]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cpuset.c
kernel/kthread.c: partial revert of 81c98869faa5 ("kthread: ensure locality of task_s...
[mirror_ubuntu-artful-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
107
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
120 struct fmeter fmeter; /* memory_pressure filter */
121
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
128 /* partition number for rebuild_sched_domains() */
129 int pn;
130
131 /* for custom sched domain */
132 int relax_domain_level;
133 };
134
135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136 {
137 return css ? container_of(css, struct cpuset, css) : NULL;
138 }
139
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset *task_cs(struct task_struct *task)
142 {
143 return css_cs(task_css(task, cpuset_cgrp_id));
144 }
145
146 static inline struct cpuset *parent_cs(struct cpuset *cs)
147 {
148 return css_cs(cs->css.parent);
149 }
150
151 #ifdef CONFIG_NUMA
152 static inline bool task_has_mempolicy(struct task_struct *task)
153 {
154 return task->mempolicy;
155 }
156 #else
157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 return false;
160 }
161 #endif
162
163
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 CS_ONLINE,
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
169 CS_MEM_HARDWALL,
170 CS_MEMORY_MIGRATE,
171 CS_SCHED_LOAD_BALANCE,
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
175
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset *cs)
178 {
179 return test_bit(CS_ONLINE, &cs->flags);
180 }
181
182 static inline int is_cpu_exclusive(const struct cpuset *cs)
183 {
184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
185 }
186
187 static inline int is_mem_exclusive(const struct cpuset *cs)
188 {
189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
190 }
191
192 static inline int is_mem_hardwall(const struct cpuset *cs)
193 {
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195 }
196
197 static inline int is_sched_load_balance(const struct cpuset *cs)
198 {
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200 }
201
202 static inline int is_memory_migrate(const struct cpuset *cs)
203 {
204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 }
206
207 static inline int is_spread_page(const struct cpuset *cs)
208 {
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210 }
211
212 static inline int is_spread_slab(const struct cpuset *cs)
213 {
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215 }
216
217 static struct cpuset top_cpuset = {
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
220 };
221
222 /**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234
235 /**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
245 */
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249
250 /*
251 * There are two global mutexes guarding cpuset structures - cpuset_mutex
252 * and callback_mutex. The latter may nest inside the former. We also
253 * require taking task_lock() when dereferencing a task's cpuset pointer.
254 * See "The task_lock() exception", at the end of this comment.
255 *
256 * A task must hold both mutexes to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_mutex and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_mutex to query cpusets.
263 * Once it is ready to make the changes, it takes callback_mutex, blocking
264 * everyone else.
265 *
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_mutex, as that would risk double tripping on callback_mutex
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
271 * If a task is only holding callback_mutex, then it has read-only
272 * access to cpusets.
273 *
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
277 *
278 * The cpuset_common_file_read() handlers only hold callback_mutex across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
284 */
285
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_MUTEX(callback_mutex);
288
289 /*
290 * CPU / memory hotplug is handled asynchronously.
291 */
292 static void cpuset_hotplug_workfn(struct work_struct *work);
293 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
294
295 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
296
297 /*
298 * This is ugly, but preserves the userspace API for existing cpuset
299 * users. If someone tries to mount the "cpuset" filesystem, we
300 * silently switch it to mount "cgroup" instead
301 */
302 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 int flags, const char *unused_dev_name, void *data)
304 {
305 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
306 struct dentry *ret = ERR_PTR(-ENODEV);
307 if (cgroup_fs) {
308 char mountopts[] =
309 "cpuset,noprefix,"
310 "release_agent=/sbin/cpuset_release_agent";
311 ret = cgroup_fs->mount(cgroup_fs, flags,
312 unused_dev_name, mountopts);
313 put_filesystem(cgroup_fs);
314 }
315 return ret;
316 }
317
318 static struct file_system_type cpuset_fs_type = {
319 .name = "cpuset",
320 .mount = cpuset_mount,
321 };
322
323 /*
324 * Return in pmask the portion of a cpusets's cpus_allowed that
325 * are online. If none are online, walk up the cpuset hierarchy
326 * until we find one that does have some online cpus. The top
327 * cpuset always has some cpus online.
328 *
329 * One way or another, we guarantee to return some non-empty subset
330 * of cpu_online_mask.
331 *
332 * Call with callback_mutex held.
333 */
334 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
335 {
336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
337 cs = parent_cs(cs);
338 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
339 }
340
341 /*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
345 * online mems. The top cpuset always has some mems online.
346 *
347 * One way or another, we guarantee to return some non-empty subset
348 * of node_states[N_MEMORY].
349 *
350 * Call with callback_mutex held.
351 */
352 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
353 {
354 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
355 cs = parent_cs(cs);
356 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
357 }
358
359 /*
360 * update task's spread flag if cpuset's page/slab spread flag is set
361 *
362 * Called with callback_mutex/cpuset_mutex held
363 */
364 static void cpuset_update_task_spread_flag(struct cpuset *cs,
365 struct task_struct *tsk)
366 {
367 if (is_spread_page(cs))
368 task_set_spread_page(tsk);
369 else
370 task_clear_spread_page(tsk);
371
372 if (is_spread_slab(cs))
373 task_set_spread_slab(tsk);
374 else
375 task_clear_spread_slab(tsk);
376 }
377
378 /*
379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
380 *
381 * One cpuset is a subset of another if all its allowed CPUs and
382 * Memory Nodes are a subset of the other, and its exclusive flags
383 * are only set if the other's are set. Call holding cpuset_mutex.
384 */
385
386 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
387 {
388 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
389 nodes_subset(p->mems_allowed, q->mems_allowed) &&
390 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
391 is_mem_exclusive(p) <= is_mem_exclusive(q);
392 }
393
394 /**
395 * alloc_trial_cpuset - allocate a trial cpuset
396 * @cs: the cpuset that the trial cpuset duplicates
397 */
398 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
399 {
400 struct cpuset *trial;
401
402 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
403 if (!trial)
404 return NULL;
405
406 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
407 goto free_cs;
408 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
409 goto free_cpus;
410
411 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
412 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
413 return trial;
414
415 free_cpus:
416 free_cpumask_var(trial->cpus_allowed);
417 free_cs:
418 kfree(trial);
419 return NULL;
420 }
421
422 /**
423 * free_trial_cpuset - free the trial cpuset
424 * @trial: the trial cpuset to be freed
425 */
426 static void free_trial_cpuset(struct cpuset *trial)
427 {
428 free_cpumask_var(trial->effective_cpus);
429 free_cpumask_var(trial->cpus_allowed);
430 kfree(trial);
431 }
432
433 /*
434 * validate_change() - Used to validate that any proposed cpuset change
435 * follows the structural rules for cpusets.
436 *
437 * If we replaced the flag and mask values of the current cpuset
438 * (cur) with those values in the trial cpuset (trial), would
439 * our various subset and exclusive rules still be valid? Presumes
440 * cpuset_mutex held.
441 *
442 * 'cur' is the address of an actual, in-use cpuset. Operations
443 * such as list traversal that depend on the actual address of the
444 * cpuset in the list must use cur below, not trial.
445 *
446 * 'trial' is the address of bulk structure copy of cur, with
447 * perhaps one or more of the fields cpus_allowed, mems_allowed,
448 * or flags changed to new, trial values.
449 *
450 * Return 0 if valid, -errno if not.
451 */
452
453 static int validate_change(struct cpuset *cur, struct cpuset *trial)
454 {
455 struct cgroup_subsys_state *css;
456 struct cpuset *c, *par;
457 int ret;
458
459 rcu_read_lock();
460
461 /* Each of our child cpusets must be a subset of us */
462 ret = -EBUSY;
463 cpuset_for_each_child(c, css, cur)
464 if (!is_cpuset_subset(c, trial))
465 goto out;
466
467 /* Remaining checks don't apply to root cpuset */
468 ret = 0;
469 if (cur == &top_cpuset)
470 goto out;
471
472 par = parent_cs(cur);
473
474 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
475 ret = -EACCES;
476 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
477 goto out;
478
479 /*
480 * If either I or some sibling (!= me) is exclusive, we can't
481 * overlap
482 */
483 ret = -EINVAL;
484 cpuset_for_each_child(c, css, par) {
485 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
486 c != cur &&
487 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
488 goto out;
489 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
490 c != cur &&
491 nodes_intersects(trial->mems_allowed, c->mems_allowed))
492 goto out;
493 }
494
495 /*
496 * Cpusets with tasks - existing or newly being attached - can't
497 * be changed to have empty cpus_allowed or mems_allowed.
498 */
499 ret = -ENOSPC;
500 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
501 if (!cpumask_empty(cur->cpus_allowed) &&
502 cpumask_empty(trial->cpus_allowed))
503 goto out;
504 if (!nodes_empty(cur->mems_allowed) &&
505 nodes_empty(trial->mems_allowed))
506 goto out;
507 }
508
509 ret = 0;
510 out:
511 rcu_read_unlock();
512 return ret;
513 }
514
515 #ifdef CONFIG_SMP
516 /*
517 * Helper routine for generate_sched_domains().
518 * Do cpusets a, b have overlapping effective cpus_allowed masks?
519 */
520 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
521 {
522 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
523 }
524
525 static void
526 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
527 {
528 if (dattr->relax_domain_level < c->relax_domain_level)
529 dattr->relax_domain_level = c->relax_domain_level;
530 return;
531 }
532
533 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
534 struct cpuset *root_cs)
535 {
536 struct cpuset *cp;
537 struct cgroup_subsys_state *pos_css;
538
539 rcu_read_lock();
540 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
541 if (cp == root_cs)
542 continue;
543
544 /* skip the whole subtree if @cp doesn't have any CPU */
545 if (cpumask_empty(cp->cpus_allowed)) {
546 pos_css = css_rightmost_descendant(pos_css);
547 continue;
548 }
549
550 if (is_sched_load_balance(cp))
551 update_domain_attr(dattr, cp);
552 }
553 rcu_read_unlock();
554 }
555
556 /*
557 * generate_sched_domains()
558 *
559 * This function builds a partial partition of the systems CPUs
560 * A 'partial partition' is a set of non-overlapping subsets whose
561 * union is a subset of that set.
562 * The output of this function needs to be passed to kernel/sched/core.c
563 * partition_sched_domains() routine, which will rebuild the scheduler's
564 * load balancing domains (sched domains) as specified by that partial
565 * partition.
566 *
567 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
568 * for a background explanation of this.
569 *
570 * Does not return errors, on the theory that the callers of this
571 * routine would rather not worry about failures to rebuild sched
572 * domains when operating in the severe memory shortage situations
573 * that could cause allocation failures below.
574 *
575 * Must be called with cpuset_mutex held.
576 *
577 * The three key local variables below are:
578 * q - a linked-list queue of cpuset pointers, used to implement a
579 * top-down scan of all cpusets. This scan loads a pointer
580 * to each cpuset marked is_sched_load_balance into the
581 * array 'csa'. For our purposes, rebuilding the schedulers
582 * sched domains, we can ignore !is_sched_load_balance cpusets.
583 * csa - (for CpuSet Array) Array of pointers to all the cpusets
584 * that need to be load balanced, for convenient iterative
585 * access by the subsequent code that finds the best partition,
586 * i.e the set of domains (subsets) of CPUs such that the
587 * cpus_allowed of every cpuset marked is_sched_load_balance
588 * is a subset of one of these domains, while there are as
589 * many such domains as possible, each as small as possible.
590 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
591 * the kernel/sched/core.c routine partition_sched_domains() in a
592 * convenient format, that can be easily compared to the prior
593 * value to determine what partition elements (sched domains)
594 * were changed (added or removed.)
595 *
596 * Finding the best partition (set of domains):
597 * The triple nested loops below over i, j, k scan over the
598 * load balanced cpusets (using the array of cpuset pointers in
599 * csa[]) looking for pairs of cpusets that have overlapping
600 * cpus_allowed, but which don't have the same 'pn' partition
601 * number and gives them in the same partition number. It keeps
602 * looping on the 'restart' label until it can no longer find
603 * any such pairs.
604 *
605 * The union of the cpus_allowed masks from the set of
606 * all cpusets having the same 'pn' value then form the one
607 * element of the partition (one sched domain) to be passed to
608 * partition_sched_domains().
609 */
610 static int generate_sched_domains(cpumask_var_t **domains,
611 struct sched_domain_attr **attributes)
612 {
613 struct cpuset *cp; /* scans q */
614 struct cpuset **csa; /* array of all cpuset ptrs */
615 int csn; /* how many cpuset ptrs in csa so far */
616 int i, j, k; /* indices for partition finding loops */
617 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
618 struct sched_domain_attr *dattr; /* attributes for custom domains */
619 int ndoms = 0; /* number of sched domains in result */
620 int nslot; /* next empty doms[] struct cpumask slot */
621 struct cgroup_subsys_state *pos_css;
622
623 doms = NULL;
624 dattr = NULL;
625 csa = NULL;
626
627 /* Special case for the 99% of systems with one, full, sched domain */
628 if (is_sched_load_balance(&top_cpuset)) {
629 ndoms = 1;
630 doms = alloc_sched_domains(ndoms);
631 if (!doms)
632 goto done;
633
634 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
635 if (dattr) {
636 *dattr = SD_ATTR_INIT;
637 update_domain_attr_tree(dattr, &top_cpuset);
638 }
639 cpumask_copy(doms[0], top_cpuset.effective_cpus);
640
641 goto done;
642 }
643
644 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
645 if (!csa)
646 goto done;
647 csn = 0;
648
649 rcu_read_lock();
650 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
651 if (cp == &top_cpuset)
652 continue;
653 /*
654 * Continue traversing beyond @cp iff @cp has some CPUs and
655 * isn't load balancing. The former is obvious. The
656 * latter: All child cpusets contain a subset of the
657 * parent's cpus, so just skip them, and then we call
658 * update_domain_attr_tree() to calc relax_domain_level of
659 * the corresponding sched domain.
660 */
661 if (!cpumask_empty(cp->cpus_allowed) &&
662 !is_sched_load_balance(cp))
663 continue;
664
665 if (is_sched_load_balance(cp))
666 csa[csn++] = cp;
667
668 /* skip @cp's subtree */
669 pos_css = css_rightmost_descendant(pos_css);
670 }
671 rcu_read_unlock();
672
673 for (i = 0; i < csn; i++)
674 csa[i]->pn = i;
675 ndoms = csn;
676
677 restart:
678 /* Find the best partition (set of sched domains) */
679 for (i = 0; i < csn; i++) {
680 struct cpuset *a = csa[i];
681 int apn = a->pn;
682
683 for (j = 0; j < csn; j++) {
684 struct cpuset *b = csa[j];
685 int bpn = b->pn;
686
687 if (apn != bpn && cpusets_overlap(a, b)) {
688 for (k = 0; k < csn; k++) {
689 struct cpuset *c = csa[k];
690
691 if (c->pn == bpn)
692 c->pn = apn;
693 }
694 ndoms--; /* one less element */
695 goto restart;
696 }
697 }
698 }
699
700 /*
701 * Now we know how many domains to create.
702 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
703 */
704 doms = alloc_sched_domains(ndoms);
705 if (!doms)
706 goto done;
707
708 /*
709 * The rest of the code, including the scheduler, can deal with
710 * dattr==NULL case. No need to abort if alloc fails.
711 */
712 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
713
714 for (nslot = 0, i = 0; i < csn; i++) {
715 struct cpuset *a = csa[i];
716 struct cpumask *dp;
717 int apn = a->pn;
718
719 if (apn < 0) {
720 /* Skip completed partitions */
721 continue;
722 }
723
724 dp = doms[nslot];
725
726 if (nslot == ndoms) {
727 static int warnings = 10;
728 if (warnings) {
729 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
730 nslot, ndoms, csn, i, apn);
731 warnings--;
732 }
733 continue;
734 }
735
736 cpumask_clear(dp);
737 if (dattr)
738 *(dattr + nslot) = SD_ATTR_INIT;
739 for (j = i; j < csn; j++) {
740 struct cpuset *b = csa[j];
741
742 if (apn == b->pn) {
743 cpumask_or(dp, dp, b->effective_cpus);
744 if (dattr)
745 update_domain_attr_tree(dattr + nslot, b);
746
747 /* Done with this partition */
748 b->pn = -1;
749 }
750 }
751 nslot++;
752 }
753 BUG_ON(nslot != ndoms);
754
755 done:
756 kfree(csa);
757
758 /*
759 * Fallback to the default domain if kmalloc() failed.
760 * See comments in partition_sched_domains().
761 */
762 if (doms == NULL)
763 ndoms = 1;
764
765 *domains = doms;
766 *attributes = dattr;
767 return ndoms;
768 }
769
770 /*
771 * Rebuild scheduler domains.
772 *
773 * If the flag 'sched_load_balance' of any cpuset with non-empty
774 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
775 * which has that flag enabled, or if any cpuset with a non-empty
776 * 'cpus' is removed, then call this routine to rebuild the
777 * scheduler's dynamic sched domains.
778 *
779 * Call with cpuset_mutex held. Takes get_online_cpus().
780 */
781 static void rebuild_sched_domains_locked(void)
782 {
783 struct sched_domain_attr *attr;
784 cpumask_var_t *doms;
785 int ndoms;
786
787 lockdep_assert_held(&cpuset_mutex);
788 get_online_cpus();
789
790 /*
791 * We have raced with CPU hotplug. Don't do anything to avoid
792 * passing doms with offlined cpu to partition_sched_domains().
793 * Anyways, hotplug work item will rebuild sched domains.
794 */
795 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
796 goto out;
797
798 /* Generate domain masks and attrs */
799 ndoms = generate_sched_domains(&doms, &attr);
800
801 /* Have scheduler rebuild the domains */
802 partition_sched_domains(ndoms, doms, attr);
803 out:
804 put_online_cpus();
805 }
806 #else /* !CONFIG_SMP */
807 static void rebuild_sched_domains_locked(void)
808 {
809 }
810 #endif /* CONFIG_SMP */
811
812 void rebuild_sched_domains(void)
813 {
814 mutex_lock(&cpuset_mutex);
815 rebuild_sched_domains_locked();
816 mutex_unlock(&cpuset_mutex);
817 }
818
819 /**
820 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
821 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
822 *
823 * Iterate through each task of @cs updating its cpus_allowed to the
824 * effective cpuset's. As this function is called with cpuset_mutex held,
825 * cpuset membership stays stable.
826 */
827 static void update_tasks_cpumask(struct cpuset *cs)
828 {
829 struct css_task_iter it;
830 struct task_struct *task;
831
832 css_task_iter_start(&cs->css, &it);
833 while ((task = css_task_iter_next(&it)))
834 set_cpus_allowed_ptr(task, cs->effective_cpus);
835 css_task_iter_end(&it);
836 }
837
838 /*
839 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
840 * @cs: the cpuset to consider
841 * @new_cpus: temp variable for calculating new effective_cpus
842 *
843 * When congifured cpumask is changed, the effective cpumasks of this cpuset
844 * and all its descendants need to be updated.
845 *
846 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
847 *
848 * Called with cpuset_mutex held
849 */
850 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
851 {
852 struct cpuset *cp;
853 struct cgroup_subsys_state *pos_css;
854 bool need_rebuild_sched_domains = false;
855
856 rcu_read_lock();
857 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
858 struct cpuset *parent = parent_cs(cp);
859
860 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
861
862 /*
863 * If it becomes empty, inherit the effective mask of the
864 * parent, which is guaranteed to have some CPUs.
865 */
866 if (cpumask_empty(new_cpus))
867 cpumask_copy(new_cpus, parent->effective_cpus);
868
869 /* Skip the whole subtree if the cpumask remains the same. */
870 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
871 pos_css = css_rightmost_descendant(pos_css);
872 continue;
873 }
874
875 if (!css_tryget_online(&cp->css))
876 continue;
877 rcu_read_unlock();
878
879 mutex_lock(&callback_mutex);
880 cpumask_copy(cp->effective_cpus, new_cpus);
881 mutex_unlock(&callback_mutex);
882
883 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
884 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
885
886 update_tasks_cpumask(cp);
887
888 /*
889 * If the effective cpumask of any non-empty cpuset is changed,
890 * we need to rebuild sched domains.
891 */
892 if (!cpumask_empty(cp->cpus_allowed) &&
893 is_sched_load_balance(cp))
894 need_rebuild_sched_domains = true;
895
896 rcu_read_lock();
897 css_put(&cp->css);
898 }
899 rcu_read_unlock();
900
901 if (need_rebuild_sched_domains)
902 rebuild_sched_domains_locked();
903 }
904
905 /**
906 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
907 * @cs: the cpuset to consider
908 * @trialcs: trial cpuset
909 * @buf: buffer of cpu numbers written to this cpuset
910 */
911 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
912 const char *buf)
913 {
914 int retval;
915
916 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
917 if (cs == &top_cpuset)
918 return -EACCES;
919
920 /*
921 * An empty cpus_allowed is ok only if the cpuset has no tasks.
922 * Since cpulist_parse() fails on an empty mask, we special case
923 * that parsing. The validate_change() call ensures that cpusets
924 * with tasks have cpus.
925 */
926 if (!*buf) {
927 cpumask_clear(trialcs->cpus_allowed);
928 } else {
929 retval = cpulist_parse(buf, trialcs->cpus_allowed);
930 if (retval < 0)
931 return retval;
932
933 if (!cpumask_subset(trialcs->cpus_allowed,
934 top_cpuset.cpus_allowed))
935 return -EINVAL;
936 }
937
938 /* Nothing to do if the cpus didn't change */
939 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
940 return 0;
941
942 retval = validate_change(cs, trialcs);
943 if (retval < 0)
944 return retval;
945
946 mutex_lock(&callback_mutex);
947 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
948 mutex_unlock(&callback_mutex);
949
950 /* use trialcs->cpus_allowed as a temp variable */
951 update_cpumasks_hier(cs, trialcs->cpus_allowed);
952 return 0;
953 }
954
955 /*
956 * cpuset_migrate_mm
957 *
958 * Migrate memory region from one set of nodes to another.
959 *
960 * Temporarilly set tasks mems_allowed to target nodes of migration,
961 * so that the migration code can allocate pages on these nodes.
962 *
963 * While the mm_struct we are migrating is typically from some
964 * other task, the task_struct mems_allowed that we are hacking
965 * is for our current task, which must allocate new pages for that
966 * migrating memory region.
967 */
968
969 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
970 const nodemask_t *to)
971 {
972 struct task_struct *tsk = current;
973
974 tsk->mems_allowed = *to;
975
976 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
977
978 rcu_read_lock();
979 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
980 rcu_read_unlock();
981 }
982
983 /*
984 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
985 * @tsk: the task to change
986 * @newmems: new nodes that the task will be set
987 *
988 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
989 * we structure updates as setting all new allowed nodes, then clearing newly
990 * disallowed ones.
991 */
992 static void cpuset_change_task_nodemask(struct task_struct *tsk,
993 nodemask_t *newmems)
994 {
995 bool need_loop;
996
997 /*
998 * Allow tasks that have access to memory reserves because they have
999 * been OOM killed to get memory anywhere.
1000 */
1001 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1002 return;
1003 if (current->flags & PF_EXITING) /* Let dying task have memory */
1004 return;
1005
1006 task_lock(tsk);
1007 /*
1008 * Determine if a loop is necessary if another thread is doing
1009 * read_mems_allowed_begin(). If at least one node remains unchanged and
1010 * tsk does not have a mempolicy, then an empty nodemask will not be
1011 * possible when mems_allowed is larger than a word.
1012 */
1013 need_loop = task_has_mempolicy(tsk) ||
1014 !nodes_intersects(*newmems, tsk->mems_allowed);
1015
1016 if (need_loop) {
1017 local_irq_disable();
1018 write_seqcount_begin(&tsk->mems_allowed_seq);
1019 }
1020
1021 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1022 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1023
1024 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1025 tsk->mems_allowed = *newmems;
1026
1027 if (need_loop) {
1028 write_seqcount_end(&tsk->mems_allowed_seq);
1029 local_irq_enable();
1030 }
1031
1032 task_unlock(tsk);
1033 }
1034
1035 static void *cpuset_being_rebound;
1036
1037 /**
1038 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1039 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1040 *
1041 * Iterate through each task of @cs updating its mems_allowed to the
1042 * effective cpuset's. As this function is called with cpuset_mutex held,
1043 * cpuset membership stays stable.
1044 */
1045 static void update_tasks_nodemask(struct cpuset *cs)
1046 {
1047 static nodemask_t newmems; /* protected by cpuset_mutex */
1048 struct css_task_iter it;
1049 struct task_struct *task;
1050
1051 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1052
1053 guarantee_online_mems(cs, &newmems);
1054
1055 /*
1056 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1057 * take while holding tasklist_lock. Forks can happen - the
1058 * mpol_dup() cpuset_being_rebound check will catch such forks,
1059 * and rebind their vma mempolicies too. Because we still hold
1060 * the global cpuset_mutex, we know that no other rebind effort
1061 * will be contending for the global variable cpuset_being_rebound.
1062 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1063 * is idempotent. Also migrate pages in each mm to new nodes.
1064 */
1065 css_task_iter_start(&cs->css, &it);
1066 while ((task = css_task_iter_next(&it))) {
1067 struct mm_struct *mm;
1068 bool migrate;
1069
1070 cpuset_change_task_nodemask(task, &newmems);
1071
1072 mm = get_task_mm(task);
1073 if (!mm)
1074 continue;
1075
1076 migrate = is_memory_migrate(cs);
1077
1078 mpol_rebind_mm(mm, &cs->mems_allowed);
1079 if (migrate)
1080 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1081 mmput(mm);
1082 }
1083 css_task_iter_end(&it);
1084
1085 /*
1086 * All the tasks' nodemasks have been updated, update
1087 * cs->old_mems_allowed.
1088 */
1089 cs->old_mems_allowed = newmems;
1090
1091 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1092 cpuset_being_rebound = NULL;
1093 }
1094
1095 /*
1096 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1097 * @cs: the cpuset to consider
1098 * @new_mems: a temp variable for calculating new effective_mems
1099 *
1100 * When configured nodemask is changed, the effective nodemasks of this cpuset
1101 * and all its descendants need to be updated.
1102 *
1103 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1104 *
1105 * Called with cpuset_mutex held
1106 */
1107 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1108 {
1109 struct cpuset *cp;
1110 struct cgroup_subsys_state *pos_css;
1111
1112 rcu_read_lock();
1113 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1114 struct cpuset *parent = parent_cs(cp);
1115
1116 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1117
1118 /*
1119 * If it becomes empty, inherit the effective mask of the
1120 * parent, which is guaranteed to have some MEMs.
1121 */
1122 if (nodes_empty(*new_mems))
1123 *new_mems = parent->effective_mems;
1124
1125 /* Skip the whole subtree if the nodemask remains the same. */
1126 if (nodes_equal(*new_mems, cp->effective_mems)) {
1127 pos_css = css_rightmost_descendant(pos_css);
1128 continue;
1129 }
1130
1131 if (!css_tryget_online(&cp->css))
1132 continue;
1133 rcu_read_unlock();
1134
1135 mutex_lock(&callback_mutex);
1136 cp->effective_mems = *new_mems;
1137 mutex_unlock(&callback_mutex);
1138
1139 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1140 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1141
1142 update_tasks_nodemask(cp);
1143
1144 rcu_read_lock();
1145 css_put(&cp->css);
1146 }
1147 rcu_read_unlock();
1148 }
1149
1150 /*
1151 * Handle user request to change the 'mems' memory placement
1152 * of a cpuset. Needs to validate the request, update the
1153 * cpusets mems_allowed, and for each task in the cpuset,
1154 * update mems_allowed and rebind task's mempolicy and any vma
1155 * mempolicies and if the cpuset is marked 'memory_migrate',
1156 * migrate the tasks pages to the new memory.
1157 *
1158 * Call with cpuset_mutex held. May take callback_mutex during call.
1159 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1160 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1161 * their mempolicies to the cpusets new mems_allowed.
1162 */
1163 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1164 const char *buf)
1165 {
1166 int retval;
1167
1168 /*
1169 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1170 * it's read-only
1171 */
1172 if (cs == &top_cpuset) {
1173 retval = -EACCES;
1174 goto done;
1175 }
1176
1177 /*
1178 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1179 * Since nodelist_parse() fails on an empty mask, we special case
1180 * that parsing. The validate_change() call ensures that cpusets
1181 * with tasks have memory.
1182 */
1183 if (!*buf) {
1184 nodes_clear(trialcs->mems_allowed);
1185 } else {
1186 retval = nodelist_parse(buf, trialcs->mems_allowed);
1187 if (retval < 0)
1188 goto done;
1189
1190 if (!nodes_subset(trialcs->mems_allowed,
1191 top_cpuset.mems_allowed)) {
1192 retval = -EINVAL;
1193 goto done;
1194 }
1195 }
1196
1197 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1198 retval = 0; /* Too easy - nothing to do */
1199 goto done;
1200 }
1201 retval = validate_change(cs, trialcs);
1202 if (retval < 0)
1203 goto done;
1204
1205 mutex_lock(&callback_mutex);
1206 cs->mems_allowed = trialcs->mems_allowed;
1207 mutex_unlock(&callback_mutex);
1208
1209 /* use trialcs->mems_allowed as a temp variable */
1210 update_nodemasks_hier(cs, &cs->mems_allowed);
1211 done:
1212 return retval;
1213 }
1214
1215 int current_cpuset_is_being_rebound(void)
1216 {
1217 int ret;
1218
1219 rcu_read_lock();
1220 ret = task_cs(current) == cpuset_being_rebound;
1221 rcu_read_unlock();
1222
1223 return ret;
1224 }
1225
1226 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1227 {
1228 #ifdef CONFIG_SMP
1229 if (val < -1 || val >= sched_domain_level_max)
1230 return -EINVAL;
1231 #endif
1232
1233 if (val != cs->relax_domain_level) {
1234 cs->relax_domain_level = val;
1235 if (!cpumask_empty(cs->cpus_allowed) &&
1236 is_sched_load_balance(cs))
1237 rebuild_sched_domains_locked();
1238 }
1239
1240 return 0;
1241 }
1242
1243 /**
1244 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1245 * @cs: the cpuset in which each task's spread flags needs to be changed
1246 *
1247 * Iterate through each task of @cs updating its spread flags. As this
1248 * function is called with cpuset_mutex held, cpuset membership stays
1249 * stable.
1250 */
1251 static void update_tasks_flags(struct cpuset *cs)
1252 {
1253 struct css_task_iter it;
1254 struct task_struct *task;
1255
1256 css_task_iter_start(&cs->css, &it);
1257 while ((task = css_task_iter_next(&it)))
1258 cpuset_update_task_spread_flag(cs, task);
1259 css_task_iter_end(&it);
1260 }
1261
1262 /*
1263 * update_flag - read a 0 or a 1 in a file and update associated flag
1264 * bit: the bit to update (see cpuset_flagbits_t)
1265 * cs: the cpuset to update
1266 * turning_on: whether the flag is being set or cleared
1267 *
1268 * Call with cpuset_mutex held.
1269 */
1270
1271 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1272 int turning_on)
1273 {
1274 struct cpuset *trialcs;
1275 int balance_flag_changed;
1276 int spread_flag_changed;
1277 int err;
1278
1279 trialcs = alloc_trial_cpuset(cs);
1280 if (!trialcs)
1281 return -ENOMEM;
1282
1283 if (turning_on)
1284 set_bit(bit, &trialcs->flags);
1285 else
1286 clear_bit(bit, &trialcs->flags);
1287
1288 err = validate_change(cs, trialcs);
1289 if (err < 0)
1290 goto out;
1291
1292 balance_flag_changed = (is_sched_load_balance(cs) !=
1293 is_sched_load_balance(trialcs));
1294
1295 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1296 || (is_spread_page(cs) != is_spread_page(trialcs)));
1297
1298 mutex_lock(&callback_mutex);
1299 cs->flags = trialcs->flags;
1300 mutex_unlock(&callback_mutex);
1301
1302 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1303 rebuild_sched_domains_locked();
1304
1305 if (spread_flag_changed)
1306 update_tasks_flags(cs);
1307 out:
1308 free_trial_cpuset(trialcs);
1309 return err;
1310 }
1311
1312 /*
1313 * Frequency meter - How fast is some event occurring?
1314 *
1315 * These routines manage a digitally filtered, constant time based,
1316 * event frequency meter. There are four routines:
1317 * fmeter_init() - initialize a frequency meter.
1318 * fmeter_markevent() - called each time the event happens.
1319 * fmeter_getrate() - returns the recent rate of such events.
1320 * fmeter_update() - internal routine used to update fmeter.
1321 *
1322 * A common data structure is passed to each of these routines,
1323 * which is used to keep track of the state required to manage the
1324 * frequency meter and its digital filter.
1325 *
1326 * The filter works on the number of events marked per unit time.
1327 * The filter is single-pole low-pass recursive (IIR). The time unit
1328 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1329 * simulate 3 decimal digits of precision (multiplied by 1000).
1330 *
1331 * With an FM_COEF of 933, and a time base of 1 second, the filter
1332 * has a half-life of 10 seconds, meaning that if the events quit
1333 * happening, then the rate returned from the fmeter_getrate()
1334 * will be cut in half each 10 seconds, until it converges to zero.
1335 *
1336 * It is not worth doing a real infinitely recursive filter. If more
1337 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1338 * just compute FM_MAXTICKS ticks worth, by which point the level
1339 * will be stable.
1340 *
1341 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1342 * arithmetic overflow in the fmeter_update() routine.
1343 *
1344 * Given the simple 32 bit integer arithmetic used, this meter works
1345 * best for reporting rates between one per millisecond (msec) and
1346 * one per 32 (approx) seconds. At constant rates faster than one
1347 * per msec it maxes out at values just under 1,000,000. At constant
1348 * rates between one per msec, and one per second it will stabilize
1349 * to a value N*1000, where N is the rate of events per second.
1350 * At constant rates between one per second and one per 32 seconds,
1351 * it will be choppy, moving up on the seconds that have an event,
1352 * and then decaying until the next event. At rates slower than
1353 * about one in 32 seconds, it decays all the way back to zero between
1354 * each event.
1355 */
1356
1357 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1358 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1359 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1360 #define FM_SCALE 1000 /* faux fixed point scale */
1361
1362 /* Initialize a frequency meter */
1363 static void fmeter_init(struct fmeter *fmp)
1364 {
1365 fmp->cnt = 0;
1366 fmp->val = 0;
1367 fmp->time = 0;
1368 spin_lock_init(&fmp->lock);
1369 }
1370
1371 /* Internal meter update - process cnt events and update value */
1372 static void fmeter_update(struct fmeter *fmp)
1373 {
1374 time_t now = get_seconds();
1375 time_t ticks = now - fmp->time;
1376
1377 if (ticks == 0)
1378 return;
1379
1380 ticks = min(FM_MAXTICKS, ticks);
1381 while (ticks-- > 0)
1382 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1383 fmp->time = now;
1384
1385 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1386 fmp->cnt = 0;
1387 }
1388
1389 /* Process any previous ticks, then bump cnt by one (times scale). */
1390 static void fmeter_markevent(struct fmeter *fmp)
1391 {
1392 spin_lock(&fmp->lock);
1393 fmeter_update(fmp);
1394 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1395 spin_unlock(&fmp->lock);
1396 }
1397
1398 /* Process any previous ticks, then return current value. */
1399 static int fmeter_getrate(struct fmeter *fmp)
1400 {
1401 int val;
1402
1403 spin_lock(&fmp->lock);
1404 fmeter_update(fmp);
1405 val = fmp->val;
1406 spin_unlock(&fmp->lock);
1407 return val;
1408 }
1409
1410 static struct cpuset *cpuset_attach_old_cs;
1411
1412 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1413 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1414 struct cgroup_taskset *tset)
1415 {
1416 struct cpuset *cs = css_cs(css);
1417 struct task_struct *task;
1418 int ret;
1419
1420 /* used later by cpuset_attach() */
1421 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1422
1423 mutex_lock(&cpuset_mutex);
1424
1425 /* allow moving tasks into an empty cpuset if on default hierarchy */
1426 ret = -ENOSPC;
1427 if (!cgroup_on_dfl(css->cgroup) &&
1428 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1429 goto out_unlock;
1430
1431 cgroup_taskset_for_each(task, tset) {
1432 /*
1433 * Kthreads which disallow setaffinity shouldn't be moved
1434 * to a new cpuset; we don't want to change their cpu
1435 * affinity and isolating such threads by their set of
1436 * allowed nodes is unnecessary. Thus, cpusets are not
1437 * applicable for such threads. This prevents checking for
1438 * success of set_cpus_allowed_ptr() on all attached tasks
1439 * before cpus_allowed may be changed.
1440 */
1441 ret = -EINVAL;
1442 if (task->flags & PF_NO_SETAFFINITY)
1443 goto out_unlock;
1444 ret = security_task_setscheduler(task);
1445 if (ret)
1446 goto out_unlock;
1447 }
1448
1449 /*
1450 * Mark attach is in progress. This makes validate_change() fail
1451 * changes which zero cpus/mems_allowed.
1452 */
1453 cs->attach_in_progress++;
1454 ret = 0;
1455 out_unlock:
1456 mutex_unlock(&cpuset_mutex);
1457 return ret;
1458 }
1459
1460 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1461 struct cgroup_taskset *tset)
1462 {
1463 mutex_lock(&cpuset_mutex);
1464 css_cs(css)->attach_in_progress--;
1465 mutex_unlock(&cpuset_mutex);
1466 }
1467
1468 /*
1469 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1470 * but we can't allocate it dynamically there. Define it global and
1471 * allocate from cpuset_init().
1472 */
1473 static cpumask_var_t cpus_attach;
1474
1475 static void cpuset_attach(struct cgroup_subsys_state *css,
1476 struct cgroup_taskset *tset)
1477 {
1478 /* static buf protected by cpuset_mutex */
1479 static nodemask_t cpuset_attach_nodemask_to;
1480 struct mm_struct *mm;
1481 struct task_struct *task;
1482 struct task_struct *leader = cgroup_taskset_first(tset);
1483 struct cpuset *cs = css_cs(css);
1484 struct cpuset *oldcs = cpuset_attach_old_cs;
1485
1486 mutex_lock(&cpuset_mutex);
1487
1488 /* prepare for attach */
1489 if (cs == &top_cpuset)
1490 cpumask_copy(cpus_attach, cpu_possible_mask);
1491 else
1492 guarantee_online_cpus(cs, cpus_attach);
1493
1494 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1495
1496 cgroup_taskset_for_each(task, tset) {
1497 /*
1498 * can_attach beforehand should guarantee that this doesn't
1499 * fail. TODO: have a better way to handle failure here
1500 */
1501 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1502
1503 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1504 cpuset_update_task_spread_flag(cs, task);
1505 }
1506
1507 /*
1508 * Change mm, possibly for multiple threads in a threadgroup. This is
1509 * expensive and may sleep.
1510 */
1511 cpuset_attach_nodemask_to = cs->effective_mems;
1512 mm = get_task_mm(leader);
1513 if (mm) {
1514 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1515
1516 /*
1517 * old_mems_allowed is the same with mems_allowed here, except
1518 * if this task is being moved automatically due to hotplug.
1519 * In that case @mems_allowed has been updated and is empty,
1520 * so @old_mems_allowed is the right nodesets that we migrate
1521 * mm from.
1522 */
1523 if (is_memory_migrate(cs)) {
1524 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1525 &cpuset_attach_nodemask_to);
1526 }
1527 mmput(mm);
1528 }
1529
1530 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1531
1532 cs->attach_in_progress--;
1533 if (!cs->attach_in_progress)
1534 wake_up(&cpuset_attach_wq);
1535
1536 mutex_unlock(&cpuset_mutex);
1537 }
1538
1539 /* The various types of files and directories in a cpuset file system */
1540
1541 typedef enum {
1542 FILE_MEMORY_MIGRATE,
1543 FILE_CPULIST,
1544 FILE_MEMLIST,
1545 FILE_EFFECTIVE_CPULIST,
1546 FILE_EFFECTIVE_MEMLIST,
1547 FILE_CPU_EXCLUSIVE,
1548 FILE_MEM_EXCLUSIVE,
1549 FILE_MEM_HARDWALL,
1550 FILE_SCHED_LOAD_BALANCE,
1551 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1552 FILE_MEMORY_PRESSURE_ENABLED,
1553 FILE_MEMORY_PRESSURE,
1554 FILE_SPREAD_PAGE,
1555 FILE_SPREAD_SLAB,
1556 } cpuset_filetype_t;
1557
1558 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1559 u64 val)
1560 {
1561 struct cpuset *cs = css_cs(css);
1562 cpuset_filetype_t type = cft->private;
1563 int retval = 0;
1564
1565 mutex_lock(&cpuset_mutex);
1566 if (!is_cpuset_online(cs)) {
1567 retval = -ENODEV;
1568 goto out_unlock;
1569 }
1570
1571 switch (type) {
1572 case FILE_CPU_EXCLUSIVE:
1573 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1574 break;
1575 case FILE_MEM_EXCLUSIVE:
1576 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1577 break;
1578 case FILE_MEM_HARDWALL:
1579 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1580 break;
1581 case FILE_SCHED_LOAD_BALANCE:
1582 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1583 break;
1584 case FILE_MEMORY_MIGRATE:
1585 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1586 break;
1587 case FILE_MEMORY_PRESSURE_ENABLED:
1588 cpuset_memory_pressure_enabled = !!val;
1589 break;
1590 case FILE_MEMORY_PRESSURE:
1591 retval = -EACCES;
1592 break;
1593 case FILE_SPREAD_PAGE:
1594 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1595 break;
1596 case FILE_SPREAD_SLAB:
1597 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1598 break;
1599 default:
1600 retval = -EINVAL;
1601 break;
1602 }
1603 out_unlock:
1604 mutex_unlock(&cpuset_mutex);
1605 return retval;
1606 }
1607
1608 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1609 s64 val)
1610 {
1611 struct cpuset *cs = css_cs(css);
1612 cpuset_filetype_t type = cft->private;
1613 int retval = -ENODEV;
1614
1615 mutex_lock(&cpuset_mutex);
1616 if (!is_cpuset_online(cs))
1617 goto out_unlock;
1618
1619 switch (type) {
1620 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1621 retval = update_relax_domain_level(cs, val);
1622 break;
1623 default:
1624 retval = -EINVAL;
1625 break;
1626 }
1627 out_unlock:
1628 mutex_unlock(&cpuset_mutex);
1629 return retval;
1630 }
1631
1632 /*
1633 * Common handling for a write to a "cpus" or "mems" file.
1634 */
1635 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1636 char *buf, size_t nbytes, loff_t off)
1637 {
1638 struct cpuset *cs = css_cs(of_css(of));
1639 struct cpuset *trialcs;
1640 int retval = -ENODEV;
1641
1642 buf = strstrip(buf);
1643
1644 /*
1645 * CPU or memory hotunplug may leave @cs w/o any execution
1646 * resources, in which case the hotplug code asynchronously updates
1647 * configuration and transfers all tasks to the nearest ancestor
1648 * which can execute.
1649 *
1650 * As writes to "cpus" or "mems" may restore @cs's execution
1651 * resources, wait for the previously scheduled operations before
1652 * proceeding, so that we don't end up keep removing tasks added
1653 * after execution capability is restored.
1654 *
1655 * cpuset_hotplug_work calls back into cgroup core via
1656 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1657 * operation like this one can lead to a deadlock through kernfs
1658 * active_ref protection. Let's break the protection. Losing the
1659 * protection is okay as we check whether @cs is online after
1660 * grabbing cpuset_mutex anyway. This only happens on the legacy
1661 * hierarchies.
1662 */
1663 css_get(&cs->css);
1664 kernfs_break_active_protection(of->kn);
1665 flush_work(&cpuset_hotplug_work);
1666
1667 mutex_lock(&cpuset_mutex);
1668 if (!is_cpuset_online(cs))
1669 goto out_unlock;
1670
1671 trialcs = alloc_trial_cpuset(cs);
1672 if (!trialcs) {
1673 retval = -ENOMEM;
1674 goto out_unlock;
1675 }
1676
1677 switch (of_cft(of)->private) {
1678 case FILE_CPULIST:
1679 retval = update_cpumask(cs, trialcs, buf);
1680 break;
1681 case FILE_MEMLIST:
1682 retval = update_nodemask(cs, trialcs, buf);
1683 break;
1684 default:
1685 retval = -EINVAL;
1686 break;
1687 }
1688
1689 free_trial_cpuset(trialcs);
1690 out_unlock:
1691 mutex_unlock(&cpuset_mutex);
1692 kernfs_unbreak_active_protection(of->kn);
1693 css_put(&cs->css);
1694 return retval ?: nbytes;
1695 }
1696
1697 /*
1698 * These ascii lists should be read in a single call, by using a user
1699 * buffer large enough to hold the entire map. If read in smaller
1700 * chunks, there is no guarantee of atomicity. Since the display format
1701 * used, list of ranges of sequential numbers, is variable length,
1702 * and since these maps can change value dynamically, one could read
1703 * gibberish by doing partial reads while a list was changing.
1704 */
1705 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1706 {
1707 struct cpuset *cs = css_cs(seq_css(sf));
1708 cpuset_filetype_t type = seq_cft(sf)->private;
1709 ssize_t count;
1710 char *buf, *s;
1711 int ret = 0;
1712
1713 count = seq_get_buf(sf, &buf);
1714 s = buf;
1715
1716 mutex_lock(&callback_mutex);
1717
1718 switch (type) {
1719 case FILE_CPULIST:
1720 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1721 break;
1722 case FILE_MEMLIST:
1723 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1724 break;
1725 case FILE_EFFECTIVE_CPULIST:
1726 s += cpulist_scnprintf(s, count, cs->effective_cpus);
1727 break;
1728 case FILE_EFFECTIVE_MEMLIST:
1729 s += nodelist_scnprintf(s, count, cs->effective_mems);
1730 break;
1731 default:
1732 ret = -EINVAL;
1733 goto out_unlock;
1734 }
1735
1736 if (s < buf + count - 1) {
1737 *s++ = '\n';
1738 seq_commit(sf, s - buf);
1739 } else {
1740 seq_commit(sf, -1);
1741 }
1742 out_unlock:
1743 mutex_unlock(&callback_mutex);
1744 return ret;
1745 }
1746
1747 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1748 {
1749 struct cpuset *cs = css_cs(css);
1750 cpuset_filetype_t type = cft->private;
1751 switch (type) {
1752 case FILE_CPU_EXCLUSIVE:
1753 return is_cpu_exclusive(cs);
1754 case FILE_MEM_EXCLUSIVE:
1755 return is_mem_exclusive(cs);
1756 case FILE_MEM_HARDWALL:
1757 return is_mem_hardwall(cs);
1758 case FILE_SCHED_LOAD_BALANCE:
1759 return is_sched_load_balance(cs);
1760 case FILE_MEMORY_MIGRATE:
1761 return is_memory_migrate(cs);
1762 case FILE_MEMORY_PRESSURE_ENABLED:
1763 return cpuset_memory_pressure_enabled;
1764 case FILE_MEMORY_PRESSURE:
1765 return fmeter_getrate(&cs->fmeter);
1766 case FILE_SPREAD_PAGE:
1767 return is_spread_page(cs);
1768 case FILE_SPREAD_SLAB:
1769 return is_spread_slab(cs);
1770 default:
1771 BUG();
1772 }
1773
1774 /* Unreachable but makes gcc happy */
1775 return 0;
1776 }
1777
1778 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1779 {
1780 struct cpuset *cs = css_cs(css);
1781 cpuset_filetype_t type = cft->private;
1782 switch (type) {
1783 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1784 return cs->relax_domain_level;
1785 default:
1786 BUG();
1787 }
1788
1789 /* Unrechable but makes gcc happy */
1790 return 0;
1791 }
1792
1793
1794 /*
1795 * for the common functions, 'private' gives the type of file
1796 */
1797
1798 static struct cftype files[] = {
1799 {
1800 .name = "cpus",
1801 .seq_show = cpuset_common_seq_show,
1802 .write = cpuset_write_resmask,
1803 .max_write_len = (100U + 6 * NR_CPUS),
1804 .private = FILE_CPULIST,
1805 },
1806
1807 {
1808 .name = "mems",
1809 .seq_show = cpuset_common_seq_show,
1810 .write = cpuset_write_resmask,
1811 .max_write_len = (100U + 6 * MAX_NUMNODES),
1812 .private = FILE_MEMLIST,
1813 },
1814
1815 {
1816 .name = "effective_cpus",
1817 .seq_show = cpuset_common_seq_show,
1818 .private = FILE_EFFECTIVE_CPULIST,
1819 },
1820
1821 {
1822 .name = "effective_mems",
1823 .seq_show = cpuset_common_seq_show,
1824 .private = FILE_EFFECTIVE_MEMLIST,
1825 },
1826
1827 {
1828 .name = "cpu_exclusive",
1829 .read_u64 = cpuset_read_u64,
1830 .write_u64 = cpuset_write_u64,
1831 .private = FILE_CPU_EXCLUSIVE,
1832 },
1833
1834 {
1835 .name = "mem_exclusive",
1836 .read_u64 = cpuset_read_u64,
1837 .write_u64 = cpuset_write_u64,
1838 .private = FILE_MEM_EXCLUSIVE,
1839 },
1840
1841 {
1842 .name = "mem_hardwall",
1843 .read_u64 = cpuset_read_u64,
1844 .write_u64 = cpuset_write_u64,
1845 .private = FILE_MEM_HARDWALL,
1846 },
1847
1848 {
1849 .name = "sched_load_balance",
1850 .read_u64 = cpuset_read_u64,
1851 .write_u64 = cpuset_write_u64,
1852 .private = FILE_SCHED_LOAD_BALANCE,
1853 },
1854
1855 {
1856 .name = "sched_relax_domain_level",
1857 .read_s64 = cpuset_read_s64,
1858 .write_s64 = cpuset_write_s64,
1859 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1860 },
1861
1862 {
1863 .name = "memory_migrate",
1864 .read_u64 = cpuset_read_u64,
1865 .write_u64 = cpuset_write_u64,
1866 .private = FILE_MEMORY_MIGRATE,
1867 },
1868
1869 {
1870 .name = "memory_pressure",
1871 .read_u64 = cpuset_read_u64,
1872 .write_u64 = cpuset_write_u64,
1873 .private = FILE_MEMORY_PRESSURE,
1874 .mode = S_IRUGO,
1875 },
1876
1877 {
1878 .name = "memory_spread_page",
1879 .read_u64 = cpuset_read_u64,
1880 .write_u64 = cpuset_write_u64,
1881 .private = FILE_SPREAD_PAGE,
1882 },
1883
1884 {
1885 .name = "memory_spread_slab",
1886 .read_u64 = cpuset_read_u64,
1887 .write_u64 = cpuset_write_u64,
1888 .private = FILE_SPREAD_SLAB,
1889 },
1890
1891 {
1892 .name = "memory_pressure_enabled",
1893 .flags = CFTYPE_ONLY_ON_ROOT,
1894 .read_u64 = cpuset_read_u64,
1895 .write_u64 = cpuset_write_u64,
1896 .private = FILE_MEMORY_PRESSURE_ENABLED,
1897 },
1898
1899 { } /* terminate */
1900 };
1901
1902 /*
1903 * cpuset_css_alloc - allocate a cpuset css
1904 * cgrp: control group that the new cpuset will be part of
1905 */
1906
1907 static struct cgroup_subsys_state *
1908 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1909 {
1910 struct cpuset *cs;
1911
1912 if (!parent_css)
1913 return &top_cpuset.css;
1914
1915 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1916 if (!cs)
1917 return ERR_PTR(-ENOMEM);
1918 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1919 goto free_cs;
1920 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1921 goto free_cpus;
1922
1923 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1924 cpumask_clear(cs->cpus_allowed);
1925 nodes_clear(cs->mems_allowed);
1926 cpumask_clear(cs->effective_cpus);
1927 nodes_clear(cs->effective_mems);
1928 fmeter_init(&cs->fmeter);
1929 cs->relax_domain_level = -1;
1930
1931 return &cs->css;
1932
1933 free_cpus:
1934 free_cpumask_var(cs->cpus_allowed);
1935 free_cs:
1936 kfree(cs);
1937 return ERR_PTR(-ENOMEM);
1938 }
1939
1940 static int cpuset_css_online(struct cgroup_subsys_state *css)
1941 {
1942 struct cpuset *cs = css_cs(css);
1943 struct cpuset *parent = parent_cs(cs);
1944 struct cpuset *tmp_cs;
1945 struct cgroup_subsys_state *pos_css;
1946
1947 if (!parent)
1948 return 0;
1949
1950 mutex_lock(&cpuset_mutex);
1951
1952 set_bit(CS_ONLINE, &cs->flags);
1953 if (is_spread_page(parent))
1954 set_bit(CS_SPREAD_PAGE, &cs->flags);
1955 if (is_spread_slab(parent))
1956 set_bit(CS_SPREAD_SLAB, &cs->flags);
1957
1958 cpuset_inc();
1959
1960 mutex_lock(&callback_mutex);
1961 if (cgroup_on_dfl(cs->css.cgroup)) {
1962 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1963 cs->effective_mems = parent->effective_mems;
1964 }
1965 mutex_unlock(&callback_mutex);
1966
1967 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1968 goto out_unlock;
1969
1970 /*
1971 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1972 * set. This flag handling is implemented in cgroup core for
1973 * histrical reasons - the flag may be specified during mount.
1974 *
1975 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1976 * refuse to clone the configuration - thereby refusing the task to
1977 * be entered, and as a result refusing the sys_unshare() or
1978 * clone() which initiated it. If this becomes a problem for some
1979 * users who wish to allow that scenario, then this could be
1980 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1981 * (and likewise for mems) to the new cgroup.
1982 */
1983 rcu_read_lock();
1984 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1985 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1986 rcu_read_unlock();
1987 goto out_unlock;
1988 }
1989 }
1990 rcu_read_unlock();
1991
1992 mutex_lock(&callback_mutex);
1993 cs->mems_allowed = parent->mems_allowed;
1994 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1995 mutex_unlock(&callback_mutex);
1996 out_unlock:
1997 mutex_unlock(&cpuset_mutex);
1998 return 0;
1999 }
2000
2001 /*
2002 * If the cpuset being removed has its flag 'sched_load_balance'
2003 * enabled, then simulate turning sched_load_balance off, which
2004 * will call rebuild_sched_domains_locked().
2005 */
2006
2007 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2008 {
2009 struct cpuset *cs = css_cs(css);
2010
2011 mutex_lock(&cpuset_mutex);
2012
2013 if (is_sched_load_balance(cs))
2014 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2015
2016 cpuset_dec();
2017 clear_bit(CS_ONLINE, &cs->flags);
2018
2019 mutex_unlock(&cpuset_mutex);
2020 }
2021
2022 static void cpuset_css_free(struct cgroup_subsys_state *css)
2023 {
2024 struct cpuset *cs = css_cs(css);
2025
2026 free_cpumask_var(cs->effective_cpus);
2027 free_cpumask_var(cs->cpus_allowed);
2028 kfree(cs);
2029 }
2030
2031 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2032 {
2033 mutex_lock(&cpuset_mutex);
2034 mutex_lock(&callback_mutex);
2035
2036 if (cgroup_on_dfl(root_css->cgroup)) {
2037 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2038 top_cpuset.mems_allowed = node_possible_map;
2039 } else {
2040 cpumask_copy(top_cpuset.cpus_allowed,
2041 top_cpuset.effective_cpus);
2042 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2043 }
2044
2045 mutex_unlock(&callback_mutex);
2046 mutex_unlock(&cpuset_mutex);
2047 }
2048
2049 struct cgroup_subsys cpuset_cgrp_subsys = {
2050 .css_alloc = cpuset_css_alloc,
2051 .css_online = cpuset_css_online,
2052 .css_offline = cpuset_css_offline,
2053 .css_free = cpuset_css_free,
2054 .can_attach = cpuset_can_attach,
2055 .cancel_attach = cpuset_cancel_attach,
2056 .attach = cpuset_attach,
2057 .bind = cpuset_bind,
2058 .legacy_cftypes = files,
2059 .early_init = 1,
2060 };
2061
2062 /**
2063 * cpuset_init - initialize cpusets at system boot
2064 *
2065 * Description: Initialize top_cpuset and the cpuset internal file system,
2066 **/
2067
2068 int __init cpuset_init(void)
2069 {
2070 int err = 0;
2071
2072 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2073 BUG();
2074 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2075 BUG();
2076
2077 cpumask_setall(top_cpuset.cpus_allowed);
2078 nodes_setall(top_cpuset.mems_allowed);
2079 cpumask_setall(top_cpuset.effective_cpus);
2080 nodes_setall(top_cpuset.effective_mems);
2081
2082 fmeter_init(&top_cpuset.fmeter);
2083 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2084 top_cpuset.relax_domain_level = -1;
2085
2086 err = register_filesystem(&cpuset_fs_type);
2087 if (err < 0)
2088 return err;
2089
2090 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2091 BUG();
2092
2093 return 0;
2094 }
2095
2096 /*
2097 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2098 * or memory nodes, we need to walk over the cpuset hierarchy,
2099 * removing that CPU or node from all cpusets. If this removes the
2100 * last CPU or node from a cpuset, then move the tasks in the empty
2101 * cpuset to its next-highest non-empty parent.
2102 */
2103 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2104 {
2105 struct cpuset *parent;
2106
2107 /*
2108 * Find its next-highest non-empty parent, (top cpuset
2109 * has online cpus, so can't be empty).
2110 */
2111 parent = parent_cs(cs);
2112 while (cpumask_empty(parent->cpus_allowed) ||
2113 nodes_empty(parent->mems_allowed))
2114 parent = parent_cs(parent);
2115
2116 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2117 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2118 pr_cont_cgroup_name(cs->css.cgroup);
2119 pr_cont("\n");
2120 }
2121 }
2122
2123 static void
2124 hotplug_update_tasks_legacy(struct cpuset *cs,
2125 struct cpumask *new_cpus, nodemask_t *new_mems,
2126 bool cpus_updated, bool mems_updated)
2127 {
2128 bool is_empty;
2129
2130 mutex_lock(&callback_mutex);
2131 cpumask_copy(cs->cpus_allowed, new_cpus);
2132 cpumask_copy(cs->effective_cpus, new_cpus);
2133 cs->mems_allowed = *new_mems;
2134 cs->effective_mems = *new_mems;
2135 mutex_unlock(&callback_mutex);
2136
2137 /*
2138 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2139 * as the tasks will be migratecd to an ancestor.
2140 */
2141 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2142 update_tasks_cpumask(cs);
2143 if (mems_updated && !nodes_empty(cs->mems_allowed))
2144 update_tasks_nodemask(cs);
2145
2146 is_empty = cpumask_empty(cs->cpus_allowed) ||
2147 nodes_empty(cs->mems_allowed);
2148
2149 mutex_unlock(&cpuset_mutex);
2150
2151 /*
2152 * Move tasks to the nearest ancestor with execution resources,
2153 * This is full cgroup operation which will also call back into
2154 * cpuset. Should be done outside any lock.
2155 */
2156 if (is_empty)
2157 remove_tasks_in_empty_cpuset(cs);
2158
2159 mutex_lock(&cpuset_mutex);
2160 }
2161
2162 static void
2163 hotplug_update_tasks(struct cpuset *cs,
2164 struct cpumask *new_cpus, nodemask_t *new_mems,
2165 bool cpus_updated, bool mems_updated)
2166 {
2167 if (cpumask_empty(new_cpus))
2168 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2169 if (nodes_empty(*new_mems))
2170 *new_mems = parent_cs(cs)->effective_mems;
2171
2172 mutex_lock(&callback_mutex);
2173 cpumask_copy(cs->effective_cpus, new_cpus);
2174 cs->effective_mems = *new_mems;
2175 mutex_unlock(&callback_mutex);
2176
2177 if (cpus_updated)
2178 update_tasks_cpumask(cs);
2179 if (mems_updated)
2180 update_tasks_nodemask(cs);
2181 }
2182
2183 /**
2184 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2185 * @cs: cpuset in interest
2186 *
2187 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2188 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2189 * all its tasks are moved to the nearest ancestor with both resources.
2190 */
2191 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2192 {
2193 static cpumask_t new_cpus;
2194 static nodemask_t new_mems;
2195 bool cpus_updated;
2196 bool mems_updated;
2197 retry:
2198 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2199
2200 mutex_lock(&cpuset_mutex);
2201
2202 /*
2203 * We have raced with task attaching. We wait until attaching
2204 * is finished, so we won't attach a task to an empty cpuset.
2205 */
2206 if (cs->attach_in_progress) {
2207 mutex_unlock(&cpuset_mutex);
2208 goto retry;
2209 }
2210
2211 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2212 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2213
2214 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2215 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2216
2217 if (cgroup_on_dfl(cs->css.cgroup))
2218 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2219 cpus_updated, mems_updated);
2220 else
2221 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2222 cpus_updated, mems_updated);
2223
2224 mutex_unlock(&cpuset_mutex);
2225 }
2226
2227 /**
2228 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2229 *
2230 * This function is called after either CPU or memory configuration has
2231 * changed and updates cpuset accordingly. The top_cpuset is always
2232 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2233 * order to make cpusets transparent (of no affect) on systems that are
2234 * actively using CPU hotplug but making no active use of cpusets.
2235 *
2236 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2237 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2238 * all descendants.
2239 *
2240 * Note that CPU offlining during suspend is ignored. We don't modify
2241 * cpusets across suspend/resume cycles at all.
2242 */
2243 static void cpuset_hotplug_workfn(struct work_struct *work)
2244 {
2245 static cpumask_t new_cpus;
2246 static nodemask_t new_mems;
2247 bool cpus_updated, mems_updated;
2248 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2249
2250 mutex_lock(&cpuset_mutex);
2251
2252 /* fetch the available cpus/mems and find out which changed how */
2253 cpumask_copy(&new_cpus, cpu_active_mask);
2254 new_mems = node_states[N_MEMORY];
2255
2256 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2257 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2258
2259 /* synchronize cpus_allowed to cpu_active_mask */
2260 if (cpus_updated) {
2261 mutex_lock(&callback_mutex);
2262 if (!on_dfl)
2263 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2264 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2265 mutex_unlock(&callback_mutex);
2266 /* we don't mess with cpumasks of tasks in top_cpuset */
2267 }
2268
2269 /* synchronize mems_allowed to N_MEMORY */
2270 if (mems_updated) {
2271 mutex_lock(&callback_mutex);
2272 if (!on_dfl)
2273 top_cpuset.mems_allowed = new_mems;
2274 top_cpuset.effective_mems = new_mems;
2275 mutex_unlock(&callback_mutex);
2276 update_tasks_nodemask(&top_cpuset);
2277 }
2278
2279 mutex_unlock(&cpuset_mutex);
2280
2281 /* if cpus or mems changed, we need to propagate to descendants */
2282 if (cpus_updated || mems_updated) {
2283 struct cpuset *cs;
2284 struct cgroup_subsys_state *pos_css;
2285
2286 rcu_read_lock();
2287 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2288 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2289 continue;
2290 rcu_read_unlock();
2291
2292 cpuset_hotplug_update_tasks(cs);
2293
2294 rcu_read_lock();
2295 css_put(&cs->css);
2296 }
2297 rcu_read_unlock();
2298 }
2299
2300 /* rebuild sched domains if cpus_allowed has changed */
2301 if (cpus_updated)
2302 rebuild_sched_domains();
2303 }
2304
2305 void cpuset_update_active_cpus(bool cpu_online)
2306 {
2307 /*
2308 * We're inside cpu hotplug critical region which usually nests
2309 * inside cgroup synchronization. Bounce actual hotplug processing
2310 * to a work item to avoid reverse locking order.
2311 *
2312 * We still need to do partition_sched_domains() synchronously;
2313 * otherwise, the scheduler will get confused and put tasks to the
2314 * dead CPU. Fall back to the default single domain.
2315 * cpuset_hotplug_workfn() will rebuild it as necessary.
2316 */
2317 partition_sched_domains(1, NULL, NULL);
2318 schedule_work(&cpuset_hotplug_work);
2319 }
2320
2321 /*
2322 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2323 * Call this routine anytime after node_states[N_MEMORY] changes.
2324 * See cpuset_update_active_cpus() for CPU hotplug handling.
2325 */
2326 static int cpuset_track_online_nodes(struct notifier_block *self,
2327 unsigned long action, void *arg)
2328 {
2329 schedule_work(&cpuset_hotplug_work);
2330 return NOTIFY_OK;
2331 }
2332
2333 static struct notifier_block cpuset_track_online_nodes_nb = {
2334 .notifier_call = cpuset_track_online_nodes,
2335 .priority = 10, /* ??! */
2336 };
2337
2338 /**
2339 * cpuset_init_smp - initialize cpus_allowed
2340 *
2341 * Description: Finish top cpuset after cpu, node maps are initialized
2342 */
2343 void __init cpuset_init_smp(void)
2344 {
2345 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2346 top_cpuset.mems_allowed = node_states[N_MEMORY];
2347 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2348
2349 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2350 top_cpuset.effective_mems = node_states[N_MEMORY];
2351
2352 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2353 }
2354
2355 /**
2356 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2357 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2358 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2359 *
2360 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2361 * attached to the specified @tsk. Guaranteed to return some non-empty
2362 * subset of cpu_online_mask, even if this means going outside the
2363 * tasks cpuset.
2364 **/
2365
2366 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2367 {
2368 mutex_lock(&callback_mutex);
2369 rcu_read_lock();
2370 guarantee_online_cpus(task_cs(tsk), pmask);
2371 rcu_read_unlock();
2372 mutex_unlock(&callback_mutex);
2373 }
2374
2375 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2376 {
2377 rcu_read_lock();
2378 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2379 rcu_read_unlock();
2380
2381 /*
2382 * We own tsk->cpus_allowed, nobody can change it under us.
2383 *
2384 * But we used cs && cs->cpus_allowed lockless and thus can
2385 * race with cgroup_attach_task() or update_cpumask() and get
2386 * the wrong tsk->cpus_allowed. However, both cases imply the
2387 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2388 * which takes task_rq_lock().
2389 *
2390 * If we are called after it dropped the lock we must see all
2391 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2392 * set any mask even if it is not right from task_cs() pov,
2393 * the pending set_cpus_allowed_ptr() will fix things.
2394 *
2395 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2396 * if required.
2397 */
2398 }
2399
2400 void cpuset_init_current_mems_allowed(void)
2401 {
2402 nodes_setall(current->mems_allowed);
2403 }
2404
2405 /**
2406 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2407 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2408 *
2409 * Description: Returns the nodemask_t mems_allowed of the cpuset
2410 * attached to the specified @tsk. Guaranteed to return some non-empty
2411 * subset of node_states[N_MEMORY], even if this means going outside the
2412 * tasks cpuset.
2413 **/
2414
2415 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2416 {
2417 nodemask_t mask;
2418
2419 mutex_lock(&callback_mutex);
2420 rcu_read_lock();
2421 guarantee_online_mems(task_cs(tsk), &mask);
2422 rcu_read_unlock();
2423 mutex_unlock(&callback_mutex);
2424
2425 return mask;
2426 }
2427
2428 /**
2429 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2430 * @nodemask: the nodemask to be checked
2431 *
2432 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2433 */
2434 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2435 {
2436 return nodes_intersects(*nodemask, current->mems_allowed);
2437 }
2438
2439 /*
2440 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2441 * mem_hardwall ancestor to the specified cpuset. Call holding
2442 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2443 * (an unusual configuration), then returns the root cpuset.
2444 */
2445 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2446 {
2447 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2448 cs = parent_cs(cs);
2449 return cs;
2450 }
2451
2452 /**
2453 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2454 * @node: is this an allowed node?
2455 * @gfp_mask: memory allocation flags
2456 *
2457 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2458 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2459 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2460 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2461 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2462 * flag, yes.
2463 * Otherwise, no.
2464 *
2465 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2466 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2467 * might sleep, and might allow a node from an enclosing cpuset.
2468 *
2469 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2470 * cpusets, and never sleeps.
2471 *
2472 * The __GFP_THISNODE placement logic is really handled elsewhere,
2473 * by forcibly using a zonelist starting at a specified node, and by
2474 * (in get_page_from_freelist()) refusing to consider the zones for
2475 * any node on the zonelist except the first. By the time any such
2476 * calls get to this routine, we should just shut up and say 'yes'.
2477 *
2478 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2479 * and do not allow allocations outside the current tasks cpuset
2480 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2481 * GFP_KERNEL allocations are not so marked, so can escape to the
2482 * nearest enclosing hardwalled ancestor cpuset.
2483 *
2484 * Scanning up parent cpusets requires callback_mutex. The
2485 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2486 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2487 * current tasks mems_allowed came up empty on the first pass over
2488 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2489 * cpuset are short of memory, might require taking the callback_mutex
2490 * mutex.
2491 *
2492 * The first call here from mm/page_alloc:get_page_from_freelist()
2493 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2494 * so no allocation on a node outside the cpuset is allowed (unless
2495 * in interrupt, of course).
2496 *
2497 * The second pass through get_page_from_freelist() doesn't even call
2498 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2499 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2500 * in alloc_flags. That logic and the checks below have the combined
2501 * affect that:
2502 * in_interrupt - any node ok (current task context irrelevant)
2503 * GFP_ATOMIC - any node ok
2504 * TIF_MEMDIE - any node ok
2505 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2506 * GFP_USER - only nodes in current tasks mems allowed ok.
2507 *
2508 * Rule:
2509 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2510 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2511 * the code that might scan up ancestor cpusets and sleep.
2512 */
2513 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2514 {
2515 struct cpuset *cs; /* current cpuset ancestors */
2516 int allowed; /* is allocation in zone z allowed? */
2517
2518 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2519 return 1;
2520 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2521 if (node_isset(node, current->mems_allowed))
2522 return 1;
2523 /*
2524 * Allow tasks that have access to memory reserves because they have
2525 * been OOM killed to get memory anywhere.
2526 */
2527 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2528 return 1;
2529 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2530 return 0;
2531
2532 if (current->flags & PF_EXITING) /* Let dying task have memory */
2533 return 1;
2534
2535 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2536 mutex_lock(&callback_mutex);
2537
2538 rcu_read_lock();
2539 cs = nearest_hardwall_ancestor(task_cs(current));
2540 allowed = node_isset(node, cs->mems_allowed);
2541 rcu_read_unlock();
2542
2543 mutex_unlock(&callback_mutex);
2544 return allowed;
2545 }
2546
2547 /*
2548 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2549 * @node: is this an allowed node?
2550 * @gfp_mask: memory allocation flags
2551 *
2552 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2553 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2554 * yes. If the task has been OOM killed and has access to memory reserves as
2555 * specified by the TIF_MEMDIE flag, yes.
2556 * Otherwise, no.
2557 *
2558 * The __GFP_THISNODE placement logic is really handled elsewhere,
2559 * by forcibly using a zonelist starting at a specified node, and by
2560 * (in get_page_from_freelist()) refusing to consider the zones for
2561 * any node on the zonelist except the first. By the time any such
2562 * calls get to this routine, we should just shut up and say 'yes'.
2563 *
2564 * Unlike the cpuset_node_allowed_softwall() variant, above,
2565 * this variant requires that the node be in the current task's
2566 * mems_allowed or that we're in interrupt. It does not scan up the
2567 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2568 * It never sleeps.
2569 */
2570 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2571 {
2572 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2573 return 1;
2574 if (node_isset(node, current->mems_allowed))
2575 return 1;
2576 /*
2577 * Allow tasks that have access to memory reserves because they have
2578 * been OOM killed to get memory anywhere.
2579 */
2580 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2581 return 1;
2582 return 0;
2583 }
2584
2585 /**
2586 * cpuset_mem_spread_node() - On which node to begin search for a file page
2587 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2588 *
2589 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2590 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2591 * and if the memory allocation used cpuset_mem_spread_node()
2592 * to determine on which node to start looking, as it will for
2593 * certain page cache or slab cache pages such as used for file
2594 * system buffers and inode caches, then instead of starting on the
2595 * local node to look for a free page, rather spread the starting
2596 * node around the tasks mems_allowed nodes.
2597 *
2598 * We don't have to worry about the returned node being offline
2599 * because "it can't happen", and even if it did, it would be ok.
2600 *
2601 * The routines calling guarantee_online_mems() are careful to
2602 * only set nodes in task->mems_allowed that are online. So it
2603 * should not be possible for the following code to return an
2604 * offline node. But if it did, that would be ok, as this routine
2605 * is not returning the node where the allocation must be, only
2606 * the node where the search should start. The zonelist passed to
2607 * __alloc_pages() will include all nodes. If the slab allocator
2608 * is passed an offline node, it will fall back to the local node.
2609 * See kmem_cache_alloc_node().
2610 */
2611
2612 static int cpuset_spread_node(int *rotor)
2613 {
2614 int node;
2615
2616 node = next_node(*rotor, current->mems_allowed);
2617 if (node == MAX_NUMNODES)
2618 node = first_node(current->mems_allowed);
2619 *rotor = node;
2620 return node;
2621 }
2622
2623 int cpuset_mem_spread_node(void)
2624 {
2625 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2626 current->cpuset_mem_spread_rotor =
2627 node_random(&current->mems_allowed);
2628
2629 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2630 }
2631
2632 int cpuset_slab_spread_node(void)
2633 {
2634 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2635 current->cpuset_slab_spread_rotor =
2636 node_random(&current->mems_allowed);
2637
2638 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2639 }
2640
2641 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2642
2643 /**
2644 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2645 * @tsk1: pointer to task_struct of some task.
2646 * @tsk2: pointer to task_struct of some other task.
2647 *
2648 * Description: Return true if @tsk1's mems_allowed intersects the
2649 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2650 * one of the task's memory usage might impact the memory available
2651 * to the other.
2652 **/
2653
2654 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2655 const struct task_struct *tsk2)
2656 {
2657 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2658 }
2659
2660 #define CPUSET_NODELIST_LEN (256)
2661
2662 /**
2663 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2664 * @tsk: pointer to task_struct of some task.
2665 *
2666 * Description: Prints @task's name, cpuset name, and cached copy of its
2667 * mems_allowed to the kernel log.
2668 */
2669 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2670 {
2671 /* Statically allocated to prevent using excess stack. */
2672 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2673 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2674 struct cgroup *cgrp;
2675
2676 spin_lock(&cpuset_buffer_lock);
2677 rcu_read_lock();
2678
2679 cgrp = task_cs(tsk)->css.cgroup;
2680 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2681 tsk->mems_allowed);
2682 pr_info("%s cpuset=", tsk->comm);
2683 pr_cont_cgroup_name(cgrp);
2684 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2685
2686 rcu_read_unlock();
2687 spin_unlock(&cpuset_buffer_lock);
2688 }
2689
2690 /*
2691 * Collection of memory_pressure is suppressed unless
2692 * this flag is enabled by writing "1" to the special
2693 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2694 */
2695
2696 int cpuset_memory_pressure_enabled __read_mostly;
2697
2698 /**
2699 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2700 *
2701 * Keep a running average of the rate of synchronous (direct)
2702 * page reclaim efforts initiated by tasks in each cpuset.
2703 *
2704 * This represents the rate at which some task in the cpuset
2705 * ran low on memory on all nodes it was allowed to use, and
2706 * had to enter the kernels page reclaim code in an effort to
2707 * create more free memory by tossing clean pages or swapping
2708 * or writing dirty pages.
2709 *
2710 * Display to user space in the per-cpuset read-only file
2711 * "memory_pressure". Value displayed is an integer
2712 * representing the recent rate of entry into the synchronous
2713 * (direct) page reclaim by any task attached to the cpuset.
2714 **/
2715
2716 void __cpuset_memory_pressure_bump(void)
2717 {
2718 rcu_read_lock();
2719 fmeter_markevent(&task_cs(current)->fmeter);
2720 rcu_read_unlock();
2721 }
2722
2723 #ifdef CONFIG_PROC_PID_CPUSET
2724 /*
2725 * proc_cpuset_show()
2726 * - Print tasks cpuset path into seq_file.
2727 * - Used for /proc/<pid>/cpuset.
2728 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2729 * doesn't really matter if tsk->cpuset changes after we read it,
2730 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2731 * anyway.
2732 */
2733 int proc_cpuset_show(struct seq_file *m, void *unused_v)
2734 {
2735 struct pid *pid;
2736 struct task_struct *tsk;
2737 char *buf, *p;
2738 struct cgroup_subsys_state *css;
2739 int retval;
2740
2741 retval = -ENOMEM;
2742 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2743 if (!buf)
2744 goto out;
2745
2746 retval = -ESRCH;
2747 pid = m->private;
2748 tsk = get_pid_task(pid, PIDTYPE_PID);
2749 if (!tsk)
2750 goto out_free;
2751
2752 retval = -ENAMETOOLONG;
2753 rcu_read_lock();
2754 css = task_css(tsk, cpuset_cgrp_id);
2755 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2756 rcu_read_unlock();
2757 if (!p)
2758 goto out_put_task;
2759 seq_puts(m, p);
2760 seq_putc(m, '\n');
2761 retval = 0;
2762 out_put_task:
2763 put_task_struct(tsk);
2764 out_free:
2765 kfree(buf);
2766 out:
2767 return retval;
2768 }
2769 #endif /* CONFIG_PROC_PID_CPUSET */
2770
2771 /* Display task mems_allowed in /proc/<pid>/status file. */
2772 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2773 {
2774 seq_puts(m, "Mems_allowed:\t");
2775 seq_nodemask(m, &task->mems_allowed);
2776 seq_puts(m, "\n");
2777 seq_puts(m, "Mems_allowed_list:\t");
2778 seq_nodemask_list(m, &task->mems_allowed);
2779 seq_puts(m, "\n");
2780 }