]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cpuset.c
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/time64.h>
55 #include <linux/backing-dev.h>
56 #include <linux/sort.h>
57
58 #include <asm/uaccess.h>
59 #include <linux/atomic.h>
60 #include <linux/mutex.h>
61 #include <linux/workqueue.h>
62 #include <linux/cgroup.h>
63 #include <linux/wait.h>
64
65 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
66
67 /* See "Frequency meter" comments, below. */
68
69 struct fmeter {
70 int cnt; /* unprocessed events count */
71 int val; /* most recent output value */
72 time64_t time; /* clock (secs) when val computed */
73 spinlock_t lock; /* guards read or write of above */
74 };
75
76 struct cpuset {
77 struct cgroup_subsys_state css;
78
79 unsigned long flags; /* "unsigned long" so bitops work */
80
81 /*
82 * On default hierarchy:
83 *
84 * The user-configured masks can only be changed by writing to
85 * cpuset.cpus and cpuset.mems, and won't be limited by the
86 * parent masks.
87 *
88 * The effective masks is the real masks that apply to the tasks
89 * in the cpuset. They may be changed if the configured masks are
90 * changed or hotplug happens.
91 *
92 * effective_mask == configured_mask & parent's effective_mask,
93 * and if it ends up empty, it will inherit the parent's mask.
94 *
95 *
96 * On legacy hierachy:
97 *
98 * The user-configured masks are always the same with effective masks.
99 */
100
101 /* user-configured CPUs and Memory Nodes allow to tasks */
102 cpumask_var_t cpus_allowed;
103 nodemask_t mems_allowed;
104
105 /* effective CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t effective_cpus;
107 nodemask_t effective_mems;
108
109 /*
110 * This is old Memory Nodes tasks took on.
111 *
112 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 * - A new cpuset's old_mems_allowed is initialized when some
114 * task is moved into it.
115 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 * cpuset.mems_allowed and have tasks' nodemask updated, and
117 * then old_mems_allowed is updated to mems_allowed.
118 */
119 nodemask_t old_mems_allowed;
120
121 struct fmeter fmeter; /* memory_pressure filter */
122
123 /*
124 * Tasks are being attached to this cpuset. Used to prevent
125 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 */
127 int attach_in_progress;
128
129 /* partition number for rebuild_sched_domains() */
130 int pn;
131
132 /* for custom sched domain */
133 int relax_domain_level;
134 };
135
136 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137 {
138 return css ? container_of(css, struct cpuset, css) : NULL;
139 }
140
141 /* Retrieve the cpuset for a task */
142 static inline struct cpuset *task_cs(struct task_struct *task)
143 {
144 return css_cs(task_css(task, cpuset_cgrp_id));
145 }
146
147 static inline struct cpuset *parent_cs(struct cpuset *cs)
148 {
149 return css_cs(cs->css.parent);
150 }
151
152 #ifdef CONFIG_NUMA
153 static inline bool task_has_mempolicy(struct task_struct *task)
154 {
155 return task->mempolicy;
156 }
157 #else
158 static inline bool task_has_mempolicy(struct task_struct *task)
159 {
160 return false;
161 }
162 #endif
163
164
165 /* bits in struct cpuset flags field */
166 typedef enum {
167 CS_ONLINE,
168 CS_CPU_EXCLUSIVE,
169 CS_MEM_EXCLUSIVE,
170 CS_MEM_HARDWALL,
171 CS_MEMORY_MIGRATE,
172 CS_SCHED_LOAD_BALANCE,
173 CS_SPREAD_PAGE,
174 CS_SPREAD_SLAB,
175 } cpuset_flagbits_t;
176
177 /* convenient tests for these bits */
178 static inline bool is_cpuset_online(const struct cpuset *cs)
179 {
180 return test_bit(CS_ONLINE, &cs->flags);
181 }
182
183 static inline int is_cpu_exclusive(const struct cpuset *cs)
184 {
185 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
186 }
187
188 static inline int is_mem_exclusive(const struct cpuset *cs)
189 {
190 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
191 }
192
193 static inline int is_mem_hardwall(const struct cpuset *cs)
194 {
195 return test_bit(CS_MEM_HARDWALL, &cs->flags);
196 }
197
198 static inline int is_sched_load_balance(const struct cpuset *cs)
199 {
200 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
201 }
202
203 static inline int is_memory_migrate(const struct cpuset *cs)
204 {
205 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
206 }
207
208 static inline int is_spread_page(const struct cpuset *cs)
209 {
210 return test_bit(CS_SPREAD_PAGE, &cs->flags);
211 }
212
213 static inline int is_spread_slab(const struct cpuset *cs)
214 {
215 return test_bit(CS_SPREAD_SLAB, &cs->flags);
216 }
217
218 static struct cpuset top_cpuset = {
219 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
220 (1 << CS_MEM_EXCLUSIVE)),
221 };
222
223 /**
224 * cpuset_for_each_child - traverse online children of a cpuset
225 * @child_cs: loop cursor pointing to the current child
226 * @pos_css: used for iteration
227 * @parent_cs: target cpuset to walk children of
228 *
229 * Walk @child_cs through the online children of @parent_cs. Must be used
230 * with RCU read locked.
231 */
232 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
233 css_for_each_child((pos_css), &(parent_cs)->css) \
234 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
235
236 /**
237 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
238 * @des_cs: loop cursor pointing to the current descendant
239 * @pos_css: used for iteration
240 * @root_cs: target cpuset to walk ancestor of
241 *
242 * Walk @des_cs through the online descendants of @root_cs. Must be used
243 * with RCU read locked. The caller may modify @pos_css by calling
244 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
245 * iteration and the first node to be visited.
246 */
247 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
248 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
249 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
250
251 /*
252 * There are two global locks guarding cpuset structures - cpuset_mutex and
253 * callback_lock. We also require taking task_lock() when dereferencing a
254 * task's cpuset pointer. See "The task_lock() exception", at the end of this
255 * comment.
256 *
257 * A task must hold both locks to modify cpusets. If a task holds
258 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
259 * is the only task able to also acquire callback_lock and be able to
260 * modify cpusets. It can perform various checks on the cpuset structure
261 * first, knowing nothing will change. It can also allocate memory while
262 * just holding cpuset_mutex. While it is performing these checks, various
263 * callback routines can briefly acquire callback_lock to query cpusets.
264 * Once it is ready to make the changes, it takes callback_lock, blocking
265 * everyone else.
266 *
267 * Calls to the kernel memory allocator can not be made while holding
268 * callback_lock, as that would risk double tripping on callback_lock
269 * from one of the callbacks into the cpuset code from within
270 * __alloc_pages().
271 *
272 * If a task is only holding callback_lock, then it has read-only
273 * access to cpusets.
274 *
275 * Now, the task_struct fields mems_allowed and mempolicy may be changed
276 * by other task, we use alloc_lock in the task_struct fields to protect
277 * them.
278 *
279 * The cpuset_common_file_read() handlers only hold callback_lock across
280 * small pieces of code, such as when reading out possibly multi-word
281 * cpumasks and nodemasks.
282 *
283 * Accessing a task's cpuset should be done in accordance with the
284 * guidelines for accessing subsystem state in kernel/cgroup.c
285 */
286
287 static DEFINE_MUTEX(cpuset_mutex);
288 static DEFINE_SPINLOCK(callback_lock);
289
290 /*
291 * CPU / memory hotplug is handled asynchronously.
292 */
293 static void cpuset_hotplug_workfn(struct work_struct *work);
294 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
295
296 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
297
298 /*
299 * This is ugly, but preserves the userspace API for existing cpuset
300 * users. If someone tries to mount the "cpuset" filesystem, we
301 * silently switch it to mount "cgroup" instead
302 */
303 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
304 int flags, const char *unused_dev_name, void *data)
305 {
306 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
307 struct dentry *ret = ERR_PTR(-ENODEV);
308 if (cgroup_fs) {
309 char mountopts[] =
310 "cpuset,noprefix,"
311 "release_agent=/sbin/cpuset_release_agent";
312 ret = cgroup_fs->mount(cgroup_fs, flags,
313 unused_dev_name, mountopts);
314 put_filesystem(cgroup_fs);
315 }
316 return ret;
317 }
318
319 static struct file_system_type cpuset_fs_type = {
320 .name = "cpuset",
321 .mount = cpuset_mount,
322 };
323
324 /*
325 * Return in pmask the portion of a cpusets's cpus_allowed that
326 * are online. If none are online, walk up the cpuset hierarchy
327 * until we find one that does have some online cpus. The top
328 * cpuset always has some cpus online.
329 *
330 * One way or another, we guarantee to return some non-empty subset
331 * of cpu_online_mask.
332 *
333 * Call with callback_lock or cpuset_mutex held.
334 */
335 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
336 {
337 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
338 cs = parent_cs(cs);
339 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
340 }
341
342 /*
343 * Return in *pmask the portion of a cpusets's mems_allowed that
344 * are online, with memory. If none are online with memory, walk
345 * up the cpuset hierarchy until we find one that does have some
346 * online mems. The top cpuset always has some mems online.
347 *
348 * One way or another, we guarantee to return some non-empty subset
349 * of node_states[N_MEMORY].
350 *
351 * Call with callback_lock or cpuset_mutex held.
352 */
353 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
354 {
355 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
356 cs = parent_cs(cs);
357 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
358 }
359
360 /*
361 * update task's spread flag if cpuset's page/slab spread flag is set
362 *
363 * Call with callback_lock or cpuset_mutex held.
364 */
365 static void cpuset_update_task_spread_flag(struct cpuset *cs,
366 struct task_struct *tsk)
367 {
368 if (is_spread_page(cs))
369 task_set_spread_page(tsk);
370 else
371 task_clear_spread_page(tsk);
372
373 if (is_spread_slab(cs))
374 task_set_spread_slab(tsk);
375 else
376 task_clear_spread_slab(tsk);
377 }
378
379 /*
380 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
381 *
382 * One cpuset is a subset of another if all its allowed CPUs and
383 * Memory Nodes are a subset of the other, and its exclusive flags
384 * are only set if the other's are set. Call holding cpuset_mutex.
385 */
386
387 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
388 {
389 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
390 nodes_subset(p->mems_allowed, q->mems_allowed) &&
391 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
392 is_mem_exclusive(p) <= is_mem_exclusive(q);
393 }
394
395 /**
396 * alloc_trial_cpuset - allocate a trial cpuset
397 * @cs: the cpuset that the trial cpuset duplicates
398 */
399 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
400 {
401 struct cpuset *trial;
402
403 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
404 if (!trial)
405 return NULL;
406
407 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
408 goto free_cs;
409 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
410 goto free_cpus;
411
412 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
413 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
414 return trial;
415
416 free_cpus:
417 free_cpumask_var(trial->cpus_allowed);
418 free_cs:
419 kfree(trial);
420 return NULL;
421 }
422
423 /**
424 * free_trial_cpuset - free the trial cpuset
425 * @trial: the trial cpuset to be freed
426 */
427 static void free_trial_cpuset(struct cpuset *trial)
428 {
429 free_cpumask_var(trial->effective_cpus);
430 free_cpumask_var(trial->cpus_allowed);
431 kfree(trial);
432 }
433
434 /*
435 * validate_change() - Used to validate that any proposed cpuset change
436 * follows the structural rules for cpusets.
437 *
438 * If we replaced the flag and mask values of the current cpuset
439 * (cur) with those values in the trial cpuset (trial), would
440 * our various subset and exclusive rules still be valid? Presumes
441 * cpuset_mutex held.
442 *
443 * 'cur' is the address of an actual, in-use cpuset. Operations
444 * such as list traversal that depend on the actual address of the
445 * cpuset in the list must use cur below, not trial.
446 *
447 * 'trial' is the address of bulk structure copy of cur, with
448 * perhaps one or more of the fields cpus_allowed, mems_allowed,
449 * or flags changed to new, trial values.
450 *
451 * Return 0 if valid, -errno if not.
452 */
453
454 static int validate_change(struct cpuset *cur, struct cpuset *trial)
455 {
456 struct cgroup_subsys_state *css;
457 struct cpuset *c, *par;
458 int ret;
459
460 rcu_read_lock();
461
462 /* Each of our child cpusets must be a subset of us */
463 ret = -EBUSY;
464 cpuset_for_each_child(c, css, cur)
465 if (!is_cpuset_subset(c, trial))
466 goto out;
467
468 /* Remaining checks don't apply to root cpuset */
469 ret = 0;
470 if (cur == &top_cpuset)
471 goto out;
472
473 par = parent_cs(cur);
474
475 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
476 ret = -EACCES;
477 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
478 !is_cpuset_subset(trial, par))
479 goto out;
480
481 /*
482 * If either I or some sibling (!= me) is exclusive, we can't
483 * overlap
484 */
485 ret = -EINVAL;
486 cpuset_for_each_child(c, css, par) {
487 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
488 c != cur &&
489 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
490 goto out;
491 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
492 c != cur &&
493 nodes_intersects(trial->mems_allowed, c->mems_allowed))
494 goto out;
495 }
496
497 /*
498 * Cpusets with tasks - existing or newly being attached - can't
499 * be changed to have empty cpus_allowed or mems_allowed.
500 */
501 ret = -ENOSPC;
502 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
503 if (!cpumask_empty(cur->cpus_allowed) &&
504 cpumask_empty(trial->cpus_allowed))
505 goto out;
506 if (!nodes_empty(cur->mems_allowed) &&
507 nodes_empty(trial->mems_allowed))
508 goto out;
509 }
510
511 /*
512 * We can't shrink if we won't have enough room for SCHED_DEADLINE
513 * tasks.
514 */
515 ret = -EBUSY;
516 if (is_cpu_exclusive(cur) &&
517 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
518 trial->cpus_allowed))
519 goto out;
520
521 ret = 0;
522 out:
523 rcu_read_unlock();
524 return ret;
525 }
526
527 #ifdef CONFIG_SMP
528 /*
529 * Helper routine for generate_sched_domains().
530 * Do cpusets a, b have overlapping effective cpus_allowed masks?
531 */
532 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
533 {
534 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
535 }
536
537 static void
538 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
539 {
540 if (dattr->relax_domain_level < c->relax_domain_level)
541 dattr->relax_domain_level = c->relax_domain_level;
542 return;
543 }
544
545 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
546 struct cpuset *root_cs)
547 {
548 struct cpuset *cp;
549 struct cgroup_subsys_state *pos_css;
550
551 rcu_read_lock();
552 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
553 /* skip the whole subtree if @cp doesn't have any CPU */
554 if (cpumask_empty(cp->cpus_allowed)) {
555 pos_css = css_rightmost_descendant(pos_css);
556 continue;
557 }
558
559 if (is_sched_load_balance(cp))
560 update_domain_attr(dattr, cp);
561 }
562 rcu_read_unlock();
563 }
564
565 /*
566 * generate_sched_domains()
567 *
568 * This function builds a partial partition of the systems CPUs
569 * A 'partial partition' is a set of non-overlapping subsets whose
570 * union is a subset of that set.
571 * The output of this function needs to be passed to kernel/sched/core.c
572 * partition_sched_domains() routine, which will rebuild the scheduler's
573 * load balancing domains (sched domains) as specified by that partial
574 * partition.
575 *
576 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
577 * for a background explanation of this.
578 *
579 * Does not return errors, on the theory that the callers of this
580 * routine would rather not worry about failures to rebuild sched
581 * domains when operating in the severe memory shortage situations
582 * that could cause allocation failures below.
583 *
584 * Must be called with cpuset_mutex held.
585 *
586 * The three key local variables below are:
587 * q - a linked-list queue of cpuset pointers, used to implement a
588 * top-down scan of all cpusets. This scan loads a pointer
589 * to each cpuset marked is_sched_load_balance into the
590 * array 'csa'. For our purposes, rebuilding the schedulers
591 * sched domains, we can ignore !is_sched_load_balance cpusets.
592 * csa - (for CpuSet Array) Array of pointers to all the cpusets
593 * that need to be load balanced, for convenient iterative
594 * access by the subsequent code that finds the best partition,
595 * i.e the set of domains (subsets) of CPUs such that the
596 * cpus_allowed of every cpuset marked is_sched_load_balance
597 * is a subset of one of these domains, while there are as
598 * many such domains as possible, each as small as possible.
599 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
600 * the kernel/sched/core.c routine partition_sched_domains() in a
601 * convenient format, that can be easily compared to the prior
602 * value to determine what partition elements (sched domains)
603 * were changed (added or removed.)
604 *
605 * Finding the best partition (set of domains):
606 * The triple nested loops below over i, j, k scan over the
607 * load balanced cpusets (using the array of cpuset pointers in
608 * csa[]) looking for pairs of cpusets that have overlapping
609 * cpus_allowed, but which don't have the same 'pn' partition
610 * number and gives them in the same partition number. It keeps
611 * looping on the 'restart' label until it can no longer find
612 * any such pairs.
613 *
614 * The union of the cpus_allowed masks from the set of
615 * all cpusets having the same 'pn' value then form the one
616 * element of the partition (one sched domain) to be passed to
617 * partition_sched_domains().
618 */
619 static int generate_sched_domains(cpumask_var_t **domains,
620 struct sched_domain_attr **attributes)
621 {
622 struct cpuset *cp; /* scans q */
623 struct cpuset **csa; /* array of all cpuset ptrs */
624 int csn; /* how many cpuset ptrs in csa so far */
625 int i, j, k; /* indices for partition finding loops */
626 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
627 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
628 struct sched_domain_attr *dattr; /* attributes for custom domains */
629 int ndoms = 0; /* number of sched domains in result */
630 int nslot; /* next empty doms[] struct cpumask slot */
631 struct cgroup_subsys_state *pos_css;
632
633 doms = NULL;
634 dattr = NULL;
635 csa = NULL;
636
637 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
638 goto done;
639 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
640
641 /* Special case for the 99% of systems with one, full, sched domain */
642 if (is_sched_load_balance(&top_cpuset)) {
643 ndoms = 1;
644 doms = alloc_sched_domains(ndoms);
645 if (!doms)
646 goto done;
647
648 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
649 if (dattr) {
650 *dattr = SD_ATTR_INIT;
651 update_domain_attr_tree(dattr, &top_cpuset);
652 }
653 cpumask_and(doms[0], top_cpuset.effective_cpus,
654 non_isolated_cpus);
655
656 goto done;
657 }
658
659 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
660 if (!csa)
661 goto done;
662 csn = 0;
663
664 rcu_read_lock();
665 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
666 if (cp == &top_cpuset)
667 continue;
668 /*
669 * Continue traversing beyond @cp iff @cp has some CPUs and
670 * isn't load balancing. The former is obvious. The
671 * latter: All child cpusets contain a subset of the
672 * parent's cpus, so just skip them, and then we call
673 * update_domain_attr_tree() to calc relax_domain_level of
674 * the corresponding sched domain.
675 */
676 if (!cpumask_empty(cp->cpus_allowed) &&
677 !(is_sched_load_balance(cp) &&
678 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
679 continue;
680
681 if (is_sched_load_balance(cp))
682 csa[csn++] = cp;
683
684 /* skip @cp's subtree */
685 pos_css = css_rightmost_descendant(pos_css);
686 }
687 rcu_read_unlock();
688
689 for (i = 0; i < csn; i++)
690 csa[i]->pn = i;
691 ndoms = csn;
692
693 restart:
694 /* Find the best partition (set of sched domains) */
695 for (i = 0; i < csn; i++) {
696 struct cpuset *a = csa[i];
697 int apn = a->pn;
698
699 for (j = 0; j < csn; j++) {
700 struct cpuset *b = csa[j];
701 int bpn = b->pn;
702
703 if (apn != bpn && cpusets_overlap(a, b)) {
704 for (k = 0; k < csn; k++) {
705 struct cpuset *c = csa[k];
706
707 if (c->pn == bpn)
708 c->pn = apn;
709 }
710 ndoms--; /* one less element */
711 goto restart;
712 }
713 }
714 }
715
716 /*
717 * Now we know how many domains to create.
718 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
719 */
720 doms = alloc_sched_domains(ndoms);
721 if (!doms)
722 goto done;
723
724 /*
725 * The rest of the code, including the scheduler, can deal with
726 * dattr==NULL case. No need to abort if alloc fails.
727 */
728 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
729
730 for (nslot = 0, i = 0; i < csn; i++) {
731 struct cpuset *a = csa[i];
732 struct cpumask *dp;
733 int apn = a->pn;
734
735 if (apn < 0) {
736 /* Skip completed partitions */
737 continue;
738 }
739
740 dp = doms[nslot];
741
742 if (nslot == ndoms) {
743 static int warnings = 10;
744 if (warnings) {
745 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
746 nslot, ndoms, csn, i, apn);
747 warnings--;
748 }
749 continue;
750 }
751
752 cpumask_clear(dp);
753 if (dattr)
754 *(dattr + nslot) = SD_ATTR_INIT;
755 for (j = i; j < csn; j++) {
756 struct cpuset *b = csa[j];
757
758 if (apn == b->pn) {
759 cpumask_or(dp, dp, b->effective_cpus);
760 cpumask_and(dp, dp, non_isolated_cpus);
761 if (dattr)
762 update_domain_attr_tree(dattr + nslot, b);
763
764 /* Done with this partition */
765 b->pn = -1;
766 }
767 }
768 nslot++;
769 }
770 BUG_ON(nslot != ndoms);
771
772 done:
773 free_cpumask_var(non_isolated_cpus);
774 kfree(csa);
775
776 /*
777 * Fallback to the default domain if kmalloc() failed.
778 * See comments in partition_sched_domains().
779 */
780 if (doms == NULL)
781 ndoms = 1;
782
783 *domains = doms;
784 *attributes = dattr;
785 return ndoms;
786 }
787
788 /*
789 * Rebuild scheduler domains.
790 *
791 * If the flag 'sched_load_balance' of any cpuset with non-empty
792 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
793 * which has that flag enabled, or if any cpuset with a non-empty
794 * 'cpus' is removed, then call this routine to rebuild the
795 * scheduler's dynamic sched domains.
796 *
797 * Call with cpuset_mutex held. Takes get_online_cpus().
798 */
799 static void rebuild_sched_domains_locked(void)
800 {
801 struct sched_domain_attr *attr;
802 cpumask_var_t *doms;
803 int ndoms;
804
805 lockdep_assert_held(&cpuset_mutex);
806 get_online_cpus();
807
808 /*
809 * We have raced with CPU hotplug. Don't do anything to avoid
810 * passing doms with offlined cpu to partition_sched_domains().
811 * Anyways, hotplug work item will rebuild sched domains.
812 */
813 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
814 goto out;
815
816 /* Generate domain masks and attrs */
817 ndoms = generate_sched_domains(&doms, &attr);
818
819 /* Have scheduler rebuild the domains */
820 partition_sched_domains(ndoms, doms, attr);
821 out:
822 put_online_cpus();
823 }
824 #else /* !CONFIG_SMP */
825 static void rebuild_sched_domains_locked(void)
826 {
827 }
828 #endif /* CONFIG_SMP */
829
830 void rebuild_sched_domains(void)
831 {
832 mutex_lock(&cpuset_mutex);
833 rebuild_sched_domains_locked();
834 mutex_unlock(&cpuset_mutex);
835 }
836
837 /**
838 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
839 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
840 *
841 * Iterate through each task of @cs updating its cpus_allowed to the
842 * effective cpuset's. As this function is called with cpuset_mutex held,
843 * cpuset membership stays stable.
844 */
845 static void update_tasks_cpumask(struct cpuset *cs)
846 {
847 struct css_task_iter it;
848 struct task_struct *task;
849
850 css_task_iter_start(&cs->css, &it);
851 while ((task = css_task_iter_next(&it)))
852 set_cpus_allowed_ptr(task, cs->effective_cpus);
853 css_task_iter_end(&it);
854 }
855
856 /*
857 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
858 * @cs: the cpuset to consider
859 * @new_cpus: temp variable for calculating new effective_cpus
860 *
861 * When congifured cpumask is changed, the effective cpumasks of this cpuset
862 * and all its descendants need to be updated.
863 *
864 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
865 *
866 * Called with cpuset_mutex held
867 */
868 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
869 {
870 struct cpuset *cp;
871 struct cgroup_subsys_state *pos_css;
872 bool need_rebuild_sched_domains = false;
873
874 rcu_read_lock();
875 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
876 struct cpuset *parent = parent_cs(cp);
877
878 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
879
880 /*
881 * If it becomes empty, inherit the effective mask of the
882 * parent, which is guaranteed to have some CPUs.
883 */
884 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
885 cpumask_empty(new_cpus))
886 cpumask_copy(new_cpus, parent->effective_cpus);
887
888 /* Skip the whole subtree if the cpumask remains the same. */
889 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
890 pos_css = css_rightmost_descendant(pos_css);
891 continue;
892 }
893
894 if (!css_tryget_online(&cp->css))
895 continue;
896 rcu_read_unlock();
897
898 spin_lock_irq(&callback_lock);
899 cpumask_copy(cp->effective_cpus, new_cpus);
900 spin_unlock_irq(&callback_lock);
901
902 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
903 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
904
905 update_tasks_cpumask(cp);
906
907 /*
908 * If the effective cpumask of any non-empty cpuset is changed,
909 * we need to rebuild sched domains.
910 */
911 if (!cpumask_empty(cp->cpus_allowed) &&
912 is_sched_load_balance(cp))
913 need_rebuild_sched_domains = true;
914
915 rcu_read_lock();
916 css_put(&cp->css);
917 }
918 rcu_read_unlock();
919
920 if (need_rebuild_sched_domains)
921 rebuild_sched_domains_locked();
922 }
923
924 /**
925 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
926 * @cs: the cpuset to consider
927 * @trialcs: trial cpuset
928 * @buf: buffer of cpu numbers written to this cpuset
929 */
930 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
931 const char *buf)
932 {
933 int retval;
934
935 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
936 if (cs == &top_cpuset)
937 return -EACCES;
938
939 /*
940 * An empty cpus_allowed is ok only if the cpuset has no tasks.
941 * Since cpulist_parse() fails on an empty mask, we special case
942 * that parsing. The validate_change() call ensures that cpusets
943 * with tasks have cpus.
944 */
945 if (!*buf) {
946 cpumask_clear(trialcs->cpus_allowed);
947 } else {
948 retval = cpulist_parse(buf, trialcs->cpus_allowed);
949 if (retval < 0)
950 return retval;
951
952 if (!cpumask_subset(trialcs->cpus_allowed,
953 top_cpuset.cpus_allowed))
954 return -EINVAL;
955 }
956
957 /* Nothing to do if the cpus didn't change */
958 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
959 return 0;
960
961 retval = validate_change(cs, trialcs);
962 if (retval < 0)
963 return retval;
964
965 spin_lock_irq(&callback_lock);
966 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
967 spin_unlock_irq(&callback_lock);
968
969 /* use trialcs->cpus_allowed as a temp variable */
970 update_cpumasks_hier(cs, trialcs->cpus_allowed);
971 return 0;
972 }
973
974 /*
975 * cpuset_migrate_mm
976 *
977 * Migrate memory region from one set of nodes to another.
978 *
979 * Temporarilly set tasks mems_allowed to target nodes of migration,
980 * so that the migration code can allocate pages on these nodes.
981 *
982 * While the mm_struct we are migrating is typically from some
983 * other task, the task_struct mems_allowed that we are hacking
984 * is for our current task, which must allocate new pages for that
985 * migrating memory region.
986 */
987
988 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
989 const nodemask_t *to)
990 {
991 struct task_struct *tsk = current;
992
993 tsk->mems_allowed = *to;
994
995 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
996
997 rcu_read_lock();
998 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
999 rcu_read_unlock();
1000 }
1001
1002 /*
1003 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1004 * @tsk: the task to change
1005 * @newmems: new nodes that the task will be set
1006 *
1007 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1008 * we structure updates as setting all new allowed nodes, then clearing newly
1009 * disallowed ones.
1010 */
1011 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1012 nodemask_t *newmems)
1013 {
1014 bool need_loop;
1015
1016 /*
1017 * Allow tasks that have access to memory reserves because they have
1018 * been OOM killed to get memory anywhere.
1019 */
1020 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1021 return;
1022 if (current->flags & PF_EXITING) /* Let dying task have memory */
1023 return;
1024
1025 task_lock(tsk);
1026 /*
1027 * Determine if a loop is necessary if another thread is doing
1028 * read_mems_allowed_begin(). If at least one node remains unchanged and
1029 * tsk does not have a mempolicy, then an empty nodemask will not be
1030 * possible when mems_allowed is larger than a word.
1031 */
1032 need_loop = task_has_mempolicy(tsk) ||
1033 !nodes_intersects(*newmems, tsk->mems_allowed);
1034
1035 if (need_loop) {
1036 local_irq_disable();
1037 write_seqcount_begin(&tsk->mems_allowed_seq);
1038 }
1039
1040 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1041 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1042
1043 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1044 tsk->mems_allowed = *newmems;
1045
1046 if (need_loop) {
1047 write_seqcount_end(&tsk->mems_allowed_seq);
1048 local_irq_enable();
1049 }
1050
1051 task_unlock(tsk);
1052 }
1053
1054 static void *cpuset_being_rebound;
1055
1056 /**
1057 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1058 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1059 *
1060 * Iterate through each task of @cs updating its mems_allowed to the
1061 * effective cpuset's. As this function is called with cpuset_mutex held,
1062 * cpuset membership stays stable.
1063 */
1064 static void update_tasks_nodemask(struct cpuset *cs)
1065 {
1066 static nodemask_t newmems; /* protected by cpuset_mutex */
1067 struct css_task_iter it;
1068 struct task_struct *task;
1069
1070 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1071
1072 guarantee_online_mems(cs, &newmems);
1073
1074 /*
1075 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1076 * take while holding tasklist_lock. Forks can happen - the
1077 * mpol_dup() cpuset_being_rebound check will catch such forks,
1078 * and rebind their vma mempolicies too. Because we still hold
1079 * the global cpuset_mutex, we know that no other rebind effort
1080 * will be contending for the global variable cpuset_being_rebound.
1081 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1082 * is idempotent. Also migrate pages in each mm to new nodes.
1083 */
1084 css_task_iter_start(&cs->css, &it);
1085 while ((task = css_task_iter_next(&it))) {
1086 struct mm_struct *mm;
1087 bool migrate;
1088
1089 cpuset_change_task_nodemask(task, &newmems);
1090
1091 mm = get_task_mm(task);
1092 if (!mm)
1093 continue;
1094
1095 migrate = is_memory_migrate(cs);
1096
1097 mpol_rebind_mm(mm, &cs->mems_allowed);
1098 if (migrate)
1099 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1100 mmput(mm);
1101 }
1102 css_task_iter_end(&it);
1103
1104 /*
1105 * All the tasks' nodemasks have been updated, update
1106 * cs->old_mems_allowed.
1107 */
1108 cs->old_mems_allowed = newmems;
1109
1110 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1111 cpuset_being_rebound = NULL;
1112 }
1113
1114 /*
1115 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1116 * @cs: the cpuset to consider
1117 * @new_mems: a temp variable for calculating new effective_mems
1118 *
1119 * When configured nodemask is changed, the effective nodemasks of this cpuset
1120 * and all its descendants need to be updated.
1121 *
1122 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1123 *
1124 * Called with cpuset_mutex held
1125 */
1126 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1127 {
1128 struct cpuset *cp;
1129 struct cgroup_subsys_state *pos_css;
1130
1131 rcu_read_lock();
1132 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1133 struct cpuset *parent = parent_cs(cp);
1134
1135 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1136
1137 /*
1138 * If it becomes empty, inherit the effective mask of the
1139 * parent, which is guaranteed to have some MEMs.
1140 */
1141 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1142 nodes_empty(*new_mems))
1143 *new_mems = parent->effective_mems;
1144
1145 /* Skip the whole subtree if the nodemask remains the same. */
1146 if (nodes_equal(*new_mems, cp->effective_mems)) {
1147 pos_css = css_rightmost_descendant(pos_css);
1148 continue;
1149 }
1150
1151 if (!css_tryget_online(&cp->css))
1152 continue;
1153 rcu_read_unlock();
1154
1155 spin_lock_irq(&callback_lock);
1156 cp->effective_mems = *new_mems;
1157 spin_unlock_irq(&callback_lock);
1158
1159 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1160 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1161
1162 update_tasks_nodemask(cp);
1163
1164 rcu_read_lock();
1165 css_put(&cp->css);
1166 }
1167 rcu_read_unlock();
1168 }
1169
1170 /*
1171 * Handle user request to change the 'mems' memory placement
1172 * of a cpuset. Needs to validate the request, update the
1173 * cpusets mems_allowed, and for each task in the cpuset,
1174 * update mems_allowed and rebind task's mempolicy and any vma
1175 * mempolicies and if the cpuset is marked 'memory_migrate',
1176 * migrate the tasks pages to the new memory.
1177 *
1178 * Call with cpuset_mutex held. May take callback_lock during call.
1179 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1180 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1181 * their mempolicies to the cpusets new mems_allowed.
1182 */
1183 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1184 const char *buf)
1185 {
1186 int retval;
1187
1188 /*
1189 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1190 * it's read-only
1191 */
1192 if (cs == &top_cpuset) {
1193 retval = -EACCES;
1194 goto done;
1195 }
1196
1197 /*
1198 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1199 * Since nodelist_parse() fails on an empty mask, we special case
1200 * that parsing. The validate_change() call ensures that cpusets
1201 * with tasks have memory.
1202 */
1203 if (!*buf) {
1204 nodes_clear(trialcs->mems_allowed);
1205 } else {
1206 retval = nodelist_parse(buf, trialcs->mems_allowed);
1207 if (retval < 0)
1208 goto done;
1209
1210 if (!nodes_subset(trialcs->mems_allowed,
1211 top_cpuset.mems_allowed)) {
1212 retval = -EINVAL;
1213 goto done;
1214 }
1215 }
1216
1217 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1218 retval = 0; /* Too easy - nothing to do */
1219 goto done;
1220 }
1221 retval = validate_change(cs, trialcs);
1222 if (retval < 0)
1223 goto done;
1224
1225 spin_lock_irq(&callback_lock);
1226 cs->mems_allowed = trialcs->mems_allowed;
1227 spin_unlock_irq(&callback_lock);
1228
1229 /* use trialcs->mems_allowed as a temp variable */
1230 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1231 done:
1232 return retval;
1233 }
1234
1235 int current_cpuset_is_being_rebound(void)
1236 {
1237 int ret;
1238
1239 rcu_read_lock();
1240 ret = task_cs(current) == cpuset_being_rebound;
1241 rcu_read_unlock();
1242
1243 return ret;
1244 }
1245
1246 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1247 {
1248 #ifdef CONFIG_SMP
1249 if (val < -1 || val >= sched_domain_level_max)
1250 return -EINVAL;
1251 #endif
1252
1253 if (val != cs->relax_domain_level) {
1254 cs->relax_domain_level = val;
1255 if (!cpumask_empty(cs->cpus_allowed) &&
1256 is_sched_load_balance(cs))
1257 rebuild_sched_domains_locked();
1258 }
1259
1260 return 0;
1261 }
1262
1263 /**
1264 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1265 * @cs: the cpuset in which each task's spread flags needs to be changed
1266 *
1267 * Iterate through each task of @cs updating its spread flags. As this
1268 * function is called with cpuset_mutex held, cpuset membership stays
1269 * stable.
1270 */
1271 static void update_tasks_flags(struct cpuset *cs)
1272 {
1273 struct css_task_iter it;
1274 struct task_struct *task;
1275
1276 css_task_iter_start(&cs->css, &it);
1277 while ((task = css_task_iter_next(&it)))
1278 cpuset_update_task_spread_flag(cs, task);
1279 css_task_iter_end(&it);
1280 }
1281
1282 /*
1283 * update_flag - read a 0 or a 1 in a file and update associated flag
1284 * bit: the bit to update (see cpuset_flagbits_t)
1285 * cs: the cpuset to update
1286 * turning_on: whether the flag is being set or cleared
1287 *
1288 * Call with cpuset_mutex held.
1289 */
1290
1291 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1292 int turning_on)
1293 {
1294 struct cpuset *trialcs;
1295 int balance_flag_changed;
1296 int spread_flag_changed;
1297 int err;
1298
1299 trialcs = alloc_trial_cpuset(cs);
1300 if (!trialcs)
1301 return -ENOMEM;
1302
1303 if (turning_on)
1304 set_bit(bit, &trialcs->flags);
1305 else
1306 clear_bit(bit, &trialcs->flags);
1307
1308 err = validate_change(cs, trialcs);
1309 if (err < 0)
1310 goto out;
1311
1312 balance_flag_changed = (is_sched_load_balance(cs) !=
1313 is_sched_load_balance(trialcs));
1314
1315 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1316 || (is_spread_page(cs) != is_spread_page(trialcs)));
1317
1318 spin_lock_irq(&callback_lock);
1319 cs->flags = trialcs->flags;
1320 spin_unlock_irq(&callback_lock);
1321
1322 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1323 rebuild_sched_domains_locked();
1324
1325 if (spread_flag_changed)
1326 update_tasks_flags(cs);
1327 out:
1328 free_trial_cpuset(trialcs);
1329 return err;
1330 }
1331
1332 /*
1333 * Frequency meter - How fast is some event occurring?
1334 *
1335 * These routines manage a digitally filtered, constant time based,
1336 * event frequency meter. There are four routines:
1337 * fmeter_init() - initialize a frequency meter.
1338 * fmeter_markevent() - called each time the event happens.
1339 * fmeter_getrate() - returns the recent rate of such events.
1340 * fmeter_update() - internal routine used to update fmeter.
1341 *
1342 * A common data structure is passed to each of these routines,
1343 * which is used to keep track of the state required to manage the
1344 * frequency meter and its digital filter.
1345 *
1346 * The filter works on the number of events marked per unit time.
1347 * The filter is single-pole low-pass recursive (IIR). The time unit
1348 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1349 * simulate 3 decimal digits of precision (multiplied by 1000).
1350 *
1351 * With an FM_COEF of 933, and a time base of 1 second, the filter
1352 * has a half-life of 10 seconds, meaning that if the events quit
1353 * happening, then the rate returned from the fmeter_getrate()
1354 * will be cut in half each 10 seconds, until it converges to zero.
1355 *
1356 * It is not worth doing a real infinitely recursive filter. If more
1357 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1358 * just compute FM_MAXTICKS ticks worth, by which point the level
1359 * will be stable.
1360 *
1361 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1362 * arithmetic overflow in the fmeter_update() routine.
1363 *
1364 * Given the simple 32 bit integer arithmetic used, this meter works
1365 * best for reporting rates between one per millisecond (msec) and
1366 * one per 32 (approx) seconds. At constant rates faster than one
1367 * per msec it maxes out at values just under 1,000,000. At constant
1368 * rates between one per msec, and one per second it will stabilize
1369 * to a value N*1000, where N is the rate of events per second.
1370 * At constant rates between one per second and one per 32 seconds,
1371 * it will be choppy, moving up on the seconds that have an event,
1372 * and then decaying until the next event. At rates slower than
1373 * about one in 32 seconds, it decays all the way back to zero between
1374 * each event.
1375 */
1376
1377 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1378 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1379 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1380 #define FM_SCALE 1000 /* faux fixed point scale */
1381
1382 /* Initialize a frequency meter */
1383 static void fmeter_init(struct fmeter *fmp)
1384 {
1385 fmp->cnt = 0;
1386 fmp->val = 0;
1387 fmp->time = 0;
1388 spin_lock_init(&fmp->lock);
1389 }
1390
1391 /* Internal meter update - process cnt events and update value */
1392 static void fmeter_update(struct fmeter *fmp)
1393 {
1394 time64_t now;
1395 u32 ticks;
1396
1397 now = ktime_get_seconds();
1398 ticks = now - fmp->time;
1399
1400 if (ticks == 0)
1401 return;
1402
1403 ticks = min(FM_MAXTICKS, ticks);
1404 while (ticks-- > 0)
1405 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1406 fmp->time = now;
1407
1408 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1409 fmp->cnt = 0;
1410 }
1411
1412 /* Process any previous ticks, then bump cnt by one (times scale). */
1413 static void fmeter_markevent(struct fmeter *fmp)
1414 {
1415 spin_lock(&fmp->lock);
1416 fmeter_update(fmp);
1417 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1418 spin_unlock(&fmp->lock);
1419 }
1420
1421 /* Process any previous ticks, then return current value. */
1422 static int fmeter_getrate(struct fmeter *fmp)
1423 {
1424 int val;
1425
1426 spin_lock(&fmp->lock);
1427 fmeter_update(fmp);
1428 val = fmp->val;
1429 spin_unlock(&fmp->lock);
1430 return val;
1431 }
1432
1433 static struct cpuset *cpuset_attach_old_cs;
1434
1435 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1436 static int cpuset_can_attach(struct cgroup_taskset *tset)
1437 {
1438 struct cgroup_subsys_state *css;
1439 struct cpuset *cs;
1440 struct task_struct *task;
1441 int ret;
1442
1443 /* used later by cpuset_attach() */
1444 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1445 cs = css_cs(css);
1446
1447 mutex_lock(&cpuset_mutex);
1448
1449 /* allow moving tasks into an empty cpuset if on default hierarchy */
1450 ret = -ENOSPC;
1451 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1452 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1453 goto out_unlock;
1454
1455 cgroup_taskset_for_each(task, css, tset) {
1456 ret = task_can_attach(task, cs->cpus_allowed);
1457 if (ret)
1458 goto out_unlock;
1459 ret = security_task_setscheduler(task);
1460 if (ret)
1461 goto out_unlock;
1462 }
1463
1464 /*
1465 * Mark attach is in progress. This makes validate_change() fail
1466 * changes which zero cpus/mems_allowed.
1467 */
1468 cs->attach_in_progress++;
1469 ret = 0;
1470 out_unlock:
1471 mutex_unlock(&cpuset_mutex);
1472 return ret;
1473 }
1474
1475 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1476 {
1477 struct cgroup_subsys_state *css;
1478 struct cpuset *cs;
1479
1480 cgroup_taskset_first(tset, &css);
1481 cs = css_cs(css);
1482
1483 mutex_lock(&cpuset_mutex);
1484 css_cs(css)->attach_in_progress--;
1485 mutex_unlock(&cpuset_mutex);
1486 }
1487
1488 /*
1489 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1490 * but we can't allocate it dynamically there. Define it global and
1491 * allocate from cpuset_init().
1492 */
1493 static cpumask_var_t cpus_attach;
1494
1495 static void cpuset_attach(struct cgroup_taskset *tset)
1496 {
1497 /* static buf protected by cpuset_mutex */
1498 static nodemask_t cpuset_attach_nodemask_to;
1499 struct task_struct *task;
1500 struct task_struct *leader;
1501 struct cgroup_subsys_state *css;
1502 struct cpuset *cs;
1503 struct cpuset *oldcs = cpuset_attach_old_cs;
1504
1505 cgroup_taskset_first(tset, &css);
1506 cs = css_cs(css);
1507
1508 mutex_lock(&cpuset_mutex);
1509
1510 /* prepare for attach */
1511 if (cs == &top_cpuset)
1512 cpumask_copy(cpus_attach, cpu_possible_mask);
1513 else
1514 guarantee_online_cpus(cs, cpus_attach);
1515
1516 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1517
1518 cgroup_taskset_for_each(task, css, tset) {
1519 /*
1520 * can_attach beforehand should guarantee that this doesn't
1521 * fail. TODO: have a better way to handle failure here
1522 */
1523 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1524
1525 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1526 cpuset_update_task_spread_flag(cs, task);
1527 }
1528
1529 /*
1530 * Change mm for all threadgroup leaders. This is expensive and may
1531 * sleep and should be moved outside migration path proper.
1532 */
1533 cpuset_attach_nodemask_to = cs->effective_mems;
1534 cgroup_taskset_for_each_leader(leader, css, tset) {
1535 struct mm_struct *mm = get_task_mm(leader);
1536
1537 if (mm) {
1538 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1539
1540 /*
1541 * old_mems_allowed is the same with mems_allowed
1542 * here, except if this task is being moved
1543 * automatically due to hotplug. In that case
1544 * @mems_allowed has been updated and is empty, so
1545 * @old_mems_allowed is the right nodesets that we
1546 * migrate mm from.
1547 */
1548 if (is_memory_migrate(cs)) {
1549 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1550 &cpuset_attach_nodemask_to);
1551 }
1552 mmput(mm);
1553 }
1554 }
1555
1556 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1557
1558 cs->attach_in_progress--;
1559 if (!cs->attach_in_progress)
1560 wake_up(&cpuset_attach_wq);
1561
1562 mutex_unlock(&cpuset_mutex);
1563 }
1564
1565 /* The various types of files and directories in a cpuset file system */
1566
1567 typedef enum {
1568 FILE_MEMORY_MIGRATE,
1569 FILE_CPULIST,
1570 FILE_MEMLIST,
1571 FILE_EFFECTIVE_CPULIST,
1572 FILE_EFFECTIVE_MEMLIST,
1573 FILE_CPU_EXCLUSIVE,
1574 FILE_MEM_EXCLUSIVE,
1575 FILE_MEM_HARDWALL,
1576 FILE_SCHED_LOAD_BALANCE,
1577 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1578 FILE_MEMORY_PRESSURE_ENABLED,
1579 FILE_MEMORY_PRESSURE,
1580 FILE_SPREAD_PAGE,
1581 FILE_SPREAD_SLAB,
1582 } cpuset_filetype_t;
1583
1584 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1585 u64 val)
1586 {
1587 struct cpuset *cs = css_cs(css);
1588 cpuset_filetype_t type = cft->private;
1589 int retval = 0;
1590
1591 mutex_lock(&cpuset_mutex);
1592 if (!is_cpuset_online(cs)) {
1593 retval = -ENODEV;
1594 goto out_unlock;
1595 }
1596
1597 switch (type) {
1598 case FILE_CPU_EXCLUSIVE:
1599 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1600 break;
1601 case FILE_MEM_EXCLUSIVE:
1602 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1603 break;
1604 case FILE_MEM_HARDWALL:
1605 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1606 break;
1607 case FILE_SCHED_LOAD_BALANCE:
1608 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1609 break;
1610 case FILE_MEMORY_MIGRATE:
1611 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1612 break;
1613 case FILE_MEMORY_PRESSURE_ENABLED:
1614 cpuset_memory_pressure_enabled = !!val;
1615 break;
1616 case FILE_SPREAD_PAGE:
1617 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1618 break;
1619 case FILE_SPREAD_SLAB:
1620 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1621 break;
1622 default:
1623 retval = -EINVAL;
1624 break;
1625 }
1626 out_unlock:
1627 mutex_unlock(&cpuset_mutex);
1628 return retval;
1629 }
1630
1631 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1632 s64 val)
1633 {
1634 struct cpuset *cs = css_cs(css);
1635 cpuset_filetype_t type = cft->private;
1636 int retval = -ENODEV;
1637
1638 mutex_lock(&cpuset_mutex);
1639 if (!is_cpuset_online(cs))
1640 goto out_unlock;
1641
1642 switch (type) {
1643 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1644 retval = update_relax_domain_level(cs, val);
1645 break;
1646 default:
1647 retval = -EINVAL;
1648 break;
1649 }
1650 out_unlock:
1651 mutex_unlock(&cpuset_mutex);
1652 return retval;
1653 }
1654
1655 /*
1656 * Common handling for a write to a "cpus" or "mems" file.
1657 */
1658 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1659 char *buf, size_t nbytes, loff_t off)
1660 {
1661 struct cpuset *cs = css_cs(of_css(of));
1662 struct cpuset *trialcs;
1663 int retval = -ENODEV;
1664
1665 buf = strstrip(buf);
1666
1667 /*
1668 * CPU or memory hotunplug may leave @cs w/o any execution
1669 * resources, in which case the hotplug code asynchronously updates
1670 * configuration and transfers all tasks to the nearest ancestor
1671 * which can execute.
1672 *
1673 * As writes to "cpus" or "mems" may restore @cs's execution
1674 * resources, wait for the previously scheduled operations before
1675 * proceeding, so that we don't end up keep removing tasks added
1676 * after execution capability is restored.
1677 *
1678 * cpuset_hotplug_work calls back into cgroup core via
1679 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1680 * operation like this one can lead to a deadlock through kernfs
1681 * active_ref protection. Let's break the protection. Losing the
1682 * protection is okay as we check whether @cs is online after
1683 * grabbing cpuset_mutex anyway. This only happens on the legacy
1684 * hierarchies.
1685 */
1686 css_get(&cs->css);
1687 kernfs_break_active_protection(of->kn);
1688 flush_work(&cpuset_hotplug_work);
1689
1690 mutex_lock(&cpuset_mutex);
1691 if (!is_cpuset_online(cs))
1692 goto out_unlock;
1693
1694 trialcs = alloc_trial_cpuset(cs);
1695 if (!trialcs) {
1696 retval = -ENOMEM;
1697 goto out_unlock;
1698 }
1699
1700 switch (of_cft(of)->private) {
1701 case FILE_CPULIST:
1702 retval = update_cpumask(cs, trialcs, buf);
1703 break;
1704 case FILE_MEMLIST:
1705 retval = update_nodemask(cs, trialcs, buf);
1706 break;
1707 default:
1708 retval = -EINVAL;
1709 break;
1710 }
1711
1712 free_trial_cpuset(trialcs);
1713 out_unlock:
1714 mutex_unlock(&cpuset_mutex);
1715 kernfs_unbreak_active_protection(of->kn);
1716 css_put(&cs->css);
1717 return retval ?: nbytes;
1718 }
1719
1720 /*
1721 * These ascii lists should be read in a single call, by using a user
1722 * buffer large enough to hold the entire map. If read in smaller
1723 * chunks, there is no guarantee of atomicity. Since the display format
1724 * used, list of ranges of sequential numbers, is variable length,
1725 * and since these maps can change value dynamically, one could read
1726 * gibberish by doing partial reads while a list was changing.
1727 */
1728 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1729 {
1730 struct cpuset *cs = css_cs(seq_css(sf));
1731 cpuset_filetype_t type = seq_cft(sf)->private;
1732 int ret = 0;
1733
1734 spin_lock_irq(&callback_lock);
1735
1736 switch (type) {
1737 case FILE_CPULIST:
1738 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1739 break;
1740 case FILE_MEMLIST:
1741 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1742 break;
1743 case FILE_EFFECTIVE_CPULIST:
1744 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1745 break;
1746 case FILE_EFFECTIVE_MEMLIST:
1747 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1748 break;
1749 default:
1750 ret = -EINVAL;
1751 }
1752
1753 spin_unlock_irq(&callback_lock);
1754 return ret;
1755 }
1756
1757 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1758 {
1759 struct cpuset *cs = css_cs(css);
1760 cpuset_filetype_t type = cft->private;
1761 switch (type) {
1762 case FILE_CPU_EXCLUSIVE:
1763 return is_cpu_exclusive(cs);
1764 case FILE_MEM_EXCLUSIVE:
1765 return is_mem_exclusive(cs);
1766 case FILE_MEM_HARDWALL:
1767 return is_mem_hardwall(cs);
1768 case FILE_SCHED_LOAD_BALANCE:
1769 return is_sched_load_balance(cs);
1770 case FILE_MEMORY_MIGRATE:
1771 return is_memory_migrate(cs);
1772 case FILE_MEMORY_PRESSURE_ENABLED:
1773 return cpuset_memory_pressure_enabled;
1774 case FILE_MEMORY_PRESSURE:
1775 return fmeter_getrate(&cs->fmeter);
1776 case FILE_SPREAD_PAGE:
1777 return is_spread_page(cs);
1778 case FILE_SPREAD_SLAB:
1779 return is_spread_slab(cs);
1780 default:
1781 BUG();
1782 }
1783
1784 /* Unreachable but makes gcc happy */
1785 return 0;
1786 }
1787
1788 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1789 {
1790 struct cpuset *cs = css_cs(css);
1791 cpuset_filetype_t type = cft->private;
1792 switch (type) {
1793 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1794 return cs->relax_domain_level;
1795 default:
1796 BUG();
1797 }
1798
1799 /* Unrechable but makes gcc happy */
1800 return 0;
1801 }
1802
1803
1804 /*
1805 * for the common functions, 'private' gives the type of file
1806 */
1807
1808 static struct cftype files[] = {
1809 {
1810 .name = "cpus",
1811 .seq_show = cpuset_common_seq_show,
1812 .write = cpuset_write_resmask,
1813 .max_write_len = (100U + 6 * NR_CPUS),
1814 .private = FILE_CPULIST,
1815 },
1816
1817 {
1818 .name = "mems",
1819 .seq_show = cpuset_common_seq_show,
1820 .write = cpuset_write_resmask,
1821 .max_write_len = (100U + 6 * MAX_NUMNODES),
1822 .private = FILE_MEMLIST,
1823 },
1824
1825 {
1826 .name = "effective_cpus",
1827 .seq_show = cpuset_common_seq_show,
1828 .private = FILE_EFFECTIVE_CPULIST,
1829 },
1830
1831 {
1832 .name = "effective_mems",
1833 .seq_show = cpuset_common_seq_show,
1834 .private = FILE_EFFECTIVE_MEMLIST,
1835 },
1836
1837 {
1838 .name = "cpu_exclusive",
1839 .read_u64 = cpuset_read_u64,
1840 .write_u64 = cpuset_write_u64,
1841 .private = FILE_CPU_EXCLUSIVE,
1842 },
1843
1844 {
1845 .name = "mem_exclusive",
1846 .read_u64 = cpuset_read_u64,
1847 .write_u64 = cpuset_write_u64,
1848 .private = FILE_MEM_EXCLUSIVE,
1849 },
1850
1851 {
1852 .name = "mem_hardwall",
1853 .read_u64 = cpuset_read_u64,
1854 .write_u64 = cpuset_write_u64,
1855 .private = FILE_MEM_HARDWALL,
1856 },
1857
1858 {
1859 .name = "sched_load_balance",
1860 .read_u64 = cpuset_read_u64,
1861 .write_u64 = cpuset_write_u64,
1862 .private = FILE_SCHED_LOAD_BALANCE,
1863 },
1864
1865 {
1866 .name = "sched_relax_domain_level",
1867 .read_s64 = cpuset_read_s64,
1868 .write_s64 = cpuset_write_s64,
1869 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1870 },
1871
1872 {
1873 .name = "memory_migrate",
1874 .read_u64 = cpuset_read_u64,
1875 .write_u64 = cpuset_write_u64,
1876 .private = FILE_MEMORY_MIGRATE,
1877 },
1878
1879 {
1880 .name = "memory_pressure",
1881 .read_u64 = cpuset_read_u64,
1882 },
1883
1884 {
1885 .name = "memory_spread_page",
1886 .read_u64 = cpuset_read_u64,
1887 .write_u64 = cpuset_write_u64,
1888 .private = FILE_SPREAD_PAGE,
1889 },
1890
1891 {
1892 .name = "memory_spread_slab",
1893 .read_u64 = cpuset_read_u64,
1894 .write_u64 = cpuset_write_u64,
1895 .private = FILE_SPREAD_SLAB,
1896 },
1897
1898 {
1899 .name = "memory_pressure_enabled",
1900 .flags = CFTYPE_ONLY_ON_ROOT,
1901 .read_u64 = cpuset_read_u64,
1902 .write_u64 = cpuset_write_u64,
1903 .private = FILE_MEMORY_PRESSURE_ENABLED,
1904 },
1905
1906 { } /* terminate */
1907 };
1908
1909 /*
1910 * cpuset_css_alloc - allocate a cpuset css
1911 * cgrp: control group that the new cpuset will be part of
1912 */
1913
1914 static struct cgroup_subsys_state *
1915 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1916 {
1917 struct cpuset *cs;
1918
1919 if (!parent_css)
1920 return &top_cpuset.css;
1921
1922 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1923 if (!cs)
1924 return ERR_PTR(-ENOMEM);
1925 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1926 goto free_cs;
1927 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1928 goto free_cpus;
1929
1930 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1931 cpumask_clear(cs->cpus_allowed);
1932 nodes_clear(cs->mems_allowed);
1933 cpumask_clear(cs->effective_cpus);
1934 nodes_clear(cs->effective_mems);
1935 fmeter_init(&cs->fmeter);
1936 cs->relax_domain_level = -1;
1937
1938 return &cs->css;
1939
1940 free_cpus:
1941 free_cpumask_var(cs->cpus_allowed);
1942 free_cs:
1943 kfree(cs);
1944 return ERR_PTR(-ENOMEM);
1945 }
1946
1947 static int cpuset_css_online(struct cgroup_subsys_state *css)
1948 {
1949 struct cpuset *cs = css_cs(css);
1950 struct cpuset *parent = parent_cs(cs);
1951 struct cpuset *tmp_cs;
1952 struct cgroup_subsys_state *pos_css;
1953
1954 if (!parent)
1955 return 0;
1956
1957 mutex_lock(&cpuset_mutex);
1958
1959 set_bit(CS_ONLINE, &cs->flags);
1960 if (is_spread_page(parent))
1961 set_bit(CS_SPREAD_PAGE, &cs->flags);
1962 if (is_spread_slab(parent))
1963 set_bit(CS_SPREAD_SLAB, &cs->flags);
1964
1965 cpuset_inc();
1966
1967 spin_lock_irq(&callback_lock);
1968 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1969 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1970 cs->effective_mems = parent->effective_mems;
1971 }
1972 spin_unlock_irq(&callback_lock);
1973
1974 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1975 goto out_unlock;
1976
1977 /*
1978 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1979 * set. This flag handling is implemented in cgroup core for
1980 * histrical reasons - the flag may be specified during mount.
1981 *
1982 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1983 * refuse to clone the configuration - thereby refusing the task to
1984 * be entered, and as a result refusing the sys_unshare() or
1985 * clone() which initiated it. If this becomes a problem for some
1986 * users who wish to allow that scenario, then this could be
1987 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1988 * (and likewise for mems) to the new cgroup.
1989 */
1990 rcu_read_lock();
1991 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1992 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1993 rcu_read_unlock();
1994 goto out_unlock;
1995 }
1996 }
1997 rcu_read_unlock();
1998
1999 spin_lock_irq(&callback_lock);
2000 cs->mems_allowed = parent->mems_allowed;
2001 cs->effective_mems = parent->mems_allowed;
2002 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2003 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2004 spin_unlock_irq(&callback_lock);
2005 out_unlock:
2006 mutex_unlock(&cpuset_mutex);
2007 return 0;
2008 }
2009
2010 /*
2011 * If the cpuset being removed has its flag 'sched_load_balance'
2012 * enabled, then simulate turning sched_load_balance off, which
2013 * will call rebuild_sched_domains_locked().
2014 */
2015
2016 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2017 {
2018 struct cpuset *cs = css_cs(css);
2019
2020 mutex_lock(&cpuset_mutex);
2021
2022 if (is_sched_load_balance(cs))
2023 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2024
2025 cpuset_dec();
2026 clear_bit(CS_ONLINE, &cs->flags);
2027
2028 mutex_unlock(&cpuset_mutex);
2029 }
2030
2031 static void cpuset_css_free(struct cgroup_subsys_state *css)
2032 {
2033 struct cpuset *cs = css_cs(css);
2034
2035 free_cpumask_var(cs->effective_cpus);
2036 free_cpumask_var(cs->cpus_allowed);
2037 kfree(cs);
2038 }
2039
2040 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2041 {
2042 mutex_lock(&cpuset_mutex);
2043 spin_lock_irq(&callback_lock);
2044
2045 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2046 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2047 top_cpuset.mems_allowed = node_possible_map;
2048 } else {
2049 cpumask_copy(top_cpuset.cpus_allowed,
2050 top_cpuset.effective_cpus);
2051 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2052 }
2053
2054 spin_unlock_irq(&callback_lock);
2055 mutex_unlock(&cpuset_mutex);
2056 }
2057
2058 struct cgroup_subsys cpuset_cgrp_subsys = {
2059 .css_alloc = cpuset_css_alloc,
2060 .css_online = cpuset_css_online,
2061 .css_offline = cpuset_css_offline,
2062 .css_free = cpuset_css_free,
2063 .can_attach = cpuset_can_attach,
2064 .cancel_attach = cpuset_cancel_attach,
2065 .attach = cpuset_attach,
2066 .bind = cpuset_bind,
2067 .legacy_cftypes = files,
2068 .early_init = 1,
2069 };
2070
2071 /**
2072 * cpuset_init - initialize cpusets at system boot
2073 *
2074 * Description: Initialize top_cpuset and the cpuset internal file system,
2075 **/
2076
2077 int __init cpuset_init(void)
2078 {
2079 int err = 0;
2080
2081 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2082 BUG();
2083 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2084 BUG();
2085
2086 cpumask_setall(top_cpuset.cpus_allowed);
2087 nodes_setall(top_cpuset.mems_allowed);
2088 cpumask_setall(top_cpuset.effective_cpus);
2089 nodes_setall(top_cpuset.effective_mems);
2090
2091 fmeter_init(&top_cpuset.fmeter);
2092 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2093 top_cpuset.relax_domain_level = -1;
2094
2095 err = register_filesystem(&cpuset_fs_type);
2096 if (err < 0)
2097 return err;
2098
2099 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2100 BUG();
2101
2102 return 0;
2103 }
2104
2105 /*
2106 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2107 * or memory nodes, we need to walk over the cpuset hierarchy,
2108 * removing that CPU or node from all cpusets. If this removes the
2109 * last CPU or node from a cpuset, then move the tasks in the empty
2110 * cpuset to its next-highest non-empty parent.
2111 */
2112 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2113 {
2114 struct cpuset *parent;
2115
2116 /*
2117 * Find its next-highest non-empty parent, (top cpuset
2118 * has online cpus, so can't be empty).
2119 */
2120 parent = parent_cs(cs);
2121 while (cpumask_empty(parent->cpus_allowed) ||
2122 nodes_empty(parent->mems_allowed))
2123 parent = parent_cs(parent);
2124
2125 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2126 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2127 pr_cont_cgroup_name(cs->css.cgroup);
2128 pr_cont("\n");
2129 }
2130 }
2131
2132 static void
2133 hotplug_update_tasks_legacy(struct cpuset *cs,
2134 struct cpumask *new_cpus, nodemask_t *new_mems,
2135 bool cpus_updated, bool mems_updated)
2136 {
2137 bool is_empty;
2138
2139 spin_lock_irq(&callback_lock);
2140 cpumask_copy(cs->cpus_allowed, new_cpus);
2141 cpumask_copy(cs->effective_cpus, new_cpus);
2142 cs->mems_allowed = *new_mems;
2143 cs->effective_mems = *new_mems;
2144 spin_unlock_irq(&callback_lock);
2145
2146 /*
2147 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2148 * as the tasks will be migratecd to an ancestor.
2149 */
2150 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2151 update_tasks_cpumask(cs);
2152 if (mems_updated && !nodes_empty(cs->mems_allowed))
2153 update_tasks_nodemask(cs);
2154
2155 is_empty = cpumask_empty(cs->cpus_allowed) ||
2156 nodes_empty(cs->mems_allowed);
2157
2158 mutex_unlock(&cpuset_mutex);
2159
2160 /*
2161 * Move tasks to the nearest ancestor with execution resources,
2162 * This is full cgroup operation which will also call back into
2163 * cpuset. Should be done outside any lock.
2164 */
2165 if (is_empty)
2166 remove_tasks_in_empty_cpuset(cs);
2167
2168 mutex_lock(&cpuset_mutex);
2169 }
2170
2171 static void
2172 hotplug_update_tasks(struct cpuset *cs,
2173 struct cpumask *new_cpus, nodemask_t *new_mems,
2174 bool cpus_updated, bool mems_updated)
2175 {
2176 if (cpumask_empty(new_cpus))
2177 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2178 if (nodes_empty(*new_mems))
2179 *new_mems = parent_cs(cs)->effective_mems;
2180
2181 spin_lock_irq(&callback_lock);
2182 cpumask_copy(cs->effective_cpus, new_cpus);
2183 cs->effective_mems = *new_mems;
2184 spin_unlock_irq(&callback_lock);
2185
2186 if (cpus_updated)
2187 update_tasks_cpumask(cs);
2188 if (mems_updated)
2189 update_tasks_nodemask(cs);
2190 }
2191
2192 /**
2193 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2194 * @cs: cpuset in interest
2195 *
2196 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2197 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2198 * all its tasks are moved to the nearest ancestor with both resources.
2199 */
2200 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2201 {
2202 static cpumask_t new_cpus;
2203 static nodemask_t new_mems;
2204 bool cpus_updated;
2205 bool mems_updated;
2206 retry:
2207 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2208
2209 mutex_lock(&cpuset_mutex);
2210
2211 /*
2212 * We have raced with task attaching. We wait until attaching
2213 * is finished, so we won't attach a task to an empty cpuset.
2214 */
2215 if (cs->attach_in_progress) {
2216 mutex_unlock(&cpuset_mutex);
2217 goto retry;
2218 }
2219
2220 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2221 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2222
2223 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2224 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2225
2226 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2227 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2228 cpus_updated, mems_updated);
2229 else
2230 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2231 cpus_updated, mems_updated);
2232
2233 mutex_unlock(&cpuset_mutex);
2234 }
2235
2236 /**
2237 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2238 *
2239 * This function is called after either CPU or memory configuration has
2240 * changed and updates cpuset accordingly. The top_cpuset is always
2241 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2242 * order to make cpusets transparent (of no affect) on systems that are
2243 * actively using CPU hotplug but making no active use of cpusets.
2244 *
2245 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2246 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2247 * all descendants.
2248 *
2249 * Note that CPU offlining during suspend is ignored. We don't modify
2250 * cpusets across suspend/resume cycles at all.
2251 */
2252 static void cpuset_hotplug_workfn(struct work_struct *work)
2253 {
2254 static cpumask_t new_cpus;
2255 static nodemask_t new_mems;
2256 bool cpus_updated, mems_updated;
2257 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2258
2259 mutex_lock(&cpuset_mutex);
2260
2261 /* fetch the available cpus/mems and find out which changed how */
2262 cpumask_copy(&new_cpus, cpu_active_mask);
2263 new_mems = node_states[N_MEMORY];
2264
2265 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2266 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2267
2268 /* synchronize cpus_allowed to cpu_active_mask */
2269 if (cpus_updated) {
2270 spin_lock_irq(&callback_lock);
2271 if (!on_dfl)
2272 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2273 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2274 spin_unlock_irq(&callback_lock);
2275 /* we don't mess with cpumasks of tasks in top_cpuset */
2276 }
2277
2278 /* synchronize mems_allowed to N_MEMORY */
2279 if (mems_updated) {
2280 spin_lock_irq(&callback_lock);
2281 if (!on_dfl)
2282 top_cpuset.mems_allowed = new_mems;
2283 top_cpuset.effective_mems = new_mems;
2284 spin_unlock_irq(&callback_lock);
2285 update_tasks_nodemask(&top_cpuset);
2286 }
2287
2288 mutex_unlock(&cpuset_mutex);
2289
2290 /* if cpus or mems changed, we need to propagate to descendants */
2291 if (cpus_updated || mems_updated) {
2292 struct cpuset *cs;
2293 struct cgroup_subsys_state *pos_css;
2294
2295 rcu_read_lock();
2296 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2297 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2298 continue;
2299 rcu_read_unlock();
2300
2301 cpuset_hotplug_update_tasks(cs);
2302
2303 rcu_read_lock();
2304 css_put(&cs->css);
2305 }
2306 rcu_read_unlock();
2307 }
2308
2309 /* rebuild sched domains if cpus_allowed has changed */
2310 if (cpus_updated)
2311 rebuild_sched_domains();
2312 }
2313
2314 void cpuset_update_active_cpus(bool cpu_online)
2315 {
2316 /*
2317 * We're inside cpu hotplug critical region which usually nests
2318 * inside cgroup synchronization. Bounce actual hotplug processing
2319 * to a work item to avoid reverse locking order.
2320 *
2321 * We still need to do partition_sched_domains() synchronously;
2322 * otherwise, the scheduler will get confused and put tasks to the
2323 * dead CPU. Fall back to the default single domain.
2324 * cpuset_hotplug_workfn() will rebuild it as necessary.
2325 */
2326 partition_sched_domains(1, NULL, NULL);
2327 schedule_work(&cpuset_hotplug_work);
2328 }
2329
2330 /*
2331 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2332 * Call this routine anytime after node_states[N_MEMORY] changes.
2333 * See cpuset_update_active_cpus() for CPU hotplug handling.
2334 */
2335 static int cpuset_track_online_nodes(struct notifier_block *self,
2336 unsigned long action, void *arg)
2337 {
2338 schedule_work(&cpuset_hotplug_work);
2339 return NOTIFY_OK;
2340 }
2341
2342 static struct notifier_block cpuset_track_online_nodes_nb = {
2343 .notifier_call = cpuset_track_online_nodes,
2344 .priority = 10, /* ??! */
2345 };
2346
2347 /**
2348 * cpuset_init_smp - initialize cpus_allowed
2349 *
2350 * Description: Finish top cpuset after cpu, node maps are initialized
2351 */
2352 void __init cpuset_init_smp(void)
2353 {
2354 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2355 top_cpuset.mems_allowed = node_states[N_MEMORY];
2356 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2357
2358 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2359 top_cpuset.effective_mems = node_states[N_MEMORY];
2360
2361 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2362 }
2363
2364 /**
2365 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2366 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2367 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2368 *
2369 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2370 * attached to the specified @tsk. Guaranteed to return some non-empty
2371 * subset of cpu_online_mask, even if this means going outside the
2372 * tasks cpuset.
2373 **/
2374
2375 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2376 {
2377 unsigned long flags;
2378
2379 spin_lock_irqsave(&callback_lock, flags);
2380 rcu_read_lock();
2381 guarantee_online_cpus(task_cs(tsk), pmask);
2382 rcu_read_unlock();
2383 spin_unlock_irqrestore(&callback_lock, flags);
2384 }
2385
2386 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2387 {
2388 rcu_read_lock();
2389 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2390 rcu_read_unlock();
2391
2392 /*
2393 * We own tsk->cpus_allowed, nobody can change it under us.
2394 *
2395 * But we used cs && cs->cpus_allowed lockless and thus can
2396 * race with cgroup_attach_task() or update_cpumask() and get
2397 * the wrong tsk->cpus_allowed. However, both cases imply the
2398 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2399 * which takes task_rq_lock().
2400 *
2401 * If we are called after it dropped the lock we must see all
2402 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2403 * set any mask even if it is not right from task_cs() pov,
2404 * the pending set_cpus_allowed_ptr() will fix things.
2405 *
2406 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2407 * if required.
2408 */
2409 }
2410
2411 void __init cpuset_init_current_mems_allowed(void)
2412 {
2413 nodes_setall(current->mems_allowed);
2414 }
2415
2416 /**
2417 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2418 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2419 *
2420 * Description: Returns the nodemask_t mems_allowed of the cpuset
2421 * attached to the specified @tsk. Guaranteed to return some non-empty
2422 * subset of node_states[N_MEMORY], even if this means going outside the
2423 * tasks cpuset.
2424 **/
2425
2426 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2427 {
2428 nodemask_t mask;
2429 unsigned long flags;
2430
2431 spin_lock_irqsave(&callback_lock, flags);
2432 rcu_read_lock();
2433 guarantee_online_mems(task_cs(tsk), &mask);
2434 rcu_read_unlock();
2435 spin_unlock_irqrestore(&callback_lock, flags);
2436
2437 return mask;
2438 }
2439
2440 /**
2441 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2442 * @nodemask: the nodemask to be checked
2443 *
2444 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2445 */
2446 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2447 {
2448 return nodes_intersects(*nodemask, current->mems_allowed);
2449 }
2450
2451 /*
2452 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2453 * mem_hardwall ancestor to the specified cpuset. Call holding
2454 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2455 * (an unusual configuration), then returns the root cpuset.
2456 */
2457 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2458 {
2459 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2460 cs = parent_cs(cs);
2461 return cs;
2462 }
2463
2464 /**
2465 * cpuset_node_allowed - Can we allocate on a memory node?
2466 * @node: is this an allowed node?
2467 * @gfp_mask: memory allocation flags
2468 *
2469 * If we're in interrupt, yes, we can always allocate. If @node is set in
2470 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2471 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2472 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2473 * Otherwise, no.
2474 *
2475 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2476 * and do not allow allocations outside the current tasks cpuset
2477 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2478 * GFP_KERNEL allocations are not so marked, so can escape to the
2479 * nearest enclosing hardwalled ancestor cpuset.
2480 *
2481 * Scanning up parent cpusets requires callback_lock. The
2482 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2483 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2484 * current tasks mems_allowed came up empty on the first pass over
2485 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2486 * cpuset are short of memory, might require taking the callback_lock.
2487 *
2488 * The first call here from mm/page_alloc:get_page_from_freelist()
2489 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2490 * so no allocation on a node outside the cpuset is allowed (unless
2491 * in interrupt, of course).
2492 *
2493 * The second pass through get_page_from_freelist() doesn't even call
2494 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2495 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2496 * in alloc_flags. That logic and the checks below have the combined
2497 * affect that:
2498 * in_interrupt - any node ok (current task context irrelevant)
2499 * GFP_ATOMIC - any node ok
2500 * TIF_MEMDIE - any node ok
2501 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2502 * GFP_USER - only nodes in current tasks mems allowed ok.
2503 */
2504 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2505 {
2506 struct cpuset *cs; /* current cpuset ancestors */
2507 int allowed; /* is allocation in zone z allowed? */
2508 unsigned long flags;
2509
2510 if (in_interrupt())
2511 return 1;
2512 if (node_isset(node, current->mems_allowed))
2513 return 1;
2514 /*
2515 * Allow tasks that have access to memory reserves because they have
2516 * been OOM killed to get memory anywhere.
2517 */
2518 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2519 return 1;
2520 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2521 return 0;
2522
2523 if (current->flags & PF_EXITING) /* Let dying task have memory */
2524 return 1;
2525
2526 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2527 spin_lock_irqsave(&callback_lock, flags);
2528
2529 rcu_read_lock();
2530 cs = nearest_hardwall_ancestor(task_cs(current));
2531 allowed = node_isset(node, cs->mems_allowed);
2532 rcu_read_unlock();
2533
2534 spin_unlock_irqrestore(&callback_lock, flags);
2535 return allowed;
2536 }
2537
2538 /**
2539 * cpuset_mem_spread_node() - On which node to begin search for a file page
2540 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2541 *
2542 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2543 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2544 * and if the memory allocation used cpuset_mem_spread_node()
2545 * to determine on which node to start looking, as it will for
2546 * certain page cache or slab cache pages such as used for file
2547 * system buffers and inode caches, then instead of starting on the
2548 * local node to look for a free page, rather spread the starting
2549 * node around the tasks mems_allowed nodes.
2550 *
2551 * We don't have to worry about the returned node being offline
2552 * because "it can't happen", and even if it did, it would be ok.
2553 *
2554 * The routines calling guarantee_online_mems() are careful to
2555 * only set nodes in task->mems_allowed that are online. So it
2556 * should not be possible for the following code to return an
2557 * offline node. But if it did, that would be ok, as this routine
2558 * is not returning the node where the allocation must be, only
2559 * the node where the search should start. The zonelist passed to
2560 * __alloc_pages() will include all nodes. If the slab allocator
2561 * is passed an offline node, it will fall back to the local node.
2562 * See kmem_cache_alloc_node().
2563 */
2564
2565 static int cpuset_spread_node(int *rotor)
2566 {
2567 int node;
2568
2569 node = next_node(*rotor, current->mems_allowed);
2570 if (node == MAX_NUMNODES)
2571 node = first_node(current->mems_allowed);
2572 *rotor = node;
2573 return node;
2574 }
2575
2576 int cpuset_mem_spread_node(void)
2577 {
2578 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2579 current->cpuset_mem_spread_rotor =
2580 node_random(&current->mems_allowed);
2581
2582 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2583 }
2584
2585 int cpuset_slab_spread_node(void)
2586 {
2587 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2588 current->cpuset_slab_spread_rotor =
2589 node_random(&current->mems_allowed);
2590
2591 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2592 }
2593
2594 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2595
2596 /**
2597 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2598 * @tsk1: pointer to task_struct of some task.
2599 * @tsk2: pointer to task_struct of some other task.
2600 *
2601 * Description: Return true if @tsk1's mems_allowed intersects the
2602 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2603 * one of the task's memory usage might impact the memory available
2604 * to the other.
2605 **/
2606
2607 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2608 const struct task_struct *tsk2)
2609 {
2610 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2611 }
2612
2613 /**
2614 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2615 *
2616 * Description: Prints current's name, cpuset name, and cached copy of its
2617 * mems_allowed to the kernel log.
2618 */
2619 void cpuset_print_current_mems_allowed(void)
2620 {
2621 struct cgroup *cgrp;
2622
2623 rcu_read_lock();
2624
2625 cgrp = task_cs(current)->css.cgroup;
2626 pr_info("%s cpuset=", current->comm);
2627 pr_cont_cgroup_name(cgrp);
2628 pr_cont(" mems_allowed=%*pbl\n",
2629 nodemask_pr_args(&current->mems_allowed));
2630
2631 rcu_read_unlock();
2632 }
2633
2634 /*
2635 * Collection of memory_pressure is suppressed unless
2636 * this flag is enabled by writing "1" to the special
2637 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2638 */
2639
2640 int cpuset_memory_pressure_enabled __read_mostly;
2641
2642 /**
2643 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2644 *
2645 * Keep a running average of the rate of synchronous (direct)
2646 * page reclaim efforts initiated by tasks in each cpuset.
2647 *
2648 * This represents the rate at which some task in the cpuset
2649 * ran low on memory on all nodes it was allowed to use, and
2650 * had to enter the kernels page reclaim code in an effort to
2651 * create more free memory by tossing clean pages or swapping
2652 * or writing dirty pages.
2653 *
2654 * Display to user space in the per-cpuset read-only file
2655 * "memory_pressure". Value displayed is an integer
2656 * representing the recent rate of entry into the synchronous
2657 * (direct) page reclaim by any task attached to the cpuset.
2658 **/
2659
2660 void __cpuset_memory_pressure_bump(void)
2661 {
2662 rcu_read_lock();
2663 fmeter_markevent(&task_cs(current)->fmeter);
2664 rcu_read_unlock();
2665 }
2666
2667 #ifdef CONFIG_PROC_PID_CPUSET
2668 /*
2669 * proc_cpuset_show()
2670 * - Print tasks cpuset path into seq_file.
2671 * - Used for /proc/<pid>/cpuset.
2672 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2673 * doesn't really matter if tsk->cpuset changes after we read it,
2674 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2675 * anyway.
2676 */
2677 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2678 struct pid *pid, struct task_struct *tsk)
2679 {
2680 char *buf, *p;
2681 struct cgroup_subsys_state *css;
2682 int retval;
2683
2684 retval = -ENOMEM;
2685 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2686 if (!buf)
2687 goto out;
2688
2689 retval = -ENAMETOOLONG;
2690 rcu_read_lock();
2691 css = task_css(tsk, cpuset_cgrp_id);
2692 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2693 rcu_read_unlock();
2694 if (!p)
2695 goto out_free;
2696 seq_puts(m, p);
2697 seq_putc(m, '\n');
2698 retval = 0;
2699 out_free:
2700 kfree(buf);
2701 out:
2702 return retval;
2703 }
2704 #endif /* CONFIG_PROC_PID_CPUSET */
2705
2706 /* Display task mems_allowed in /proc/<pid>/status file. */
2707 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2708 {
2709 seq_printf(m, "Mems_allowed:\t%*pb\n",
2710 nodemask_pr_args(&task->mems_allowed));
2711 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2712 nodemask_pr_args(&task->mems_allowed));
2713 }