]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cpuset.c
ARM: dts: add mipi_phy device node to exynos3250.dtsi
[mirror_ubuntu-bionic-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
107
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
120 struct fmeter fmeter; /* memory_pressure filter */
121
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
128 /* partition number for rebuild_sched_domains() */
129 int pn;
130
131 /* for custom sched domain */
132 int relax_domain_level;
133 };
134
135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136 {
137 return css ? container_of(css, struct cpuset, css) : NULL;
138 }
139
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset *task_cs(struct task_struct *task)
142 {
143 return css_cs(task_css(task, cpuset_cgrp_id));
144 }
145
146 static inline struct cpuset *parent_cs(struct cpuset *cs)
147 {
148 return css_cs(cs->css.parent);
149 }
150
151 #ifdef CONFIG_NUMA
152 static inline bool task_has_mempolicy(struct task_struct *task)
153 {
154 return task->mempolicy;
155 }
156 #else
157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 return false;
160 }
161 #endif
162
163
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 CS_ONLINE,
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
169 CS_MEM_HARDWALL,
170 CS_MEMORY_MIGRATE,
171 CS_SCHED_LOAD_BALANCE,
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
175
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset *cs)
178 {
179 return test_bit(CS_ONLINE, &cs->flags);
180 }
181
182 static inline int is_cpu_exclusive(const struct cpuset *cs)
183 {
184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
185 }
186
187 static inline int is_mem_exclusive(const struct cpuset *cs)
188 {
189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
190 }
191
192 static inline int is_mem_hardwall(const struct cpuset *cs)
193 {
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195 }
196
197 static inline int is_sched_load_balance(const struct cpuset *cs)
198 {
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200 }
201
202 static inline int is_memory_migrate(const struct cpuset *cs)
203 {
204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 }
206
207 static inline int is_spread_page(const struct cpuset *cs)
208 {
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210 }
211
212 static inline int is_spread_slab(const struct cpuset *cs)
213 {
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215 }
216
217 static struct cpuset top_cpuset = {
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
220 };
221
222 /**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234
235 /**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
245 */
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249
250 /*
251 * There are two global mutexes guarding cpuset structures - cpuset_mutex
252 * and callback_mutex. The latter may nest inside the former. We also
253 * require taking task_lock() when dereferencing a task's cpuset pointer.
254 * See "The task_lock() exception", at the end of this comment.
255 *
256 * A task must hold both mutexes to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_mutex and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_mutex to query cpusets.
263 * Once it is ready to make the changes, it takes callback_mutex, blocking
264 * everyone else.
265 *
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_mutex, as that would risk double tripping on callback_mutex
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
271 * If a task is only holding callback_mutex, then it has read-only
272 * access to cpusets.
273 *
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
277 *
278 * The cpuset_common_file_read() handlers only hold callback_mutex across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
284 */
285
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_MUTEX(callback_mutex);
288
289 /*
290 * CPU / memory hotplug is handled asynchronously.
291 */
292 static void cpuset_hotplug_workfn(struct work_struct *work);
293 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
294
295 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
296
297 /*
298 * This is ugly, but preserves the userspace API for existing cpuset
299 * users. If someone tries to mount the "cpuset" filesystem, we
300 * silently switch it to mount "cgroup" instead
301 */
302 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 int flags, const char *unused_dev_name, void *data)
304 {
305 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
306 struct dentry *ret = ERR_PTR(-ENODEV);
307 if (cgroup_fs) {
308 char mountopts[] =
309 "cpuset,noprefix,"
310 "release_agent=/sbin/cpuset_release_agent";
311 ret = cgroup_fs->mount(cgroup_fs, flags,
312 unused_dev_name, mountopts);
313 put_filesystem(cgroup_fs);
314 }
315 return ret;
316 }
317
318 static struct file_system_type cpuset_fs_type = {
319 .name = "cpuset",
320 .mount = cpuset_mount,
321 };
322
323 /*
324 * Return in pmask the portion of a cpusets's cpus_allowed that
325 * are online. If none are online, walk up the cpuset hierarchy
326 * until we find one that does have some online cpus. The top
327 * cpuset always has some cpus online.
328 *
329 * One way or another, we guarantee to return some non-empty subset
330 * of cpu_online_mask.
331 *
332 * Call with callback_mutex held.
333 */
334 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
335 {
336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
337 cs = parent_cs(cs);
338 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
339 }
340
341 /*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
345 * online mems. The top cpuset always has some mems online.
346 *
347 * One way or another, we guarantee to return some non-empty subset
348 * of node_states[N_MEMORY].
349 *
350 * Call with callback_mutex held.
351 */
352 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
353 {
354 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
355 cs = parent_cs(cs);
356 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
357 }
358
359 /*
360 * update task's spread flag if cpuset's page/slab spread flag is set
361 *
362 * Called with callback_mutex/cpuset_mutex held
363 */
364 static void cpuset_update_task_spread_flag(struct cpuset *cs,
365 struct task_struct *tsk)
366 {
367 if (is_spread_page(cs))
368 tsk->flags |= PF_SPREAD_PAGE;
369 else
370 tsk->flags &= ~PF_SPREAD_PAGE;
371 if (is_spread_slab(cs))
372 tsk->flags |= PF_SPREAD_SLAB;
373 else
374 tsk->flags &= ~PF_SPREAD_SLAB;
375 }
376
377 /*
378 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
379 *
380 * One cpuset is a subset of another if all its allowed CPUs and
381 * Memory Nodes are a subset of the other, and its exclusive flags
382 * are only set if the other's are set. Call holding cpuset_mutex.
383 */
384
385 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
386 {
387 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
388 nodes_subset(p->mems_allowed, q->mems_allowed) &&
389 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
390 is_mem_exclusive(p) <= is_mem_exclusive(q);
391 }
392
393 /**
394 * alloc_trial_cpuset - allocate a trial cpuset
395 * @cs: the cpuset that the trial cpuset duplicates
396 */
397 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
398 {
399 struct cpuset *trial;
400
401 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
402 if (!trial)
403 return NULL;
404
405 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
406 goto free_cs;
407 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
408 goto free_cpus;
409
410 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
411 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
412 return trial;
413
414 free_cpus:
415 free_cpumask_var(trial->cpus_allowed);
416 free_cs:
417 kfree(trial);
418 return NULL;
419 }
420
421 /**
422 * free_trial_cpuset - free the trial cpuset
423 * @trial: the trial cpuset to be freed
424 */
425 static void free_trial_cpuset(struct cpuset *trial)
426 {
427 free_cpumask_var(trial->effective_cpus);
428 free_cpumask_var(trial->cpus_allowed);
429 kfree(trial);
430 }
431
432 /*
433 * validate_change() - Used to validate that any proposed cpuset change
434 * follows the structural rules for cpusets.
435 *
436 * If we replaced the flag and mask values of the current cpuset
437 * (cur) with those values in the trial cpuset (trial), would
438 * our various subset and exclusive rules still be valid? Presumes
439 * cpuset_mutex held.
440 *
441 * 'cur' is the address of an actual, in-use cpuset. Operations
442 * such as list traversal that depend on the actual address of the
443 * cpuset in the list must use cur below, not trial.
444 *
445 * 'trial' is the address of bulk structure copy of cur, with
446 * perhaps one or more of the fields cpus_allowed, mems_allowed,
447 * or flags changed to new, trial values.
448 *
449 * Return 0 if valid, -errno if not.
450 */
451
452 static int validate_change(struct cpuset *cur, struct cpuset *trial)
453 {
454 struct cgroup_subsys_state *css;
455 struct cpuset *c, *par;
456 int ret;
457
458 rcu_read_lock();
459
460 /* Each of our child cpusets must be a subset of us */
461 ret = -EBUSY;
462 cpuset_for_each_child(c, css, cur)
463 if (!is_cpuset_subset(c, trial))
464 goto out;
465
466 /* Remaining checks don't apply to root cpuset */
467 ret = 0;
468 if (cur == &top_cpuset)
469 goto out;
470
471 par = parent_cs(cur);
472
473 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
474 ret = -EACCES;
475 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
476 goto out;
477
478 /*
479 * If either I or some sibling (!= me) is exclusive, we can't
480 * overlap
481 */
482 ret = -EINVAL;
483 cpuset_for_each_child(c, css, par) {
484 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
485 c != cur &&
486 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
487 goto out;
488 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
489 c != cur &&
490 nodes_intersects(trial->mems_allowed, c->mems_allowed))
491 goto out;
492 }
493
494 /*
495 * Cpusets with tasks - existing or newly being attached - can't
496 * be changed to have empty cpus_allowed or mems_allowed.
497 */
498 ret = -ENOSPC;
499 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
500 if (!cpumask_empty(cur->cpus_allowed) &&
501 cpumask_empty(trial->cpus_allowed))
502 goto out;
503 if (!nodes_empty(cur->mems_allowed) &&
504 nodes_empty(trial->mems_allowed))
505 goto out;
506 }
507
508 ret = 0;
509 out:
510 rcu_read_unlock();
511 return ret;
512 }
513
514 #ifdef CONFIG_SMP
515 /*
516 * Helper routine for generate_sched_domains().
517 * Do cpusets a, b have overlapping effective cpus_allowed masks?
518 */
519 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
520 {
521 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
522 }
523
524 static void
525 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
526 {
527 if (dattr->relax_domain_level < c->relax_domain_level)
528 dattr->relax_domain_level = c->relax_domain_level;
529 return;
530 }
531
532 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
533 struct cpuset *root_cs)
534 {
535 struct cpuset *cp;
536 struct cgroup_subsys_state *pos_css;
537
538 rcu_read_lock();
539 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
540 if (cp == root_cs)
541 continue;
542
543 /* skip the whole subtree if @cp doesn't have any CPU */
544 if (cpumask_empty(cp->cpus_allowed)) {
545 pos_css = css_rightmost_descendant(pos_css);
546 continue;
547 }
548
549 if (is_sched_load_balance(cp))
550 update_domain_attr(dattr, cp);
551 }
552 rcu_read_unlock();
553 }
554
555 /*
556 * generate_sched_domains()
557 *
558 * This function builds a partial partition of the systems CPUs
559 * A 'partial partition' is a set of non-overlapping subsets whose
560 * union is a subset of that set.
561 * The output of this function needs to be passed to kernel/sched/core.c
562 * partition_sched_domains() routine, which will rebuild the scheduler's
563 * load balancing domains (sched domains) as specified by that partial
564 * partition.
565 *
566 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
567 * for a background explanation of this.
568 *
569 * Does not return errors, on the theory that the callers of this
570 * routine would rather not worry about failures to rebuild sched
571 * domains when operating in the severe memory shortage situations
572 * that could cause allocation failures below.
573 *
574 * Must be called with cpuset_mutex held.
575 *
576 * The three key local variables below are:
577 * q - a linked-list queue of cpuset pointers, used to implement a
578 * top-down scan of all cpusets. This scan loads a pointer
579 * to each cpuset marked is_sched_load_balance into the
580 * array 'csa'. For our purposes, rebuilding the schedulers
581 * sched domains, we can ignore !is_sched_load_balance cpusets.
582 * csa - (for CpuSet Array) Array of pointers to all the cpusets
583 * that need to be load balanced, for convenient iterative
584 * access by the subsequent code that finds the best partition,
585 * i.e the set of domains (subsets) of CPUs such that the
586 * cpus_allowed of every cpuset marked is_sched_load_balance
587 * is a subset of one of these domains, while there are as
588 * many such domains as possible, each as small as possible.
589 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
590 * the kernel/sched/core.c routine partition_sched_domains() in a
591 * convenient format, that can be easily compared to the prior
592 * value to determine what partition elements (sched domains)
593 * were changed (added or removed.)
594 *
595 * Finding the best partition (set of domains):
596 * The triple nested loops below over i, j, k scan over the
597 * load balanced cpusets (using the array of cpuset pointers in
598 * csa[]) looking for pairs of cpusets that have overlapping
599 * cpus_allowed, but which don't have the same 'pn' partition
600 * number and gives them in the same partition number. It keeps
601 * looping on the 'restart' label until it can no longer find
602 * any such pairs.
603 *
604 * The union of the cpus_allowed masks from the set of
605 * all cpusets having the same 'pn' value then form the one
606 * element of the partition (one sched domain) to be passed to
607 * partition_sched_domains().
608 */
609 static int generate_sched_domains(cpumask_var_t **domains,
610 struct sched_domain_attr **attributes)
611 {
612 struct cpuset *cp; /* scans q */
613 struct cpuset **csa; /* array of all cpuset ptrs */
614 int csn; /* how many cpuset ptrs in csa so far */
615 int i, j, k; /* indices for partition finding loops */
616 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
617 struct sched_domain_attr *dattr; /* attributes for custom domains */
618 int ndoms = 0; /* number of sched domains in result */
619 int nslot; /* next empty doms[] struct cpumask slot */
620 struct cgroup_subsys_state *pos_css;
621
622 doms = NULL;
623 dattr = NULL;
624 csa = NULL;
625
626 /* Special case for the 99% of systems with one, full, sched domain */
627 if (is_sched_load_balance(&top_cpuset)) {
628 ndoms = 1;
629 doms = alloc_sched_domains(ndoms);
630 if (!doms)
631 goto done;
632
633 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
634 if (dattr) {
635 *dattr = SD_ATTR_INIT;
636 update_domain_attr_tree(dattr, &top_cpuset);
637 }
638 cpumask_copy(doms[0], top_cpuset.effective_cpus);
639
640 goto done;
641 }
642
643 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
644 if (!csa)
645 goto done;
646 csn = 0;
647
648 rcu_read_lock();
649 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
650 if (cp == &top_cpuset)
651 continue;
652 /*
653 * Continue traversing beyond @cp iff @cp has some CPUs and
654 * isn't load balancing. The former is obvious. The
655 * latter: All child cpusets contain a subset of the
656 * parent's cpus, so just skip them, and then we call
657 * update_domain_attr_tree() to calc relax_domain_level of
658 * the corresponding sched domain.
659 */
660 if (!cpumask_empty(cp->cpus_allowed) &&
661 !is_sched_load_balance(cp))
662 continue;
663
664 if (is_sched_load_balance(cp))
665 csa[csn++] = cp;
666
667 /* skip @cp's subtree */
668 pos_css = css_rightmost_descendant(pos_css);
669 }
670 rcu_read_unlock();
671
672 for (i = 0; i < csn; i++)
673 csa[i]->pn = i;
674 ndoms = csn;
675
676 restart:
677 /* Find the best partition (set of sched domains) */
678 for (i = 0; i < csn; i++) {
679 struct cpuset *a = csa[i];
680 int apn = a->pn;
681
682 for (j = 0; j < csn; j++) {
683 struct cpuset *b = csa[j];
684 int bpn = b->pn;
685
686 if (apn != bpn && cpusets_overlap(a, b)) {
687 for (k = 0; k < csn; k++) {
688 struct cpuset *c = csa[k];
689
690 if (c->pn == bpn)
691 c->pn = apn;
692 }
693 ndoms--; /* one less element */
694 goto restart;
695 }
696 }
697 }
698
699 /*
700 * Now we know how many domains to create.
701 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
702 */
703 doms = alloc_sched_domains(ndoms);
704 if (!doms)
705 goto done;
706
707 /*
708 * The rest of the code, including the scheduler, can deal with
709 * dattr==NULL case. No need to abort if alloc fails.
710 */
711 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
712
713 for (nslot = 0, i = 0; i < csn; i++) {
714 struct cpuset *a = csa[i];
715 struct cpumask *dp;
716 int apn = a->pn;
717
718 if (apn < 0) {
719 /* Skip completed partitions */
720 continue;
721 }
722
723 dp = doms[nslot];
724
725 if (nslot == ndoms) {
726 static int warnings = 10;
727 if (warnings) {
728 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
729 nslot, ndoms, csn, i, apn);
730 warnings--;
731 }
732 continue;
733 }
734
735 cpumask_clear(dp);
736 if (dattr)
737 *(dattr + nslot) = SD_ATTR_INIT;
738 for (j = i; j < csn; j++) {
739 struct cpuset *b = csa[j];
740
741 if (apn == b->pn) {
742 cpumask_or(dp, dp, b->effective_cpus);
743 if (dattr)
744 update_domain_attr_tree(dattr + nslot, b);
745
746 /* Done with this partition */
747 b->pn = -1;
748 }
749 }
750 nslot++;
751 }
752 BUG_ON(nslot != ndoms);
753
754 done:
755 kfree(csa);
756
757 /*
758 * Fallback to the default domain if kmalloc() failed.
759 * See comments in partition_sched_domains().
760 */
761 if (doms == NULL)
762 ndoms = 1;
763
764 *domains = doms;
765 *attributes = dattr;
766 return ndoms;
767 }
768
769 /*
770 * Rebuild scheduler domains.
771 *
772 * If the flag 'sched_load_balance' of any cpuset with non-empty
773 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
774 * which has that flag enabled, or if any cpuset with a non-empty
775 * 'cpus' is removed, then call this routine to rebuild the
776 * scheduler's dynamic sched domains.
777 *
778 * Call with cpuset_mutex held. Takes get_online_cpus().
779 */
780 static void rebuild_sched_domains_locked(void)
781 {
782 struct sched_domain_attr *attr;
783 cpumask_var_t *doms;
784 int ndoms;
785
786 lockdep_assert_held(&cpuset_mutex);
787 get_online_cpus();
788
789 /*
790 * We have raced with CPU hotplug. Don't do anything to avoid
791 * passing doms with offlined cpu to partition_sched_domains().
792 * Anyways, hotplug work item will rebuild sched domains.
793 */
794 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
795 goto out;
796
797 /* Generate domain masks and attrs */
798 ndoms = generate_sched_domains(&doms, &attr);
799
800 /* Have scheduler rebuild the domains */
801 partition_sched_domains(ndoms, doms, attr);
802 out:
803 put_online_cpus();
804 }
805 #else /* !CONFIG_SMP */
806 static void rebuild_sched_domains_locked(void)
807 {
808 }
809 #endif /* CONFIG_SMP */
810
811 void rebuild_sched_domains(void)
812 {
813 mutex_lock(&cpuset_mutex);
814 rebuild_sched_domains_locked();
815 mutex_unlock(&cpuset_mutex);
816 }
817
818 /**
819 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
820 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
821 *
822 * Iterate through each task of @cs updating its cpus_allowed to the
823 * effective cpuset's. As this function is called with cpuset_mutex held,
824 * cpuset membership stays stable.
825 */
826 static void update_tasks_cpumask(struct cpuset *cs)
827 {
828 struct css_task_iter it;
829 struct task_struct *task;
830
831 css_task_iter_start(&cs->css, &it);
832 while ((task = css_task_iter_next(&it)))
833 set_cpus_allowed_ptr(task, cs->effective_cpus);
834 css_task_iter_end(&it);
835 }
836
837 /*
838 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
839 * @cs: the cpuset to consider
840 * @new_cpus: temp variable for calculating new effective_cpus
841 *
842 * When congifured cpumask is changed, the effective cpumasks of this cpuset
843 * and all its descendants need to be updated.
844 *
845 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
846 *
847 * Called with cpuset_mutex held
848 */
849 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
850 {
851 struct cpuset *cp;
852 struct cgroup_subsys_state *pos_css;
853 bool need_rebuild_sched_domains = false;
854
855 rcu_read_lock();
856 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
857 struct cpuset *parent = parent_cs(cp);
858
859 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
860
861 /*
862 * If it becomes empty, inherit the effective mask of the
863 * parent, which is guaranteed to have some CPUs.
864 */
865 if (cpumask_empty(new_cpus))
866 cpumask_copy(new_cpus, parent->effective_cpus);
867
868 /* Skip the whole subtree if the cpumask remains the same. */
869 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
870 pos_css = css_rightmost_descendant(pos_css);
871 continue;
872 }
873
874 if (!css_tryget_online(&cp->css))
875 continue;
876 rcu_read_unlock();
877
878 mutex_lock(&callback_mutex);
879 cpumask_copy(cp->effective_cpus, new_cpus);
880 mutex_unlock(&callback_mutex);
881
882 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
883 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
884
885 update_tasks_cpumask(cp);
886
887 /*
888 * If the effective cpumask of any non-empty cpuset is changed,
889 * we need to rebuild sched domains.
890 */
891 if (!cpumask_empty(cp->cpus_allowed) &&
892 is_sched_load_balance(cp))
893 need_rebuild_sched_domains = true;
894
895 rcu_read_lock();
896 css_put(&cp->css);
897 }
898 rcu_read_unlock();
899
900 if (need_rebuild_sched_domains)
901 rebuild_sched_domains_locked();
902 }
903
904 /**
905 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
906 * @cs: the cpuset to consider
907 * @trialcs: trial cpuset
908 * @buf: buffer of cpu numbers written to this cpuset
909 */
910 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
911 const char *buf)
912 {
913 int retval;
914
915 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
916 if (cs == &top_cpuset)
917 return -EACCES;
918
919 /*
920 * An empty cpus_allowed is ok only if the cpuset has no tasks.
921 * Since cpulist_parse() fails on an empty mask, we special case
922 * that parsing. The validate_change() call ensures that cpusets
923 * with tasks have cpus.
924 */
925 if (!*buf) {
926 cpumask_clear(trialcs->cpus_allowed);
927 } else {
928 retval = cpulist_parse(buf, trialcs->cpus_allowed);
929 if (retval < 0)
930 return retval;
931
932 if (!cpumask_subset(trialcs->cpus_allowed,
933 top_cpuset.cpus_allowed))
934 return -EINVAL;
935 }
936
937 /* Nothing to do if the cpus didn't change */
938 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
939 return 0;
940
941 retval = validate_change(cs, trialcs);
942 if (retval < 0)
943 return retval;
944
945 mutex_lock(&callback_mutex);
946 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
947 mutex_unlock(&callback_mutex);
948
949 /* use trialcs->cpus_allowed as a temp variable */
950 update_cpumasks_hier(cs, trialcs->cpus_allowed);
951 return 0;
952 }
953
954 /*
955 * cpuset_migrate_mm
956 *
957 * Migrate memory region from one set of nodes to another.
958 *
959 * Temporarilly set tasks mems_allowed to target nodes of migration,
960 * so that the migration code can allocate pages on these nodes.
961 *
962 * While the mm_struct we are migrating is typically from some
963 * other task, the task_struct mems_allowed that we are hacking
964 * is for our current task, which must allocate new pages for that
965 * migrating memory region.
966 */
967
968 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
969 const nodemask_t *to)
970 {
971 struct task_struct *tsk = current;
972
973 tsk->mems_allowed = *to;
974
975 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
976
977 rcu_read_lock();
978 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
979 rcu_read_unlock();
980 }
981
982 /*
983 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
984 * @tsk: the task to change
985 * @newmems: new nodes that the task will be set
986 *
987 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
988 * we structure updates as setting all new allowed nodes, then clearing newly
989 * disallowed ones.
990 */
991 static void cpuset_change_task_nodemask(struct task_struct *tsk,
992 nodemask_t *newmems)
993 {
994 bool need_loop;
995
996 /*
997 * Allow tasks that have access to memory reserves because they have
998 * been OOM killed to get memory anywhere.
999 */
1000 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1001 return;
1002 if (current->flags & PF_EXITING) /* Let dying task have memory */
1003 return;
1004
1005 task_lock(tsk);
1006 /*
1007 * Determine if a loop is necessary if another thread is doing
1008 * read_mems_allowed_begin(). If at least one node remains unchanged and
1009 * tsk does not have a mempolicy, then an empty nodemask will not be
1010 * possible when mems_allowed is larger than a word.
1011 */
1012 need_loop = task_has_mempolicy(tsk) ||
1013 !nodes_intersects(*newmems, tsk->mems_allowed);
1014
1015 if (need_loop) {
1016 local_irq_disable();
1017 write_seqcount_begin(&tsk->mems_allowed_seq);
1018 }
1019
1020 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1021 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1022
1023 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1024 tsk->mems_allowed = *newmems;
1025
1026 if (need_loop) {
1027 write_seqcount_end(&tsk->mems_allowed_seq);
1028 local_irq_enable();
1029 }
1030
1031 task_unlock(tsk);
1032 }
1033
1034 static void *cpuset_being_rebound;
1035
1036 /**
1037 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1038 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1039 *
1040 * Iterate through each task of @cs updating its mems_allowed to the
1041 * effective cpuset's. As this function is called with cpuset_mutex held,
1042 * cpuset membership stays stable.
1043 */
1044 static void update_tasks_nodemask(struct cpuset *cs)
1045 {
1046 static nodemask_t newmems; /* protected by cpuset_mutex */
1047 struct css_task_iter it;
1048 struct task_struct *task;
1049
1050 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1051
1052 guarantee_online_mems(cs, &newmems);
1053
1054 /*
1055 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1056 * take while holding tasklist_lock. Forks can happen - the
1057 * mpol_dup() cpuset_being_rebound check will catch such forks,
1058 * and rebind their vma mempolicies too. Because we still hold
1059 * the global cpuset_mutex, we know that no other rebind effort
1060 * will be contending for the global variable cpuset_being_rebound.
1061 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1062 * is idempotent. Also migrate pages in each mm to new nodes.
1063 */
1064 css_task_iter_start(&cs->css, &it);
1065 while ((task = css_task_iter_next(&it))) {
1066 struct mm_struct *mm;
1067 bool migrate;
1068
1069 cpuset_change_task_nodemask(task, &newmems);
1070
1071 mm = get_task_mm(task);
1072 if (!mm)
1073 continue;
1074
1075 migrate = is_memory_migrate(cs);
1076
1077 mpol_rebind_mm(mm, &cs->mems_allowed);
1078 if (migrate)
1079 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1080 mmput(mm);
1081 }
1082 css_task_iter_end(&it);
1083
1084 /*
1085 * All the tasks' nodemasks have been updated, update
1086 * cs->old_mems_allowed.
1087 */
1088 cs->old_mems_allowed = newmems;
1089
1090 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1091 cpuset_being_rebound = NULL;
1092 }
1093
1094 /*
1095 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1096 * @cs: the cpuset to consider
1097 * @new_mems: a temp variable for calculating new effective_mems
1098 *
1099 * When configured nodemask is changed, the effective nodemasks of this cpuset
1100 * and all its descendants need to be updated.
1101 *
1102 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1103 *
1104 * Called with cpuset_mutex held
1105 */
1106 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1107 {
1108 struct cpuset *cp;
1109 struct cgroup_subsys_state *pos_css;
1110
1111 rcu_read_lock();
1112 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1113 struct cpuset *parent = parent_cs(cp);
1114
1115 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1116
1117 /*
1118 * If it becomes empty, inherit the effective mask of the
1119 * parent, which is guaranteed to have some MEMs.
1120 */
1121 if (nodes_empty(*new_mems))
1122 *new_mems = parent->effective_mems;
1123
1124 /* Skip the whole subtree if the nodemask remains the same. */
1125 if (nodes_equal(*new_mems, cp->effective_mems)) {
1126 pos_css = css_rightmost_descendant(pos_css);
1127 continue;
1128 }
1129
1130 if (!css_tryget_online(&cp->css))
1131 continue;
1132 rcu_read_unlock();
1133
1134 mutex_lock(&callback_mutex);
1135 cp->effective_mems = *new_mems;
1136 mutex_unlock(&callback_mutex);
1137
1138 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1139 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1140
1141 update_tasks_nodemask(cp);
1142
1143 rcu_read_lock();
1144 css_put(&cp->css);
1145 }
1146 rcu_read_unlock();
1147 }
1148
1149 /*
1150 * Handle user request to change the 'mems' memory placement
1151 * of a cpuset. Needs to validate the request, update the
1152 * cpusets mems_allowed, and for each task in the cpuset,
1153 * update mems_allowed and rebind task's mempolicy and any vma
1154 * mempolicies and if the cpuset is marked 'memory_migrate',
1155 * migrate the tasks pages to the new memory.
1156 *
1157 * Call with cpuset_mutex held. May take callback_mutex during call.
1158 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1159 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1160 * their mempolicies to the cpusets new mems_allowed.
1161 */
1162 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1163 const char *buf)
1164 {
1165 int retval;
1166
1167 /*
1168 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1169 * it's read-only
1170 */
1171 if (cs == &top_cpuset) {
1172 retval = -EACCES;
1173 goto done;
1174 }
1175
1176 /*
1177 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1178 * Since nodelist_parse() fails on an empty mask, we special case
1179 * that parsing. The validate_change() call ensures that cpusets
1180 * with tasks have memory.
1181 */
1182 if (!*buf) {
1183 nodes_clear(trialcs->mems_allowed);
1184 } else {
1185 retval = nodelist_parse(buf, trialcs->mems_allowed);
1186 if (retval < 0)
1187 goto done;
1188
1189 if (!nodes_subset(trialcs->mems_allowed,
1190 top_cpuset.mems_allowed)) {
1191 retval = -EINVAL;
1192 goto done;
1193 }
1194 }
1195
1196 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1197 retval = 0; /* Too easy - nothing to do */
1198 goto done;
1199 }
1200 retval = validate_change(cs, trialcs);
1201 if (retval < 0)
1202 goto done;
1203
1204 mutex_lock(&callback_mutex);
1205 cs->mems_allowed = trialcs->mems_allowed;
1206 mutex_unlock(&callback_mutex);
1207
1208 /* use trialcs->mems_allowed as a temp variable */
1209 update_nodemasks_hier(cs, &cs->mems_allowed);
1210 done:
1211 return retval;
1212 }
1213
1214 int current_cpuset_is_being_rebound(void)
1215 {
1216 int ret;
1217
1218 rcu_read_lock();
1219 ret = task_cs(current) == cpuset_being_rebound;
1220 rcu_read_unlock();
1221
1222 return ret;
1223 }
1224
1225 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1226 {
1227 #ifdef CONFIG_SMP
1228 if (val < -1 || val >= sched_domain_level_max)
1229 return -EINVAL;
1230 #endif
1231
1232 if (val != cs->relax_domain_level) {
1233 cs->relax_domain_level = val;
1234 if (!cpumask_empty(cs->cpus_allowed) &&
1235 is_sched_load_balance(cs))
1236 rebuild_sched_domains_locked();
1237 }
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1244 * @cs: the cpuset in which each task's spread flags needs to be changed
1245 *
1246 * Iterate through each task of @cs updating its spread flags. As this
1247 * function is called with cpuset_mutex held, cpuset membership stays
1248 * stable.
1249 */
1250 static void update_tasks_flags(struct cpuset *cs)
1251 {
1252 struct css_task_iter it;
1253 struct task_struct *task;
1254
1255 css_task_iter_start(&cs->css, &it);
1256 while ((task = css_task_iter_next(&it)))
1257 cpuset_update_task_spread_flag(cs, task);
1258 css_task_iter_end(&it);
1259 }
1260
1261 /*
1262 * update_flag - read a 0 or a 1 in a file and update associated flag
1263 * bit: the bit to update (see cpuset_flagbits_t)
1264 * cs: the cpuset to update
1265 * turning_on: whether the flag is being set or cleared
1266 *
1267 * Call with cpuset_mutex held.
1268 */
1269
1270 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1271 int turning_on)
1272 {
1273 struct cpuset *trialcs;
1274 int balance_flag_changed;
1275 int spread_flag_changed;
1276 int err;
1277
1278 trialcs = alloc_trial_cpuset(cs);
1279 if (!trialcs)
1280 return -ENOMEM;
1281
1282 if (turning_on)
1283 set_bit(bit, &trialcs->flags);
1284 else
1285 clear_bit(bit, &trialcs->flags);
1286
1287 err = validate_change(cs, trialcs);
1288 if (err < 0)
1289 goto out;
1290
1291 balance_flag_changed = (is_sched_load_balance(cs) !=
1292 is_sched_load_balance(trialcs));
1293
1294 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1295 || (is_spread_page(cs) != is_spread_page(trialcs)));
1296
1297 mutex_lock(&callback_mutex);
1298 cs->flags = trialcs->flags;
1299 mutex_unlock(&callback_mutex);
1300
1301 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1302 rebuild_sched_domains_locked();
1303
1304 if (spread_flag_changed)
1305 update_tasks_flags(cs);
1306 out:
1307 free_trial_cpuset(trialcs);
1308 return err;
1309 }
1310
1311 /*
1312 * Frequency meter - How fast is some event occurring?
1313 *
1314 * These routines manage a digitally filtered, constant time based,
1315 * event frequency meter. There are four routines:
1316 * fmeter_init() - initialize a frequency meter.
1317 * fmeter_markevent() - called each time the event happens.
1318 * fmeter_getrate() - returns the recent rate of such events.
1319 * fmeter_update() - internal routine used to update fmeter.
1320 *
1321 * A common data structure is passed to each of these routines,
1322 * which is used to keep track of the state required to manage the
1323 * frequency meter and its digital filter.
1324 *
1325 * The filter works on the number of events marked per unit time.
1326 * The filter is single-pole low-pass recursive (IIR). The time unit
1327 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1328 * simulate 3 decimal digits of precision (multiplied by 1000).
1329 *
1330 * With an FM_COEF of 933, and a time base of 1 second, the filter
1331 * has a half-life of 10 seconds, meaning that if the events quit
1332 * happening, then the rate returned from the fmeter_getrate()
1333 * will be cut in half each 10 seconds, until it converges to zero.
1334 *
1335 * It is not worth doing a real infinitely recursive filter. If more
1336 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1337 * just compute FM_MAXTICKS ticks worth, by which point the level
1338 * will be stable.
1339 *
1340 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1341 * arithmetic overflow in the fmeter_update() routine.
1342 *
1343 * Given the simple 32 bit integer arithmetic used, this meter works
1344 * best for reporting rates between one per millisecond (msec) and
1345 * one per 32 (approx) seconds. At constant rates faster than one
1346 * per msec it maxes out at values just under 1,000,000. At constant
1347 * rates between one per msec, and one per second it will stabilize
1348 * to a value N*1000, where N is the rate of events per second.
1349 * At constant rates between one per second and one per 32 seconds,
1350 * it will be choppy, moving up on the seconds that have an event,
1351 * and then decaying until the next event. At rates slower than
1352 * about one in 32 seconds, it decays all the way back to zero between
1353 * each event.
1354 */
1355
1356 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1357 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1358 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1359 #define FM_SCALE 1000 /* faux fixed point scale */
1360
1361 /* Initialize a frequency meter */
1362 static void fmeter_init(struct fmeter *fmp)
1363 {
1364 fmp->cnt = 0;
1365 fmp->val = 0;
1366 fmp->time = 0;
1367 spin_lock_init(&fmp->lock);
1368 }
1369
1370 /* Internal meter update - process cnt events and update value */
1371 static void fmeter_update(struct fmeter *fmp)
1372 {
1373 time_t now = get_seconds();
1374 time_t ticks = now - fmp->time;
1375
1376 if (ticks == 0)
1377 return;
1378
1379 ticks = min(FM_MAXTICKS, ticks);
1380 while (ticks-- > 0)
1381 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1382 fmp->time = now;
1383
1384 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1385 fmp->cnt = 0;
1386 }
1387
1388 /* Process any previous ticks, then bump cnt by one (times scale). */
1389 static void fmeter_markevent(struct fmeter *fmp)
1390 {
1391 spin_lock(&fmp->lock);
1392 fmeter_update(fmp);
1393 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1394 spin_unlock(&fmp->lock);
1395 }
1396
1397 /* Process any previous ticks, then return current value. */
1398 static int fmeter_getrate(struct fmeter *fmp)
1399 {
1400 int val;
1401
1402 spin_lock(&fmp->lock);
1403 fmeter_update(fmp);
1404 val = fmp->val;
1405 spin_unlock(&fmp->lock);
1406 return val;
1407 }
1408
1409 static struct cpuset *cpuset_attach_old_cs;
1410
1411 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1412 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1413 struct cgroup_taskset *tset)
1414 {
1415 struct cpuset *cs = css_cs(css);
1416 struct task_struct *task;
1417 int ret;
1418
1419 /* used later by cpuset_attach() */
1420 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1421
1422 mutex_lock(&cpuset_mutex);
1423
1424 /* allow moving tasks into an empty cpuset if on default hierarchy */
1425 ret = -ENOSPC;
1426 if (!cgroup_on_dfl(css->cgroup) &&
1427 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1428 goto out_unlock;
1429
1430 cgroup_taskset_for_each(task, tset) {
1431 /*
1432 * Kthreads which disallow setaffinity shouldn't be moved
1433 * to a new cpuset; we don't want to change their cpu
1434 * affinity and isolating such threads by their set of
1435 * allowed nodes is unnecessary. Thus, cpusets are not
1436 * applicable for such threads. This prevents checking for
1437 * success of set_cpus_allowed_ptr() on all attached tasks
1438 * before cpus_allowed may be changed.
1439 */
1440 ret = -EINVAL;
1441 if (task->flags & PF_NO_SETAFFINITY)
1442 goto out_unlock;
1443 ret = security_task_setscheduler(task);
1444 if (ret)
1445 goto out_unlock;
1446 }
1447
1448 /*
1449 * Mark attach is in progress. This makes validate_change() fail
1450 * changes which zero cpus/mems_allowed.
1451 */
1452 cs->attach_in_progress++;
1453 ret = 0;
1454 out_unlock:
1455 mutex_unlock(&cpuset_mutex);
1456 return ret;
1457 }
1458
1459 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1460 struct cgroup_taskset *tset)
1461 {
1462 mutex_lock(&cpuset_mutex);
1463 css_cs(css)->attach_in_progress--;
1464 mutex_unlock(&cpuset_mutex);
1465 }
1466
1467 /*
1468 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1469 * but we can't allocate it dynamically there. Define it global and
1470 * allocate from cpuset_init().
1471 */
1472 static cpumask_var_t cpus_attach;
1473
1474 static void cpuset_attach(struct cgroup_subsys_state *css,
1475 struct cgroup_taskset *tset)
1476 {
1477 /* static buf protected by cpuset_mutex */
1478 static nodemask_t cpuset_attach_nodemask_to;
1479 struct mm_struct *mm;
1480 struct task_struct *task;
1481 struct task_struct *leader = cgroup_taskset_first(tset);
1482 struct cpuset *cs = css_cs(css);
1483 struct cpuset *oldcs = cpuset_attach_old_cs;
1484
1485 mutex_lock(&cpuset_mutex);
1486
1487 /* prepare for attach */
1488 if (cs == &top_cpuset)
1489 cpumask_copy(cpus_attach, cpu_possible_mask);
1490 else
1491 guarantee_online_cpus(cs, cpus_attach);
1492
1493 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1494
1495 cgroup_taskset_for_each(task, tset) {
1496 /*
1497 * can_attach beforehand should guarantee that this doesn't
1498 * fail. TODO: have a better way to handle failure here
1499 */
1500 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1501
1502 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1503 cpuset_update_task_spread_flag(cs, task);
1504 }
1505
1506 /*
1507 * Change mm, possibly for multiple threads in a threadgroup. This is
1508 * expensive and may sleep.
1509 */
1510 cpuset_attach_nodemask_to = cs->effective_mems;
1511 mm = get_task_mm(leader);
1512 if (mm) {
1513 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1514
1515 /*
1516 * old_mems_allowed is the same with mems_allowed here, except
1517 * if this task is being moved automatically due to hotplug.
1518 * In that case @mems_allowed has been updated and is empty,
1519 * so @old_mems_allowed is the right nodesets that we migrate
1520 * mm from.
1521 */
1522 if (is_memory_migrate(cs)) {
1523 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1524 &cpuset_attach_nodemask_to);
1525 }
1526 mmput(mm);
1527 }
1528
1529 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1530
1531 cs->attach_in_progress--;
1532 if (!cs->attach_in_progress)
1533 wake_up(&cpuset_attach_wq);
1534
1535 mutex_unlock(&cpuset_mutex);
1536 }
1537
1538 /* The various types of files and directories in a cpuset file system */
1539
1540 typedef enum {
1541 FILE_MEMORY_MIGRATE,
1542 FILE_CPULIST,
1543 FILE_MEMLIST,
1544 FILE_EFFECTIVE_CPULIST,
1545 FILE_EFFECTIVE_MEMLIST,
1546 FILE_CPU_EXCLUSIVE,
1547 FILE_MEM_EXCLUSIVE,
1548 FILE_MEM_HARDWALL,
1549 FILE_SCHED_LOAD_BALANCE,
1550 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1551 FILE_MEMORY_PRESSURE_ENABLED,
1552 FILE_MEMORY_PRESSURE,
1553 FILE_SPREAD_PAGE,
1554 FILE_SPREAD_SLAB,
1555 } cpuset_filetype_t;
1556
1557 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1558 u64 val)
1559 {
1560 struct cpuset *cs = css_cs(css);
1561 cpuset_filetype_t type = cft->private;
1562 int retval = 0;
1563
1564 mutex_lock(&cpuset_mutex);
1565 if (!is_cpuset_online(cs)) {
1566 retval = -ENODEV;
1567 goto out_unlock;
1568 }
1569
1570 switch (type) {
1571 case FILE_CPU_EXCLUSIVE:
1572 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1573 break;
1574 case FILE_MEM_EXCLUSIVE:
1575 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1576 break;
1577 case FILE_MEM_HARDWALL:
1578 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1579 break;
1580 case FILE_SCHED_LOAD_BALANCE:
1581 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1582 break;
1583 case FILE_MEMORY_MIGRATE:
1584 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1585 break;
1586 case FILE_MEMORY_PRESSURE_ENABLED:
1587 cpuset_memory_pressure_enabled = !!val;
1588 break;
1589 case FILE_MEMORY_PRESSURE:
1590 retval = -EACCES;
1591 break;
1592 case FILE_SPREAD_PAGE:
1593 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1594 break;
1595 case FILE_SPREAD_SLAB:
1596 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1597 break;
1598 default:
1599 retval = -EINVAL;
1600 break;
1601 }
1602 out_unlock:
1603 mutex_unlock(&cpuset_mutex);
1604 return retval;
1605 }
1606
1607 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1608 s64 val)
1609 {
1610 struct cpuset *cs = css_cs(css);
1611 cpuset_filetype_t type = cft->private;
1612 int retval = -ENODEV;
1613
1614 mutex_lock(&cpuset_mutex);
1615 if (!is_cpuset_online(cs))
1616 goto out_unlock;
1617
1618 switch (type) {
1619 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1620 retval = update_relax_domain_level(cs, val);
1621 break;
1622 default:
1623 retval = -EINVAL;
1624 break;
1625 }
1626 out_unlock:
1627 mutex_unlock(&cpuset_mutex);
1628 return retval;
1629 }
1630
1631 /*
1632 * Common handling for a write to a "cpus" or "mems" file.
1633 */
1634 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1635 char *buf, size_t nbytes, loff_t off)
1636 {
1637 struct cpuset *cs = css_cs(of_css(of));
1638 struct cpuset *trialcs;
1639 int retval = -ENODEV;
1640
1641 buf = strstrip(buf);
1642
1643 /*
1644 * CPU or memory hotunplug may leave @cs w/o any execution
1645 * resources, in which case the hotplug code asynchronously updates
1646 * configuration and transfers all tasks to the nearest ancestor
1647 * which can execute.
1648 *
1649 * As writes to "cpus" or "mems" may restore @cs's execution
1650 * resources, wait for the previously scheduled operations before
1651 * proceeding, so that we don't end up keep removing tasks added
1652 * after execution capability is restored.
1653 *
1654 * cpuset_hotplug_work calls back into cgroup core via
1655 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1656 * operation like this one can lead to a deadlock through kernfs
1657 * active_ref protection. Let's break the protection. Losing the
1658 * protection is okay as we check whether @cs is online after
1659 * grabbing cpuset_mutex anyway. This only happens on the legacy
1660 * hierarchies.
1661 */
1662 css_get(&cs->css);
1663 kernfs_break_active_protection(of->kn);
1664 flush_work(&cpuset_hotplug_work);
1665
1666 mutex_lock(&cpuset_mutex);
1667 if (!is_cpuset_online(cs))
1668 goto out_unlock;
1669
1670 trialcs = alloc_trial_cpuset(cs);
1671 if (!trialcs) {
1672 retval = -ENOMEM;
1673 goto out_unlock;
1674 }
1675
1676 switch (of_cft(of)->private) {
1677 case FILE_CPULIST:
1678 retval = update_cpumask(cs, trialcs, buf);
1679 break;
1680 case FILE_MEMLIST:
1681 retval = update_nodemask(cs, trialcs, buf);
1682 break;
1683 default:
1684 retval = -EINVAL;
1685 break;
1686 }
1687
1688 free_trial_cpuset(trialcs);
1689 out_unlock:
1690 mutex_unlock(&cpuset_mutex);
1691 kernfs_unbreak_active_protection(of->kn);
1692 css_put(&cs->css);
1693 return retval ?: nbytes;
1694 }
1695
1696 /*
1697 * These ascii lists should be read in a single call, by using a user
1698 * buffer large enough to hold the entire map. If read in smaller
1699 * chunks, there is no guarantee of atomicity. Since the display format
1700 * used, list of ranges of sequential numbers, is variable length,
1701 * and since these maps can change value dynamically, one could read
1702 * gibberish by doing partial reads while a list was changing.
1703 */
1704 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1705 {
1706 struct cpuset *cs = css_cs(seq_css(sf));
1707 cpuset_filetype_t type = seq_cft(sf)->private;
1708 ssize_t count;
1709 char *buf, *s;
1710 int ret = 0;
1711
1712 count = seq_get_buf(sf, &buf);
1713 s = buf;
1714
1715 mutex_lock(&callback_mutex);
1716
1717 switch (type) {
1718 case FILE_CPULIST:
1719 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1720 break;
1721 case FILE_MEMLIST:
1722 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1723 break;
1724 case FILE_EFFECTIVE_CPULIST:
1725 s += cpulist_scnprintf(s, count, cs->effective_cpus);
1726 break;
1727 case FILE_EFFECTIVE_MEMLIST:
1728 s += nodelist_scnprintf(s, count, cs->effective_mems);
1729 break;
1730 default:
1731 ret = -EINVAL;
1732 goto out_unlock;
1733 }
1734
1735 if (s < buf + count - 1) {
1736 *s++ = '\n';
1737 seq_commit(sf, s - buf);
1738 } else {
1739 seq_commit(sf, -1);
1740 }
1741 out_unlock:
1742 mutex_unlock(&callback_mutex);
1743 return ret;
1744 }
1745
1746 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1747 {
1748 struct cpuset *cs = css_cs(css);
1749 cpuset_filetype_t type = cft->private;
1750 switch (type) {
1751 case FILE_CPU_EXCLUSIVE:
1752 return is_cpu_exclusive(cs);
1753 case FILE_MEM_EXCLUSIVE:
1754 return is_mem_exclusive(cs);
1755 case FILE_MEM_HARDWALL:
1756 return is_mem_hardwall(cs);
1757 case FILE_SCHED_LOAD_BALANCE:
1758 return is_sched_load_balance(cs);
1759 case FILE_MEMORY_MIGRATE:
1760 return is_memory_migrate(cs);
1761 case FILE_MEMORY_PRESSURE_ENABLED:
1762 return cpuset_memory_pressure_enabled;
1763 case FILE_MEMORY_PRESSURE:
1764 return fmeter_getrate(&cs->fmeter);
1765 case FILE_SPREAD_PAGE:
1766 return is_spread_page(cs);
1767 case FILE_SPREAD_SLAB:
1768 return is_spread_slab(cs);
1769 default:
1770 BUG();
1771 }
1772
1773 /* Unreachable but makes gcc happy */
1774 return 0;
1775 }
1776
1777 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1778 {
1779 struct cpuset *cs = css_cs(css);
1780 cpuset_filetype_t type = cft->private;
1781 switch (type) {
1782 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1783 return cs->relax_domain_level;
1784 default:
1785 BUG();
1786 }
1787
1788 /* Unrechable but makes gcc happy */
1789 return 0;
1790 }
1791
1792
1793 /*
1794 * for the common functions, 'private' gives the type of file
1795 */
1796
1797 static struct cftype files[] = {
1798 {
1799 .name = "cpus",
1800 .seq_show = cpuset_common_seq_show,
1801 .write = cpuset_write_resmask,
1802 .max_write_len = (100U + 6 * NR_CPUS),
1803 .private = FILE_CPULIST,
1804 },
1805
1806 {
1807 .name = "mems",
1808 .seq_show = cpuset_common_seq_show,
1809 .write = cpuset_write_resmask,
1810 .max_write_len = (100U + 6 * MAX_NUMNODES),
1811 .private = FILE_MEMLIST,
1812 },
1813
1814 {
1815 .name = "effective_cpus",
1816 .seq_show = cpuset_common_seq_show,
1817 .private = FILE_EFFECTIVE_CPULIST,
1818 },
1819
1820 {
1821 .name = "effective_mems",
1822 .seq_show = cpuset_common_seq_show,
1823 .private = FILE_EFFECTIVE_MEMLIST,
1824 },
1825
1826 {
1827 .name = "cpu_exclusive",
1828 .read_u64 = cpuset_read_u64,
1829 .write_u64 = cpuset_write_u64,
1830 .private = FILE_CPU_EXCLUSIVE,
1831 },
1832
1833 {
1834 .name = "mem_exclusive",
1835 .read_u64 = cpuset_read_u64,
1836 .write_u64 = cpuset_write_u64,
1837 .private = FILE_MEM_EXCLUSIVE,
1838 },
1839
1840 {
1841 .name = "mem_hardwall",
1842 .read_u64 = cpuset_read_u64,
1843 .write_u64 = cpuset_write_u64,
1844 .private = FILE_MEM_HARDWALL,
1845 },
1846
1847 {
1848 .name = "sched_load_balance",
1849 .read_u64 = cpuset_read_u64,
1850 .write_u64 = cpuset_write_u64,
1851 .private = FILE_SCHED_LOAD_BALANCE,
1852 },
1853
1854 {
1855 .name = "sched_relax_domain_level",
1856 .read_s64 = cpuset_read_s64,
1857 .write_s64 = cpuset_write_s64,
1858 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1859 },
1860
1861 {
1862 .name = "memory_migrate",
1863 .read_u64 = cpuset_read_u64,
1864 .write_u64 = cpuset_write_u64,
1865 .private = FILE_MEMORY_MIGRATE,
1866 },
1867
1868 {
1869 .name = "memory_pressure",
1870 .read_u64 = cpuset_read_u64,
1871 .write_u64 = cpuset_write_u64,
1872 .private = FILE_MEMORY_PRESSURE,
1873 .mode = S_IRUGO,
1874 },
1875
1876 {
1877 .name = "memory_spread_page",
1878 .read_u64 = cpuset_read_u64,
1879 .write_u64 = cpuset_write_u64,
1880 .private = FILE_SPREAD_PAGE,
1881 },
1882
1883 {
1884 .name = "memory_spread_slab",
1885 .read_u64 = cpuset_read_u64,
1886 .write_u64 = cpuset_write_u64,
1887 .private = FILE_SPREAD_SLAB,
1888 },
1889
1890 {
1891 .name = "memory_pressure_enabled",
1892 .flags = CFTYPE_ONLY_ON_ROOT,
1893 .read_u64 = cpuset_read_u64,
1894 .write_u64 = cpuset_write_u64,
1895 .private = FILE_MEMORY_PRESSURE_ENABLED,
1896 },
1897
1898 { } /* terminate */
1899 };
1900
1901 /*
1902 * cpuset_css_alloc - allocate a cpuset css
1903 * cgrp: control group that the new cpuset will be part of
1904 */
1905
1906 static struct cgroup_subsys_state *
1907 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1908 {
1909 struct cpuset *cs;
1910
1911 if (!parent_css)
1912 return &top_cpuset.css;
1913
1914 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1915 if (!cs)
1916 return ERR_PTR(-ENOMEM);
1917 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1918 goto free_cs;
1919 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1920 goto free_cpus;
1921
1922 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1923 cpumask_clear(cs->cpus_allowed);
1924 nodes_clear(cs->mems_allowed);
1925 cpumask_clear(cs->effective_cpus);
1926 nodes_clear(cs->effective_mems);
1927 fmeter_init(&cs->fmeter);
1928 cs->relax_domain_level = -1;
1929
1930 return &cs->css;
1931
1932 free_cpus:
1933 free_cpumask_var(cs->cpus_allowed);
1934 free_cs:
1935 kfree(cs);
1936 return ERR_PTR(-ENOMEM);
1937 }
1938
1939 static int cpuset_css_online(struct cgroup_subsys_state *css)
1940 {
1941 struct cpuset *cs = css_cs(css);
1942 struct cpuset *parent = parent_cs(cs);
1943 struct cpuset *tmp_cs;
1944 struct cgroup_subsys_state *pos_css;
1945
1946 if (!parent)
1947 return 0;
1948
1949 mutex_lock(&cpuset_mutex);
1950
1951 set_bit(CS_ONLINE, &cs->flags);
1952 if (is_spread_page(parent))
1953 set_bit(CS_SPREAD_PAGE, &cs->flags);
1954 if (is_spread_slab(parent))
1955 set_bit(CS_SPREAD_SLAB, &cs->flags);
1956
1957 cpuset_inc();
1958
1959 mutex_lock(&callback_mutex);
1960 if (cgroup_on_dfl(cs->css.cgroup)) {
1961 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1962 cs->effective_mems = parent->effective_mems;
1963 }
1964 mutex_unlock(&callback_mutex);
1965
1966 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1967 goto out_unlock;
1968
1969 /*
1970 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1971 * set. This flag handling is implemented in cgroup core for
1972 * histrical reasons - the flag may be specified during mount.
1973 *
1974 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1975 * refuse to clone the configuration - thereby refusing the task to
1976 * be entered, and as a result refusing the sys_unshare() or
1977 * clone() which initiated it. If this becomes a problem for some
1978 * users who wish to allow that scenario, then this could be
1979 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1980 * (and likewise for mems) to the new cgroup.
1981 */
1982 rcu_read_lock();
1983 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1984 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1985 rcu_read_unlock();
1986 goto out_unlock;
1987 }
1988 }
1989 rcu_read_unlock();
1990
1991 mutex_lock(&callback_mutex);
1992 cs->mems_allowed = parent->mems_allowed;
1993 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1994 mutex_unlock(&callback_mutex);
1995 out_unlock:
1996 mutex_unlock(&cpuset_mutex);
1997 return 0;
1998 }
1999
2000 /*
2001 * If the cpuset being removed has its flag 'sched_load_balance'
2002 * enabled, then simulate turning sched_load_balance off, which
2003 * will call rebuild_sched_domains_locked().
2004 */
2005
2006 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2007 {
2008 struct cpuset *cs = css_cs(css);
2009
2010 mutex_lock(&cpuset_mutex);
2011
2012 if (is_sched_load_balance(cs))
2013 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2014
2015 cpuset_dec();
2016 clear_bit(CS_ONLINE, &cs->flags);
2017
2018 mutex_unlock(&cpuset_mutex);
2019 }
2020
2021 static void cpuset_css_free(struct cgroup_subsys_state *css)
2022 {
2023 struct cpuset *cs = css_cs(css);
2024
2025 free_cpumask_var(cs->effective_cpus);
2026 free_cpumask_var(cs->cpus_allowed);
2027 kfree(cs);
2028 }
2029
2030 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2031 {
2032 mutex_lock(&cpuset_mutex);
2033 mutex_lock(&callback_mutex);
2034
2035 if (cgroup_on_dfl(root_css->cgroup)) {
2036 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2037 top_cpuset.mems_allowed = node_possible_map;
2038 } else {
2039 cpumask_copy(top_cpuset.cpus_allowed,
2040 top_cpuset.effective_cpus);
2041 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2042 }
2043
2044 mutex_unlock(&callback_mutex);
2045 mutex_unlock(&cpuset_mutex);
2046 }
2047
2048 struct cgroup_subsys cpuset_cgrp_subsys = {
2049 .css_alloc = cpuset_css_alloc,
2050 .css_online = cpuset_css_online,
2051 .css_offline = cpuset_css_offline,
2052 .css_free = cpuset_css_free,
2053 .can_attach = cpuset_can_attach,
2054 .cancel_attach = cpuset_cancel_attach,
2055 .attach = cpuset_attach,
2056 .bind = cpuset_bind,
2057 .legacy_cftypes = files,
2058 .early_init = 1,
2059 };
2060
2061 /**
2062 * cpuset_init - initialize cpusets at system boot
2063 *
2064 * Description: Initialize top_cpuset and the cpuset internal file system,
2065 **/
2066
2067 int __init cpuset_init(void)
2068 {
2069 int err = 0;
2070
2071 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2072 BUG();
2073 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2074 BUG();
2075
2076 cpumask_setall(top_cpuset.cpus_allowed);
2077 nodes_setall(top_cpuset.mems_allowed);
2078 cpumask_setall(top_cpuset.effective_cpus);
2079 nodes_setall(top_cpuset.effective_mems);
2080
2081 fmeter_init(&top_cpuset.fmeter);
2082 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2083 top_cpuset.relax_domain_level = -1;
2084
2085 err = register_filesystem(&cpuset_fs_type);
2086 if (err < 0)
2087 return err;
2088
2089 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2090 BUG();
2091
2092 return 0;
2093 }
2094
2095 /*
2096 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2097 * or memory nodes, we need to walk over the cpuset hierarchy,
2098 * removing that CPU or node from all cpusets. If this removes the
2099 * last CPU or node from a cpuset, then move the tasks in the empty
2100 * cpuset to its next-highest non-empty parent.
2101 */
2102 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2103 {
2104 struct cpuset *parent;
2105
2106 /*
2107 * Find its next-highest non-empty parent, (top cpuset
2108 * has online cpus, so can't be empty).
2109 */
2110 parent = parent_cs(cs);
2111 while (cpumask_empty(parent->cpus_allowed) ||
2112 nodes_empty(parent->mems_allowed))
2113 parent = parent_cs(parent);
2114
2115 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2116 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2117 pr_cont_cgroup_name(cs->css.cgroup);
2118 pr_cont("\n");
2119 }
2120 }
2121
2122 static void
2123 hotplug_update_tasks_legacy(struct cpuset *cs,
2124 struct cpumask *new_cpus, nodemask_t *new_mems,
2125 bool cpus_updated, bool mems_updated)
2126 {
2127 bool is_empty;
2128
2129 mutex_lock(&callback_mutex);
2130 cpumask_copy(cs->cpus_allowed, new_cpus);
2131 cpumask_copy(cs->effective_cpus, new_cpus);
2132 cs->mems_allowed = *new_mems;
2133 cs->effective_mems = *new_mems;
2134 mutex_unlock(&callback_mutex);
2135
2136 /*
2137 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2138 * as the tasks will be migratecd to an ancestor.
2139 */
2140 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2141 update_tasks_cpumask(cs);
2142 if (mems_updated && !nodes_empty(cs->mems_allowed))
2143 update_tasks_nodemask(cs);
2144
2145 is_empty = cpumask_empty(cs->cpus_allowed) ||
2146 nodes_empty(cs->mems_allowed);
2147
2148 mutex_unlock(&cpuset_mutex);
2149
2150 /*
2151 * Move tasks to the nearest ancestor with execution resources,
2152 * This is full cgroup operation which will also call back into
2153 * cpuset. Should be done outside any lock.
2154 */
2155 if (is_empty)
2156 remove_tasks_in_empty_cpuset(cs);
2157
2158 mutex_lock(&cpuset_mutex);
2159 }
2160
2161 static void
2162 hotplug_update_tasks(struct cpuset *cs,
2163 struct cpumask *new_cpus, nodemask_t *new_mems,
2164 bool cpus_updated, bool mems_updated)
2165 {
2166 if (cpumask_empty(new_cpus))
2167 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2168 if (nodes_empty(*new_mems))
2169 *new_mems = parent_cs(cs)->effective_mems;
2170
2171 mutex_lock(&callback_mutex);
2172 cpumask_copy(cs->effective_cpus, new_cpus);
2173 cs->effective_mems = *new_mems;
2174 mutex_unlock(&callback_mutex);
2175
2176 if (cpus_updated)
2177 update_tasks_cpumask(cs);
2178 if (mems_updated)
2179 update_tasks_nodemask(cs);
2180 }
2181
2182 /**
2183 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2184 * @cs: cpuset in interest
2185 *
2186 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2187 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2188 * all its tasks are moved to the nearest ancestor with both resources.
2189 */
2190 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2191 {
2192 static cpumask_t new_cpus;
2193 static nodemask_t new_mems;
2194 bool cpus_updated;
2195 bool mems_updated;
2196 retry:
2197 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2198
2199 mutex_lock(&cpuset_mutex);
2200
2201 /*
2202 * We have raced with task attaching. We wait until attaching
2203 * is finished, so we won't attach a task to an empty cpuset.
2204 */
2205 if (cs->attach_in_progress) {
2206 mutex_unlock(&cpuset_mutex);
2207 goto retry;
2208 }
2209
2210 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2211 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2212
2213 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2214 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2215
2216 if (cgroup_on_dfl(cs->css.cgroup))
2217 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2218 cpus_updated, mems_updated);
2219 else
2220 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2221 cpus_updated, mems_updated);
2222
2223 mutex_unlock(&cpuset_mutex);
2224 }
2225
2226 /**
2227 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2228 *
2229 * This function is called after either CPU or memory configuration has
2230 * changed and updates cpuset accordingly. The top_cpuset is always
2231 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2232 * order to make cpusets transparent (of no affect) on systems that are
2233 * actively using CPU hotplug but making no active use of cpusets.
2234 *
2235 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2236 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2237 * all descendants.
2238 *
2239 * Note that CPU offlining during suspend is ignored. We don't modify
2240 * cpusets across suspend/resume cycles at all.
2241 */
2242 static void cpuset_hotplug_workfn(struct work_struct *work)
2243 {
2244 static cpumask_t new_cpus;
2245 static nodemask_t new_mems;
2246 bool cpus_updated, mems_updated;
2247 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2248
2249 mutex_lock(&cpuset_mutex);
2250
2251 /* fetch the available cpus/mems and find out which changed how */
2252 cpumask_copy(&new_cpus, cpu_active_mask);
2253 new_mems = node_states[N_MEMORY];
2254
2255 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2256 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2257
2258 /* synchronize cpus_allowed to cpu_active_mask */
2259 if (cpus_updated) {
2260 mutex_lock(&callback_mutex);
2261 if (!on_dfl)
2262 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2263 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2264 mutex_unlock(&callback_mutex);
2265 /* we don't mess with cpumasks of tasks in top_cpuset */
2266 }
2267
2268 /* synchronize mems_allowed to N_MEMORY */
2269 if (mems_updated) {
2270 mutex_lock(&callback_mutex);
2271 if (!on_dfl)
2272 top_cpuset.mems_allowed = new_mems;
2273 top_cpuset.effective_mems = new_mems;
2274 mutex_unlock(&callback_mutex);
2275 update_tasks_nodemask(&top_cpuset);
2276 }
2277
2278 mutex_unlock(&cpuset_mutex);
2279
2280 /* if cpus or mems changed, we need to propagate to descendants */
2281 if (cpus_updated || mems_updated) {
2282 struct cpuset *cs;
2283 struct cgroup_subsys_state *pos_css;
2284
2285 rcu_read_lock();
2286 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2287 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2288 continue;
2289 rcu_read_unlock();
2290
2291 cpuset_hotplug_update_tasks(cs);
2292
2293 rcu_read_lock();
2294 css_put(&cs->css);
2295 }
2296 rcu_read_unlock();
2297 }
2298
2299 /* rebuild sched domains if cpus_allowed has changed */
2300 if (cpus_updated)
2301 rebuild_sched_domains();
2302 }
2303
2304 void cpuset_update_active_cpus(bool cpu_online)
2305 {
2306 /*
2307 * We're inside cpu hotplug critical region which usually nests
2308 * inside cgroup synchronization. Bounce actual hotplug processing
2309 * to a work item to avoid reverse locking order.
2310 *
2311 * We still need to do partition_sched_domains() synchronously;
2312 * otherwise, the scheduler will get confused and put tasks to the
2313 * dead CPU. Fall back to the default single domain.
2314 * cpuset_hotplug_workfn() will rebuild it as necessary.
2315 */
2316 partition_sched_domains(1, NULL, NULL);
2317 schedule_work(&cpuset_hotplug_work);
2318 }
2319
2320 /*
2321 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2322 * Call this routine anytime after node_states[N_MEMORY] changes.
2323 * See cpuset_update_active_cpus() for CPU hotplug handling.
2324 */
2325 static int cpuset_track_online_nodes(struct notifier_block *self,
2326 unsigned long action, void *arg)
2327 {
2328 schedule_work(&cpuset_hotplug_work);
2329 return NOTIFY_OK;
2330 }
2331
2332 static struct notifier_block cpuset_track_online_nodes_nb = {
2333 .notifier_call = cpuset_track_online_nodes,
2334 .priority = 10, /* ??! */
2335 };
2336
2337 /**
2338 * cpuset_init_smp - initialize cpus_allowed
2339 *
2340 * Description: Finish top cpuset after cpu, node maps are initialized
2341 */
2342 void __init cpuset_init_smp(void)
2343 {
2344 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2345 top_cpuset.mems_allowed = node_states[N_MEMORY];
2346 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2347
2348 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2349 top_cpuset.effective_mems = node_states[N_MEMORY];
2350
2351 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2352 }
2353
2354 /**
2355 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2356 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2357 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2358 *
2359 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2360 * attached to the specified @tsk. Guaranteed to return some non-empty
2361 * subset of cpu_online_mask, even if this means going outside the
2362 * tasks cpuset.
2363 **/
2364
2365 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2366 {
2367 mutex_lock(&callback_mutex);
2368 rcu_read_lock();
2369 guarantee_online_cpus(task_cs(tsk), pmask);
2370 rcu_read_unlock();
2371 mutex_unlock(&callback_mutex);
2372 }
2373
2374 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2375 {
2376 rcu_read_lock();
2377 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2378 rcu_read_unlock();
2379
2380 /*
2381 * We own tsk->cpus_allowed, nobody can change it under us.
2382 *
2383 * But we used cs && cs->cpus_allowed lockless and thus can
2384 * race with cgroup_attach_task() or update_cpumask() and get
2385 * the wrong tsk->cpus_allowed. However, both cases imply the
2386 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2387 * which takes task_rq_lock().
2388 *
2389 * If we are called after it dropped the lock we must see all
2390 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2391 * set any mask even if it is not right from task_cs() pov,
2392 * the pending set_cpus_allowed_ptr() will fix things.
2393 *
2394 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2395 * if required.
2396 */
2397 }
2398
2399 void cpuset_init_current_mems_allowed(void)
2400 {
2401 nodes_setall(current->mems_allowed);
2402 }
2403
2404 /**
2405 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2406 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2407 *
2408 * Description: Returns the nodemask_t mems_allowed of the cpuset
2409 * attached to the specified @tsk. Guaranteed to return some non-empty
2410 * subset of node_states[N_MEMORY], even if this means going outside the
2411 * tasks cpuset.
2412 **/
2413
2414 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2415 {
2416 nodemask_t mask;
2417
2418 mutex_lock(&callback_mutex);
2419 rcu_read_lock();
2420 guarantee_online_mems(task_cs(tsk), &mask);
2421 rcu_read_unlock();
2422 mutex_unlock(&callback_mutex);
2423
2424 return mask;
2425 }
2426
2427 /**
2428 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2429 * @nodemask: the nodemask to be checked
2430 *
2431 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2432 */
2433 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2434 {
2435 return nodes_intersects(*nodemask, current->mems_allowed);
2436 }
2437
2438 /*
2439 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2440 * mem_hardwall ancestor to the specified cpuset. Call holding
2441 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2442 * (an unusual configuration), then returns the root cpuset.
2443 */
2444 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2445 {
2446 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2447 cs = parent_cs(cs);
2448 return cs;
2449 }
2450
2451 /**
2452 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2453 * @node: is this an allowed node?
2454 * @gfp_mask: memory allocation flags
2455 *
2456 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2457 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2458 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2459 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2460 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2461 * flag, yes.
2462 * Otherwise, no.
2463 *
2464 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2465 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2466 * might sleep, and might allow a node from an enclosing cpuset.
2467 *
2468 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2469 * cpusets, and never sleeps.
2470 *
2471 * The __GFP_THISNODE placement logic is really handled elsewhere,
2472 * by forcibly using a zonelist starting at a specified node, and by
2473 * (in get_page_from_freelist()) refusing to consider the zones for
2474 * any node on the zonelist except the first. By the time any such
2475 * calls get to this routine, we should just shut up and say 'yes'.
2476 *
2477 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2478 * and do not allow allocations outside the current tasks cpuset
2479 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2480 * GFP_KERNEL allocations are not so marked, so can escape to the
2481 * nearest enclosing hardwalled ancestor cpuset.
2482 *
2483 * Scanning up parent cpusets requires callback_mutex. The
2484 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2485 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2486 * current tasks mems_allowed came up empty on the first pass over
2487 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2488 * cpuset are short of memory, might require taking the callback_mutex
2489 * mutex.
2490 *
2491 * The first call here from mm/page_alloc:get_page_from_freelist()
2492 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2493 * so no allocation on a node outside the cpuset is allowed (unless
2494 * in interrupt, of course).
2495 *
2496 * The second pass through get_page_from_freelist() doesn't even call
2497 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2498 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2499 * in alloc_flags. That logic and the checks below have the combined
2500 * affect that:
2501 * in_interrupt - any node ok (current task context irrelevant)
2502 * GFP_ATOMIC - any node ok
2503 * TIF_MEMDIE - any node ok
2504 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2505 * GFP_USER - only nodes in current tasks mems allowed ok.
2506 *
2507 * Rule:
2508 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2509 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2510 * the code that might scan up ancestor cpusets and sleep.
2511 */
2512 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2513 {
2514 struct cpuset *cs; /* current cpuset ancestors */
2515 int allowed; /* is allocation in zone z allowed? */
2516
2517 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2518 return 1;
2519 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2520 if (node_isset(node, current->mems_allowed))
2521 return 1;
2522 /*
2523 * Allow tasks that have access to memory reserves because they have
2524 * been OOM killed to get memory anywhere.
2525 */
2526 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2527 return 1;
2528 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2529 return 0;
2530
2531 if (current->flags & PF_EXITING) /* Let dying task have memory */
2532 return 1;
2533
2534 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2535 mutex_lock(&callback_mutex);
2536
2537 rcu_read_lock();
2538 cs = nearest_hardwall_ancestor(task_cs(current));
2539 allowed = node_isset(node, cs->mems_allowed);
2540 rcu_read_unlock();
2541
2542 mutex_unlock(&callback_mutex);
2543 return allowed;
2544 }
2545
2546 /*
2547 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2548 * @node: is this an allowed node?
2549 * @gfp_mask: memory allocation flags
2550 *
2551 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2552 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2553 * yes. If the task has been OOM killed and has access to memory reserves as
2554 * specified by the TIF_MEMDIE flag, yes.
2555 * Otherwise, no.
2556 *
2557 * The __GFP_THISNODE placement logic is really handled elsewhere,
2558 * by forcibly using a zonelist starting at a specified node, and by
2559 * (in get_page_from_freelist()) refusing to consider the zones for
2560 * any node on the zonelist except the first. By the time any such
2561 * calls get to this routine, we should just shut up and say 'yes'.
2562 *
2563 * Unlike the cpuset_node_allowed_softwall() variant, above,
2564 * this variant requires that the node be in the current task's
2565 * mems_allowed or that we're in interrupt. It does not scan up the
2566 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2567 * It never sleeps.
2568 */
2569 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2570 {
2571 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2572 return 1;
2573 if (node_isset(node, current->mems_allowed))
2574 return 1;
2575 /*
2576 * Allow tasks that have access to memory reserves because they have
2577 * been OOM killed to get memory anywhere.
2578 */
2579 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2580 return 1;
2581 return 0;
2582 }
2583
2584 /**
2585 * cpuset_mem_spread_node() - On which node to begin search for a file page
2586 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2587 *
2588 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2589 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2590 * and if the memory allocation used cpuset_mem_spread_node()
2591 * to determine on which node to start looking, as it will for
2592 * certain page cache or slab cache pages such as used for file
2593 * system buffers and inode caches, then instead of starting on the
2594 * local node to look for a free page, rather spread the starting
2595 * node around the tasks mems_allowed nodes.
2596 *
2597 * We don't have to worry about the returned node being offline
2598 * because "it can't happen", and even if it did, it would be ok.
2599 *
2600 * The routines calling guarantee_online_mems() are careful to
2601 * only set nodes in task->mems_allowed that are online. So it
2602 * should not be possible for the following code to return an
2603 * offline node. But if it did, that would be ok, as this routine
2604 * is not returning the node where the allocation must be, only
2605 * the node where the search should start. The zonelist passed to
2606 * __alloc_pages() will include all nodes. If the slab allocator
2607 * is passed an offline node, it will fall back to the local node.
2608 * See kmem_cache_alloc_node().
2609 */
2610
2611 static int cpuset_spread_node(int *rotor)
2612 {
2613 int node;
2614
2615 node = next_node(*rotor, current->mems_allowed);
2616 if (node == MAX_NUMNODES)
2617 node = first_node(current->mems_allowed);
2618 *rotor = node;
2619 return node;
2620 }
2621
2622 int cpuset_mem_spread_node(void)
2623 {
2624 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2625 current->cpuset_mem_spread_rotor =
2626 node_random(&current->mems_allowed);
2627
2628 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2629 }
2630
2631 int cpuset_slab_spread_node(void)
2632 {
2633 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2634 current->cpuset_slab_spread_rotor =
2635 node_random(&current->mems_allowed);
2636
2637 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2638 }
2639
2640 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2641
2642 /**
2643 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2644 * @tsk1: pointer to task_struct of some task.
2645 * @tsk2: pointer to task_struct of some other task.
2646 *
2647 * Description: Return true if @tsk1's mems_allowed intersects the
2648 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2649 * one of the task's memory usage might impact the memory available
2650 * to the other.
2651 **/
2652
2653 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2654 const struct task_struct *tsk2)
2655 {
2656 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2657 }
2658
2659 #define CPUSET_NODELIST_LEN (256)
2660
2661 /**
2662 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2663 * @tsk: pointer to task_struct of some task.
2664 *
2665 * Description: Prints @task's name, cpuset name, and cached copy of its
2666 * mems_allowed to the kernel log.
2667 */
2668 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2669 {
2670 /* Statically allocated to prevent using excess stack. */
2671 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2672 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2673 struct cgroup *cgrp;
2674
2675 spin_lock(&cpuset_buffer_lock);
2676 rcu_read_lock();
2677
2678 cgrp = task_cs(tsk)->css.cgroup;
2679 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2680 tsk->mems_allowed);
2681 pr_info("%s cpuset=", tsk->comm);
2682 pr_cont_cgroup_name(cgrp);
2683 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2684
2685 rcu_read_unlock();
2686 spin_unlock(&cpuset_buffer_lock);
2687 }
2688
2689 /*
2690 * Collection of memory_pressure is suppressed unless
2691 * this flag is enabled by writing "1" to the special
2692 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2693 */
2694
2695 int cpuset_memory_pressure_enabled __read_mostly;
2696
2697 /**
2698 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2699 *
2700 * Keep a running average of the rate of synchronous (direct)
2701 * page reclaim efforts initiated by tasks in each cpuset.
2702 *
2703 * This represents the rate at which some task in the cpuset
2704 * ran low on memory on all nodes it was allowed to use, and
2705 * had to enter the kernels page reclaim code in an effort to
2706 * create more free memory by tossing clean pages or swapping
2707 * or writing dirty pages.
2708 *
2709 * Display to user space in the per-cpuset read-only file
2710 * "memory_pressure". Value displayed is an integer
2711 * representing the recent rate of entry into the synchronous
2712 * (direct) page reclaim by any task attached to the cpuset.
2713 **/
2714
2715 void __cpuset_memory_pressure_bump(void)
2716 {
2717 rcu_read_lock();
2718 fmeter_markevent(&task_cs(current)->fmeter);
2719 rcu_read_unlock();
2720 }
2721
2722 #ifdef CONFIG_PROC_PID_CPUSET
2723 /*
2724 * proc_cpuset_show()
2725 * - Print tasks cpuset path into seq_file.
2726 * - Used for /proc/<pid>/cpuset.
2727 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2728 * doesn't really matter if tsk->cpuset changes after we read it,
2729 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2730 * anyway.
2731 */
2732 int proc_cpuset_show(struct seq_file *m, void *unused_v)
2733 {
2734 struct pid *pid;
2735 struct task_struct *tsk;
2736 char *buf, *p;
2737 struct cgroup_subsys_state *css;
2738 int retval;
2739
2740 retval = -ENOMEM;
2741 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2742 if (!buf)
2743 goto out;
2744
2745 retval = -ESRCH;
2746 pid = m->private;
2747 tsk = get_pid_task(pid, PIDTYPE_PID);
2748 if (!tsk)
2749 goto out_free;
2750
2751 retval = -ENAMETOOLONG;
2752 rcu_read_lock();
2753 css = task_css(tsk, cpuset_cgrp_id);
2754 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2755 rcu_read_unlock();
2756 if (!p)
2757 goto out_put_task;
2758 seq_puts(m, p);
2759 seq_putc(m, '\n');
2760 retval = 0;
2761 out_put_task:
2762 put_task_struct(tsk);
2763 out_free:
2764 kfree(buf);
2765 out:
2766 return retval;
2767 }
2768 #endif /* CONFIG_PROC_PID_CPUSET */
2769
2770 /* Display task mems_allowed in /proc/<pid>/status file. */
2771 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2772 {
2773 seq_puts(m, "Mems_allowed:\t");
2774 seq_nodemask(m, &task->mems_allowed);
2775 seq_puts(m, "\n");
2776 seq_puts(m, "Mems_allowed_list:\t");
2777 seq_nodemask_list(m, &task->mems_allowed);
2778 seq_puts(m, "\n");
2779 }