]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cpuset.c
ARM: bcm2835: add a pm_power_off implementation
[mirror_ubuntu-zesty-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69 static struct workqueue_struct *cpuset_wq;
70
71 /*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
76 int number_of_cpusets __read_mostly;
77
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
81
82 /* See "Frequency meter" comments, below. */
83
84 struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89 };
90
91 struct cpuset {
92 struct cgroup_subsys_state css;
93
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
98 struct cpuset *parent; /* my parent */
99
100 struct fmeter fmeter; /* memory_pressure filter */
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
104
105 /* for custom sched domain */
106 int relax_domain_level;
107
108 /* used for walking a cpuset hierarchy */
109 struct list_head stack_list;
110 };
111
112 /* Retrieve the cpuset for a cgroup */
113 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114 {
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117 }
118
119 /* Retrieve the cpuset for a task */
120 static inline struct cpuset *task_cs(struct task_struct *task)
121 {
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124 }
125
126 #ifdef CONFIG_NUMA
127 static inline bool task_has_mempolicy(struct task_struct *task)
128 {
129 return task->mempolicy;
130 }
131 #else
132 static inline bool task_has_mempolicy(struct task_struct *task)
133 {
134 return false;
135 }
136 #endif
137
138
139 /* bits in struct cpuset flags field */
140 typedef enum {
141 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE,
143 CS_MEM_HARDWALL,
144 CS_MEMORY_MIGRATE,
145 CS_SCHED_LOAD_BALANCE,
146 CS_SPREAD_PAGE,
147 CS_SPREAD_SLAB,
148 } cpuset_flagbits_t;
149
150 /* the type of hotplug event */
151 enum hotplug_event {
152 CPUSET_CPU_OFFLINE,
153 CPUSET_MEM_OFFLINE,
154 };
155
156 /* convenient tests for these bits */
157 static inline int is_cpu_exclusive(const struct cpuset *cs)
158 {
159 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
160 }
161
162 static inline int is_mem_exclusive(const struct cpuset *cs)
163 {
164 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
165 }
166
167 static inline int is_mem_hardwall(const struct cpuset *cs)
168 {
169 return test_bit(CS_MEM_HARDWALL, &cs->flags);
170 }
171
172 static inline int is_sched_load_balance(const struct cpuset *cs)
173 {
174 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
175 }
176
177 static inline int is_memory_migrate(const struct cpuset *cs)
178 {
179 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
180 }
181
182 static inline int is_spread_page(const struct cpuset *cs)
183 {
184 return test_bit(CS_SPREAD_PAGE, &cs->flags);
185 }
186
187 static inline int is_spread_slab(const struct cpuset *cs)
188 {
189 return test_bit(CS_SPREAD_SLAB, &cs->flags);
190 }
191
192 static struct cpuset top_cpuset = {
193 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
194 };
195
196 /*
197 * There are two global mutexes guarding cpuset structures. The first
198 * is the main control groups cgroup_mutex, accessed via
199 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
200 * callback_mutex, below. They can nest. It is ok to first take
201 * cgroup_mutex, then nest callback_mutex. We also require taking
202 * task_lock() when dereferencing a task's cpuset pointer. See "The
203 * task_lock() exception", at the end of this comment.
204 *
205 * A task must hold both mutexes to modify cpusets. If a task
206 * holds cgroup_mutex, then it blocks others wanting that mutex,
207 * ensuring that it is the only task able to also acquire callback_mutex
208 * and be able to modify cpusets. It can perform various checks on
209 * the cpuset structure first, knowing nothing will change. It can
210 * also allocate memory while just holding cgroup_mutex. While it is
211 * performing these checks, various callback routines can briefly
212 * acquire callback_mutex to query cpusets. Once it is ready to make
213 * the changes, it takes callback_mutex, blocking everyone else.
214 *
215 * Calls to the kernel memory allocator can not be made while holding
216 * callback_mutex, as that would risk double tripping on callback_mutex
217 * from one of the callbacks into the cpuset code from within
218 * __alloc_pages().
219 *
220 * If a task is only holding callback_mutex, then it has read-only
221 * access to cpusets.
222 *
223 * Now, the task_struct fields mems_allowed and mempolicy may be changed
224 * by other task, we use alloc_lock in the task_struct fields to protect
225 * them.
226 *
227 * The cpuset_common_file_read() handlers only hold callback_mutex across
228 * small pieces of code, such as when reading out possibly multi-word
229 * cpumasks and nodemasks.
230 *
231 * Accessing a task's cpuset should be done in accordance with the
232 * guidelines for accessing subsystem state in kernel/cgroup.c
233 */
234
235 static DEFINE_MUTEX(callback_mutex);
236
237 /*
238 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
239 * buffers. They are statically allocated to prevent using excess stack
240 * when calling cpuset_print_task_mems_allowed().
241 */
242 #define CPUSET_NAME_LEN (128)
243 #define CPUSET_NODELIST_LEN (256)
244 static char cpuset_name[CPUSET_NAME_LEN];
245 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
246 static DEFINE_SPINLOCK(cpuset_buffer_lock);
247
248 /*
249 * This is ugly, but preserves the userspace API for existing cpuset
250 * users. If someone tries to mount the "cpuset" filesystem, we
251 * silently switch it to mount "cgroup" instead
252 */
253 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
254 int flags, const char *unused_dev_name, void *data)
255 {
256 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
257 struct dentry *ret = ERR_PTR(-ENODEV);
258 if (cgroup_fs) {
259 char mountopts[] =
260 "cpuset,noprefix,"
261 "release_agent=/sbin/cpuset_release_agent";
262 ret = cgroup_fs->mount(cgroup_fs, flags,
263 unused_dev_name, mountopts);
264 put_filesystem(cgroup_fs);
265 }
266 return ret;
267 }
268
269 static struct file_system_type cpuset_fs_type = {
270 .name = "cpuset",
271 .mount = cpuset_mount,
272 };
273
274 /*
275 * Return in pmask the portion of a cpusets's cpus_allowed that
276 * are online. If none are online, walk up the cpuset hierarchy
277 * until we find one that does have some online cpus. If we get
278 * all the way to the top and still haven't found any online cpus,
279 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
280 * task, return cpu_online_mask.
281 *
282 * One way or another, we guarantee to return some non-empty subset
283 * of cpu_online_mask.
284 *
285 * Call with callback_mutex held.
286 */
287
288 static void guarantee_online_cpus(const struct cpuset *cs,
289 struct cpumask *pmask)
290 {
291 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
292 cs = cs->parent;
293 if (cs)
294 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
295 else
296 cpumask_copy(pmask, cpu_online_mask);
297 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
298 }
299
300 /*
301 * Return in *pmask the portion of a cpusets's mems_allowed that
302 * are online, with memory. If none are online with memory, walk
303 * up the cpuset hierarchy until we find one that does have some
304 * online mems. If we get all the way to the top and still haven't
305 * found any online mems, return node_states[N_MEMORY].
306 *
307 * One way or another, we guarantee to return some non-empty subset
308 * of node_states[N_MEMORY].
309 *
310 * Call with callback_mutex held.
311 */
312
313 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
314 {
315 while (cs && !nodes_intersects(cs->mems_allowed,
316 node_states[N_MEMORY]))
317 cs = cs->parent;
318 if (cs)
319 nodes_and(*pmask, cs->mems_allowed,
320 node_states[N_MEMORY]);
321 else
322 *pmask = node_states[N_MEMORY];
323 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
324 }
325
326 /*
327 * update task's spread flag if cpuset's page/slab spread flag is set
328 *
329 * Called with callback_mutex/cgroup_mutex held
330 */
331 static void cpuset_update_task_spread_flag(struct cpuset *cs,
332 struct task_struct *tsk)
333 {
334 if (is_spread_page(cs))
335 tsk->flags |= PF_SPREAD_PAGE;
336 else
337 tsk->flags &= ~PF_SPREAD_PAGE;
338 if (is_spread_slab(cs))
339 tsk->flags |= PF_SPREAD_SLAB;
340 else
341 tsk->flags &= ~PF_SPREAD_SLAB;
342 }
343
344 /*
345 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
346 *
347 * One cpuset is a subset of another if all its allowed CPUs and
348 * Memory Nodes are a subset of the other, and its exclusive flags
349 * are only set if the other's are set. Call holding cgroup_mutex.
350 */
351
352 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
353 {
354 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
355 nodes_subset(p->mems_allowed, q->mems_allowed) &&
356 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
357 is_mem_exclusive(p) <= is_mem_exclusive(q);
358 }
359
360 /**
361 * alloc_trial_cpuset - allocate a trial cpuset
362 * @cs: the cpuset that the trial cpuset duplicates
363 */
364 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
365 {
366 struct cpuset *trial;
367
368 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
369 if (!trial)
370 return NULL;
371
372 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
373 kfree(trial);
374 return NULL;
375 }
376 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
377
378 return trial;
379 }
380
381 /**
382 * free_trial_cpuset - free the trial cpuset
383 * @trial: the trial cpuset to be freed
384 */
385 static void free_trial_cpuset(struct cpuset *trial)
386 {
387 free_cpumask_var(trial->cpus_allowed);
388 kfree(trial);
389 }
390
391 /*
392 * validate_change() - Used to validate that any proposed cpuset change
393 * follows the structural rules for cpusets.
394 *
395 * If we replaced the flag and mask values of the current cpuset
396 * (cur) with those values in the trial cpuset (trial), would
397 * our various subset and exclusive rules still be valid? Presumes
398 * cgroup_mutex held.
399 *
400 * 'cur' is the address of an actual, in-use cpuset. Operations
401 * such as list traversal that depend on the actual address of the
402 * cpuset in the list must use cur below, not trial.
403 *
404 * 'trial' is the address of bulk structure copy of cur, with
405 * perhaps one or more of the fields cpus_allowed, mems_allowed,
406 * or flags changed to new, trial values.
407 *
408 * Return 0 if valid, -errno if not.
409 */
410
411 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
412 {
413 struct cgroup *cont;
414 struct cpuset *c, *par;
415
416 /* Each of our child cpusets must be a subset of us */
417 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
418 if (!is_cpuset_subset(cgroup_cs(cont), trial))
419 return -EBUSY;
420 }
421
422 /* Remaining checks don't apply to root cpuset */
423 if (cur == &top_cpuset)
424 return 0;
425
426 par = cur->parent;
427
428 /* We must be a subset of our parent cpuset */
429 if (!is_cpuset_subset(trial, par))
430 return -EACCES;
431
432 /*
433 * If either I or some sibling (!= me) is exclusive, we can't
434 * overlap
435 */
436 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
437 c = cgroup_cs(cont);
438 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
439 c != cur &&
440 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
441 return -EINVAL;
442 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
443 c != cur &&
444 nodes_intersects(trial->mems_allowed, c->mems_allowed))
445 return -EINVAL;
446 }
447
448 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
449 if (cgroup_task_count(cur->css.cgroup)) {
450 if (cpumask_empty(trial->cpus_allowed) ||
451 nodes_empty(trial->mems_allowed)) {
452 return -ENOSPC;
453 }
454 }
455
456 return 0;
457 }
458
459 #ifdef CONFIG_SMP
460 /*
461 * Helper routine for generate_sched_domains().
462 * Do cpusets a, b have overlapping cpus_allowed masks?
463 */
464 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
465 {
466 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
467 }
468
469 static void
470 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
471 {
472 if (dattr->relax_domain_level < c->relax_domain_level)
473 dattr->relax_domain_level = c->relax_domain_level;
474 return;
475 }
476
477 static void
478 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
479 {
480 LIST_HEAD(q);
481
482 list_add(&c->stack_list, &q);
483 while (!list_empty(&q)) {
484 struct cpuset *cp;
485 struct cgroup *cont;
486 struct cpuset *child;
487
488 cp = list_first_entry(&q, struct cpuset, stack_list);
489 list_del(q.next);
490
491 if (cpumask_empty(cp->cpus_allowed))
492 continue;
493
494 if (is_sched_load_balance(cp))
495 update_domain_attr(dattr, cp);
496
497 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
498 child = cgroup_cs(cont);
499 list_add_tail(&child->stack_list, &q);
500 }
501 }
502 }
503
504 /*
505 * generate_sched_domains()
506 *
507 * This function builds a partial partition of the systems CPUs
508 * A 'partial partition' is a set of non-overlapping subsets whose
509 * union is a subset of that set.
510 * The output of this function needs to be passed to kernel/sched.c
511 * partition_sched_domains() routine, which will rebuild the scheduler's
512 * load balancing domains (sched domains) as specified by that partial
513 * partition.
514 *
515 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
516 * for a background explanation of this.
517 *
518 * Does not return errors, on the theory that the callers of this
519 * routine would rather not worry about failures to rebuild sched
520 * domains when operating in the severe memory shortage situations
521 * that could cause allocation failures below.
522 *
523 * Must be called with cgroup_lock held.
524 *
525 * The three key local variables below are:
526 * q - a linked-list queue of cpuset pointers, used to implement a
527 * top-down scan of all cpusets. This scan loads a pointer
528 * to each cpuset marked is_sched_load_balance into the
529 * array 'csa'. For our purposes, rebuilding the schedulers
530 * sched domains, we can ignore !is_sched_load_balance cpusets.
531 * csa - (for CpuSet Array) Array of pointers to all the cpusets
532 * that need to be load balanced, for convenient iterative
533 * access by the subsequent code that finds the best partition,
534 * i.e the set of domains (subsets) of CPUs such that the
535 * cpus_allowed of every cpuset marked is_sched_load_balance
536 * is a subset of one of these domains, while there are as
537 * many such domains as possible, each as small as possible.
538 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
539 * the kernel/sched.c routine partition_sched_domains() in a
540 * convenient format, that can be easily compared to the prior
541 * value to determine what partition elements (sched domains)
542 * were changed (added or removed.)
543 *
544 * Finding the best partition (set of domains):
545 * The triple nested loops below over i, j, k scan over the
546 * load balanced cpusets (using the array of cpuset pointers in
547 * csa[]) looking for pairs of cpusets that have overlapping
548 * cpus_allowed, but which don't have the same 'pn' partition
549 * number and gives them in the same partition number. It keeps
550 * looping on the 'restart' label until it can no longer find
551 * any such pairs.
552 *
553 * The union of the cpus_allowed masks from the set of
554 * all cpusets having the same 'pn' value then form the one
555 * element of the partition (one sched domain) to be passed to
556 * partition_sched_domains().
557 */
558 static int generate_sched_domains(cpumask_var_t **domains,
559 struct sched_domain_attr **attributes)
560 {
561 LIST_HEAD(q); /* queue of cpusets to be scanned */
562 struct cpuset *cp; /* scans q */
563 struct cpuset **csa; /* array of all cpuset ptrs */
564 int csn; /* how many cpuset ptrs in csa so far */
565 int i, j, k; /* indices for partition finding loops */
566 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
567 struct sched_domain_attr *dattr; /* attributes for custom domains */
568 int ndoms = 0; /* number of sched domains in result */
569 int nslot; /* next empty doms[] struct cpumask slot */
570
571 doms = NULL;
572 dattr = NULL;
573 csa = NULL;
574
575 /* Special case for the 99% of systems with one, full, sched domain */
576 if (is_sched_load_balance(&top_cpuset)) {
577 ndoms = 1;
578 doms = alloc_sched_domains(ndoms);
579 if (!doms)
580 goto done;
581
582 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
583 if (dattr) {
584 *dattr = SD_ATTR_INIT;
585 update_domain_attr_tree(dattr, &top_cpuset);
586 }
587 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
588
589 goto done;
590 }
591
592 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
593 if (!csa)
594 goto done;
595 csn = 0;
596
597 list_add(&top_cpuset.stack_list, &q);
598 while (!list_empty(&q)) {
599 struct cgroup *cont;
600 struct cpuset *child; /* scans child cpusets of cp */
601
602 cp = list_first_entry(&q, struct cpuset, stack_list);
603 list_del(q.next);
604
605 if (cpumask_empty(cp->cpus_allowed))
606 continue;
607
608 /*
609 * All child cpusets contain a subset of the parent's cpus, so
610 * just skip them, and then we call update_domain_attr_tree()
611 * to calc relax_domain_level of the corresponding sched
612 * domain.
613 */
614 if (is_sched_load_balance(cp)) {
615 csa[csn++] = cp;
616 continue;
617 }
618
619 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
620 child = cgroup_cs(cont);
621 list_add_tail(&child->stack_list, &q);
622 }
623 }
624
625 for (i = 0; i < csn; i++)
626 csa[i]->pn = i;
627 ndoms = csn;
628
629 restart:
630 /* Find the best partition (set of sched domains) */
631 for (i = 0; i < csn; i++) {
632 struct cpuset *a = csa[i];
633 int apn = a->pn;
634
635 for (j = 0; j < csn; j++) {
636 struct cpuset *b = csa[j];
637 int bpn = b->pn;
638
639 if (apn != bpn && cpusets_overlap(a, b)) {
640 for (k = 0; k < csn; k++) {
641 struct cpuset *c = csa[k];
642
643 if (c->pn == bpn)
644 c->pn = apn;
645 }
646 ndoms--; /* one less element */
647 goto restart;
648 }
649 }
650 }
651
652 /*
653 * Now we know how many domains to create.
654 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
655 */
656 doms = alloc_sched_domains(ndoms);
657 if (!doms)
658 goto done;
659
660 /*
661 * The rest of the code, including the scheduler, can deal with
662 * dattr==NULL case. No need to abort if alloc fails.
663 */
664 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
665
666 for (nslot = 0, i = 0; i < csn; i++) {
667 struct cpuset *a = csa[i];
668 struct cpumask *dp;
669 int apn = a->pn;
670
671 if (apn < 0) {
672 /* Skip completed partitions */
673 continue;
674 }
675
676 dp = doms[nslot];
677
678 if (nslot == ndoms) {
679 static int warnings = 10;
680 if (warnings) {
681 printk(KERN_WARNING
682 "rebuild_sched_domains confused:"
683 " nslot %d, ndoms %d, csn %d, i %d,"
684 " apn %d\n",
685 nslot, ndoms, csn, i, apn);
686 warnings--;
687 }
688 continue;
689 }
690
691 cpumask_clear(dp);
692 if (dattr)
693 *(dattr + nslot) = SD_ATTR_INIT;
694 for (j = i; j < csn; j++) {
695 struct cpuset *b = csa[j];
696
697 if (apn == b->pn) {
698 cpumask_or(dp, dp, b->cpus_allowed);
699 if (dattr)
700 update_domain_attr_tree(dattr + nslot, b);
701
702 /* Done with this partition */
703 b->pn = -1;
704 }
705 }
706 nslot++;
707 }
708 BUG_ON(nslot != ndoms);
709
710 done:
711 kfree(csa);
712
713 /*
714 * Fallback to the default domain if kmalloc() failed.
715 * See comments in partition_sched_domains().
716 */
717 if (doms == NULL)
718 ndoms = 1;
719
720 *domains = doms;
721 *attributes = dattr;
722 return ndoms;
723 }
724
725 /*
726 * Rebuild scheduler domains.
727 *
728 * Call with neither cgroup_mutex held nor within get_online_cpus().
729 * Takes both cgroup_mutex and get_online_cpus().
730 *
731 * Cannot be directly called from cpuset code handling changes
732 * to the cpuset pseudo-filesystem, because it cannot be called
733 * from code that already holds cgroup_mutex.
734 */
735 static void do_rebuild_sched_domains(struct work_struct *unused)
736 {
737 struct sched_domain_attr *attr;
738 cpumask_var_t *doms;
739 int ndoms;
740
741 get_online_cpus();
742
743 /* Generate domain masks and attrs */
744 cgroup_lock();
745 ndoms = generate_sched_domains(&doms, &attr);
746 cgroup_unlock();
747
748 /* Have scheduler rebuild the domains */
749 partition_sched_domains(ndoms, doms, attr);
750
751 put_online_cpus();
752 }
753 #else /* !CONFIG_SMP */
754 static void do_rebuild_sched_domains(struct work_struct *unused)
755 {
756 }
757
758 static int generate_sched_domains(cpumask_var_t **domains,
759 struct sched_domain_attr **attributes)
760 {
761 *domains = NULL;
762 return 1;
763 }
764 #endif /* CONFIG_SMP */
765
766 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
767
768 /*
769 * Rebuild scheduler domains, asynchronously via workqueue.
770 *
771 * If the flag 'sched_load_balance' of any cpuset with non-empty
772 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
773 * which has that flag enabled, or if any cpuset with a non-empty
774 * 'cpus' is removed, then call this routine to rebuild the
775 * scheduler's dynamic sched domains.
776 *
777 * The rebuild_sched_domains() and partition_sched_domains()
778 * routines must nest cgroup_lock() inside get_online_cpus(),
779 * but such cpuset changes as these must nest that locking the
780 * other way, holding cgroup_lock() for much of the code.
781 *
782 * So in order to avoid an ABBA deadlock, the cpuset code handling
783 * these user changes delegates the actual sched domain rebuilding
784 * to a separate workqueue thread, which ends up processing the
785 * above do_rebuild_sched_domains() function.
786 */
787 static void async_rebuild_sched_domains(void)
788 {
789 queue_work(cpuset_wq, &rebuild_sched_domains_work);
790 }
791
792 /*
793 * Accomplishes the same scheduler domain rebuild as the above
794 * async_rebuild_sched_domains(), however it directly calls the
795 * rebuild routine synchronously rather than calling it via an
796 * asynchronous work thread.
797 *
798 * This can only be called from code that is not holding
799 * cgroup_mutex (not nested in a cgroup_lock() call.)
800 */
801 void rebuild_sched_domains(void)
802 {
803 do_rebuild_sched_domains(NULL);
804 }
805
806 /**
807 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
808 * @tsk: task to test
809 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
810 *
811 * Call with cgroup_mutex held. May take callback_mutex during call.
812 * Called for each task in a cgroup by cgroup_scan_tasks().
813 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
814 * words, if its mask is not equal to its cpuset's mask).
815 */
816 static int cpuset_test_cpumask(struct task_struct *tsk,
817 struct cgroup_scanner *scan)
818 {
819 return !cpumask_equal(&tsk->cpus_allowed,
820 (cgroup_cs(scan->cg))->cpus_allowed);
821 }
822
823 /**
824 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
825 * @tsk: task to test
826 * @scan: struct cgroup_scanner containing the cgroup of the task
827 *
828 * Called by cgroup_scan_tasks() for each task in a cgroup whose
829 * cpus_allowed mask needs to be changed.
830 *
831 * We don't need to re-check for the cgroup/cpuset membership, since we're
832 * holding cgroup_lock() at this point.
833 */
834 static void cpuset_change_cpumask(struct task_struct *tsk,
835 struct cgroup_scanner *scan)
836 {
837 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
838 }
839
840 /**
841 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
842 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
843 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
844 *
845 * Called with cgroup_mutex held
846 *
847 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
848 * calling callback functions for each.
849 *
850 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
851 * if @heap != NULL.
852 */
853 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
854 {
855 struct cgroup_scanner scan;
856
857 scan.cg = cs->css.cgroup;
858 scan.test_task = cpuset_test_cpumask;
859 scan.process_task = cpuset_change_cpumask;
860 scan.heap = heap;
861 cgroup_scan_tasks(&scan);
862 }
863
864 /**
865 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
866 * @cs: the cpuset to consider
867 * @buf: buffer of cpu numbers written to this cpuset
868 */
869 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
870 const char *buf)
871 {
872 struct ptr_heap heap;
873 int retval;
874 int is_load_balanced;
875
876 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
877 if (cs == &top_cpuset)
878 return -EACCES;
879
880 /*
881 * An empty cpus_allowed is ok only if the cpuset has no tasks.
882 * Since cpulist_parse() fails on an empty mask, we special case
883 * that parsing. The validate_change() call ensures that cpusets
884 * with tasks have cpus.
885 */
886 if (!*buf) {
887 cpumask_clear(trialcs->cpus_allowed);
888 } else {
889 retval = cpulist_parse(buf, trialcs->cpus_allowed);
890 if (retval < 0)
891 return retval;
892
893 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
894 return -EINVAL;
895 }
896 retval = validate_change(cs, trialcs);
897 if (retval < 0)
898 return retval;
899
900 /* Nothing to do if the cpus didn't change */
901 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
902 return 0;
903
904 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
905 if (retval)
906 return retval;
907
908 is_load_balanced = is_sched_load_balance(trialcs);
909
910 mutex_lock(&callback_mutex);
911 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
912 mutex_unlock(&callback_mutex);
913
914 /*
915 * Scan tasks in the cpuset, and update the cpumasks of any
916 * that need an update.
917 */
918 update_tasks_cpumask(cs, &heap);
919
920 heap_free(&heap);
921
922 if (is_load_balanced)
923 async_rebuild_sched_domains();
924 return 0;
925 }
926
927 /*
928 * cpuset_migrate_mm
929 *
930 * Migrate memory region from one set of nodes to another.
931 *
932 * Temporarilly set tasks mems_allowed to target nodes of migration,
933 * so that the migration code can allocate pages on these nodes.
934 *
935 * Call holding cgroup_mutex, so current's cpuset won't change
936 * during this call, as manage_mutex holds off any cpuset_attach()
937 * calls. Therefore we don't need to take task_lock around the
938 * call to guarantee_online_mems(), as we know no one is changing
939 * our task's cpuset.
940 *
941 * While the mm_struct we are migrating is typically from some
942 * other task, the task_struct mems_allowed that we are hacking
943 * is for our current task, which must allocate new pages for that
944 * migrating memory region.
945 */
946
947 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
948 const nodemask_t *to)
949 {
950 struct task_struct *tsk = current;
951
952 tsk->mems_allowed = *to;
953
954 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
955
956 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
957 }
958
959 /*
960 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
961 * @tsk: the task to change
962 * @newmems: new nodes that the task will be set
963 *
964 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
965 * we structure updates as setting all new allowed nodes, then clearing newly
966 * disallowed ones.
967 */
968 static void cpuset_change_task_nodemask(struct task_struct *tsk,
969 nodemask_t *newmems)
970 {
971 bool need_loop;
972
973 /*
974 * Allow tasks that have access to memory reserves because they have
975 * been OOM killed to get memory anywhere.
976 */
977 if (unlikely(test_thread_flag(TIF_MEMDIE)))
978 return;
979 if (current->flags & PF_EXITING) /* Let dying task have memory */
980 return;
981
982 task_lock(tsk);
983 /*
984 * Determine if a loop is necessary if another thread is doing
985 * get_mems_allowed(). If at least one node remains unchanged and
986 * tsk does not have a mempolicy, then an empty nodemask will not be
987 * possible when mems_allowed is larger than a word.
988 */
989 need_loop = task_has_mempolicy(tsk) ||
990 !nodes_intersects(*newmems, tsk->mems_allowed);
991
992 if (need_loop)
993 write_seqcount_begin(&tsk->mems_allowed_seq);
994
995 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
996 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
997
998 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
999 tsk->mems_allowed = *newmems;
1000
1001 if (need_loop)
1002 write_seqcount_end(&tsk->mems_allowed_seq);
1003
1004 task_unlock(tsk);
1005 }
1006
1007 /*
1008 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1009 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1010 * memory_migrate flag is set. Called with cgroup_mutex held.
1011 */
1012 static void cpuset_change_nodemask(struct task_struct *p,
1013 struct cgroup_scanner *scan)
1014 {
1015 struct mm_struct *mm;
1016 struct cpuset *cs;
1017 int migrate;
1018 const nodemask_t *oldmem = scan->data;
1019 static nodemask_t newmems; /* protected by cgroup_mutex */
1020
1021 cs = cgroup_cs(scan->cg);
1022 guarantee_online_mems(cs, &newmems);
1023
1024 cpuset_change_task_nodemask(p, &newmems);
1025
1026 mm = get_task_mm(p);
1027 if (!mm)
1028 return;
1029
1030 migrate = is_memory_migrate(cs);
1031
1032 mpol_rebind_mm(mm, &cs->mems_allowed);
1033 if (migrate)
1034 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1035 mmput(mm);
1036 }
1037
1038 static void *cpuset_being_rebound;
1039
1040 /**
1041 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1042 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1043 * @oldmem: old mems_allowed of cpuset cs
1044 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1045 *
1046 * Called with cgroup_mutex held
1047 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1048 * if @heap != NULL.
1049 */
1050 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1051 struct ptr_heap *heap)
1052 {
1053 struct cgroup_scanner scan;
1054
1055 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1056
1057 scan.cg = cs->css.cgroup;
1058 scan.test_task = NULL;
1059 scan.process_task = cpuset_change_nodemask;
1060 scan.heap = heap;
1061 scan.data = (nodemask_t *)oldmem;
1062
1063 /*
1064 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1065 * take while holding tasklist_lock. Forks can happen - the
1066 * mpol_dup() cpuset_being_rebound check will catch such forks,
1067 * and rebind their vma mempolicies too. Because we still hold
1068 * the global cgroup_mutex, we know that no other rebind effort
1069 * will be contending for the global variable cpuset_being_rebound.
1070 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1071 * is idempotent. Also migrate pages in each mm to new nodes.
1072 */
1073 cgroup_scan_tasks(&scan);
1074
1075 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1076 cpuset_being_rebound = NULL;
1077 }
1078
1079 /*
1080 * Handle user request to change the 'mems' memory placement
1081 * of a cpuset. Needs to validate the request, update the
1082 * cpusets mems_allowed, and for each task in the cpuset,
1083 * update mems_allowed and rebind task's mempolicy and any vma
1084 * mempolicies and if the cpuset is marked 'memory_migrate',
1085 * migrate the tasks pages to the new memory.
1086 *
1087 * Call with cgroup_mutex held. May take callback_mutex during call.
1088 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1089 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1090 * their mempolicies to the cpusets new mems_allowed.
1091 */
1092 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1093 const char *buf)
1094 {
1095 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1096 int retval;
1097 struct ptr_heap heap;
1098
1099 if (!oldmem)
1100 return -ENOMEM;
1101
1102 /*
1103 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1104 * it's read-only
1105 */
1106 if (cs == &top_cpuset) {
1107 retval = -EACCES;
1108 goto done;
1109 }
1110
1111 /*
1112 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1113 * Since nodelist_parse() fails on an empty mask, we special case
1114 * that parsing. The validate_change() call ensures that cpusets
1115 * with tasks have memory.
1116 */
1117 if (!*buf) {
1118 nodes_clear(trialcs->mems_allowed);
1119 } else {
1120 retval = nodelist_parse(buf, trialcs->mems_allowed);
1121 if (retval < 0)
1122 goto done;
1123
1124 if (!nodes_subset(trialcs->mems_allowed,
1125 node_states[N_MEMORY])) {
1126 retval = -EINVAL;
1127 goto done;
1128 }
1129 }
1130 *oldmem = cs->mems_allowed;
1131 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1132 retval = 0; /* Too easy - nothing to do */
1133 goto done;
1134 }
1135 retval = validate_change(cs, trialcs);
1136 if (retval < 0)
1137 goto done;
1138
1139 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1140 if (retval < 0)
1141 goto done;
1142
1143 mutex_lock(&callback_mutex);
1144 cs->mems_allowed = trialcs->mems_allowed;
1145 mutex_unlock(&callback_mutex);
1146
1147 update_tasks_nodemask(cs, oldmem, &heap);
1148
1149 heap_free(&heap);
1150 done:
1151 NODEMASK_FREE(oldmem);
1152 return retval;
1153 }
1154
1155 int current_cpuset_is_being_rebound(void)
1156 {
1157 return task_cs(current) == cpuset_being_rebound;
1158 }
1159
1160 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1161 {
1162 #ifdef CONFIG_SMP
1163 if (val < -1 || val >= sched_domain_level_max)
1164 return -EINVAL;
1165 #endif
1166
1167 if (val != cs->relax_domain_level) {
1168 cs->relax_domain_level = val;
1169 if (!cpumask_empty(cs->cpus_allowed) &&
1170 is_sched_load_balance(cs))
1171 async_rebuild_sched_domains();
1172 }
1173
1174 return 0;
1175 }
1176
1177 /*
1178 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1179 * @tsk: task to be updated
1180 * @scan: struct cgroup_scanner containing the cgroup of the task
1181 *
1182 * Called by cgroup_scan_tasks() for each task in a cgroup.
1183 *
1184 * We don't need to re-check for the cgroup/cpuset membership, since we're
1185 * holding cgroup_lock() at this point.
1186 */
1187 static void cpuset_change_flag(struct task_struct *tsk,
1188 struct cgroup_scanner *scan)
1189 {
1190 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1191 }
1192
1193 /*
1194 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1195 * @cs: the cpuset in which each task's spread flags needs to be changed
1196 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1197 *
1198 * Called with cgroup_mutex held
1199 *
1200 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1201 * calling callback functions for each.
1202 *
1203 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1204 * if @heap != NULL.
1205 */
1206 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1207 {
1208 struct cgroup_scanner scan;
1209
1210 scan.cg = cs->css.cgroup;
1211 scan.test_task = NULL;
1212 scan.process_task = cpuset_change_flag;
1213 scan.heap = heap;
1214 cgroup_scan_tasks(&scan);
1215 }
1216
1217 /*
1218 * update_flag - read a 0 or a 1 in a file and update associated flag
1219 * bit: the bit to update (see cpuset_flagbits_t)
1220 * cs: the cpuset to update
1221 * turning_on: whether the flag is being set or cleared
1222 *
1223 * Call with cgroup_mutex held.
1224 */
1225
1226 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1227 int turning_on)
1228 {
1229 struct cpuset *trialcs;
1230 int balance_flag_changed;
1231 int spread_flag_changed;
1232 struct ptr_heap heap;
1233 int err;
1234
1235 trialcs = alloc_trial_cpuset(cs);
1236 if (!trialcs)
1237 return -ENOMEM;
1238
1239 if (turning_on)
1240 set_bit(bit, &trialcs->flags);
1241 else
1242 clear_bit(bit, &trialcs->flags);
1243
1244 err = validate_change(cs, trialcs);
1245 if (err < 0)
1246 goto out;
1247
1248 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1249 if (err < 0)
1250 goto out;
1251
1252 balance_flag_changed = (is_sched_load_balance(cs) !=
1253 is_sched_load_balance(trialcs));
1254
1255 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1256 || (is_spread_page(cs) != is_spread_page(trialcs)));
1257
1258 mutex_lock(&callback_mutex);
1259 cs->flags = trialcs->flags;
1260 mutex_unlock(&callback_mutex);
1261
1262 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1263 async_rebuild_sched_domains();
1264
1265 if (spread_flag_changed)
1266 update_tasks_flags(cs, &heap);
1267 heap_free(&heap);
1268 out:
1269 free_trial_cpuset(trialcs);
1270 return err;
1271 }
1272
1273 /*
1274 * Frequency meter - How fast is some event occurring?
1275 *
1276 * These routines manage a digitally filtered, constant time based,
1277 * event frequency meter. There are four routines:
1278 * fmeter_init() - initialize a frequency meter.
1279 * fmeter_markevent() - called each time the event happens.
1280 * fmeter_getrate() - returns the recent rate of such events.
1281 * fmeter_update() - internal routine used to update fmeter.
1282 *
1283 * A common data structure is passed to each of these routines,
1284 * which is used to keep track of the state required to manage the
1285 * frequency meter and its digital filter.
1286 *
1287 * The filter works on the number of events marked per unit time.
1288 * The filter is single-pole low-pass recursive (IIR). The time unit
1289 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1290 * simulate 3 decimal digits of precision (multiplied by 1000).
1291 *
1292 * With an FM_COEF of 933, and a time base of 1 second, the filter
1293 * has a half-life of 10 seconds, meaning that if the events quit
1294 * happening, then the rate returned from the fmeter_getrate()
1295 * will be cut in half each 10 seconds, until it converges to zero.
1296 *
1297 * It is not worth doing a real infinitely recursive filter. If more
1298 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1299 * just compute FM_MAXTICKS ticks worth, by which point the level
1300 * will be stable.
1301 *
1302 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1303 * arithmetic overflow in the fmeter_update() routine.
1304 *
1305 * Given the simple 32 bit integer arithmetic used, this meter works
1306 * best for reporting rates between one per millisecond (msec) and
1307 * one per 32 (approx) seconds. At constant rates faster than one
1308 * per msec it maxes out at values just under 1,000,000. At constant
1309 * rates between one per msec, and one per second it will stabilize
1310 * to a value N*1000, where N is the rate of events per second.
1311 * At constant rates between one per second and one per 32 seconds,
1312 * it will be choppy, moving up on the seconds that have an event,
1313 * and then decaying until the next event. At rates slower than
1314 * about one in 32 seconds, it decays all the way back to zero between
1315 * each event.
1316 */
1317
1318 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1319 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1320 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1321 #define FM_SCALE 1000 /* faux fixed point scale */
1322
1323 /* Initialize a frequency meter */
1324 static void fmeter_init(struct fmeter *fmp)
1325 {
1326 fmp->cnt = 0;
1327 fmp->val = 0;
1328 fmp->time = 0;
1329 spin_lock_init(&fmp->lock);
1330 }
1331
1332 /* Internal meter update - process cnt events and update value */
1333 static void fmeter_update(struct fmeter *fmp)
1334 {
1335 time_t now = get_seconds();
1336 time_t ticks = now - fmp->time;
1337
1338 if (ticks == 0)
1339 return;
1340
1341 ticks = min(FM_MAXTICKS, ticks);
1342 while (ticks-- > 0)
1343 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1344 fmp->time = now;
1345
1346 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1347 fmp->cnt = 0;
1348 }
1349
1350 /* Process any previous ticks, then bump cnt by one (times scale). */
1351 static void fmeter_markevent(struct fmeter *fmp)
1352 {
1353 spin_lock(&fmp->lock);
1354 fmeter_update(fmp);
1355 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1356 spin_unlock(&fmp->lock);
1357 }
1358
1359 /* Process any previous ticks, then return current value. */
1360 static int fmeter_getrate(struct fmeter *fmp)
1361 {
1362 int val;
1363
1364 spin_lock(&fmp->lock);
1365 fmeter_update(fmp);
1366 val = fmp->val;
1367 spin_unlock(&fmp->lock);
1368 return val;
1369 }
1370
1371 /*
1372 * Protected by cgroup_lock. The nodemasks must be stored globally because
1373 * dynamically allocating them is not allowed in can_attach, and they must
1374 * persist until attach.
1375 */
1376 static cpumask_var_t cpus_attach;
1377 static nodemask_t cpuset_attach_nodemask_from;
1378 static nodemask_t cpuset_attach_nodemask_to;
1379
1380 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1381 static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1382 {
1383 struct cpuset *cs = cgroup_cs(cgrp);
1384 struct task_struct *task;
1385 int ret;
1386
1387 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1388 return -ENOSPC;
1389
1390 cgroup_taskset_for_each(task, cgrp, tset) {
1391 /*
1392 * Kthreads bound to specific cpus cannot be moved to a new
1393 * cpuset; we cannot change their cpu affinity and
1394 * isolating such threads by their set of allowed nodes is
1395 * unnecessary. Thus, cpusets are not applicable for such
1396 * threads. This prevents checking for success of
1397 * set_cpus_allowed_ptr() on all attached tasks before
1398 * cpus_allowed may be changed.
1399 */
1400 if (task->flags & PF_THREAD_BOUND)
1401 return -EINVAL;
1402 if ((ret = security_task_setscheduler(task)))
1403 return ret;
1404 }
1405
1406 /* prepare for attach */
1407 if (cs == &top_cpuset)
1408 cpumask_copy(cpus_attach, cpu_possible_mask);
1409 else
1410 guarantee_online_cpus(cs, cpus_attach);
1411
1412 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1413
1414 return 0;
1415 }
1416
1417 static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1418 {
1419 struct mm_struct *mm;
1420 struct task_struct *task;
1421 struct task_struct *leader = cgroup_taskset_first(tset);
1422 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1423 struct cpuset *cs = cgroup_cs(cgrp);
1424 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1425
1426 cgroup_taskset_for_each(task, cgrp, tset) {
1427 /*
1428 * can_attach beforehand should guarantee that this doesn't
1429 * fail. TODO: have a better way to handle failure here
1430 */
1431 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1432
1433 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1434 cpuset_update_task_spread_flag(cs, task);
1435 }
1436
1437 /*
1438 * Change mm, possibly for multiple threads in a threadgroup. This is
1439 * expensive and may sleep.
1440 */
1441 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1442 cpuset_attach_nodemask_to = cs->mems_allowed;
1443 mm = get_task_mm(leader);
1444 if (mm) {
1445 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1446 if (is_memory_migrate(cs))
1447 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1448 &cpuset_attach_nodemask_to);
1449 mmput(mm);
1450 }
1451 }
1452
1453 /* The various types of files and directories in a cpuset file system */
1454
1455 typedef enum {
1456 FILE_MEMORY_MIGRATE,
1457 FILE_CPULIST,
1458 FILE_MEMLIST,
1459 FILE_CPU_EXCLUSIVE,
1460 FILE_MEM_EXCLUSIVE,
1461 FILE_MEM_HARDWALL,
1462 FILE_SCHED_LOAD_BALANCE,
1463 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1464 FILE_MEMORY_PRESSURE_ENABLED,
1465 FILE_MEMORY_PRESSURE,
1466 FILE_SPREAD_PAGE,
1467 FILE_SPREAD_SLAB,
1468 } cpuset_filetype_t;
1469
1470 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1471 {
1472 int retval = 0;
1473 struct cpuset *cs = cgroup_cs(cgrp);
1474 cpuset_filetype_t type = cft->private;
1475
1476 if (!cgroup_lock_live_group(cgrp))
1477 return -ENODEV;
1478
1479 switch (type) {
1480 case FILE_CPU_EXCLUSIVE:
1481 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1482 break;
1483 case FILE_MEM_EXCLUSIVE:
1484 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1485 break;
1486 case FILE_MEM_HARDWALL:
1487 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1488 break;
1489 case FILE_SCHED_LOAD_BALANCE:
1490 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1491 break;
1492 case FILE_MEMORY_MIGRATE:
1493 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1494 break;
1495 case FILE_MEMORY_PRESSURE_ENABLED:
1496 cpuset_memory_pressure_enabled = !!val;
1497 break;
1498 case FILE_MEMORY_PRESSURE:
1499 retval = -EACCES;
1500 break;
1501 case FILE_SPREAD_PAGE:
1502 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1503 break;
1504 case FILE_SPREAD_SLAB:
1505 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1506 break;
1507 default:
1508 retval = -EINVAL;
1509 break;
1510 }
1511 cgroup_unlock();
1512 return retval;
1513 }
1514
1515 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1516 {
1517 int retval = 0;
1518 struct cpuset *cs = cgroup_cs(cgrp);
1519 cpuset_filetype_t type = cft->private;
1520
1521 if (!cgroup_lock_live_group(cgrp))
1522 return -ENODEV;
1523
1524 switch (type) {
1525 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1526 retval = update_relax_domain_level(cs, val);
1527 break;
1528 default:
1529 retval = -EINVAL;
1530 break;
1531 }
1532 cgroup_unlock();
1533 return retval;
1534 }
1535
1536 /*
1537 * Common handling for a write to a "cpus" or "mems" file.
1538 */
1539 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1540 const char *buf)
1541 {
1542 int retval = 0;
1543 struct cpuset *cs = cgroup_cs(cgrp);
1544 struct cpuset *trialcs;
1545
1546 if (!cgroup_lock_live_group(cgrp))
1547 return -ENODEV;
1548
1549 trialcs = alloc_trial_cpuset(cs);
1550 if (!trialcs) {
1551 retval = -ENOMEM;
1552 goto out;
1553 }
1554
1555 switch (cft->private) {
1556 case FILE_CPULIST:
1557 retval = update_cpumask(cs, trialcs, buf);
1558 break;
1559 case FILE_MEMLIST:
1560 retval = update_nodemask(cs, trialcs, buf);
1561 break;
1562 default:
1563 retval = -EINVAL;
1564 break;
1565 }
1566
1567 free_trial_cpuset(trialcs);
1568 out:
1569 cgroup_unlock();
1570 return retval;
1571 }
1572
1573 /*
1574 * These ascii lists should be read in a single call, by using a user
1575 * buffer large enough to hold the entire map. If read in smaller
1576 * chunks, there is no guarantee of atomicity. Since the display format
1577 * used, list of ranges of sequential numbers, is variable length,
1578 * and since these maps can change value dynamically, one could read
1579 * gibberish by doing partial reads while a list was changing.
1580 * A single large read to a buffer that crosses a page boundary is
1581 * ok, because the result being copied to user land is not recomputed
1582 * across a page fault.
1583 */
1584
1585 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1586 {
1587 size_t count;
1588
1589 mutex_lock(&callback_mutex);
1590 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1591 mutex_unlock(&callback_mutex);
1592
1593 return count;
1594 }
1595
1596 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1597 {
1598 size_t count;
1599
1600 mutex_lock(&callback_mutex);
1601 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1602 mutex_unlock(&callback_mutex);
1603
1604 return count;
1605 }
1606
1607 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1608 struct cftype *cft,
1609 struct file *file,
1610 char __user *buf,
1611 size_t nbytes, loff_t *ppos)
1612 {
1613 struct cpuset *cs = cgroup_cs(cont);
1614 cpuset_filetype_t type = cft->private;
1615 char *page;
1616 ssize_t retval = 0;
1617 char *s;
1618
1619 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1620 return -ENOMEM;
1621
1622 s = page;
1623
1624 switch (type) {
1625 case FILE_CPULIST:
1626 s += cpuset_sprintf_cpulist(s, cs);
1627 break;
1628 case FILE_MEMLIST:
1629 s += cpuset_sprintf_memlist(s, cs);
1630 break;
1631 default:
1632 retval = -EINVAL;
1633 goto out;
1634 }
1635 *s++ = '\n';
1636
1637 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1638 out:
1639 free_page((unsigned long)page);
1640 return retval;
1641 }
1642
1643 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1644 {
1645 struct cpuset *cs = cgroup_cs(cont);
1646 cpuset_filetype_t type = cft->private;
1647 switch (type) {
1648 case FILE_CPU_EXCLUSIVE:
1649 return is_cpu_exclusive(cs);
1650 case FILE_MEM_EXCLUSIVE:
1651 return is_mem_exclusive(cs);
1652 case FILE_MEM_HARDWALL:
1653 return is_mem_hardwall(cs);
1654 case FILE_SCHED_LOAD_BALANCE:
1655 return is_sched_load_balance(cs);
1656 case FILE_MEMORY_MIGRATE:
1657 return is_memory_migrate(cs);
1658 case FILE_MEMORY_PRESSURE_ENABLED:
1659 return cpuset_memory_pressure_enabled;
1660 case FILE_MEMORY_PRESSURE:
1661 return fmeter_getrate(&cs->fmeter);
1662 case FILE_SPREAD_PAGE:
1663 return is_spread_page(cs);
1664 case FILE_SPREAD_SLAB:
1665 return is_spread_slab(cs);
1666 default:
1667 BUG();
1668 }
1669
1670 /* Unreachable but makes gcc happy */
1671 return 0;
1672 }
1673
1674 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1675 {
1676 struct cpuset *cs = cgroup_cs(cont);
1677 cpuset_filetype_t type = cft->private;
1678 switch (type) {
1679 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1680 return cs->relax_domain_level;
1681 default:
1682 BUG();
1683 }
1684
1685 /* Unrechable but makes gcc happy */
1686 return 0;
1687 }
1688
1689
1690 /*
1691 * for the common functions, 'private' gives the type of file
1692 */
1693
1694 static struct cftype files[] = {
1695 {
1696 .name = "cpus",
1697 .read = cpuset_common_file_read,
1698 .write_string = cpuset_write_resmask,
1699 .max_write_len = (100U + 6 * NR_CPUS),
1700 .private = FILE_CPULIST,
1701 },
1702
1703 {
1704 .name = "mems",
1705 .read = cpuset_common_file_read,
1706 .write_string = cpuset_write_resmask,
1707 .max_write_len = (100U + 6 * MAX_NUMNODES),
1708 .private = FILE_MEMLIST,
1709 },
1710
1711 {
1712 .name = "cpu_exclusive",
1713 .read_u64 = cpuset_read_u64,
1714 .write_u64 = cpuset_write_u64,
1715 .private = FILE_CPU_EXCLUSIVE,
1716 },
1717
1718 {
1719 .name = "mem_exclusive",
1720 .read_u64 = cpuset_read_u64,
1721 .write_u64 = cpuset_write_u64,
1722 .private = FILE_MEM_EXCLUSIVE,
1723 },
1724
1725 {
1726 .name = "mem_hardwall",
1727 .read_u64 = cpuset_read_u64,
1728 .write_u64 = cpuset_write_u64,
1729 .private = FILE_MEM_HARDWALL,
1730 },
1731
1732 {
1733 .name = "sched_load_balance",
1734 .read_u64 = cpuset_read_u64,
1735 .write_u64 = cpuset_write_u64,
1736 .private = FILE_SCHED_LOAD_BALANCE,
1737 },
1738
1739 {
1740 .name = "sched_relax_domain_level",
1741 .read_s64 = cpuset_read_s64,
1742 .write_s64 = cpuset_write_s64,
1743 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1744 },
1745
1746 {
1747 .name = "memory_migrate",
1748 .read_u64 = cpuset_read_u64,
1749 .write_u64 = cpuset_write_u64,
1750 .private = FILE_MEMORY_MIGRATE,
1751 },
1752
1753 {
1754 .name = "memory_pressure",
1755 .read_u64 = cpuset_read_u64,
1756 .write_u64 = cpuset_write_u64,
1757 .private = FILE_MEMORY_PRESSURE,
1758 .mode = S_IRUGO,
1759 },
1760
1761 {
1762 .name = "memory_spread_page",
1763 .read_u64 = cpuset_read_u64,
1764 .write_u64 = cpuset_write_u64,
1765 .private = FILE_SPREAD_PAGE,
1766 },
1767
1768 {
1769 .name = "memory_spread_slab",
1770 .read_u64 = cpuset_read_u64,
1771 .write_u64 = cpuset_write_u64,
1772 .private = FILE_SPREAD_SLAB,
1773 },
1774
1775 {
1776 .name = "memory_pressure_enabled",
1777 .flags = CFTYPE_ONLY_ON_ROOT,
1778 .read_u64 = cpuset_read_u64,
1779 .write_u64 = cpuset_write_u64,
1780 .private = FILE_MEMORY_PRESSURE_ENABLED,
1781 },
1782
1783 { } /* terminate */
1784 };
1785
1786 /*
1787 * cpuset_css_alloc - allocate a cpuset css
1788 * cont: control group that the new cpuset will be part of
1789 */
1790
1791 static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1792 {
1793 struct cgroup *parent_cg = cont->parent;
1794 struct cgroup *tmp_cg;
1795 struct cpuset *parent, *cs;
1796
1797 if (!parent_cg)
1798 return &top_cpuset.css;
1799 parent = cgroup_cs(parent_cg);
1800
1801 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1802 if (!cs)
1803 return ERR_PTR(-ENOMEM);
1804 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1805 kfree(cs);
1806 return ERR_PTR(-ENOMEM);
1807 }
1808
1809 cs->flags = 0;
1810 if (is_spread_page(parent))
1811 set_bit(CS_SPREAD_PAGE, &cs->flags);
1812 if (is_spread_slab(parent))
1813 set_bit(CS_SPREAD_SLAB, &cs->flags);
1814 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1815 cpumask_clear(cs->cpus_allowed);
1816 nodes_clear(cs->mems_allowed);
1817 fmeter_init(&cs->fmeter);
1818 cs->relax_domain_level = -1;
1819
1820 cs->parent = parent;
1821 number_of_cpusets++;
1822
1823 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cont->flags))
1824 goto skip_clone;
1825
1826 /*
1827 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1828 * set. This flag handling is implemented in cgroup core for
1829 * histrical reasons - the flag may be specified during mount.
1830 *
1831 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1832 * refuse to clone the configuration - thereby refusing the task to
1833 * be entered, and as a result refusing the sys_unshare() or
1834 * clone() which initiated it. If this becomes a problem for some
1835 * users who wish to allow that scenario, then this could be
1836 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1837 * (and likewise for mems) to the new cgroup.
1838 */
1839 list_for_each_entry(tmp_cg, &parent_cg->children, sibling) {
1840 struct cpuset *tmp_cs = cgroup_cs(tmp_cg);
1841
1842 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs))
1843 goto skip_clone;
1844 }
1845
1846 mutex_lock(&callback_mutex);
1847 cs->mems_allowed = parent->mems_allowed;
1848 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1849 mutex_unlock(&callback_mutex);
1850 skip_clone:
1851 return &cs->css;
1852 }
1853
1854 /*
1855 * If the cpuset being removed has its flag 'sched_load_balance'
1856 * enabled, then simulate turning sched_load_balance off, which
1857 * will call async_rebuild_sched_domains().
1858 */
1859
1860 static void cpuset_css_free(struct cgroup *cont)
1861 {
1862 struct cpuset *cs = cgroup_cs(cont);
1863
1864 if (is_sched_load_balance(cs))
1865 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1866
1867 number_of_cpusets--;
1868 free_cpumask_var(cs->cpus_allowed);
1869 kfree(cs);
1870 }
1871
1872 struct cgroup_subsys cpuset_subsys = {
1873 .name = "cpuset",
1874 .css_alloc = cpuset_css_alloc,
1875 .css_free = cpuset_css_free,
1876 .can_attach = cpuset_can_attach,
1877 .attach = cpuset_attach,
1878 .subsys_id = cpuset_subsys_id,
1879 .base_cftypes = files,
1880 .early_init = 1,
1881 };
1882
1883 /**
1884 * cpuset_init - initialize cpusets at system boot
1885 *
1886 * Description: Initialize top_cpuset and the cpuset internal file system,
1887 **/
1888
1889 int __init cpuset_init(void)
1890 {
1891 int err = 0;
1892
1893 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1894 BUG();
1895
1896 cpumask_setall(top_cpuset.cpus_allowed);
1897 nodes_setall(top_cpuset.mems_allowed);
1898
1899 fmeter_init(&top_cpuset.fmeter);
1900 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1901 top_cpuset.relax_domain_level = -1;
1902
1903 err = register_filesystem(&cpuset_fs_type);
1904 if (err < 0)
1905 return err;
1906
1907 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1908 BUG();
1909
1910 number_of_cpusets = 1;
1911 return 0;
1912 }
1913
1914 /**
1915 * cpuset_do_move_task - move a given task to another cpuset
1916 * @tsk: pointer to task_struct the task to move
1917 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1918 *
1919 * Called by cgroup_scan_tasks() for each task in a cgroup.
1920 * Return nonzero to stop the walk through the tasks.
1921 */
1922 static void cpuset_do_move_task(struct task_struct *tsk,
1923 struct cgroup_scanner *scan)
1924 {
1925 struct cgroup *new_cgroup = scan->data;
1926
1927 cgroup_attach_task(new_cgroup, tsk);
1928 }
1929
1930 /**
1931 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1932 * @from: cpuset in which the tasks currently reside
1933 * @to: cpuset to which the tasks will be moved
1934 *
1935 * Called with cgroup_mutex held
1936 * callback_mutex must not be held, as cpuset_attach() will take it.
1937 *
1938 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1939 * calling callback functions for each.
1940 */
1941 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1942 {
1943 struct cgroup_scanner scan;
1944
1945 scan.cg = from->css.cgroup;
1946 scan.test_task = NULL; /* select all tasks in cgroup */
1947 scan.process_task = cpuset_do_move_task;
1948 scan.heap = NULL;
1949 scan.data = to->css.cgroup;
1950
1951 if (cgroup_scan_tasks(&scan))
1952 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1953 "cgroup_scan_tasks failed\n");
1954 }
1955
1956 /*
1957 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1958 * or memory nodes, we need to walk over the cpuset hierarchy,
1959 * removing that CPU or node from all cpusets. If this removes the
1960 * last CPU or node from a cpuset, then move the tasks in the empty
1961 * cpuset to its next-highest non-empty parent.
1962 *
1963 * Called with cgroup_mutex held
1964 * callback_mutex must not be held, as cpuset_attach() will take it.
1965 */
1966 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1967 {
1968 struct cpuset *parent;
1969
1970 /*
1971 * The cgroup's css_sets list is in use if there are tasks
1972 * in the cpuset; the list is empty if there are none;
1973 * the cs->css.refcnt seems always 0.
1974 */
1975 if (list_empty(&cs->css.cgroup->css_sets))
1976 return;
1977
1978 /*
1979 * Find its next-highest non-empty parent, (top cpuset
1980 * has online cpus, so can't be empty).
1981 */
1982 parent = cs->parent;
1983 while (cpumask_empty(parent->cpus_allowed) ||
1984 nodes_empty(parent->mems_allowed))
1985 parent = parent->parent;
1986
1987 move_member_tasks_to_cpuset(cs, parent);
1988 }
1989
1990 /*
1991 * Helper function to traverse cpusets.
1992 * It can be used to walk the cpuset tree from top to bottom, completing
1993 * one layer before dropping down to the next (thus always processing a
1994 * node before any of its children).
1995 */
1996 static struct cpuset *cpuset_next(struct list_head *queue)
1997 {
1998 struct cpuset *cp;
1999 struct cpuset *child; /* scans child cpusets of cp */
2000 struct cgroup *cont;
2001
2002 if (list_empty(queue))
2003 return NULL;
2004
2005 cp = list_first_entry(queue, struct cpuset, stack_list);
2006 list_del(queue->next);
2007 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2008 child = cgroup_cs(cont);
2009 list_add_tail(&child->stack_list, queue);
2010 }
2011
2012 return cp;
2013 }
2014
2015
2016 /*
2017 * Walk the specified cpuset subtree upon a hotplug operation (CPU/Memory
2018 * online/offline) and update the cpusets accordingly.
2019 * For regular CPU/Mem hotplug, look for empty cpusets; the tasks of such
2020 * cpuset must be moved to a parent cpuset.
2021 *
2022 * Called with cgroup_mutex held. We take callback_mutex to modify
2023 * cpus_allowed and mems_allowed.
2024 *
2025 * This walk processes the tree from top to bottom, completing one layer
2026 * before dropping down to the next. It always processes a node before
2027 * any of its children.
2028 *
2029 * In the case of memory hot-unplug, it will remove nodes from N_MEMORY
2030 * if all present pages from a node are offlined.
2031 */
2032 static void
2033 scan_cpusets_upon_hotplug(struct cpuset *root, enum hotplug_event event)
2034 {
2035 LIST_HEAD(queue);
2036 struct cpuset *cp; /* scans cpusets being updated */
2037 static nodemask_t oldmems; /* protected by cgroup_mutex */
2038
2039 list_add_tail((struct list_head *)&root->stack_list, &queue);
2040
2041 switch (event) {
2042 case CPUSET_CPU_OFFLINE:
2043 while ((cp = cpuset_next(&queue)) != NULL) {
2044
2045 /* Continue past cpusets with all cpus online */
2046 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask))
2047 continue;
2048
2049 /* Remove offline cpus from this cpuset. */
2050 mutex_lock(&callback_mutex);
2051 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2052 cpu_active_mask);
2053 mutex_unlock(&callback_mutex);
2054
2055 /* Move tasks from the empty cpuset to a parent */
2056 if (cpumask_empty(cp->cpus_allowed))
2057 remove_tasks_in_empty_cpuset(cp);
2058 else
2059 update_tasks_cpumask(cp, NULL);
2060 }
2061 break;
2062
2063 case CPUSET_MEM_OFFLINE:
2064 while ((cp = cpuset_next(&queue)) != NULL) {
2065
2066 /* Continue past cpusets with all mems online */
2067 if (nodes_subset(cp->mems_allowed,
2068 node_states[N_MEMORY]))
2069 continue;
2070
2071 oldmems = cp->mems_allowed;
2072
2073 /* Remove offline mems from this cpuset. */
2074 mutex_lock(&callback_mutex);
2075 nodes_and(cp->mems_allowed, cp->mems_allowed,
2076 node_states[N_MEMORY]);
2077 mutex_unlock(&callback_mutex);
2078
2079 /* Move tasks from the empty cpuset to a parent */
2080 if (nodes_empty(cp->mems_allowed))
2081 remove_tasks_in_empty_cpuset(cp);
2082 else
2083 update_tasks_nodemask(cp, &oldmems, NULL);
2084 }
2085 }
2086 }
2087
2088 /*
2089 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2090 * period. This is necessary in order to make cpusets transparent
2091 * (of no affect) on systems that are actively using CPU hotplug
2092 * but making no active use of cpusets.
2093 *
2094 * The only exception to this is suspend/resume, where we don't
2095 * modify cpusets at all.
2096 *
2097 * This routine ensures that top_cpuset.cpus_allowed tracks
2098 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2099 *
2100 * Called within get_online_cpus(). Needs to call cgroup_lock()
2101 * before calling generate_sched_domains().
2102 *
2103 * @cpu_online: Indicates whether this is a CPU online event (true) or
2104 * a CPU offline event (false).
2105 */
2106 void cpuset_update_active_cpus(bool cpu_online)
2107 {
2108 struct sched_domain_attr *attr;
2109 cpumask_var_t *doms;
2110 int ndoms;
2111
2112 cgroup_lock();
2113 mutex_lock(&callback_mutex);
2114 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2115 mutex_unlock(&callback_mutex);
2116
2117 if (!cpu_online)
2118 scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_CPU_OFFLINE);
2119
2120 ndoms = generate_sched_domains(&doms, &attr);
2121 cgroup_unlock();
2122
2123 /* Have scheduler rebuild the domains */
2124 partition_sched_domains(ndoms, doms, attr);
2125 }
2126
2127 #ifdef CONFIG_MEMORY_HOTPLUG
2128 /*
2129 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2130 * Call this routine anytime after node_states[N_MEMORY] changes.
2131 * See cpuset_update_active_cpus() for CPU hotplug handling.
2132 */
2133 static int cpuset_track_online_nodes(struct notifier_block *self,
2134 unsigned long action, void *arg)
2135 {
2136 static nodemask_t oldmems; /* protected by cgroup_mutex */
2137
2138 cgroup_lock();
2139 switch (action) {
2140 case MEM_ONLINE:
2141 oldmems = top_cpuset.mems_allowed;
2142 mutex_lock(&callback_mutex);
2143 top_cpuset.mems_allowed = node_states[N_MEMORY];
2144 mutex_unlock(&callback_mutex);
2145 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2146 break;
2147 case MEM_OFFLINE:
2148 /*
2149 * needn't update top_cpuset.mems_allowed explicitly because
2150 * scan_cpusets_upon_hotplug() will update it.
2151 */
2152 scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_MEM_OFFLINE);
2153 break;
2154 default:
2155 break;
2156 }
2157 cgroup_unlock();
2158
2159 return NOTIFY_OK;
2160 }
2161 #endif
2162
2163 /**
2164 * cpuset_init_smp - initialize cpus_allowed
2165 *
2166 * Description: Finish top cpuset after cpu, node maps are initialized
2167 **/
2168
2169 void __init cpuset_init_smp(void)
2170 {
2171 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2172 top_cpuset.mems_allowed = node_states[N_MEMORY];
2173
2174 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2175
2176 cpuset_wq = create_singlethread_workqueue("cpuset");
2177 BUG_ON(!cpuset_wq);
2178 }
2179
2180 /**
2181 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2182 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2183 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2184 *
2185 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2186 * attached to the specified @tsk. Guaranteed to return some non-empty
2187 * subset of cpu_online_mask, even if this means going outside the
2188 * tasks cpuset.
2189 **/
2190
2191 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2192 {
2193 mutex_lock(&callback_mutex);
2194 task_lock(tsk);
2195 guarantee_online_cpus(task_cs(tsk), pmask);
2196 task_unlock(tsk);
2197 mutex_unlock(&callback_mutex);
2198 }
2199
2200 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2201 {
2202 const struct cpuset *cs;
2203
2204 rcu_read_lock();
2205 cs = task_cs(tsk);
2206 if (cs)
2207 do_set_cpus_allowed(tsk, cs->cpus_allowed);
2208 rcu_read_unlock();
2209
2210 /*
2211 * We own tsk->cpus_allowed, nobody can change it under us.
2212 *
2213 * But we used cs && cs->cpus_allowed lockless and thus can
2214 * race with cgroup_attach_task() or update_cpumask() and get
2215 * the wrong tsk->cpus_allowed. However, both cases imply the
2216 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2217 * which takes task_rq_lock().
2218 *
2219 * If we are called after it dropped the lock we must see all
2220 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2221 * set any mask even if it is not right from task_cs() pov,
2222 * the pending set_cpus_allowed_ptr() will fix things.
2223 *
2224 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2225 * if required.
2226 */
2227 }
2228
2229 void cpuset_init_current_mems_allowed(void)
2230 {
2231 nodes_setall(current->mems_allowed);
2232 }
2233
2234 /**
2235 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2236 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2237 *
2238 * Description: Returns the nodemask_t mems_allowed of the cpuset
2239 * attached to the specified @tsk. Guaranteed to return some non-empty
2240 * subset of node_states[N_MEMORY], even if this means going outside the
2241 * tasks cpuset.
2242 **/
2243
2244 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2245 {
2246 nodemask_t mask;
2247
2248 mutex_lock(&callback_mutex);
2249 task_lock(tsk);
2250 guarantee_online_mems(task_cs(tsk), &mask);
2251 task_unlock(tsk);
2252 mutex_unlock(&callback_mutex);
2253
2254 return mask;
2255 }
2256
2257 /**
2258 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2259 * @nodemask: the nodemask to be checked
2260 *
2261 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2262 */
2263 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2264 {
2265 return nodes_intersects(*nodemask, current->mems_allowed);
2266 }
2267
2268 /*
2269 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2270 * mem_hardwall ancestor to the specified cpuset. Call holding
2271 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2272 * (an unusual configuration), then returns the root cpuset.
2273 */
2274 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2275 {
2276 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2277 cs = cs->parent;
2278 return cs;
2279 }
2280
2281 /**
2282 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2283 * @node: is this an allowed node?
2284 * @gfp_mask: memory allocation flags
2285 *
2286 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2287 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2288 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2289 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2290 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2291 * flag, yes.
2292 * Otherwise, no.
2293 *
2294 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2295 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2296 * might sleep, and might allow a node from an enclosing cpuset.
2297 *
2298 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2299 * cpusets, and never sleeps.
2300 *
2301 * The __GFP_THISNODE placement logic is really handled elsewhere,
2302 * by forcibly using a zonelist starting at a specified node, and by
2303 * (in get_page_from_freelist()) refusing to consider the zones for
2304 * any node on the zonelist except the first. By the time any such
2305 * calls get to this routine, we should just shut up and say 'yes'.
2306 *
2307 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2308 * and do not allow allocations outside the current tasks cpuset
2309 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2310 * GFP_KERNEL allocations are not so marked, so can escape to the
2311 * nearest enclosing hardwalled ancestor cpuset.
2312 *
2313 * Scanning up parent cpusets requires callback_mutex. The
2314 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2315 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2316 * current tasks mems_allowed came up empty on the first pass over
2317 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2318 * cpuset are short of memory, might require taking the callback_mutex
2319 * mutex.
2320 *
2321 * The first call here from mm/page_alloc:get_page_from_freelist()
2322 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2323 * so no allocation on a node outside the cpuset is allowed (unless
2324 * in interrupt, of course).
2325 *
2326 * The second pass through get_page_from_freelist() doesn't even call
2327 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2328 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2329 * in alloc_flags. That logic and the checks below have the combined
2330 * affect that:
2331 * in_interrupt - any node ok (current task context irrelevant)
2332 * GFP_ATOMIC - any node ok
2333 * TIF_MEMDIE - any node ok
2334 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2335 * GFP_USER - only nodes in current tasks mems allowed ok.
2336 *
2337 * Rule:
2338 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2339 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2340 * the code that might scan up ancestor cpusets and sleep.
2341 */
2342 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2343 {
2344 const struct cpuset *cs; /* current cpuset ancestors */
2345 int allowed; /* is allocation in zone z allowed? */
2346
2347 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2348 return 1;
2349 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2350 if (node_isset(node, current->mems_allowed))
2351 return 1;
2352 /*
2353 * Allow tasks that have access to memory reserves because they have
2354 * been OOM killed to get memory anywhere.
2355 */
2356 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2357 return 1;
2358 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2359 return 0;
2360
2361 if (current->flags & PF_EXITING) /* Let dying task have memory */
2362 return 1;
2363
2364 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2365 mutex_lock(&callback_mutex);
2366
2367 task_lock(current);
2368 cs = nearest_hardwall_ancestor(task_cs(current));
2369 task_unlock(current);
2370
2371 allowed = node_isset(node, cs->mems_allowed);
2372 mutex_unlock(&callback_mutex);
2373 return allowed;
2374 }
2375
2376 /*
2377 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2378 * @node: is this an allowed node?
2379 * @gfp_mask: memory allocation flags
2380 *
2381 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2382 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2383 * yes. If the task has been OOM killed and has access to memory reserves as
2384 * specified by the TIF_MEMDIE flag, yes.
2385 * Otherwise, no.
2386 *
2387 * The __GFP_THISNODE placement logic is really handled elsewhere,
2388 * by forcibly using a zonelist starting at a specified node, and by
2389 * (in get_page_from_freelist()) refusing to consider the zones for
2390 * any node on the zonelist except the first. By the time any such
2391 * calls get to this routine, we should just shut up and say 'yes'.
2392 *
2393 * Unlike the cpuset_node_allowed_softwall() variant, above,
2394 * this variant requires that the node be in the current task's
2395 * mems_allowed or that we're in interrupt. It does not scan up the
2396 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2397 * It never sleeps.
2398 */
2399 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2400 {
2401 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2402 return 1;
2403 if (node_isset(node, current->mems_allowed))
2404 return 1;
2405 /*
2406 * Allow tasks that have access to memory reserves because they have
2407 * been OOM killed to get memory anywhere.
2408 */
2409 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2410 return 1;
2411 return 0;
2412 }
2413
2414 /**
2415 * cpuset_unlock - release lock on cpuset changes
2416 *
2417 * Undo the lock taken in a previous cpuset_lock() call.
2418 */
2419
2420 void cpuset_unlock(void)
2421 {
2422 mutex_unlock(&callback_mutex);
2423 }
2424
2425 /**
2426 * cpuset_mem_spread_node() - On which node to begin search for a file page
2427 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2428 *
2429 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2430 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2431 * and if the memory allocation used cpuset_mem_spread_node()
2432 * to determine on which node to start looking, as it will for
2433 * certain page cache or slab cache pages such as used for file
2434 * system buffers and inode caches, then instead of starting on the
2435 * local node to look for a free page, rather spread the starting
2436 * node around the tasks mems_allowed nodes.
2437 *
2438 * We don't have to worry about the returned node being offline
2439 * because "it can't happen", and even if it did, it would be ok.
2440 *
2441 * The routines calling guarantee_online_mems() are careful to
2442 * only set nodes in task->mems_allowed that are online. So it
2443 * should not be possible for the following code to return an
2444 * offline node. But if it did, that would be ok, as this routine
2445 * is not returning the node where the allocation must be, only
2446 * the node where the search should start. The zonelist passed to
2447 * __alloc_pages() will include all nodes. If the slab allocator
2448 * is passed an offline node, it will fall back to the local node.
2449 * See kmem_cache_alloc_node().
2450 */
2451
2452 static int cpuset_spread_node(int *rotor)
2453 {
2454 int node;
2455
2456 node = next_node(*rotor, current->mems_allowed);
2457 if (node == MAX_NUMNODES)
2458 node = first_node(current->mems_allowed);
2459 *rotor = node;
2460 return node;
2461 }
2462
2463 int cpuset_mem_spread_node(void)
2464 {
2465 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2466 current->cpuset_mem_spread_rotor =
2467 node_random(&current->mems_allowed);
2468
2469 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2470 }
2471
2472 int cpuset_slab_spread_node(void)
2473 {
2474 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2475 current->cpuset_slab_spread_rotor =
2476 node_random(&current->mems_allowed);
2477
2478 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2479 }
2480
2481 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2482
2483 /**
2484 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2485 * @tsk1: pointer to task_struct of some task.
2486 * @tsk2: pointer to task_struct of some other task.
2487 *
2488 * Description: Return true if @tsk1's mems_allowed intersects the
2489 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2490 * one of the task's memory usage might impact the memory available
2491 * to the other.
2492 **/
2493
2494 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2495 const struct task_struct *tsk2)
2496 {
2497 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2498 }
2499
2500 /**
2501 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2502 * @task: pointer to task_struct of some task.
2503 *
2504 * Description: Prints @task's name, cpuset name, and cached copy of its
2505 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2506 * dereferencing task_cs(task).
2507 */
2508 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2509 {
2510 struct dentry *dentry;
2511
2512 dentry = task_cs(tsk)->css.cgroup->dentry;
2513 spin_lock(&cpuset_buffer_lock);
2514 snprintf(cpuset_name, CPUSET_NAME_LEN,
2515 dentry ? (const char *)dentry->d_name.name : "/");
2516 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2517 tsk->mems_allowed);
2518 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2519 tsk->comm, cpuset_name, cpuset_nodelist);
2520 spin_unlock(&cpuset_buffer_lock);
2521 }
2522
2523 /*
2524 * Collection of memory_pressure is suppressed unless
2525 * this flag is enabled by writing "1" to the special
2526 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2527 */
2528
2529 int cpuset_memory_pressure_enabled __read_mostly;
2530
2531 /**
2532 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2533 *
2534 * Keep a running average of the rate of synchronous (direct)
2535 * page reclaim efforts initiated by tasks in each cpuset.
2536 *
2537 * This represents the rate at which some task in the cpuset
2538 * ran low on memory on all nodes it was allowed to use, and
2539 * had to enter the kernels page reclaim code in an effort to
2540 * create more free memory by tossing clean pages or swapping
2541 * or writing dirty pages.
2542 *
2543 * Display to user space in the per-cpuset read-only file
2544 * "memory_pressure". Value displayed is an integer
2545 * representing the recent rate of entry into the synchronous
2546 * (direct) page reclaim by any task attached to the cpuset.
2547 **/
2548
2549 void __cpuset_memory_pressure_bump(void)
2550 {
2551 task_lock(current);
2552 fmeter_markevent(&task_cs(current)->fmeter);
2553 task_unlock(current);
2554 }
2555
2556 #ifdef CONFIG_PROC_PID_CPUSET
2557 /*
2558 * proc_cpuset_show()
2559 * - Print tasks cpuset path into seq_file.
2560 * - Used for /proc/<pid>/cpuset.
2561 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2562 * doesn't really matter if tsk->cpuset changes after we read it,
2563 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2564 * anyway.
2565 */
2566 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2567 {
2568 struct pid *pid;
2569 struct task_struct *tsk;
2570 char *buf;
2571 struct cgroup_subsys_state *css;
2572 int retval;
2573
2574 retval = -ENOMEM;
2575 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2576 if (!buf)
2577 goto out;
2578
2579 retval = -ESRCH;
2580 pid = m->private;
2581 tsk = get_pid_task(pid, PIDTYPE_PID);
2582 if (!tsk)
2583 goto out_free;
2584
2585 retval = -EINVAL;
2586 cgroup_lock();
2587 css = task_subsys_state(tsk, cpuset_subsys_id);
2588 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2589 if (retval < 0)
2590 goto out_unlock;
2591 seq_puts(m, buf);
2592 seq_putc(m, '\n');
2593 out_unlock:
2594 cgroup_unlock();
2595 put_task_struct(tsk);
2596 out_free:
2597 kfree(buf);
2598 out:
2599 return retval;
2600 }
2601
2602 static int cpuset_open(struct inode *inode, struct file *file)
2603 {
2604 struct pid *pid = PROC_I(inode)->pid;
2605 return single_open(file, proc_cpuset_show, pid);
2606 }
2607
2608 const struct file_operations proc_cpuset_operations = {
2609 .open = cpuset_open,
2610 .read = seq_read,
2611 .llseek = seq_lseek,
2612 .release = single_release,
2613 };
2614 #endif /* CONFIG_PROC_PID_CPUSET */
2615
2616 /* Display task mems_allowed in /proc/<pid>/status file. */
2617 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2618 {
2619 seq_printf(m, "Mems_allowed:\t");
2620 seq_nodemask(m, &task->mems_allowed);
2621 seq_printf(m, "\n");
2622 seq_printf(m, "Mems_allowed_list:\t");
2623 seq_nodemask_list(m, &task->mems_allowed);
2624 seq_printf(m, "\n");
2625 }