]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cpuset.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/cgroup.h>
61 #include <linux/wait.h>
62
63 struct static_key cpusets_pre_enable_key __read_mostly = STATIC_KEY_INIT_FALSE;
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
107
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
120 struct fmeter fmeter; /* memory_pressure filter */
121
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
128 /* partition number for rebuild_sched_domains() */
129 int pn;
130
131 /* for custom sched domain */
132 int relax_domain_level;
133 };
134
135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136 {
137 return css ? container_of(css, struct cpuset, css) : NULL;
138 }
139
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset *task_cs(struct task_struct *task)
142 {
143 return css_cs(task_css(task, cpuset_cgrp_id));
144 }
145
146 static inline struct cpuset *parent_cs(struct cpuset *cs)
147 {
148 return css_cs(cs->css.parent);
149 }
150
151 #ifdef CONFIG_NUMA
152 static inline bool task_has_mempolicy(struct task_struct *task)
153 {
154 return task->mempolicy;
155 }
156 #else
157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 return false;
160 }
161 #endif
162
163
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 CS_ONLINE,
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
169 CS_MEM_HARDWALL,
170 CS_MEMORY_MIGRATE,
171 CS_SCHED_LOAD_BALANCE,
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
175
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(struct cpuset *cs)
178 {
179 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
180 }
181
182 static inline int is_cpu_exclusive(const struct cpuset *cs)
183 {
184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
185 }
186
187 static inline int is_mem_exclusive(const struct cpuset *cs)
188 {
189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
190 }
191
192 static inline int is_mem_hardwall(const struct cpuset *cs)
193 {
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195 }
196
197 static inline int is_sched_load_balance(const struct cpuset *cs)
198 {
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200 }
201
202 static inline int is_memory_migrate(const struct cpuset *cs)
203 {
204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 }
206
207 static inline int is_spread_page(const struct cpuset *cs)
208 {
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210 }
211
212 static inline int is_spread_slab(const struct cpuset *cs)
213 {
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215 }
216
217 static struct cpuset top_cpuset = {
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
220 };
221
222 /**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234
235 /**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
245 */
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249
250 /*
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
255 *
256 * A task must hold both locks to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_lock and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
264 * everyone else.
265 *
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_lock, as that would risk double tripping on callback_lock
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
271 * If a task is only holding callback_lock, then it has read-only
272 * access to cpusets.
273 *
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
277 *
278 * The cpuset_common_file_read() handlers only hold callback_lock across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
284 */
285
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_SPINLOCK(callback_lock);
288
289 static struct workqueue_struct *cpuset_migrate_mm_wq;
290
291 /*
292 * CPU / memory hotplug is handled asynchronously.
293 */
294 static void cpuset_hotplug_workfn(struct work_struct *work);
295 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
296
297 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
298
299 /*
300 * This is ugly, but preserves the userspace API for existing cpuset
301 * users. If someone tries to mount the "cpuset" filesystem, we
302 * silently switch it to mount "cgroup" instead
303 */
304 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
305 int flags, const char *unused_dev_name, void *data)
306 {
307 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
308 struct dentry *ret = ERR_PTR(-ENODEV);
309 if (cgroup_fs) {
310 char mountopts[] =
311 "cpuset,noprefix,"
312 "release_agent=/sbin/cpuset_release_agent";
313 ret = cgroup_fs->mount(cgroup_fs, flags,
314 unused_dev_name, mountopts);
315 put_filesystem(cgroup_fs);
316 }
317 return ret;
318 }
319
320 static struct file_system_type cpuset_fs_type = {
321 .name = "cpuset",
322 .mount = cpuset_mount,
323 };
324
325 /*
326 * Return in pmask the portion of a cpusets's cpus_allowed that
327 * are online. If none are online, walk up the cpuset hierarchy
328 * until we find one that does have some online cpus.
329 *
330 * One way or another, we guarantee to return some non-empty subset
331 * of cpu_online_mask.
332 *
333 * Call with callback_lock or cpuset_mutex held.
334 */
335 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
336 {
337 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
338 cs = parent_cs(cs);
339 if (unlikely(!cs)) {
340 /*
341 * The top cpuset doesn't have any online cpu as a
342 * consequence of a race between cpuset_hotplug_work
343 * and cpu hotplug notifier. But we know the top
344 * cpuset's effective_cpus is on its way to to be
345 * identical to cpu_online_mask.
346 */
347 cpumask_copy(pmask, cpu_online_mask);
348 return;
349 }
350 }
351 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
352 }
353
354 /*
355 * Return in *pmask the portion of a cpusets's mems_allowed that
356 * are online, with memory. If none are online with memory, walk
357 * up the cpuset hierarchy until we find one that does have some
358 * online mems. The top cpuset always has some mems online.
359 *
360 * One way or another, we guarantee to return some non-empty subset
361 * of node_states[N_MEMORY].
362 *
363 * Call with callback_lock or cpuset_mutex held.
364 */
365 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
366 {
367 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
368 cs = parent_cs(cs);
369 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
370 }
371
372 /*
373 * update task's spread flag if cpuset's page/slab spread flag is set
374 *
375 * Call with callback_lock or cpuset_mutex held.
376 */
377 static void cpuset_update_task_spread_flag(struct cpuset *cs,
378 struct task_struct *tsk)
379 {
380 if (is_spread_page(cs))
381 task_set_spread_page(tsk);
382 else
383 task_clear_spread_page(tsk);
384
385 if (is_spread_slab(cs))
386 task_set_spread_slab(tsk);
387 else
388 task_clear_spread_slab(tsk);
389 }
390
391 /*
392 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
393 *
394 * One cpuset is a subset of another if all its allowed CPUs and
395 * Memory Nodes are a subset of the other, and its exclusive flags
396 * are only set if the other's are set. Call holding cpuset_mutex.
397 */
398
399 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
400 {
401 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
402 nodes_subset(p->mems_allowed, q->mems_allowed) &&
403 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
404 is_mem_exclusive(p) <= is_mem_exclusive(q);
405 }
406
407 /**
408 * alloc_trial_cpuset - allocate a trial cpuset
409 * @cs: the cpuset that the trial cpuset duplicates
410 */
411 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
412 {
413 struct cpuset *trial;
414
415 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
416 if (!trial)
417 return NULL;
418
419 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
420 goto free_cs;
421 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
422 goto free_cpus;
423
424 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
425 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
426 return trial;
427
428 free_cpus:
429 free_cpumask_var(trial->cpus_allowed);
430 free_cs:
431 kfree(trial);
432 return NULL;
433 }
434
435 /**
436 * free_trial_cpuset - free the trial cpuset
437 * @trial: the trial cpuset to be freed
438 */
439 static void free_trial_cpuset(struct cpuset *trial)
440 {
441 free_cpumask_var(trial->effective_cpus);
442 free_cpumask_var(trial->cpus_allowed);
443 kfree(trial);
444 }
445
446 /*
447 * validate_change() - Used to validate that any proposed cpuset change
448 * follows the structural rules for cpusets.
449 *
450 * If we replaced the flag and mask values of the current cpuset
451 * (cur) with those values in the trial cpuset (trial), would
452 * our various subset and exclusive rules still be valid? Presumes
453 * cpuset_mutex held.
454 *
455 * 'cur' is the address of an actual, in-use cpuset. Operations
456 * such as list traversal that depend on the actual address of the
457 * cpuset in the list must use cur below, not trial.
458 *
459 * 'trial' is the address of bulk structure copy of cur, with
460 * perhaps one or more of the fields cpus_allowed, mems_allowed,
461 * or flags changed to new, trial values.
462 *
463 * Return 0 if valid, -errno if not.
464 */
465
466 static int validate_change(struct cpuset *cur, struct cpuset *trial)
467 {
468 struct cgroup_subsys_state *css;
469 struct cpuset *c, *par;
470 int ret;
471
472 rcu_read_lock();
473
474 /* Each of our child cpusets must be a subset of us */
475 ret = -EBUSY;
476 cpuset_for_each_child(c, css, cur)
477 if (!is_cpuset_subset(c, trial))
478 goto out;
479
480 /* Remaining checks don't apply to root cpuset */
481 ret = 0;
482 if (cur == &top_cpuset)
483 goto out;
484
485 par = parent_cs(cur);
486
487 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
488 ret = -EACCES;
489 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
490 !is_cpuset_subset(trial, par))
491 goto out;
492
493 /*
494 * If either I or some sibling (!= me) is exclusive, we can't
495 * overlap
496 */
497 ret = -EINVAL;
498 cpuset_for_each_child(c, css, par) {
499 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
500 c != cur &&
501 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
502 goto out;
503 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
504 c != cur &&
505 nodes_intersects(trial->mems_allowed, c->mems_allowed))
506 goto out;
507 }
508
509 /*
510 * Cpusets with tasks - existing or newly being attached - can't
511 * be changed to have empty cpus_allowed or mems_allowed.
512 */
513 ret = -ENOSPC;
514 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
515 if (!cpumask_empty(cur->cpus_allowed) &&
516 cpumask_empty(trial->cpus_allowed))
517 goto out;
518 if (!nodes_empty(cur->mems_allowed) &&
519 nodes_empty(trial->mems_allowed))
520 goto out;
521 }
522
523 /*
524 * We can't shrink if we won't have enough room for SCHED_DEADLINE
525 * tasks.
526 */
527 ret = -EBUSY;
528 if (is_cpu_exclusive(cur) &&
529 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
530 trial->cpus_allowed))
531 goto out;
532
533 ret = 0;
534 out:
535 rcu_read_unlock();
536 return ret;
537 }
538
539 #ifdef CONFIG_SMP
540 /*
541 * Helper routine for generate_sched_domains().
542 * Do cpusets a, b have overlapping effective cpus_allowed masks?
543 */
544 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
545 {
546 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
547 }
548
549 static void
550 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
551 {
552 if (dattr->relax_domain_level < c->relax_domain_level)
553 dattr->relax_domain_level = c->relax_domain_level;
554 return;
555 }
556
557 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
558 struct cpuset *root_cs)
559 {
560 struct cpuset *cp;
561 struct cgroup_subsys_state *pos_css;
562
563 rcu_read_lock();
564 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
565 /* skip the whole subtree if @cp doesn't have any CPU */
566 if (cpumask_empty(cp->cpus_allowed)) {
567 pos_css = css_rightmost_descendant(pos_css);
568 continue;
569 }
570
571 if (is_sched_load_balance(cp))
572 update_domain_attr(dattr, cp);
573 }
574 rcu_read_unlock();
575 }
576
577 /*
578 * generate_sched_domains()
579 *
580 * This function builds a partial partition of the systems CPUs
581 * A 'partial partition' is a set of non-overlapping subsets whose
582 * union is a subset of that set.
583 * The output of this function needs to be passed to kernel/sched/core.c
584 * partition_sched_domains() routine, which will rebuild the scheduler's
585 * load balancing domains (sched domains) as specified by that partial
586 * partition.
587 *
588 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
589 * for a background explanation of this.
590 *
591 * Does not return errors, on the theory that the callers of this
592 * routine would rather not worry about failures to rebuild sched
593 * domains when operating in the severe memory shortage situations
594 * that could cause allocation failures below.
595 *
596 * Must be called with cpuset_mutex held.
597 *
598 * The three key local variables below are:
599 * q - a linked-list queue of cpuset pointers, used to implement a
600 * top-down scan of all cpusets. This scan loads a pointer
601 * to each cpuset marked is_sched_load_balance into the
602 * array 'csa'. For our purposes, rebuilding the schedulers
603 * sched domains, we can ignore !is_sched_load_balance cpusets.
604 * csa - (for CpuSet Array) Array of pointers to all the cpusets
605 * that need to be load balanced, for convenient iterative
606 * access by the subsequent code that finds the best partition,
607 * i.e the set of domains (subsets) of CPUs such that the
608 * cpus_allowed of every cpuset marked is_sched_load_balance
609 * is a subset of one of these domains, while there are as
610 * many such domains as possible, each as small as possible.
611 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
612 * the kernel/sched/core.c routine partition_sched_domains() in a
613 * convenient format, that can be easily compared to the prior
614 * value to determine what partition elements (sched domains)
615 * were changed (added or removed.)
616 *
617 * Finding the best partition (set of domains):
618 * The triple nested loops below over i, j, k scan over the
619 * load balanced cpusets (using the array of cpuset pointers in
620 * csa[]) looking for pairs of cpusets that have overlapping
621 * cpus_allowed, but which don't have the same 'pn' partition
622 * number and gives them in the same partition number. It keeps
623 * looping on the 'restart' label until it can no longer find
624 * any such pairs.
625 *
626 * The union of the cpus_allowed masks from the set of
627 * all cpusets having the same 'pn' value then form the one
628 * element of the partition (one sched domain) to be passed to
629 * partition_sched_domains().
630 */
631 static int generate_sched_domains(cpumask_var_t **domains,
632 struct sched_domain_attr **attributes)
633 {
634 struct cpuset *cp; /* scans q */
635 struct cpuset **csa; /* array of all cpuset ptrs */
636 int csn; /* how many cpuset ptrs in csa so far */
637 int i, j, k; /* indices for partition finding loops */
638 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
639 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
640 struct sched_domain_attr *dattr; /* attributes for custom domains */
641 int ndoms = 0; /* number of sched domains in result */
642 int nslot; /* next empty doms[] struct cpumask slot */
643 struct cgroup_subsys_state *pos_css;
644
645 doms = NULL;
646 dattr = NULL;
647 csa = NULL;
648
649 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
650 goto done;
651 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
652
653 /* Special case for the 99% of systems with one, full, sched domain */
654 if (is_sched_load_balance(&top_cpuset)) {
655 ndoms = 1;
656 doms = alloc_sched_domains(ndoms);
657 if (!doms)
658 goto done;
659
660 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
661 if (dattr) {
662 *dattr = SD_ATTR_INIT;
663 update_domain_attr_tree(dattr, &top_cpuset);
664 }
665 cpumask_and(doms[0], top_cpuset.effective_cpus,
666 non_isolated_cpus);
667
668 goto done;
669 }
670
671 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
672 if (!csa)
673 goto done;
674 csn = 0;
675
676 rcu_read_lock();
677 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
678 if (cp == &top_cpuset)
679 continue;
680 /*
681 * Continue traversing beyond @cp iff @cp has some CPUs and
682 * isn't load balancing. The former is obvious. The
683 * latter: All child cpusets contain a subset of the
684 * parent's cpus, so just skip them, and then we call
685 * update_domain_attr_tree() to calc relax_domain_level of
686 * the corresponding sched domain.
687 */
688 if (!cpumask_empty(cp->cpus_allowed) &&
689 !(is_sched_load_balance(cp) &&
690 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
691 continue;
692
693 if (is_sched_load_balance(cp))
694 csa[csn++] = cp;
695
696 /* skip @cp's subtree */
697 pos_css = css_rightmost_descendant(pos_css);
698 }
699 rcu_read_unlock();
700
701 for (i = 0; i < csn; i++)
702 csa[i]->pn = i;
703 ndoms = csn;
704
705 restart:
706 /* Find the best partition (set of sched domains) */
707 for (i = 0; i < csn; i++) {
708 struct cpuset *a = csa[i];
709 int apn = a->pn;
710
711 for (j = 0; j < csn; j++) {
712 struct cpuset *b = csa[j];
713 int bpn = b->pn;
714
715 if (apn != bpn && cpusets_overlap(a, b)) {
716 for (k = 0; k < csn; k++) {
717 struct cpuset *c = csa[k];
718
719 if (c->pn == bpn)
720 c->pn = apn;
721 }
722 ndoms--; /* one less element */
723 goto restart;
724 }
725 }
726 }
727
728 /*
729 * Now we know how many domains to create.
730 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
731 */
732 doms = alloc_sched_domains(ndoms);
733 if (!doms)
734 goto done;
735
736 /*
737 * The rest of the code, including the scheduler, can deal with
738 * dattr==NULL case. No need to abort if alloc fails.
739 */
740 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
741
742 for (nslot = 0, i = 0; i < csn; i++) {
743 struct cpuset *a = csa[i];
744 struct cpumask *dp;
745 int apn = a->pn;
746
747 if (apn < 0) {
748 /* Skip completed partitions */
749 continue;
750 }
751
752 dp = doms[nslot];
753
754 if (nslot == ndoms) {
755 static int warnings = 10;
756 if (warnings) {
757 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
758 nslot, ndoms, csn, i, apn);
759 warnings--;
760 }
761 continue;
762 }
763
764 cpumask_clear(dp);
765 if (dattr)
766 *(dattr + nslot) = SD_ATTR_INIT;
767 for (j = i; j < csn; j++) {
768 struct cpuset *b = csa[j];
769
770 if (apn == b->pn) {
771 cpumask_or(dp, dp, b->effective_cpus);
772 cpumask_and(dp, dp, non_isolated_cpus);
773 if (dattr)
774 update_domain_attr_tree(dattr + nslot, b);
775
776 /* Done with this partition */
777 b->pn = -1;
778 }
779 }
780 nslot++;
781 }
782 BUG_ON(nslot != ndoms);
783
784 done:
785 free_cpumask_var(non_isolated_cpus);
786 kfree(csa);
787
788 /*
789 * Fallback to the default domain if kmalloc() failed.
790 * See comments in partition_sched_domains().
791 */
792 if (doms == NULL)
793 ndoms = 1;
794
795 *domains = doms;
796 *attributes = dattr;
797 return ndoms;
798 }
799
800 /*
801 * Rebuild scheduler domains.
802 *
803 * If the flag 'sched_load_balance' of any cpuset with non-empty
804 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
805 * which has that flag enabled, or if any cpuset with a non-empty
806 * 'cpus' is removed, then call this routine to rebuild the
807 * scheduler's dynamic sched domains.
808 *
809 * Call with cpuset_mutex held. Takes get_online_cpus().
810 */
811 static void rebuild_sched_domains_locked(void)
812 {
813 struct sched_domain_attr *attr;
814 cpumask_var_t *doms;
815 int ndoms;
816
817 lockdep_assert_held(&cpuset_mutex);
818 get_online_cpus();
819
820 /*
821 * We have raced with CPU hotplug. Don't do anything to avoid
822 * passing doms with offlined cpu to partition_sched_domains().
823 * Anyways, hotplug work item will rebuild sched domains.
824 */
825 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
826 goto out;
827
828 /* Generate domain masks and attrs */
829 ndoms = generate_sched_domains(&doms, &attr);
830
831 /* Have scheduler rebuild the domains */
832 partition_sched_domains(ndoms, doms, attr);
833 out:
834 put_online_cpus();
835 }
836 #else /* !CONFIG_SMP */
837 static void rebuild_sched_domains_locked(void)
838 {
839 }
840 #endif /* CONFIG_SMP */
841
842 void rebuild_sched_domains(void)
843 {
844 mutex_lock(&cpuset_mutex);
845 rebuild_sched_domains_locked();
846 mutex_unlock(&cpuset_mutex);
847 }
848
849 /**
850 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
851 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
852 *
853 * Iterate through each task of @cs updating its cpus_allowed to the
854 * effective cpuset's. As this function is called with cpuset_mutex held,
855 * cpuset membership stays stable.
856 */
857 static void update_tasks_cpumask(struct cpuset *cs)
858 {
859 struct css_task_iter it;
860 struct task_struct *task;
861
862 css_task_iter_start(&cs->css, &it);
863 while ((task = css_task_iter_next(&it)))
864 set_cpus_allowed_ptr(task, cs->effective_cpus);
865 css_task_iter_end(&it);
866 }
867
868 /*
869 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
870 * @cs: the cpuset to consider
871 * @new_cpus: temp variable for calculating new effective_cpus
872 *
873 * When congifured cpumask is changed, the effective cpumasks of this cpuset
874 * and all its descendants need to be updated.
875 *
876 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
877 *
878 * Called with cpuset_mutex held
879 */
880 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
881 {
882 struct cpuset *cp;
883 struct cgroup_subsys_state *pos_css;
884 bool need_rebuild_sched_domains = false;
885
886 rcu_read_lock();
887 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
888 struct cpuset *parent = parent_cs(cp);
889
890 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
891
892 /*
893 * If it becomes empty, inherit the effective mask of the
894 * parent, which is guaranteed to have some CPUs.
895 */
896 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
897 cpumask_empty(new_cpus))
898 cpumask_copy(new_cpus, parent->effective_cpus);
899
900 /* Skip the whole subtree if the cpumask remains the same. */
901 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
902 pos_css = css_rightmost_descendant(pos_css);
903 continue;
904 }
905
906 if (!css_tryget_online(&cp->css))
907 continue;
908 rcu_read_unlock();
909
910 spin_lock_irq(&callback_lock);
911 cpumask_copy(cp->effective_cpus, new_cpus);
912 spin_unlock_irq(&callback_lock);
913
914 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
915 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
916
917 update_tasks_cpumask(cp);
918
919 /*
920 * If the effective cpumask of any non-empty cpuset is changed,
921 * we need to rebuild sched domains.
922 */
923 if (!cpumask_empty(cp->cpus_allowed) &&
924 is_sched_load_balance(cp))
925 need_rebuild_sched_domains = true;
926
927 rcu_read_lock();
928 css_put(&cp->css);
929 }
930 rcu_read_unlock();
931
932 if (need_rebuild_sched_domains)
933 rebuild_sched_domains_locked();
934 }
935
936 /**
937 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
938 * @cs: the cpuset to consider
939 * @trialcs: trial cpuset
940 * @buf: buffer of cpu numbers written to this cpuset
941 */
942 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
943 const char *buf)
944 {
945 int retval;
946
947 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
948 if (cs == &top_cpuset)
949 return -EACCES;
950
951 /*
952 * An empty cpus_allowed is ok only if the cpuset has no tasks.
953 * Since cpulist_parse() fails on an empty mask, we special case
954 * that parsing. The validate_change() call ensures that cpusets
955 * with tasks have cpus.
956 */
957 if (!*buf) {
958 cpumask_clear(trialcs->cpus_allowed);
959 } else {
960 retval = cpulist_parse(buf, trialcs->cpus_allowed);
961 if (retval < 0)
962 return retval;
963
964 if (!cpumask_subset(trialcs->cpus_allowed,
965 top_cpuset.cpus_allowed))
966 return -EINVAL;
967 }
968
969 /* Nothing to do if the cpus didn't change */
970 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
971 return 0;
972
973 retval = validate_change(cs, trialcs);
974 if (retval < 0)
975 return retval;
976
977 spin_lock_irq(&callback_lock);
978 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
979 spin_unlock_irq(&callback_lock);
980
981 /* use trialcs->cpus_allowed as a temp variable */
982 update_cpumasks_hier(cs, trialcs->cpus_allowed);
983 return 0;
984 }
985
986 /*
987 * Migrate memory region from one set of nodes to another. This is
988 * performed asynchronously as it can be called from process migration path
989 * holding locks involved in process management. All mm migrations are
990 * performed in the queued order and can be waited for by flushing
991 * cpuset_migrate_mm_wq.
992 */
993
994 struct cpuset_migrate_mm_work {
995 struct work_struct work;
996 struct mm_struct *mm;
997 nodemask_t from;
998 nodemask_t to;
999 };
1000
1001 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1002 {
1003 struct cpuset_migrate_mm_work *mwork =
1004 container_of(work, struct cpuset_migrate_mm_work, work);
1005
1006 /* on a wq worker, no need to worry about %current's mems_allowed */
1007 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1008 mmput(mwork->mm);
1009 kfree(mwork);
1010 }
1011
1012 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1013 const nodemask_t *to)
1014 {
1015 struct cpuset_migrate_mm_work *mwork;
1016
1017 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1018 if (mwork) {
1019 mwork->mm = mm;
1020 mwork->from = *from;
1021 mwork->to = *to;
1022 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1023 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1024 } else {
1025 mmput(mm);
1026 }
1027 }
1028
1029 static void cpuset_post_attach(void)
1030 {
1031 flush_workqueue(cpuset_migrate_mm_wq);
1032 }
1033
1034 /*
1035 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1036 * @tsk: the task to change
1037 * @newmems: new nodes that the task will be set
1038 *
1039 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1040 * we structure updates as setting all new allowed nodes, then clearing newly
1041 * disallowed ones.
1042 */
1043 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1044 nodemask_t *newmems)
1045 {
1046 bool need_loop;
1047
1048 /*
1049 * Allow tasks that have access to memory reserves because they have
1050 * been OOM killed to get memory anywhere.
1051 */
1052 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1053 return;
1054 if (current->flags & PF_EXITING) /* Let dying task have memory */
1055 return;
1056
1057 task_lock(tsk);
1058 /*
1059 * Determine if a loop is necessary if another thread is doing
1060 * read_mems_allowed_begin(). If at least one node remains unchanged and
1061 * tsk does not have a mempolicy, then an empty nodemask will not be
1062 * possible when mems_allowed is larger than a word.
1063 */
1064 need_loop = task_has_mempolicy(tsk) ||
1065 !nodes_intersects(*newmems, tsk->mems_allowed);
1066
1067 if (need_loop) {
1068 local_irq_disable();
1069 write_seqcount_begin(&tsk->mems_allowed_seq);
1070 }
1071
1072 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1073 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1074
1075 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1076 tsk->mems_allowed = *newmems;
1077
1078 if (need_loop) {
1079 write_seqcount_end(&tsk->mems_allowed_seq);
1080 local_irq_enable();
1081 }
1082
1083 task_unlock(tsk);
1084 }
1085
1086 static void *cpuset_being_rebound;
1087
1088 /**
1089 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1090 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1091 *
1092 * Iterate through each task of @cs updating its mems_allowed to the
1093 * effective cpuset's. As this function is called with cpuset_mutex held,
1094 * cpuset membership stays stable.
1095 */
1096 static void update_tasks_nodemask(struct cpuset *cs)
1097 {
1098 static nodemask_t newmems; /* protected by cpuset_mutex */
1099 struct css_task_iter it;
1100 struct task_struct *task;
1101
1102 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1103
1104 guarantee_online_mems(cs, &newmems);
1105
1106 /*
1107 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1108 * take while holding tasklist_lock. Forks can happen - the
1109 * mpol_dup() cpuset_being_rebound check will catch such forks,
1110 * and rebind their vma mempolicies too. Because we still hold
1111 * the global cpuset_mutex, we know that no other rebind effort
1112 * will be contending for the global variable cpuset_being_rebound.
1113 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1114 * is idempotent. Also migrate pages in each mm to new nodes.
1115 */
1116 css_task_iter_start(&cs->css, &it);
1117 while ((task = css_task_iter_next(&it))) {
1118 struct mm_struct *mm;
1119 bool migrate;
1120
1121 cpuset_change_task_nodemask(task, &newmems);
1122
1123 mm = get_task_mm(task);
1124 if (!mm)
1125 continue;
1126
1127 migrate = is_memory_migrate(cs);
1128
1129 mpol_rebind_mm(mm, &cs->mems_allowed);
1130 if (migrate)
1131 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1132 else
1133 mmput(mm);
1134 }
1135 css_task_iter_end(&it);
1136
1137 /*
1138 * All the tasks' nodemasks have been updated, update
1139 * cs->old_mems_allowed.
1140 */
1141 cs->old_mems_allowed = newmems;
1142
1143 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1144 cpuset_being_rebound = NULL;
1145 }
1146
1147 /*
1148 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1149 * @cs: the cpuset to consider
1150 * @new_mems: a temp variable for calculating new effective_mems
1151 *
1152 * When configured nodemask is changed, the effective nodemasks of this cpuset
1153 * and all its descendants need to be updated.
1154 *
1155 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1156 *
1157 * Called with cpuset_mutex held
1158 */
1159 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1160 {
1161 struct cpuset *cp;
1162 struct cgroup_subsys_state *pos_css;
1163
1164 rcu_read_lock();
1165 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1166 struct cpuset *parent = parent_cs(cp);
1167
1168 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1169
1170 /*
1171 * If it becomes empty, inherit the effective mask of the
1172 * parent, which is guaranteed to have some MEMs.
1173 */
1174 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1175 nodes_empty(*new_mems))
1176 *new_mems = parent->effective_mems;
1177
1178 /* Skip the whole subtree if the nodemask remains the same. */
1179 if (nodes_equal(*new_mems, cp->effective_mems)) {
1180 pos_css = css_rightmost_descendant(pos_css);
1181 continue;
1182 }
1183
1184 if (!css_tryget_online(&cp->css))
1185 continue;
1186 rcu_read_unlock();
1187
1188 spin_lock_irq(&callback_lock);
1189 cp->effective_mems = *new_mems;
1190 spin_unlock_irq(&callback_lock);
1191
1192 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1193 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1194
1195 update_tasks_nodemask(cp);
1196
1197 rcu_read_lock();
1198 css_put(&cp->css);
1199 }
1200 rcu_read_unlock();
1201 }
1202
1203 /*
1204 * Handle user request to change the 'mems' memory placement
1205 * of a cpuset. Needs to validate the request, update the
1206 * cpusets mems_allowed, and for each task in the cpuset,
1207 * update mems_allowed and rebind task's mempolicy and any vma
1208 * mempolicies and if the cpuset is marked 'memory_migrate',
1209 * migrate the tasks pages to the new memory.
1210 *
1211 * Call with cpuset_mutex held. May take callback_lock during call.
1212 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1213 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1214 * their mempolicies to the cpusets new mems_allowed.
1215 */
1216 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1217 const char *buf)
1218 {
1219 int retval;
1220
1221 /*
1222 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1223 * it's read-only
1224 */
1225 if (cs == &top_cpuset) {
1226 retval = -EACCES;
1227 goto done;
1228 }
1229
1230 /*
1231 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1232 * Since nodelist_parse() fails on an empty mask, we special case
1233 * that parsing. The validate_change() call ensures that cpusets
1234 * with tasks have memory.
1235 */
1236 if (!*buf) {
1237 nodes_clear(trialcs->mems_allowed);
1238 } else {
1239 retval = nodelist_parse(buf, trialcs->mems_allowed);
1240 if (retval < 0)
1241 goto done;
1242
1243 if (!nodes_subset(trialcs->mems_allowed,
1244 top_cpuset.mems_allowed)) {
1245 retval = -EINVAL;
1246 goto done;
1247 }
1248 }
1249
1250 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1251 retval = 0; /* Too easy - nothing to do */
1252 goto done;
1253 }
1254 retval = validate_change(cs, trialcs);
1255 if (retval < 0)
1256 goto done;
1257
1258 spin_lock_irq(&callback_lock);
1259 cs->mems_allowed = trialcs->mems_allowed;
1260 spin_unlock_irq(&callback_lock);
1261
1262 /* use trialcs->mems_allowed as a temp variable */
1263 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1264 done:
1265 return retval;
1266 }
1267
1268 int current_cpuset_is_being_rebound(void)
1269 {
1270 int ret;
1271
1272 rcu_read_lock();
1273 ret = task_cs(current) == cpuset_being_rebound;
1274 rcu_read_unlock();
1275
1276 return ret;
1277 }
1278
1279 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1280 {
1281 #ifdef CONFIG_SMP
1282 if (val < -1 || val >= sched_domain_level_max)
1283 return -EINVAL;
1284 #endif
1285
1286 if (val != cs->relax_domain_level) {
1287 cs->relax_domain_level = val;
1288 if (!cpumask_empty(cs->cpus_allowed) &&
1289 is_sched_load_balance(cs))
1290 rebuild_sched_domains_locked();
1291 }
1292
1293 return 0;
1294 }
1295
1296 /**
1297 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1298 * @cs: the cpuset in which each task's spread flags needs to be changed
1299 *
1300 * Iterate through each task of @cs updating its spread flags. As this
1301 * function is called with cpuset_mutex held, cpuset membership stays
1302 * stable.
1303 */
1304 static void update_tasks_flags(struct cpuset *cs)
1305 {
1306 struct css_task_iter it;
1307 struct task_struct *task;
1308
1309 css_task_iter_start(&cs->css, &it);
1310 while ((task = css_task_iter_next(&it)))
1311 cpuset_update_task_spread_flag(cs, task);
1312 css_task_iter_end(&it);
1313 }
1314
1315 /*
1316 * update_flag - read a 0 or a 1 in a file and update associated flag
1317 * bit: the bit to update (see cpuset_flagbits_t)
1318 * cs: the cpuset to update
1319 * turning_on: whether the flag is being set or cleared
1320 *
1321 * Call with cpuset_mutex held.
1322 */
1323
1324 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1325 int turning_on)
1326 {
1327 struct cpuset *trialcs;
1328 int balance_flag_changed;
1329 int spread_flag_changed;
1330 int err;
1331
1332 trialcs = alloc_trial_cpuset(cs);
1333 if (!trialcs)
1334 return -ENOMEM;
1335
1336 if (turning_on)
1337 set_bit(bit, &trialcs->flags);
1338 else
1339 clear_bit(bit, &trialcs->flags);
1340
1341 err = validate_change(cs, trialcs);
1342 if (err < 0)
1343 goto out;
1344
1345 balance_flag_changed = (is_sched_load_balance(cs) !=
1346 is_sched_load_balance(trialcs));
1347
1348 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1349 || (is_spread_page(cs) != is_spread_page(trialcs)));
1350
1351 spin_lock_irq(&callback_lock);
1352 cs->flags = trialcs->flags;
1353 spin_unlock_irq(&callback_lock);
1354
1355 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1356 rebuild_sched_domains_locked();
1357
1358 if (spread_flag_changed)
1359 update_tasks_flags(cs);
1360 out:
1361 free_trial_cpuset(trialcs);
1362 return err;
1363 }
1364
1365 /*
1366 * Frequency meter - How fast is some event occurring?
1367 *
1368 * These routines manage a digitally filtered, constant time based,
1369 * event frequency meter. There are four routines:
1370 * fmeter_init() - initialize a frequency meter.
1371 * fmeter_markevent() - called each time the event happens.
1372 * fmeter_getrate() - returns the recent rate of such events.
1373 * fmeter_update() - internal routine used to update fmeter.
1374 *
1375 * A common data structure is passed to each of these routines,
1376 * which is used to keep track of the state required to manage the
1377 * frequency meter and its digital filter.
1378 *
1379 * The filter works on the number of events marked per unit time.
1380 * The filter is single-pole low-pass recursive (IIR). The time unit
1381 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1382 * simulate 3 decimal digits of precision (multiplied by 1000).
1383 *
1384 * With an FM_COEF of 933, and a time base of 1 second, the filter
1385 * has a half-life of 10 seconds, meaning that if the events quit
1386 * happening, then the rate returned from the fmeter_getrate()
1387 * will be cut in half each 10 seconds, until it converges to zero.
1388 *
1389 * It is not worth doing a real infinitely recursive filter. If more
1390 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1391 * just compute FM_MAXTICKS ticks worth, by which point the level
1392 * will be stable.
1393 *
1394 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1395 * arithmetic overflow in the fmeter_update() routine.
1396 *
1397 * Given the simple 32 bit integer arithmetic used, this meter works
1398 * best for reporting rates between one per millisecond (msec) and
1399 * one per 32 (approx) seconds. At constant rates faster than one
1400 * per msec it maxes out at values just under 1,000,000. At constant
1401 * rates between one per msec, and one per second it will stabilize
1402 * to a value N*1000, where N is the rate of events per second.
1403 * At constant rates between one per second and one per 32 seconds,
1404 * it will be choppy, moving up on the seconds that have an event,
1405 * and then decaying until the next event. At rates slower than
1406 * about one in 32 seconds, it decays all the way back to zero between
1407 * each event.
1408 */
1409
1410 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1411 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1412 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1413 #define FM_SCALE 1000 /* faux fixed point scale */
1414
1415 /* Initialize a frequency meter */
1416 static void fmeter_init(struct fmeter *fmp)
1417 {
1418 fmp->cnt = 0;
1419 fmp->val = 0;
1420 fmp->time = 0;
1421 spin_lock_init(&fmp->lock);
1422 }
1423
1424 /* Internal meter update - process cnt events and update value */
1425 static void fmeter_update(struct fmeter *fmp)
1426 {
1427 time_t now = get_seconds();
1428 time_t ticks = now - fmp->time;
1429
1430 if (ticks == 0)
1431 return;
1432
1433 ticks = min(FM_MAXTICKS, ticks);
1434 while (ticks-- > 0)
1435 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1436 fmp->time = now;
1437
1438 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1439 fmp->cnt = 0;
1440 }
1441
1442 /* Process any previous ticks, then bump cnt by one (times scale). */
1443 static void fmeter_markevent(struct fmeter *fmp)
1444 {
1445 spin_lock(&fmp->lock);
1446 fmeter_update(fmp);
1447 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1448 spin_unlock(&fmp->lock);
1449 }
1450
1451 /* Process any previous ticks, then return current value. */
1452 static int fmeter_getrate(struct fmeter *fmp)
1453 {
1454 int val;
1455
1456 spin_lock(&fmp->lock);
1457 fmeter_update(fmp);
1458 val = fmp->val;
1459 spin_unlock(&fmp->lock);
1460 return val;
1461 }
1462
1463 static struct cpuset *cpuset_attach_old_cs;
1464
1465 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1466 static int cpuset_can_attach(struct cgroup_taskset *tset)
1467 {
1468 struct cgroup_subsys_state *css;
1469 struct cpuset *cs;
1470 struct task_struct *task;
1471 int ret;
1472
1473 /* used later by cpuset_attach() */
1474 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1475 cs = css_cs(css);
1476
1477 mutex_lock(&cpuset_mutex);
1478
1479 /* allow moving tasks into an empty cpuset if on default hierarchy */
1480 ret = -ENOSPC;
1481 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1482 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1483 goto out_unlock;
1484
1485 cgroup_taskset_for_each(task, css, tset) {
1486 ret = task_can_attach(task, cs->cpus_allowed);
1487 if (ret)
1488 goto out_unlock;
1489 ret = security_task_setscheduler(task);
1490 if (ret)
1491 goto out_unlock;
1492 }
1493
1494 /*
1495 * Mark attach is in progress. This makes validate_change() fail
1496 * changes which zero cpus/mems_allowed.
1497 */
1498 cs->attach_in_progress++;
1499 ret = 0;
1500 out_unlock:
1501 mutex_unlock(&cpuset_mutex);
1502 return ret;
1503 }
1504
1505 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1506 {
1507 struct cgroup_subsys_state *css;
1508 struct cpuset *cs;
1509
1510 cgroup_taskset_first(tset, &css);
1511 cs = css_cs(css);
1512
1513 mutex_lock(&cpuset_mutex);
1514 css_cs(css)->attach_in_progress--;
1515 mutex_unlock(&cpuset_mutex);
1516 }
1517
1518 /*
1519 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1520 * but we can't allocate it dynamically there. Define it global and
1521 * allocate from cpuset_init().
1522 */
1523 static cpumask_var_t cpus_attach;
1524
1525 static void cpuset_attach(struct cgroup_taskset *tset)
1526 {
1527 /* static buf protected by cpuset_mutex */
1528 static nodemask_t cpuset_attach_nodemask_to;
1529 struct task_struct *task;
1530 struct task_struct *leader;
1531 struct cgroup_subsys_state *css;
1532 struct cpuset *cs;
1533 struct cpuset *oldcs = cpuset_attach_old_cs;
1534
1535 cgroup_taskset_first(tset, &css);
1536 cs = css_cs(css);
1537
1538 mutex_lock(&cpuset_mutex);
1539
1540 /* prepare for attach */
1541 if (cs == &top_cpuset)
1542 cpumask_copy(cpus_attach, cpu_possible_mask);
1543 else
1544 guarantee_online_cpus(cs, cpus_attach);
1545
1546 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1547
1548 cgroup_taskset_for_each(task, css, tset) {
1549 /*
1550 * can_attach beforehand should guarantee that this doesn't
1551 * fail. TODO: have a better way to handle failure here
1552 */
1553 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1554
1555 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1556 cpuset_update_task_spread_flag(cs, task);
1557 }
1558
1559 /*
1560 * Change mm for all threadgroup leaders. This is expensive and may
1561 * sleep and should be moved outside migration path proper.
1562 */
1563 cpuset_attach_nodemask_to = cs->effective_mems;
1564 cgroup_taskset_for_each_leader(leader, css, tset) {
1565 struct mm_struct *mm = get_task_mm(leader);
1566
1567 if (mm) {
1568 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1569
1570 /*
1571 * old_mems_allowed is the same with mems_allowed
1572 * here, except if this task is being moved
1573 * automatically due to hotplug. In that case
1574 * @mems_allowed has been updated and is empty, so
1575 * @old_mems_allowed is the right nodesets that we
1576 * migrate mm from.
1577 */
1578 if (is_memory_migrate(cs))
1579 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1580 &cpuset_attach_nodemask_to);
1581 else
1582 mmput(mm);
1583 }
1584 }
1585
1586 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1587
1588 cs->attach_in_progress--;
1589 if (!cs->attach_in_progress)
1590 wake_up(&cpuset_attach_wq);
1591
1592 mutex_unlock(&cpuset_mutex);
1593 }
1594
1595 /* The various types of files and directories in a cpuset file system */
1596
1597 typedef enum {
1598 FILE_MEMORY_MIGRATE,
1599 FILE_CPULIST,
1600 FILE_MEMLIST,
1601 FILE_EFFECTIVE_CPULIST,
1602 FILE_EFFECTIVE_MEMLIST,
1603 FILE_CPU_EXCLUSIVE,
1604 FILE_MEM_EXCLUSIVE,
1605 FILE_MEM_HARDWALL,
1606 FILE_SCHED_LOAD_BALANCE,
1607 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1608 FILE_MEMORY_PRESSURE_ENABLED,
1609 FILE_MEMORY_PRESSURE,
1610 FILE_SPREAD_PAGE,
1611 FILE_SPREAD_SLAB,
1612 } cpuset_filetype_t;
1613
1614 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1615 u64 val)
1616 {
1617 struct cpuset *cs = css_cs(css);
1618 cpuset_filetype_t type = cft->private;
1619 int retval = 0;
1620
1621 mutex_lock(&cpuset_mutex);
1622 if (!is_cpuset_online(cs)) {
1623 retval = -ENODEV;
1624 goto out_unlock;
1625 }
1626
1627 switch (type) {
1628 case FILE_CPU_EXCLUSIVE:
1629 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1630 break;
1631 case FILE_MEM_EXCLUSIVE:
1632 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1633 break;
1634 case FILE_MEM_HARDWALL:
1635 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1636 break;
1637 case FILE_SCHED_LOAD_BALANCE:
1638 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1639 break;
1640 case FILE_MEMORY_MIGRATE:
1641 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1642 break;
1643 case FILE_MEMORY_PRESSURE_ENABLED:
1644 cpuset_memory_pressure_enabled = !!val;
1645 break;
1646 case FILE_SPREAD_PAGE:
1647 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1648 break;
1649 case FILE_SPREAD_SLAB:
1650 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1651 break;
1652 default:
1653 retval = -EINVAL;
1654 break;
1655 }
1656 out_unlock:
1657 mutex_unlock(&cpuset_mutex);
1658 return retval;
1659 }
1660
1661 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1662 s64 val)
1663 {
1664 struct cpuset *cs = css_cs(css);
1665 cpuset_filetype_t type = cft->private;
1666 int retval = -ENODEV;
1667
1668 mutex_lock(&cpuset_mutex);
1669 if (!is_cpuset_online(cs))
1670 goto out_unlock;
1671
1672 switch (type) {
1673 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1674 retval = update_relax_domain_level(cs, val);
1675 break;
1676 default:
1677 retval = -EINVAL;
1678 break;
1679 }
1680 out_unlock:
1681 mutex_unlock(&cpuset_mutex);
1682 return retval;
1683 }
1684
1685 /*
1686 * Common handling for a write to a "cpus" or "mems" file.
1687 */
1688 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1689 char *buf, size_t nbytes, loff_t off)
1690 {
1691 struct cpuset *cs = css_cs(of_css(of));
1692 struct cpuset *trialcs;
1693 int retval = -ENODEV;
1694
1695 buf = strstrip(buf);
1696
1697 /*
1698 * CPU or memory hotunplug may leave @cs w/o any execution
1699 * resources, in which case the hotplug code asynchronously updates
1700 * configuration and transfers all tasks to the nearest ancestor
1701 * which can execute.
1702 *
1703 * As writes to "cpus" or "mems" may restore @cs's execution
1704 * resources, wait for the previously scheduled operations before
1705 * proceeding, so that we don't end up keep removing tasks added
1706 * after execution capability is restored.
1707 *
1708 * cpuset_hotplug_work calls back into cgroup core via
1709 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1710 * operation like this one can lead to a deadlock through kernfs
1711 * active_ref protection. Let's break the protection. Losing the
1712 * protection is okay as we check whether @cs is online after
1713 * grabbing cpuset_mutex anyway. This only happens on the legacy
1714 * hierarchies.
1715 */
1716 css_get(&cs->css);
1717 kernfs_break_active_protection(of->kn);
1718 flush_work(&cpuset_hotplug_work);
1719
1720 mutex_lock(&cpuset_mutex);
1721 if (!is_cpuset_online(cs))
1722 goto out_unlock;
1723
1724 trialcs = alloc_trial_cpuset(cs);
1725 if (!trialcs) {
1726 retval = -ENOMEM;
1727 goto out_unlock;
1728 }
1729
1730 switch (of_cft(of)->private) {
1731 case FILE_CPULIST:
1732 retval = update_cpumask(cs, trialcs, buf);
1733 break;
1734 case FILE_MEMLIST:
1735 retval = update_nodemask(cs, trialcs, buf);
1736 break;
1737 default:
1738 retval = -EINVAL;
1739 break;
1740 }
1741
1742 free_trial_cpuset(trialcs);
1743 out_unlock:
1744 mutex_unlock(&cpuset_mutex);
1745 kernfs_unbreak_active_protection(of->kn);
1746 css_put(&cs->css);
1747 flush_workqueue(cpuset_migrate_mm_wq);
1748 return retval ?: nbytes;
1749 }
1750
1751 /*
1752 * These ascii lists should be read in a single call, by using a user
1753 * buffer large enough to hold the entire map. If read in smaller
1754 * chunks, there is no guarantee of atomicity. Since the display format
1755 * used, list of ranges of sequential numbers, is variable length,
1756 * and since these maps can change value dynamically, one could read
1757 * gibberish by doing partial reads while a list was changing.
1758 */
1759 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1760 {
1761 struct cpuset *cs = css_cs(seq_css(sf));
1762 cpuset_filetype_t type = seq_cft(sf)->private;
1763 int ret = 0;
1764
1765 spin_lock_irq(&callback_lock);
1766
1767 switch (type) {
1768 case FILE_CPULIST:
1769 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1770 break;
1771 case FILE_MEMLIST:
1772 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1773 break;
1774 case FILE_EFFECTIVE_CPULIST:
1775 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1776 break;
1777 case FILE_EFFECTIVE_MEMLIST:
1778 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1779 break;
1780 default:
1781 ret = -EINVAL;
1782 }
1783
1784 spin_unlock_irq(&callback_lock);
1785 return ret;
1786 }
1787
1788 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1789 {
1790 struct cpuset *cs = css_cs(css);
1791 cpuset_filetype_t type = cft->private;
1792 switch (type) {
1793 case FILE_CPU_EXCLUSIVE:
1794 return is_cpu_exclusive(cs);
1795 case FILE_MEM_EXCLUSIVE:
1796 return is_mem_exclusive(cs);
1797 case FILE_MEM_HARDWALL:
1798 return is_mem_hardwall(cs);
1799 case FILE_SCHED_LOAD_BALANCE:
1800 return is_sched_load_balance(cs);
1801 case FILE_MEMORY_MIGRATE:
1802 return is_memory_migrate(cs);
1803 case FILE_MEMORY_PRESSURE_ENABLED:
1804 return cpuset_memory_pressure_enabled;
1805 case FILE_MEMORY_PRESSURE:
1806 return fmeter_getrate(&cs->fmeter);
1807 case FILE_SPREAD_PAGE:
1808 return is_spread_page(cs);
1809 case FILE_SPREAD_SLAB:
1810 return is_spread_slab(cs);
1811 default:
1812 BUG();
1813 }
1814
1815 /* Unreachable but makes gcc happy */
1816 return 0;
1817 }
1818
1819 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1820 {
1821 struct cpuset *cs = css_cs(css);
1822 cpuset_filetype_t type = cft->private;
1823 switch (type) {
1824 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1825 return cs->relax_domain_level;
1826 default:
1827 BUG();
1828 }
1829
1830 /* Unrechable but makes gcc happy */
1831 return 0;
1832 }
1833
1834
1835 /*
1836 * for the common functions, 'private' gives the type of file
1837 */
1838
1839 static struct cftype files[] = {
1840 {
1841 .name = "cpus",
1842 .seq_show = cpuset_common_seq_show,
1843 .write = cpuset_write_resmask,
1844 .max_write_len = (100U + 6 * NR_CPUS),
1845 .private = FILE_CPULIST,
1846 },
1847
1848 {
1849 .name = "mems",
1850 .seq_show = cpuset_common_seq_show,
1851 .write = cpuset_write_resmask,
1852 .max_write_len = (100U + 6 * MAX_NUMNODES),
1853 .private = FILE_MEMLIST,
1854 },
1855
1856 {
1857 .name = "effective_cpus",
1858 .seq_show = cpuset_common_seq_show,
1859 .private = FILE_EFFECTIVE_CPULIST,
1860 },
1861
1862 {
1863 .name = "effective_mems",
1864 .seq_show = cpuset_common_seq_show,
1865 .private = FILE_EFFECTIVE_MEMLIST,
1866 },
1867
1868 {
1869 .name = "cpu_exclusive",
1870 .read_u64 = cpuset_read_u64,
1871 .write_u64 = cpuset_write_u64,
1872 .private = FILE_CPU_EXCLUSIVE,
1873 },
1874
1875 {
1876 .name = "mem_exclusive",
1877 .read_u64 = cpuset_read_u64,
1878 .write_u64 = cpuset_write_u64,
1879 .private = FILE_MEM_EXCLUSIVE,
1880 },
1881
1882 {
1883 .name = "mem_hardwall",
1884 .read_u64 = cpuset_read_u64,
1885 .write_u64 = cpuset_write_u64,
1886 .private = FILE_MEM_HARDWALL,
1887 },
1888
1889 {
1890 .name = "sched_load_balance",
1891 .read_u64 = cpuset_read_u64,
1892 .write_u64 = cpuset_write_u64,
1893 .private = FILE_SCHED_LOAD_BALANCE,
1894 },
1895
1896 {
1897 .name = "sched_relax_domain_level",
1898 .read_s64 = cpuset_read_s64,
1899 .write_s64 = cpuset_write_s64,
1900 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1901 },
1902
1903 {
1904 .name = "memory_migrate",
1905 .read_u64 = cpuset_read_u64,
1906 .write_u64 = cpuset_write_u64,
1907 .private = FILE_MEMORY_MIGRATE,
1908 },
1909
1910 {
1911 .name = "memory_pressure",
1912 .read_u64 = cpuset_read_u64,
1913 .private = FILE_MEMORY_PRESSURE,
1914 },
1915
1916 {
1917 .name = "memory_spread_page",
1918 .read_u64 = cpuset_read_u64,
1919 .write_u64 = cpuset_write_u64,
1920 .private = FILE_SPREAD_PAGE,
1921 },
1922
1923 {
1924 .name = "memory_spread_slab",
1925 .read_u64 = cpuset_read_u64,
1926 .write_u64 = cpuset_write_u64,
1927 .private = FILE_SPREAD_SLAB,
1928 },
1929
1930 {
1931 .name = "memory_pressure_enabled",
1932 .flags = CFTYPE_ONLY_ON_ROOT,
1933 .read_u64 = cpuset_read_u64,
1934 .write_u64 = cpuset_write_u64,
1935 .private = FILE_MEMORY_PRESSURE_ENABLED,
1936 },
1937
1938 { } /* terminate */
1939 };
1940
1941 /*
1942 * cpuset_css_alloc - allocate a cpuset css
1943 * cgrp: control group that the new cpuset will be part of
1944 */
1945
1946 static struct cgroup_subsys_state *
1947 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1948 {
1949 struct cpuset *cs;
1950
1951 if (!parent_css)
1952 return &top_cpuset.css;
1953
1954 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1955 if (!cs)
1956 return ERR_PTR(-ENOMEM);
1957 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1958 goto free_cs;
1959 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1960 goto free_cpus;
1961
1962 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1963 cpumask_clear(cs->cpus_allowed);
1964 nodes_clear(cs->mems_allowed);
1965 cpumask_clear(cs->effective_cpus);
1966 nodes_clear(cs->effective_mems);
1967 fmeter_init(&cs->fmeter);
1968 cs->relax_domain_level = -1;
1969
1970 return &cs->css;
1971
1972 free_cpus:
1973 free_cpumask_var(cs->cpus_allowed);
1974 free_cs:
1975 kfree(cs);
1976 return ERR_PTR(-ENOMEM);
1977 }
1978
1979 static int cpuset_css_online(struct cgroup_subsys_state *css)
1980 {
1981 struct cpuset *cs = css_cs(css);
1982 struct cpuset *parent = parent_cs(cs);
1983 struct cpuset *tmp_cs;
1984 struct cgroup_subsys_state *pos_css;
1985
1986 if (!parent)
1987 return 0;
1988
1989 mutex_lock(&cpuset_mutex);
1990
1991 set_bit(CS_ONLINE, &cs->flags);
1992 if (is_spread_page(parent))
1993 set_bit(CS_SPREAD_PAGE, &cs->flags);
1994 if (is_spread_slab(parent))
1995 set_bit(CS_SPREAD_SLAB, &cs->flags);
1996
1997 cpuset_inc();
1998
1999 spin_lock_irq(&callback_lock);
2000 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2001 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2002 cs->effective_mems = parent->effective_mems;
2003 }
2004 spin_unlock_irq(&callback_lock);
2005
2006 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2007 goto out_unlock;
2008
2009 /*
2010 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2011 * set. This flag handling is implemented in cgroup core for
2012 * histrical reasons - the flag may be specified during mount.
2013 *
2014 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2015 * refuse to clone the configuration - thereby refusing the task to
2016 * be entered, and as a result refusing the sys_unshare() or
2017 * clone() which initiated it. If this becomes a problem for some
2018 * users who wish to allow that scenario, then this could be
2019 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2020 * (and likewise for mems) to the new cgroup.
2021 */
2022 rcu_read_lock();
2023 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2024 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2025 rcu_read_unlock();
2026 goto out_unlock;
2027 }
2028 }
2029 rcu_read_unlock();
2030
2031 spin_lock_irq(&callback_lock);
2032 cs->mems_allowed = parent->mems_allowed;
2033 cs->effective_mems = parent->mems_allowed;
2034 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2035 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2036 spin_unlock_irq(&callback_lock);
2037 out_unlock:
2038 mutex_unlock(&cpuset_mutex);
2039 return 0;
2040 }
2041
2042 /*
2043 * If the cpuset being removed has its flag 'sched_load_balance'
2044 * enabled, then simulate turning sched_load_balance off, which
2045 * will call rebuild_sched_domains_locked().
2046 */
2047
2048 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2049 {
2050 struct cpuset *cs = css_cs(css);
2051
2052 mutex_lock(&cpuset_mutex);
2053
2054 if (is_sched_load_balance(cs))
2055 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2056
2057 cpuset_dec();
2058 clear_bit(CS_ONLINE, &cs->flags);
2059
2060 mutex_unlock(&cpuset_mutex);
2061 }
2062
2063 static void cpuset_css_free(struct cgroup_subsys_state *css)
2064 {
2065 struct cpuset *cs = css_cs(css);
2066
2067 free_cpumask_var(cs->effective_cpus);
2068 free_cpumask_var(cs->cpus_allowed);
2069 kfree(cs);
2070 }
2071
2072 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2073 {
2074 mutex_lock(&cpuset_mutex);
2075 spin_lock_irq(&callback_lock);
2076
2077 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2078 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2079 top_cpuset.mems_allowed = node_possible_map;
2080 } else {
2081 cpumask_copy(top_cpuset.cpus_allowed,
2082 top_cpuset.effective_cpus);
2083 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2084 }
2085
2086 spin_unlock_irq(&callback_lock);
2087 mutex_unlock(&cpuset_mutex);
2088 }
2089
2090 /*
2091 * Make sure the new task conform to the current state of its parent,
2092 * which could have been changed by cpuset just after it inherits the
2093 * state from the parent and before it sits on the cgroup's task list.
2094 */
2095 void cpuset_fork(struct task_struct *task, void *priv)
2096 {
2097 if (task_css_is_root(task, cpuset_cgrp_id))
2098 return;
2099
2100 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2101 task->mems_allowed = current->mems_allowed;
2102 }
2103
2104 struct cgroup_subsys cpuset_cgrp_subsys = {
2105 .css_alloc = cpuset_css_alloc,
2106 .css_online = cpuset_css_online,
2107 .css_offline = cpuset_css_offline,
2108 .css_free = cpuset_css_free,
2109 .can_attach = cpuset_can_attach,
2110 .cancel_attach = cpuset_cancel_attach,
2111 .attach = cpuset_attach,
2112 .post_attach = cpuset_post_attach,
2113 .bind = cpuset_bind,
2114 .fork = cpuset_fork,
2115 .legacy_cftypes = files,
2116 .early_init = 1,
2117 };
2118
2119 /**
2120 * cpuset_init - initialize cpusets at system boot
2121 *
2122 * Description: Initialize top_cpuset and the cpuset internal file system,
2123 **/
2124
2125 int __init cpuset_init(void)
2126 {
2127 int err = 0;
2128
2129 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2130 BUG();
2131 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2132 BUG();
2133
2134 cpumask_setall(top_cpuset.cpus_allowed);
2135 nodes_setall(top_cpuset.mems_allowed);
2136 cpumask_setall(top_cpuset.effective_cpus);
2137 nodes_setall(top_cpuset.effective_mems);
2138
2139 fmeter_init(&top_cpuset.fmeter);
2140 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2141 top_cpuset.relax_domain_level = -1;
2142
2143 err = register_filesystem(&cpuset_fs_type);
2144 if (err < 0)
2145 return err;
2146
2147 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2148 BUG();
2149
2150 return 0;
2151 }
2152
2153 /*
2154 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2155 * or memory nodes, we need to walk over the cpuset hierarchy,
2156 * removing that CPU or node from all cpusets. If this removes the
2157 * last CPU or node from a cpuset, then move the tasks in the empty
2158 * cpuset to its next-highest non-empty parent.
2159 */
2160 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2161 {
2162 struct cpuset *parent;
2163
2164 /*
2165 * Find its next-highest non-empty parent, (top cpuset
2166 * has online cpus, so can't be empty).
2167 */
2168 parent = parent_cs(cs);
2169 while (cpumask_empty(parent->cpus_allowed) ||
2170 nodes_empty(parent->mems_allowed))
2171 parent = parent_cs(parent);
2172
2173 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2174 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2175 pr_cont_cgroup_name(cs->css.cgroup);
2176 pr_cont("\n");
2177 }
2178 }
2179
2180 static void
2181 hotplug_update_tasks_legacy(struct cpuset *cs,
2182 struct cpumask *new_cpus, nodemask_t *new_mems,
2183 bool cpus_updated, bool mems_updated)
2184 {
2185 bool is_empty;
2186
2187 spin_lock_irq(&callback_lock);
2188 cpumask_copy(cs->cpus_allowed, new_cpus);
2189 cpumask_copy(cs->effective_cpus, new_cpus);
2190 cs->mems_allowed = *new_mems;
2191 cs->effective_mems = *new_mems;
2192 spin_unlock_irq(&callback_lock);
2193
2194 /*
2195 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2196 * as the tasks will be migratecd to an ancestor.
2197 */
2198 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2199 update_tasks_cpumask(cs);
2200 if (mems_updated && !nodes_empty(cs->mems_allowed))
2201 update_tasks_nodemask(cs);
2202
2203 is_empty = cpumask_empty(cs->cpus_allowed) ||
2204 nodes_empty(cs->mems_allowed);
2205
2206 mutex_unlock(&cpuset_mutex);
2207
2208 /*
2209 * Move tasks to the nearest ancestor with execution resources,
2210 * This is full cgroup operation which will also call back into
2211 * cpuset. Should be done outside any lock.
2212 */
2213 if (is_empty)
2214 remove_tasks_in_empty_cpuset(cs);
2215
2216 mutex_lock(&cpuset_mutex);
2217 }
2218
2219 static void
2220 hotplug_update_tasks(struct cpuset *cs,
2221 struct cpumask *new_cpus, nodemask_t *new_mems,
2222 bool cpus_updated, bool mems_updated)
2223 {
2224 if (cpumask_empty(new_cpus))
2225 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2226 if (nodes_empty(*new_mems))
2227 *new_mems = parent_cs(cs)->effective_mems;
2228
2229 spin_lock_irq(&callback_lock);
2230 cpumask_copy(cs->effective_cpus, new_cpus);
2231 cs->effective_mems = *new_mems;
2232 spin_unlock_irq(&callback_lock);
2233
2234 if (cpus_updated)
2235 update_tasks_cpumask(cs);
2236 if (mems_updated)
2237 update_tasks_nodemask(cs);
2238 }
2239
2240 /**
2241 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2242 * @cs: cpuset in interest
2243 *
2244 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2245 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2246 * all its tasks are moved to the nearest ancestor with both resources.
2247 */
2248 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2249 {
2250 static cpumask_t new_cpus;
2251 static nodemask_t new_mems;
2252 bool cpus_updated;
2253 bool mems_updated;
2254 retry:
2255 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2256
2257 mutex_lock(&cpuset_mutex);
2258
2259 /*
2260 * We have raced with task attaching. We wait until attaching
2261 * is finished, so we won't attach a task to an empty cpuset.
2262 */
2263 if (cs->attach_in_progress) {
2264 mutex_unlock(&cpuset_mutex);
2265 goto retry;
2266 }
2267
2268 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2269 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2270
2271 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2272 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2273
2274 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2275 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2276 cpus_updated, mems_updated);
2277 else
2278 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2279 cpus_updated, mems_updated);
2280
2281 mutex_unlock(&cpuset_mutex);
2282 }
2283
2284 static bool force_rebuild;
2285
2286 void cpuset_force_rebuild(void)
2287 {
2288 force_rebuild = true;
2289 }
2290
2291 /**
2292 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2293 *
2294 * This function is called after either CPU or memory configuration has
2295 * changed and updates cpuset accordingly. The top_cpuset is always
2296 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2297 * order to make cpusets transparent (of no affect) on systems that are
2298 * actively using CPU hotplug but making no active use of cpusets.
2299 *
2300 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2301 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2302 * all descendants.
2303 *
2304 * Note that CPU offlining during suspend is ignored. We don't modify
2305 * cpusets across suspend/resume cycles at all.
2306 */
2307 static void cpuset_hotplug_workfn(struct work_struct *work)
2308 {
2309 static cpumask_t new_cpus;
2310 static nodemask_t new_mems;
2311 bool cpus_updated, mems_updated;
2312 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2313
2314 mutex_lock(&cpuset_mutex);
2315
2316 /* fetch the available cpus/mems and find out which changed how */
2317 cpumask_copy(&new_cpus, cpu_active_mask);
2318 new_mems = node_states[N_MEMORY];
2319
2320 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2321 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2322
2323 /* synchronize cpus_allowed to cpu_active_mask */
2324 if (cpus_updated) {
2325 spin_lock_irq(&callback_lock);
2326 if (!on_dfl)
2327 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2328 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2329 spin_unlock_irq(&callback_lock);
2330 /* we don't mess with cpumasks of tasks in top_cpuset */
2331 }
2332
2333 /* synchronize mems_allowed to N_MEMORY */
2334 if (mems_updated) {
2335 spin_lock_irq(&callback_lock);
2336 if (!on_dfl)
2337 top_cpuset.mems_allowed = new_mems;
2338 top_cpuset.effective_mems = new_mems;
2339 spin_unlock_irq(&callback_lock);
2340 update_tasks_nodemask(&top_cpuset);
2341 }
2342
2343 mutex_unlock(&cpuset_mutex);
2344
2345 /* if cpus or mems changed, we need to propagate to descendants */
2346 if (cpus_updated || mems_updated) {
2347 struct cpuset *cs;
2348 struct cgroup_subsys_state *pos_css;
2349
2350 rcu_read_lock();
2351 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2352 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2353 continue;
2354 rcu_read_unlock();
2355
2356 cpuset_hotplug_update_tasks(cs);
2357
2358 rcu_read_lock();
2359 css_put(&cs->css);
2360 }
2361 rcu_read_unlock();
2362 }
2363
2364 /* rebuild sched domains if cpus_allowed has changed */
2365 if (cpus_updated || force_rebuild) {
2366 force_rebuild = false;
2367 rebuild_sched_domains();
2368 }
2369 }
2370
2371 void cpuset_update_active_cpus(bool cpu_online)
2372 {
2373 /*
2374 * We're inside cpu hotplug critical region which usually nests
2375 * inside cgroup synchronization. Bounce actual hotplug processing
2376 * to a work item to avoid reverse locking order.
2377 *
2378 * We still need to do partition_sched_domains() synchronously;
2379 * otherwise, the scheduler will get confused and put tasks to the
2380 * dead CPU. Fall back to the default single domain.
2381 * cpuset_hotplug_workfn() will rebuild it as necessary.
2382 */
2383 partition_sched_domains(1, NULL, NULL);
2384 schedule_work(&cpuset_hotplug_work);
2385 }
2386
2387 void cpuset_wait_for_hotplug(void)
2388 {
2389 flush_work(&cpuset_hotplug_work);
2390 }
2391
2392 /*
2393 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2394 * Call this routine anytime after node_states[N_MEMORY] changes.
2395 * See cpuset_update_active_cpus() for CPU hotplug handling.
2396 */
2397 static int cpuset_track_online_nodes(struct notifier_block *self,
2398 unsigned long action, void *arg)
2399 {
2400 schedule_work(&cpuset_hotplug_work);
2401 return NOTIFY_OK;
2402 }
2403
2404 static struct notifier_block cpuset_track_online_nodes_nb = {
2405 .notifier_call = cpuset_track_online_nodes,
2406 .priority = 10, /* ??! */
2407 };
2408
2409 /**
2410 * cpuset_init_smp - initialize cpus_allowed
2411 *
2412 * Description: Finish top cpuset after cpu, node maps are initialized
2413 */
2414 void __init cpuset_init_smp(void)
2415 {
2416 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2417 top_cpuset.mems_allowed = node_states[N_MEMORY];
2418 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2419
2420 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2421 top_cpuset.effective_mems = node_states[N_MEMORY];
2422
2423 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2424
2425 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2426 BUG_ON(!cpuset_migrate_mm_wq);
2427 }
2428
2429 /**
2430 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2431 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2432 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2433 *
2434 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2435 * attached to the specified @tsk. Guaranteed to return some non-empty
2436 * subset of cpu_online_mask, even if this means going outside the
2437 * tasks cpuset.
2438 **/
2439
2440 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2441 {
2442 unsigned long flags;
2443
2444 spin_lock_irqsave(&callback_lock, flags);
2445 rcu_read_lock();
2446 guarantee_online_cpus(task_cs(tsk), pmask);
2447 rcu_read_unlock();
2448 spin_unlock_irqrestore(&callback_lock, flags);
2449 }
2450
2451 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2452 {
2453 rcu_read_lock();
2454 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2455 rcu_read_unlock();
2456
2457 /*
2458 * We own tsk->cpus_allowed, nobody can change it under us.
2459 *
2460 * But we used cs && cs->cpus_allowed lockless and thus can
2461 * race with cgroup_attach_task() or update_cpumask() and get
2462 * the wrong tsk->cpus_allowed. However, both cases imply the
2463 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2464 * which takes task_rq_lock().
2465 *
2466 * If we are called after it dropped the lock we must see all
2467 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2468 * set any mask even if it is not right from task_cs() pov,
2469 * the pending set_cpus_allowed_ptr() will fix things.
2470 *
2471 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2472 * if required.
2473 */
2474 }
2475
2476 void __init cpuset_init_current_mems_allowed(void)
2477 {
2478 nodes_setall(current->mems_allowed);
2479 }
2480
2481 /**
2482 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2483 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2484 *
2485 * Description: Returns the nodemask_t mems_allowed of the cpuset
2486 * attached to the specified @tsk. Guaranteed to return some non-empty
2487 * subset of node_states[N_MEMORY], even if this means going outside the
2488 * tasks cpuset.
2489 **/
2490
2491 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2492 {
2493 nodemask_t mask;
2494 unsigned long flags;
2495
2496 spin_lock_irqsave(&callback_lock, flags);
2497 rcu_read_lock();
2498 guarantee_online_mems(task_cs(tsk), &mask);
2499 rcu_read_unlock();
2500 spin_unlock_irqrestore(&callback_lock, flags);
2501
2502 return mask;
2503 }
2504
2505 /**
2506 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2507 * @nodemask: the nodemask to be checked
2508 *
2509 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2510 */
2511 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2512 {
2513 return nodes_intersects(*nodemask, current->mems_allowed);
2514 }
2515
2516 /*
2517 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2518 * mem_hardwall ancestor to the specified cpuset. Call holding
2519 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2520 * (an unusual configuration), then returns the root cpuset.
2521 */
2522 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2523 {
2524 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2525 cs = parent_cs(cs);
2526 return cs;
2527 }
2528
2529 /**
2530 * cpuset_node_allowed - Can we allocate on a memory node?
2531 * @node: is this an allowed node?
2532 * @gfp_mask: memory allocation flags
2533 *
2534 * If we're in interrupt, yes, we can always allocate. If @node is set in
2535 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2536 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2537 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2538 * Otherwise, no.
2539 *
2540 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2541 * and do not allow allocations outside the current tasks cpuset
2542 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2543 * GFP_KERNEL allocations are not so marked, so can escape to the
2544 * nearest enclosing hardwalled ancestor cpuset.
2545 *
2546 * Scanning up parent cpusets requires callback_lock. The
2547 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2548 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2549 * current tasks mems_allowed came up empty on the first pass over
2550 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2551 * cpuset are short of memory, might require taking the callback_lock.
2552 *
2553 * The first call here from mm/page_alloc:get_page_from_freelist()
2554 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2555 * so no allocation on a node outside the cpuset is allowed (unless
2556 * in interrupt, of course).
2557 *
2558 * The second pass through get_page_from_freelist() doesn't even call
2559 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2560 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2561 * in alloc_flags. That logic and the checks below have the combined
2562 * affect that:
2563 * in_interrupt - any node ok (current task context irrelevant)
2564 * GFP_ATOMIC - any node ok
2565 * TIF_MEMDIE - any node ok
2566 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2567 * GFP_USER - only nodes in current tasks mems allowed ok.
2568 */
2569 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2570 {
2571 struct cpuset *cs; /* current cpuset ancestors */
2572 int allowed; /* is allocation in zone z allowed? */
2573 unsigned long flags;
2574
2575 if (in_interrupt())
2576 return 1;
2577 if (node_isset(node, current->mems_allowed))
2578 return 1;
2579 /*
2580 * Allow tasks that have access to memory reserves because they have
2581 * been OOM killed to get memory anywhere.
2582 */
2583 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2584 return 1;
2585 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2586 return 0;
2587
2588 if (current->flags & PF_EXITING) /* Let dying task have memory */
2589 return 1;
2590
2591 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2592 spin_lock_irqsave(&callback_lock, flags);
2593
2594 rcu_read_lock();
2595 cs = nearest_hardwall_ancestor(task_cs(current));
2596 allowed = node_isset(node, cs->mems_allowed);
2597 rcu_read_unlock();
2598
2599 spin_unlock_irqrestore(&callback_lock, flags);
2600 return allowed;
2601 }
2602
2603 /**
2604 * cpuset_mem_spread_node() - On which node to begin search for a file page
2605 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2606 *
2607 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2608 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2609 * and if the memory allocation used cpuset_mem_spread_node()
2610 * to determine on which node to start looking, as it will for
2611 * certain page cache or slab cache pages such as used for file
2612 * system buffers and inode caches, then instead of starting on the
2613 * local node to look for a free page, rather spread the starting
2614 * node around the tasks mems_allowed nodes.
2615 *
2616 * We don't have to worry about the returned node being offline
2617 * because "it can't happen", and even if it did, it would be ok.
2618 *
2619 * The routines calling guarantee_online_mems() are careful to
2620 * only set nodes in task->mems_allowed that are online. So it
2621 * should not be possible for the following code to return an
2622 * offline node. But if it did, that would be ok, as this routine
2623 * is not returning the node where the allocation must be, only
2624 * the node where the search should start. The zonelist passed to
2625 * __alloc_pages() will include all nodes. If the slab allocator
2626 * is passed an offline node, it will fall back to the local node.
2627 * See kmem_cache_alloc_node().
2628 */
2629
2630 static int cpuset_spread_node(int *rotor)
2631 {
2632 int node;
2633
2634 node = next_node(*rotor, current->mems_allowed);
2635 if (node == MAX_NUMNODES)
2636 node = first_node(current->mems_allowed);
2637 *rotor = node;
2638 return node;
2639 }
2640
2641 int cpuset_mem_spread_node(void)
2642 {
2643 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2644 current->cpuset_mem_spread_rotor =
2645 node_random(&current->mems_allowed);
2646
2647 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2648 }
2649
2650 int cpuset_slab_spread_node(void)
2651 {
2652 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2653 current->cpuset_slab_spread_rotor =
2654 node_random(&current->mems_allowed);
2655
2656 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2657 }
2658
2659 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2660
2661 /**
2662 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2663 * @tsk1: pointer to task_struct of some task.
2664 * @tsk2: pointer to task_struct of some other task.
2665 *
2666 * Description: Return true if @tsk1's mems_allowed intersects the
2667 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2668 * one of the task's memory usage might impact the memory available
2669 * to the other.
2670 **/
2671
2672 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2673 const struct task_struct *tsk2)
2674 {
2675 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2676 }
2677
2678 /**
2679 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2680 *
2681 * Description: Prints current's name, cpuset name, and cached copy of its
2682 * mems_allowed to the kernel log.
2683 */
2684 void cpuset_print_current_mems_allowed(void)
2685 {
2686 struct cgroup *cgrp;
2687
2688 rcu_read_lock();
2689
2690 cgrp = task_cs(current)->css.cgroup;
2691 pr_info("%s cpuset=", current->comm);
2692 pr_cont_cgroup_name(cgrp);
2693 pr_cont(" mems_allowed=%*pbl\n",
2694 nodemask_pr_args(&current->mems_allowed));
2695
2696 rcu_read_unlock();
2697 }
2698
2699 /*
2700 * Collection of memory_pressure is suppressed unless
2701 * this flag is enabled by writing "1" to the special
2702 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2703 */
2704
2705 int cpuset_memory_pressure_enabled __read_mostly;
2706
2707 /**
2708 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2709 *
2710 * Keep a running average of the rate of synchronous (direct)
2711 * page reclaim efforts initiated by tasks in each cpuset.
2712 *
2713 * This represents the rate at which some task in the cpuset
2714 * ran low on memory on all nodes it was allowed to use, and
2715 * had to enter the kernels page reclaim code in an effort to
2716 * create more free memory by tossing clean pages or swapping
2717 * or writing dirty pages.
2718 *
2719 * Display to user space in the per-cpuset read-only file
2720 * "memory_pressure". Value displayed is an integer
2721 * representing the recent rate of entry into the synchronous
2722 * (direct) page reclaim by any task attached to the cpuset.
2723 **/
2724
2725 void __cpuset_memory_pressure_bump(void)
2726 {
2727 rcu_read_lock();
2728 fmeter_markevent(&task_cs(current)->fmeter);
2729 rcu_read_unlock();
2730 }
2731
2732 #ifdef CONFIG_PROC_PID_CPUSET
2733 /*
2734 * proc_cpuset_show()
2735 * - Print tasks cpuset path into seq_file.
2736 * - Used for /proc/<pid>/cpuset.
2737 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2738 * doesn't really matter if tsk->cpuset changes after we read it,
2739 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2740 * anyway.
2741 */
2742 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2743 struct pid *pid, struct task_struct *tsk)
2744 {
2745 char *buf, *p;
2746 struct cgroup_subsys_state *css;
2747 int retval;
2748
2749 retval = -ENOMEM;
2750 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2751 if (!buf)
2752 goto out;
2753
2754 retval = -ENAMETOOLONG;
2755 css = task_get_css(tsk, cpuset_cgrp_id);
2756 p = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2757 current->nsproxy->cgroup_ns);
2758 css_put(css);
2759 if (!p)
2760 goto out_free;
2761 seq_puts(m, p);
2762 seq_putc(m, '\n');
2763 retval = 0;
2764 out_free:
2765 kfree(buf);
2766 out:
2767 return retval;
2768 }
2769 #endif /* CONFIG_PROC_PID_CPUSET */
2770
2771 /* Display task mems_allowed in /proc/<pid>/status file. */
2772 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2773 {
2774 seq_printf(m, "Mems_allowed:\t%*pb\n",
2775 nodemask_pr_args(&task->mems_allowed));
2776 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2777 nodemask_pr_args(&task->mems_allowed));
2778 }