]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cpuset.c
820870a715f8a819a7e319dc79e00a8fef281b22
[mirror_ubuntu-bionic-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /* user-configured CPUs and Memory Nodes allow to tasks */
81 cpumask_var_t cpus_allowed;
82 nodemask_t mems_allowed;
83
84 /* effective CPUs and Memory Nodes allow to tasks */
85 cpumask_var_t effective_cpus;
86 nodemask_t effective_mems;
87
88 /*
89 * This is old Memory Nodes tasks took on.
90 *
91 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
92 * - A new cpuset's old_mems_allowed is initialized when some
93 * task is moved into it.
94 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
95 * cpuset.mems_allowed and have tasks' nodemask updated, and
96 * then old_mems_allowed is updated to mems_allowed.
97 */
98 nodemask_t old_mems_allowed;
99
100 struct fmeter fmeter; /* memory_pressure filter */
101
102 /*
103 * Tasks are being attached to this cpuset. Used to prevent
104 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
105 */
106 int attach_in_progress;
107
108 /* partition number for rebuild_sched_domains() */
109 int pn;
110
111 /* for custom sched domain */
112 int relax_domain_level;
113 };
114
115 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
116 {
117 return css ? container_of(css, struct cpuset, css) : NULL;
118 }
119
120 /* Retrieve the cpuset for a task */
121 static inline struct cpuset *task_cs(struct task_struct *task)
122 {
123 return css_cs(task_css(task, cpuset_cgrp_id));
124 }
125
126 static inline struct cpuset *parent_cs(struct cpuset *cs)
127 {
128 return css_cs(cs->css.parent);
129 }
130
131 #ifdef CONFIG_NUMA
132 static inline bool task_has_mempolicy(struct task_struct *task)
133 {
134 return task->mempolicy;
135 }
136 #else
137 static inline bool task_has_mempolicy(struct task_struct *task)
138 {
139 return false;
140 }
141 #endif
142
143
144 /* bits in struct cpuset flags field */
145 typedef enum {
146 CS_ONLINE,
147 CS_CPU_EXCLUSIVE,
148 CS_MEM_EXCLUSIVE,
149 CS_MEM_HARDWALL,
150 CS_MEMORY_MIGRATE,
151 CS_SCHED_LOAD_BALANCE,
152 CS_SPREAD_PAGE,
153 CS_SPREAD_SLAB,
154 } cpuset_flagbits_t;
155
156 /* convenient tests for these bits */
157 static inline bool is_cpuset_online(const struct cpuset *cs)
158 {
159 return test_bit(CS_ONLINE, &cs->flags);
160 }
161
162 static inline int is_cpu_exclusive(const struct cpuset *cs)
163 {
164 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
165 }
166
167 static inline int is_mem_exclusive(const struct cpuset *cs)
168 {
169 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
170 }
171
172 static inline int is_mem_hardwall(const struct cpuset *cs)
173 {
174 return test_bit(CS_MEM_HARDWALL, &cs->flags);
175 }
176
177 static inline int is_sched_load_balance(const struct cpuset *cs)
178 {
179 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
180 }
181
182 static inline int is_memory_migrate(const struct cpuset *cs)
183 {
184 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
185 }
186
187 static inline int is_spread_page(const struct cpuset *cs)
188 {
189 return test_bit(CS_SPREAD_PAGE, &cs->flags);
190 }
191
192 static inline int is_spread_slab(const struct cpuset *cs)
193 {
194 return test_bit(CS_SPREAD_SLAB, &cs->flags);
195 }
196
197 static struct cpuset top_cpuset = {
198 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
199 (1 << CS_MEM_EXCLUSIVE)),
200 };
201
202 /**
203 * cpuset_for_each_child - traverse online children of a cpuset
204 * @child_cs: loop cursor pointing to the current child
205 * @pos_css: used for iteration
206 * @parent_cs: target cpuset to walk children of
207 *
208 * Walk @child_cs through the online children of @parent_cs. Must be used
209 * with RCU read locked.
210 */
211 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
212 css_for_each_child((pos_css), &(parent_cs)->css) \
213 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
214
215 /**
216 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
217 * @des_cs: loop cursor pointing to the current descendant
218 * @pos_css: used for iteration
219 * @root_cs: target cpuset to walk ancestor of
220 *
221 * Walk @des_cs through the online descendants of @root_cs. Must be used
222 * with RCU read locked. The caller may modify @pos_css by calling
223 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
224 * iteration and the first node to be visited.
225 */
226 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
227 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
228 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
229
230 /*
231 * There are two global mutexes guarding cpuset structures - cpuset_mutex
232 * and callback_mutex. The latter may nest inside the former. We also
233 * require taking task_lock() when dereferencing a task's cpuset pointer.
234 * See "The task_lock() exception", at the end of this comment.
235 *
236 * A task must hold both mutexes to modify cpusets. If a task holds
237 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
238 * is the only task able to also acquire callback_mutex and be able to
239 * modify cpusets. It can perform various checks on the cpuset structure
240 * first, knowing nothing will change. It can also allocate memory while
241 * just holding cpuset_mutex. While it is performing these checks, various
242 * callback routines can briefly acquire callback_mutex to query cpusets.
243 * Once it is ready to make the changes, it takes callback_mutex, blocking
244 * everyone else.
245 *
246 * Calls to the kernel memory allocator can not be made while holding
247 * callback_mutex, as that would risk double tripping on callback_mutex
248 * from one of the callbacks into the cpuset code from within
249 * __alloc_pages().
250 *
251 * If a task is only holding callback_mutex, then it has read-only
252 * access to cpusets.
253 *
254 * Now, the task_struct fields mems_allowed and mempolicy may be changed
255 * by other task, we use alloc_lock in the task_struct fields to protect
256 * them.
257 *
258 * The cpuset_common_file_read() handlers only hold callback_mutex across
259 * small pieces of code, such as when reading out possibly multi-word
260 * cpumasks and nodemasks.
261 *
262 * Accessing a task's cpuset should be done in accordance with the
263 * guidelines for accessing subsystem state in kernel/cgroup.c
264 */
265
266 static DEFINE_MUTEX(cpuset_mutex);
267 static DEFINE_MUTEX(callback_mutex);
268
269 /*
270 * CPU / memory hotplug is handled asynchronously.
271 */
272 static void cpuset_hotplug_workfn(struct work_struct *work);
273 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
274
275 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
276
277 /*
278 * This is ugly, but preserves the userspace API for existing cpuset
279 * users. If someone tries to mount the "cpuset" filesystem, we
280 * silently switch it to mount "cgroup" instead
281 */
282 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
283 int flags, const char *unused_dev_name, void *data)
284 {
285 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
286 struct dentry *ret = ERR_PTR(-ENODEV);
287 if (cgroup_fs) {
288 char mountopts[] =
289 "cpuset,noprefix,"
290 "release_agent=/sbin/cpuset_release_agent";
291 ret = cgroup_fs->mount(cgroup_fs, flags,
292 unused_dev_name, mountopts);
293 put_filesystem(cgroup_fs);
294 }
295 return ret;
296 }
297
298 static struct file_system_type cpuset_fs_type = {
299 .name = "cpuset",
300 .mount = cpuset_mount,
301 };
302
303 /*
304 * Return in pmask the portion of a cpusets's cpus_allowed that
305 * are online. If none are online, walk up the cpuset hierarchy
306 * until we find one that does have some online cpus. The top
307 * cpuset always has some cpus online.
308 *
309 * One way or another, we guarantee to return some non-empty subset
310 * of cpu_online_mask.
311 *
312 * Call with callback_mutex held.
313 */
314 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
315 {
316 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
317 cs = parent_cs(cs);
318 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
319 }
320
321 /*
322 * Return in *pmask the portion of a cpusets's mems_allowed that
323 * are online, with memory. If none are online with memory, walk
324 * up the cpuset hierarchy until we find one that does have some
325 * online mems. The top cpuset always has some mems online.
326 *
327 * One way or another, we guarantee to return some non-empty subset
328 * of node_states[N_MEMORY].
329 *
330 * Call with callback_mutex held.
331 */
332 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
333 {
334 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
335 cs = parent_cs(cs);
336 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
337 }
338
339 /*
340 * update task's spread flag if cpuset's page/slab spread flag is set
341 *
342 * Called with callback_mutex/cpuset_mutex held
343 */
344 static void cpuset_update_task_spread_flag(struct cpuset *cs,
345 struct task_struct *tsk)
346 {
347 if (is_spread_page(cs))
348 tsk->flags |= PF_SPREAD_PAGE;
349 else
350 tsk->flags &= ~PF_SPREAD_PAGE;
351 if (is_spread_slab(cs))
352 tsk->flags |= PF_SPREAD_SLAB;
353 else
354 tsk->flags &= ~PF_SPREAD_SLAB;
355 }
356
357 /*
358 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
359 *
360 * One cpuset is a subset of another if all its allowed CPUs and
361 * Memory Nodes are a subset of the other, and its exclusive flags
362 * are only set if the other's are set. Call holding cpuset_mutex.
363 */
364
365 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
366 {
367 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
368 nodes_subset(p->mems_allowed, q->mems_allowed) &&
369 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
370 is_mem_exclusive(p) <= is_mem_exclusive(q);
371 }
372
373 /**
374 * alloc_trial_cpuset - allocate a trial cpuset
375 * @cs: the cpuset that the trial cpuset duplicates
376 */
377 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
378 {
379 struct cpuset *trial;
380
381 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
382 if (!trial)
383 return NULL;
384
385 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
386 goto free_cs;
387 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
388 goto free_cpus;
389
390 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
391 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
392 return trial;
393
394 free_cpus:
395 free_cpumask_var(trial->cpus_allowed);
396 free_cs:
397 kfree(trial);
398 return NULL;
399 }
400
401 /**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405 static void free_trial_cpuset(struct cpuset *trial)
406 {
407 free_cpumask_var(trial->effective_cpus);
408 free_cpumask_var(trial->cpus_allowed);
409 kfree(trial);
410 }
411
412 /*
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
415 *
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
419 * cpuset_mutex held.
420 *
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
424 *
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
428 *
429 * Return 0 if valid, -errno if not.
430 */
431
432 static int validate_change(struct cpuset *cur, struct cpuset *trial)
433 {
434 struct cgroup_subsys_state *css;
435 struct cpuset *c, *par;
436 int ret;
437
438 rcu_read_lock();
439
440 /* Each of our child cpusets must be a subset of us */
441 ret = -EBUSY;
442 cpuset_for_each_child(c, css, cur)
443 if (!is_cpuset_subset(c, trial))
444 goto out;
445
446 /* Remaining checks don't apply to root cpuset */
447 ret = 0;
448 if (cur == &top_cpuset)
449 goto out;
450
451 par = parent_cs(cur);
452
453 /* We must be a subset of our parent cpuset */
454 ret = -EACCES;
455 if (!is_cpuset_subset(trial, par))
456 goto out;
457
458 /*
459 * If either I or some sibling (!= me) is exclusive, we can't
460 * overlap
461 */
462 ret = -EINVAL;
463 cpuset_for_each_child(c, css, par) {
464 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
465 c != cur &&
466 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
467 goto out;
468 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
469 c != cur &&
470 nodes_intersects(trial->mems_allowed, c->mems_allowed))
471 goto out;
472 }
473
474 /*
475 * Cpusets with tasks - existing or newly being attached - can't
476 * be changed to have empty cpus_allowed or mems_allowed.
477 */
478 ret = -ENOSPC;
479 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
480 if (!cpumask_empty(cur->cpus_allowed) &&
481 cpumask_empty(trial->cpus_allowed))
482 goto out;
483 if (!nodes_empty(cur->mems_allowed) &&
484 nodes_empty(trial->mems_allowed))
485 goto out;
486 }
487
488 ret = 0;
489 out:
490 rcu_read_unlock();
491 return ret;
492 }
493
494 #ifdef CONFIG_SMP
495 /*
496 * Helper routine for generate_sched_domains().
497 * Do cpusets a, b have overlapping effective cpus_allowed masks?
498 */
499 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
500 {
501 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
502 }
503
504 static void
505 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
506 {
507 if (dattr->relax_domain_level < c->relax_domain_level)
508 dattr->relax_domain_level = c->relax_domain_level;
509 return;
510 }
511
512 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
513 struct cpuset *root_cs)
514 {
515 struct cpuset *cp;
516 struct cgroup_subsys_state *pos_css;
517
518 rcu_read_lock();
519 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
520 if (cp == root_cs)
521 continue;
522
523 /* skip the whole subtree if @cp doesn't have any CPU */
524 if (cpumask_empty(cp->cpus_allowed)) {
525 pos_css = css_rightmost_descendant(pos_css);
526 continue;
527 }
528
529 if (is_sched_load_balance(cp))
530 update_domain_attr(dattr, cp);
531 }
532 rcu_read_unlock();
533 }
534
535 /*
536 * generate_sched_domains()
537 *
538 * This function builds a partial partition of the systems CPUs
539 * A 'partial partition' is a set of non-overlapping subsets whose
540 * union is a subset of that set.
541 * The output of this function needs to be passed to kernel/sched/core.c
542 * partition_sched_domains() routine, which will rebuild the scheduler's
543 * load balancing domains (sched domains) as specified by that partial
544 * partition.
545 *
546 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
547 * for a background explanation of this.
548 *
549 * Does not return errors, on the theory that the callers of this
550 * routine would rather not worry about failures to rebuild sched
551 * domains when operating in the severe memory shortage situations
552 * that could cause allocation failures below.
553 *
554 * Must be called with cpuset_mutex held.
555 *
556 * The three key local variables below are:
557 * q - a linked-list queue of cpuset pointers, used to implement a
558 * top-down scan of all cpusets. This scan loads a pointer
559 * to each cpuset marked is_sched_load_balance into the
560 * array 'csa'. For our purposes, rebuilding the schedulers
561 * sched domains, we can ignore !is_sched_load_balance cpusets.
562 * csa - (for CpuSet Array) Array of pointers to all the cpusets
563 * that need to be load balanced, for convenient iterative
564 * access by the subsequent code that finds the best partition,
565 * i.e the set of domains (subsets) of CPUs such that the
566 * cpus_allowed of every cpuset marked is_sched_load_balance
567 * is a subset of one of these domains, while there are as
568 * many such domains as possible, each as small as possible.
569 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
570 * the kernel/sched/core.c routine partition_sched_domains() in a
571 * convenient format, that can be easily compared to the prior
572 * value to determine what partition elements (sched domains)
573 * were changed (added or removed.)
574 *
575 * Finding the best partition (set of domains):
576 * The triple nested loops below over i, j, k scan over the
577 * load balanced cpusets (using the array of cpuset pointers in
578 * csa[]) looking for pairs of cpusets that have overlapping
579 * cpus_allowed, but which don't have the same 'pn' partition
580 * number and gives them in the same partition number. It keeps
581 * looping on the 'restart' label until it can no longer find
582 * any such pairs.
583 *
584 * The union of the cpus_allowed masks from the set of
585 * all cpusets having the same 'pn' value then form the one
586 * element of the partition (one sched domain) to be passed to
587 * partition_sched_domains().
588 */
589 static int generate_sched_domains(cpumask_var_t **domains,
590 struct sched_domain_attr **attributes)
591 {
592 struct cpuset *cp; /* scans q */
593 struct cpuset **csa; /* array of all cpuset ptrs */
594 int csn; /* how many cpuset ptrs in csa so far */
595 int i, j, k; /* indices for partition finding loops */
596 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
597 struct sched_domain_attr *dattr; /* attributes for custom domains */
598 int ndoms = 0; /* number of sched domains in result */
599 int nslot; /* next empty doms[] struct cpumask slot */
600 struct cgroup_subsys_state *pos_css;
601
602 doms = NULL;
603 dattr = NULL;
604 csa = NULL;
605
606 /* Special case for the 99% of systems with one, full, sched domain */
607 if (is_sched_load_balance(&top_cpuset)) {
608 ndoms = 1;
609 doms = alloc_sched_domains(ndoms);
610 if (!doms)
611 goto done;
612
613 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
614 if (dattr) {
615 *dattr = SD_ATTR_INIT;
616 update_domain_attr_tree(dattr, &top_cpuset);
617 }
618 cpumask_copy(doms[0], top_cpuset.effective_cpus);
619
620 goto done;
621 }
622
623 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
624 if (!csa)
625 goto done;
626 csn = 0;
627
628 rcu_read_lock();
629 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
630 if (cp == &top_cpuset)
631 continue;
632 /*
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
639 */
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
642 continue;
643
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
648 pos_css = css_rightmost_descendant(pos_css);
649 }
650 rcu_read_unlock();
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656 restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
683 doms = alloc_sched_domains(ndoms);
684 if (!doms)
685 goto done;
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
695 struct cpumask *dp;
696 int apn = a->pn;
697
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
703 dp = doms[nslot];
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
708 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
709 nslot, ndoms, csn, i, apn);
710 warnings--;
711 }
712 continue;
713 }
714
715 cpumask_clear(dp);
716 if (dattr)
717 *(dattr + nslot) = SD_ATTR_INIT;
718 for (j = i; j < csn; j++) {
719 struct cpuset *b = csa[j];
720
721 if (apn == b->pn) {
722 cpumask_or(dp, dp, b->effective_cpus);
723 if (dattr)
724 update_domain_attr_tree(dattr + nslot, b);
725
726 /* Done with this partition */
727 b->pn = -1;
728 }
729 }
730 nslot++;
731 }
732 BUG_ON(nslot != ndoms);
733
734 done:
735 kfree(csa);
736
737 /*
738 * Fallback to the default domain if kmalloc() failed.
739 * See comments in partition_sched_domains().
740 */
741 if (doms == NULL)
742 ndoms = 1;
743
744 *domains = doms;
745 *attributes = dattr;
746 return ndoms;
747 }
748
749 /*
750 * Rebuild scheduler domains.
751 *
752 * If the flag 'sched_load_balance' of any cpuset with non-empty
753 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754 * which has that flag enabled, or if any cpuset with a non-empty
755 * 'cpus' is removed, then call this routine to rebuild the
756 * scheduler's dynamic sched domains.
757 *
758 * Call with cpuset_mutex held. Takes get_online_cpus().
759 */
760 static void rebuild_sched_domains_locked(void)
761 {
762 struct sched_domain_attr *attr;
763 cpumask_var_t *doms;
764 int ndoms;
765
766 lockdep_assert_held(&cpuset_mutex);
767 get_online_cpus();
768
769 /*
770 * We have raced with CPU hotplug. Don't do anything to avoid
771 * passing doms with offlined cpu to partition_sched_domains().
772 * Anyways, hotplug work item will rebuild sched domains.
773 */
774 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
775 goto out;
776
777 /* Generate domain masks and attrs */
778 ndoms = generate_sched_domains(&doms, &attr);
779
780 /* Have scheduler rebuild the domains */
781 partition_sched_domains(ndoms, doms, attr);
782 out:
783 put_online_cpus();
784 }
785 #else /* !CONFIG_SMP */
786 static void rebuild_sched_domains_locked(void)
787 {
788 }
789 #endif /* CONFIG_SMP */
790
791 void rebuild_sched_domains(void)
792 {
793 mutex_lock(&cpuset_mutex);
794 rebuild_sched_domains_locked();
795 mutex_unlock(&cpuset_mutex);
796 }
797
798 /**
799 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
800 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
801 *
802 * Iterate through each task of @cs updating its cpus_allowed to the
803 * effective cpuset's. As this function is called with cpuset_mutex held,
804 * cpuset membership stays stable.
805 */
806 static void update_tasks_cpumask(struct cpuset *cs)
807 {
808 struct css_task_iter it;
809 struct task_struct *task;
810
811 css_task_iter_start(&cs->css, &it);
812 while ((task = css_task_iter_next(&it)))
813 set_cpus_allowed_ptr(task, cs->effective_cpus);
814 css_task_iter_end(&it);
815 }
816
817 /*
818 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
819 * @cs: the cpuset to consider
820 * @new_cpus: temp variable for calculating new effective_cpus
821 *
822 * When congifured cpumask is changed, the effective cpumasks of this cpuset
823 * and all its descendants need to be updated.
824 *
825 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
826 *
827 * Called with cpuset_mutex held
828 */
829 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
830 {
831 struct cpuset *cp;
832 struct cgroup_subsys_state *pos_css;
833 bool need_rebuild_sched_domains = false;
834
835 rcu_read_lock();
836 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
837 struct cpuset *parent = parent_cs(cp);
838
839 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
840
841 /*
842 * If it becomes empty, inherit the effective mask of the
843 * parent, which is guaranteed to have some CPUs.
844 */
845 if (cpumask_empty(new_cpus))
846 cpumask_copy(new_cpus, parent->effective_cpus);
847
848 /* Skip the whole subtree if the cpumask remains the same. */
849 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
850 pos_css = css_rightmost_descendant(pos_css);
851 continue;
852 }
853
854 if (!css_tryget_online(&cp->css))
855 continue;
856 rcu_read_unlock();
857
858 mutex_lock(&callback_mutex);
859 cpumask_copy(cp->effective_cpus, new_cpus);
860 mutex_unlock(&callback_mutex);
861
862 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
863 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
864
865 update_tasks_cpumask(cp);
866
867 /*
868 * If the effective cpumask of any non-empty cpuset is changed,
869 * we need to rebuild sched domains.
870 */
871 if (!cpumask_empty(cp->cpus_allowed) &&
872 is_sched_load_balance(cp))
873 need_rebuild_sched_domains = true;
874
875 rcu_read_lock();
876 css_put(&cp->css);
877 }
878 rcu_read_unlock();
879
880 if (need_rebuild_sched_domains)
881 rebuild_sched_domains_locked();
882 }
883
884 /**
885 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
886 * @cs: the cpuset to consider
887 * @trialcs: trial cpuset
888 * @buf: buffer of cpu numbers written to this cpuset
889 */
890 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
891 const char *buf)
892 {
893 int retval;
894
895 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
896 if (cs == &top_cpuset)
897 return -EACCES;
898
899 /*
900 * An empty cpus_allowed is ok only if the cpuset has no tasks.
901 * Since cpulist_parse() fails on an empty mask, we special case
902 * that parsing. The validate_change() call ensures that cpusets
903 * with tasks have cpus.
904 */
905 if (!*buf) {
906 cpumask_clear(trialcs->cpus_allowed);
907 } else {
908 retval = cpulist_parse(buf, trialcs->cpus_allowed);
909 if (retval < 0)
910 return retval;
911
912 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
913 return -EINVAL;
914 }
915
916 /* Nothing to do if the cpus didn't change */
917 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
918 return 0;
919
920 retval = validate_change(cs, trialcs);
921 if (retval < 0)
922 return retval;
923
924 mutex_lock(&callback_mutex);
925 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
926 mutex_unlock(&callback_mutex);
927
928 /* use trialcs->cpus_allowed as a temp variable */
929 update_cpumasks_hier(cs, trialcs->cpus_allowed);
930 return 0;
931 }
932
933 /*
934 * cpuset_migrate_mm
935 *
936 * Migrate memory region from one set of nodes to another.
937 *
938 * Temporarilly set tasks mems_allowed to target nodes of migration,
939 * so that the migration code can allocate pages on these nodes.
940 *
941 * While the mm_struct we are migrating is typically from some
942 * other task, the task_struct mems_allowed that we are hacking
943 * is for our current task, which must allocate new pages for that
944 * migrating memory region.
945 */
946
947 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
948 const nodemask_t *to)
949 {
950 struct task_struct *tsk = current;
951
952 tsk->mems_allowed = *to;
953
954 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
955
956 rcu_read_lock();
957 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
958 rcu_read_unlock();
959 }
960
961 /*
962 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
963 * @tsk: the task to change
964 * @newmems: new nodes that the task will be set
965 *
966 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
967 * we structure updates as setting all new allowed nodes, then clearing newly
968 * disallowed ones.
969 */
970 static void cpuset_change_task_nodemask(struct task_struct *tsk,
971 nodemask_t *newmems)
972 {
973 bool need_loop;
974
975 /*
976 * Allow tasks that have access to memory reserves because they have
977 * been OOM killed to get memory anywhere.
978 */
979 if (unlikely(test_thread_flag(TIF_MEMDIE)))
980 return;
981 if (current->flags & PF_EXITING) /* Let dying task have memory */
982 return;
983
984 task_lock(tsk);
985 /*
986 * Determine if a loop is necessary if another thread is doing
987 * read_mems_allowed_begin(). If at least one node remains unchanged and
988 * tsk does not have a mempolicy, then an empty nodemask will not be
989 * possible when mems_allowed is larger than a word.
990 */
991 need_loop = task_has_mempolicy(tsk) ||
992 !nodes_intersects(*newmems, tsk->mems_allowed);
993
994 if (need_loop) {
995 local_irq_disable();
996 write_seqcount_begin(&tsk->mems_allowed_seq);
997 }
998
999 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1000 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1001
1002 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1003 tsk->mems_allowed = *newmems;
1004
1005 if (need_loop) {
1006 write_seqcount_end(&tsk->mems_allowed_seq);
1007 local_irq_enable();
1008 }
1009
1010 task_unlock(tsk);
1011 }
1012
1013 static void *cpuset_being_rebound;
1014
1015 /**
1016 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1017 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1018 *
1019 * Iterate through each task of @cs updating its mems_allowed to the
1020 * effective cpuset's. As this function is called with cpuset_mutex held,
1021 * cpuset membership stays stable.
1022 */
1023 static void update_tasks_nodemask(struct cpuset *cs)
1024 {
1025 static nodemask_t newmems; /* protected by cpuset_mutex */
1026 struct css_task_iter it;
1027 struct task_struct *task;
1028
1029 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1030
1031 guarantee_online_mems(cs, &newmems);
1032
1033 /*
1034 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1035 * take while holding tasklist_lock. Forks can happen - the
1036 * mpol_dup() cpuset_being_rebound check will catch such forks,
1037 * and rebind their vma mempolicies too. Because we still hold
1038 * the global cpuset_mutex, we know that no other rebind effort
1039 * will be contending for the global variable cpuset_being_rebound.
1040 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1041 * is idempotent. Also migrate pages in each mm to new nodes.
1042 */
1043 css_task_iter_start(&cs->css, &it);
1044 while ((task = css_task_iter_next(&it))) {
1045 struct mm_struct *mm;
1046 bool migrate;
1047
1048 cpuset_change_task_nodemask(task, &newmems);
1049
1050 mm = get_task_mm(task);
1051 if (!mm)
1052 continue;
1053
1054 migrate = is_memory_migrate(cs);
1055
1056 mpol_rebind_mm(mm, &cs->mems_allowed);
1057 if (migrate)
1058 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1059 mmput(mm);
1060 }
1061 css_task_iter_end(&it);
1062
1063 /*
1064 * All the tasks' nodemasks have been updated, update
1065 * cs->old_mems_allowed.
1066 */
1067 cs->old_mems_allowed = newmems;
1068
1069 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1070 cpuset_being_rebound = NULL;
1071 }
1072
1073 /*
1074 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1075 * @cs: the cpuset to consider
1076 * @new_mems: a temp variable for calculating new effective_mems
1077 *
1078 * When configured nodemask is changed, the effective nodemasks of this cpuset
1079 * and all its descendants need to be updated.
1080 *
1081 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1082 *
1083 * Called with cpuset_mutex held
1084 */
1085 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1086 {
1087 struct cpuset *cp;
1088 struct cgroup_subsys_state *pos_css;
1089
1090 rcu_read_lock();
1091 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1092 struct cpuset *parent = parent_cs(cp);
1093
1094 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1095
1096 /*
1097 * If it becomes empty, inherit the effective mask of the
1098 * parent, which is guaranteed to have some MEMs.
1099 */
1100 if (nodes_empty(*new_mems))
1101 *new_mems = parent->effective_mems;
1102
1103 /* Skip the whole subtree if the nodemask remains the same. */
1104 if (nodes_equal(*new_mems, cp->effective_mems)) {
1105 pos_css = css_rightmost_descendant(pos_css);
1106 continue;
1107 }
1108
1109 if (!css_tryget_online(&cp->css))
1110 continue;
1111 rcu_read_unlock();
1112
1113 mutex_lock(&callback_mutex);
1114 cp->effective_mems = *new_mems;
1115 mutex_unlock(&callback_mutex);
1116
1117 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1118 nodes_equal(cp->mems_allowed, cp->effective_mems));
1119
1120 update_tasks_nodemask(cp);
1121
1122 rcu_read_lock();
1123 css_put(&cp->css);
1124 }
1125 rcu_read_unlock();
1126 }
1127
1128 /*
1129 * Handle user request to change the 'mems' memory placement
1130 * of a cpuset. Needs to validate the request, update the
1131 * cpusets mems_allowed, and for each task in the cpuset,
1132 * update mems_allowed and rebind task's mempolicy and any vma
1133 * mempolicies and if the cpuset is marked 'memory_migrate',
1134 * migrate the tasks pages to the new memory.
1135 *
1136 * Call with cpuset_mutex held. May take callback_mutex during call.
1137 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1138 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1139 * their mempolicies to the cpusets new mems_allowed.
1140 */
1141 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1142 const char *buf)
1143 {
1144 int retval;
1145
1146 /*
1147 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1148 * it's read-only
1149 */
1150 if (cs == &top_cpuset) {
1151 retval = -EACCES;
1152 goto done;
1153 }
1154
1155 /*
1156 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1157 * Since nodelist_parse() fails on an empty mask, we special case
1158 * that parsing. The validate_change() call ensures that cpusets
1159 * with tasks have memory.
1160 */
1161 if (!*buf) {
1162 nodes_clear(trialcs->mems_allowed);
1163 } else {
1164 retval = nodelist_parse(buf, trialcs->mems_allowed);
1165 if (retval < 0)
1166 goto done;
1167
1168 if (!nodes_subset(trialcs->mems_allowed,
1169 node_states[N_MEMORY])) {
1170 retval = -EINVAL;
1171 goto done;
1172 }
1173 }
1174
1175 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1176 retval = 0; /* Too easy - nothing to do */
1177 goto done;
1178 }
1179 retval = validate_change(cs, trialcs);
1180 if (retval < 0)
1181 goto done;
1182
1183 mutex_lock(&callback_mutex);
1184 cs->mems_allowed = trialcs->mems_allowed;
1185 mutex_unlock(&callback_mutex);
1186
1187 /* use trialcs->mems_allowed as a temp variable */
1188 update_nodemasks_hier(cs, &cs->mems_allowed);
1189 done:
1190 return retval;
1191 }
1192
1193 int current_cpuset_is_being_rebound(void)
1194 {
1195 return task_cs(current) == cpuset_being_rebound;
1196 }
1197
1198 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1199 {
1200 #ifdef CONFIG_SMP
1201 if (val < -1 || val >= sched_domain_level_max)
1202 return -EINVAL;
1203 #endif
1204
1205 if (val != cs->relax_domain_level) {
1206 cs->relax_domain_level = val;
1207 if (!cpumask_empty(cs->cpus_allowed) &&
1208 is_sched_load_balance(cs))
1209 rebuild_sched_domains_locked();
1210 }
1211
1212 return 0;
1213 }
1214
1215 /**
1216 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1217 * @cs: the cpuset in which each task's spread flags needs to be changed
1218 *
1219 * Iterate through each task of @cs updating its spread flags. As this
1220 * function is called with cpuset_mutex held, cpuset membership stays
1221 * stable.
1222 */
1223 static void update_tasks_flags(struct cpuset *cs)
1224 {
1225 struct css_task_iter it;
1226 struct task_struct *task;
1227
1228 css_task_iter_start(&cs->css, &it);
1229 while ((task = css_task_iter_next(&it)))
1230 cpuset_update_task_spread_flag(cs, task);
1231 css_task_iter_end(&it);
1232 }
1233
1234 /*
1235 * update_flag - read a 0 or a 1 in a file and update associated flag
1236 * bit: the bit to update (see cpuset_flagbits_t)
1237 * cs: the cpuset to update
1238 * turning_on: whether the flag is being set or cleared
1239 *
1240 * Call with cpuset_mutex held.
1241 */
1242
1243 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1244 int turning_on)
1245 {
1246 struct cpuset *trialcs;
1247 int balance_flag_changed;
1248 int spread_flag_changed;
1249 int err;
1250
1251 trialcs = alloc_trial_cpuset(cs);
1252 if (!trialcs)
1253 return -ENOMEM;
1254
1255 if (turning_on)
1256 set_bit(bit, &trialcs->flags);
1257 else
1258 clear_bit(bit, &trialcs->flags);
1259
1260 err = validate_change(cs, trialcs);
1261 if (err < 0)
1262 goto out;
1263
1264 balance_flag_changed = (is_sched_load_balance(cs) !=
1265 is_sched_load_balance(trialcs));
1266
1267 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1268 || (is_spread_page(cs) != is_spread_page(trialcs)));
1269
1270 mutex_lock(&callback_mutex);
1271 cs->flags = trialcs->flags;
1272 mutex_unlock(&callback_mutex);
1273
1274 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1275 rebuild_sched_domains_locked();
1276
1277 if (spread_flag_changed)
1278 update_tasks_flags(cs);
1279 out:
1280 free_trial_cpuset(trialcs);
1281 return err;
1282 }
1283
1284 /*
1285 * Frequency meter - How fast is some event occurring?
1286 *
1287 * These routines manage a digitally filtered, constant time based,
1288 * event frequency meter. There are four routines:
1289 * fmeter_init() - initialize a frequency meter.
1290 * fmeter_markevent() - called each time the event happens.
1291 * fmeter_getrate() - returns the recent rate of such events.
1292 * fmeter_update() - internal routine used to update fmeter.
1293 *
1294 * A common data structure is passed to each of these routines,
1295 * which is used to keep track of the state required to manage the
1296 * frequency meter and its digital filter.
1297 *
1298 * The filter works on the number of events marked per unit time.
1299 * The filter is single-pole low-pass recursive (IIR). The time unit
1300 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1301 * simulate 3 decimal digits of precision (multiplied by 1000).
1302 *
1303 * With an FM_COEF of 933, and a time base of 1 second, the filter
1304 * has a half-life of 10 seconds, meaning that if the events quit
1305 * happening, then the rate returned from the fmeter_getrate()
1306 * will be cut in half each 10 seconds, until it converges to zero.
1307 *
1308 * It is not worth doing a real infinitely recursive filter. If more
1309 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1310 * just compute FM_MAXTICKS ticks worth, by which point the level
1311 * will be stable.
1312 *
1313 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1314 * arithmetic overflow in the fmeter_update() routine.
1315 *
1316 * Given the simple 32 bit integer arithmetic used, this meter works
1317 * best for reporting rates between one per millisecond (msec) and
1318 * one per 32 (approx) seconds. At constant rates faster than one
1319 * per msec it maxes out at values just under 1,000,000. At constant
1320 * rates between one per msec, and one per second it will stabilize
1321 * to a value N*1000, where N is the rate of events per second.
1322 * At constant rates between one per second and one per 32 seconds,
1323 * it will be choppy, moving up on the seconds that have an event,
1324 * and then decaying until the next event. At rates slower than
1325 * about one in 32 seconds, it decays all the way back to zero between
1326 * each event.
1327 */
1328
1329 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1330 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1331 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1332 #define FM_SCALE 1000 /* faux fixed point scale */
1333
1334 /* Initialize a frequency meter */
1335 static void fmeter_init(struct fmeter *fmp)
1336 {
1337 fmp->cnt = 0;
1338 fmp->val = 0;
1339 fmp->time = 0;
1340 spin_lock_init(&fmp->lock);
1341 }
1342
1343 /* Internal meter update - process cnt events and update value */
1344 static void fmeter_update(struct fmeter *fmp)
1345 {
1346 time_t now = get_seconds();
1347 time_t ticks = now - fmp->time;
1348
1349 if (ticks == 0)
1350 return;
1351
1352 ticks = min(FM_MAXTICKS, ticks);
1353 while (ticks-- > 0)
1354 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1355 fmp->time = now;
1356
1357 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1358 fmp->cnt = 0;
1359 }
1360
1361 /* Process any previous ticks, then bump cnt by one (times scale). */
1362 static void fmeter_markevent(struct fmeter *fmp)
1363 {
1364 spin_lock(&fmp->lock);
1365 fmeter_update(fmp);
1366 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1367 spin_unlock(&fmp->lock);
1368 }
1369
1370 /* Process any previous ticks, then return current value. */
1371 static int fmeter_getrate(struct fmeter *fmp)
1372 {
1373 int val;
1374
1375 spin_lock(&fmp->lock);
1376 fmeter_update(fmp);
1377 val = fmp->val;
1378 spin_unlock(&fmp->lock);
1379 return val;
1380 }
1381
1382 static struct cpuset *cpuset_attach_old_cs;
1383
1384 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1385 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1386 struct cgroup_taskset *tset)
1387 {
1388 struct cpuset *cs = css_cs(css);
1389 struct task_struct *task;
1390 int ret;
1391
1392 /* used later by cpuset_attach() */
1393 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1394
1395 mutex_lock(&cpuset_mutex);
1396
1397 /* allow moving tasks into an empty cpuset if on default hierarchy */
1398 ret = -ENOSPC;
1399 if (!cgroup_on_dfl(css->cgroup) &&
1400 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1401 goto out_unlock;
1402
1403 cgroup_taskset_for_each(task, tset) {
1404 /*
1405 * Kthreads which disallow setaffinity shouldn't be moved
1406 * to a new cpuset; we don't want to change their cpu
1407 * affinity and isolating such threads by their set of
1408 * allowed nodes is unnecessary. Thus, cpusets are not
1409 * applicable for such threads. This prevents checking for
1410 * success of set_cpus_allowed_ptr() on all attached tasks
1411 * before cpus_allowed may be changed.
1412 */
1413 ret = -EINVAL;
1414 if (task->flags & PF_NO_SETAFFINITY)
1415 goto out_unlock;
1416 ret = security_task_setscheduler(task);
1417 if (ret)
1418 goto out_unlock;
1419 }
1420
1421 /*
1422 * Mark attach is in progress. This makes validate_change() fail
1423 * changes which zero cpus/mems_allowed.
1424 */
1425 cs->attach_in_progress++;
1426 ret = 0;
1427 out_unlock:
1428 mutex_unlock(&cpuset_mutex);
1429 return ret;
1430 }
1431
1432 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1433 struct cgroup_taskset *tset)
1434 {
1435 mutex_lock(&cpuset_mutex);
1436 css_cs(css)->attach_in_progress--;
1437 mutex_unlock(&cpuset_mutex);
1438 }
1439
1440 /*
1441 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1442 * but we can't allocate it dynamically there. Define it global and
1443 * allocate from cpuset_init().
1444 */
1445 static cpumask_var_t cpus_attach;
1446
1447 static void cpuset_attach(struct cgroup_subsys_state *css,
1448 struct cgroup_taskset *tset)
1449 {
1450 /* static buf protected by cpuset_mutex */
1451 static nodemask_t cpuset_attach_nodemask_to;
1452 struct mm_struct *mm;
1453 struct task_struct *task;
1454 struct task_struct *leader = cgroup_taskset_first(tset);
1455 struct cpuset *cs = css_cs(css);
1456 struct cpuset *oldcs = cpuset_attach_old_cs;
1457
1458 mutex_lock(&cpuset_mutex);
1459
1460 /* prepare for attach */
1461 if (cs == &top_cpuset)
1462 cpumask_copy(cpus_attach, cpu_possible_mask);
1463 else
1464 guarantee_online_cpus(cs, cpus_attach);
1465
1466 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1467
1468 cgroup_taskset_for_each(task, tset) {
1469 /*
1470 * can_attach beforehand should guarantee that this doesn't
1471 * fail. TODO: have a better way to handle failure here
1472 */
1473 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1474
1475 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1476 cpuset_update_task_spread_flag(cs, task);
1477 }
1478
1479 /*
1480 * Change mm, possibly for multiple threads in a threadgroup. This is
1481 * expensive and may sleep.
1482 */
1483 cpuset_attach_nodemask_to = cs->effective_mems;
1484 mm = get_task_mm(leader);
1485 if (mm) {
1486 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1487
1488 /*
1489 * old_mems_allowed is the same with mems_allowed here, except
1490 * if this task is being moved automatically due to hotplug.
1491 * In that case @mems_allowed has been updated and is empty,
1492 * so @old_mems_allowed is the right nodesets that we migrate
1493 * mm from.
1494 */
1495 if (is_memory_migrate(cs)) {
1496 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1497 &cpuset_attach_nodemask_to);
1498 }
1499 mmput(mm);
1500 }
1501
1502 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1503
1504 cs->attach_in_progress--;
1505 if (!cs->attach_in_progress)
1506 wake_up(&cpuset_attach_wq);
1507
1508 mutex_unlock(&cpuset_mutex);
1509 }
1510
1511 /* The various types of files and directories in a cpuset file system */
1512
1513 typedef enum {
1514 FILE_MEMORY_MIGRATE,
1515 FILE_CPULIST,
1516 FILE_MEMLIST,
1517 FILE_CPU_EXCLUSIVE,
1518 FILE_MEM_EXCLUSIVE,
1519 FILE_MEM_HARDWALL,
1520 FILE_SCHED_LOAD_BALANCE,
1521 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1522 FILE_MEMORY_PRESSURE_ENABLED,
1523 FILE_MEMORY_PRESSURE,
1524 FILE_SPREAD_PAGE,
1525 FILE_SPREAD_SLAB,
1526 } cpuset_filetype_t;
1527
1528 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1529 u64 val)
1530 {
1531 struct cpuset *cs = css_cs(css);
1532 cpuset_filetype_t type = cft->private;
1533 int retval = 0;
1534
1535 mutex_lock(&cpuset_mutex);
1536 if (!is_cpuset_online(cs)) {
1537 retval = -ENODEV;
1538 goto out_unlock;
1539 }
1540
1541 switch (type) {
1542 case FILE_CPU_EXCLUSIVE:
1543 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1544 break;
1545 case FILE_MEM_EXCLUSIVE:
1546 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1547 break;
1548 case FILE_MEM_HARDWALL:
1549 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1550 break;
1551 case FILE_SCHED_LOAD_BALANCE:
1552 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1553 break;
1554 case FILE_MEMORY_MIGRATE:
1555 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1556 break;
1557 case FILE_MEMORY_PRESSURE_ENABLED:
1558 cpuset_memory_pressure_enabled = !!val;
1559 break;
1560 case FILE_MEMORY_PRESSURE:
1561 retval = -EACCES;
1562 break;
1563 case FILE_SPREAD_PAGE:
1564 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1565 break;
1566 case FILE_SPREAD_SLAB:
1567 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1568 break;
1569 default:
1570 retval = -EINVAL;
1571 break;
1572 }
1573 out_unlock:
1574 mutex_unlock(&cpuset_mutex);
1575 return retval;
1576 }
1577
1578 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1579 s64 val)
1580 {
1581 struct cpuset *cs = css_cs(css);
1582 cpuset_filetype_t type = cft->private;
1583 int retval = -ENODEV;
1584
1585 mutex_lock(&cpuset_mutex);
1586 if (!is_cpuset_online(cs))
1587 goto out_unlock;
1588
1589 switch (type) {
1590 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1591 retval = update_relax_domain_level(cs, val);
1592 break;
1593 default:
1594 retval = -EINVAL;
1595 break;
1596 }
1597 out_unlock:
1598 mutex_unlock(&cpuset_mutex);
1599 return retval;
1600 }
1601
1602 /*
1603 * Common handling for a write to a "cpus" or "mems" file.
1604 */
1605 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1606 char *buf, size_t nbytes, loff_t off)
1607 {
1608 struct cpuset *cs = css_cs(of_css(of));
1609 struct cpuset *trialcs;
1610 int retval = -ENODEV;
1611
1612 buf = strstrip(buf);
1613
1614 /*
1615 * CPU or memory hotunplug may leave @cs w/o any execution
1616 * resources, in which case the hotplug code asynchronously updates
1617 * configuration and transfers all tasks to the nearest ancestor
1618 * which can execute.
1619 *
1620 * As writes to "cpus" or "mems" may restore @cs's execution
1621 * resources, wait for the previously scheduled operations before
1622 * proceeding, so that we don't end up keep removing tasks added
1623 * after execution capability is restored.
1624 */
1625 flush_work(&cpuset_hotplug_work);
1626
1627 mutex_lock(&cpuset_mutex);
1628 if (!is_cpuset_online(cs))
1629 goto out_unlock;
1630
1631 trialcs = alloc_trial_cpuset(cs);
1632 if (!trialcs) {
1633 retval = -ENOMEM;
1634 goto out_unlock;
1635 }
1636
1637 switch (of_cft(of)->private) {
1638 case FILE_CPULIST:
1639 retval = update_cpumask(cs, trialcs, buf);
1640 break;
1641 case FILE_MEMLIST:
1642 retval = update_nodemask(cs, trialcs, buf);
1643 break;
1644 default:
1645 retval = -EINVAL;
1646 break;
1647 }
1648
1649 free_trial_cpuset(trialcs);
1650 out_unlock:
1651 mutex_unlock(&cpuset_mutex);
1652 return retval ?: nbytes;
1653 }
1654
1655 /*
1656 * These ascii lists should be read in a single call, by using a user
1657 * buffer large enough to hold the entire map. If read in smaller
1658 * chunks, there is no guarantee of atomicity. Since the display format
1659 * used, list of ranges of sequential numbers, is variable length,
1660 * and since these maps can change value dynamically, one could read
1661 * gibberish by doing partial reads while a list was changing.
1662 */
1663 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1664 {
1665 struct cpuset *cs = css_cs(seq_css(sf));
1666 cpuset_filetype_t type = seq_cft(sf)->private;
1667 ssize_t count;
1668 char *buf, *s;
1669 int ret = 0;
1670
1671 count = seq_get_buf(sf, &buf);
1672 s = buf;
1673
1674 mutex_lock(&callback_mutex);
1675
1676 switch (type) {
1677 case FILE_CPULIST:
1678 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1679 break;
1680 case FILE_MEMLIST:
1681 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1682 break;
1683 default:
1684 ret = -EINVAL;
1685 goto out_unlock;
1686 }
1687
1688 if (s < buf + count - 1) {
1689 *s++ = '\n';
1690 seq_commit(sf, s - buf);
1691 } else {
1692 seq_commit(sf, -1);
1693 }
1694 out_unlock:
1695 mutex_unlock(&callback_mutex);
1696 return ret;
1697 }
1698
1699 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1700 {
1701 struct cpuset *cs = css_cs(css);
1702 cpuset_filetype_t type = cft->private;
1703 switch (type) {
1704 case FILE_CPU_EXCLUSIVE:
1705 return is_cpu_exclusive(cs);
1706 case FILE_MEM_EXCLUSIVE:
1707 return is_mem_exclusive(cs);
1708 case FILE_MEM_HARDWALL:
1709 return is_mem_hardwall(cs);
1710 case FILE_SCHED_LOAD_BALANCE:
1711 return is_sched_load_balance(cs);
1712 case FILE_MEMORY_MIGRATE:
1713 return is_memory_migrate(cs);
1714 case FILE_MEMORY_PRESSURE_ENABLED:
1715 return cpuset_memory_pressure_enabled;
1716 case FILE_MEMORY_PRESSURE:
1717 return fmeter_getrate(&cs->fmeter);
1718 case FILE_SPREAD_PAGE:
1719 return is_spread_page(cs);
1720 case FILE_SPREAD_SLAB:
1721 return is_spread_slab(cs);
1722 default:
1723 BUG();
1724 }
1725
1726 /* Unreachable but makes gcc happy */
1727 return 0;
1728 }
1729
1730 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1731 {
1732 struct cpuset *cs = css_cs(css);
1733 cpuset_filetype_t type = cft->private;
1734 switch (type) {
1735 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1736 return cs->relax_domain_level;
1737 default:
1738 BUG();
1739 }
1740
1741 /* Unrechable but makes gcc happy */
1742 return 0;
1743 }
1744
1745
1746 /*
1747 * for the common functions, 'private' gives the type of file
1748 */
1749
1750 static struct cftype files[] = {
1751 {
1752 .name = "cpus",
1753 .seq_show = cpuset_common_seq_show,
1754 .write = cpuset_write_resmask,
1755 .max_write_len = (100U + 6 * NR_CPUS),
1756 .private = FILE_CPULIST,
1757 },
1758
1759 {
1760 .name = "mems",
1761 .seq_show = cpuset_common_seq_show,
1762 .write = cpuset_write_resmask,
1763 .max_write_len = (100U + 6 * MAX_NUMNODES),
1764 .private = FILE_MEMLIST,
1765 },
1766
1767 {
1768 .name = "cpu_exclusive",
1769 .read_u64 = cpuset_read_u64,
1770 .write_u64 = cpuset_write_u64,
1771 .private = FILE_CPU_EXCLUSIVE,
1772 },
1773
1774 {
1775 .name = "mem_exclusive",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_MEM_EXCLUSIVE,
1779 },
1780
1781 {
1782 .name = "mem_hardwall",
1783 .read_u64 = cpuset_read_u64,
1784 .write_u64 = cpuset_write_u64,
1785 .private = FILE_MEM_HARDWALL,
1786 },
1787
1788 {
1789 .name = "sched_load_balance",
1790 .read_u64 = cpuset_read_u64,
1791 .write_u64 = cpuset_write_u64,
1792 .private = FILE_SCHED_LOAD_BALANCE,
1793 },
1794
1795 {
1796 .name = "sched_relax_domain_level",
1797 .read_s64 = cpuset_read_s64,
1798 .write_s64 = cpuset_write_s64,
1799 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1800 },
1801
1802 {
1803 .name = "memory_migrate",
1804 .read_u64 = cpuset_read_u64,
1805 .write_u64 = cpuset_write_u64,
1806 .private = FILE_MEMORY_MIGRATE,
1807 },
1808
1809 {
1810 .name = "memory_pressure",
1811 .read_u64 = cpuset_read_u64,
1812 .write_u64 = cpuset_write_u64,
1813 .private = FILE_MEMORY_PRESSURE,
1814 .mode = S_IRUGO,
1815 },
1816
1817 {
1818 .name = "memory_spread_page",
1819 .read_u64 = cpuset_read_u64,
1820 .write_u64 = cpuset_write_u64,
1821 .private = FILE_SPREAD_PAGE,
1822 },
1823
1824 {
1825 .name = "memory_spread_slab",
1826 .read_u64 = cpuset_read_u64,
1827 .write_u64 = cpuset_write_u64,
1828 .private = FILE_SPREAD_SLAB,
1829 },
1830
1831 {
1832 .name = "memory_pressure_enabled",
1833 .flags = CFTYPE_ONLY_ON_ROOT,
1834 .read_u64 = cpuset_read_u64,
1835 .write_u64 = cpuset_write_u64,
1836 .private = FILE_MEMORY_PRESSURE_ENABLED,
1837 },
1838
1839 { } /* terminate */
1840 };
1841
1842 /*
1843 * cpuset_css_alloc - allocate a cpuset css
1844 * cgrp: control group that the new cpuset will be part of
1845 */
1846
1847 static struct cgroup_subsys_state *
1848 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1849 {
1850 struct cpuset *cs;
1851
1852 if (!parent_css)
1853 return &top_cpuset.css;
1854
1855 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1856 if (!cs)
1857 return ERR_PTR(-ENOMEM);
1858 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1859 goto free_cs;
1860 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1861 goto free_cpus;
1862
1863 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1864 cpumask_clear(cs->cpus_allowed);
1865 nodes_clear(cs->mems_allowed);
1866 cpumask_clear(cs->effective_cpus);
1867 nodes_clear(cs->effective_mems);
1868 fmeter_init(&cs->fmeter);
1869 cs->relax_domain_level = -1;
1870
1871 return &cs->css;
1872
1873 free_cpus:
1874 free_cpumask_var(cs->cpus_allowed);
1875 free_cs:
1876 kfree(cs);
1877 return ERR_PTR(-ENOMEM);
1878 }
1879
1880 static int cpuset_css_online(struct cgroup_subsys_state *css)
1881 {
1882 struct cpuset *cs = css_cs(css);
1883 struct cpuset *parent = parent_cs(cs);
1884 struct cpuset *tmp_cs;
1885 struct cgroup_subsys_state *pos_css;
1886
1887 if (!parent)
1888 return 0;
1889
1890 mutex_lock(&cpuset_mutex);
1891
1892 set_bit(CS_ONLINE, &cs->flags);
1893 if (is_spread_page(parent))
1894 set_bit(CS_SPREAD_PAGE, &cs->flags);
1895 if (is_spread_slab(parent))
1896 set_bit(CS_SPREAD_SLAB, &cs->flags);
1897
1898 cpuset_inc();
1899
1900 mutex_lock(&callback_mutex);
1901 if (cgroup_on_dfl(cs->css.cgroup)) {
1902 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1903 cs->effective_mems = parent->effective_mems;
1904 }
1905 mutex_unlock(&callback_mutex);
1906
1907 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1908 goto out_unlock;
1909
1910 /*
1911 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1912 * set. This flag handling is implemented in cgroup core for
1913 * histrical reasons - the flag may be specified during mount.
1914 *
1915 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1916 * refuse to clone the configuration - thereby refusing the task to
1917 * be entered, and as a result refusing the sys_unshare() or
1918 * clone() which initiated it. If this becomes a problem for some
1919 * users who wish to allow that scenario, then this could be
1920 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1921 * (and likewise for mems) to the new cgroup.
1922 */
1923 rcu_read_lock();
1924 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1925 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1926 rcu_read_unlock();
1927 goto out_unlock;
1928 }
1929 }
1930 rcu_read_unlock();
1931
1932 mutex_lock(&callback_mutex);
1933 cs->mems_allowed = parent->mems_allowed;
1934 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1935 mutex_unlock(&callback_mutex);
1936 out_unlock:
1937 mutex_unlock(&cpuset_mutex);
1938 return 0;
1939 }
1940
1941 /*
1942 * If the cpuset being removed has its flag 'sched_load_balance'
1943 * enabled, then simulate turning sched_load_balance off, which
1944 * will call rebuild_sched_domains_locked().
1945 */
1946
1947 static void cpuset_css_offline(struct cgroup_subsys_state *css)
1948 {
1949 struct cpuset *cs = css_cs(css);
1950
1951 mutex_lock(&cpuset_mutex);
1952
1953 if (is_sched_load_balance(cs))
1954 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1955
1956 cpuset_dec();
1957 clear_bit(CS_ONLINE, &cs->flags);
1958
1959 mutex_unlock(&cpuset_mutex);
1960 }
1961
1962 static void cpuset_css_free(struct cgroup_subsys_state *css)
1963 {
1964 struct cpuset *cs = css_cs(css);
1965
1966 free_cpumask_var(cs->effective_cpus);
1967 free_cpumask_var(cs->cpus_allowed);
1968 kfree(cs);
1969 }
1970
1971 static void cpuset_bind(struct cgroup_subsys_state *root_css)
1972 {
1973 mutex_lock(&cpuset_mutex);
1974 mutex_lock(&callback_mutex);
1975
1976 if (cgroup_on_dfl(root_css->cgroup)) {
1977 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
1978 top_cpuset.mems_allowed = node_possible_map;
1979 } else {
1980 cpumask_copy(top_cpuset.cpus_allowed,
1981 top_cpuset.effective_cpus);
1982 top_cpuset.mems_allowed = top_cpuset.effective_mems;
1983 }
1984
1985 mutex_unlock(&callback_mutex);
1986 mutex_unlock(&cpuset_mutex);
1987 }
1988
1989 struct cgroup_subsys cpuset_cgrp_subsys = {
1990 .css_alloc = cpuset_css_alloc,
1991 .css_online = cpuset_css_online,
1992 .css_offline = cpuset_css_offline,
1993 .css_free = cpuset_css_free,
1994 .can_attach = cpuset_can_attach,
1995 .cancel_attach = cpuset_cancel_attach,
1996 .attach = cpuset_attach,
1997 .bind = cpuset_bind,
1998 .base_cftypes = files,
1999 .early_init = 1,
2000 };
2001
2002 /**
2003 * cpuset_init - initialize cpusets at system boot
2004 *
2005 * Description: Initialize top_cpuset and the cpuset internal file system,
2006 **/
2007
2008 int __init cpuset_init(void)
2009 {
2010 int err = 0;
2011
2012 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2013 BUG();
2014 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2015 BUG();
2016
2017 cpumask_setall(top_cpuset.cpus_allowed);
2018 nodes_setall(top_cpuset.mems_allowed);
2019 cpumask_setall(top_cpuset.effective_cpus);
2020 nodes_setall(top_cpuset.effective_mems);
2021
2022 fmeter_init(&top_cpuset.fmeter);
2023 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2024 top_cpuset.relax_domain_level = -1;
2025
2026 err = register_filesystem(&cpuset_fs_type);
2027 if (err < 0)
2028 return err;
2029
2030 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2031 BUG();
2032
2033 return 0;
2034 }
2035
2036 /*
2037 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2038 * or memory nodes, we need to walk over the cpuset hierarchy,
2039 * removing that CPU or node from all cpusets. If this removes the
2040 * last CPU or node from a cpuset, then move the tasks in the empty
2041 * cpuset to its next-highest non-empty parent.
2042 */
2043 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2044 {
2045 struct cpuset *parent;
2046
2047 /*
2048 * Find its next-highest non-empty parent, (top cpuset
2049 * has online cpus, so can't be empty).
2050 */
2051 parent = parent_cs(cs);
2052 while (cpumask_empty(parent->cpus_allowed) ||
2053 nodes_empty(parent->mems_allowed))
2054 parent = parent_cs(parent);
2055
2056 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2057 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2058 pr_cont_cgroup_name(cs->css.cgroup);
2059 pr_cont("\n");
2060 }
2061 }
2062
2063 /**
2064 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2065 * @cs: cpuset in interest
2066 *
2067 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2068 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2069 * all its tasks are moved to the nearest ancestor with both resources.
2070 */
2071 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2072 {
2073 static cpumask_t off_cpus;
2074 static nodemask_t off_mems;
2075 bool is_empty;
2076 bool on_dfl = cgroup_on_dfl(cs->css.cgroup);
2077
2078 retry:
2079 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2080
2081 mutex_lock(&cpuset_mutex);
2082
2083 /*
2084 * We have raced with task attaching. We wait until attaching
2085 * is finished, so we won't attach a task to an empty cpuset.
2086 */
2087 if (cs->attach_in_progress) {
2088 mutex_unlock(&cpuset_mutex);
2089 goto retry;
2090 }
2091
2092 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2093 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2094
2095 mutex_lock(&callback_mutex);
2096 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2097
2098 /* Inherit the effective mask of the parent, if it becomes empty. */
2099 cpumask_andnot(cs->effective_cpus, cs->effective_cpus, &off_cpus);
2100 if (on_dfl && cpumask_empty(cs->effective_cpus))
2101 cpumask_copy(cs->effective_cpus, parent_cs(cs)->effective_cpus);
2102 mutex_unlock(&callback_mutex);
2103
2104 /*
2105 * If on_dfl, we need to update tasks' cpumask for empty cpuset to
2106 * take on ancestor's cpumask. Otherwise, don't call
2107 * update_tasks_cpumask() if the cpuset becomes empty, as the tasks
2108 * in it will be migrated to an ancestor.
2109 */
2110 if ((on_dfl && cpumask_empty(cs->cpus_allowed)) ||
2111 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2112 update_tasks_cpumask(cs);
2113
2114 mutex_lock(&callback_mutex);
2115 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2116
2117 /* Inherit the effective mask of the parent, if it becomes empty */
2118 nodes_andnot(cs->effective_mems, cs->effective_mems, off_mems);
2119 if (on_dfl && nodes_empty(cs->effective_mems))
2120 cs->effective_mems = parent_cs(cs)->effective_mems;
2121 mutex_unlock(&callback_mutex);
2122
2123 /*
2124 * If on_dfl, we need to update tasks' nodemask for empty cpuset to
2125 * take on ancestor's nodemask. Otherwise, don't call
2126 * update_tasks_nodemask() if the cpuset becomes empty, as the
2127 * tasks in it will be migratd to an ancestor.
2128 */
2129 if ((on_dfl && nodes_empty(cs->mems_allowed)) ||
2130 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2131 update_tasks_nodemask(cs);
2132
2133 is_empty = cpumask_empty(cs->cpus_allowed) ||
2134 nodes_empty(cs->mems_allowed);
2135
2136 mutex_unlock(&cpuset_mutex);
2137
2138 /*
2139 * If on_dfl, we'll keep tasks in empty cpusets.
2140 *
2141 * Otherwise move tasks to the nearest ancestor with execution
2142 * resources. This is full cgroup operation which will
2143 * also call back into cpuset. Should be done outside any lock.
2144 */
2145 if (!on_dfl && is_empty)
2146 remove_tasks_in_empty_cpuset(cs);
2147 }
2148
2149 /**
2150 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2151 *
2152 * This function is called after either CPU or memory configuration has
2153 * changed and updates cpuset accordingly. The top_cpuset is always
2154 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2155 * order to make cpusets transparent (of no affect) on systems that are
2156 * actively using CPU hotplug but making no active use of cpusets.
2157 *
2158 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2159 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2160 * all descendants.
2161 *
2162 * Note that CPU offlining during suspend is ignored. We don't modify
2163 * cpusets across suspend/resume cycles at all.
2164 */
2165 static void cpuset_hotplug_workfn(struct work_struct *work)
2166 {
2167 static cpumask_t new_cpus;
2168 static nodemask_t new_mems;
2169 bool cpus_updated, mems_updated;
2170
2171 mutex_lock(&cpuset_mutex);
2172
2173 /* fetch the available cpus/mems and find out which changed how */
2174 cpumask_copy(&new_cpus, cpu_active_mask);
2175 new_mems = node_states[N_MEMORY];
2176
2177 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2178 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2179
2180 /* synchronize cpus_allowed to cpu_active_mask */
2181 if (cpus_updated) {
2182 mutex_lock(&callback_mutex);
2183 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2184 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2185 mutex_unlock(&callback_mutex);
2186 /* we don't mess with cpumasks of tasks in top_cpuset */
2187 }
2188
2189 /* synchronize mems_allowed to N_MEMORY */
2190 if (mems_updated) {
2191 mutex_lock(&callback_mutex);
2192 top_cpuset.mems_allowed = new_mems;
2193 top_cpuset.effective_mems = new_mems;
2194 mutex_unlock(&callback_mutex);
2195 update_tasks_nodemask(&top_cpuset);
2196 }
2197
2198 mutex_unlock(&cpuset_mutex);
2199
2200 /* if cpus or mems changed, we need to propagate to descendants */
2201 if (cpus_updated || mems_updated) {
2202 struct cpuset *cs;
2203 struct cgroup_subsys_state *pos_css;
2204
2205 rcu_read_lock();
2206 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2207 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2208 continue;
2209 rcu_read_unlock();
2210
2211 cpuset_hotplug_update_tasks(cs);
2212
2213 rcu_read_lock();
2214 css_put(&cs->css);
2215 }
2216 rcu_read_unlock();
2217 }
2218
2219 /* rebuild sched domains if cpus_allowed has changed */
2220 if (cpus_updated)
2221 rebuild_sched_domains();
2222 }
2223
2224 void cpuset_update_active_cpus(bool cpu_online)
2225 {
2226 /*
2227 * We're inside cpu hotplug critical region which usually nests
2228 * inside cgroup synchronization. Bounce actual hotplug processing
2229 * to a work item to avoid reverse locking order.
2230 *
2231 * We still need to do partition_sched_domains() synchronously;
2232 * otherwise, the scheduler will get confused and put tasks to the
2233 * dead CPU. Fall back to the default single domain.
2234 * cpuset_hotplug_workfn() will rebuild it as necessary.
2235 */
2236 partition_sched_domains(1, NULL, NULL);
2237 schedule_work(&cpuset_hotplug_work);
2238 }
2239
2240 /*
2241 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2242 * Call this routine anytime after node_states[N_MEMORY] changes.
2243 * See cpuset_update_active_cpus() for CPU hotplug handling.
2244 */
2245 static int cpuset_track_online_nodes(struct notifier_block *self,
2246 unsigned long action, void *arg)
2247 {
2248 schedule_work(&cpuset_hotplug_work);
2249 return NOTIFY_OK;
2250 }
2251
2252 static struct notifier_block cpuset_track_online_nodes_nb = {
2253 .notifier_call = cpuset_track_online_nodes,
2254 .priority = 10, /* ??! */
2255 };
2256
2257 /**
2258 * cpuset_init_smp - initialize cpus_allowed
2259 *
2260 * Description: Finish top cpuset after cpu, node maps are initialized
2261 */
2262 void __init cpuset_init_smp(void)
2263 {
2264 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2265 top_cpuset.mems_allowed = node_states[N_MEMORY];
2266 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2267
2268 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2269 top_cpuset.effective_mems = node_states[N_MEMORY];
2270
2271 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2272 }
2273
2274 /**
2275 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2276 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2277 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2278 *
2279 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2280 * attached to the specified @tsk. Guaranteed to return some non-empty
2281 * subset of cpu_online_mask, even if this means going outside the
2282 * tasks cpuset.
2283 **/
2284
2285 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2286 {
2287 mutex_lock(&callback_mutex);
2288 rcu_read_lock();
2289 guarantee_online_cpus(task_cs(tsk), pmask);
2290 rcu_read_unlock();
2291 mutex_unlock(&callback_mutex);
2292 }
2293
2294 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2295 {
2296 rcu_read_lock();
2297 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2298 rcu_read_unlock();
2299
2300 /*
2301 * We own tsk->cpus_allowed, nobody can change it under us.
2302 *
2303 * But we used cs && cs->cpus_allowed lockless and thus can
2304 * race with cgroup_attach_task() or update_cpumask() and get
2305 * the wrong tsk->cpus_allowed. However, both cases imply the
2306 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2307 * which takes task_rq_lock().
2308 *
2309 * If we are called after it dropped the lock we must see all
2310 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2311 * set any mask even if it is not right from task_cs() pov,
2312 * the pending set_cpus_allowed_ptr() will fix things.
2313 *
2314 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2315 * if required.
2316 */
2317 }
2318
2319 void cpuset_init_current_mems_allowed(void)
2320 {
2321 nodes_setall(current->mems_allowed);
2322 }
2323
2324 /**
2325 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2326 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2327 *
2328 * Description: Returns the nodemask_t mems_allowed of the cpuset
2329 * attached to the specified @tsk. Guaranteed to return some non-empty
2330 * subset of node_states[N_MEMORY], even if this means going outside the
2331 * tasks cpuset.
2332 **/
2333
2334 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2335 {
2336 nodemask_t mask;
2337
2338 mutex_lock(&callback_mutex);
2339 rcu_read_lock();
2340 guarantee_online_mems(task_cs(tsk), &mask);
2341 rcu_read_unlock();
2342 mutex_unlock(&callback_mutex);
2343
2344 return mask;
2345 }
2346
2347 /**
2348 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2349 * @nodemask: the nodemask to be checked
2350 *
2351 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2352 */
2353 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2354 {
2355 return nodes_intersects(*nodemask, current->mems_allowed);
2356 }
2357
2358 /*
2359 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2360 * mem_hardwall ancestor to the specified cpuset. Call holding
2361 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2362 * (an unusual configuration), then returns the root cpuset.
2363 */
2364 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2365 {
2366 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2367 cs = parent_cs(cs);
2368 return cs;
2369 }
2370
2371 /**
2372 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2373 * @node: is this an allowed node?
2374 * @gfp_mask: memory allocation flags
2375 *
2376 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2377 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2378 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2379 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2380 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2381 * flag, yes.
2382 * Otherwise, no.
2383 *
2384 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2385 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2386 * might sleep, and might allow a node from an enclosing cpuset.
2387 *
2388 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2389 * cpusets, and never sleeps.
2390 *
2391 * The __GFP_THISNODE placement logic is really handled elsewhere,
2392 * by forcibly using a zonelist starting at a specified node, and by
2393 * (in get_page_from_freelist()) refusing to consider the zones for
2394 * any node on the zonelist except the first. By the time any such
2395 * calls get to this routine, we should just shut up and say 'yes'.
2396 *
2397 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2398 * and do not allow allocations outside the current tasks cpuset
2399 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2400 * GFP_KERNEL allocations are not so marked, so can escape to the
2401 * nearest enclosing hardwalled ancestor cpuset.
2402 *
2403 * Scanning up parent cpusets requires callback_mutex. The
2404 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2405 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2406 * current tasks mems_allowed came up empty on the first pass over
2407 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2408 * cpuset are short of memory, might require taking the callback_mutex
2409 * mutex.
2410 *
2411 * The first call here from mm/page_alloc:get_page_from_freelist()
2412 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2413 * so no allocation on a node outside the cpuset is allowed (unless
2414 * in interrupt, of course).
2415 *
2416 * The second pass through get_page_from_freelist() doesn't even call
2417 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2418 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2419 * in alloc_flags. That logic and the checks below have the combined
2420 * affect that:
2421 * in_interrupt - any node ok (current task context irrelevant)
2422 * GFP_ATOMIC - any node ok
2423 * TIF_MEMDIE - any node ok
2424 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2425 * GFP_USER - only nodes in current tasks mems allowed ok.
2426 *
2427 * Rule:
2428 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2429 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2430 * the code that might scan up ancestor cpusets and sleep.
2431 */
2432 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2433 {
2434 struct cpuset *cs; /* current cpuset ancestors */
2435 int allowed; /* is allocation in zone z allowed? */
2436
2437 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2438 return 1;
2439 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2440 if (node_isset(node, current->mems_allowed))
2441 return 1;
2442 /*
2443 * Allow tasks that have access to memory reserves because they have
2444 * been OOM killed to get memory anywhere.
2445 */
2446 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2447 return 1;
2448 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2449 return 0;
2450
2451 if (current->flags & PF_EXITING) /* Let dying task have memory */
2452 return 1;
2453
2454 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2455 mutex_lock(&callback_mutex);
2456
2457 rcu_read_lock();
2458 cs = nearest_hardwall_ancestor(task_cs(current));
2459 allowed = node_isset(node, cs->mems_allowed);
2460 rcu_read_unlock();
2461
2462 mutex_unlock(&callback_mutex);
2463 return allowed;
2464 }
2465
2466 /*
2467 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2468 * @node: is this an allowed node?
2469 * @gfp_mask: memory allocation flags
2470 *
2471 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2472 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2473 * yes. If the task has been OOM killed and has access to memory reserves as
2474 * specified by the TIF_MEMDIE flag, yes.
2475 * Otherwise, no.
2476 *
2477 * The __GFP_THISNODE placement logic is really handled elsewhere,
2478 * by forcibly using a zonelist starting at a specified node, and by
2479 * (in get_page_from_freelist()) refusing to consider the zones for
2480 * any node on the zonelist except the first. By the time any such
2481 * calls get to this routine, we should just shut up and say 'yes'.
2482 *
2483 * Unlike the cpuset_node_allowed_softwall() variant, above,
2484 * this variant requires that the node be in the current task's
2485 * mems_allowed or that we're in interrupt. It does not scan up the
2486 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2487 * It never sleeps.
2488 */
2489 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2490 {
2491 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2492 return 1;
2493 if (node_isset(node, current->mems_allowed))
2494 return 1;
2495 /*
2496 * Allow tasks that have access to memory reserves because they have
2497 * been OOM killed to get memory anywhere.
2498 */
2499 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2500 return 1;
2501 return 0;
2502 }
2503
2504 /**
2505 * cpuset_mem_spread_node() - On which node to begin search for a file page
2506 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2507 *
2508 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2509 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2510 * and if the memory allocation used cpuset_mem_spread_node()
2511 * to determine on which node to start looking, as it will for
2512 * certain page cache or slab cache pages such as used for file
2513 * system buffers and inode caches, then instead of starting on the
2514 * local node to look for a free page, rather spread the starting
2515 * node around the tasks mems_allowed nodes.
2516 *
2517 * We don't have to worry about the returned node being offline
2518 * because "it can't happen", and even if it did, it would be ok.
2519 *
2520 * The routines calling guarantee_online_mems() are careful to
2521 * only set nodes in task->mems_allowed that are online. So it
2522 * should not be possible for the following code to return an
2523 * offline node. But if it did, that would be ok, as this routine
2524 * is not returning the node where the allocation must be, only
2525 * the node where the search should start. The zonelist passed to
2526 * __alloc_pages() will include all nodes. If the slab allocator
2527 * is passed an offline node, it will fall back to the local node.
2528 * See kmem_cache_alloc_node().
2529 */
2530
2531 static int cpuset_spread_node(int *rotor)
2532 {
2533 int node;
2534
2535 node = next_node(*rotor, current->mems_allowed);
2536 if (node == MAX_NUMNODES)
2537 node = first_node(current->mems_allowed);
2538 *rotor = node;
2539 return node;
2540 }
2541
2542 int cpuset_mem_spread_node(void)
2543 {
2544 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2545 current->cpuset_mem_spread_rotor =
2546 node_random(&current->mems_allowed);
2547
2548 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2549 }
2550
2551 int cpuset_slab_spread_node(void)
2552 {
2553 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2554 current->cpuset_slab_spread_rotor =
2555 node_random(&current->mems_allowed);
2556
2557 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2558 }
2559
2560 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2561
2562 /**
2563 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2564 * @tsk1: pointer to task_struct of some task.
2565 * @tsk2: pointer to task_struct of some other task.
2566 *
2567 * Description: Return true if @tsk1's mems_allowed intersects the
2568 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2569 * one of the task's memory usage might impact the memory available
2570 * to the other.
2571 **/
2572
2573 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2574 const struct task_struct *tsk2)
2575 {
2576 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2577 }
2578
2579 #define CPUSET_NODELIST_LEN (256)
2580
2581 /**
2582 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2583 * @tsk: pointer to task_struct of some task.
2584 *
2585 * Description: Prints @task's name, cpuset name, and cached copy of its
2586 * mems_allowed to the kernel log.
2587 */
2588 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2589 {
2590 /* Statically allocated to prevent using excess stack. */
2591 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2592 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2593 struct cgroup *cgrp;
2594
2595 spin_lock(&cpuset_buffer_lock);
2596 rcu_read_lock();
2597
2598 cgrp = task_cs(tsk)->css.cgroup;
2599 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2600 tsk->mems_allowed);
2601 pr_info("%s cpuset=", tsk->comm);
2602 pr_cont_cgroup_name(cgrp);
2603 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
2604
2605 rcu_read_unlock();
2606 spin_unlock(&cpuset_buffer_lock);
2607 }
2608
2609 /*
2610 * Collection of memory_pressure is suppressed unless
2611 * this flag is enabled by writing "1" to the special
2612 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2613 */
2614
2615 int cpuset_memory_pressure_enabled __read_mostly;
2616
2617 /**
2618 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2619 *
2620 * Keep a running average of the rate of synchronous (direct)
2621 * page reclaim efforts initiated by tasks in each cpuset.
2622 *
2623 * This represents the rate at which some task in the cpuset
2624 * ran low on memory on all nodes it was allowed to use, and
2625 * had to enter the kernels page reclaim code in an effort to
2626 * create more free memory by tossing clean pages or swapping
2627 * or writing dirty pages.
2628 *
2629 * Display to user space in the per-cpuset read-only file
2630 * "memory_pressure". Value displayed is an integer
2631 * representing the recent rate of entry into the synchronous
2632 * (direct) page reclaim by any task attached to the cpuset.
2633 **/
2634
2635 void __cpuset_memory_pressure_bump(void)
2636 {
2637 rcu_read_lock();
2638 fmeter_markevent(&task_cs(current)->fmeter);
2639 rcu_read_unlock();
2640 }
2641
2642 #ifdef CONFIG_PROC_PID_CPUSET
2643 /*
2644 * proc_cpuset_show()
2645 * - Print tasks cpuset path into seq_file.
2646 * - Used for /proc/<pid>/cpuset.
2647 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2648 * doesn't really matter if tsk->cpuset changes after we read it,
2649 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2650 * anyway.
2651 */
2652 int proc_cpuset_show(struct seq_file *m, void *unused_v)
2653 {
2654 struct pid *pid;
2655 struct task_struct *tsk;
2656 char *buf, *p;
2657 struct cgroup_subsys_state *css;
2658 int retval;
2659
2660 retval = -ENOMEM;
2661 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2662 if (!buf)
2663 goto out;
2664
2665 retval = -ESRCH;
2666 pid = m->private;
2667 tsk = get_pid_task(pid, PIDTYPE_PID);
2668 if (!tsk)
2669 goto out_free;
2670
2671 retval = -ENAMETOOLONG;
2672 rcu_read_lock();
2673 css = task_css(tsk, cpuset_cgrp_id);
2674 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2675 rcu_read_unlock();
2676 if (!p)
2677 goto out_put_task;
2678 seq_puts(m, p);
2679 seq_putc(m, '\n');
2680 retval = 0;
2681 out_put_task:
2682 put_task_struct(tsk);
2683 out_free:
2684 kfree(buf);
2685 out:
2686 return retval;
2687 }
2688 #endif /* CONFIG_PROC_PID_CPUSET */
2689
2690 /* Display task mems_allowed in /proc/<pid>/status file. */
2691 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2692 {
2693 seq_puts(m, "Mems_allowed:\t");
2694 seq_nodemask(m, &task->mems_allowed);
2695 seq_puts(m, "\n");
2696 seq_puts(m, "Mems_allowed_list:\t");
2697 seq_nodemask_list(m, &task->mems_allowed);
2698 seq_puts(m, "\n");
2699 }