]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/cpuset.c
cgroup: make cgroup_taskset deal with cgroup_subsys_state instead of cgroup
[mirror_ubuntu-hirsute-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 /*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
69 int number_of_cpusets __read_mostly;
70
71 /* Forward declare cgroup structures */
72 struct cgroup_subsys cpuset_subsys;
73
74 /* See "Frequency meter" comments, below. */
75
76 struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81 };
82
83 struct cpuset {
84 struct cgroup_subsys_state css;
85
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
90 /*
91 * This is old Memory Nodes tasks took on.
92 *
93 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
94 * - A new cpuset's old_mems_allowed is initialized when some
95 * task is moved into it.
96 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
97 * cpuset.mems_allowed and have tasks' nodemask updated, and
98 * then old_mems_allowed is updated to mems_allowed.
99 */
100 nodemask_t old_mems_allowed;
101
102 struct fmeter fmeter; /* memory_pressure filter */
103
104 /*
105 * Tasks are being attached to this cpuset. Used to prevent
106 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
107 */
108 int attach_in_progress;
109
110 /* partition number for rebuild_sched_domains() */
111 int pn;
112
113 /* for custom sched domain */
114 int relax_domain_level;
115 };
116
117 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
118 {
119 return css ? container_of(css, struct cpuset, css) : NULL;
120 }
121
122 /* Retrieve the cpuset for a task */
123 static inline struct cpuset *task_cs(struct task_struct *task)
124 {
125 return css_cs(task_css(task, cpuset_subsys_id));
126 }
127
128 static inline struct cpuset *parent_cs(struct cpuset *cs)
129 {
130 return css_cs(css_parent(&cs->css));
131 }
132
133 #ifdef CONFIG_NUMA
134 static inline bool task_has_mempolicy(struct task_struct *task)
135 {
136 return task->mempolicy;
137 }
138 #else
139 static inline bool task_has_mempolicy(struct task_struct *task)
140 {
141 return false;
142 }
143 #endif
144
145
146 /* bits in struct cpuset flags field */
147 typedef enum {
148 CS_ONLINE,
149 CS_CPU_EXCLUSIVE,
150 CS_MEM_EXCLUSIVE,
151 CS_MEM_HARDWALL,
152 CS_MEMORY_MIGRATE,
153 CS_SCHED_LOAD_BALANCE,
154 CS_SPREAD_PAGE,
155 CS_SPREAD_SLAB,
156 } cpuset_flagbits_t;
157
158 /* convenient tests for these bits */
159 static inline bool is_cpuset_online(const struct cpuset *cs)
160 {
161 return test_bit(CS_ONLINE, &cs->flags);
162 }
163
164 static inline int is_cpu_exclusive(const struct cpuset *cs)
165 {
166 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
167 }
168
169 static inline int is_mem_exclusive(const struct cpuset *cs)
170 {
171 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
172 }
173
174 static inline int is_mem_hardwall(const struct cpuset *cs)
175 {
176 return test_bit(CS_MEM_HARDWALL, &cs->flags);
177 }
178
179 static inline int is_sched_load_balance(const struct cpuset *cs)
180 {
181 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
182 }
183
184 static inline int is_memory_migrate(const struct cpuset *cs)
185 {
186 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
187 }
188
189 static inline int is_spread_page(const struct cpuset *cs)
190 {
191 return test_bit(CS_SPREAD_PAGE, &cs->flags);
192 }
193
194 static inline int is_spread_slab(const struct cpuset *cs)
195 {
196 return test_bit(CS_SPREAD_SLAB, &cs->flags);
197 }
198
199 static struct cpuset top_cpuset = {
200 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
201 (1 << CS_MEM_EXCLUSIVE)),
202 };
203
204 /**
205 * cpuset_for_each_child - traverse online children of a cpuset
206 * @child_cs: loop cursor pointing to the current child
207 * @pos_css: used for iteration
208 * @parent_cs: target cpuset to walk children of
209 *
210 * Walk @child_cs through the online children of @parent_cs. Must be used
211 * with RCU read locked.
212 */
213 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
214 css_for_each_child((pos_css), &(parent_cs)->css) \
215 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
216
217 /**
218 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
219 * @des_cs: loop cursor pointing to the current descendant
220 * @pos_css: used for iteration
221 * @root_cs: target cpuset to walk ancestor of
222 *
223 * Walk @des_cs through the online descendants of @root_cs. Must be used
224 * with RCU read locked. The caller may modify @pos_css by calling
225 * css_rightmost_descendant() to skip subtree.
226 */
227 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
228 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
229 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
230
231 /*
232 * There are two global mutexes guarding cpuset structures - cpuset_mutex
233 * and callback_mutex. The latter may nest inside the former. We also
234 * require taking task_lock() when dereferencing a task's cpuset pointer.
235 * See "The task_lock() exception", at the end of this comment.
236 *
237 * A task must hold both mutexes to modify cpusets. If a task holds
238 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
239 * is the only task able to also acquire callback_mutex and be able to
240 * modify cpusets. It can perform various checks on the cpuset structure
241 * first, knowing nothing will change. It can also allocate memory while
242 * just holding cpuset_mutex. While it is performing these checks, various
243 * callback routines can briefly acquire callback_mutex to query cpusets.
244 * Once it is ready to make the changes, it takes callback_mutex, blocking
245 * everyone else.
246 *
247 * Calls to the kernel memory allocator can not be made while holding
248 * callback_mutex, as that would risk double tripping on callback_mutex
249 * from one of the callbacks into the cpuset code from within
250 * __alloc_pages().
251 *
252 * If a task is only holding callback_mutex, then it has read-only
253 * access to cpusets.
254 *
255 * Now, the task_struct fields mems_allowed and mempolicy may be changed
256 * by other task, we use alloc_lock in the task_struct fields to protect
257 * them.
258 *
259 * The cpuset_common_file_read() handlers only hold callback_mutex across
260 * small pieces of code, such as when reading out possibly multi-word
261 * cpumasks and nodemasks.
262 *
263 * Accessing a task's cpuset should be done in accordance with the
264 * guidelines for accessing subsystem state in kernel/cgroup.c
265 */
266
267 static DEFINE_MUTEX(cpuset_mutex);
268 static DEFINE_MUTEX(callback_mutex);
269
270 /*
271 * CPU / memory hotplug is handled asynchronously.
272 */
273 static void cpuset_hotplug_workfn(struct work_struct *work);
274 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
275
276 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
277
278 /*
279 * This is ugly, but preserves the userspace API for existing cpuset
280 * users. If someone tries to mount the "cpuset" filesystem, we
281 * silently switch it to mount "cgroup" instead
282 */
283 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
284 int flags, const char *unused_dev_name, void *data)
285 {
286 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
287 struct dentry *ret = ERR_PTR(-ENODEV);
288 if (cgroup_fs) {
289 char mountopts[] =
290 "cpuset,noprefix,"
291 "release_agent=/sbin/cpuset_release_agent";
292 ret = cgroup_fs->mount(cgroup_fs, flags,
293 unused_dev_name, mountopts);
294 put_filesystem(cgroup_fs);
295 }
296 return ret;
297 }
298
299 static struct file_system_type cpuset_fs_type = {
300 .name = "cpuset",
301 .mount = cpuset_mount,
302 };
303
304 /*
305 * Return in pmask the portion of a cpusets's cpus_allowed that
306 * are online. If none are online, walk up the cpuset hierarchy
307 * until we find one that does have some online cpus. The top
308 * cpuset always has some cpus online.
309 *
310 * One way or another, we guarantee to return some non-empty subset
311 * of cpu_online_mask.
312 *
313 * Call with callback_mutex held.
314 */
315 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
316 {
317 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
318 cs = parent_cs(cs);
319 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
320 }
321
322 /*
323 * Return in *pmask the portion of a cpusets's mems_allowed that
324 * are online, with memory. If none are online with memory, walk
325 * up the cpuset hierarchy until we find one that does have some
326 * online mems. The top cpuset always has some mems online.
327 *
328 * One way or another, we guarantee to return some non-empty subset
329 * of node_states[N_MEMORY].
330 *
331 * Call with callback_mutex held.
332 */
333 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
334 {
335 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
336 cs = parent_cs(cs);
337 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
338 }
339
340 /*
341 * update task's spread flag if cpuset's page/slab spread flag is set
342 *
343 * Called with callback_mutex/cpuset_mutex held
344 */
345 static void cpuset_update_task_spread_flag(struct cpuset *cs,
346 struct task_struct *tsk)
347 {
348 if (is_spread_page(cs))
349 tsk->flags |= PF_SPREAD_PAGE;
350 else
351 tsk->flags &= ~PF_SPREAD_PAGE;
352 if (is_spread_slab(cs))
353 tsk->flags |= PF_SPREAD_SLAB;
354 else
355 tsk->flags &= ~PF_SPREAD_SLAB;
356 }
357
358 /*
359 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
360 *
361 * One cpuset is a subset of another if all its allowed CPUs and
362 * Memory Nodes are a subset of the other, and its exclusive flags
363 * are only set if the other's are set. Call holding cpuset_mutex.
364 */
365
366 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
367 {
368 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
369 nodes_subset(p->mems_allowed, q->mems_allowed) &&
370 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
371 is_mem_exclusive(p) <= is_mem_exclusive(q);
372 }
373
374 /**
375 * alloc_trial_cpuset - allocate a trial cpuset
376 * @cs: the cpuset that the trial cpuset duplicates
377 */
378 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
379 {
380 struct cpuset *trial;
381
382 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
383 if (!trial)
384 return NULL;
385
386 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
387 kfree(trial);
388 return NULL;
389 }
390 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
391
392 return trial;
393 }
394
395 /**
396 * free_trial_cpuset - free the trial cpuset
397 * @trial: the trial cpuset to be freed
398 */
399 static void free_trial_cpuset(struct cpuset *trial)
400 {
401 free_cpumask_var(trial->cpus_allowed);
402 kfree(trial);
403 }
404
405 /*
406 * validate_change() - Used to validate that any proposed cpuset change
407 * follows the structural rules for cpusets.
408 *
409 * If we replaced the flag and mask values of the current cpuset
410 * (cur) with those values in the trial cpuset (trial), would
411 * our various subset and exclusive rules still be valid? Presumes
412 * cpuset_mutex held.
413 *
414 * 'cur' is the address of an actual, in-use cpuset. Operations
415 * such as list traversal that depend on the actual address of the
416 * cpuset in the list must use cur below, not trial.
417 *
418 * 'trial' is the address of bulk structure copy of cur, with
419 * perhaps one or more of the fields cpus_allowed, mems_allowed,
420 * or flags changed to new, trial values.
421 *
422 * Return 0 if valid, -errno if not.
423 */
424
425 static int validate_change(struct cpuset *cur, struct cpuset *trial)
426 {
427 struct cgroup_subsys_state *css;
428 struct cpuset *c, *par;
429 int ret;
430
431 rcu_read_lock();
432
433 /* Each of our child cpusets must be a subset of us */
434 ret = -EBUSY;
435 cpuset_for_each_child(c, css, cur)
436 if (!is_cpuset_subset(c, trial))
437 goto out;
438
439 /* Remaining checks don't apply to root cpuset */
440 ret = 0;
441 if (cur == &top_cpuset)
442 goto out;
443
444 par = parent_cs(cur);
445
446 /* We must be a subset of our parent cpuset */
447 ret = -EACCES;
448 if (!is_cpuset_subset(trial, par))
449 goto out;
450
451 /*
452 * If either I or some sibling (!= me) is exclusive, we can't
453 * overlap
454 */
455 ret = -EINVAL;
456 cpuset_for_each_child(c, css, par) {
457 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
458 c != cur &&
459 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
460 goto out;
461 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
462 c != cur &&
463 nodes_intersects(trial->mems_allowed, c->mems_allowed))
464 goto out;
465 }
466
467 /*
468 * Cpusets with tasks - existing or newly being attached - can't
469 * have empty cpus_allowed or mems_allowed.
470 */
471 ret = -ENOSPC;
472 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
473 (cpumask_empty(trial->cpus_allowed) &&
474 nodes_empty(trial->mems_allowed)))
475 goto out;
476
477 ret = 0;
478 out:
479 rcu_read_unlock();
480 return ret;
481 }
482
483 #ifdef CONFIG_SMP
484 /*
485 * Helper routine for generate_sched_domains().
486 * Do cpusets a, b have overlapping cpus_allowed masks?
487 */
488 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
489 {
490 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
491 }
492
493 static void
494 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
495 {
496 if (dattr->relax_domain_level < c->relax_domain_level)
497 dattr->relax_domain_level = c->relax_domain_level;
498 return;
499 }
500
501 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
502 struct cpuset *root_cs)
503 {
504 struct cpuset *cp;
505 struct cgroup_subsys_state *pos_css;
506
507 rcu_read_lock();
508 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
509 /* skip the whole subtree if @cp doesn't have any CPU */
510 if (cpumask_empty(cp->cpus_allowed)) {
511 pos_css = css_rightmost_descendant(pos_css);
512 continue;
513 }
514
515 if (is_sched_load_balance(cp))
516 update_domain_attr(dattr, cp);
517 }
518 rcu_read_unlock();
519 }
520
521 /*
522 * generate_sched_domains()
523 *
524 * This function builds a partial partition of the systems CPUs
525 * A 'partial partition' is a set of non-overlapping subsets whose
526 * union is a subset of that set.
527 * The output of this function needs to be passed to kernel/sched/core.c
528 * partition_sched_domains() routine, which will rebuild the scheduler's
529 * load balancing domains (sched domains) as specified by that partial
530 * partition.
531 *
532 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
533 * for a background explanation of this.
534 *
535 * Does not return errors, on the theory that the callers of this
536 * routine would rather not worry about failures to rebuild sched
537 * domains when operating in the severe memory shortage situations
538 * that could cause allocation failures below.
539 *
540 * Must be called with cpuset_mutex held.
541 *
542 * The three key local variables below are:
543 * q - a linked-list queue of cpuset pointers, used to implement a
544 * top-down scan of all cpusets. This scan loads a pointer
545 * to each cpuset marked is_sched_load_balance into the
546 * array 'csa'. For our purposes, rebuilding the schedulers
547 * sched domains, we can ignore !is_sched_load_balance cpusets.
548 * csa - (for CpuSet Array) Array of pointers to all the cpusets
549 * that need to be load balanced, for convenient iterative
550 * access by the subsequent code that finds the best partition,
551 * i.e the set of domains (subsets) of CPUs such that the
552 * cpus_allowed of every cpuset marked is_sched_load_balance
553 * is a subset of one of these domains, while there are as
554 * many such domains as possible, each as small as possible.
555 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
556 * the kernel/sched/core.c routine partition_sched_domains() in a
557 * convenient format, that can be easily compared to the prior
558 * value to determine what partition elements (sched domains)
559 * were changed (added or removed.)
560 *
561 * Finding the best partition (set of domains):
562 * The triple nested loops below over i, j, k scan over the
563 * load balanced cpusets (using the array of cpuset pointers in
564 * csa[]) looking for pairs of cpusets that have overlapping
565 * cpus_allowed, but which don't have the same 'pn' partition
566 * number and gives them in the same partition number. It keeps
567 * looping on the 'restart' label until it can no longer find
568 * any such pairs.
569 *
570 * The union of the cpus_allowed masks from the set of
571 * all cpusets having the same 'pn' value then form the one
572 * element of the partition (one sched domain) to be passed to
573 * partition_sched_domains().
574 */
575 static int generate_sched_domains(cpumask_var_t **domains,
576 struct sched_domain_attr **attributes)
577 {
578 struct cpuset *cp; /* scans q */
579 struct cpuset **csa; /* array of all cpuset ptrs */
580 int csn; /* how many cpuset ptrs in csa so far */
581 int i, j, k; /* indices for partition finding loops */
582 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
583 struct sched_domain_attr *dattr; /* attributes for custom domains */
584 int ndoms = 0; /* number of sched domains in result */
585 int nslot; /* next empty doms[] struct cpumask slot */
586 struct cgroup_subsys_state *pos_css;
587
588 doms = NULL;
589 dattr = NULL;
590 csa = NULL;
591
592 /* Special case for the 99% of systems with one, full, sched domain */
593 if (is_sched_load_balance(&top_cpuset)) {
594 ndoms = 1;
595 doms = alloc_sched_domains(ndoms);
596 if (!doms)
597 goto done;
598
599 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
600 if (dattr) {
601 *dattr = SD_ATTR_INIT;
602 update_domain_attr_tree(dattr, &top_cpuset);
603 }
604 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
605
606 goto done;
607 }
608
609 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
610 if (!csa)
611 goto done;
612 csn = 0;
613
614 rcu_read_lock();
615 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
616 /*
617 * Continue traversing beyond @cp iff @cp has some CPUs and
618 * isn't load balancing. The former is obvious. The
619 * latter: All child cpusets contain a subset of the
620 * parent's cpus, so just skip them, and then we call
621 * update_domain_attr_tree() to calc relax_domain_level of
622 * the corresponding sched domain.
623 */
624 if (!cpumask_empty(cp->cpus_allowed) &&
625 !is_sched_load_balance(cp))
626 continue;
627
628 if (is_sched_load_balance(cp))
629 csa[csn++] = cp;
630
631 /* skip @cp's subtree */
632 pos_css = css_rightmost_descendant(pos_css);
633 }
634 rcu_read_unlock();
635
636 for (i = 0; i < csn; i++)
637 csa[i]->pn = i;
638 ndoms = csn;
639
640 restart:
641 /* Find the best partition (set of sched domains) */
642 for (i = 0; i < csn; i++) {
643 struct cpuset *a = csa[i];
644 int apn = a->pn;
645
646 for (j = 0; j < csn; j++) {
647 struct cpuset *b = csa[j];
648 int bpn = b->pn;
649
650 if (apn != bpn && cpusets_overlap(a, b)) {
651 for (k = 0; k < csn; k++) {
652 struct cpuset *c = csa[k];
653
654 if (c->pn == bpn)
655 c->pn = apn;
656 }
657 ndoms--; /* one less element */
658 goto restart;
659 }
660 }
661 }
662
663 /*
664 * Now we know how many domains to create.
665 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
666 */
667 doms = alloc_sched_domains(ndoms);
668 if (!doms)
669 goto done;
670
671 /*
672 * The rest of the code, including the scheduler, can deal with
673 * dattr==NULL case. No need to abort if alloc fails.
674 */
675 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
676
677 for (nslot = 0, i = 0; i < csn; i++) {
678 struct cpuset *a = csa[i];
679 struct cpumask *dp;
680 int apn = a->pn;
681
682 if (apn < 0) {
683 /* Skip completed partitions */
684 continue;
685 }
686
687 dp = doms[nslot];
688
689 if (nslot == ndoms) {
690 static int warnings = 10;
691 if (warnings) {
692 printk(KERN_WARNING
693 "rebuild_sched_domains confused:"
694 " nslot %d, ndoms %d, csn %d, i %d,"
695 " apn %d\n",
696 nslot, ndoms, csn, i, apn);
697 warnings--;
698 }
699 continue;
700 }
701
702 cpumask_clear(dp);
703 if (dattr)
704 *(dattr + nslot) = SD_ATTR_INIT;
705 for (j = i; j < csn; j++) {
706 struct cpuset *b = csa[j];
707
708 if (apn == b->pn) {
709 cpumask_or(dp, dp, b->cpus_allowed);
710 if (dattr)
711 update_domain_attr_tree(dattr + nslot, b);
712
713 /* Done with this partition */
714 b->pn = -1;
715 }
716 }
717 nslot++;
718 }
719 BUG_ON(nslot != ndoms);
720
721 done:
722 kfree(csa);
723
724 /*
725 * Fallback to the default domain if kmalloc() failed.
726 * See comments in partition_sched_domains().
727 */
728 if (doms == NULL)
729 ndoms = 1;
730
731 *domains = doms;
732 *attributes = dattr;
733 return ndoms;
734 }
735
736 /*
737 * Rebuild scheduler domains.
738 *
739 * If the flag 'sched_load_balance' of any cpuset with non-empty
740 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
741 * which has that flag enabled, or if any cpuset with a non-empty
742 * 'cpus' is removed, then call this routine to rebuild the
743 * scheduler's dynamic sched domains.
744 *
745 * Call with cpuset_mutex held. Takes get_online_cpus().
746 */
747 static void rebuild_sched_domains_locked(void)
748 {
749 struct sched_domain_attr *attr;
750 cpumask_var_t *doms;
751 int ndoms;
752
753 lockdep_assert_held(&cpuset_mutex);
754 get_online_cpus();
755
756 /*
757 * We have raced with CPU hotplug. Don't do anything to avoid
758 * passing doms with offlined cpu to partition_sched_domains().
759 * Anyways, hotplug work item will rebuild sched domains.
760 */
761 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
762 goto out;
763
764 /* Generate domain masks and attrs */
765 ndoms = generate_sched_domains(&doms, &attr);
766
767 /* Have scheduler rebuild the domains */
768 partition_sched_domains(ndoms, doms, attr);
769 out:
770 put_online_cpus();
771 }
772 #else /* !CONFIG_SMP */
773 static void rebuild_sched_domains_locked(void)
774 {
775 }
776 #endif /* CONFIG_SMP */
777
778 void rebuild_sched_domains(void)
779 {
780 mutex_lock(&cpuset_mutex);
781 rebuild_sched_domains_locked();
782 mutex_unlock(&cpuset_mutex);
783 }
784
785 /*
786 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
787 * @cs: the cpuset in interest
788 *
789 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
790 * with non-empty cpus. We use effective cpumask whenever:
791 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
792 * if the cpuset they reside in has no cpus)
793 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
794 *
795 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
796 * exception. See comments there.
797 */
798 static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
799 {
800 while (cpumask_empty(cs->cpus_allowed))
801 cs = parent_cs(cs);
802 return cs;
803 }
804
805 /*
806 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
807 * @cs: the cpuset in interest
808 *
809 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
810 * with non-empty memss. We use effective nodemask whenever:
811 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
812 * if the cpuset they reside in has no mems)
813 * - we want to retrieve task_cs(tsk)'s mems_allowed.
814 *
815 * Called with cpuset_mutex held.
816 */
817 static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
818 {
819 while (nodes_empty(cs->mems_allowed))
820 cs = parent_cs(cs);
821 return cs;
822 }
823
824 /**
825 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
826 * @tsk: task to test
827 * @data: cpuset to @tsk belongs to
828 *
829 * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
830 * mask needs to be changed.
831 *
832 * We don't need to re-check for the cgroup/cpuset membership, since we're
833 * holding cpuset_mutex at this point.
834 */
835 static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
836 {
837 struct cpuset *cs = data;
838 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
839
840 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
841 }
842
843 /**
844 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
845 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
846 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
847 *
848 * Called with cpuset_mutex held
849 *
850 * The css_scan_tasks() function will scan all the tasks in a cgroup,
851 * calling callback functions for each.
852 *
853 * No return value. It's guaranteed that css_scan_tasks() always returns 0
854 * if @heap != NULL.
855 */
856 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
857 {
858 css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
859 }
860
861 /*
862 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
863 * @root_cs: the root cpuset of the hierarchy
864 * @update_root: update root cpuset or not?
865 * @heap: the heap used by css_scan_tasks()
866 *
867 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
868 * which take on cpumask of @root_cs.
869 *
870 * Called with cpuset_mutex held
871 */
872 static void update_tasks_cpumask_hier(struct cpuset *root_cs,
873 bool update_root, struct ptr_heap *heap)
874 {
875 struct cpuset *cp;
876 struct cgroup_subsys_state *pos_css;
877
878 if (update_root)
879 update_tasks_cpumask(root_cs, heap);
880
881 rcu_read_lock();
882 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
883 /* skip the whole subtree if @cp have some CPU */
884 if (!cpumask_empty(cp->cpus_allowed)) {
885 pos_css = css_rightmost_descendant(pos_css);
886 continue;
887 }
888 if (!css_tryget(&cp->css))
889 continue;
890 rcu_read_unlock();
891
892 update_tasks_cpumask(cp, heap);
893
894 rcu_read_lock();
895 css_put(&cp->css);
896 }
897 rcu_read_unlock();
898 }
899
900 /**
901 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
902 * @cs: the cpuset to consider
903 * @buf: buffer of cpu numbers written to this cpuset
904 */
905 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
906 const char *buf)
907 {
908 struct ptr_heap heap;
909 int retval;
910 int is_load_balanced;
911
912 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
913 if (cs == &top_cpuset)
914 return -EACCES;
915
916 /*
917 * An empty cpus_allowed is ok only if the cpuset has no tasks.
918 * Since cpulist_parse() fails on an empty mask, we special case
919 * that parsing. The validate_change() call ensures that cpusets
920 * with tasks have cpus.
921 */
922 if (!*buf) {
923 cpumask_clear(trialcs->cpus_allowed);
924 } else {
925 retval = cpulist_parse(buf, trialcs->cpus_allowed);
926 if (retval < 0)
927 return retval;
928
929 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
930 return -EINVAL;
931 }
932
933 /* Nothing to do if the cpus didn't change */
934 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
935 return 0;
936
937 retval = validate_change(cs, trialcs);
938 if (retval < 0)
939 return retval;
940
941 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
942 if (retval)
943 return retval;
944
945 is_load_balanced = is_sched_load_balance(trialcs);
946
947 mutex_lock(&callback_mutex);
948 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
949 mutex_unlock(&callback_mutex);
950
951 update_tasks_cpumask_hier(cs, true, &heap);
952
953 heap_free(&heap);
954
955 if (is_load_balanced)
956 rebuild_sched_domains_locked();
957 return 0;
958 }
959
960 /*
961 * cpuset_migrate_mm
962 *
963 * Migrate memory region from one set of nodes to another.
964 *
965 * Temporarilly set tasks mems_allowed to target nodes of migration,
966 * so that the migration code can allocate pages on these nodes.
967 *
968 * Call holding cpuset_mutex, so current's cpuset won't change
969 * during this call, as manage_mutex holds off any cpuset_attach()
970 * calls. Therefore we don't need to take task_lock around the
971 * call to guarantee_online_mems(), as we know no one is changing
972 * our task's cpuset.
973 *
974 * While the mm_struct we are migrating is typically from some
975 * other task, the task_struct mems_allowed that we are hacking
976 * is for our current task, which must allocate new pages for that
977 * migrating memory region.
978 */
979
980 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
981 const nodemask_t *to)
982 {
983 struct task_struct *tsk = current;
984 struct cpuset *mems_cs;
985
986 tsk->mems_allowed = *to;
987
988 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
989
990 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
991 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
992 }
993
994 /*
995 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
996 * @tsk: the task to change
997 * @newmems: new nodes that the task will be set
998 *
999 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1000 * we structure updates as setting all new allowed nodes, then clearing newly
1001 * disallowed ones.
1002 */
1003 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1004 nodemask_t *newmems)
1005 {
1006 bool need_loop;
1007
1008 /*
1009 * Allow tasks that have access to memory reserves because they have
1010 * been OOM killed to get memory anywhere.
1011 */
1012 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1013 return;
1014 if (current->flags & PF_EXITING) /* Let dying task have memory */
1015 return;
1016
1017 task_lock(tsk);
1018 /*
1019 * Determine if a loop is necessary if another thread is doing
1020 * get_mems_allowed(). If at least one node remains unchanged and
1021 * tsk does not have a mempolicy, then an empty nodemask will not be
1022 * possible when mems_allowed is larger than a word.
1023 */
1024 need_loop = task_has_mempolicy(tsk) ||
1025 !nodes_intersects(*newmems, tsk->mems_allowed);
1026
1027 if (need_loop)
1028 write_seqcount_begin(&tsk->mems_allowed_seq);
1029
1030 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1031 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1032
1033 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1034 tsk->mems_allowed = *newmems;
1035
1036 if (need_loop)
1037 write_seqcount_end(&tsk->mems_allowed_seq);
1038
1039 task_unlock(tsk);
1040 }
1041
1042 struct cpuset_change_nodemask_arg {
1043 struct cpuset *cs;
1044 nodemask_t *newmems;
1045 };
1046
1047 /*
1048 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1049 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1050 * memory_migrate flag is set. Called with cpuset_mutex held.
1051 */
1052 static void cpuset_change_nodemask(struct task_struct *p, void *data)
1053 {
1054 struct cpuset_change_nodemask_arg *arg = data;
1055 struct cpuset *cs = arg->cs;
1056 struct mm_struct *mm;
1057 int migrate;
1058
1059 cpuset_change_task_nodemask(p, arg->newmems);
1060
1061 mm = get_task_mm(p);
1062 if (!mm)
1063 return;
1064
1065 migrate = is_memory_migrate(cs);
1066
1067 mpol_rebind_mm(mm, &cs->mems_allowed);
1068 if (migrate)
1069 cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
1070 mmput(mm);
1071 }
1072
1073 static void *cpuset_being_rebound;
1074
1075 /**
1076 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1077 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1078 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1079 *
1080 * Called with cpuset_mutex held. No return value. It's guaranteed that
1081 * css_scan_tasks() always returns 0 if @heap != NULL.
1082 */
1083 static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1084 {
1085 static nodemask_t newmems; /* protected by cpuset_mutex */
1086 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1087 struct cpuset_change_nodemask_arg arg = { .cs = cs,
1088 .newmems = &newmems };
1089
1090 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1091
1092 guarantee_online_mems(mems_cs, &newmems);
1093
1094 /*
1095 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1096 * take while holding tasklist_lock. Forks can happen - the
1097 * mpol_dup() cpuset_being_rebound check will catch such forks,
1098 * and rebind their vma mempolicies too. Because we still hold
1099 * the global cpuset_mutex, we know that no other rebind effort
1100 * will be contending for the global variable cpuset_being_rebound.
1101 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1102 * is idempotent. Also migrate pages in each mm to new nodes.
1103 */
1104 css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
1105
1106 /*
1107 * All the tasks' nodemasks have been updated, update
1108 * cs->old_mems_allowed.
1109 */
1110 cs->old_mems_allowed = newmems;
1111
1112 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1113 cpuset_being_rebound = NULL;
1114 }
1115
1116 /*
1117 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1118 * @cs: the root cpuset of the hierarchy
1119 * @update_root: update the root cpuset or not?
1120 * @heap: the heap used by css_scan_tasks()
1121 *
1122 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1123 * which take on nodemask of @root_cs.
1124 *
1125 * Called with cpuset_mutex held
1126 */
1127 static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1128 bool update_root, struct ptr_heap *heap)
1129 {
1130 struct cpuset *cp;
1131 struct cgroup_subsys_state *pos_css;
1132
1133 if (update_root)
1134 update_tasks_nodemask(root_cs, heap);
1135
1136 rcu_read_lock();
1137 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
1138 /* skip the whole subtree if @cp have some CPU */
1139 if (!nodes_empty(cp->mems_allowed)) {
1140 pos_css = css_rightmost_descendant(pos_css);
1141 continue;
1142 }
1143 if (!css_tryget(&cp->css))
1144 continue;
1145 rcu_read_unlock();
1146
1147 update_tasks_nodemask(cp, heap);
1148
1149 rcu_read_lock();
1150 css_put(&cp->css);
1151 }
1152 rcu_read_unlock();
1153 }
1154
1155 /*
1156 * Handle user request to change the 'mems' memory placement
1157 * of a cpuset. Needs to validate the request, update the
1158 * cpusets mems_allowed, and for each task in the cpuset,
1159 * update mems_allowed and rebind task's mempolicy and any vma
1160 * mempolicies and if the cpuset is marked 'memory_migrate',
1161 * migrate the tasks pages to the new memory.
1162 *
1163 * Call with cpuset_mutex held. May take callback_mutex during call.
1164 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1165 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1166 * their mempolicies to the cpusets new mems_allowed.
1167 */
1168 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1169 const char *buf)
1170 {
1171 int retval;
1172 struct ptr_heap heap;
1173
1174 /*
1175 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1176 * it's read-only
1177 */
1178 if (cs == &top_cpuset) {
1179 retval = -EACCES;
1180 goto done;
1181 }
1182
1183 /*
1184 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1185 * Since nodelist_parse() fails on an empty mask, we special case
1186 * that parsing. The validate_change() call ensures that cpusets
1187 * with tasks have memory.
1188 */
1189 if (!*buf) {
1190 nodes_clear(trialcs->mems_allowed);
1191 } else {
1192 retval = nodelist_parse(buf, trialcs->mems_allowed);
1193 if (retval < 0)
1194 goto done;
1195
1196 if (!nodes_subset(trialcs->mems_allowed,
1197 node_states[N_MEMORY])) {
1198 retval = -EINVAL;
1199 goto done;
1200 }
1201 }
1202
1203 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1204 retval = 0; /* Too easy - nothing to do */
1205 goto done;
1206 }
1207 retval = validate_change(cs, trialcs);
1208 if (retval < 0)
1209 goto done;
1210
1211 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1212 if (retval < 0)
1213 goto done;
1214
1215 mutex_lock(&callback_mutex);
1216 cs->mems_allowed = trialcs->mems_allowed;
1217 mutex_unlock(&callback_mutex);
1218
1219 update_tasks_nodemask_hier(cs, true, &heap);
1220
1221 heap_free(&heap);
1222 done:
1223 return retval;
1224 }
1225
1226 int current_cpuset_is_being_rebound(void)
1227 {
1228 return task_cs(current) == cpuset_being_rebound;
1229 }
1230
1231 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1232 {
1233 #ifdef CONFIG_SMP
1234 if (val < -1 || val >= sched_domain_level_max)
1235 return -EINVAL;
1236 #endif
1237
1238 if (val != cs->relax_domain_level) {
1239 cs->relax_domain_level = val;
1240 if (!cpumask_empty(cs->cpus_allowed) &&
1241 is_sched_load_balance(cs))
1242 rebuild_sched_domains_locked();
1243 }
1244
1245 return 0;
1246 }
1247
1248 /**
1249 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1250 * @tsk: task to be updated
1251 * @data: cpuset to @tsk belongs to
1252 *
1253 * Called by css_scan_tasks() for each task in a cgroup.
1254 *
1255 * We don't need to re-check for the cgroup/cpuset membership, since we're
1256 * holding cpuset_mutex at this point.
1257 */
1258 static void cpuset_change_flag(struct task_struct *tsk, void *data)
1259 {
1260 struct cpuset *cs = data;
1261
1262 cpuset_update_task_spread_flag(cs, tsk);
1263 }
1264
1265 /**
1266 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1267 * @cs: the cpuset in which each task's spread flags needs to be changed
1268 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1269 *
1270 * Called with cpuset_mutex held
1271 *
1272 * The css_scan_tasks() function will scan all the tasks in a cgroup,
1273 * calling callback functions for each.
1274 *
1275 * No return value. It's guaranteed that css_scan_tasks() always returns 0
1276 * if @heap != NULL.
1277 */
1278 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1279 {
1280 css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
1281 }
1282
1283 /*
1284 * update_flag - read a 0 or a 1 in a file and update associated flag
1285 * bit: the bit to update (see cpuset_flagbits_t)
1286 * cs: the cpuset to update
1287 * turning_on: whether the flag is being set or cleared
1288 *
1289 * Call with cpuset_mutex held.
1290 */
1291
1292 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1293 int turning_on)
1294 {
1295 struct cpuset *trialcs;
1296 int balance_flag_changed;
1297 int spread_flag_changed;
1298 struct ptr_heap heap;
1299 int err;
1300
1301 trialcs = alloc_trial_cpuset(cs);
1302 if (!trialcs)
1303 return -ENOMEM;
1304
1305 if (turning_on)
1306 set_bit(bit, &trialcs->flags);
1307 else
1308 clear_bit(bit, &trialcs->flags);
1309
1310 err = validate_change(cs, trialcs);
1311 if (err < 0)
1312 goto out;
1313
1314 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1315 if (err < 0)
1316 goto out;
1317
1318 balance_flag_changed = (is_sched_load_balance(cs) !=
1319 is_sched_load_balance(trialcs));
1320
1321 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1322 || (is_spread_page(cs) != is_spread_page(trialcs)));
1323
1324 mutex_lock(&callback_mutex);
1325 cs->flags = trialcs->flags;
1326 mutex_unlock(&callback_mutex);
1327
1328 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1329 rebuild_sched_domains_locked();
1330
1331 if (spread_flag_changed)
1332 update_tasks_flags(cs, &heap);
1333 heap_free(&heap);
1334 out:
1335 free_trial_cpuset(trialcs);
1336 return err;
1337 }
1338
1339 /*
1340 * Frequency meter - How fast is some event occurring?
1341 *
1342 * These routines manage a digitally filtered, constant time based,
1343 * event frequency meter. There are four routines:
1344 * fmeter_init() - initialize a frequency meter.
1345 * fmeter_markevent() - called each time the event happens.
1346 * fmeter_getrate() - returns the recent rate of such events.
1347 * fmeter_update() - internal routine used to update fmeter.
1348 *
1349 * A common data structure is passed to each of these routines,
1350 * which is used to keep track of the state required to manage the
1351 * frequency meter and its digital filter.
1352 *
1353 * The filter works on the number of events marked per unit time.
1354 * The filter is single-pole low-pass recursive (IIR). The time unit
1355 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1356 * simulate 3 decimal digits of precision (multiplied by 1000).
1357 *
1358 * With an FM_COEF of 933, and a time base of 1 second, the filter
1359 * has a half-life of 10 seconds, meaning that if the events quit
1360 * happening, then the rate returned from the fmeter_getrate()
1361 * will be cut in half each 10 seconds, until it converges to zero.
1362 *
1363 * It is not worth doing a real infinitely recursive filter. If more
1364 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1365 * just compute FM_MAXTICKS ticks worth, by which point the level
1366 * will be stable.
1367 *
1368 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1369 * arithmetic overflow in the fmeter_update() routine.
1370 *
1371 * Given the simple 32 bit integer arithmetic used, this meter works
1372 * best for reporting rates between one per millisecond (msec) and
1373 * one per 32 (approx) seconds. At constant rates faster than one
1374 * per msec it maxes out at values just under 1,000,000. At constant
1375 * rates between one per msec, and one per second it will stabilize
1376 * to a value N*1000, where N is the rate of events per second.
1377 * At constant rates between one per second and one per 32 seconds,
1378 * it will be choppy, moving up on the seconds that have an event,
1379 * and then decaying until the next event. At rates slower than
1380 * about one in 32 seconds, it decays all the way back to zero between
1381 * each event.
1382 */
1383
1384 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1385 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1386 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1387 #define FM_SCALE 1000 /* faux fixed point scale */
1388
1389 /* Initialize a frequency meter */
1390 static void fmeter_init(struct fmeter *fmp)
1391 {
1392 fmp->cnt = 0;
1393 fmp->val = 0;
1394 fmp->time = 0;
1395 spin_lock_init(&fmp->lock);
1396 }
1397
1398 /* Internal meter update - process cnt events and update value */
1399 static void fmeter_update(struct fmeter *fmp)
1400 {
1401 time_t now = get_seconds();
1402 time_t ticks = now - fmp->time;
1403
1404 if (ticks == 0)
1405 return;
1406
1407 ticks = min(FM_MAXTICKS, ticks);
1408 while (ticks-- > 0)
1409 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1410 fmp->time = now;
1411
1412 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1413 fmp->cnt = 0;
1414 }
1415
1416 /* Process any previous ticks, then bump cnt by one (times scale). */
1417 static void fmeter_markevent(struct fmeter *fmp)
1418 {
1419 spin_lock(&fmp->lock);
1420 fmeter_update(fmp);
1421 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1422 spin_unlock(&fmp->lock);
1423 }
1424
1425 /* Process any previous ticks, then return current value. */
1426 static int fmeter_getrate(struct fmeter *fmp)
1427 {
1428 int val;
1429
1430 spin_lock(&fmp->lock);
1431 fmeter_update(fmp);
1432 val = fmp->val;
1433 spin_unlock(&fmp->lock);
1434 return val;
1435 }
1436
1437 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1438 static int cpuset_can_attach(struct cgroup_subsys_state *css,
1439 struct cgroup_taskset *tset)
1440 {
1441 struct cpuset *cs = css_cs(css);
1442 struct task_struct *task;
1443 int ret;
1444
1445 mutex_lock(&cpuset_mutex);
1446
1447 /*
1448 * We allow to move tasks into an empty cpuset if sane_behavior
1449 * flag is set.
1450 */
1451 ret = -ENOSPC;
1452 if (!cgroup_sane_behavior(css->cgroup) &&
1453 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1454 goto out_unlock;
1455
1456 cgroup_taskset_for_each(task, css, tset) {
1457 /*
1458 * Kthreads which disallow setaffinity shouldn't be moved
1459 * to a new cpuset; we don't want to change their cpu
1460 * affinity and isolating such threads by their set of
1461 * allowed nodes is unnecessary. Thus, cpusets are not
1462 * applicable for such threads. This prevents checking for
1463 * success of set_cpus_allowed_ptr() on all attached tasks
1464 * before cpus_allowed may be changed.
1465 */
1466 ret = -EINVAL;
1467 if (task->flags & PF_NO_SETAFFINITY)
1468 goto out_unlock;
1469 ret = security_task_setscheduler(task);
1470 if (ret)
1471 goto out_unlock;
1472 }
1473
1474 /*
1475 * Mark attach is in progress. This makes validate_change() fail
1476 * changes which zero cpus/mems_allowed.
1477 */
1478 cs->attach_in_progress++;
1479 ret = 0;
1480 out_unlock:
1481 mutex_unlock(&cpuset_mutex);
1482 return ret;
1483 }
1484
1485 static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1486 struct cgroup_taskset *tset)
1487 {
1488 mutex_lock(&cpuset_mutex);
1489 css_cs(css)->attach_in_progress--;
1490 mutex_unlock(&cpuset_mutex);
1491 }
1492
1493 /*
1494 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1495 * but we can't allocate it dynamically there. Define it global and
1496 * allocate from cpuset_init().
1497 */
1498 static cpumask_var_t cpus_attach;
1499
1500 static void cpuset_attach(struct cgroup_subsys_state *css,
1501 struct cgroup_taskset *tset)
1502 {
1503 /* static buf protected by cpuset_mutex */
1504 static nodemask_t cpuset_attach_nodemask_to;
1505 struct mm_struct *mm;
1506 struct task_struct *task;
1507 struct task_struct *leader = cgroup_taskset_first(tset);
1508 struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
1509 cpuset_subsys_id);
1510 struct cpuset *cs = css_cs(css);
1511 struct cpuset *oldcs = css_cs(oldcss);
1512 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1513 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1514
1515 mutex_lock(&cpuset_mutex);
1516
1517 /* prepare for attach */
1518 if (cs == &top_cpuset)
1519 cpumask_copy(cpus_attach, cpu_possible_mask);
1520 else
1521 guarantee_online_cpus(cpus_cs, cpus_attach);
1522
1523 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1524
1525 cgroup_taskset_for_each(task, css, tset) {
1526 /*
1527 * can_attach beforehand should guarantee that this doesn't
1528 * fail. TODO: have a better way to handle failure here
1529 */
1530 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1531
1532 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1533 cpuset_update_task_spread_flag(cs, task);
1534 }
1535
1536 /*
1537 * Change mm, possibly for multiple threads in a threadgroup. This is
1538 * expensive and may sleep.
1539 */
1540 cpuset_attach_nodemask_to = cs->mems_allowed;
1541 mm = get_task_mm(leader);
1542 if (mm) {
1543 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1544
1545 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1546
1547 /*
1548 * old_mems_allowed is the same with mems_allowed here, except
1549 * if this task is being moved automatically due to hotplug.
1550 * In that case @mems_allowed has been updated and is empty,
1551 * so @old_mems_allowed is the right nodesets that we migrate
1552 * mm from.
1553 */
1554 if (is_memory_migrate(cs)) {
1555 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1556 &cpuset_attach_nodemask_to);
1557 }
1558 mmput(mm);
1559 }
1560
1561 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1562
1563 cs->attach_in_progress--;
1564 if (!cs->attach_in_progress)
1565 wake_up(&cpuset_attach_wq);
1566
1567 mutex_unlock(&cpuset_mutex);
1568 }
1569
1570 /* The various types of files and directories in a cpuset file system */
1571
1572 typedef enum {
1573 FILE_MEMORY_MIGRATE,
1574 FILE_CPULIST,
1575 FILE_MEMLIST,
1576 FILE_CPU_EXCLUSIVE,
1577 FILE_MEM_EXCLUSIVE,
1578 FILE_MEM_HARDWALL,
1579 FILE_SCHED_LOAD_BALANCE,
1580 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1581 FILE_MEMORY_PRESSURE_ENABLED,
1582 FILE_MEMORY_PRESSURE,
1583 FILE_SPREAD_PAGE,
1584 FILE_SPREAD_SLAB,
1585 } cpuset_filetype_t;
1586
1587 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1588 u64 val)
1589 {
1590 struct cpuset *cs = css_cs(css);
1591 cpuset_filetype_t type = cft->private;
1592 int retval = -ENODEV;
1593
1594 mutex_lock(&cpuset_mutex);
1595 if (!is_cpuset_online(cs))
1596 goto out_unlock;
1597
1598 switch (type) {
1599 case FILE_CPU_EXCLUSIVE:
1600 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1601 break;
1602 case FILE_MEM_EXCLUSIVE:
1603 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1604 break;
1605 case FILE_MEM_HARDWALL:
1606 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1607 break;
1608 case FILE_SCHED_LOAD_BALANCE:
1609 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1610 break;
1611 case FILE_MEMORY_MIGRATE:
1612 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1613 break;
1614 case FILE_MEMORY_PRESSURE_ENABLED:
1615 cpuset_memory_pressure_enabled = !!val;
1616 break;
1617 case FILE_MEMORY_PRESSURE:
1618 retval = -EACCES;
1619 break;
1620 case FILE_SPREAD_PAGE:
1621 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1622 break;
1623 case FILE_SPREAD_SLAB:
1624 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1625 break;
1626 default:
1627 retval = -EINVAL;
1628 break;
1629 }
1630 out_unlock:
1631 mutex_unlock(&cpuset_mutex);
1632 return retval;
1633 }
1634
1635 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1636 s64 val)
1637 {
1638 struct cpuset *cs = css_cs(css);
1639 cpuset_filetype_t type = cft->private;
1640 int retval = -ENODEV;
1641
1642 mutex_lock(&cpuset_mutex);
1643 if (!is_cpuset_online(cs))
1644 goto out_unlock;
1645
1646 switch (type) {
1647 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1648 retval = update_relax_domain_level(cs, val);
1649 break;
1650 default:
1651 retval = -EINVAL;
1652 break;
1653 }
1654 out_unlock:
1655 mutex_unlock(&cpuset_mutex);
1656 return retval;
1657 }
1658
1659 /*
1660 * Common handling for a write to a "cpus" or "mems" file.
1661 */
1662 static int cpuset_write_resmask(struct cgroup_subsys_state *css,
1663 struct cftype *cft, const char *buf)
1664 {
1665 struct cpuset *cs = css_cs(css);
1666 struct cpuset *trialcs;
1667 int retval = -ENODEV;
1668
1669 /*
1670 * CPU or memory hotunplug may leave @cs w/o any execution
1671 * resources, in which case the hotplug code asynchronously updates
1672 * configuration and transfers all tasks to the nearest ancestor
1673 * which can execute.
1674 *
1675 * As writes to "cpus" or "mems" may restore @cs's execution
1676 * resources, wait for the previously scheduled operations before
1677 * proceeding, so that we don't end up keep removing tasks added
1678 * after execution capability is restored.
1679 */
1680 flush_work(&cpuset_hotplug_work);
1681
1682 mutex_lock(&cpuset_mutex);
1683 if (!is_cpuset_online(cs))
1684 goto out_unlock;
1685
1686 trialcs = alloc_trial_cpuset(cs);
1687 if (!trialcs) {
1688 retval = -ENOMEM;
1689 goto out_unlock;
1690 }
1691
1692 switch (cft->private) {
1693 case FILE_CPULIST:
1694 retval = update_cpumask(cs, trialcs, buf);
1695 break;
1696 case FILE_MEMLIST:
1697 retval = update_nodemask(cs, trialcs, buf);
1698 break;
1699 default:
1700 retval = -EINVAL;
1701 break;
1702 }
1703
1704 free_trial_cpuset(trialcs);
1705 out_unlock:
1706 mutex_unlock(&cpuset_mutex);
1707 return retval;
1708 }
1709
1710 /*
1711 * These ascii lists should be read in a single call, by using a user
1712 * buffer large enough to hold the entire map. If read in smaller
1713 * chunks, there is no guarantee of atomicity. Since the display format
1714 * used, list of ranges of sequential numbers, is variable length,
1715 * and since these maps can change value dynamically, one could read
1716 * gibberish by doing partial reads while a list was changing.
1717 * A single large read to a buffer that crosses a page boundary is
1718 * ok, because the result being copied to user land is not recomputed
1719 * across a page fault.
1720 */
1721
1722 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1723 {
1724 size_t count;
1725
1726 mutex_lock(&callback_mutex);
1727 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1728 mutex_unlock(&callback_mutex);
1729
1730 return count;
1731 }
1732
1733 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1734 {
1735 size_t count;
1736
1737 mutex_lock(&callback_mutex);
1738 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1739 mutex_unlock(&callback_mutex);
1740
1741 return count;
1742 }
1743
1744 static ssize_t cpuset_common_file_read(struct cgroup_subsys_state *css,
1745 struct cftype *cft, struct file *file,
1746 char __user *buf, size_t nbytes,
1747 loff_t *ppos)
1748 {
1749 struct cpuset *cs = css_cs(css);
1750 cpuset_filetype_t type = cft->private;
1751 char *page;
1752 ssize_t retval = 0;
1753 char *s;
1754
1755 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1756 return -ENOMEM;
1757
1758 s = page;
1759
1760 switch (type) {
1761 case FILE_CPULIST:
1762 s += cpuset_sprintf_cpulist(s, cs);
1763 break;
1764 case FILE_MEMLIST:
1765 s += cpuset_sprintf_memlist(s, cs);
1766 break;
1767 default:
1768 retval = -EINVAL;
1769 goto out;
1770 }
1771 *s++ = '\n';
1772
1773 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1774 out:
1775 free_page((unsigned long)page);
1776 return retval;
1777 }
1778
1779 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1780 {
1781 struct cpuset *cs = css_cs(css);
1782 cpuset_filetype_t type = cft->private;
1783 switch (type) {
1784 case FILE_CPU_EXCLUSIVE:
1785 return is_cpu_exclusive(cs);
1786 case FILE_MEM_EXCLUSIVE:
1787 return is_mem_exclusive(cs);
1788 case FILE_MEM_HARDWALL:
1789 return is_mem_hardwall(cs);
1790 case FILE_SCHED_LOAD_BALANCE:
1791 return is_sched_load_balance(cs);
1792 case FILE_MEMORY_MIGRATE:
1793 return is_memory_migrate(cs);
1794 case FILE_MEMORY_PRESSURE_ENABLED:
1795 return cpuset_memory_pressure_enabled;
1796 case FILE_MEMORY_PRESSURE:
1797 return fmeter_getrate(&cs->fmeter);
1798 case FILE_SPREAD_PAGE:
1799 return is_spread_page(cs);
1800 case FILE_SPREAD_SLAB:
1801 return is_spread_slab(cs);
1802 default:
1803 BUG();
1804 }
1805
1806 /* Unreachable but makes gcc happy */
1807 return 0;
1808 }
1809
1810 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1811 {
1812 struct cpuset *cs = css_cs(css);
1813 cpuset_filetype_t type = cft->private;
1814 switch (type) {
1815 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1816 return cs->relax_domain_level;
1817 default:
1818 BUG();
1819 }
1820
1821 /* Unrechable but makes gcc happy */
1822 return 0;
1823 }
1824
1825
1826 /*
1827 * for the common functions, 'private' gives the type of file
1828 */
1829
1830 static struct cftype files[] = {
1831 {
1832 .name = "cpus",
1833 .read = cpuset_common_file_read,
1834 .write_string = cpuset_write_resmask,
1835 .max_write_len = (100U + 6 * NR_CPUS),
1836 .private = FILE_CPULIST,
1837 },
1838
1839 {
1840 .name = "mems",
1841 .read = cpuset_common_file_read,
1842 .write_string = cpuset_write_resmask,
1843 .max_write_len = (100U + 6 * MAX_NUMNODES),
1844 .private = FILE_MEMLIST,
1845 },
1846
1847 {
1848 .name = "cpu_exclusive",
1849 .read_u64 = cpuset_read_u64,
1850 .write_u64 = cpuset_write_u64,
1851 .private = FILE_CPU_EXCLUSIVE,
1852 },
1853
1854 {
1855 .name = "mem_exclusive",
1856 .read_u64 = cpuset_read_u64,
1857 .write_u64 = cpuset_write_u64,
1858 .private = FILE_MEM_EXCLUSIVE,
1859 },
1860
1861 {
1862 .name = "mem_hardwall",
1863 .read_u64 = cpuset_read_u64,
1864 .write_u64 = cpuset_write_u64,
1865 .private = FILE_MEM_HARDWALL,
1866 },
1867
1868 {
1869 .name = "sched_load_balance",
1870 .read_u64 = cpuset_read_u64,
1871 .write_u64 = cpuset_write_u64,
1872 .private = FILE_SCHED_LOAD_BALANCE,
1873 },
1874
1875 {
1876 .name = "sched_relax_domain_level",
1877 .read_s64 = cpuset_read_s64,
1878 .write_s64 = cpuset_write_s64,
1879 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1880 },
1881
1882 {
1883 .name = "memory_migrate",
1884 .read_u64 = cpuset_read_u64,
1885 .write_u64 = cpuset_write_u64,
1886 .private = FILE_MEMORY_MIGRATE,
1887 },
1888
1889 {
1890 .name = "memory_pressure",
1891 .read_u64 = cpuset_read_u64,
1892 .write_u64 = cpuset_write_u64,
1893 .private = FILE_MEMORY_PRESSURE,
1894 .mode = S_IRUGO,
1895 },
1896
1897 {
1898 .name = "memory_spread_page",
1899 .read_u64 = cpuset_read_u64,
1900 .write_u64 = cpuset_write_u64,
1901 .private = FILE_SPREAD_PAGE,
1902 },
1903
1904 {
1905 .name = "memory_spread_slab",
1906 .read_u64 = cpuset_read_u64,
1907 .write_u64 = cpuset_write_u64,
1908 .private = FILE_SPREAD_SLAB,
1909 },
1910
1911 {
1912 .name = "memory_pressure_enabled",
1913 .flags = CFTYPE_ONLY_ON_ROOT,
1914 .read_u64 = cpuset_read_u64,
1915 .write_u64 = cpuset_write_u64,
1916 .private = FILE_MEMORY_PRESSURE_ENABLED,
1917 },
1918
1919 { } /* terminate */
1920 };
1921
1922 /*
1923 * cpuset_css_alloc - allocate a cpuset css
1924 * cgrp: control group that the new cpuset will be part of
1925 */
1926
1927 static struct cgroup_subsys_state *
1928 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1929 {
1930 struct cpuset *cs;
1931
1932 if (!parent_css)
1933 return &top_cpuset.css;
1934
1935 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1936 if (!cs)
1937 return ERR_PTR(-ENOMEM);
1938 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1939 kfree(cs);
1940 return ERR_PTR(-ENOMEM);
1941 }
1942
1943 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1944 cpumask_clear(cs->cpus_allowed);
1945 nodes_clear(cs->mems_allowed);
1946 fmeter_init(&cs->fmeter);
1947 cs->relax_domain_level = -1;
1948
1949 return &cs->css;
1950 }
1951
1952 static int cpuset_css_online(struct cgroup_subsys_state *css)
1953 {
1954 struct cpuset *cs = css_cs(css);
1955 struct cpuset *parent = parent_cs(cs);
1956 struct cpuset *tmp_cs;
1957 struct cgroup_subsys_state *pos_css;
1958
1959 if (!parent)
1960 return 0;
1961
1962 mutex_lock(&cpuset_mutex);
1963
1964 set_bit(CS_ONLINE, &cs->flags);
1965 if (is_spread_page(parent))
1966 set_bit(CS_SPREAD_PAGE, &cs->flags);
1967 if (is_spread_slab(parent))
1968 set_bit(CS_SPREAD_SLAB, &cs->flags);
1969
1970 number_of_cpusets++;
1971
1972 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1973 goto out_unlock;
1974
1975 /*
1976 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1977 * set. This flag handling is implemented in cgroup core for
1978 * histrical reasons - the flag may be specified during mount.
1979 *
1980 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1981 * refuse to clone the configuration - thereby refusing the task to
1982 * be entered, and as a result refusing the sys_unshare() or
1983 * clone() which initiated it. If this becomes a problem for some
1984 * users who wish to allow that scenario, then this could be
1985 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1986 * (and likewise for mems) to the new cgroup.
1987 */
1988 rcu_read_lock();
1989 cpuset_for_each_child(tmp_cs, pos_css, parent) {
1990 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1991 rcu_read_unlock();
1992 goto out_unlock;
1993 }
1994 }
1995 rcu_read_unlock();
1996
1997 mutex_lock(&callback_mutex);
1998 cs->mems_allowed = parent->mems_allowed;
1999 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2000 mutex_unlock(&callback_mutex);
2001 out_unlock:
2002 mutex_unlock(&cpuset_mutex);
2003 return 0;
2004 }
2005
2006 /*
2007 * If the cpuset being removed has its flag 'sched_load_balance'
2008 * enabled, then simulate turning sched_load_balance off, which
2009 * will call rebuild_sched_domains_locked().
2010 */
2011
2012 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2013 {
2014 struct cpuset *cs = css_cs(css);
2015
2016 mutex_lock(&cpuset_mutex);
2017
2018 if (is_sched_load_balance(cs))
2019 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2020
2021 number_of_cpusets--;
2022 clear_bit(CS_ONLINE, &cs->flags);
2023
2024 mutex_unlock(&cpuset_mutex);
2025 }
2026
2027 static void cpuset_css_free(struct cgroup_subsys_state *css)
2028 {
2029 struct cpuset *cs = css_cs(css);
2030
2031 free_cpumask_var(cs->cpus_allowed);
2032 kfree(cs);
2033 }
2034
2035 struct cgroup_subsys cpuset_subsys = {
2036 .name = "cpuset",
2037 .css_alloc = cpuset_css_alloc,
2038 .css_online = cpuset_css_online,
2039 .css_offline = cpuset_css_offline,
2040 .css_free = cpuset_css_free,
2041 .can_attach = cpuset_can_attach,
2042 .cancel_attach = cpuset_cancel_attach,
2043 .attach = cpuset_attach,
2044 .subsys_id = cpuset_subsys_id,
2045 .base_cftypes = files,
2046 .early_init = 1,
2047 };
2048
2049 /**
2050 * cpuset_init - initialize cpusets at system boot
2051 *
2052 * Description: Initialize top_cpuset and the cpuset internal file system,
2053 **/
2054
2055 int __init cpuset_init(void)
2056 {
2057 int err = 0;
2058
2059 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2060 BUG();
2061
2062 cpumask_setall(top_cpuset.cpus_allowed);
2063 nodes_setall(top_cpuset.mems_allowed);
2064
2065 fmeter_init(&top_cpuset.fmeter);
2066 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2067 top_cpuset.relax_domain_level = -1;
2068
2069 err = register_filesystem(&cpuset_fs_type);
2070 if (err < 0)
2071 return err;
2072
2073 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2074 BUG();
2075
2076 number_of_cpusets = 1;
2077 return 0;
2078 }
2079
2080 /*
2081 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2082 * or memory nodes, we need to walk over the cpuset hierarchy,
2083 * removing that CPU or node from all cpusets. If this removes the
2084 * last CPU or node from a cpuset, then move the tasks in the empty
2085 * cpuset to its next-highest non-empty parent.
2086 */
2087 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2088 {
2089 struct cpuset *parent;
2090
2091 /*
2092 * Find its next-highest non-empty parent, (top cpuset
2093 * has online cpus, so can't be empty).
2094 */
2095 parent = parent_cs(cs);
2096 while (cpumask_empty(parent->cpus_allowed) ||
2097 nodes_empty(parent->mems_allowed))
2098 parent = parent_cs(parent);
2099
2100 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2101 rcu_read_lock();
2102 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2103 cgroup_name(cs->css.cgroup));
2104 rcu_read_unlock();
2105 }
2106 }
2107
2108 /**
2109 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2110 * @cs: cpuset in interest
2111 *
2112 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2113 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2114 * all its tasks are moved to the nearest ancestor with both resources.
2115 */
2116 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2117 {
2118 static cpumask_t off_cpus;
2119 static nodemask_t off_mems;
2120 bool is_empty;
2121 bool sane = cgroup_sane_behavior(cs->css.cgroup);
2122
2123 retry:
2124 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2125
2126 mutex_lock(&cpuset_mutex);
2127
2128 /*
2129 * We have raced with task attaching. We wait until attaching
2130 * is finished, so we won't attach a task to an empty cpuset.
2131 */
2132 if (cs->attach_in_progress) {
2133 mutex_unlock(&cpuset_mutex);
2134 goto retry;
2135 }
2136
2137 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2138 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2139
2140 mutex_lock(&callback_mutex);
2141 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2142 mutex_unlock(&callback_mutex);
2143
2144 /*
2145 * If sane_behavior flag is set, we need to update tasks' cpumask
2146 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2147 * call update_tasks_cpumask() if the cpuset becomes empty, as
2148 * the tasks in it will be migrated to an ancestor.
2149 */
2150 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2151 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2152 update_tasks_cpumask(cs, NULL);
2153
2154 mutex_lock(&callback_mutex);
2155 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2156 mutex_unlock(&callback_mutex);
2157
2158 /*
2159 * If sane_behavior flag is set, we need to update tasks' nodemask
2160 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2161 * call update_tasks_nodemask() if the cpuset becomes empty, as
2162 * the tasks in it will be migratd to an ancestor.
2163 */
2164 if ((sane && nodes_empty(cs->mems_allowed)) ||
2165 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2166 update_tasks_nodemask(cs, NULL);
2167
2168 is_empty = cpumask_empty(cs->cpus_allowed) ||
2169 nodes_empty(cs->mems_allowed);
2170
2171 mutex_unlock(&cpuset_mutex);
2172
2173 /*
2174 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2175 *
2176 * Otherwise move tasks to the nearest ancestor with execution
2177 * resources. This is full cgroup operation which will
2178 * also call back into cpuset. Should be done outside any lock.
2179 */
2180 if (!sane && is_empty)
2181 remove_tasks_in_empty_cpuset(cs);
2182 }
2183
2184 /**
2185 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2186 *
2187 * This function is called after either CPU or memory configuration has
2188 * changed and updates cpuset accordingly. The top_cpuset is always
2189 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2190 * order to make cpusets transparent (of no affect) on systems that are
2191 * actively using CPU hotplug but making no active use of cpusets.
2192 *
2193 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2194 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2195 * all descendants.
2196 *
2197 * Note that CPU offlining during suspend is ignored. We don't modify
2198 * cpusets across suspend/resume cycles at all.
2199 */
2200 static void cpuset_hotplug_workfn(struct work_struct *work)
2201 {
2202 static cpumask_t new_cpus;
2203 static nodemask_t new_mems;
2204 bool cpus_updated, mems_updated;
2205
2206 mutex_lock(&cpuset_mutex);
2207
2208 /* fetch the available cpus/mems and find out which changed how */
2209 cpumask_copy(&new_cpus, cpu_active_mask);
2210 new_mems = node_states[N_MEMORY];
2211
2212 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2213 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2214
2215 /* synchronize cpus_allowed to cpu_active_mask */
2216 if (cpus_updated) {
2217 mutex_lock(&callback_mutex);
2218 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2219 mutex_unlock(&callback_mutex);
2220 /* we don't mess with cpumasks of tasks in top_cpuset */
2221 }
2222
2223 /* synchronize mems_allowed to N_MEMORY */
2224 if (mems_updated) {
2225 mutex_lock(&callback_mutex);
2226 top_cpuset.mems_allowed = new_mems;
2227 mutex_unlock(&callback_mutex);
2228 update_tasks_nodemask(&top_cpuset, NULL);
2229 }
2230
2231 mutex_unlock(&cpuset_mutex);
2232
2233 /* if cpus or mems changed, we need to propagate to descendants */
2234 if (cpus_updated || mems_updated) {
2235 struct cpuset *cs;
2236 struct cgroup_subsys_state *pos_css;
2237
2238 rcu_read_lock();
2239 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2240 if (!css_tryget(&cs->css))
2241 continue;
2242 rcu_read_unlock();
2243
2244 cpuset_hotplug_update_tasks(cs);
2245
2246 rcu_read_lock();
2247 css_put(&cs->css);
2248 }
2249 rcu_read_unlock();
2250 }
2251
2252 /* rebuild sched domains if cpus_allowed has changed */
2253 if (cpus_updated)
2254 rebuild_sched_domains();
2255 }
2256
2257 void cpuset_update_active_cpus(bool cpu_online)
2258 {
2259 /*
2260 * We're inside cpu hotplug critical region which usually nests
2261 * inside cgroup synchronization. Bounce actual hotplug processing
2262 * to a work item to avoid reverse locking order.
2263 *
2264 * We still need to do partition_sched_domains() synchronously;
2265 * otherwise, the scheduler will get confused and put tasks to the
2266 * dead CPU. Fall back to the default single domain.
2267 * cpuset_hotplug_workfn() will rebuild it as necessary.
2268 */
2269 partition_sched_domains(1, NULL, NULL);
2270 schedule_work(&cpuset_hotplug_work);
2271 }
2272
2273 /*
2274 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2275 * Call this routine anytime after node_states[N_MEMORY] changes.
2276 * See cpuset_update_active_cpus() for CPU hotplug handling.
2277 */
2278 static int cpuset_track_online_nodes(struct notifier_block *self,
2279 unsigned long action, void *arg)
2280 {
2281 schedule_work(&cpuset_hotplug_work);
2282 return NOTIFY_OK;
2283 }
2284
2285 static struct notifier_block cpuset_track_online_nodes_nb = {
2286 .notifier_call = cpuset_track_online_nodes,
2287 .priority = 10, /* ??! */
2288 };
2289
2290 /**
2291 * cpuset_init_smp - initialize cpus_allowed
2292 *
2293 * Description: Finish top cpuset after cpu, node maps are initialized
2294 */
2295 void __init cpuset_init_smp(void)
2296 {
2297 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2298 top_cpuset.mems_allowed = node_states[N_MEMORY];
2299 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2300
2301 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2302 }
2303
2304 /**
2305 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2306 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2307 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2308 *
2309 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2310 * attached to the specified @tsk. Guaranteed to return some non-empty
2311 * subset of cpu_online_mask, even if this means going outside the
2312 * tasks cpuset.
2313 **/
2314
2315 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2316 {
2317 struct cpuset *cpus_cs;
2318
2319 mutex_lock(&callback_mutex);
2320 task_lock(tsk);
2321 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2322 guarantee_online_cpus(cpus_cs, pmask);
2323 task_unlock(tsk);
2324 mutex_unlock(&callback_mutex);
2325 }
2326
2327 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2328 {
2329 struct cpuset *cpus_cs;
2330
2331 rcu_read_lock();
2332 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2333 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2334 rcu_read_unlock();
2335
2336 /*
2337 * We own tsk->cpus_allowed, nobody can change it under us.
2338 *
2339 * But we used cs && cs->cpus_allowed lockless and thus can
2340 * race with cgroup_attach_task() or update_cpumask() and get
2341 * the wrong tsk->cpus_allowed. However, both cases imply the
2342 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2343 * which takes task_rq_lock().
2344 *
2345 * If we are called after it dropped the lock we must see all
2346 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2347 * set any mask even if it is not right from task_cs() pov,
2348 * the pending set_cpus_allowed_ptr() will fix things.
2349 *
2350 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2351 * if required.
2352 */
2353 }
2354
2355 void cpuset_init_current_mems_allowed(void)
2356 {
2357 nodes_setall(current->mems_allowed);
2358 }
2359
2360 /**
2361 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2362 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2363 *
2364 * Description: Returns the nodemask_t mems_allowed of the cpuset
2365 * attached to the specified @tsk. Guaranteed to return some non-empty
2366 * subset of node_states[N_MEMORY], even if this means going outside the
2367 * tasks cpuset.
2368 **/
2369
2370 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2371 {
2372 struct cpuset *mems_cs;
2373 nodemask_t mask;
2374
2375 mutex_lock(&callback_mutex);
2376 task_lock(tsk);
2377 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2378 guarantee_online_mems(mems_cs, &mask);
2379 task_unlock(tsk);
2380 mutex_unlock(&callback_mutex);
2381
2382 return mask;
2383 }
2384
2385 /**
2386 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2387 * @nodemask: the nodemask to be checked
2388 *
2389 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2390 */
2391 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2392 {
2393 return nodes_intersects(*nodemask, current->mems_allowed);
2394 }
2395
2396 /*
2397 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2398 * mem_hardwall ancestor to the specified cpuset. Call holding
2399 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2400 * (an unusual configuration), then returns the root cpuset.
2401 */
2402 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2403 {
2404 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2405 cs = parent_cs(cs);
2406 return cs;
2407 }
2408
2409 /**
2410 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2411 * @node: is this an allowed node?
2412 * @gfp_mask: memory allocation flags
2413 *
2414 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2415 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2416 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2417 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2418 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2419 * flag, yes.
2420 * Otherwise, no.
2421 *
2422 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2423 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2424 * might sleep, and might allow a node from an enclosing cpuset.
2425 *
2426 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2427 * cpusets, and never sleeps.
2428 *
2429 * The __GFP_THISNODE placement logic is really handled elsewhere,
2430 * by forcibly using a zonelist starting at a specified node, and by
2431 * (in get_page_from_freelist()) refusing to consider the zones for
2432 * any node on the zonelist except the first. By the time any such
2433 * calls get to this routine, we should just shut up and say 'yes'.
2434 *
2435 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2436 * and do not allow allocations outside the current tasks cpuset
2437 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2438 * GFP_KERNEL allocations are not so marked, so can escape to the
2439 * nearest enclosing hardwalled ancestor cpuset.
2440 *
2441 * Scanning up parent cpusets requires callback_mutex. The
2442 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2443 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2444 * current tasks mems_allowed came up empty on the first pass over
2445 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2446 * cpuset are short of memory, might require taking the callback_mutex
2447 * mutex.
2448 *
2449 * The first call here from mm/page_alloc:get_page_from_freelist()
2450 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2451 * so no allocation on a node outside the cpuset is allowed (unless
2452 * in interrupt, of course).
2453 *
2454 * The second pass through get_page_from_freelist() doesn't even call
2455 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2456 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2457 * in alloc_flags. That logic and the checks below have the combined
2458 * affect that:
2459 * in_interrupt - any node ok (current task context irrelevant)
2460 * GFP_ATOMIC - any node ok
2461 * TIF_MEMDIE - any node ok
2462 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2463 * GFP_USER - only nodes in current tasks mems allowed ok.
2464 *
2465 * Rule:
2466 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2467 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2468 * the code that might scan up ancestor cpusets and sleep.
2469 */
2470 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2471 {
2472 struct cpuset *cs; /* current cpuset ancestors */
2473 int allowed; /* is allocation in zone z allowed? */
2474
2475 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2476 return 1;
2477 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2478 if (node_isset(node, current->mems_allowed))
2479 return 1;
2480 /*
2481 * Allow tasks that have access to memory reserves because they have
2482 * been OOM killed to get memory anywhere.
2483 */
2484 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2485 return 1;
2486 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2487 return 0;
2488
2489 if (current->flags & PF_EXITING) /* Let dying task have memory */
2490 return 1;
2491
2492 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2493 mutex_lock(&callback_mutex);
2494
2495 task_lock(current);
2496 cs = nearest_hardwall_ancestor(task_cs(current));
2497 task_unlock(current);
2498
2499 allowed = node_isset(node, cs->mems_allowed);
2500 mutex_unlock(&callback_mutex);
2501 return allowed;
2502 }
2503
2504 /*
2505 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2506 * @node: is this an allowed node?
2507 * @gfp_mask: memory allocation flags
2508 *
2509 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2510 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2511 * yes. If the task has been OOM killed and has access to memory reserves as
2512 * specified by the TIF_MEMDIE flag, yes.
2513 * Otherwise, no.
2514 *
2515 * The __GFP_THISNODE placement logic is really handled elsewhere,
2516 * by forcibly using a zonelist starting at a specified node, and by
2517 * (in get_page_from_freelist()) refusing to consider the zones for
2518 * any node on the zonelist except the first. By the time any such
2519 * calls get to this routine, we should just shut up and say 'yes'.
2520 *
2521 * Unlike the cpuset_node_allowed_softwall() variant, above,
2522 * this variant requires that the node be in the current task's
2523 * mems_allowed or that we're in interrupt. It does not scan up the
2524 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2525 * It never sleeps.
2526 */
2527 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2528 {
2529 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2530 return 1;
2531 if (node_isset(node, current->mems_allowed))
2532 return 1;
2533 /*
2534 * Allow tasks that have access to memory reserves because they have
2535 * been OOM killed to get memory anywhere.
2536 */
2537 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2538 return 1;
2539 return 0;
2540 }
2541
2542 /**
2543 * cpuset_mem_spread_node() - On which node to begin search for a file page
2544 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2545 *
2546 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2547 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2548 * and if the memory allocation used cpuset_mem_spread_node()
2549 * to determine on which node to start looking, as it will for
2550 * certain page cache or slab cache pages such as used for file
2551 * system buffers and inode caches, then instead of starting on the
2552 * local node to look for a free page, rather spread the starting
2553 * node around the tasks mems_allowed nodes.
2554 *
2555 * We don't have to worry about the returned node being offline
2556 * because "it can't happen", and even if it did, it would be ok.
2557 *
2558 * The routines calling guarantee_online_mems() are careful to
2559 * only set nodes in task->mems_allowed that are online. So it
2560 * should not be possible for the following code to return an
2561 * offline node. But if it did, that would be ok, as this routine
2562 * is not returning the node where the allocation must be, only
2563 * the node where the search should start. The zonelist passed to
2564 * __alloc_pages() will include all nodes. If the slab allocator
2565 * is passed an offline node, it will fall back to the local node.
2566 * See kmem_cache_alloc_node().
2567 */
2568
2569 static int cpuset_spread_node(int *rotor)
2570 {
2571 int node;
2572
2573 node = next_node(*rotor, current->mems_allowed);
2574 if (node == MAX_NUMNODES)
2575 node = first_node(current->mems_allowed);
2576 *rotor = node;
2577 return node;
2578 }
2579
2580 int cpuset_mem_spread_node(void)
2581 {
2582 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2583 current->cpuset_mem_spread_rotor =
2584 node_random(&current->mems_allowed);
2585
2586 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2587 }
2588
2589 int cpuset_slab_spread_node(void)
2590 {
2591 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2592 current->cpuset_slab_spread_rotor =
2593 node_random(&current->mems_allowed);
2594
2595 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2596 }
2597
2598 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2599
2600 /**
2601 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2602 * @tsk1: pointer to task_struct of some task.
2603 * @tsk2: pointer to task_struct of some other task.
2604 *
2605 * Description: Return true if @tsk1's mems_allowed intersects the
2606 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2607 * one of the task's memory usage might impact the memory available
2608 * to the other.
2609 **/
2610
2611 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2612 const struct task_struct *tsk2)
2613 {
2614 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2615 }
2616
2617 #define CPUSET_NODELIST_LEN (256)
2618
2619 /**
2620 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2621 * @task: pointer to task_struct of some task.
2622 *
2623 * Description: Prints @task's name, cpuset name, and cached copy of its
2624 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2625 * dereferencing task_cs(task).
2626 */
2627 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2628 {
2629 /* Statically allocated to prevent using excess stack. */
2630 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2631 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2632
2633 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2634
2635 rcu_read_lock();
2636 spin_lock(&cpuset_buffer_lock);
2637
2638 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2639 tsk->mems_allowed);
2640 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2641 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2642
2643 spin_unlock(&cpuset_buffer_lock);
2644 rcu_read_unlock();
2645 }
2646
2647 /*
2648 * Collection of memory_pressure is suppressed unless
2649 * this flag is enabled by writing "1" to the special
2650 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2651 */
2652
2653 int cpuset_memory_pressure_enabled __read_mostly;
2654
2655 /**
2656 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2657 *
2658 * Keep a running average of the rate of synchronous (direct)
2659 * page reclaim efforts initiated by tasks in each cpuset.
2660 *
2661 * This represents the rate at which some task in the cpuset
2662 * ran low on memory on all nodes it was allowed to use, and
2663 * had to enter the kernels page reclaim code in an effort to
2664 * create more free memory by tossing clean pages or swapping
2665 * or writing dirty pages.
2666 *
2667 * Display to user space in the per-cpuset read-only file
2668 * "memory_pressure". Value displayed is an integer
2669 * representing the recent rate of entry into the synchronous
2670 * (direct) page reclaim by any task attached to the cpuset.
2671 **/
2672
2673 void __cpuset_memory_pressure_bump(void)
2674 {
2675 task_lock(current);
2676 fmeter_markevent(&task_cs(current)->fmeter);
2677 task_unlock(current);
2678 }
2679
2680 #ifdef CONFIG_PROC_PID_CPUSET
2681 /*
2682 * proc_cpuset_show()
2683 * - Print tasks cpuset path into seq_file.
2684 * - Used for /proc/<pid>/cpuset.
2685 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2686 * doesn't really matter if tsk->cpuset changes after we read it,
2687 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2688 * anyway.
2689 */
2690 int proc_cpuset_show(struct seq_file *m, void *unused_v)
2691 {
2692 struct pid *pid;
2693 struct task_struct *tsk;
2694 char *buf;
2695 struct cgroup_subsys_state *css;
2696 int retval;
2697
2698 retval = -ENOMEM;
2699 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2700 if (!buf)
2701 goto out;
2702
2703 retval = -ESRCH;
2704 pid = m->private;
2705 tsk = get_pid_task(pid, PIDTYPE_PID);
2706 if (!tsk)
2707 goto out_free;
2708
2709 rcu_read_lock();
2710 css = task_css(tsk, cpuset_subsys_id);
2711 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2712 rcu_read_unlock();
2713 if (retval < 0)
2714 goto out_put_task;
2715 seq_puts(m, buf);
2716 seq_putc(m, '\n');
2717 out_put_task:
2718 put_task_struct(tsk);
2719 out_free:
2720 kfree(buf);
2721 out:
2722 return retval;
2723 }
2724 #endif /* CONFIG_PROC_PID_CPUSET */
2725
2726 /* Display task mems_allowed in /proc/<pid>/status file. */
2727 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2728 {
2729 seq_printf(m, "Mems_allowed:\t");
2730 seq_nodemask(m, &task->mems_allowed);
2731 seq_printf(m, "\n");
2732 seq_printf(m, "Mems_allowed_list:\t");
2733 seq_nodemask_list(m, &task->mems_allowed);
2734 seq_printf(m, "\n");
2735 }