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2221 * order to make cpusets transparent (of no affect) on systems that are
2222 * actively using CPU hotplug but making no active use of cpusets.
2223 *
2224 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2225 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2226 * all descendants.
2227 *
2228 * Note that CPU offlining during suspend is ignored. We don't modify
2229 * cpusets across suspend/resume cycles at all.
2230 */
2231 static void cpuset_hotplug_workfn(struct work_struct *work)
2232 {
2233 static cpumask_t new_cpus;
2234 static nodemask_t new_mems;
2235 bool cpus_updated, mems_updated;
2236 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2237
2238 mutex_lock(&cpuset_mutex);
2239
2240 /* fetch the available cpus/mems and find out which changed how */
2241 cpumask_copy(&new_cpus, cpu_active_mask);
2242 new_mems = node_states[N_MEMORY];
2243
2244 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2245 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2246
2247 /* synchronize cpus_allowed to cpu_active_mask */
2248 if (cpus_updated) {
2249 spin_lock_irq(&callback_lock);
2250 if (!on_dfl)
2251 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2252 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2253 spin_unlock_irq(&callback_lock);
2254 /* we don't mess with cpumasks of tasks in top_cpuset */
2255 }
2256
2257 /* synchronize mems_allowed to N_MEMORY */
2258 if (mems_updated) {
2259 spin_lock_irq(&callback_lock);
2260 if (!on_dfl)
2261 top_cpuset.mems_allowed = new_mems;
2262 top_cpuset.effective_mems = new_mems;
2263 spin_unlock_irq(&callback_lock);
2264 update_tasks_nodemask(&top_cpuset);
2265 }
2266
2267 mutex_unlock(&cpuset_mutex);
2268
2269 /* if cpus or mems changed, we need to propagate to descendants */
2270 if (cpus_updated || mems_updated) {
2271 struct cpuset *cs;
2272 struct cgroup_subsys_state *pos_css;
2273
2274 rcu_read_lock();
2275 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2276 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2277 continue;
2278 rcu_read_unlock();
2279
2280 cpuset_hotplug_update_tasks(cs);
2281
2282 rcu_read_lock();
2283 css_put(&cs->css);
2284 }
2285 rcu_read_unlock();
2286 }
2287
2288 /* rebuild sched domains if cpus_allowed has changed */
2289 if (cpus_updated)
2290 rebuild_sched_domains();
2291 }
2292
2293 void cpuset_update_active_cpus(bool cpu_online)
2294 {
2295 /*
2296 * We're inside cpu hotplug critical region which usually nests
2297 * inside cgroup synchronization. Bounce actual hotplug processing
2298 * to a work item to avoid reverse locking order.
2299 *
2300 * We still need to do partition_sched_domains() synchronously;
2301 * otherwise, the scheduler will get confused and put tasks to the
2302 * dead CPU. Fall back to the default single domain.
2303 * cpuset_hotplug_workfn() will rebuild it as necessary.
2304 */
2305 partition_sched_domains(1, NULL, NULL);
2306 schedule_work(&cpuset_hotplug_work);
2307 }
2308
2309 /*
2310 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2311 * Call this routine anytime after node_states[N_MEMORY] changes.
2312 * See cpuset_update_active_cpus() for CPU hotplug handling.
2313 */
2314 static int cpuset_track_online_nodes(struct notifier_block *self,
2315 unsigned long action, void *arg)
2316 {
2317 schedule_work(&cpuset_hotplug_work);
2318 return NOTIFY_OK;
2319 }
2320
2321 static struct notifier_block cpuset_track_online_nodes_nb = {
2322 .notifier_call = cpuset_track_online_nodes,
2323 .priority = 10, /* ??! */
2324 };
2325
2326 /**
2327 * cpuset_init_smp - initialize cpus_allowed
2328 *
2329 * Description: Finish top cpuset after cpu, node maps are initialized
2330 */
2331 void __init cpuset_init_smp(void)
2332 {
2333 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2334 top_cpuset.mems_allowed = node_states[N_MEMORY];
2335 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2336
2337 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2338 top_cpuset.effective_mems = node_states[N_MEMORY];
2339
2340 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2341 }
2342
2343 /**
2344 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2345 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2346 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2347 *
2348 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2349 * attached to the specified @tsk. Guaranteed to return some non-empty
2350 * subset of cpu_online_mask, even if this means going outside the
2351 * tasks cpuset.
2352 **/
2353
2354 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2355 {
2356 unsigned long flags;
2357
2358 spin_lock_irqsave(&callback_lock, flags);
2359 rcu_read_lock();
2360 guarantee_online_cpus(task_cs(tsk), pmask);
2361 rcu_read_unlock();
2362 spin_unlock_irqrestore(&callback_lock, flags);
2363 }
2364
2365 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2366 {
2367 rcu_read_lock();
2368 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2369 rcu_read_unlock();
2370
2371 /*
2372 * We own tsk->cpus_allowed, nobody can change it under us.
2373 *
2374 * But we used cs && cs->cpus_allowed lockless and thus can
2375 * race with cgroup_attach_task() or update_cpumask() and get
2376 * the wrong tsk->cpus_allowed. However, both cases imply the
2377 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2378 * which takes task_rq_lock().
2379 *
2380 * If we are called after it dropped the lock we must see all
2381 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2382 * set any mask even if it is not right from task_cs() pov,
2383 * the pending set_cpus_allowed_ptr() will fix things.
2384 *
2385 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2386 * if required.
2387 */
2388 }
2389
2390 void __init cpuset_init_current_mems_allowed(void)
2391 {
2392 nodes_setall(current->mems_allowed);
2393 }
2394
2395 /**
2396 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2397 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2398 *
2399 * Description: Returns the nodemask_t mems_allowed of the cpuset
2400 * attached to the specified @tsk. Guaranteed to return some non-empty
2401 * subset of node_states[N_MEMORY], even if this means going outside the
2402 * tasks cpuset.
2403 **/
2404
2405 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2406 {
2407 nodemask_t mask;
2408 unsigned long flags;
2409
2410 spin_lock_irqsave(&callback_lock, flags);
2411 rcu_read_lock();
2412 guarantee_online_mems(task_cs(tsk), &mask);
2413 rcu_read_unlock();
2414 spin_unlock_irqrestore(&callback_lock, flags);
2415
2416 return mask;
2417 }
2418
2419 /**
2420 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2421 * @nodemask: the nodemask to be checked
2422 *
2423 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2424 */
2425 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2426 {
2427 return nodes_intersects(*nodemask, current->mems_allowed);
2428 }
2429
2430 /*
2431 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2432 * mem_hardwall ancestor to the specified cpuset. Call holding
2433 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2434 * (an unusual configuration), then returns the root cpuset.
2435 */
2436 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2437 {
2438 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2439 cs = parent_cs(cs);
2440 return cs;
2441 }
2442
2443 /**
2444 * cpuset_node_allowed - Can we allocate on a memory node?
2445 * @node: is this an allowed node?
2446 * @gfp_mask: memory allocation flags
2447 *
2448 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2449 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2450 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2451 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2452 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2453 * flag, yes.
2454 * Otherwise, no.
2455 *
2456 * The __GFP_THISNODE placement logic is really handled elsewhere,
2457 * by forcibly using a zonelist starting at a specified node, and by
2458 * (in get_page_from_freelist()) refusing to consider the zones for
2459 * any node on the zonelist except the first. By the time any such
2460 * calls get to this routine, we should just shut up and say 'yes'.
2461 *
2462 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2463 * and do not allow allocations outside the current tasks cpuset
2464 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2465 * GFP_KERNEL allocations are not so marked, so can escape to the
2466 * nearest enclosing hardwalled ancestor cpuset.
2467 *
2468 * Scanning up parent cpusets requires callback_lock. The
2469 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2470 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2471 * current tasks mems_allowed came up empty on the first pass over
2472 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2473 * cpuset are short of memory, might require taking the callback_lock.
2474 *
2475 * The first call here from mm/page_alloc:get_page_from_freelist()
2476 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2477 * so no allocation on a node outside the cpuset is allowed (unless
2478 * in interrupt, of course).
2479 *
2480 * The second pass through get_page_from_freelist() doesn't even call
2481 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2482 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2483 * in alloc_flags. That logic and the checks below have the combined
2484 * affect that:
2485 * in_interrupt - any node ok (current task context irrelevant)
2486 * GFP_ATOMIC - any node ok
2487 * TIF_MEMDIE - any node ok
2488 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2489 * GFP_USER - only nodes in current tasks mems allowed ok.
2490 */
2491 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2492 {
2493 struct cpuset *cs; /* current cpuset ancestors */
2494 int allowed; /* is allocation in zone z allowed? */
2495 unsigned long flags;
2496
2497 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2498 return 1;
2499 if (node_isset(node, current->mems_allowed))
2500 return 1;
2501 /*
2502 * Allow tasks that have access to memory reserves because they have
2503 * been OOM killed to get memory anywhere.
2504 */
2505 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2506 return 1;
2507 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2508 return 0;
2509
2510 if (current->flags & PF_EXITING) /* Let dying task have memory */
2511 return 1;
2512
2513 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2514 spin_lock_irqsave(&callback_lock, flags);
2515
2516 rcu_read_lock();
2517 cs = nearest_hardwall_ancestor(task_cs(current));
2518 allowed = node_isset(node, cs->mems_allowed);
2519 rcu_read_unlock();
2520
2521 spin_unlock_irqrestore(&callback_lock, flags);
2522 return allowed;
2523 }
2524
2525 /**
2526 * cpuset_mem_spread_node() - On which node to begin search for a file page
2527 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2528 *
2529 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2530 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2531 * and if the memory allocation used cpuset_mem_spread_node()
2532 * to determine on which node to start looking, as it will for
2533 * certain page cache or slab cache pages such as used for file
2534 * system buffers and inode caches, then instead of starting on the
2535 * local node to look for a free page, rather spread the starting
2536 * node around the tasks mems_allowed nodes.
2537 *
2538 * We don't have to worry about the returned node being offline
2539 * because "it can't happen", and even if it did, it would be ok.
2540 *
2541 * The routines calling guarantee_online_mems() are careful to
2542 * only set nodes in task->mems_allowed that are online. So it
2543 * should not be possible for the following code to return an
2544 * offline node. But if it did, that would be ok, as this routine
2545 * is not returning the node where the allocation must be, only
2546 * the node where the search should start. The zonelist passed to
2547 * __alloc_pages() will include all nodes. If the slab allocator
2548 * is passed an offline node, it will fall back to the local node.
2549 * See kmem_cache_alloc_node().
2550 */
2551
2552 static int cpuset_spread_node(int *rotor)
2553 {
2554 int node;
2555
2556 node = next_node(*rotor, current->mems_allowed);
2557 if (node == MAX_NUMNODES)
2558 node = first_node(current->mems_allowed);
2559 *rotor = node;
2560 return node;
2561 }
2562
2563 int cpuset_mem_spread_node(void)
2564 {
2565 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2566 current->cpuset_mem_spread_rotor =
2567 node_random(&current->mems_allowed);
2568
2569 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2570 }
2571
2572 int cpuset_slab_spread_node(void)
2573 {
2574 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2575 current->cpuset_slab_spread_rotor =
2576 node_random(&current->mems_allowed);
2577
2578 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2579 }
2580
2581 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2582
2583 /**
2584 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2585 * @tsk1: pointer to task_struct of some task.
2586 * @tsk2: pointer to task_struct of some other task.
2587 *
2588 * Description: Return true if @tsk1's mems_allowed intersects the
2589 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2590 * one of the task's memory usage might impact the memory available
2591 * to the other.
2592 **/
2593
2594 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2595 const struct task_struct *tsk2)
2596 {
2597 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2598 }
2599
2600 /**
2601 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2602 * @tsk: pointer to task_struct of some task.
2603 *
2604 * Description: Prints @task's name, cpuset name, and cached copy of its
2605 * mems_allowed to the kernel log.
2606 */
2607 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2608 {
2609 struct cgroup *cgrp;
2610
2611 rcu_read_lock();
2612
2613 cgrp = task_cs(tsk)->css.cgroup;
2614 pr_info("%s cpuset=", tsk->comm);
2615 pr_cont_cgroup_name(cgrp);
2616 pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
2617
2618 rcu_read_unlock();
2619 }
2620
2621 /*
2622 * Collection of memory_pressure is suppressed unless
2623 * this flag is enabled by writing "1" to the special
2624 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2625 */
2626
2627 int cpuset_memory_pressure_enabled __read_mostly;
2628
2629 /**
2630 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2631 *
2632 * Keep a running average of the rate of synchronous (direct)
2633 * page reclaim efforts initiated by tasks in each cpuset.
2634 *
2635 * This represents the rate at which some task in the cpuset
2636 * ran low on memory on all nodes it was allowed to use, and
2637 * had to enter the kernels page reclaim code in an effort to
2638 * create more free memory by tossing clean pages or swapping
2639 * or writing dirty pages.
2640 *
2641 * Display to user space in the per-cpuset read-only file
2642 * "memory_pressure". Value displayed is an integer
2643 * representing the recent rate of entry into the synchronous
2644 * (direct) page reclaim by any task attached to the cpuset.
2645 **/
2646
2647 void __cpuset_memory_pressure_bump(void)
2648 {
2649 rcu_read_lock();
2650 fmeter_markevent(&task_cs(current)->fmeter);
2651 rcu_read_unlock();
2652 }
2653
2654 #ifdef CONFIG_PROC_PID_CPUSET
2655 /*
2656 * proc_cpuset_show()
2657 * - Print tasks cpuset path into seq_file.
2658 * - Used for /proc/<pid>/cpuset.
2659 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2660 * doesn't really matter if tsk->cpuset changes after we read it,
2661 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2662 * anyway.
2663 */
2664 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2665 struct pid *pid, struct task_struct *tsk)
2666 {
2667 char *buf, *p;
2668 struct cgroup_subsys_state *css;
2669 int retval;
2670
2671 retval = -ENOMEM;
2672 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2673 if (!buf)
2674 goto out;
2675
2676 retval = -ENAMETOOLONG;
2677 rcu_read_lock();
2678 css = task_css(tsk, cpuset_cgrp_id);
2679 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2680 rcu_read_unlock();
2681 if (!p)
2682 goto out_free;
2683 seq_puts(m, p);
2684 seq_putc(m, '\n');
2685 retval = 0;
2686 out_free:
2687 kfree(buf);
2688 out:
2689 return retval;
2690 }
2691 #endif /* CONFIG_PROC_PID_CPUSET */
2692
2693 /* Display task mems_allowed in /proc/<pid>/status file. */
2694 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2695 {
2696 seq_printf(m, "Mems_allowed:\t%*pb\n",
2697 nodemask_pr_args(&task->mems_allowed));
2698 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2699 nodemask_pr_args(&task->mems_allowed));
2700 }