]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cpuset.c
[PATCH] remove non-cleanroom pwc driver compression
[mirror_ubuntu-bionic-kernel.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/mount.h>
38 #include <linux/namei.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched.h>
42 #include <linux/seq_file.h>
43 #include <linux/slab.h>
44 #include <linux/smp_lock.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/string.h>
48 #include <linux/time.h>
49 #include <linux/backing-dev.h>
50 #include <linux/sort.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/atomic.h>
54 #include <asm/semaphore.h>
55
56 #define CPUSET_SUPER_MAGIC 0x27e0eb
57
58 struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
62
63 atomic_t count; /* count tasks using this cpuset */
64
65 /*
66 * We link our 'sibling' struct into our parents 'children'.
67 * Our children link their 'sibling' into our 'children'.
68 */
69 struct list_head sibling; /* my parents children */
70 struct list_head children; /* my children */
71
72 struct cpuset *parent; /* my parent */
73 struct dentry *dentry; /* cpuset fs entry */
74
75 /*
76 * Copy of global cpuset_mems_generation as of the most
77 * recent time this cpuset changed its mems_allowed.
78 */
79 int mems_generation;
80 };
81
82 /* bits in struct cpuset flags field */
83 typedef enum {
84 CS_CPU_EXCLUSIVE,
85 CS_MEM_EXCLUSIVE,
86 CS_REMOVED,
87 CS_NOTIFY_ON_RELEASE
88 } cpuset_flagbits_t;
89
90 /* convenient tests for these bits */
91 static inline int is_cpu_exclusive(const struct cpuset *cs)
92 {
93 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
94 }
95
96 static inline int is_mem_exclusive(const struct cpuset *cs)
97 {
98 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
99 }
100
101 static inline int is_removed(const struct cpuset *cs)
102 {
103 return !!test_bit(CS_REMOVED, &cs->flags);
104 }
105
106 static inline int notify_on_release(const struct cpuset *cs)
107 {
108 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
109 }
110
111 /*
112 * Increment this atomic integer everytime any cpuset changes its
113 * mems_allowed value. Users of cpusets can track this generation
114 * number, and avoid having to lock and reload mems_allowed unless
115 * the cpuset they're using changes generation.
116 *
117 * A single, global generation is needed because attach_task() could
118 * reattach a task to a different cpuset, which must not have its
119 * generation numbers aliased with those of that tasks previous cpuset.
120 *
121 * Generations are needed for mems_allowed because one task cannot
122 * modify anothers memory placement. So we must enable every task,
123 * on every visit to __alloc_pages(), to efficiently check whether
124 * its current->cpuset->mems_allowed has changed, requiring an update
125 * of its current->mems_allowed.
126 */
127 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
128
129 static struct cpuset top_cpuset = {
130 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
131 .cpus_allowed = CPU_MASK_ALL,
132 .mems_allowed = NODE_MASK_ALL,
133 .count = ATOMIC_INIT(0),
134 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
135 .children = LIST_HEAD_INIT(top_cpuset.children),
136 .parent = NULL,
137 .dentry = NULL,
138 .mems_generation = 0,
139 };
140
141 static struct vfsmount *cpuset_mount;
142 static struct super_block *cpuset_sb = NULL;
143
144 /*
145 * cpuset_sem should be held by anyone who is depending on the children
146 * or sibling lists of any cpuset, or performing non-atomic operations
147 * on the flags or *_allowed values of a cpuset, such as raising the
148 * CS_REMOVED flag bit iff it is not already raised, or reading and
149 * conditionally modifying the *_allowed values. One kernel global
150 * cpuset semaphore should be sufficient - these things don't change
151 * that much.
152 *
153 * The code that modifies cpusets holds cpuset_sem across the entire
154 * operation, from cpuset_common_file_write() down, single threading
155 * all cpuset modifications (except for counter manipulations from
156 * fork and exit) across the system. This presumes that cpuset
157 * modifications are rare - better kept simple and safe, even if slow.
158 *
159 * The code that reads cpusets, such as in cpuset_common_file_read()
160 * and below, only holds cpuset_sem across small pieces of code, such
161 * as when reading out possibly multi-word cpumasks and nodemasks, as
162 * the risks are less, and the desire for performance a little greater.
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root.
165 *
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
167 * (usually) grab cpuset_sem. These are the two most performance
168 * critical pieces of code here. The exception occurs on exit(),
169 * if the last task using a cpuset exits, and the cpuset was marked
170 * notify_on_release. In that case, the cpuset_sem is taken, the
171 * path to the released cpuset calculated, and a usermode call made
172 * to /sbin/cpuset_release_agent with the name of the cpuset (path
173 * relative to the root of cpuset file system) as the argument.
174 *
175 * A cpuset can only be deleted if both its 'count' of using tasks is
176 * zero, and its list of 'children' cpusets is empty. Since all tasks
177 * in the system use _some_ cpuset, and since there is always at least
178 * one task in the system (init, pid == 1), therefore, top_cpuset
179 * always has either children cpusets and/or using tasks. So no need
180 * for any special hack to ensure that top_cpuset cannot be deleted.
181 */
182
183 static DECLARE_MUTEX(cpuset_sem);
184
185 /*
186 * A couple of forward declarations required, due to cyclic reference loop:
187 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
188 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
189 */
190
191 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
192 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
193
194 static struct backing_dev_info cpuset_backing_dev_info = {
195 .ra_pages = 0, /* No readahead */
196 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
197 };
198
199 static struct inode *cpuset_new_inode(mode_t mode)
200 {
201 struct inode *inode = new_inode(cpuset_sb);
202
203 if (inode) {
204 inode->i_mode = mode;
205 inode->i_uid = current->fsuid;
206 inode->i_gid = current->fsgid;
207 inode->i_blksize = PAGE_CACHE_SIZE;
208 inode->i_blocks = 0;
209 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
210 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
211 }
212 return inode;
213 }
214
215 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
216 {
217 /* is dentry a directory ? if so, kfree() associated cpuset */
218 if (S_ISDIR(inode->i_mode)) {
219 struct cpuset *cs = dentry->d_fsdata;
220 BUG_ON(!(is_removed(cs)));
221 kfree(cs);
222 }
223 iput(inode);
224 }
225
226 static struct dentry_operations cpuset_dops = {
227 .d_iput = cpuset_diput,
228 };
229
230 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
231 {
232 struct qstr qstr;
233 struct dentry *d;
234
235 qstr.name = name;
236 qstr.len = strlen(name);
237 qstr.hash = full_name_hash(name, qstr.len);
238 d = lookup_hash(&qstr, parent);
239 if (!IS_ERR(d))
240 d->d_op = &cpuset_dops;
241 return d;
242 }
243
244 static void remove_dir(struct dentry *d)
245 {
246 struct dentry *parent = dget(d->d_parent);
247
248 d_delete(d);
249 simple_rmdir(parent->d_inode, d);
250 dput(parent);
251 }
252
253 /*
254 * NOTE : the dentry must have been dget()'ed
255 */
256 static void cpuset_d_remove_dir(struct dentry *dentry)
257 {
258 struct list_head *node;
259
260 spin_lock(&dcache_lock);
261 node = dentry->d_subdirs.next;
262 while (node != &dentry->d_subdirs) {
263 struct dentry *d = list_entry(node, struct dentry, d_child);
264 list_del_init(node);
265 if (d->d_inode) {
266 d = dget_locked(d);
267 spin_unlock(&dcache_lock);
268 d_delete(d);
269 simple_unlink(dentry->d_inode, d);
270 dput(d);
271 spin_lock(&dcache_lock);
272 }
273 node = dentry->d_subdirs.next;
274 }
275 list_del_init(&dentry->d_child);
276 spin_unlock(&dcache_lock);
277 remove_dir(dentry);
278 }
279
280 static struct super_operations cpuset_ops = {
281 .statfs = simple_statfs,
282 .drop_inode = generic_delete_inode,
283 };
284
285 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
286 int unused_silent)
287 {
288 struct inode *inode;
289 struct dentry *root;
290
291 sb->s_blocksize = PAGE_CACHE_SIZE;
292 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
293 sb->s_magic = CPUSET_SUPER_MAGIC;
294 sb->s_op = &cpuset_ops;
295 cpuset_sb = sb;
296
297 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
298 if (inode) {
299 inode->i_op = &simple_dir_inode_operations;
300 inode->i_fop = &simple_dir_operations;
301 /* directories start off with i_nlink == 2 (for "." entry) */
302 inode->i_nlink++;
303 } else {
304 return -ENOMEM;
305 }
306
307 root = d_alloc_root(inode);
308 if (!root) {
309 iput(inode);
310 return -ENOMEM;
311 }
312 sb->s_root = root;
313 return 0;
314 }
315
316 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
317 int flags, const char *unused_dev_name,
318 void *data)
319 {
320 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
321 }
322
323 static struct file_system_type cpuset_fs_type = {
324 .name = "cpuset",
325 .get_sb = cpuset_get_sb,
326 .kill_sb = kill_litter_super,
327 };
328
329 /* struct cftype:
330 *
331 * The files in the cpuset filesystem mostly have a very simple read/write
332 * handling, some common function will take care of it. Nevertheless some cases
333 * (read tasks) are special and therefore I define this structure for every
334 * kind of file.
335 *
336 *
337 * When reading/writing to a file:
338 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
339 * - the 'cftype' of the file is file->f_dentry->d_fsdata
340 */
341
342 struct cftype {
343 char *name;
344 int private;
345 int (*open) (struct inode *inode, struct file *file);
346 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
347 loff_t *ppos);
348 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
349 loff_t *ppos);
350 int (*release) (struct inode *inode, struct file *file);
351 };
352
353 static inline struct cpuset *__d_cs(struct dentry *dentry)
354 {
355 return dentry->d_fsdata;
356 }
357
358 static inline struct cftype *__d_cft(struct dentry *dentry)
359 {
360 return dentry->d_fsdata;
361 }
362
363 /*
364 * Call with cpuset_sem held. Writes path of cpuset into buf.
365 * Returns 0 on success, -errno on error.
366 */
367
368 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
369 {
370 char *start;
371
372 start = buf + buflen;
373
374 *--start = '\0';
375 for (;;) {
376 int len = cs->dentry->d_name.len;
377 if ((start -= len) < buf)
378 return -ENAMETOOLONG;
379 memcpy(start, cs->dentry->d_name.name, len);
380 cs = cs->parent;
381 if (!cs)
382 break;
383 if (!cs->parent)
384 continue;
385 if (--start < buf)
386 return -ENAMETOOLONG;
387 *start = '/';
388 }
389 memmove(buf, start, buf + buflen - start);
390 return 0;
391 }
392
393 /*
394 * Notify userspace when a cpuset is released, by running
395 * /sbin/cpuset_release_agent with the name of the cpuset (path
396 * relative to the root of cpuset file system) as the argument.
397 *
398 * Most likely, this user command will try to rmdir this cpuset.
399 *
400 * This races with the possibility that some other task will be
401 * attached to this cpuset before it is removed, or that some other
402 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
403 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
404 * unused, and this cpuset will be reprieved from its death sentence,
405 * to continue to serve a useful existence. Next time it's released,
406 * we will get notified again, if it still has 'notify_on_release' set.
407 *
408 * Note final arg to call_usermodehelper() is 0 - that means
409 * don't wait. Since we are holding the global cpuset_sem here,
410 * and we are asking another thread (started from keventd) to rmdir a
411 * cpuset, we can't wait - or we'd deadlock with the removing thread
412 * on cpuset_sem.
413 */
414
415 static int cpuset_release_agent(char *cpuset_str)
416 {
417 char *argv[3], *envp[3];
418 int i;
419
420 i = 0;
421 argv[i++] = "/sbin/cpuset_release_agent";
422 argv[i++] = cpuset_str;
423 argv[i] = NULL;
424
425 i = 0;
426 /* minimal command environment */
427 envp[i++] = "HOME=/";
428 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
429 envp[i] = NULL;
430
431 return call_usermodehelper(argv[0], argv, envp, 0);
432 }
433
434 /*
435 * Either cs->count of using tasks transitioned to zero, or the
436 * cs->children list of child cpusets just became empty. If this
437 * cs is notify_on_release() and now both the user count is zero and
438 * the list of children is empty, send notice to user land.
439 */
440
441 static void check_for_release(struct cpuset *cs)
442 {
443 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
444 list_empty(&cs->children)) {
445 char *buf;
446
447 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
448 if (!buf)
449 return;
450 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
451 goto out;
452 cpuset_release_agent(buf);
453 out:
454 kfree(buf);
455 }
456 }
457
458 /*
459 * Return in *pmask the portion of a cpusets's cpus_allowed that
460 * are online. If none are online, walk up the cpuset hierarchy
461 * until we find one that does have some online cpus. If we get
462 * all the way to the top and still haven't found any online cpus,
463 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
464 * task, return cpu_online_map.
465 *
466 * One way or another, we guarantee to return some non-empty subset
467 * of cpu_online_map.
468 *
469 * Call with cpuset_sem held.
470 */
471
472 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
473 {
474 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
475 cs = cs->parent;
476 if (cs)
477 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
478 else
479 *pmask = cpu_online_map;
480 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
481 }
482
483 /*
484 * Return in *pmask the portion of a cpusets's mems_allowed that
485 * are online. If none are online, walk up the cpuset hierarchy
486 * until we find one that does have some online mems. If we get
487 * all the way to the top and still haven't found any online mems,
488 * return node_online_map.
489 *
490 * One way or another, we guarantee to return some non-empty subset
491 * of node_online_map.
492 *
493 * Call with cpuset_sem held.
494 */
495
496 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
497 {
498 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
499 cs = cs->parent;
500 if (cs)
501 nodes_and(*pmask, cs->mems_allowed, node_online_map);
502 else
503 *pmask = node_online_map;
504 BUG_ON(!nodes_intersects(*pmask, node_online_map));
505 }
506
507 /*
508 * Refresh current tasks mems_allowed and mems_generation from
509 * current tasks cpuset. Call with cpuset_sem held.
510 *
511 * Be sure to call refresh_mems() on any cpuset operation which
512 * (1) holds cpuset_sem, and (2) might possibly alloc memory.
513 * Call after obtaining cpuset_sem lock, before any possible
514 * allocation. Otherwise one risks trying to allocate memory
515 * while the task cpuset_mems_generation is not the same as
516 * the mems_generation in its cpuset, which would deadlock on
517 * cpuset_sem in cpuset_update_current_mems_allowed().
518 *
519 * Since we hold cpuset_sem, once refresh_mems() is called, the
520 * test (current->cpuset_mems_generation != cs->mems_generation)
521 * in cpuset_update_current_mems_allowed() will remain false,
522 * until we drop cpuset_sem. Anyone else who would change our
523 * cpusets mems_generation needs to lock cpuset_sem first.
524 */
525
526 static void refresh_mems(void)
527 {
528 struct cpuset *cs = current->cpuset;
529
530 if (current->cpuset_mems_generation != cs->mems_generation) {
531 guarantee_online_mems(cs, &current->mems_allowed);
532 current->cpuset_mems_generation = cs->mems_generation;
533 }
534 }
535
536 /*
537 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
538 *
539 * One cpuset is a subset of another if all its allowed CPUs and
540 * Memory Nodes are a subset of the other, and its exclusive flags
541 * are only set if the other's are set.
542 */
543
544 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
545 {
546 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
547 nodes_subset(p->mems_allowed, q->mems_allowed) &&
548 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
549 is_mem_exclusive(p) <= is_mem_exclusive(q);
550 }
551
552 /*
553 * validate_change() - Used to validate that any proposed cpuset change
554 * follows the structural rules for cpusets.
555 *
556 * If we replaced the flag and mask values of the current cpuset
557 * (cur) with those values in the trial cpuset (trial), would
558 * our various subset and exclusive rules still be valid? Presumes
559 * cpuset_sem held.
560 *
561 * 'cur' is the address of an actual, in-use cpuset. Operations
562 * such as list traversal that depend on the actual address of the
563 * cpuset in the list must use cur below, not trial.
564 *
565 * 'trial' is the address of bulk structure copy of cur, with
566 * perhaps one or more of the fields cpus_allowed, mems_allowed,
567 * or flags changed to new, trial values.
568 *
569 * Return 0 if valid, -errno if not.
570 */
571
572 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
573 {
574 struct cpuset *c, *par;
575
576 /* Each of our child cpusets must be a subset of us */
577 list_for_each_entry(c, &cur->children, sibling) {
578 if (!is_cpuset_subset(c, trial))
579 return -EBUSY;
580 }
581
582 /* Remaining checks don't apply to root cpuset */
583 if ((par = cur->parent) == NULL)
584 return 0;
585
586 /* We must be a subset of our parent cpuset */
587 if (!is_cpuset_subset(trial, par))
588 return -EACCES;
589
590 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
591 list_for_each_entry(c, &par->children, sibling) {
592 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
593 c != cur &&
594 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
595 return -EINVAL;
596 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
597 c != cur &&
598 nodes_intersects(trial->mems_allowed, c->mems_allowed))
599 return -EINVAL;
600 }
601
602 return 0;
603 }
604
605 static int update_cpumask(struct cpuset *cs, char *buf)
606 {
607 struct cpuset trialcs;
608 int retval;
609
610 trialcs = *cs;
611 retval = cpulist_parse(buf, trialcs.cpus_allowed);
612 if (retval < 0)
613 return retval;
614 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
615 if (cpus_empty(trialcs.cpus_allowed))
616 return -ENOSPC;
617 retval = validate_change(cs, &trialcs);
618 if (retval == 0)
619 cs->cpus_allowed = trialcs.cpus_allowed;
620 return retval;
621 }
622
623 static int update_nodemask(struct cpuset *cs, char *buf)
624 {
625 struct cpuset trialcs;
626 int retval;
627
628 trialcs = *cs;
629 retval = nodelist_parse(buf, trialcs.mems_allowed);
630 if (retval < 0)
631 return retval;
632 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
633 if (nodes_empty(trialcs.mems_allowed))
634 return -ENOSPC;
635 retval = validate_change(cs, &trialcs);
636 if (retval == 0) {
637 cs->mems_allowed = trialcs.mems_allowed;
638 atomic_inc(&cpuset_mems_generation);
639 cs->mems_generation = atomic_read(&cpuset_mems_generation);
640 }
641 return retval;
642 }
643
644 /*
645 * update_flag - read a 0 or a 1 in a file and update associated flag
646 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
647 * CS_NOTIFY_ON_RELEASE)
648 * cs: the cpuset to update
649 * buf: the buffer where we read the 0 or 1
650 */
651
652 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
653 {
654 int turning_on;
655 struct cpuset trialcs;
656 int err;
657
658 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
659
660 trialcs = *cs;
661 if (turning_on)
662 set_bit(bit, &trialcs.flags);
663 else
664 clear_bit(bit, &trialcs.flags);
665
666 err = validate_change(cs, &trialcs);
667 if (err == 0) {
668 if (turning_on)
669 set_bit(bit, &cs->flags);
670 else
671 clear_bit(bit, &cs->flags);
672 }
673 return err;
674 }
675
676 static int attach_task(struct cpuset *cs, char *buf)
677 {
678 pid_t pid;
679 struct task_struct *tsk;
680 struct cpuset *oldcs;
681 cpumask_t cpus;
682
683 if (sscanf(buf, "%d", &pid) != 1)
684 return -EIO;
685 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
686 return -ENOSPC;
687
688 if (pid) {
689 read_lock(&tasklist_lock);
690
691 tsk = find_task_by_pid(pid);
692 if (!tsk) {
693 read_unlock(&tasklist_lock);
694 return -ESRCH;
695 }
696
697 get_task_struct(tsk);
698 read_unlock(&tasklist_lock);
699
700 if ((current->euid) && (current->euid != tsk->uid)
701 && (current->euid != tsk->suid)) {
702 put_task_struct(tsk);
703 return -EACCES;
704 }
705 } else {
706 tsk = current;
707 get_task_struct(tsk);
708 }
709
710 task_lock(tsk);
711 oldcs = tsk->cpuset;
712 if (!oldcs) {
713 task_unlock(tsk);
714 put_task_struct(tsk);
715 return -ESRCH;
716 }
717 atomic_inc(&cs->count);
718 tsk->cpuset = cs;
719 task_unlock(tsk);
720
721 guarantee_online_cpus(cs, &cpus);
722 set_cpus_allowed(tsk, cpus);
723
724 put_task_struct(tsk);
725 if (atomic_dec_and_test(&oldcs->count))
726 check_for_release(oldcs);
727 return 0;
728 }
729
730 /* The various types of files and directories in a cpuset file system */
731
732 typedef enum {
733 FILE_ROOT,
734 FILE_DIR,
735 FILE_CPULIST,
736 FILE_MEMLIST,
737 FILE_CPU_EXCLUSIVE,
738 FILE_MEM_EXCLUSIVE,
739 FILE_NOTIFY_ON_RELEASE,
740 FILE_TASKLIST,
741 } cpuset_filetype_t;
742
743 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
744 size_t nbytes, loff_t *unused_ppos)
745 {
746 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
747 struct cftype *cft = __d_cft(file->f_dentry);
748 cpuset_filetype_t type = cft->private;
749 char *buffer;
750 int retval = 0;
751
752 /* Crude upper limit on largest legitimate cpulist user might write. */
753 if (nbytes > 100 + 6 * NR_CPUS)
754 return -E2BIG;
755
756 /* +1 for nul-terminator */
757 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
758 return -ENOMEM;
759
760 if (copy_from_user(buffer, userbuf, nbytes)) {
761 retval = -EFAULT;
762 goto out1;
763 }
764 buffer[nbytes] = 0; /* nul-terminate */
765
766 down(&cpuset_sem);
767
768 if (is_removed(cs)) {
769 retval = -ENODEV;
770 goto out2;
771 }
772
773 switch (type) {
774 case FILE_CPULIST:
775 retval = update_cpumask(cs, buffer);
776 break;
777 case FILE_MEMLIST:
778 retval = update_nodemask(cs, buffer);
779 break;
780 case FILE_CPU_EXCLUSIVE:
781 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
782 break;
783 case FILE_MEM_EXCLUSIVE:
784 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
785 break;
786 case FILE_NOTIFY_ON_RELEASE:
787 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
788 break;
789 case FILE_TASKLIST:
790 retval = attach_task(cs, buffer);
791 break;
792 default:
793 retval = -EINVAL;
794 goto out2;
795 }
796
797 if (retval == 0)
798 retval = nbytes;
799 out2:
800 up(&cpuset_sem);
801 out1:
802 kfree(buffer);
803 return retval;
804 }
805
806 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
807 size_t nbytes, loff_t *ppos)
808 {
809 ssize_t retval = 0;
810 struct cftype *cft = __d_cft(file->f_dentry);
811 if (!cft)
812 return -ENODEV;
813
814 /* special function ? */
815 if (cft->write)
816 retval = cft->write(file, buf, nbytes, ppos);
817 else
818 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
819
820 return retval;
821 }
822
823 /*
824 * These ascii lists should be read in a single call, by using a user
825 * buffer large enough to hold the entire map. If read in smaller
826 * chunks, there is no guarantee of atomicity. Since the display format
827 * used, list of ranges of sequential numbers, is variable length,
828 * and since these maps can change value dynamically, one could read
829 * gibberish by doing partial reads while a list was changing.
830 * A single large read to a buffer that crosses a page boundary is
831 * ok, because the result being copied to user land is not recomputed
832 * across a page fault.
833 */
834
835 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
836 {
837 cpumask_t mask;
838
839 down(&cpuset_sem);
840 mask = cs->cpus_allowed;
841 up(&cpuset_sem);
842
843 return cpulist_scnprintf(page, PAGE_SIZE, mask);
844 }
845
846 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
847 {
848 nodemask_t mask;
849
850 down(&cpuset_sem);
851 mask = cs->mems_allowed;
852 up(&cpuset_sem);
853
854 return nodelist_scnprintf(page, PAGE_SIZE, mask);
855 }
856
857 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
858 size_t nbytes, loff_t *ppos)
859 {
860 struct cftype *cft = __d_cft(file->f_dentry);
861 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
862 cpuset_filetype_t type = cft->private;
863 char *page;
864 ssize_t retval = 0;
865 char *s;
866 char *start;
867 size_t n;
868
869 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
870 return -ENOMEM;
871
872 s = page;
873
874 switch (type) {
875 case FILE_CPULIST:
876 s += cpuset_sprintf_cpulist(s, cs);
877 break;
878 case FILE_MEMLIST:
879 s += cpuset_sprintf_memlist(s, cs);
880 break;
881 case FILE_CPU_EXCLUSIVE:
882 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
883 break;
884 case FILE_MEM_EXCLUSIVE:
885 *s++ = is_mem_exclusive(cs) ? '1' : '0';
886 break;
887 case FILE_NOTIFY_ON_RELEASE:
888 *s++ = notify_on_release(cs) ? '1' : '0';
889 break;
890 default:
891 retval = -EINVAL;
892 goto out;
893 }
894 *s++ = '\n';
895 *s = '\0';
896
897 start = page + *ppos;
898 n = s - start;
899 retval = n - copy_to_user(buf, start, min(n, nbytes));
900 *ppos += retval;
901 out:
902 free_page((unsigned long)page);
903 return retval;
904 }
905
906 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
907 loff_t *ppos)
908 {
909 ssize_t retval = 0;
910 struct cftype *cft = __d_cft(file->f_dentry);
911 if (!cft)
912 return -ENODEV;
913
914 /* special function ? */
915 if (cft->read)
916 retval = cft->read(file, buf, nbytes, ppos);
917 else
918 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
919
920 return retval;
921 }
922
923 static int cpuset_file_open(struct inode *inode, struct file *file)
924 {
925 int err;
926 struct cftype *cft;
927
928 err = generic_file_open(inode, file);
929 if (err)
930 return err;
931
932 cft = __d_cft(file->f_dentry);
933 if (!cft)
934 return -ENODEV;
935 if (cft->open)
936 err = cft->open(inode, file);
937 else
938 err = 0;
939
940 return err;
941 }
942
943 static int cpuset_file_release(struct inode *inode, struct file *file)
944 {
945 struct cftype *cft = __d_cft(file->f_dentry);
946 if (cft->release)
947 return cft->release(inode, file);
948 return 0;
949 }
950
951 static struct file_operations cpuset_file_operations = {
952 .read = cpuset_file_read,
953 .write = cpuset_file_write,
954 .llseek = generic_file_llseek,
955 .open = cpuset_file_open,
956 .release = cpuset_file_release,
957 };
958
959 static struct inode_operations cpuset_dir_inode_operations = {
960 .lookup = simple_lookup,
961 .mkdir = cpuset_mkdir,
962 .rmdir = cpuset_rmdir,
963 };
964
965 static int cpuset_create_file(struct dentry *dentry, int mode)
966 {
967 struct inode *inode;
968
969 if (!dentry)
970 return -ENOENT;
971 if (dentry->d_inode)
972 return -EEXIST;
973
974 inode = cpuset_new_inode(mode);
975 if (!inode)
976 return -ENOMEM;
977
978 if (S_ISDIR(mode)) {
979 inode->i_op = &cpuset_dir_inode_operations;
980 inode->i_fop = &simple_dir_operations;
981
982 /* start off with i_nlink == 2 (for "." entry) */
983 inode->i_nlink++;
984 } else if (S_ISREG(mode)) {
985 inode->i_size = 0;
986 inode->i_fop = &cpuset_file_operations;
987 }
988
989 d_instantiate(dentry, inode);
990 dget(dentry); /* Extra count - pin the dentry in core */
991 return 0;
992 }
993
994 /*
995 * cpuset_create_dir - create a directory for an object.
996 * cs: the cpuset we create the directory for.
997 * It must have a valid ->parent field
998 * And we are going to fill its ->dentry field.
999 * name: The name to give to the cpuset directory. Will be copied.
1000 * mode: mode to set on new directory.
1001 */
1002
1003 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1004 {
1005 struct dentry *dentry = NULL;
1006 struct dentry *parent;
1007 int error = 0;
1008
1009 parent = cs->parent->dentry;
1010 dentry = cpuset_get_dentry(parent, name);
1011 if (IS_ERR(dentry))
1012 return PTR_ERR(dentry);
1013 error = cpuset_create_file(dentry, S_IFDIR | mode);
1014 if (!error) {
1015 dentry->d_fsdata = cs;
1016 parent->d_inode->i_nlink++;
1017 cs->dentry = dentry;
1018 }
1019 dput(dentry);
1020
1021 return error;
1022 }
1023
1024 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1025 {
1026 struct dentry *dentry;
1027 int error;
1028
1029 down(&dir->d_inode->i_sem);
1030 dentry = cpuset_get_dentry(dir, cft->name);
1031 if (!IS_ERR(dentry)) {
1032 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1033 if (!error)
1034 dentry->d_fsdata = (void *)cft;
1035 dput(dentry);
1036 } else
1037 error = PTR_ERR(dentry);
1038 up(&dir->d_inode->i_sem);
1039 return error;
1040 }
1041
1042 /*
1043 * Stuff for reading the 'tasks' file.
1044 *
1045 * Reading this file can return large amounts of data if a cpuset has
1046 * *lots* of attached tasks. So it may need several calls to read(),
1047 * but we cannot guarantee that the information we produce is correct
1048 * unless we produce it entirely atomically.
1049 *
1050 * Upon tasks file open(), a struct ctr_struct is allocated, that
1051 * will have a pointer to an array (also allocated here). The struct
1052 * ctr_struct * is stored in file->private_data. Its resources will
1053 * be freed by release() when the file is closed. The array is used
1054 * to sprintf the PIDs and then used by read().
1055 */
1056
1057 /* cpusets_tasks_read array */
1058
1059 struct ctr_struct {
1060 char *buf;
1061 int bufsz;
1062 };
1063
1064 /*
1065 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1066 * Return actual number of pids loaded.
1067 */
1068 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1069 {
1070 int n = 0;
1071 struct task_struct *g, *p;
1072
1073 read_lock(&tasklist_lock);
1074
1075 do_each_thread(g, p) {
1076 if (p->cpuset == cs) {
1077 pidarray[n++] = p->pid;
1078 if (unlikely(n == npids))
1079 goto array_full;
1080 }
1081 } while_each_thread(g, p);
1082
1083 array_full:
1084 read_unlock(&tasklist_lock);
1085 return n;
1086 }
1087
1088 static int cmppid(const void *a, const void *b)
1089 {
1090 return *(pid_t *)a - *(pid_t *)b;
1091 }
1092
1093 /*
1094 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1095 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1096 * count 'cnt' of how many chars would be written if buf were large enough.
1097 */
1098 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1099 {
1100 int cnt = 0;
1101 int i;
1102
1103 for (i = 0; i < npids; i++)
1104 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1105 return cnt;
1106 }
1107
1108 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1109 {
1110 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1111 struct ctr_struct *ctr;
1112 pid_t *pidarray;
1113 int npids;
1114 char c;
1115
1116 if (!(file->f_mode & FMODE_READ))
1117 return 0;
1118
1119 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1120 if (!ctr)
1121 goto err0;
1122
1123 /*
1124 * If cpuset gets more users after we read count, we won't have
1125 * enough space - tough. This race is indistinguishable to the
1126 * caller from the case that the additional cpuset users didn't
1127 * show up until sometime later on.
1128 */
1129 npids = atomic_read(&cs->count);
1130 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1131 if (!pidarray)
1132 goto err1;
1133
1134 npids = pid_array_load(pidarray, npids, cs);
1135 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1136
1137 /* Call pid_array_to_buf() twice, first just to get bufsz */
1138 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1139 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1140 if (!ctr->buf)
1141 goto err2;
1142 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1143
1144 kfree(pidarray);
1145 file->private_data = ctr;
1146 return 0;
1147
1148 err2:
1149 kfree(pidarray);
1150 err1:
1151 kfree(ctr);
1152 err0:
1153 return -ENOMEM;
1154 }
1155
1156 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1157 size_t nbytes, loff_t *ppos)
1158 {
1159 struct ctr_struct *ctr = file->private_data;
1160
1161 if (*ppos + nbytes > ctr->bufsz)
1162 nbytes = ctr->bufsz - *ppos;
1163 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1164 return -EFAULT;
1165 *ppos += nbytes;
1166 return nbytes;
1167 }
1168
1169 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1170 {
1171 struct ctr_struct *ctr;
1172
1173 if (file->f_mode & FMODE_READ) {
1174 ctr = file->private_data;
1175 kfree(ctr->buf);
1176 kfree(ctr);
1177 }
1178 return 0;
1179 }
1180
1181 /*
1182 * for the common functions, 'private' gives the type of file
1183 */
1184
1185 static struct cftype cft_tasks = {
1186 .name = "tasks",
1187 .open = cpuset_tasks_open,
1188 .read = cpuset_tasks_read,
1189 .release = cpuset_tasks_release,
1190 .private = FILE_TASKLIST,
1191 };
1192
1193 static struct cftype cft_cpus = {
1194 .name = "cpus",
1195 .private = FILE_CPULIST,
1196 };
1197
1198 static struct cftype cft_mems = {
1199 .name = "mems",
1200 .private = FILE_MEMLIST,
1201 };
1202
1203 static struct cftype cft_cpu_exclusive = {
1204 .name = "cpu_exclusive",
1205 .private = FILE_CPU_EXCLUSIVE,
1206 };
1207
1208 static struct cftype cft_mem_exclusive = {
1209 .name = "mem_exclusive",
1210 .private = FILE_MEM_EXCLUSIVE,
1211 };
1212
1213 static struct cftype cft_notify_on_release = {
1214 .name = "notify_on_release",
1215 .private = FILE_NOTIFY_ON_RELEASE,
1216 };
1217
1218 static int cpuset_populate_dir(struct dentry *cs_dentry)
1219 {
1220 int err;
1221
1222 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1223 return err;
1224 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1225 return err;
1226 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1227 return err;
1228 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1229 return err;
1230 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1231 return err;
1232 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1233 return err;
1234 return 0;
1235 }
1236
1237 /*
1238 * cpuset_create - create a cpuset
1239 * parent: cpuset that will be parent of the new cpuset.
1240 * name: name of the new cpuset. Will be strcpy'ed.
1241 * mode: mode to set on new inode
1242 *
1243 * Must be called with the semaphore on the parent inode held
1244 */
1245
1246 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1247 {
1248 struct cpuset *cs;
1249 int err;
1250
1251 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1252 if (!cs)
1253 return -ENOMEM;
1254
1255 down(&cpuset_sem);
1256 refresh_mems();
1257 cs->flags = 0;
1258 if (notify_on_release(parent))
1259 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1260 cs->cpus_allowed = CPU_MASK_NONE;
1261 cs->mems_allowed = NODE_MASK_NONE;
1262 atomic_set(&cs->count, 0);
1263 INIT_LIST_HEAD(&cs->sibling);
1264 INIT_LIST_HEAD(&cs->children);
1265 atomic_inc(&cpuset_mems_generation);
1266 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1267
1268 cs->parent = parent;
1269
1270 list_add(&cs->sibling, &cs->parent->children);
1271
1272 err = cpuset_create_dir(cs, name, mode);
1273 if (err < 0)
1274 goto err;
1275
1276 /*
1277 * Release cpuset_sem before cpuset_populate_dir() because it
1278 * will down() this new directory's i_sem and if we race with
1279 * another mkdir, we might deadlock.
1280 */
1281 up(&cpuset_sem);
1282
1283 err = cpuset_populate_dir(cs->dentry);
1284 /* If err < 0, we have a half-filled directory - oh well ;) */
1285 return 0;
1286 err:
1287 list_del(&cs->sibling);
1288 up(&cpuset_sem);
1289 kfree(cs);
1290 return err;
1291 }
1292
1293 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1294 {
1295 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1296
1297 /* the vfs holds inode->i_sem already */
1298 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1299 }
1300
1301 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1302 {
1303 struct cpuset *cs = dentry->d_fsdata;
1304 struct dentry *d;
1305 struct cpuset *parent;
1306
1307 /* the vfs holds both inode->i_sem already */
1308
1309 down(&cpuset_sem);
1310 refresh_mems();
1311 if (atomic_read(&cs->count) > 0) {
1312 up(&cpuset_sem);
1313 return -EBUSY;
1314 }
1315 if (!list_empty(&cs->children)) {
1316 up(&cpuset_sem);
1317 return -EBUSY;
1318 }
1319 spin_lock(&cs->dentry->d_lock);
1320 parent = cs->parent;
1321 set_bit(CS_REMOVED, &cs->flags);
1322 list_del(&cs->sibling); /* delete my sibling from parent->children */
1323 if (list_empty(&parent->children))
1324 check_for_release(parent);
1325 d = dget(cs->dentry);
1326 cs->dentry = NULL;
1327 spin_unlock(&d->d_lock);
1328 cpuset_d_remove_dir(d);
1329 dput(d);
1330 up(&cpuset_sem);
1331 return 0;
1332 }
1333
1334 /**
1335 * cpuset_init - initialize cpusets at system boot
1336 *
1337 * Description: Initialize top_cpuset and the cpuset internal file system,
1338 **/
1339
1340 int __init cpuset_init(void)
1341 {
1342 struct dentry *root;
1343 int err;
1344
1345 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1346 top_cpuset.mems_allowed = NODE_MASK_ALL;
1347
1348 atomic_inc(&cpuset_mems_generation);
1349 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1350
1351 init_task.cpuset = &top_cpuset;
1352
1353 err = register_filesystem(&cpuset_fs_type);
1354 if (err < 0)
1355 goto out;
1356 cpuset_mount = kern_mount(&cpuset_fs_type);
1357 if (IS_ERR(cpuset_mount)) {
1358 printk(KERN_ERR "cpuset: could not mount!\n");
1359 err = PTR_ERR(cpuset_mount);
1360 cpuset_mount = NULL;
1361 goto out;
1362 }
1363 root = cpuset_mount->mnt_sb->s_root;
1364 root->d_fsdata = &top_cpuset;
1365 root->d_inode->i_nlink++;
1366 top_cpuset.dentry = root;
1367 root->d_inode->i_op = &cpuset_dir_inode_operations;
1368 err = cpuset_populate_dir(root);
1369 out:
1370 return err;
1371 }
1372
1373 /**
1374 * cpuset_init_smp - initialize cpus_allowed
1375 *
1376 * Description: Finish top cpuset after cpu, node maps are initialized
1377 **/
1378
1379 void __init cpuset_init_smp(void)
1380 {
1381 top_cpuset.cpus_allowed = cpu_online_map;
1382 top_cpuset.mems_allowed = node_online_map;
1383 }
1384
1385 /**
1386 * cpuset_fork - attach newly forked task to its parents cpuset.
1387 * @p: pointer to task_struct of forking parent process.
1388 *
1389 * Description: By default, on fork, a task inherits its
1390 * parents cpuset. The pointer to the shared cpuset is
1391 * automatically copied in fork.c by dup_task_struct().
1392 * This cpuset_fork() routine need only increment the usage
1393 * counter in that cpuset.
1394 **/
1395
1396 void cpuset_fork(struct task_struct *tsk)
1397 {
1398 atomic_inc(&tsk->cpuset->count);
1399 }
1400
1401 /**
1402 * cpuset_exit - detach cpuset from exiting task
1403 * @tsk: pointer to task_struct of exiting process
1404 *
1405 * Description: Detach cpuset from @tsk and release it.
1406 *
1407 **/
1408
1409 void cpuset_exit(struct task_struct *tsk)
1410 {
1411 struct cpuset *cs;
1412
1413 task_lock(tsk);
1414 cs = tsk->cpuset;
1415 tsk->cpuset = NULL;
1416 task_unlock(tsk);
1417
1418 if (atomic_dec_and_test(&cs->count)) {
1419 down(&cpuset_sem);
1420 check_for_release(cs);
1421 up(&cpuset_sem);
1422 }
1423 }
1424
1425 /**
1426 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1427 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1428 *
1429 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1430 * attached to the specified @tsk. Guaranteed to return some non-empty
1431 * subset of cpu_online_map, even if this means going outside the
1432 * tasks cpuset.
1433 **/
1434
1435 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1436 {
1437 cpumask_t mask;
1438
1439 down(&cpuset_sem);
1440 task_lock((struct task_struct *)tsk);
1441 guarantee_online_cpus(tsk->cpuset, &mask);
1442 task_unlock((struct task_struct *)tsk);
1443 up(&cpuset_sem);
1444
1445 return mask;
1446 }
1447
1448 void cpuset_init_current_mems_allowed(void)
1449 {
1450 current->mems_allowed = NODE_MASK_ALL;
1451 }
1452
1453 /*
1454 * If the current tasks cpusets mems_allowed changed behind our backs,
1455 * update current->mems_allowed and mems_generation to the new value.
1456 * Do not call this routine if in_interrupt().
1457 */
1458
1459 void cpuset_update_current_mems_allowed(void)
1460 {
1461 struct cpuset *cs = current->cpuset;
1462
1463 if (!cs)
1464 return; /* task is exiting */
1465 if (current->cpuset_mems_generation != cs->mems_generation) {
1466 down(&cpuset_sem);
1467 refresh_mems();
1468 up(&cpuset_sem);
1469 }
1470 }
1471
1472 void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1473 {
1474 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1475 MAX_NUMNODES);
1476 }
1477
1478 /*
1479 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1480 */
1481 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1482 {
1483 int i;
1484
1485 for (i = 0; zl->zones[i]; i++) {
1486 int nid = zl->zones[i]->zone_pgdat->node_id;
1487
1488 if (node_isset(nid, current->mems_allowed))
1489 return 1;
1490 }
1491 return 0;
1492 }
1493
1494 /*
1495 * Is 'current' valid, and is zone z allowed in current->mems_allowed?
1496 */
1497 int cpuset_zone_allowed(struct zone *z)
1498 {
1499 return in_interrupt() ||
1500 node_isset(z->zone_pgdat->node_id, current->mems_allowed);
1501 }
1502
1503 /*
1504 * proc_cpuset_show()
1505 * - Print tasks cpuset path into seq_file.
1506 * - Used for /proc/<pid>/cpuset.
1507 */
1508
1509 static int proc_cpuset_show(struct seq_file *m, void *v)
1510 {
1511 struct cpuset *cs;
1512 struct task_struct *tsk;
1513 char *buf;
1514 int retval = 0;
1515
1516 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1517 if (!buf)
1518 return -ENOMEM;
1519
1520 tsk = m->private;
1521 down(&cpuset_sem);
1522 task_lock(tsk);
1523 cs = tsk->cpuset;
1524 task_unlock(tsk);
1525 if (!cs) {
1526 retval = -EINVAL;
1527 goto out;
1528 }
1529
1530 retval = cpuset_path(cs, buf, PAGE_SIZE);
1531 if (retval < 0)
1532 goto out;
1533 seq_puts(m, buf);
1534 seq_putc(m, '\n');
1535 out:
1536 up(&cpuset_sem);
1537 kfree(buf);
1538 return retval;
1539 }
1540
1541 static int cpuset_open(struct inode *inode, struct file *file)
1542 {
1543 struct task_struct *tsk = PROC_I(inode)->task;
1544 return single_open(file, proc_cpuset_show, tsk);
1545 }
1546
1547 struct file_operations proc_cpuset_operations = {
1548 .open = cpuset_open,
1549 .read = seq_read,
1550 .llseek = seq_lseek,
1551 .release = single_release,
1552 };
1553
1554 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1555 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1556 {
1557 buffer += sprintf(buffer, "Cpus_allowed:\t");
1558 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1559 buffer += sprintf(buffer, "\n");
1560 buffer += sprintf(buffer, "Mems_allowed:\t");
1561 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1562 buffer += sprintf(buffer, "\n");
1563 return buffer;
1564 }