]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/cpuset.c
cgroup: remove cgroup_subsys argument from callbacks
[mirror_ubuntu-jammy-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69 static struct workqueue_struct *cpuset_wq;
70
71 /*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
76 int number_of_cpusets __read_mostly;
77
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
81
82 /* See "Frequency meter" comments, below. */
83
84 struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89 };
90
91 struct cpuset {
92 struct cgroup_subsys_state css;
93
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
98 struct cpuset *parent; /* my parent */
99
100 struct fmeter fmeter; /* memory_pressure filter */
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
104
105 /* for custom sched domain */
106 int relax_domain_level;
107
108 /* used for walking a cpuset hierarchy */
109 struct list_head stack_list;
110 };
111
112 /* Retrieve the cpuset for a cgroup */
113 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114 {
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117 }
118
119 /* Retrieve the cpuset for a task */
120 static inline struct cpuset *task_cs(struct task_struct *task)
121 {
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124 }
125
126 #ifdef CONFIG_NUMA
127 static inline bool task_has_mempolicy(struct task_struct *task)
128 {
129 return task->mempolicy;
130 }
131 #else
132 static inline bool task_has_mempolicy(struct task_struct *task)
133 {
134 return false;
135 }
136 #endif
137
138
139 /* bits in struct cpuset flags field */
140 typedef enum {
141 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE,
143 CS_MEM_HARDWALL,
144 CS_MEMORY_MIGRATE,
145 CS_SCHED_LOAD_BALANCE,
146 CS_SPREAD_PAGE,
147 CS_SPREAD_SLAB,
148 } cpuset_flagbits_t;
149
150 /* convenient tests for these bits */
151 static inline int is_cpu_exclusive(const struct cpuset *cs)
152 {
153 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
154 }
155
156 static inline int is_mem_exclusive(const struct cpuset *cs)
157 {
158 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
159 }
160
161 static inline int is_mem_hardwall(const struct cpuset *cs)
162 {
163 return test_bit(CS_MEM_HARDWALL, &cs->flags);
164 }
165
166 static inline int is_sched_load_balance(const struct cpuset *cs)
167 {
168 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
169 }
170
171 static inline int is_memory_migrate(const struct cpuset *cs)
172 {
173 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
174 }
175
176 static inline int is_spread_page(const struct cpuset *cs)
177 {
178 return test_bit(CS_SPREAD_PAGE, &cs->flags);
179 }
180
181 static inline int is_spread_slab(const struct cpuset *cs)
182 {
183 return test_bit(CS_SPREAD_SLAB, &cs->flags);
184 }
185
186 static struct cpuset top_cpuset = {
187 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
188 };
189
190 /*
191 * There are two global mutexes guarding cpuset structures. The first
192 * is the main control groups cgroup_mutex, accessed via
193 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
194 * callback_mutex, below. They can nest. It is ok to first take
195 * cgroup_mutex, then nest callback_mutex. We also require taking
196 * task_lock() when dereferencing a task's cpuset pointer. See "The
197 * task_lock() exception", at the end of this comment.
198 *
199 * A task must hold both mutexes to modify cpusets. If a task
200 * holds cgroup_mutex, then it blocks others wanting that mutex,
201 * ensuring that it is the only task able to also acquire callback_mutex
202 * and be able to modify cpusets. It can perform various checks on
203 * the cpuset structure first, knowing nothing will change. It can
204 * also allocate memory while just holding cgroup_mutex. While it is
205 * performing these checks, various callback routines can briefly
206 * acquire callback_mutex to query cpusets. Once it is ready to make
207 * the changes, it takes callback_mutex, blocking everyone else.
208 *
209 * Calls to the kernel memory allocator can not be made while holding
210 * callback_mutex, as that would risk double tripping on callback_mutex
211 * from one of the callbacks into the cpuset code from within
212 * __alloc_pages().
213 *
214 * If a task is only holding callback_mutex, then it has read-only
215 * access to cpusets.
216 *
217 * Now, the task_struct fields mems_allowed and mempolicy may be changed
218 * by other task, we use alloc_lock in the task_struct fields to protect
219 * them.
220 *
221 * The cpuset_common_file_read() handlers only hold callback_mutex across
222 * small pieces of code, such as when reading out possibly multi-word
223 * cpumasks and nodemasks.
224 *
225 * Accessing a task's cpuset should be done in accordance with the
226 * guidelines for accessing subsystem state in kernel/cgroup.c
227 */
228
229 static DEFINE_MUTEX(callback_mutex);
230
231 /*
232 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
233 * buffers. They are statically allocated to prevent using excess stack
234 * when calling cpuset_print_task_mems_allowed().
235 */
236 #define CPUSET_NAME_LEN (128)
237 #define CPUSET_NODELIST_LEN (256)
238 static char cpuset_name[CPUSET_NAME_LEN];
239 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
240 static DEFINE_SPINLOCK(cpuset_buffer_lock);
241
242 /*
243 * This is ugly, but preserves the userspace API for existing cpuset
244 * users. If someone tries to mount the "cpuset" filesystem, we
245 * silently switch it to mount "cgroup" instead
246 */
247 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
248 int flags, const char *unused_dev_name, void *data)
249 {
250 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
251 struct dentry *ret = ERR_PTR(-ENODEV);
252 if (cgroup_fs) {
253 char mountopts[] =
254 "cpuset,noprefix,"
255 "release_agent=/sbin/cpuset_release_agent";
256 ret = cgroup_fs->mount(cgroup_fs, flags,
257 unused_dev_name, mountopts);
258 put_filesystem(cgroup_fs);
259 }
260 return ret;
261 }
262
263 static struct file_system_type cpuset_fs_type = {
264 .name = "cpuset",
265 .mount = cpuset_mount,
266 };
267
268 /*
269 * Return in pmask the portion of a cpusets's cpus_allowed that
270 * are online. If none are online, walk up the cpuset hierarchy
271 * until we find one that does have some online cpus. If we get
272 * all the way to the top and still haven't found any online cpus,
273 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
274 * task, return cpu_online_map.
275 *
276 * One way or another, we guarantee to return some non-empty subset
277 * of cpu_online_map.
278 *
279 * Call with callback_mutex held.
280 */
281
282 static void guarantee_online_cpus(const struct cpuset *cs,
283 struct cpumask *pmask)
284 {
285 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
286 cs = cs->parent;
287 if (cs)
288 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
289 else
290 cpumask_copy(pmask, cpu_online_mask);
291 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
292 }
293
294 /*
295 * Return in *pmask the portion of a cpusets's mems_allowed that
296 * are online, with memory. If none are online with memory, walk
297 * up the cpuset hierarchy until we find one that does have some
298 * online mems. If we get all the way to the top and still haven't
299 * found any online mems, return node_states[N_HIGH_MEMORY].
300 *
301 * One way or another, we guarantee to return some non-empty subset
302 * of node_states[N_HIGH_MEMORY].
303 *
304 * Call with callback_mutex held.
305 */
306
307 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
308 {
309 while (cs && !nodes_intersects(cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]))
311 cs = cs->parent;
312 if (cs)
313 nodes_and(*pmask, cs->mems_allowed,
314 node_states[N_HIGH_MEMORY]);
315 else
316 *pmask = node_states[N_HIGH_MEMORY];
317 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
318 }
319
320 /*
321 * update task's spread flag if cpuset's page/slab spread flag is set
322 *
323 * Called with callback_mutex/cgroup_mutex held
324 */
325 static void cpuset_update_task_spread_flag(struct cpuset *cs,
326 struct task_struct *tsk)
327 {
328 if (is_spread_page(cs))
329 tsk->flags |= PF_SPREAD_PAGE;
330 else
331 tsk->flags &= ~PF_SPREAD_PAGE;
332 if (is_spread_slab(cs))
333 tsk->flags |= PF_SPREAD_SLAB;
334 else
335 tsk->flags &= ~PF_SPREAD_SLAB;
336 }
337
338 /*
339 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
340 *
341 * One cpuset is a subset of another if all its allowed CPUs and
342 * Memory Nodes are a subset of the other, and its exclusive flags
343 * are only set if the other's are set. Call holding cgroup_mutex.
344 */
345
346 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
347 {
348 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
349 nodes_subset(p->mems_allowed, q->mems_allowed) &&
350 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
351 is_mem_exclusive(p) <= is_mem_exclusive(q);
352 }
353
354 /**
355 * alloc_trial_cpuset - allocate a trial cpuset
356 * @cs: the cpuset that the trial cpuset duplicates
357 */
358 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
359 {
360 struct cpuset *trial;
361
362 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
363 if (!trial)
364 return NULL;
365
366 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
367 kfree(trial);
368 return NULL;
369 }
370 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
371
372 return trial;
373 }
374
375 /**
376 * free_trial_cpuset - free the trial cpuset
377 * @trial: the trial cpuset to be freed
378 */
379 static void free_trial_cpuset(struct cpuset *trial)
380 {
381 free_cpumask_var(trial->cpus_allowed);
382 kfree(trial);
383 }
384
385 /*
386 * validate_change() - Used to validate that any proposed cpuset change
387 * follows the structural rules for cpusets.
388 *
389 * If we replaced the flag and mask values of the current cpuset
390 * (cur) with those values in the trial cpuset (trial), would
391 * our various subset and exclusive rules still be valid? Presumes
392 * cgroup_mutex held.
393 *
394 * 'cur' is the address of an actual, in-use cpuset. Operations
395 * such as list traversal that depend on the actual address of the
396 * cpuset in the list must use cur below, not trial.
397 *
398 * 'trial' is the address of bulk structure copy of cur, with
399 * perhaps one or more of the fields cpus_allowed, mems_allowed,
400 * or flags changed to new, trial values.
401 *
402 * Return 0 if valid, -errno if not.
403 */
404
405 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
406 {
407 struct cgroup *cont;
408 struct cpuset *c, *par;
409
410 /* Each of our child cpusets must be a subset of us */
411 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
412 if (!is_cpuset_subset(cgroup_cs(cont), trial))
413 return -EBUSY;
414 }
415
416 /* Remaining checks don't apply to root cpuset */
417 if (cur == &top_cpuset)
418 return 0;
419
420 par = cur->parent;
421
422 /* We must be a subset of our parent cpuset */
423 if (!is_cpuset_subset(trial, par))
424 return -EACCES;
425
426 /*
427 * If either I or some sibling (!= me) is exclusive, we can't
428 * overlap
429 */
430 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
431 c = cgroup_cs(cont);
432 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
433 c != cur &&
434 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
435 return -EINVAL;
436 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
437 c != cur &&
438 nodes_intersects(trial->mems_allowed, c->mems_allowed))
439 return -EINVAL;
440 }
441
442 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
443 if (cgroup_task_count(cur->css.cgroup)) {
444 if (cpumask_empty(trial->cpus_allowed) ||
445 nodes_empty(trial->mems_allowed)) {
446 return -ENOSPC;
447 }
448 }
449
450 return 0;
451 }
452
453 #ifdef CONFIG_SMP
454 /*
455 * Helper routine for generate_sched_domains().
456 * Do cpusets a, b have overlapping cpus_allowed masks?
457 */
458 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
459 {
460 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
461 }
462
463 static void
464 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
465 {
466 if (dattr->relax_domain_level < c->relax_domain_level)
467 dattr->relax_domain_level = c->relax_domain_level;
468 return;
469 }
470
471 static void
472 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
473 {
474 LIST_HEAD(q);
475
476 list_add(&c->stack_list, &q);
477 while (!list_empty(&q)) {
478 struct cpuset *cp;
479 struct cgroup *cont;
480 struct cpuset *child;
481
482 cp = list_first_entry(&q, struct cpuset, stack_list);
483 list_del(q.next);
484
485 if (cpumask_empty(cp->cpus_allowed))
486 continue;
487
488 if (is_sched_load_balance(cp))
489 update_domain_attr(dattr, cp);
490
491 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
492 child = cgroup_cs(cont);
493 list_add_tail(&child->stack_list, &q);
494 }
495 }
496 }
497
498 /*
499 * generate_sched_domains()
500 *
501 * This function builds a partial partition of the systems CPUs
502 * A 'partial partition' is a set of non-overlapping subsets whose
503 * union is a subset of that set.
504 * The output of this function needs to be passed to kernel/sched.c
505 * partition_sched_domains() routine, which will rebuild the scheduler's
506 * load balancing domains (sched domains) as specified by that partial
507 * partition.
508 *
509 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
510 * for a background explanation of this.
511 *
512 * Does not return errors, on the theory that the callers of this
513 * routine would rather not worry about failures to rebuild sched
514 * domains when operating in the severe memory shortage situations
515 * that could cause allocation failures below.
516 *
517 * Must be called with cgroup_lock held.
518 *
519 * The three key local variables below are:
520 * q - a linked-list queue of cpuset pointers, used to implement a
521 * top-down scan of all cpusets. This scan loads a pointer
522 * to each cpuset marked is_sched_load_balance into the
523 * array 'csa'. For our purposes, rebuilding the schedulers
524 * sched domains, we can ignore !is_sched_load_balance cpusets.
525 * csa - (for CpuSet Array) Array of pointers to all the cpusets
526 * that need to be load balanced, for convenient iterative
527 * access by the subsequent code that finds the best partition,
528 * i.e the set of domains (subsets) of CPUs such that the
529 * cpus_allowed of every cpuset marked is_sched_load_balance
530 * is a subset of one of these domains, while there are as
531 * many such domains as possible, each as small as possible.
532 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
533 * the kernel/sched.c routine partition_sched_domains() in a
534 * convenient format, that can be easily compared to the prior
535 * value to determine what partition elements (sched domains)
536 * were changed (added or removed.)
537 *
538 * Finding the best partition (set of domains):
539 * The triple nested loops below over i, j, k scan over the
540 * load balanced cpusets (using the array of cpuset pointers in
541 * csa[]) looking for pairs of cpusets that have overlapping
542 * cpus_allowed, but which don't have the same 'pn' partition
543 * number and gives them in the same partition number. It keeps
544 * looping on the 'restart' label until it can no longer find
545 * any such pairs.
546 *
547 * The union of the cpus_allowed masks from the set of
548 * all cpusets having the same 'pn' value then form the one
549 * element of the partition (one sched domain) to be passed to
550 * partition_sched_domains().
551 */
552 static int generate_sched_domains(cpumask_var_t **domains,
553 struct sched_domain_attr **attributes)
554 {
555 LIST_HEAD(q); /* queue of cpusets to be scanned */
556 struct cpuset *cp; /* scans q */
557 struct cpuset **csa; /* array of all cpuset ptrs */
558 int csn; /* how many cpuset ptrs in csa so far */
559 int i, j, k; /* indices for partition finding loops */
560 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
561 struct sched_domain_attr *dattr; /* attributes for custom domains */
562 int ndoms = 0; /* number of sched domains in result */
563 int nslot; /* next empty doms[] struct cpumask slot */
564
565 doms = NULL;
566 dattr = NULL;
567 csa = NULL;
568
569 /* Special case for the 99% of systems with one, full, sched domain */
570 if (is_sched_load_balance(&top_cpuset)) {
571 ndoms = 1;
572 doms = alloc_sched_domains(ndoms);
573 if (!doms)
574 goto done;
575
576 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
577 if (dattr) {
578 *dattr = SD_ATTR_INIT;
579 update_domain_attr_tree(dattr, &top_cpuset);
580 }
581 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
582
583 goto done;
584 }
585
586 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
587 if (!csa)
588 goto done;
589 csn = 0;
590
591 list_add(&top_cpuset.stack_list, &q);
592 while (!list_empty(&q)) {
593 struct cgroup *cont;
594 struct cpuset *child; /* scans child cpusets of cp */
595
596 cp = list_first_entry(&q, struct cpuset, stack_list);
597 list_del(q.next);
598
599 if (cpumask_empty(cp->cpus_allowed))
600 continue;
601
602 /*
603 * All child cpusets contain a subset of the parent's cpus, so
604 * just skip them, and then we call update_domain_attr_tree()
605 * to calc relax_domain_level of the corresponding sched
606 * domain.
607 */
608 if (is_sched_load_balance(cp)) {
609 csa[csn++] = cp;
610 continue;
611 }
612
613 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
614 child = cgroup_cs(cont);
615 list_add_tail(&child->stack_list, &q);
616 }
617 }
618
619 for (i = 0; i < csn; i++)
620 csa[i]->pn = i;
621 ndoms = csn;
622
623 restart:
624 /* Find the best partition (set of sched domains) */
625 for (i = 0; i < csn; i++) {
626 struct cpuset *a = csa[i];
627 int apn = a->pn;
628
629 for (j = 0; j < csn; j++) {
630 struct cpuset *b = csa[j];
631 int bpn = b->pn;
632
633 if (apn != bpn && cpusets_overlap(a, b)) {
634 for (k = 0; k < csn; k++) {
635 struct cpuset *c = csa[k];
636
637 if (c->pn == bpn)
638 c->pn = apn;
639 }
640 ndoms--; /* one less element */
641 goto restart;
642 }
643 }
644 }
645
646 /*
647 * Now we know how many domains to create.
648 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
649 */
650 doms = alloc_sched_domains(ndoms);
651 if (!doms)
652 goto done;
653
654 /*
655 * The rest of the code, including the scheduler, can deal with
656 * dattr==NULL case. No need to abort if alloc fails.
657 */
658 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
659
660 for (nslot = 0, i = 0; i < csn; i++) {
661 struct cpuset *a = csa[i];
662 struct cpumask *dp;
663 int apn = a->pn;
664
665 if (apn < 0) {
666 /* Skip completed partitions */
667 continue;
668 }
669
670 dp = doms[nslot];
671
672 if (nslot == ndoms) {
673 static int warnings = 10;
674 if (warnings) {
675 printk(KERN_WARNING
676 "rebuild_sched_domains confused:"
677 " nslot %d, ndoms %d, csn %d, i %d,"
678 " apn %d\n",
679 nslot, ndoms, csn, i, apn);
680 warnings--;
681 }
682 continue;
683 }
684
685 cpumask_clear(dp);
686 if (dattr)
687 *(dattr + nslot) = SD_ATTR_INIT;
688 for (j = i; j < csn; j++) {
689 struct cpuset *b = csa[j];
690
691 if (apn == b->pn) {
692 cpumask_or(dp, dp, b->cpus_allowed);
693 if (dattr)
694 update_domain_attr_tree(dattr + nslot, b);
695
696 /* Done with this partition */
697 b->pn = -1;
698 }
699 }
700 nslot++;
701 }
702 BUG_ON(nslot != ndoms);
703
704 done:
705 kfree(csa);
706
707 /*
708 * Fallback to the default domain if kmalloc() failed.
709 * See comments in partition_sched_domains().
710 */
711 if (doms == NULL)
712 ndoms = 1;
713
714 *domains = doms;
715 *attributes = dattr;
716 return ndoms;
717 }
718
719 /*
720 * Rebuild scheduler domains.
721 *
722 * Call with neither cgroup_mutex held nor within get_online_cpus().
723 * Takes both cgroup_mutex and get_online_cpus().
724 *
725 * Cannot be directly called from cpuset code handling changes
726 * to the cpuset pseudo-filesystem, because it cannot be called
727 * from code that already holds cgroup_mutex.
728 */
729 static void do_rebuild_sched_domains(struct work_struct *unused)
730 {
731 struct sched_domain_attr *attr;
732 cpumask_var_t *doms;
733 int ndoms;
734
735 get_online_cpus();
736
737 /* Generate domain masks and attrs */
738 cgroup_lock();
739 ndoms = generate_sched_domains(&doms, &attr);
740 cgroup_unlock();
741
742 /* Have scheduler rebuild the domains */
743 partition_sched_domains(ndoms, doms, attr);
744
745 put_online_cpus();
746 }
747 #else /* !CONFIG_SMP */
748 static void do_rebuild_sched_domains(struct work_struct *unused)
749 {
750 }
751
752 static int generate_sched_domains(cpumask_var_t **domains,
753 struct sched_domain_attr **attributes)
754 {
755 *domains = NULL;
756 return 1;
757 }
758 #endif /* CONFIG_SMP */
759
760 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
761
762 /*
763 * Rebuild scheduler domains, asynchronously via workqueue.
764 *
765 * If the flag 'sched_load_balance' of any cpuset with non-empty
766 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
767 * which has that flag enabled, or if any cpuset with a non-empty
768 * 'cpus' is removed, then call this routine to rebuild the
769 * scheduler's dynamic sched domains.
770 *
771 * The rebuild_sched_domains() and partition_sched_domains()
772 * routines must nest cgroup_lock() inside get_online_cpus(),
773 * but such cpuset changes as these must nest that locking the
774 * other way, holding cgroup_lock() for much of the code.
775 *
776 * So in order to avoid an ABBA deadlock, the cpuset code handling
777 * these user changes delegates the actual sched domain rebuilding
778 * to a separate workqueue thread, which ends up processing the
779 * above do_rebuild_sched_domains() function.
780 */
781 static void async_rebuild_sched_domains(void)
782 {
783 queue_work(cpuset_wq, &rebuild_sched_domains_work);
784 }
785
786 /*
787 * Accomplishes the same scheduler domain rebuild as the above
788 * async_rebuild_sched_domains(), however it directly calls the
789 * rebuild routine synchronously rather than calling it via an
790 * asynchronous work thread.
791 *
792 * This can only be called from code that is not holding
793 * cgroup_mutex (not nested in a cgroup_lock() call.)
794 */
795 void rebuild_sched_domains(void)
796 {
797 do_rebuild_sched_domains(NULL);
798 }
799
800 /**
801 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
802 * @tsk: task to test
803 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
804 *
805 * Call with cgroup_mutex held. May take callback_mutex during call.
806 * Called for each task in a cgroup by cgroup_scan_tasks().
807 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
808 * words, if its mask is not equal to its cpuset's mask).
809 */
810 static int cpuset_test_cpumask(struct task_struct *tsk,
811 struct cgroup_scanner *scan)
812 {
813 return !cpumask_equal(&tsk->cpus_allowed,
814 (cgroup_cs(scan->cg))->cpus_allowed);
815 }
816
817 /**
818 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
819 * @tsk: task to test
820 * @scan: struct cgroup_scanner containing the cgroup of the task
821 *
822 * Called by cgroup_scan_tasks() for each task in a cgroup whose
823 * cpus_allowed mask needs to be changed.
824 *
825 * We don't need to re-check for the cgroup/cpuset membership, since we're
826 * holding cgroup_lock() at this point.
827 */
828 static void cpuset_change_cpumask(struct task_struct *tsk,
829 struct cgroup_scanner *scan)
830 {
831 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
832 }
833
834 /**
835 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
836 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
837 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
838 *
839 * Called with cgroup_mutex held
840 *
841 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
842 * calling callback functions for each.
843 *
844 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
845 * if @heap != NULL.
846 */
847 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
848 {
849 struct cgroup_scanner scan;
850
851 scan.cg = cs->css.cgroup;
852 scan.test_task = cpuset_test_cpumask;
853 scan.process_task = cpuset_change_cpumask;
854 scan.heap = heap;
855 cgroup_scan_tasks(&scan);
856 }
857
858 /**
859 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
860 * @cs: the cpuset to consider
861 * @buf: buffer of cpu numbers written to this cpuset
862 */
863 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
864 const char *buf)
865 {
866 struct ptr_heap heap;
867 int retval;
868 int is_load_balanced;
869
870 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
871 if (cs == &top_cpuset)
872 return -EACCES;
873
874 /*
875 * An empty cpus_allowed is ok only if the cpuset has no tasks.
876 * Since cpulist_parse() fails on an empty mask, we special case
877 * that parsing. The validate_change() call ensures that cpusets
878 * with tasks have cpus.
879 */
880 if (!*buf) {
881 cpumask_clear(trialcs->cpus_allowed);
882 } else {
883 retval = cpulist_parse(buf, trialcs->cpus_allowed);
884 if (retval < 0)
885 return retval;
886
887 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
888 return -EINVAL;
889 }
890 retval = validate_change(cs, trialcs);
891 if (retval < 0)
892 return retval;
893
894 /* Nothing to do if the cpus didn't change */
895 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
896 return 0;
897
898 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
899 if (retval)
900 return retval;
901
902 is_load_balanced = is_sched_load_balance(trialcs);
903
904 mutex_lock(&callback_mutex);
905 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
906 mutex_unlock(&callback_mutex);
907
908 /*
909 * Scan tasks in the cpuset, and update the cpumasks of any
910 * that need an update.
911 */
912 update_tasks_cpumask(cs, &heap);
913
914 heap_free(&heap);
915
916 if (is_load_balanced)
917 async_rebuild_sched_domains();
918 return 0;
919 }
920
921 /*
922 * cpuset_migrate_mm
923 *
924 * Migrate memory region from one set of nodes to another.
925 *
926 * Temporarilly set tasks mems_allowed to target nodes of migration,
927 * so that the migration code can allocate pages on these nodes.
928 *
929 * Call holding cgroup_mutex, so current's cpuset won't change
930 * during this call, as manage_mutex holds off any cpuset_attach()
931 * calls. Therefore we don't need to take task_lock around the
932 * call to guarantee_online_mems(), as we know no one is changing
933 * our task's cpuset.
934 *
935 * While the mm_struct we are migrating is typically from some
936 * other task, the task_struct mems_allowed that we are hacking
937 * is for our current task, which must allocate new pages for that
938 * migrating memory region.
939 */
940
941 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
942 const nodemask_t *to)
943 {
944 struct task_struct *tsk = current;
945
946 tsk->mems_allowed = *to;
947
948 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
949
950 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
951 }
952
953 /*
954 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
955 * @tsk: the task to change
956 * @newmems: new nodes that the task will be set
957 *
958 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
959 * we structure updates as setting all new allowed nodes, then clearing newly
960 * disallowed ones.
961 */
962 static void cpuset_change_task_nodemask(struct task_struct *tsk,
963 nodemask_t *newmems)
964 {
965 bool need_loop;
966
967 repeat:
968 /*
969 * Allow tasks that have access to memory reserves because they have
970 * been OOM killed to get memory anywhere.
971 */
972 if (unlikely(test_thread_flag(TIF_MEMDIE)))
973 return;
974 if (current->flags & PF_EXITING) /* Let dying task have memory */
975 return;
976
977 task_lock(tsk);
978 /*
979 * Determine if a loop is necessary if another thread is doing
980 * get_mems_allowed(). If at least one node remains unchanged and
981 * tsk does not have a mempolicy, then an empty nodemask will not be
982 * possible when mems_allowed is larger than a word.
983 */
984 need_loop = task_has_mempolicy(tsk) ||
985 !nodes_intersects(*newmems, tsk->mems_allowed);
986 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
987 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
988
989 /*
990 * ensure checking ->mems_allowed_change_disable after setting all new
991 * allowed nodes.
992 *
993 * the read-side task can see an nodemask with new allowed nodes and
994 * old allowed nodes. and if it allocates page when cpuset clears newly
995 * disallowed ones continuous, it can see the new allowed bits.
996 *
997 * And if setting all new allowed nodes is after the checking, setting
998 * all new allowed nodes and clearing newly disallowed ones will be done
999 * continuous, and the read-side task may find no node to alloc page.
1000 */
1001 smp_mb();
1002
1003 /*
1004 * Allocation of memory is very fast, we needn't sleep when waiting
1005 * for the read-side.
1006 */
1007 while (need_loop && ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
1008 task_unlock(tsk);
1009 if (!task_curr(tsk))
1010 yield();
1011 goto repeat;
1012 }
1013
1014 /*
1015 * ensure checking ->mems_allowed_change_disable before clearing all new
1016 * disallowed nodes.
1017 *
1018 * if clearing newly disallowed bits before the checking, the read-side
1019 * task may find no node to alloc page.
1020 */
1021 smp_mb();
1022
1023 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1024 tsk->mems_allowed = *newmems;
1025 task_unlock(tsk);
1026 }
1027
1028 /*
1029 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1030 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1031 * memory_migrate flag is set. Called with cgroup_mutex held.
1032 */
1033 static void cpuset_change_nodemask(struct task_struct *p,
1034 struct cgroup_scanner *scan)
1035 {
1036 struct mm_struct *mm;
1037 struct cpuset *cs;
1038 int migrate;
1039 const nodemask_t *oldmem = scan->data;
1040 static nodemask_t newmems; /* protected by cgroup_mutex */
1041
1042 cs = cgroup_cs(scan->cg);
1043 guarantee_online_mems(cs, &newmems);
1044
1045 cpuset_change_task_nodemask(p, &newmems);
1046
1047 mm = get_task_mm(p);
1048 if (!mm)
1049 return;
1050
1051 migrate = is_memory_migrate(cs);
1052
1053 mpol_rebind_mm(mm, &cs->mems_allowed);
1054 if (migrate)
1055 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1056 mmput(mm);
1057 }
1058
1059 static void *cpuset_being_rebound;
1060
1061 /**
1062 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1063 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1064 * @oldmem: old mems_allowed of cpuset cs
1065 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1066 *
1067 * Called with cgroup_mutex held
1068 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1069 * if @heap != NULL.
1070 */
1071 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1072 struct ptr_heap *heap)
1073 {
1074 struct cgroup_scanner scan;
1075
1076 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1077
1078 scan.cg = cs->css.cgroup;
1079 scan.test_task = NULL;
1080 scan.process_task = cpuset_change_nodemask;
1081 scan.heap = heap;
1082 scan.data = (nodemask_t *)oldmem;
1083
1084 /*
1085 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1086 * take while holding tasklist_lock. Forks can happen - the
1087 * mpol_dup() cpuset_being_rebound check will catch such forks,
1088 * and rebind their vma mempolicies too. Because we still hold
1089 * the global cgroup_mutex, we know that no other rebind effort
1090 * will be contending for the global variable cpuset_being_rebound.
1091 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1092 * is idempotent. Also migrate pages in each mm to new nodes.
1093 */
1094 cgroup_scan_tasks(&scan);
1095
1096 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1097 cpuset_being_rebound = NULL;
1098 }
1099
1100 /*
1101 * Handle user request to change the 'mems' memory placement
1102 * of a cpuset. Needs to validate the request, update the
1103 * cpusets mems_allowed, and for each task in the cpuset,
1104 * update mems_allowed and rebind task's mempolicy and any vma
1105 * mempolicies and if the cpuset is marked 'memory_migrate',
1106 * migrate the tasks pages to the new memory.
1107 *
1108 * Call with cgroup_mutex held. May take callback_mutex during call.
1109 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1110 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1111 * their mempolicies to the cpusets new mems_allowed.
1112 */
1113 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1114 const char *buf)
1115 {
1116 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1117 int retval;
1118 struct ptr_heap heap;
1119
1120 if (!oldmem)
1121 return -ENOMEM;
1122
1123 /*
1124 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1125 * it's read-only
1126 */
1127 if (cs == &top_cpuset) {
1128 retval = -EACCES;
1129 goto done;
1130 }
1131
1132 /*
1133 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1134 * Since nodelist_parse() fails on an empty mask, we special case
1135 * that parsing. The validate_change() call ensures that cpusets
1136 * with tasks have memory.
1137 */
1138 if (!*buf) {
1139 nodes_clear(trialcs->mems_allowed);
1140 } else {
1141 retval = nodelist_parse(buf, trialcs->mems_allowed);
1142 if (retval < 0)
1143 goto done;
1144
1145 if (!nodes_subset(trialcs->mems_allowed,
1146 node_states[N_HIGH_MEMORY])) {
1147 retval = -EINVAL;
1148 goto done;
1149 }
1150 }
1151 *oldmem = cs->mems_allowed;
1152 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1153 retval = 0; /* Too easy - nothing to do */
1154 goto done;
1155 }
1156 retval = validate_change(cs, trialcs);
1157 if (retval < 0)
1158 goto done;
1159
1160 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1161 if (retval < 0)
1162 goto done;
1163
1164 mutex_lock(&callback_mutex);
1165 cs->mems_allowed = trialcs->mems_allowed;
1166 mutex_unlock(&callback_mutex);
1167
1168 update_tasks_nodemask(cs, oldmem, &heap);
1169
1170 heap_free(&heap);
1171 done:
1172 NODEMASK_FREE(oldmem);
1173 return retval;
1174 }
1175
1176 int current_cpuset_is_being_rebound(void)
1177 {
1178 return task_cs(current) == cpuset_being_rebound;
1179 }
1180
1181 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1182 {
1183 #ifdef CONFIG_SMP
1184 if (val < -1 || val >= sched_domain_level_max)
1185 return -EINVAL;
1186 #endif
1187
1188 if (val != cs->relax_domain_level) {
1189 cs->relax_domain_level = val;
1190 if (!cpumask_empty(cs->cpus_allowed) &&
1191 is_sched_load_balance(cs))
1192 async_rebuild_sched_domains();
1193 }
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1200 * @tsk: task to be updated
1201 * @scan: struct cgroup_scanner containing the cgroup of the task
1202 *
1203 * Called by cgroup_scan_tasks() for each task in a cgroup.
1204 *
1205 * We don't need to re-check for the cgroup/cpuset membership, since we're
1206 * holding cgroup_lock() at this point.
1207 */
1208 static void cpuset_change_flag(struct task_struct *tsk,
1209 struct cgroup_scanner *scan)
1210 {
1211 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1212 }
1213
1214 /*
1215 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1216 * @cs: the cpuset in which each task's spread flags needs to be changed
1217 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1218 *
1219 * Called with cgroup_mutex held
1220 *
1221 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1222 * calling callback functions for each.
1223 *
1224 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1225 * if @heap != NULL.
1226 */
1227 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1228 {
1229 struct cgroup_scanner scan;
1230
1231 scan.cg = cs->css.cgroup;
1232 scan.test_task = NULL;
1233 scan.process_task = cpuset_change_flag;
1234 scan.heap = heap;
1235 cgroup_scan_tasks(&scan);
1236 }
1237
1238 /*
1239 * update_flag - read a 0 or a 1 in a file and update associated flag
1240 * bit: the bit to update (see cpuset_flagbits_t)
1241 * cs: the cpuset to update
1242 * turning_on: whether the flag is being set or cleared
1243 *
1244 * Call with cgroup_mutex held.
1245 */
1246
1247 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1248 int turning_on)
1249 {
1250 struct cpuset *trialcs;
1251 int balance_flag_changed;
1252 int spread_flag_changed;
1253 struct ptr_heap heap;
1254 int err;
1255
1256 trialcs = alloc_trial_cpuset(cs);
1257 if (!trialcs)
1258 return -ENOMEM;
1259
1260 if (turning_on)
1261 set_bit(bit, &trialcs->flags);
1262 else
1263 clear_bit(bit, &trialcs->flags);
1264
1265 err = validate_change(cs, trialcs);
1266 if (err < 0)
1267 goto out;
1268
1269 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1270 if (err < 0)
1271 goto out;
1272
1273 balance_flag_changed = (is_sched_load_balance(cs) !=
1274 is_sched_load_balance(trialcs));
1275
1276 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1277 || (is_spread_page(cs) != is_spread_page(trialcs)));
1278
1279 mutex_lock(&callback_mutex);
1280 cs->flags = trialcs->flags;
1281 mutex_unlock(&callback_mutex);
1282
1283 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1284 async_rebuild_sched_domains();
1285
1286 if (spread_flag_changed)
1287 update_tasks_flags(cs, &heap);
1288 heap_free(&heap);
1289 out:
1290 free_trial_cpuset(trialcs);
1291 return err;
1292 }
1293
1294 /*
1295 * Frequency meter - How fast is some event occurring?
1296 *
1297 * These routines manage a digitally filtered, constant time based,
1298 * event frequency meter. There are four routines:
1299 * fmeter_init() - initialize a frequency meter.
1300 * fmeter_markevent() - called each time the event happens.
1301 * fmeter_getrate() - returns the recent rate of such events.
1302 * fmeter_update() - internal routine used to update fmeter.
1303 *
1304 * A common data structure is passed to each of these routines,
1305 * which is used to keep track of the state required to manage the
1306 * frequency meter and its digital filter.
1307 *
1308 * The filter works on the number of events marked per unit time.
1309 * The filter is single-pole low-pass recursive (IIR). The time unit
1310 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1311 * simulate 3 decimal digits of precision (multiplied by 1000).
1312 *
1313 * With an FM_COEF of 933, and a time base of 1 second, the filter
1314 * has a half-life of 10 seconds, meaning that if the events quit
1315 * happening, then the rate returned from the fmeter_getrate()
1316 * will be cut in half each 10 seconds, until it converges to zero.
1317 *
1318 * It is not worth doing a real infinitely recursive filter. If more
1319 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1320 * just compute FM_MAXTICKS ticks worth, by which point the level
1321 * will be stable.
1322 *
1323 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1324 * arithmetic overflow in the fmeter_update() routine.
1325 *
1326 * Given the simple 32 bit integer arithmetic used, this meter works
1327 * best for reporting rates between one per millisecond (msec) and
1328 * one per 32 (approx) seconds. At constant rates faster than one
1329 * per msec it maxes out at values just under 1,000,000. At constant
1330 * rates between one per msec, and one per second it will stabilize
1331 * to a value N*1000, where N is the rate of events per second.
1332 * At constant rates between one per second and one per 32 seconds,
1333 * it will be choppy, moving up on the seconds that have an event,
1334 * and then decaying until the next event. At rates slower than
1335 * about one in 32 seconds, it decays all the way back to zero between
1336 * each event.
1337 */
1338
1339 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1340 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1341 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1342 #define FM_SCALE 1000 /* faux fixed point scale */
1343
1344 /* Initialize a frequency meter */
1345 static void fmeter_init(struct fmeter *fmp)
1346 {
1347 fmp->cnt = 0;
1348 fmp->val = 0;
1349 fmp->time = 0;
1350 spin_lock_init(&fmp->lock);
1351 }
1352
1353 /* Internal meter update - process cnt events and update value */
1354 static void fmeter_update(struct fmeter *fmp)
1355 {
1356 time_t now = get_seconds();
1357 time_t ticks = now - fmp->time;
1358
1359 if (ticks == 0)
1360 return;
1361
1362 ticks = min(FM_MAXTICKS, ticks);
1363 while (ticks-- > 0)
1364 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1365 fmp->time = now;
1366
1367 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1368 fmp->cnt = 0;
1369 }
1370
1371 /* Process any previous ticks, then bump cnt by one (times scale). */
1372 static void fmeter_markevent(struct fmeter *fmp)
1373 {
1374 spin_lock(&fmp->lock);
1375 fmeter_update(fmp);
1376 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1377 spin_unlock(&fmp->lock);
1378 }
1379
1380 /* Process any previous ticks, then return current value. */
1381 static int fmeter_getrate(struct fmeter *fmp)
1382 {
1383 int val;
1384
1385 spin_lock(&fmp->lock);
1386 fmeter_update(fmp);
1387 val = fmp->val;
1388 spin_unlock(&fmp->lock);
1389 return val;
1390 }
1391
1392 /*
1393 * Protected by cgroup_lock. The nodemasks must be stored globally because
1394 * dynamically allocating them is not allowed in can_attach, and they must
1395 * persist until attach.
1396 */
1397 static cpumask_var_t cpus_attach;
1398 static nodemask_t cpuset_attach_nodemask_from;
1399 static nodemask_t cpuset_attach_nodemask_to;
1400
1401 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1402 static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1403 {
1404 struct cpuset *cs = cgroup_cs(cgrp);
1405 struct task_struct *task;
1406 int ret;
1407
1408 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1409 return -ENOSPC;
1410
1411 cgroup_taskset_for_each(task, cgrp, tset) {
1412 /*
1413 * Kthreads bound to specific cpus cannot be moved to a new
1414 * cpuset; we cannot change their cpu affinity and
1415 * isolating such threads by their set of allowed nodes is
1416 * unnecessary. Thus, cpusets are not applicable for such
1417 * threads. This prevents checking for success of
1418 * set_cpus_allowed_ptr() on all attached tasks before
1419 * cpus_allowed may be changed.
1420 */
1421 if (task->flags & PF_THREAD_BOUND)
1422 return -EINVAL;
1423 if ((ret = security_task_setscheduler(task)))
1424 return ret;
1425 }
1426
1427 /* prepare for attach */
1428 if (cs == &top_cpuset)
1429 cpumask_copy(cpus_attach, cpu_possible_mask);
1430 else
1431 guarantee_online_cpus(cs, cpus_attach);
1432
1433 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1434
1435 return 0;
1436 }
1437
1438 static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1439 {
1440 struct mm_struct *mm;
1441 struct task_struct *task;
1442 struct task_struct *leader = cgroup_taskset_first(tset);
1443 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1444 struct cpuset *cs = cgroup_cs(cgrp);
1445 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1446
1447 cgroup_taskset_for_each(task, cgrp, tset) {
1448 /*
1449 * can_attach beforehand should guarantee that this doesn't
1450 * fail. TODO: have a better way to handle failure here
1451 */
1452 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1453
1454 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1455 cpuset_update_task_spread_flag(cs, task);
1456 }
1457
1458 /*
1459 * Change mm, possibly for multiple threads in a threadgroup. This is
1460 * expensive and may sleep.
1461 */
1462 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1463 cpuset_attach_nodemask_to = cs->mems_allowed;
1464 mm = get_task_mm(leader);
1465 if (mm) {
1466 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1467 if (is_memory_migrate(cs))
1468 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1469 &cpuset_attach_nodemask_to);
1470 mmput(mm);
1471 }
1472 }
1473
1474 /* The various types of files and directories in a cpuset file system */
1475
1476 typedef enum {
1477 FILE_MEMORY_MIGRATE,
1478 FILE_CPULIST,
1479 FILE_MEMLIST,
1480 FILE_CPU_EXCLUSIVE,
1481 FILE_MEM_EXCLUSIVE,
1482 FILE_MEM_HARDWALL,
1483 FILE_SCHED_LOAD_BALANCE,
1484 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1485 FILE_MEMORY_PRESSURE_ENABLED,
1486 FILE_MEMORY_PRESSURE,
1487 FILE_SPREAD_PAGE,
1488 FILE_SPREAD_SLAB,
1489 } cpuset_filetype_t;
1490
1491 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1492 {
1493 int retval = 0;
1494 struct cpuset *cs = cgroup_cs(cgrp);
1495 cpuset_filetype_t type = cft->private;
1496
1497 if (!cgroup_lock_live_group(cgrp))
1498 return -ENODEV;
1499
1500 switch (type) {
1501 case FILE_CPU_EXCLUSIVE:
1502 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1503 break;
1504 case FILE_MEM_EXCLUSIVE:
1505 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1506 break;
1507 case FILE_MEM_HARDWALL:
1508 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1509 break;
1510 case FILE_SCHED_LOAD_BALANCE:
1511 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1512 break;
1513 case FILE_MEMORY_MIGRATE:
1514 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1515 break;
1516 case FILE_MEMORY_PRESSURE_ENABLED:
1517 cpuset_memory_pressure_enabled = !!val;
1518 break;
1519 case FILE_MEMORY_PRESSURE:
1520 retval = -EACCES;
1521 break;
1522 case FILE_SPREAD_PAGE:
1523 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1524 break;
1525 case FILE_SPREAD_SLAB:
1526 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1527 break;
1528 default:
1529 retval = -EINVAL;
1530 break;
1531 }
1532 cgroup_unlock();
1533 return retval;
1534 }
1535
1536 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1537 {
1538 int retval = 0;
1539 struct cpuset *cs = cgroup_cs(cgrp);
1540 cpuset_filetype_t type = cft->private;
1541
1542 if (!cgroup_lock_live_group(cgrp))
1543 return -ENODEV;
1544
1545 switch (type) {
1546 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1547 retval = update_relax_domain_level(cs, val);
1548 break;
1549 default:
1550 retval = -EINVAL;
1551 break;
1552 }
1553 cgroup_unlock();
1554 return retval;
1555 }
1556
1557 /*
1558 * Common handling for a write to a "cpus" or "mems" file.
1559 */
1560 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1561 const char *buf)
1562 {
1563 int retval = 0;
1564 struct cpuset *cs = cgroup_cs(cgrp);
1565 struct cpuset *trialcs;
1566
1567 if (!cgroup_lock_live_group(cgrp))
1568 return -ENODEV;
1569
1570 trialcs = alloc_trial_cpuset(cs);
1571 if (!trialcs) {
1572 retval = -ENOMEM;
1573 goto out;
1574 }
1575
1576 switch (cft->private) {
1577 case FILE_CPULIST:
1578 retval = update_cpumask(cs, trialcs, buf);
1579 break;
1580 case FILE_MEMLIST:
1581 retval = update_nodemask(cs, trialcs, buf);
1582 break;
1583 default:
1584 retval = -EINVAL;
1585 break;
1586 }
1587
1588 free_trial_cpuset(trialcs);
1589 out:
1590 cgroup_unlock();
1591 return retval;
1592 }
1593
1594 /*
1595 * These ascii lists should be read in a single call, by using a user
1596 * buffer large enough to hold the entire map. If read in smaller
1597 * chunks, there is no guarantee of atomicity. Since the display format
1598 * used, list of ranges of sequential numbers, is variable length,
1599 * and since these maps can change value dynamically, one could read
1600 * gibberish by doing partial reads while a list was changing.
1601 * A single large read to a buffer that crosses a page boundary is
1602 * ok, because the result being copied to user land is not recomputed
1603 * across a page fault.
1604 */
1605
1606 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1607 {
1608 size_t count;
1609
1610 mutex_lock(&callback_mutex);
1611 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1612 mutex_unlock(&callback_mutex);
1613
1614 return count;
1615 }
1616
1617 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1618 {
1619 size_t count;
1620
1621 mutex_lock(&callback_mutex);
1622 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1623 mutex_unlock(&callback_mutex);
1624
1625 return count;
1626 }
1627
1628 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1629 struct cftype *cft,
1630 struct file *file,
1631 char __user *buf,
1632 size_t nbytes, loff_t *ppos)
1633 {
1634 struct cpuset *cs = cgroup_cs(cont);
1635 cpuset_filetype_t type = cft->private;
1636 char *page;
1637 ssize_t retval = 0;
1638 char *s;
1639
1640 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1641 return -ENOMEM;
1642
1643 s = page;
1644
1645 switch (type) {
1646 case FILE_CPULIST:
1647 s += cpuset_sprintf_cpulist(s, cs);
1648 break;
1649 case FILE_MEMLIST:
1650 s += cpuset_sprintf_memlist(s, cs);
1651 break;
1652 default:
1653 retval = -EINVAL;
1654 goto out;
1655 }
1656 *s++ = '\n';
1657
1658 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1659 out:
1660 free_page((unsigned long)page);
1661 return retval;
1662 }
1663
1664 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1665 {
1666 struct cpuset *cs = cgroup_cs(cont);
1667 cpuset_filetype_t type = cft->private;
1668 switch (type) {
1669 case FILE_CPU_EXCLUSIVE:
1670 return is_cpu_exclusive(cs);
1671 case FILE_MEM_EXCLUSIVE:
1672 return is_mem_exclusive(cs);
1673 case FILE_MEM_HARDWALL:
1674 return is_mem_hardwall(cs);
1675 case FILE_SCHED_LOAD_BALANCE:
1676 return is_sched_load_balance(cs);
1677 case FILE_MEMORY_MIGRATE:
1678 return is_memory_migrate(cs);
1679 case FILE_MEMORY_PRESSURE_ENABLED:
1680 return cpuset_memory_pressure_enabled;
1681 case FILE_MEMORY_PRESSURE:
1682 return fmeter_getrate(&cs->fmeter);
1683 case FILE_SPREAD_PAGE:
1684 return is_spread_page(cs);
1685 case FILE_SPREAD_SLAB:
1686 return is_spread_slab(cs);
1687 default:
1688 BUG();
1689 }
1690
1691 /* Unreachable but makes gcc happy */
1692 return 0;
1693 }
1694
1695 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1696 {
1697 struct cpuset *cs = cgroup_cs(cont);
1698 cpuset_filetype_t type = cft->private;
1699 switch (type) {
1700 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1701 return cs->relax_domain_level;
1702 default:
1703 BUG();
1704 }
1705
1706 /* Unrechable but makes gcc happy */
1707 return 0;
1708 }
1709
1710
1711 /*
1712 * for the common functions, 'private' gives the type of file
1713 */
1714
1715 static struct cftype files[] = {
1716 {
1717 .name = "cpus",
1718 .read = cpuset_common_file_read,
1719 .write_string = cpuset_write_resmask,
1720 .max_write_len = (100U + 6 * NR_CPUS),
1721 .private = FILE_CPULIST,
1722 },
1723
1724 {
1725 .name = "mems",
1726 .read = cpuset_common_file_read,
1727 .write_string = cpuset_write_resmask,
1728 .max_write_len = (100U + 6 * MAX_NUMNODES),
1729 .private = FILE_MEMLIST,
1730 },
1731
1732 {
1733 .name = "cpu_exclusive",
1734 .read_u64 = cpuset_read_u64,
1735 .write_u64 = cpuset_write_u64,
1736 .private = FILE_CPU_EXCLUSIVE,
1737 },
1738
1739 {
1740 .name = "mem_exclusive",
1741 .read_u64 = cpuset_read_u64,
1742 .write_u64 = cpuset_write_u64,
1743 .private = FILE_MEM_EXCLUSIVE,
1744 },
1745
1746 {
1747 .name = "mem_hardwall",
1748 .read_u64 = cpuset_read_u64,
1749 .write_u64 = cpuset_write_u64,
1750 .private = FILE_MEM_HARDWALL,
1751 },
1752
1753 {
1754 .name = "sched_load_balance",
1755 .read_u64 = cpuset_read_u64,
1756 .write_u64 = cpuset_write_u64,
1757 .private = FILE_SCHED_LOAD_BALANCE,
1758 },
1759
1760 {
1761 .name = "sched_relax_domain_level",
1762 .read_s64 = cpuset_read_s64,
1763 .write_s64 = cpuset_write_s64,
1764 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1765 },
1766
1767 {
1768 .name = "memory_migrate",
1769 .read_u64 = cpuset_read_u64,
1770 .write_u64 = cpuset_write_u64,
1771 .private = FILE_MEMORY_MIGRATE,
1772 },
1773
1774 {
1775 .name = "memory_pressure",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_MEMORY_PRESSURE,
1779 .mode = S_IRUGO,
1780 },
1781
1782 {
1783 .name = "memory_spread_page",
1784 .read_u64 = cpuset_read_u64,
1785 .write_u64 = cpuset_write_u64,
1786 .private = FILE_SPREAD_PAGE,
1787 },
1788
1789 {
1790 .name = "memory_spread_slab",
1791 .read_u64 = cpuset_read_u64,
1792 .write_u64 = cpuset_write_u64,
1793 .private = FILE_SPREAD_SLAB,
1794 },
1795 };
1796
1797 static struct cftype cft_memory_pressure_enabled = {
1798 .name = "memory_pressure_enabled",
1799 .read_u64 = cpuset_read_u64,
1800 .write_u64 = cpuset_write_u64,
1801 .private = FILE_MEMORY_PRESSURE_ENABLED,
1802 };
1803
1804 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1805 {
1806 int err;
1807
1808 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1809 if (err)
1810 return err;
1811 /* memory_pressure_enabled is in root cpuset only */
1812 if (!cont->parent)
1813 err = cgroup_add_file(cont, ss,
1814 &cft_memory_pressure_enabled);
1815 return err;
1816 }
1817
1818 /*
1819 * post_clone() is called during cgroup_create() when the
1820 * clone_children mount argument was specified. The cgroup
1821 * can not yet have any tasks.
1822 *
1823 * Currently we refuse to set up the cgroup - thereby
1824 * refusing the task to be entered, and as a result refusing
1825 * the sys_unshare() or clone() which initiated it - if any
1826 * sibling cpusets have exclusive cpus or mem.
1827 *
1828 * If this becomes a problem for some users who wish to
1829 * allow that scenario, then cpuset_post_clone() could be
1830 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1831 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1832 * held.
1833 */
1834 static void cpuset_post_clone(struct cgroup *cgroup)
1835 {
1836 struct cgroup *parent, *child;
1837 struct cpuset *cs, *parent_cs;
1838
1839 parent = cgroup->parent;
1840 list_for_each_entry(child, &parent->children, sibling) {
1841 cs = cgroup_cs(child);
1842 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1843 return;
1844 }
1845 cs = cgroup_cs(cgroup);
1846 parent_cs = cgroup_cs(parent);
1847
1848 mutex_lock(&callback_mutex);
1849 cs->mems_allowed = parent_cs->mems_allowed;
1850 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1851 mutex_unlock(&callback_mutex);
1852 return;
1853 }
1854
1855 /*
1856 * cpuset_create - create a cpuset
1857 * cont: control group that the new cpuset will be part of
1858 */
1859
1860 static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont)
1861 {
1862 struct cpuset *cs;
1863 struct cpuset *parent;
1864
1865 if (!cont->parent) {
1866 return &top_cpuset.css;
1867 }
1868 parent = cgroup_cs(cont->parent);
1869 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1870 if (!cs)
1871 return ERR_PTR(-ENOMEM);
1872 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1873 kfree(cs);
1874 return ERR_PTR(-ENOMEM);
1875 }
1876
1877 cs->flags = 0;
1878 if (is_spread_page(parent))
1879 set_bit(CS_SPREAD_PAGE, &cs->flags);
1880 if (is_spread_slab(parent))
1881 set_bit(CS_SPREAD_SLAB, &cs->flags);
1882 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1883 cpumask_clear(cs->cpus_allowed);
1884 nodes_clear(cs->mems_allowed);
1885 fmeter_init(&cs->fmeter);
1886 cs->relax_domain_level = -1;
1887
1888 cs->parent = parent;
1889 number_of_cpusets++;
1890 return &cs->css ;
1891 }
1892
1893 /*
1894 * If the cpuset being removed has its flag 'sched_load_balance'
1895 * enabled, then simulate turning sched_load_balance off, which
1896 * will call async_rebuild_sched_domains().
1897 */
1898
1899 static void cpuset_destroy(struct cgroup *cont)
1900 {
1901 struct cpuset *cs = cgroup_cs(cont);
1902
1903 if (is_sched_load_balance(cs))
1904 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1905
1906 number_of_cpusets--;
1907 free_cpumask_var(cs->cpus_allowed);
1908 kfree(cs);
1909 }
1910
1911 struct cgroup_subsys cpuset_subsys = {
1912 .name = "cpuset",
1913 .create = cpuset_create,
1914 .destroy = cpuset_destroy,
1915 .can_attach = cpuset_can_attach,
1916 .attach = cpuset_attach,
1917 .populate = cpuset_populate,
1918 .post_clone = cpuset_post_clone,
1919 .subsys_id = cpuset_subsys_id,
1920 .early_init = 1,
1921 };
1922
1923 /**
1924 * cpuset_init - initialize cpusets at system boot
1925 *
1926 * Description: Initialize top_cpuset and the cpuset internal file system,
1927 **/
1928
1929 int __init cpuset_init(void)
1930 {
1931 int err = 0;
1932
1933 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1934 BUG();
1935
1936 cpumask_setall(top_cpuset.cpus_allowed);
1937 nodes_setall(top_cpuset.mems_allowed);
1938
1939 fmeter_init(&top_cpuset.fmeter);
1940 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1941 top_cpuset.relax_domain_level = -1;
1942
1943 err = register_filesystem(&cpuset_fs_type);
1944 if (err < 0)
1945 return err;
1946
1947 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1948 BUG();
1949
1950 number_of_cpusets = 1;
1951 return 0;
1952 }
1953
1954 /**
1955 * cpuset_do_move_task - move a given task to another cpuset
1956 * @tsk: pointer to task_struct the task to move
1957 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1958 *
1959 * Called by cgroup_scan_tasks() for each task in a cgroup.
1960 * Return nonzero to stop the walk through the tasks.
1961 */
1962 static void cpuset_do_move_task(struct task_struct *tsk,
1963 struct cgroup_scanner *scan)
1964 {
1965 struct cgroup *new_cgroup = scan->data;
1966
1967 cgroup_attach_task(new_cgroup, tsk);
1968 }
1969
1970 /**
1971 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1972 * @from: cpuset in which the tasks currently reside
1973 * @to: cpuset to which the tasks will be moved
1974 *
1975 * Called with cgroup_mutex held
1976 * callback_mutex must not be held, as cpuset_attach() will take it.
1977 *
1978 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1979 * calling callback functions for each.
1980 */
1981 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1982 {
1983 struct cgroup_scanner scan;
1984
1985 scan.cg = from->css.cgroup;
1986 scan.test_task = NULL; /* select all tasks in cgroup */
1987 scan.process_task = cpuset_do_move_task;
1988 scan.heap = NULL;
1989 scan.data = to->css.cgroup;
1990
1991 if (cgroup_scan_tasks(&scan))
1992 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1993 "cgroup_scan_tasks failed\n");
1994 }
1995
1996 /*
1997 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1998 * or memory nodes, we need to walk over the cpuset hierarchy,
1999 * removing that CPU or node from all cpusets. If this removes the
2000 * last CPU or node from a cpuset, then move the tasks in the empty
2001 * cpuset to its next-highest non-empty parent.
2002 *
2003 * Called with cgroup_mutex held
2004 * callback_mutex must not be held, as cpuset_attach() will take it.
2005 */
2006 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2007 {
2008 struct cpuset *parent;
2009
2010 /*
2011 * The cgroup's css_sets list is in use if there are tasks
2012 * in the cpuset; the list is empty if there are none;
2013 * the cs->css.refcnt seems always 0.
2014 */
2015 if (list_empty(&cs->css.cgroup->css_sets))
2016 return;
2017
2018 /*
2019 * Find its next-highest non-empty parent, (top cpuset
2020 * has online cpus, so can't be empty).
2021 */
2022 parent = cs->parent;
2023 while (cpumask_empty(parent->cpus_allowed) ||
2024 nodes_empty(parent->mems_allowed))
2025 parent = parent->parent;
2026
2027 move_member_tasks_to_cpuset(cs, parent);
2028 }
2029
2030 /*
2031 * Walk the specified cpuset subtree and look for empty cpusets.
2032 * The tasks of such cpuset must be moved to a parent cpuset.
2033 *
2034 * Called with cgroup_mutex held. We take callback_mutex to modify
2035 * cpus_allowed and mems_allowed.
2036 *
2037 * This walk processes the tree from top to bottom, completing one layer
2038 * before dropping down to the next. It always processes a node before
2039 * any of its children.
2040 *
2041 * For now, since we lack memory hot unplug, we'll never see a cpuset
2042 * that has tasks along with an empty 'mems'. But if we did see such
2043 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2044 */
2045 static void scan_for_empty_cpusets(struct cpuset *root)
2046 {
2047 LIST_HEAD(queue);
2048 struct cpuset *cp; /* scans cpusets being updated */
2049 struct cpuset *child; /* scans child cpusets of cp */
2050 struct cgroup *cont;
2051 static nodemask_t oldmems; /* protected by cgroup_mutex */
2052
2053 list_add_tail((struct list_head *)&root->stack_list, &queue);
2054
2055 while (!list_empty(&queue)) {
2056 cp = list_first_entry(&queue, struct cpuset, stack_list);
2057 list_del(queue.next);
2058 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2059 child = cgroup_cs(cont);
2060 list_add_tail(&child->stack_list, &queue);
2061 }
2062
2063 /* Continue past cpusets with all cpus, mems online */
2064 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2065 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2066 continue;
2067
2068 oldmems = cp->mems_allowed;
2069
2070 /* Remove offline cpus and mems from this cpuset. */
2071 mutex_lock(&callback_mutex);
2072 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2073 cpu_active_mask);
2074 nodes_and(cp->mems_allowed, cp->mems_allowed,
2075 node_states[N_HIGH_MEMORY]);
2076 mutex_unlock(&callback_mutex);
2077
2078 /* Move tasks from the empty cpuset to a parent */
2079 if (cpumask_empty(cp->cpus_allowed) ||
2080 nodes_empty(cp->mems_allowed))
2081 remove_tasks_in_empty_cpuset(cp);
2082 else {
2083 update_tasks_cpumask(cp, NULL);
2084 update_tasks_nodemask(cp, &oldmems, NULL);
2085 }
2086 }
2087 }
2088
2089 /*
2090 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2091 * period. This is necessary in order to make cpusets transparent
2092 * (of no affect) on systems that are actively using CPU hotplug
2093 * but making no active use of cpusets.
2094 *
2095 * This routine ensures that top_cpuset.cpus_allowed tracks
2096 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2097 *
2098 * Called within get_online_cpus(). Needs to call cgroup_lock()
2099 * before calling generate_sched_domains().
2100 */
2101 void cpuset_update_active_cpus(void)
2102 {
2103 struct sched_domain_attr *attr;
2104 cpumask_var_t *doms;
2105 int ndoms;
2106
2107 cgroup_lock();
2108 mutex_lock(&callback_mutex);
2109 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2110 mutex_unlock(&callback_mutex);
2111 scan_for_empty_cpusets(&top_cpuset);
2112 ndoms = generate_sched_domains(&doms, &attr);
2113 cgroup_unlock();
2114
2115 /* Have scheduler rebuild the domains */
2116 partition_sched_domains(ndoms, doms, attr);
2117 }
2118
2119 #ifdef CONFIG_MEMORY_HOTPLUG
2120 /*
2121 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2122 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2123 * See also the previous routine cpuset_track_online_cpus().
2124 */
2125 static int cpuset_track_online_nodes(struct notifier_block *self,
2126 unsigned long action, void *arg)
2127 {
2128 static nodemask_t oldmems; /* protected by cgroup_mutex */
2129
2130 cgroup_lock();
2131 switch (action) {
2132 case MEM_ONLINE:
2133 oldmems = top_cpuset.mems_allowed;
2134 mutex_lock(&callback_mutex);
2135 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2136 mutex_unlock(&callback_mutex);
2137 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2138 break;
2139 case MEM_OFFLINE:
2140 /*
2141 * needn't update top_cpuset.mems_allowed explicitly because
2142 * scan_for_empty_cpusets() will update it.
2143 */
2144 scan_for_empty_cpusets(&top_cpuset);
2145 break;
2146 default:
2147 break;
2148 }
2149 cgroup_unlock();
2150
2151 return NOTIFY_OK;
2152 }
2153 #endif
2154
2155 /**
2156 * cpuset_init_smp - initialize cpus_allowed
2157 *
2158 * Description: Finish top cpuset after cpu, node maps are initialized
2159 **/
2160
2161 void __init cpuset_init_smp(void)
2162 {
2163 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2164 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2165
2166 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2167
2168 cpuset_wq = create_singlethread_workqueue("cpuset");
2169 BUG_ON(!cpuset_wq);
2170 }
2171
2172 /**
2173 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2174 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2175 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2176 *
2177 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2178 * attached to the specified @tsk. Guaranteed to return some non-empty
2179 * subset of cpu_online_map, even if this means going outside the
2180 * tasks cpuset.
2181 **/
2182
2183 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2184 {
2185 mutex_lock(&callback_mutex);
2186 task_lock(tsk);
2187 guarantee_online_cpus(task_cs(tsk), pmask);
2188 task_unlock(tsk);
2189 mutex_unlock(&callback_mutex);
2190 }
2191
2192 int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2193 {
2194 const struct cpuset *cs;
2195 int cpu;
2196
2197 rcu_read_lock();
2198 cs = task_cs(tsk);
2199 if (cs)
2200 do_set_cpus_allowed(tsk, cs->cpus_allowed);
2201 rcu_read_unlock();
2202
2203 /*
2204 * We own tsk->cpus_allowed, nobody can change it under us.
2205 *
2206 * But we used cs && cs->cpus_allowed lockless and thus can
2207 * race with cgroup_attach_task() or update_cpumask() and get
2208 * the wrong tsk->cpus_allowed. However, both cases imply the
2209 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2210 * which takes task_rq_lock().
2211 *
2212 * If we are called after it dropped the lock we must see all
2213 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2214 * set any mask even if it is not right from task_cs() pov,
2215 * the pending set_cpus_allowed_ptr() will fix things.
2216 */
2217
2218 cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2219 if (cpu >= nr_cpu_ids) {
2220 /*
2221 * Either tsk->cpus_allowed is wrong (see above) or it
2222 * is actually empty. The latter case is only possible
2223 * if we are racing with remove_tasks_in_empty_cpuset().
2224 * Like above we can temporary set any mask and rely on
2225 * set_cpus_allowed_ptr() as synchronization point.
2226 */
2227 do_set_cpus_allowed(tsk, cpu_possible_mask);
2228 cpu = cpumask_any(cpu_active_mask);
2229 }
2230
2231 return cpu;
2232 }
2233
2234 void cpuset_init_current_mems_allowed(void)
2235 {
2236 nodes_setall(current->mems_allowed);
2237 }
2238
2239 /**
2240 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2241 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2242 *
2243 * Description: Returns the nodemask_t mems_allowed of the cpuset
2244 * attached to the specified @tsk. Guaranteed to return some non-empty
2245 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2246 * tasks cpuset.
2247 **/
2248
2249 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2250 {
2251 nodemask_t mask;
2252
2253 mutex_lock(&callback_mutex);
2254 task_lock(tsk);
2255 guarantee_online_mems(task_cs(tsk), &mask);
2256 task_unlock(tsk);
2257 mutex_unlock(&callback_mutex);
2258
2259 return mask;
2260 }
2261
2262 /**
2263 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2264 * @nodemask: the nodemask to be checked
2265 *
2266 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2267 */
2268 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2269 {
2270 return nodes_intersects(*nodemask, current->mems_allowed);
2271 }
2272
2273 /*
2274 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2275 * mem_hardwall ancestor to the specified cpuset. Call holding
2276 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2277 * (an unusual configuration), then returns the root cpuset.
2278 */
2279 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2280 {
2281 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2282 cs = cs->parent;
2283 return cs;
2284 }
2285
2286 /**
2287 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2288 * @node: is this an allowed node?
2289 * @gfp_mask: memory allocation flags
2290 *
2291 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2292 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2293 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2294 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2295 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2296 * flag, yes.
2297 * Otherwise, no.
2298 *
2299 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2300 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2301 * might sleep, and might allow a node from an enclosing cpuset.
2302 *
2303 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2304 * cpusets, and never sleeps.
2305 *
2306 * The __GFP_THISNODE placement logic is really handled elsewhere,
2307 * by forcibly using a zonelist starting at a specified node, and by
2308 * (in get_page_from_freelist()) refusing to consider the zones for
2309 * any node on the zonelist except the first. By the time any such
2310 * calls get to this routine, we should just shut up and say 'yes'.
2311 *
2312 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2313 * and do not allow allocations outside the current tasks cpuset
2314 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2315 * GFP_KERNEL allocations are not so marked, so can escape to the
2316 * nearest enclosing hardwalled ancestor cpuset.
2317 *
2318 * Scanning up parent cpusets requires callback_mutex. The
2319 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2320 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2321 * current tasks mems_allowed came up empty on the first pass over
2322 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2323 * cpuset are short of memory, might require taking the callback_mutex
2324 * mutex.
2325 *
2326 * The first call here from mm/page_alloc:get_page_from_freelist()
2327 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2328 * so no allocation on a node outside the cpuset is allowed (unless
2329 * in interrupt, of course).
2330 *
2331 * The second pass through get_page_from_freelist() doesn't even call
2332 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2333 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2334 * in alloc_flags. That logic and the checks below have the combined
2335 * affect that:
2336 * in_interrupt - any node ok (current task context irrelevant)
2337 * GFP_ATOMIC - any node ok
2338 * TIF_MEMDIE - any node ok
2339 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2340 * GFP_USER - only nodes in current tasks mems allowed ok.
2341 *
2342 * Rule:
2343 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2344 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2345 * the code that might scan up ancestor cpusets and sleep.
2346 */
2347 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2348 {
2349 const struct cpuset *cs; /* current cpuset ancestors */
2350 int allowed; /* is allocation in zone z allowed? */
2351
2352 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2353 return 1;
2354 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2355 if (node_isset(node, current->mems_allowed))
2356 return 1;
2357 /*
2358 * Allow tasks that have access to memory reserves because they have
2359 * been OOM killed to get memory anywhere.
2360 */
2361 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2362 return 1;
2363 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2364 return 0;
2365
2366 if (current->flags & PF_EXITING) /* Let dying task have memory */
2367 return 1;
2368
2369 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2370 mutex_lock(&callback_mutex);
2371
2372 task_lock(current);
2373 cs = nearest_hardwall_ancestor(task_cs(current));
2374 task_unlock(current);
2375
2376 allowed = node_isset(node, cs->mems_allowed);
2377 mutex_unlock(&callback_mutex);
2378 return allowed;
2379 }
2380
2381 /*
2382 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2383 * @node: is this an allowed node?
2384 * @gfp_mask: memory allocation flags
2385 *
2386 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2387 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2388 * yes. If the task has been OOM killed and has access to memory reserves as
2389 * specified by the TIF_MEMDIE flag, yes.
2390 * Otherwise, no.
2391 *
2392 * The __GFP_THISNODE placement logic is really handled elsewhere,
2393 * by forcibly using a zonelist starting at a specified node, and by
2394 * (in get_page_from_freelist()) refusing to consider the zones for
2395 * any node on the zonelist except the first. By the time any such
2396 * calls get to this routine, we should just shut up and say 'yes'.
2397 *
2398 * Unlike the cpuset_node_allowed_softwall() variant, above,
2399 * this variant requires that the node be in the current task's
2400 * mems_allowed or that we're in interrupt. It does not scan up the
2401 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2402 * It never sleeps.
2403 */
2404 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2405 {
2406 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2407 return 1;
2408 if (node_isset(node, current->mems_allowed))
2409 return 1;
2410 /*
2411 * Allow tasks that have access to memory reserves because they have
2412 * been OOM killed to get memory anywhere.
2413 */
2414 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2415 return 1;
2416 return 0;
2417 }
2418
2419 /**
2420 * cpuset_unlock - release lock on cpuset changes
2421 *
2422 * Undo the lock taken in a previous cpuset_lock() call.
2423 */
2424
2425 void cpuset_unlock(void)
2426 {
2427 mutex_unlock(&callback_mutex);
2428 }
2429
2430 /**
2431 * cpuset_mem_spread_node() - On which node to begin search for a file page
2432 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2433 *
2434 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2435 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2436 * and if the memory allocation used cpuset_mem_spread_node()
2437 * to determine on which node to start looking, as it will for
2438 * certain page cache or slab cache pages such as used for file
2439 * system buffers and inode caches, then instead of starting on the
2440 * local node to look for a free page, rather spread the starting
2441 * node around the tasks mems_allowed nodes.
2442 *
2443 * We don't have to worry about the returned node being offline
2444 * because "it can't happen", and even if it did, it would be ok.
2445 *
2446 * The routines calling guarantee_online_mems() are careful to
2447 * only set nodes in task->mems_allowed that are online. So it
2448 * should not be possible for the following code to return an
2449 * offline node. But if it did, that would be ok, as this routine
2450 * is not returning the node where the allocation must be, only
2451 * the node where the search should start. The zonelist passed to
2452 * __alloc_pages() will include all nodes. If the slab allocator
2453 * is passed an offline node, it will fall back to the local node.
2454 * See kmem_cache_alloc_node().
2455 */
2456
2457 static int cpuset_spread_node(int *rotor)
2458 {
2459 int node;
2460
2461 node = next_node(*rotor, current->mems_allowed);
2462 if (node == MAX_NUMNODES)
2463 node = first_node(current->mems_allowed);
2464 *rotor = node;
2465 return node;
2466 }
2467
2468 int cpuset_mem_spread_node(void)
2469 {
2470 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2471 current->cpuset_mem_spread_rotor =
2472 node_random(&current->mems_allowed);
2473
2474 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2475 }
2476
2477 int cpuset_slab_spread_node(void)
2478 {
2479 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2480 current->cpuset_slab_spread_rotor =
2481 node_random(&current->mems_allowed);
2482
2483 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2484 }
2485
2486 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2487
2488 /**
2489 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2490 * @tsk1: pointer to task_struct of some task.
2491 * @tsk2: pointer to task_struct of some other task.
2492 *
2493 * Description: Return true if @tsk1's mems_allowed intersects the
2494 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2495 * one of the task's memory usage might impact the memory available
2496 * to the other.
2497 **/
2498
2499 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2500 const struct task_struct *tsk2)
2501 {
2502 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2503 }
2504
2505 /**
2506 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2507 * @task: pointer to task_struct of some task.
2508 *
2509 * Description: Prints @task's name, cpuset name, and cached copy of its
2510 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2511 * dereferencing task_cs(task).
2512 */
2513 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2514 {
2515 struct dentry *dentry;
2516
2517 dentry = task_cs(tsk)->css.cgroup->dentry;
2518 spin_lock(&cpuset_buffer_lock);
2519 snprintf(cpuset_name, CPUSET_NAME_LEN,
2520 dentry ? (const char *)dentry->d_name.name : "/");
2521 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2522 tsk->mems_allowed);
2523 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2524 tsk->comm, cpuset_name, cpuset_nodelist);
2525 spin_unlock(&cpuset_buffer_lock);
2526 }
2527
2528 /*
2529 * Collection of memory_pressure is suppressed unless
2530 * this flag is enabled by writing "1" to the special
2531 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2532 */
2533
2534 int cpuset_memory_pressure_enabled __read_mostly;
2535
2536 /**
2537 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2538 *
2539 * Keep a running average of the rate of synchronous (direct)
2540 * page reclaim efforts initiated by tasks in each cpuset.
2541 *
2542 * This represents the rate at which some task in the cpuset
2543 * ran low on memory on all nodes it was allowed to use, and
2544 * had to enter the kernels page reclaim code in an effort to
2545 * create more free memory by tossing clean pages or swapping
2546 * or writing dirty pages.
2547 *
2548 * Display to user space in the per-cpuset read-only file
2549 * "memory_pressure". Value displayed is an integer
2550 * representing the recent rate of entry into the synchronous
2551 * (direct) page reclaim by any task attached to the cpuset.
2552 **/
2553
2554 void __cpuset_memory_pressure_bump(void)
2555 {
2556 task_lock(current);
2557 fmeter_markevent(&task_cs(current)->fmeter);
2558 task_unlock(current);
2559 }
2560
2561 #ifdef CONFIG_PROC_PID_CPUSET
2562 /*
2563 * proc_cpuset_show()
2564 * - Print tasks cpuset path into seq_file.
2565 * - Used for /proc/<pid>/cpuset.
2566 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2567 * doesn't really matter if tsk->cpuset changes after we read it,
2568 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2569 * anyway.
2570 */
2571 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2572 {
2573 struct pid *pid;
2574 struct task_struct *tsk;
2575 char *buf;
2576 struct cgroup_subsys_state *css;
2577 int retval;
2578
2579 retval = -ENOMEM;
2580 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2581 if (!buf)
2582 goto out;
2583
2584 retval = -ESRCH;
2585 pid = m->private;
2586 tsk = get_pid_task(pid, PIDTYPE_PID);
2587 if (!tsk)
2588 goto out_free;
2589
2590 retval = -EINVAL;
2591 cgroup_lock();
2592 css = task_subsys_state(tsk, cpuset_subsys_id);
2593 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2594 if (retval < 0)
2595 goto out_unlock;
2596 seq_puts(m, buf);
2597 seq_putc(m, '\n');
2598 out_unlock:
2599 cgroup_unlock();
2600 put_task_struct(tsk);
2601 out_free:
2602 kfree(buf);
2603 out:
2604 return retval;
2605 }
2606
2607 static int cpuset_open(struct inode *inode, struct file *file)
2608 {
2609 struct pid *pid = PROC_I(inode)->pid;
2610 return single_open(file, proc_cpuset_show, pid);
2611 }
2612
2613 const struct file_operations proc_cpuset_operations = {
2614 .open = cpuset_open,
2615 .read = seq_read,
2616 .llseek = seq_lseek,
2617 .release = single_release,
2618 };
2619 #endif /* CONFIG_PROC_PID_CPUSET */
2620
2621 /* Display task mems_allowed in /proc/<pid>/status file. */
2622 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2623 {
2624 seq_printf(m, "Mems_allowed:\t");
2625 seq_nodemask(m, &task->mems_allowed);
2626 seq_printf(m, "\n");
2627 seq_printf(m, "Mems_allowed_list:\t");
2628 seq_nodemask_list(m, &task->mems_allowed);
2629 seq_printf(m, "\n");
2630 }