]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/debug/kdb/kdb_main.c
kdb: make "mdr" command repeat
[mirror_ubuntu-bionic-kernel.git] / kernel / debug / kdb / kdb_main.c
1 /*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sysrq.h>
25 #include <linux/smp.h>
26 #include <linux/utsname.h>
27 #include <linux/vmalloc.h>
28 #include <linux/atomic.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mm.h>
32 #include <linux/init.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdb.h>
36 #include <linux/notifier.h>
37 #include <linux/interrupt.h>
38 #include <linux/delay.h>
39 #include <linux/nmi.h>
40 #include <linux/time.h>
41 #include <linux/ptrace.h>
42 #include <linux/sysctl.h>
43 #include <linux/cpu.h>
44 #include <linux/kdebug.h>
45 #include <linux/proc_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/slab.h>
48 #include "kdb_private.h"
49
50 #undef MODULE_PARAM_PREFIX
51 #define MODULE_PARAM_PREFIX "kdb."
52
53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56 char kdb_grep_string[KDB_GREP_STRLEN];
57 int kdb_grepping_flag;
58 EXPORT_SYMBOL(kdb_grepping_flag);
59 int kdb_grep_leading;
60 int kdb_grep_trailing;
61
62 /*
63 * Kernel debugger state flags
64 */
65 int kdb_flags;
66
67 /*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72 int kdb_nextline = 1;
73 int kdb_state; /* General KDB state */
74
75 struct task_struct *kdb_current_task;
76 EXPORT_SYMBOL(kdb_current_task);
77 struct pt_regs *kdb_current_regs;
78
79 const char *kdb_diemsg;
80 static int kdb_go_count;
81 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82 static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84 #else
85 static unsigned int kdb_continue_catastrophic;
86 #endif
87
88 /* kdb_commands describes the available commands. */
89 static kdbtab_t *kdb_commands;
90 #define KDB_BASE_CMD_MAX 50
91 static int kdb_max_commands = KDB_BASE_CMD_MAX;
92 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93 #define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
97
98 typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
101 } kdbmsg_t;
102
103 #define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
105
106 static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118 #ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
120 #else
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
122 #endif
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
133 KDBMSG(NOPERM, "Permission denied"),
134 };
135 #undef KDBMSG
136
137 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
138
139
140 /*
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
148 */
149
150 static char *__env[] = {
151 #if defined(CONFIG_SMP)
152 "PROMPT=[%d]kdb> ",
153 #else
154 "PROMPT=kdb> ",
155 #endif
156 "MOREPROMPT=more> ",
157 "RADIX=16",
158 "MDCOUNT=8", /* lines of md output */
159 KDB_PLATFORM_ENV,
160 "DTABCOUNT=30",
161 "NOSECT=1",
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185 (char *)0,
186 };
187
188 static const int __nenv = ARRAY_SIZE(__env);
189
190 struct task_struct *kdb_curr_task(int cpu)
191 {
192 struct task_struct *p = curr_task(cpu);
193 #ifdef _TIF_MCA_INIT
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
195 p = krp->p;
196 #endif
197 return p;
198 }
199
200 /*
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
203 */
204 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
205 bool no_args)
206 {
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
210
211 /* some commands change group when launched with no arguments */
212 if (no_args)
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
214
215 flags |= KDB_ENABLE_ALL;
216
217 return permissions & flags;
218 }
219
220 /*
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
223 * Parameters:
224 * match A character string representing an environment variable.
225 * Returns:
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
228 */
229 char *kdbgetenv(const char *match)
230 {
231 char **ep = __env;
232 int matchlen = strlen(match);
233 int i;
234
235 for (i = 0; i < __nenv; i++) {
236 char *e = *ep++;
237
238 if (!e)
239 continue;
240
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
246 }
247 }
248 return NULL;
249 }
250
251 /*
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long representation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 * Remarks:
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
265 * frequently.
266 */
267 static char *kdballocenv(size_t bytes)
268 {
269 #define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
272 char *ep = NULL;
273
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
276 envbufsize += bytes;
277 }
278 return ep;
279 }
280
281 /*
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
284 * Parameters:
285 * match A character string representing a numeric value
286 * Outputs:
287 * *value the unsigned long represntation of the env variable 'match'
288 * Returns:
289 * Zero on success, a kdb diagnostic on failure.
290 */
291 static int kdbgetulenv(const char *match, unsigned long *value)
292 {
293 char *ep;
294
295 ep = kdbgetenv(match);
296 if (!ep)
297 return KDB_NOTENV;
298 if (strlen(ep) == 0)
299 return KDB_NOENVVALUE;
300
301 *value = simple_strtoul(ep, NULL, 0);
302
303 return 0;
304 }
305
306 /*
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
309 * Parameters:
310 * match A character string representing an integer-valued env variable
311 * Outputs:
312 * *value the integer representation of the environment variable 'match'
313 * Returns:
314 * Zero on success, a kdb diagnostic on failure.
315 */
316 int kdbgetintenv(const char *match, int *value)
317 {
318 unsigned long val;
319 int diag;
320
321 diag = kdbgetulenv(match, &val);
322 if (!diag)
323 *value = (int) val;
324 return diag;
325 }
326
327 /*
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
330 * Parameters:
331 * arg A character string representing a numeric value
332 * Outputs:
333 * *value the unsigned long represntation of arg.
334 * Returns:
335 * Zero on success, a kdb diagnostic on failure.
336 */
337 int kdbgetularg(const char *arg, unsigned long *value)
338 {
339 char *endp;
340 unsigned long val;
341
342 val = simple_strtoul(arg, &endp, 0);
343
344 if (endp == arg) {
345 /*
346 * Also try base 16, for us folks too lazy to type the
347 * leading 0x...
348 */
349 val = simple_strtoul(arg, &endp, 16);
350 if (endp == arg)
351 return KDB_BADINT;
352 }
353
354 *value = val;
355
356 return 0;
357 }
358
359 int kdbgetu64arg(const char *arg, u64 *value)
360 {
361 char *endp;
362 u64 val;
363
364 val = simple_strtoull(arg, &endp, 0);
365
366 if (endp == arg) {
367
368 val = simple_strtoull(arg, &endp, 16);
369 if (endp == arg)
370 return KDB_BADINT;
371 }
372
373 *value = val;
374
375 return 0;
376 }
377
378 /*
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
381 */
382 int kdb_set(int argc, const char **argv)
383 {
384 int i;
385 char *ep;
386 size_t varlen, vallen;
387
388 /*
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
393 */
394 if (argc == 3) {
395 argv[2] = argv[3];
396 argc--;
397 }
398
399 if (argc != 2)
400 return KDB_ARGCOUNT;
401
402 /*
403 * Check for internal variables
404 */
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
407 char *cp;
408
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
412 argv[2]);
413 return 0;
414 }
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
418
419 return 0;
420 }
421
422 /*
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
425 */
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
429 if (ep == (char *)0)
430 return KDB_ENVBUFFULL;
431
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
433
434 ep[varlen+vallen+1] = '\0';
435
436 for (i = 0; i < __nenv; i++) {
437 if (__env[i]
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
441 __env[i] = ep;
442 return 0;
443 }
444 }
445
446 /*
447 * Wasn't existing variable. Fit into slot.
448 */
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
451 __env[i] = ep;
452 return 0;
453 }
454 }
455
456 return KDB_ENVFULL;
457 }
458
459 static int kdb_check_regs(void)
460 {
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
464 return KDB_BADREG;
465 }
466 return 0;
467 }
468
469 /*
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
473 *
474 * The argument may consist of a numeric value (decimal or
475 * hexidecimal), a symbol name, a register name (preceded by the
476 * percent sign), an environment variable with a numeric value
477 * (preceded by a dollar sign) or a simple arithmetic expression
478 * consisting of a symbol name, +/-, and a numeric constant value
479 * (offset).
480 * Parameters:
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
485 * Outputs:
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
490 * Returns:
491 * zero is returned on success, a kdb diagnostic code is
492 * returned on error.
493 */
494 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
496 char **name)
497 {
498 unsigned long addr;
499 unsigned long off = 0;
500 int positive;
501 int diag;
502 int found = 0;
503 char *symname;
504 char symbol = '\0';
505 char *cp;
506 kdb_symtab_t symtab;
507
508 /*
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
512 */
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
515 return KDB_NOPERM;
516
517 /*
518 * Process arguments which follow the following syntax:
519 *
520 * symbol | numeric-address [+/- numeric-offset]
521 * %register
522 * $environment-variable
523 */
524
525 if (*nextarg > argc)
526 return KDB_ARGCOUNT;
527
528 symname = (char *)argv[*nextarg];
529
530 /*
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
535 */
536 cp = strpbrk(symname, "+-");
537 if (cp != NULL) {
538 symbol = *cp;
539 *cp++ = '\0';
540 }
541
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
544 if (diag)
545 return diag;
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
548 if (diag)
549 return diag;
550 /* Implement register values with % at a later time as it is
551 * arch optional.
552 */
553 return KDB_NOTIMP;
554 } else {
555 found = kdbgetsymval(symname, &symtab);
556 if (found) {
557 addr = symtab.sym_start;
558 } else {
559 diag = kdbgetularg(argv[*nextarg], &addr);
560 if (diag)
561 return diag;
562 }
563 }
564
565 if (!found)
566 found = kdbnearsym(addr, &symtab);
567
568 (*nextarg)++;
569
570 if (name)
571 *name = symname;
572 if (value)
573 *value = addr;
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
576
577 if ((*nextarg > argc)
578 && (symbol == '\0'))
579 return 0;
580
581 /*
582 * check for +/- and offset
583 */
584
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
588 /*
589 * Not our argument. Return.
590 */
591 return 0;
592 } else {
593 positive = (argv[*nextarg][0] == '+');
594 (*nextarg)++;
595 }
596 } else
597 positive = (symbol == '+');
598
599 /*
600 * Now there must be an offset!
601 */
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
605 }
606
607 if (!symbol) {
608 cp = (char *)argv[*nextarg];
609 (*nextarg)++;
610 }
611
612 diag = kdbgetularg(cp, &off);
613 if (diag)
614 return diag;
615
616 if (!positive)
617 off = -off;
618
619 if (offset)
620 *offset += off;
621
622 if (value)
623 *value += off;
624
625 return 0;
626 }
627
628 static void kdb_cmderror(int diag)
629 {
630 int i;
631
632 if (diag >= 0) {
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
634 return;
635 }
636
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
640 return;
641 }
642 }
643
644 kdb_printf("Unknown diag %d\n", -diag);
645 }
646
647 /*
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
653 * Inputs:
654 * argc argument count
655 * argv argument vector
656 * Returns:
657 * zero for success, a kdb diagnostic if error
658 */
659 struct defcmd_set {
660 int count;
661 int usable;
662 char *name;
663 char *usage;
664 char *help;
665 char **command;
666 };
667 static struct defcmd_set *defcmd_set;
668 static int defcmd_set_count;
669 static int defcmd_in_progress;
670
671 /* Forward references */
672 static int kdb_exec_defcmd(int argc, const char **argv);
673
674 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
675 {
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = 0;
680 if (!s->count)
681 s->usable = 0;
682 if (s->usable)
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
686 */
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
688 s->help, 0,
689 KDB_ENABLE_ALWAYS_SAFE);
690 return 0;
691 }
692 if (!s->usable)
693 return KDB_NOTIMP;
694 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
695 if (!s->command) {
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
697 cmdstr);
698 s->usable = 0;
699 return KDB_NOTIMP;
700 }
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
703 kfree(save_command);
704 return 0;
705 }
706
707 static int kdb_defcmd(int argc, const char **argv)
708 {
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
712 "endefcmd\n");
713 kdb_defcmd2("endefcmd", "endefcmd");
714 }
715 if (argc == 0) {
716 int i;
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
719 s->usage, s->help);
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
723 }
724 return 0;
725 }
726 if (argc != 3)
727 return KDB_ARGCOUNT;
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
730 return KDB_NOTIMP;
731 }
732 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
733 GFP_KDB);
734 if (!defcmd_set)
735 goto fail_defcmd;
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
740 s->usable = 1;
741 s->name = kdb_strdup(argv[1], GFP_KDB);
742 if (!s->name)
743 goto fail_name;
744 s->usage = kdb_strdup(argv[2], GFP_KDB);
745 if (!s->usage)
746 goto fail_usage;
747 s->help = kdb_strdup(argv[3], GFP_KDB);
748 if (!s->help)
749 goto fail_help;
750 if (s->usage[0] == '"') {
751 strcpy(s->usage, argv[2]+1);
752 s->usage[strlen(s->usage)-1] = '\0';
753 }
754 if (s->help[0] == '"') {
755 strcpy(s->help, argv[3]+1);
756 s->help[strlen(s->help)-1] = '\0';
757 }
758 ++defcmd_set_count;
759 defcmd_in_progress = 1;
760 kfree(save_defcmd_set);
761 return 0;
762 fail_help:
763 kfree(s->usage);
764 fail_usage:
765 kfree(s->name);
766 fail_name:
767 kfree(defcmd_set);
768 fail_defcmd:
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
771 return KDB_NOTIMP;
772 }
773
774 /*
775 * kdb_exec_defcmd - Execute the set of commands associated with this
776 * defcmd name.
777 * Inputs:
778 * argc argument count
779 * argv argument vector
780 * Returns:
781 * zero for success, a kdb diagnostic if error
782 */
783 static int kdb_exec_defcmd(int argc, const char **argv)
784 {
785 int i, ret;
786 struct defcmd_set *s;
787 if (argc != 0)
788 return KDB_ARGCOUNT;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
791 break;
792 }
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
795 argv[0]);
796 return KDB_NOTIMP;
797 }
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
800 * this point */
801 argv = NULL;
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
804 if (ret)
805 return ret;
806 }
807 return 0;
808 }
809
810 /* Command history */
811 #define KDB_CMD_HISTORY_COUNT 32
812 #define CMD_BUFLEN 200 /* kdb_printf: max printline
813 * size == 256 */
814 static unsigned int cmd_head, cmd_tail;
815 static unsigned int cmdptr;
816 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817 static char cmd_cur[CMD_BUFLEN];
818
819 /*
820 * The "str" argument may point to something like | grep xyz
821 */
822 static void parse_grep(const char *str)
823 {
824 int len;
825 char *cp = (char *)str, *cp2;
826
827 /* sanity check: we should have been called with the \ first */
828 if (*cp != '|')
829 return;
830 cp++;
831 while (isspace(*cp))
832 cp++;
833 if (strncmp(cp, "grep ", 5)) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
835 return;
836 }
837 cp += 5;
838 while (isspace(*cp))
839 cp++;
840 cp2 = strchr(cp, '\n');
841 if (cp2)
842 *cp2 = '\0'; /* remove the trailing newline */
843 len = strlen(cp);
844 if (len == 0) {
845 kdb_printf("invalid 'pipe', see grephelp\n");
846 return;
847 }
848 /* now cp points to a nonzero length search string */
849 if (*cp == '"') {
850 /* allow it be "x y z" by removing the "'s - there must
851 be two of them */
852 cp++;
853 cp2 = strchr(cp, '"');
854 if (!cp2) {
855 kdb_printf("invalid quoted string, see grephelp\n");
856 return;
857 }
858 *cp2 = '\0'; /* end the string where the 2nd " was */
859 }
860 kdb_grep_leading = 0;
861 if (*cp == '^') {
862 kdb_grep_leading = 1;
863 cp++;
864 }
865 len = strlen(cp);
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
869 *(cp+len-1) = '\0';
870 }
871 len = strlen(cp);
872 if (!len)
873 return;
874 if (len >= KDB_GREP_STRLEN) {
875 kdb_printf("search string too long\n");
876 return;
877 }
878 strcpy(kdb_grep_string, cp);
879 kdb_grepping_flag++;
880 return;
881 }
882
883 /*
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
889 * kdb_parse().
890 * Parameters:
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
893 * Returns:
894 * Zero for success, a kdb diagnostic if failure.
895 * Remarks:
896 * Limited to 20 tokens.
897 *
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
901 *
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
906 * token string.
907 */
908
909 #define MAXARGC 20
910
911 int kdb_parse(const char *cmdstr)
912 {
913 static char *argv[MAXARGC];
914 static int argc;
915 static char cbuf[CMD_BUFLEN+2];
916 char *cp;
917 char *cpp, quoted;
918 kdbtab_t *tp;
919 int i, escaped, ignore_errors = 0, check_grep = 0;
920
921 /*
922 * First tokenize the command string.
923 */
924 cp = (char *)cmdstr;
925
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
932 }
933
934 if (*cp != '\n' && *cp != '\0') {
935 argc = 0;
936 cpp = cbuf;
937 while (*cp) {
938 /* skip whitespace */
939 while (isspace(*cp))
940 cp++;
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
943 break;
944 /* special case: check for | grep pattern */
945 if (*cp == '|') {
946 check_grep++;
947 break;
948 }
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
952 cmdstr);
953 return KDB_NOTFOUND;
954 }
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
958 return KDB_NOTFOUND;
959 }
960 argv[argc++] = cpp;
961 escaped = 0;
962 quoted = '\0';
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
968 break;
969 if (escaped) {
970 escaped = 0;
971 *cpp++ = *cp++;
972 continue;
973 }
974 if (*cp == '\\') {
975 escaped = 1;
976 ++cp;
977 continue;
978 }
979 if (*cp == quoted)
980 quoted = '\0';
981 else if (*cp == '\'' || *cp == '"')
982 quoted = *cp;
983 *cpp = *cp++;
984 if (*cpp == '=' && !quoted)
985 break;
986 ++cpp;
987 }
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
989 }
990 }
991 if (!argc)
992 return 0;
993 if (check_grep)
994 parse_grep(cp);
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
999 *(argv[0]) = '\0';
1000 }
1001 return result;
1002 }
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 ignore_errors = 1;
1006 ++argv[0];
1007 }
1008
1009 for_each_kdbcmd(tp, i) {
1010 if (tp->cmd_name) {
1011 /*
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1014 */
1015
1016 if (tp->cmd_minlen
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1019 tp->cmd_name,
1020 tp->cmd_minlen) == 0) {
1021 break;
1022 }
1023 }
1024
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1034 */
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1037 if (tp->cmd_name) {
1038 if (strncmp(argv[0],
1039 tp->cmd_name,
1040 strlen(tp->cmd_name)) == 0) {
1041 break;
1042 }
1043 }
1044 }
1045 }
1046
1047 if (i < kdb_max_commands) {
1048 int result;
1049
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 return KDB_NOPERM;
1052
1053 KDB_STATE_SET(CMD);
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1056 result = 0;
1057 KDB_STATE_CLEAR(CMD);
1058
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 return result;
1061
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 if (argv[argc])
1064 *(argv[argc]) = '\0';
1065 return result;
1066 }
1067
1068 /*
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1074 */
1075 {
1076 unsigned long value;
1077 char *name = NULL;
1078 long offset;
1079 int nextarg = 0;
1080
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1084 }
1085
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 kdb_printf("\n");
1089 return 0;
1090 }
1091 }
1092
1093
1094 static int handle_ctrl_cmd(char *cmd)
1095 {
1096 #define CTRL_P 16
1097 #define CTRL_N 14
1098
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1101 return 0;
1102 switch (*cmd) {
1103 case CTRL_P:
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 return 1;
1108 case CTRL_N:
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 return 1;
1113 }
1114 return 0;
1115 }
1116
1117 /*
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1120 */
1121 static int kdb_reboot(int argc, const char **argv)
1122 {
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 while (1)
1126 cpu_relax();
1127 /* NOTREACHED */
1128 return 0;
1129 }
1130
1131 static void kdb_dumpregs(struct pt_regs *regs)
1132 {
1133 int old_lvl = console_loglevel;
1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135 kdb_trap_printk++;
1136 show_regs(regs);
1137 kdb_trap_printk--;
1138 kdb_printf("\n");
1139 console_loglevel = old_lvl;
1140 }
1141
1142 void kdb_set_current_task(struct task_struct *p)
1143 {
1144 kdb_current_task = p;
1145
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 return;
1149 }
1150 kdb_current_regs = NULL;
1151 }
1152
1153 /*
1154 * kdb_local - The main code for kdb. This routine is invoked on a
1155 * specific processor, it is not global. The main kdb() routine
1156 * ensures that only one processor at a time is in this routine.
1157 * This code is called with the real reason code on the first
1158 * entry to a kdb session, thereafter it is called with reason
1159 * SWITCH, even if the user goes back to the original cpu.
1160 * Inputs:
1161 * reason The reason KDB was invoked
1162 * error The hardware-defined error code
1163 * regs The exception frame at time of fault/breakpoint.
1164 * db_result Result code from the break or debug point.
1165 * Returns:
1166 * 0 KDB was invoked for an event which it wasn't responsible
1167 * 1 KDB handled the event for which it was invoked.
1168 * KDB_CMD_GO User typed 'go'.
1169 * KDB_CMD_CPU User switched to another cpu.
1170 * KDB_CMD_SS Single step.
1171 */
1172 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1173 kdb_dbtrap_t db_result)
1174 {
1175 char *cmdbuf;
1176 int diag;
1177 struct task_struct *kdb_current =
1178 kdb_curr_task(raw_smp_processor_id());
1179
1180 KDB_DEBUG_STATE("kdb_local 1", reason);
1181 kdb_go_count = 0;
1182 if (reason == KDB_REASON_DEBUG) {
1183 /* special case below */
1184 } else {
1185 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1186 kdb_current, kdb_current ? kdb_current->pid : 0);
1187 #if defined(CONFIG_SMP)
1188 kdb_printf("on processor %d ", raw_smp_processor_id());
1189 #endif
1190 }
1191
1192 switch (reason) {
1193 case KDB_REASON_DEBUG:
1194 {
1195 /*
1196 * If re-entering kdb after a single step
1197 * command, don't print the message.
1198 */
1199 switch (db_result) {
1200 case KDB_DB_BPT:
1201 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1202 kdb_current, kdb_current->pid);
1203 #if defined(CONFIG_SMP)
1204 kdb_printf("on processor %d ", raw_smp_processor_id());
1205 #endif
1206 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1207 instruction_pointer(regs));
1208 break;
1209 case KDB_DB_SS:
1210 break;
1211 case KDB_DB_SSBPT:
1212 KDB_DEBUG_STATE("kdb_local 4", reason);
1213 return 1; /* kdba_db_trap did the work */
1214 default:
1215 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1216 db_result);
1217 break;
1218 }
1219
1220 }
1221 break;
1222 case KDB_REASON_ENTER:
1223 if (KDB_STATE(KEYBOARD))
1224 kdb_printf("due to Keyboard Entry\n");
1225 else
1226 kdb_printf("due to KDB_ENTER()\n");
1227 break;
1228 case KDB_REASON_KEYBOARD:
1229 KDB_STATE_SET(KEYBOARD);
1230 kdb_printf("due to Keyboard Entry\n");
1231 break;
1232 case KDB_REASON_ENTER_SLAVE:
1233 /* drop through, slaves only get released via cpu switch */
1234 case KDB_REASON_SWITCH:
1235 kdb_printf("due to cpu switch\n");
1236 break;
1237 case KDB_REASON_OOPS:
1238 kdb_printf("Oops: %s\n", kdb_diemsg);
1239 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1240 instruction_pointer(regs));
1241 kdb_dumpregs(regs);
1242 break;
1243 case KDB_REASON_SYSTEM_NMI:
1244 kdb_printf("due to System NonMaskable Interrupt\n");
1245 break;
1246 case KDB_REASON_NMI:
1247 kdb_printf("due to NonMaskable Interrupt @ "
1248 kdb_machreg_fmt "\n",
1249 instruction_pointer(regs));
1250 break;
1251 case KDB_REASON_SSTEP:
1252 case KDB_REASON_BREAK:
1253 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1254 reason == KDB_REASON_BREAK ?
1255 "Breakpoint" : "SS trap", instruction_pointer(regs));
1256 /*
1257 * Determine if this breakpoint is one that we
1258 * are interested in.
1259 */
1260 if (db_result != KDB_DB_BPT) {
1261 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1262 db_result);
1263 KDB_DEBUG_STATE("kdb_local 6", reason);
1264 return 0; /* Not for us, dismiss it */
1265 }
1266 break;
1267 case KDB_REASON_RECURSE:
1268 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1269 instruction_pointer(regs));
1270 break;
1271 default:
1272 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1273 KDB_DEBUG_STATE("kdb_local 8", reason);
1274 return 0; /* Not for us, dismiss it */
1275 }
1276
1277 while (1) {
1278 /*
1279 * Initialize pager context.
1280 */
1281 kdb_nextline = 1;
1282 KDB_STATE_CLEAR(SUPPRESS);
1283 kdb_grepping_flag = 0;
1284 /* ensure the old search does not leak into '/' commands */
1285 kdb_grep_string[0] = '\0';
1286
1287 cmdbuf = cmd_cur;
1288 *cmdbuf = '\0';
1289 *(cmd_hist[cmd_head]) = '\0';
1290
1291 do_full_getstr:
1292 #if defined(CONFIG_SMP)
1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1294 raw_smp_processor_id());
1295 #else
1296 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1297 #endif
1298 if (defcmd_in_progress)
1299 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1300
1301 /*
1302 * Fetch command from keyboard
1303 */
1304 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1305 if (*cmdbuf != '\n') {
1306 if (*cmdbuf < 32) {
1307 if (cmdptr == cmd_head) {
1308 strncpy(cmd_hist[cmd_head], cmd_cur,
1309 CMD_BUFLEN);
1310 *(cmd_hist[cmd_head] +
1311 strlen(cmd_hist[cmd_head])-1) = '\0';
1312 }
1313 if (!handle_ctrl_cmd(cmdbuf))
1314 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1315 cmdbuf = cmd_cur;
1316 goto do_full_getstr;
1317 } else {
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1319 CMD_BUFLEN);
1320 }
1321
1322 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1323 if (cmd_head == cmd_tail)
1324 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1325 }
1326
1327 cmdptr = cmd_head;
1328 diag = kdb_parse(cmdbuf);
1329 if (diag == KDB_NOTFOUND) {
1330 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1331 diag = 0;
1332 }
1333 if (diag == KDB_CMD_GO
1334 || diag == KDB_CMD_CPU
1335 || diag == KDB_CMD_SS
1336 || diag == KDB_CMD_KGDB)
1337 break;
1338
1339 if (diag)
1340 kdb_cmderror(diag);
1341 }
1342 KDB_DEBUG_STATE("kdb_local 9", diag);
1343 return diag;
1344 }
1345
1346
1347 /*
1348 * kdb_print_state - Print the state data for the current processor
1349 * for debugging.
1350 * Inputs:
1351 * text Identifies the debug point
1352 * value Any integer value to be printed, e.g. reason code.
1353 */
1354 void kdb_print_state(const char *text, int value)
1355 {
1356 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1357 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1358 kdb_state);
1359 }
1360
1361 /*
1362 * kdb_main_loop - After initial setup and assignment of the
1363 * controlling cpu, all cpus are in this loop. One cpu is in
1364 * control and will issue the kdb prompt, the others will spin
1365 * until 'go' or cpu switch.
1366 *
1367 * To get a consistent view of the kernel stacks for all
1368 * processes, this routine is invoked from the main kdb code via
1369 * an architecture specific routine. kdba_main_loop is
1370 * responsible for making the kernel stacks consistent for all
1371 * processes, there should be no difference between a blocked
1372 * process and a running process as far as kdb is concerned.
1373 * Inputs:
1374 * reason The reason KDB was invoked
1375 * error The hardware-defined error code
1376 * reason2 kdb's current reason code.
1377 * Initially error but can change
1378 * according to kdb state.
1379 * db_result Result code from break or debug point.
1380 * regs The exception frame at time of fault/breakpoint.
1381 * should always be valid.
1382 * Returns:
1383 * 0 KDB was invoked for an event which it wasn't responsible
1384 * 1 KDB handled the event for which it was invoked.
1385 */
1386 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1387 kdb_dbtrap_t db_result, struct pt_regs *regs)
1388 {
1389 int result = 1;
1390 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1391 while (1) {
1392 /*
1393 * All processors except the one that is in control
1394 * will spin here.
1395 */
1396 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1397 while (KDB_STATE(HOLD_CPU)) {
1398 /* state KDB is turned off by kdb_cpu to see if the
1399 * other cpus are still live, each cpu in this loop
1400 * turns it back on.
1401 */
1402 if (!KDB_STATE(KDB))
1403 KDB_STATE_SET(KDB);
1404 }
1405
1406 KDB_STATE_CLEAR(SUPPRESS);
1407 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1408 if (KDB_STATE(LEAVING))
1409 break; /* Another cpu said 'go' */
1410 /* Still using kdb, this processor is in control */
1411 result = kdb_local(reason2, error, regs, db_result);
1412 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1413
1414 if (result == KDB_CMD_CPU)
1415 break;
1416
1417 if (result == KDB_CMD_SS) {
1418 KDB_STATE_SET(DOING_SS);
1419 break;
1420 }
1421
1422 if (result == KDB_CMD_KGDB) {
1423 if (!KDB_STATE(DOING_KGDB))
1424 kdb_printf("Entering please attach debugger "
1425 "or use $D#44+ or $3#33\n");
1426 break;
1427 }
1428 if (result && result != 1 && result != KDB_CMD_GO)
1429 kdb_printf("\nUnexpected kdb_local return code %d\n",
1430 result);
1431 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1432 break;
1433 }
1434 if (KDB_STATE(DOING_SS))
1435 KDB_STATE_CLEAR(SSBPT);
1436
1437 /* Clean up any keyboard devices before leaving */
1438 kdb_kbd_cleanup_state();
1439
1440 return result;
1441 }
1442
1443 /*
1444 * kdb_mdr - This function implements the guts of the 'mdr', memory
1445 * read command.
1446 * mdr <addr arg>,<byte count>
1447 * Inputs:
1448 * addr Start address
1449 * count Number of bytes
1450 * Returns:
1451 * Always 0. Any errors are detected and printed by kdb_getarea.
1452 */
1453 static int kdb_mdr(unsigned long addr, unsigned int count)
1454 {
1455 unsigned char c;
1456 while (count--) {
1457 if (kdb_getarea(c, addr))
1458 return 0;
1459 kdb_printf("%02x", c);
1460 addr++;
1461 }
1462 kdb_printf("\n");
1463 return 0;
1464 }
1465
1466 /*
1467 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1468 * 'md8' 'mdr' and 'mds' commands.
1469 *
1470 * md|mds [<addr arg> [<line count> [<radix>]]]
1471 * mdWcN [<addr arg> [<line count> [<radix>]]]
1472 * where W = is the width (1, 2, 4 or 8) and N is the count.
1473 * for eg., md1c20 reads 20 bytes, 1 at a time.
1474 * mdr <addr arg>,<byte count>
1475 */
1476 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1477 int symbolic, int nosect, int bytesperword,
1478 int num, int repeat, int phys)
1479 {
1480 /* print just one line of data */
1481 kdb_symtab_t symtab;
1482 char cbuf[32];
1483 char *c = cbuf;
1484 int i;
1485 unsigned long word;
1486
1487 memset(cbuf, '\0', sizeof(cbuf));
1488 if (phys)
1489 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1490 else
1491 kdb_printf(kdb_machreg_fmt0 " ", addr);
1492
1493 for (i = 0; i < num && repeat--; i++) {
1494 if (phys) {
1495 if (kdb_getphysword(&word, addr, bytesperword))
1496 break;
1497 } else if (kdb_getword(&word, addr, bytesperword))
1498 break;
1499 kdb_printf(fmtstr, word);
1500 if (symbolic)
1501 kdbnearsym(word, &symtab);
1502 else
1503 memset(&symtab, 0, sizeof(symtab));
1504 if (symtab.sym_name) {
1505 kdb_symbol_print(word, &symtab, 0);
1506 if (!nosect) {
1507 kdb_printf("\n");
1508 kdb_printf(" %s %s "
1509 kdb_machreg_fmt " "
1510 kdb_machreg_fmt " "
1511 kdb_machreg_fmt, symtab.mod_name,
1512 symtab.sec_name, symtab.sec_start,
1513 symtab.sym_start, symtab.sym_end);
1514 }
1515 addr += bytesperword;
1516 } else {
1517 union {
1518 u64 word;
1519 unsigned char c[8];
1520 } wc;
1521 unsigned char *cp;
1522 #ifdef __BIG_ENDIAN
1523 cp = wc.c + 8 - bytesperword;
1524 #else
1525 cp = wc.c;
1526 #endif
1527 wc.word = word;
1528 #define printable_char(c) \
1529 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1530 switch (bytesperword) {
1531 case 8:
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 *c++ = printable_char(*cp++);
1535 *c++ = printable_char(*cp++);
1536 addr += 4;
1537 case 4:
1538 *c++ = printable_char(*cp++);
1539 *c++ = printable_char(*cp++);
1540 addr += 2;
1541 case 2:
1542 *c++ = printable_char(*cp++);
1543 addr++;
1544 case 1:
1545 *c++ = printable_char(*cp++);
1546 addr++;
1547 break;
1548 }
1549 #undef printable_char
1550 }
1551 }
1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553 " ", cbuf);
1554 }
1555
1556 static int kdb_md(int argc, const char **argv)
1557 {
1558 static unsigned long last_addr;
1559 static int last_radix, last_bytesperword, last_repeat;
1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561 int nosect = 0;
1562 char fmtchar, fmtstr[64];
1563 unsigned long addr;
1564 unsigned long word;
1565 long offset = 0;
1566 int symbolic = 0;
1567 int valid = 0;
1568 int phys = 0;
1569 int raw = 0;
1570
1571 kdbgetintenv("MDCOUNT", &mdcount);
1572 kdbgetintenv("RADIX", &radix);
1573 kdbgetintenv("BYTESPERWORD", &bytesperword);
1574
1575 /* Assume 'md <addr>' and start with environment values */
1576 repeat = mdcount * 16 / bytesperword;
1577
1578 if (strcmp(argv[0], "mdr") == 0) {
1579 if (argc == 2 || (argc == 0 && last_addr != 0))
1580 valid = raw = 1;
1581 else
1582 return KDB_ARGCOUNT;
1583 } else if (isdigit(argv[0][2])) {
1584 bytesperword = (int)(argv[0][2] - '0');
1585 if (bytesperword == 0) {
1586 bytesperword = last_bytesperword;
1587 if (bytesperword == 0)
1588 bytesperword = 4;
1589 }
1590 last_bytesperword = bytesperword;
1591 repeat = mdcount * 16 / bytesperword;
1592 if (!argv[0][3])
1593 valid = 1;
1594 else if (argv[0][3] == 'c' && argv[0][4]) {
1595 char *p;
1596 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1597 mdcount = ((repeat * bytesperword) + 15) / 16;
1598 valid = !*p;
1599 }
1600 last_repeat = repeat;
1601 } else if (strcmp(argv[0], "md") == 0)
1602 valid = 1;
1603 else if (strcmp(argv[0], "mds") == 0)
1604 valid = 1;
1605 else if (strcmp(argv[0], "mdp") == 0) {
1606 phys = valid = 1;
1607 }
1608 if (!valid)
1609 return KDB_NOTFOUND;
1610
1611 if (argc == 0) {
1612 if (last_addr == 0)
1613 return KDB_ARGCOUNT;
1614 addr = last_addr;
1615 radix = last_radix;
1616 bytesperword = last_bytesperword;
1617 repeat = last_repeat;
1618 if (raw)
1619 mdcount = repeat;
1620 else
1621 mdcount = ((repeat * bytesperword) + 15) / 16;
1622 }
1623
1624 if (argc) {
1625 unsigned long val;
1626 int diag, nextarg = 1;
1627 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1628 &offset, NULL);
1629 if (diag)
1630 return diag;
1631 if (argc > nextarg+2)
1632 return KDB_ARGCOUNT;
1633
1634 if (argc >= nextarg) {
1635 diag = kdbgetularg(argv[nextarg], &val);
1636 if (!diag) {
1637 mdcount = (int) val;
1638 if (raw)
1639 repeat = mdcount;
1640 else
1641 repeat = mdcount * 16 / bytesperword;
1642 }
1643 }
1644 if (argc >= nextarg+1) {
1645 diag = kdbgetularg(argv[nextarg+1], &val);
1646 if (!diag)
1647 radix = (int) val;
1648 }
1649 }
1650
1651 if (strcmp(argv[0], "mdr") == 0) {
1652 int ret;
1653 last_addr = addr;
1654 ret = kdb_mdr(addr, mdcount);
1655 last_addr += mdcount;
1656 last_repeat = mdcount;
1657 last_bytesperword = bytesperword; // to make REPEAT happy
1658 return ret;
1659 }
1660
1661 switch (radix) {
1662 case 10:
1663 fmtchar = 'd';
1664 break;
1665 case 16:
1666 fmtchar = 'x';
1667 break;
1668 case 8:
1669 fmtchar = 'o';
1670 break;
1671 default:
1672 return KDB_BADRADIX;
1673 }
1674
1675 last_radix = radix;
1676
1677 if (bytesperword > KDB_WORD_SIZE)
1678 return KDB_BADWIDTH;
1679
1680 switch (bytesperword) {
1681 case 8:
1682 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1683 break;
1684 case 4:
1685 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1686 break;
1687 case 2:
1688 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1689 break;
1690 case 1:
1691 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1692 break;
1693 default:
1694 return KDB_BADWIDTH;
1695 }
1696
1697 last_repeat = repeat;
1698 last_bytesperword = bytesperword;
1699
1700 if (strcmp(argv[0], "mds") == 0) {
1701 symbolic = 1;
1702 /* Do not save these changes as last_*, they are temporary mds
1703 * overrides.
1704 */
1705 bytesperword = KDB_WORD_SIZE;
1706 repeat = mdcount;
1707 kdbgetintenv("NOSECT", &nosect);
1708 }
1709
1710 /* Round address down modulo BYTESPERWORD */
1711
1712 addr &= ~(bytesperword-1);
1713
1714 while (repeat > 0) {
1715 unsigned long a;
1716 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1717
1718 if (KDB_FLAG(CMD_INTERRUPT))
1719 return 0;
1720 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1721 if (phys) {
1722 if (kdb_getphysword(&word, a, bytesperword)
1723 || word)
1724 break;
1725 } else if (kdb_getword(&word, a, bytesperword) || word)
1726 break;
1727 }
1728 n = min(num, repeat);
1729 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1730 num, repeat, phys);
1731 addr += bytesperword * n;
1732 repeat -= n;
1733 z = (z + num - 1) / num;
1734 if (z > 2) {
1735 int s = num * (z-2);
1736 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1737 " zero suppressed\n",
1738 addr, addr + bytesperword * s - 1);
1739 addr += bytesperword * s;
1740 repeat -= s;
1741 }
1742 }
1743 last_addr = addr;
1744
1745 return 0;
1746 }
1747
1748 /*
1749 * kdb_mm - This function implements the 'mm' command.
1750 * mm address-expression new-value
1751 * Remarks:
1752 * mm works on machine words, mmW works on bytes.
1753 */
1754 static int kdb_mm(int argc, const char **argv)
1755 {
1756 int diag;
1757 unsigned long addr;
1758 long offset = 0;
1759 unsigned long contents;
1760 int nextarg;
1761 int width;
1762
1763 if (argv[0][2] && !isdigit(argv[0][2]))
1764 return KDB_NOTFOUND;
1765
1766 if (argc < 2)
1767 return KDB_ARGCOUNT;
1768
1769 nextarg = 1;
1770 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1771 if (diag)
1772 return diag;
1773
1774 if (nextarg > argc)
1775 return KDB_ARGCOUNT;
1776 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1777 if (diag)
1778 return diag;
1779
1780 if (nextarg != argc + 1)
1781 return KDB_ARGCOUNT;
1782
1783 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1784 diag = kdb_putword(addr, contents, width);
1785 if (diag)
1786 return diag;
1787
1788 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1789
1790 return 0;
1791 }
1792
1793 /*
1794 * kdb_go - This function implements the 'go' command.
1795 * go [address-expression]
1796 */
1797 static int kdb_go(int argc, const char **argv)
1798 {
1799 unsigned long addr;
1800 int diag;
1801 int nextarg;
1802 long offset;
1803
1804 if (raw_smp_processor_id() != kdb_initial_cpu) {
1805 kdb_printf("go must execute on the entry cpu, "
1806 "please use \"cpu %d\" and then execute go\n",
1807 kdb_initial_cpu);
1808 return KDB_BADCPUNUM;
1809 }
1810 if (argc == 1) {
1811 nextarg = 1;
1812 diag = kdbgetaddrarg(argc, argv, &nextarg,
1813 &addr, &offset, NULL);
1814 if (diag)
1815 return diag;
1816 } else if (argc) {
1817 return KDB_ARGCOUNT;
1818 }
1819
1820 diag = KDB_CMD_GO;
1821 if (KDB_FLAG(CATASTROPHIC)) {
1822 kdb_printf("Catastrophic error detected\n");
1823 kdb_printf("kdb_continue_catastrophic=%d, ",
1824 kdb_continue_catastrophic);
1825 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1826 kdb_printf("type go a second time if you really want "
1827 "to continue\n");
1828 return 0;
1829 }
1830 if (kdb_continue_catastrophic == 2) {
1831 kdb_printf("forcing reboot\n");
1832 kdb_reboot(0, NULL);
1833 }
1834 kdb_printf("attempting to continue\n");
1835 }
1836 return diag;
1837 }
1838
1839 /*
1840 * kdb_rd - This function implements the 'rd' command.
1841 */
1842 static int kdb_rd(int argc, const char **argv)
1843 {
1844 int len = kdb_check_regs();
1845 #if DBG_MAX_REG_NUM > 0
1846 int i;
1847 char *rname;
1848 int rsize;
1849 u64 reg64;
1850 u32 reg32;
1851 u16 reg16;
1852 u8 reg8;
1853
1854 if (len)
1855 return len;
1856
1857 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1858 rsize = dbg_reg_def[i].size * 2;
1859 if (rsize > 16)
1860 rsize = 2;
1861 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1862 len = 0;
1863 kdb_printf("\n");
1864 }
1865 if (len)
1866 len += kdb_printf(" ");
1867 switch(dbg_reg_def[i].size * 8) {
1868 case 8:
1869 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %02x", rname, reg8);
1873 break;
1874 case 16:
1875 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1876 if (!rname)
1877 break;
1878 len += kdb_printf("%s: %04x", rname, reg16);
1879 break;
1880 case 32:
1881 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1882 if (!rname)
1883 break;
1884 len += kdb_printf("%s: %08x", rname, reg32);
1885 break;
1886 case 64:
1887 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1888 if (!rname)
1889 break;
1890 len += kdb_printf("%s: %016llx", rname, reg64);
1891 break;
1892 default:
1893 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1894 }
1895 }
1896 kdb_printf("\n");
1897 #else
1898 if (len)
1899 return len;
1900
1901 kdb_dumpregs(kdb_current_regs);
1902 #endif
1903 return 0;
1904 }
1905
1906 /*
1907 * kdb_rm - This function implements the 'rm' (register modify) command.
1908 * rm register-name new-contents
1909 * Remarks:
1910 * Allows register modification with the same restrictions as gdb
1911 */
1912 static int kdb_rm(int argc, const char **argv)
1913 {
1914 #if DBG_MAX_REG_NUM > 0
1915 int diag;
1916 const char *rname;
1917 int i;
1918 u64 reg64;
1919 u32 reg32;
1920 u16 reg16;
1921 u8 reg8;
1922
1923 if (argc != 2)
1924 return KDB_ARGCOUNT;
1925 /*
1926 * Allow presence or absence of leading '%' symbol.
1927 */
1928 rname = argv[1];
1929 if (*rname == '%')
1930 rname++;
1931
1932 diag = kdbgetu64arg(argv[2], &reg64);
1933 if (diag)
1934 return diag;
1935
1936 diag = kdb_check_regs();
1937 if (diag)
1938 return diag;
1939
1940 diag = KDB_BADREG;
1941 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1942 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1943 diag = 0;
1944 break;
1945 }
1946 }
1947 if (!diag) {
1948 switch(dbg_reg_def[i].size * 8) {
1949 case 8:
1950 reg8 = reg64;
1951 dbg_set_reg(i, &reg8, kdb_current_regs);
1952 break;
1953 case 16:
1954 reg16 = reg64;
1955 dbg_set_reg(i, &reg16, kdb_current_regs);
1956 break;
1957 case 32:
1958 reg32 = reg64;
1959 dbg_set_reg(i, &reg32, kdb_current_regs);
1960 break;
1961 case 64:
1962 dbg_set_reg(i, &reg64, kdb_current_regs);
1963 break;
1964 }
1965 }
1966 return diag;
1967 #else
1968 kdb_printf("ERROR: Register set currently not implemented\n");
1969 return 0;
1970 #endif
1971 }
1972
1973 #if defined(CONFIG_MAGIC_SYSRQ)
1974 /*
1975 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1976 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1977 * sr <magic-sysrq-code>
1978 */
1979 static int kdb_sr(int argc, const char **argv)
1980 {
1981 bool check_mask =
1982 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1983
1984 if (argc != 1)
1985 return KDB_ARGCOUNT;
1986
1987 kdb_trap_printk++;
1988 __handle_sysrq(*argv[1], check_mask ? SYSRQ_FROM_KERNEL : 0);
1989 kdb_trap_printk--;
1990
1991 return 0;
1992 }
1993 #endif /* CONFIG_MAGIC_SYSRQ */
1994
1995 /*
1996 * kdb_ef - This function implements the 'regs' (display exception
1997 * frame) command. This command takes an address and expects to
1998 * find an exception frame at that address, formats and prints
1999 * it.
2000 * regs address-expression
2001 * Remarks:
2002 * Not done yet.
2003 */
2004 static int kdb_ef(int argc, const char **argv)
2005 {
2006 int diag;
2007 unsigned long addr;
2008 long offset;
2009 int nextarg;
2010
2011 if (argc != 1)
2012 return KDB_ARGCOUNT;
2013
2014 nextarg = 1;
2015 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2016 if (diag)
2017 return diag;
2018 show_regs((struct pt_regs *)addr);
2019 return 0;
2020 }
2021
2022 #if defined(CONFIG_MODULES)
2023 /*
2024 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2025 * currently loaded kernel modules.
2026 * Mostly taken from userland lsmod.
2027 */
2028 static int kdb_lsmod(int argc, const char **argv)
2029 {
2030 struct module *mod;
2031
2032 if (argc != 0)
2033 return KDB_ARGCOUNT;
2034
2035 kdb_printf("Module Size modstruct Used by\n");
2036 list_for_each_entry(mod, kdb_modules, list) {
2037 if (mod->state == MODULE_STATE_UNFORMED)
2038 continue;
2039
2040 kdb_printf("%-20s%8u 0x%p ", mod->name,
2041 mod->core_layout.size, (void *)mod);
2042 #ifdef CONFIG_MODULE_UNLOAD
2043 kdb_printf("%4d ", module_refcount(mod));
2044 #endif
2045 if (mod->state == MODULE_STATE_GOING)
2046 kdb_printf(" (Unloading)");
2047 else if (mod->state == MODULE_STATE_COMING)
2048 kdb_printf(" (Loading)");
2049 else
2050 kdb_printf(" (Live)");
2051 kdb_printf(" 0x%p", mod->core_layout.base);
2052
2053 #ifdef CONFIG_MODULE_UNLOAD
2054 {
2055 struct module_use *use;
2056 kdb_printf(" [ ");
2057 list_for_each_entry(use, &mod->source_list,
2058 source_list)
2059 kdb_printf("%s ", use->target->name);
2060 kdb_printf("]\n");
2061 }
2062 #endif
2063 }
2064
2065 return 0;
2066 }
2067
2068 #endif /* CONFIG_MODULES */
2069
2070 /*
2071 * kdb_env - This function implements the 'env' command. Display the
2072 * current environment variables.
2073 */
2074
2075 static int kdb_env(int argc, const char **argv)
2076 {
2077 int i;
2078
2079 for (i = 0; i < __nenv; i++) {
2080 if (__env[i])
2081 kdb_printf("%s\n", __env[i]);
2082 }
2083
2084 if (KDB_DEBUG(MASK))
2085 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2086
2087 return 0;
2088 }
2089
2090 #ifdef CONFIG_PRINTK
2091 /*
2092 * kdb_dmesg - This function implements the 'dmesg' command to display
2093 * the contents of the syslog buffer.
2094 * dmesg [lines] [adjust]
2095 */
2096 static int kdb_dmesg(int argc, const char **argv)
2097 {
2098 int diag;
2099 int logging;
2100 int lines = 0;
2101 int adjust = 0;
2102 int n = 0;
2103 int skip = 0;
2104 struct kmsg_dumper dumper = { .active = 1 };
2105 size_t len;
2106 char buf[201];
2107
2108 if (argc > 2)
2109 return KDB_ARGCOUNT;
2110 if (argc) {
2111 char *cp;
2112 lines = simple_strtol(argv[1], &cp, 0);
2113 if (*cp)
2114 lines = 0;
2115 if (argc > 1) {
2116 adjust = simple_strtoul(argv[2], &cp, 0);
2117 if (*cp || adjust < 0)
2118 adjust = 0;
2119 }
2120 }
2121
2122 /* disable LOGGING if set */
2123 diag = kdbgetintenv("LOGGING", &logging);
2124 if (!diag && logging) {
2125 const char *setargs[] = { "set", "LOGGING", "0" };
2126 kdb_set(2, setargs);
2127 }
2128
2129 kmsg_dump_rewind_nolock(&dumper);
2130 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2131 n++;
2132
2133 if (lines < 0) {
2134 if (adjust >= n)
2135 kdb_printf("buffer only contains %d lines, nothing "
2136 "printed\n", n);
2137 else if (adjust - lines >= n)
2138 kdb_printf("buffer only contains %d lines, last %d "
2139 "lines printed\n", n, n - adjust);
2140 skip = adjust;
2141 lines = abs(lines);
2142 } else if (lines > 0) {
2143 skip = n - lines - adjust;
2144 lines = abs(lines);
2145 if (adjust >= n) {
2146 kdb_printf("buffer only contains %d lines, "
2147 "nothing printed\n", n);
2148 skip = n;
2149 } else if (skip < 0) {
2150 lines += skip;
2151 skip = 0;
2152 kdb_printf("buffer only contains %d lines, first "
2153 "%d lines printed\n", n, lines);
2154 }
2155 } else {
2156 lines = n;
2157 }
2158
2159 if (skip >= n || skip < 0)
2160 return 0;
2161
2162 kmsg_dump_rewind_nolock(&dumper);
2163 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2164 if (skip) {
2165 skip--;
2166 continue;
2167 }
2168 if (!lines--)
2169 break;
2170 if (KDB_FLAG(CMD_INTERRUPT))
2171 return 0;
2172
2173 kdb_printf("%.*s\n", (int)len - 1, buf);
2174 }
2175
2176 return 0;
2177 }
2178 #endif /* CONFIG_PRINTK */
2179
2180 /* Make sure we balance enable/disable calls, must disable first. */
2181 static atomic_t kdb_nmi_disabled;
2182
2183 static int kdb_disable_nmi(int argc, const char *argv[])
2184 {
2185 if (atomic_read(&kdb_nmi_disabled))
2186 return 0;
2187 atomic_set(&kdb_nmi_disabled, 1);
2188 arch_kgdb_ops.enable_nmi(0);
2189 return 0;
2190 }
2191
2192 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2193 {
2194 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2195 return -EINVAL;
2196 arch_kgdb_ops.enable_nmi(1);
2197 return 0;
2198 }
2199
2200 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2201 .set = kdb_param_enable_nmi,
2202 };
2203 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2204
2205 /*
2206 * kdb_cpu - This function implements the 'cpu' command.
2207 * cpu [<cpunum>]
2208 * Returns:
2209 * KDB_CMD_CPU for success, a kdb diagnostic if error
2210 */
2211 static void kdb_cpu_status(void)
2212 {
2213 int i, start_cpu, first_print = 1;
2214 char state, prev_state = '?';
2215
2216 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2217 kdb_printf("Available cpus: ");
2218 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2219 if (!cpu_online(i)) {
2220 state = 'F'; /* cpu is offline */
2221 } else if (!kgdb_info[i].enter_kgdb) {
2222 state = 'D'; /* cpu is online but unresponsive */
2223 } else {
2224 state = ' '; /* cpu is responding to kdb */
2225 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2226 state = 'I'; /* idle task */
2227 }
2228 if (state != prev_state) {
2229 if (prev_state != '?') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 first_print = 0;
2233 kdb_printf("%d", start_cpu);
2234 if (start_cpu < i-1)
2235 kdb_printf("-%d", i-1);
2236 if (prev_state != ' ')
2237 kdb_printf("(%c)", prev_state);
2238 }
2239 prev_state = state;
2240 start_cpu = i;
2241 }
2242 }
2243 /* print the trailing cpus, ignoring them if they are all offline */
2244 if (prev_state != 'F') {
2245 if (!first_print)
2246 kdb_printf(", ");
2247 kdb_printf("%d", start_cpu);
2248 if (start_cpu < i-1)
2249 kdb_printf("-%d", i-1);
2250 if (prev_state != ' ')
2251 kdb_printf("(%c)", prev_state);
2252 }
2253 kdb_printf("\n");
2254 }
2255
2256 static int kdb_cpu(int argc, const char **argv)
2257 {
2258 unsigned long cpunum;
2259 int diag;
2260
2261 if (argc == 0) {
2262 kdb_cpu_status();
2263 return 0;
2264 }
2265
2266 if (argc != 1)
2267 return KDB_ARGCOUNT;
2268
2269 diag = kdbgetularg(argv[1], &cpunum);
2270 if (diag)
2271 return diag;
2272
2273 /*
2274 * Validate cpunum
2275 */
2276 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2277 return KDB_BADCPUNUM;
2278
2279 dbg_switch_cpu = cpunum;
2280
2281 /*
2282 * Switch to other cpu
2283 */
2284 return KDB_CMD_CPU;
2285 }
2286
2287 /* The user may not realize that ps/bta with no parameters does not print idle
2288 * or sleeping system daemon processes, so tell them how many were suppressed.
2289 */
2290 void kdb_ps_suppressed(void)
2291 {
2292 int idle = 0, daemon = 0;
2293 unsigned long mask_I = kdb_task_state_string("I"),
2294 mask_M = kdb_task_state_string("M");
2295 unsigned long cpu;
2296 const struct task_struct *p, *g;
2297 for_each_online_cpu(cpu) {
2298 p = kdb_curr_task(cpu);
2299 if (kdb_task_state(p, mask_I))
2300 ++idle;
2301 }
2302 kdb_do_each_thread(g, p) {
2303 if (kdb_task_state(p, mask_M))
2304 ++daemon;
2305 } kdb_while_each_thread(g, p);
2306 if (idle || daemon) {
2307 if (idle)
2308 kdb_printf("%d idle process%s (state I)%s\n",
2309 idle, idle == 1 ? "" : "es",
2310 daemon ? " and " : "");
2311 if (daemon)
2312 kdb_printf("%d sleeping system daemon (state M) "
2313 "process%s", daemon,
2314 daemon == 1 ? "" : "es");
2315 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2316 }
2317 }
2318
2319 /*
2320 * kdb_ps - This function implements the 'ps' command which shows a
2321 * list of the active processes.
2322 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2323 */
2324 void kdb_ps1(const struct task_struct *p)
2325 {
2326 int cpu;
2327 unsigned long tmp;
2328
2329 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2330 return;
2331
2332 cpu = kdb_process_cpu(p);
2333 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2334 (void *)p, p->pid, p->parent->pid,
2335 kdb_task_has_cpu(p), kdb_process_cpu(p),
2336 kdb_task_state_char(p),
2337 (void *)(&p->thread),
2338 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2339 p->comm);
2340 if (kdb_task_has_cpu(p)) {
2341 if (!KDB_TSK(cpu)) {
2342 kdb_printf(" Error: no saved data for this cpu\n");
2343 } else {
2344 if (KDB_TSK(cpu) != p)
2345 kdb_printf(" Error: does not match running "
2346 "process table (0x%p)\n", KDB_TSK(cpu));
2347 }
2348 }
2349 }
2350
2351 static int kdb_ps(int argc, const char **argv)
2352 {
2353 struct task_struct *g, *p;
2354 unsigned long mask, cpu;
2355
2356 if (argc == 0)
2357 kdb_ps_suppressed();
2358 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2359 (int)(2*sizeof(void *))+2, "Task Addr",
2360 (int)(2*sizeof(void *))+2, "Thread");
2361 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2362 /* Run the active tasks first */
2363 for_each_online_cpu(cpu) {
2364 if (KDB_FLAG(CMD_INTERRUPT))
2365 return 0;
2366 p = kdb_curr_task(cpu);
2367 if (kdb_task_state(p, mask))
2368 kdb_ps1(p);
2369 }
2370 kdb_printf("\n");
2371 /* Now the real tasks */
2372 kdb_do_each_thread(g, p) {
2373 if (KDB_FLAG(CMD_INTERRUPT))
2374 return 0;
2375 if (kdb_task_state(p, mask))
2376 kdb_ps1(p);
2377 } kdb_while_each_thread(g, p);
2378
2379 return 0;
2380 }
2381
2382 /*
2383 * kdb_pid - This function implements the 'pid' command which switches
2384 * the currently active process.
2385 * pid [<pid> | R]
2386 */
2387 static int kdb_pid(int argc, const char **argv)
2388 {
2389 struct task_struct *p;
2390 unsigned long val;
2391 int diag;
2392
2393 if (argc > 1)
2394 return KDB_ARGCOUNT;
2395
2396 if (argc) {
2397 if (strcmp(argv[1], "R") == 0) {
2398 p = KDB_TSK(kdb_initial_cpu);
2399 } else {
2400 diag = kdbgetularg(argv[1], &val);
2401 if (diag)
2402 return KDB_BADINT;
2403
2404 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2405 if (!p) {
2406 kdb_printf("No task with pid=%d\n", (pid_t)val);
2407 return 0;
2408 }
2409 }
2410 kdb_set_current_task(p);
2411 }
2412 kdb_printf("KDB current process is %s(pid=%d)\n",
2413 kdb_current_task->comm,
2414 kdb_current_task->pid);
2415
2416 return 0;
2417 }
2418
2419 static int kdb_kgdb(int argc, const char **argv)
2420 {
2421 return KDB_CMD_KGDB;
2422 }
2423
2424 /*
2425 * kdb_help - This function implements the 'help' and '?' commands.
2426 */
2427 static int kdb_help(int argc, const char **argv)
2428 {
2429 kdbtab_t *kt;
2430 int i;
2431
2432 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2433 kdb_printf("-----------------------------"
2434 "-----------------------------\n");
2435 for_each_kdbcmd(kt, i) {
2436 char *space = "";
2437 if (KDB_FLAG(CMD_INTERRUPT))
2438 return 0;
2439 if (!kt->cmd_name)
2440 continue;
2441 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2442 continue;
2443 if (strlen(kt->cmd_usage) > 20)
2444 space = "\n ";
2445 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2446 kt->cmd_usage, space, kt->cmd_help);
2447 }
2448 return 0;
2449 }
2450
2451 /*
2452 * kdb_kill - This function implements the 'kill' commands.
2453 */
2454 static int kdb_kill(int argc, const char **argv)
2455 {
2456 long sig, pid;
2457 char *endp;
2458 struct task_struct *p;
2459 struct siginfo info;
2460
2461 if (argc != 2)
2462 return KDB_ARGCOUNT;
2463
2464 sig = simple_strtol(argv[1], &endp, 0);
2465 if (*endp)
2466 return KDB_BADINT;
2467 if (sig >= 0) {
2468 kdb_printf("Invalid signal parameter.<-signal>\n");
2469 return 0;
2470 }
2471 sig = -sig;
2472
2473 pid = simple_strtol(argv[2], &endp, 0);
2474 if (*endp)
2475 return KDB_BADINT;
2476 if (pid <= 0) {
2477 kdb_printf("Process ID must be large than 0.\n");
2478 return 0;
2479 }
2480
2481 /* Find the process. */
2482 p = find_task_by_pid_ns(pid, &init_pid_ns);
2483 if (!p) {
2484 kdb_printf("The specified process isn't found.\n");
2485 return 0;
2486 }
2487 p = p->group_leader;
2488 info.si_signo = sig;
2489 info.si_errno = 0;
2490 info.si_code = SI_USER;
2491 info.si_pid = pid; /* same capabilities as process being signalled */
2492 info.si_uid = 0; /* kdb has root authority */
2493 kdb_send_sig_info(p, &info);
2494 return 0;
2495 }
2496
2497 struct kdb_tm {
2498 int tm_sec; /* seconds */
2499 int tm_min; /* minutes */
2500 int tm_hour; /* hours */
2501 int tm_mday; /* day of the month */
2502 int tm_mon; /* month */
2503 int tm_year; /* year */
2504 };
2505
2506 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2507 {
2508 /* This will work from 1970-2099, 2100 is not a leap year */
2509 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2510 31, 30, 31, 30, 31 };
2511 memset(tm, 0, sizeof(*tm));
2512 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2513 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2514 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2515 tm->tm_min = tm->tm_sec / 60 % 60;
2516 tm->tm_hour = tm->tm_sec / 60 / 60;
2517 tm->tm_sec = tm->tm_sec % 60;
2518 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2519 tm->tm_mday %= (4*365+1);
2520 mon_day[1] = 29;
2521 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2522 tm->tm_mday -= mon_day[tm->tm_mon];
2523 if (++tm->tm_mon == 12) {
2524 tm->tm_mon = 0;
2525 ++tm->tm_year;
2526 mon_day[1] = 28;
2527 }
2528 }
2529 ++tm->tm_mday;
2530 }
2531
2532 /*
2533 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2534 * I cannot call that code directly from kdb, it has an unconditional
2535 * cli()/sti() and calls routines that take locks which can stop the debugger.
2536 */
2537 static void kdb_sysinfo(struct sysinfo *val)
2538 {
2539 struct timespec uptime;
2540 ktime_get_ts(&uptime);
2541 memset(val, 0, sizeof(*val));
2542 val->uptime = uptime.tv_sec;
2543 val->loads[0] = avenrun[0];
2544 val->loads[1] = avenrun[1];
2545 val->loads[2] = avenrun[2];
2546 val->procs = nr_threads-1;
2547 si_meminfo(val);
2548
2549 return;
2550 }
2551
2552 /*
2553 * kdb_summary - This function implements the 'summary' command.
2554 */
2555 static int kdb_summary(int argc, const char **argv)
2556 {
2557 struct timespec now;
2558 struct kdb_tm tm;
2559 struct sysinfo val;
2560
2561 if (argc)
2562 return KDB_ARGCOUNT;
2563
2564 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2565 kdb_printf("release %s\n", init_uts_ns.name.release);
2566 kdb_printf("version %s\n", init_uts_ns.name.version);
2567 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2568 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2569 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2570 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2571
2572 now = __current_kernel_time();
2573 kdb_gmtime(&now, &tm);
2574 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2575 "tz_minuteswest %d\n",
2576 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2577 tm.tm_hour, tm.tm_min, tm.tm_sec,
2578 sys_tz.tz_minuteswest);
2579
2580 kdb_sysinfo(&val);
2581 kdb_printf("uptime ");
2582 if (val.uptime > (24*60*60)) {
2583 int days = val.uptime / (24*60*60);
2584 val.uptime %= (24*60*60);
2585 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2586 }
2587 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2588
2589 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2590
2591 #define LOAD_INT(x) ((x) >> FSHIFT)
2592 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2593 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2594 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2595 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2596 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2597 #undef LOAD_INT
2598 #undef LOAD_FRAC
2599 /* Display in kilobytes */
2600 #define K(x) ((x) << (PAGE_SHIFT - 10))
2601 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2602 "Buffers: %8lu kB\n",
2603 K(val.totalram), K(val.freeram), K(val.bufferram));
2604 return 0;
2605 }
2606
2607 /*
2608 * kdb_per_cpu - This function implements the 'per_cpu' command.
2609 */
2610 static int kdb_per_cpu(int argc, const char **argv)
2611 {
2612 char fmtstr[64];
2613 int cpu, diag, nextarg = 1;
2614 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2615
2616 if (argc < 1 || argc > 3)
2617 return KDB_ARGCOUNT;
2618
2619 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2620 if (diag)
2621 return diag;
2622
2623 if (argc >= 2) {
2624 diag = kdbgetularg(argv[2], &bytesperword);
2625 if (diag)
2626 return diag;
2627 }
2628 if (!bytesperword)
2629 bytesperword = KDB_WORD_SIZE;
2630 else if (bytesperword > KDB_WORD_SIZE)
2631 return KDB_BADWIDTH;
2632 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2633 if (argc >= 3) {
2634 diag = kdbgetularg(argv[3], &whichcpu);
2635 if (diag)
2636 return diag;
2637 if (!cpu_online(whichcpu)) {
2638 kdb_printf("cpu %ld is not online\n", whichcpu);
2639 return KDB_BADCPUNUM;
2640 }
2641 }
2642
2643 /* Most architectures use __per_cpu_offset[cpu], some use
2644 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2645 */
2646 #ifdef __per_cpu_offset
2647 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2648 #else
2649 #ifdef CONFIG_SMP
2650 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2651 #else
2652 #define KDB_PCU(cpu) 0
2653 #endif
2654 #endif
2655 for_each_online_cpu(cpu) {
2656 if (KDB_FLAG(CMD_INTERRUPT))
2657 return 0;
2658
2659 if (whichcpu != ~0UL && whichcpu != cpu)
2660 continue;
2661 addr = symaddr + KDB_PCU(cpu);
2662 diag = kdb_getword(&val, addr, bytesperword);
2663 if (diag) {
2664 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2665 "read, diag=%d\n", cpu, addr, diag);
2666 continue;
2667 }
2668 kdb_printf("%5d ", cpu);
2669 kdb_md_line(fmtstr, addr,
2670 bytesperword == KDB_WORD_SIZE,
2671 1, bytesperword, 1, 1, 0);
2672 }
2673 #undef KDB_PCU
2674 return 0;
2675 }
2676
2677 /*
2678 * display help for the use of cmd | grep pattern
2679 */
2680 static int kdb_grep_help(int argc, const char **argv)
2681 {
2682 kdb_printf("Usage of cmd args | grep pattern:\n");
2683 kdb_printf(" Any command's output may be filtered through an ");
2684 kdb_printf("emulated 'pipe'.\n");
2685 kdb_printf(" 'grep' is just a key word.\n");
2686 kdb_printf(" The pattern may include a very limited set of "
2687 "metacharacters:\n");
2688 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2689 kdb_printf(" And if there are spaces in the pattern, you may "
2690 "quote it:\n");
2691 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2692 " or \"^pat tern$\"\n");
2693 return 0;
2694 }
2695
2696 /*
2697 * kdb_register_flags - This function is used to register a kernel
2698 * debugger command.
2699 * Inputs:
2700 * cmd Command name
2701 * func Function to execute the command
2702 * usage A simple usage string showing arguments
2703 * help A simple help string describing command
2704 * repeat Does the command auto repeat on enter?
2705 * Returns:
2706 * zero for success, one if a duplicate command.
2707 */
2708 #define kdb_command_extend 50 /* arbitrary */
2709 int kdb_register_flags(char *cmd,
2710 kdb_func_t func,
2711 char *usage,
2712 char *help,
2713 short minlen,
2714 kdb_cmdflags_t flags)
2715 {
2716 int i;
2717 kdbtab_t *kp;
2718
2719 /*
2720 * Brute force method to determine duplicates
2721 */
2722 for_each_kdbcmd(kp, i) {
2723 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2724 kdb_printf("Duplicate kdb command registered: "
2725 "%s, func %p help %s\n", cmd, func, help);
2726 return 1;
2727 }
2728 }
2729
2730 /*
2731 * Insert command into first available location in table
2732 */
2733 for_each_kdbcmd(kp, i) {
2734 if (kp->cmd_name == NULL)
2735 break;
2736 }
2737
2738 if (i >= kdb_max_commands) {
2739 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2740 kdb_command_extend) * sizeof(*new), GFP_KDB);
2741 if (!new) {
2742 kdb_printf("Could not allocate new kdb_command "
2743 "table\n");
2744 return 1;
2745 }
2746 if (kdb_commands) {
2747 memcpy(new, kdb_commands,
2748 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2749 kfree(kdb_commands);
2750 }
2751 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2752 kdb_command_extend * sizeof(*new));
2753 kdb_commands = new;
2754 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2755 kdb_max_commands += kdb_command_extend;
2756 }
2757
2758 kp->cmd_name = cmd;
2759 kp->cmd_func = func;
2760 kp->cmd_usage = usage;
2761 kp->cmd_help = help;
2762 kp->cmd_minlen = minlen;
2763 kp->cmd_flags = flags;
2764
2765 return 0;
2766 }
2767 EXPORT_SYMBOL_GPL(kdb_register_flags);
2768
2769
2770 /*
2771 * kdb_register - Compatibility register function for commands that do
2772 * not need to specify a repeat state. Equivalent to
2773 * kdb_register_flags with flags set to 0.
2774 * Inputs:
2775 * cmd Command name
2776 * func Function to execute the command
2777 * usage A simple usage string showing arguments
2778 * help A simple help string describing command
2779 * Returns:
2780 * zero for success, one if a duplicate command.
2781 */
2782 int kdb_register(char *cmd,
2783 kdb_func_t func,
2784 char *usage,
2785 char *help,
2786 short minlen)
2787 {
2788 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2789 }
2790 EXPORT_SYMBOL_GPL(kdb_register);
2791
2792 /*
2793 * kdb_unregister - This function is used to unregister a kernel
2794 * debugger command. It is generally called when a module which
2795 * implements kdb commands is unloaded.
2796 * Inputs:
2797 * cmd Command name
2798 * Returns:
2799 * zero for success, one command not registered.
2800 */
2801 int kdb_unregister(char *cmd)
2802 {
2803 int i;
2804 kdbtab_t *kp;
2805
2806 /*
2807 * find the command.
2808 */
2809 for_each_kdbcmd(kp, i) {
2810 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2811 kp->cmd_name = NULL;
2812 return 0;
2813 }
2814 }
2815
2816 /* Couldn't find it. */
2817 return 1;
2818 }
2819 EXPORT_SYMBOL_GPL(kdb_unregister);
2820
2821 /* Initialize the kdb command table. */
2822 static void __init kdb_inittab(void)
2823 {
2824 int i;
2825 kdbtab_t *kp;
2826
2827 for_each_kdbcmd(kp, i)
2828 kp->cmd_name = NULL;
2829
2830 kdb_register_flags("md", kdb_md, "<vaddr>",
2831 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2832 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2833 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2834 "Display Raw Memory", 0,
2835 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2836 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2837 "Display Physical Memory", 0,
2838 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2839 kdb_register_flags("mds", kdb_md, "<vaddr>",
2840 "Display Memory Symbolically", 0,
2841 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2842 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2843 "Modify Memory Contents", 0,
2844 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2845 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2846 "Continue Execution", 1,
2847 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2848 kdb_register_flags("rd", kdb_rd, "",
2849 "Display Registers", 0,
2850 KDB_ENABLE_REG_READ);
2851 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2852 "Modify Registers", 0,
2853 KDB_ENABLE_REG_WRITE);
2854 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2855 "Display exception frame", 0,
2856 KDB_ENABLE_MEM_READ);
2857 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2858 "Stack traceback", 1,
2859 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2860 kdb_register_flags("btp", kdb_bt, "<pid>",
2861 "Display stack for process <pid>", 0,
2862 KDB_ENABLE_INSPECT);
2863 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2864 "Backtrace all processes matching state flag", 0,
2865 KDB_ENABLE_INSPECT);
2866 kdb_register_flags("btc", kdb_bt, "",
2867 "Backtrace current process on each cpu", 0,
2868 KDB_ENABLE_INSPECT);
2869 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2870 "Backtrace process given its struct task address", 0,
2871 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2872 kdb_register_flags("env", kdb_env, "",
2873 "Show environment variables", 0,
2874 KDB_ENABLE_ALWAYS_SAFE);
2875 kdb_register_flags("set", kdb_set, "",
2876 "Set environment variables", 0,
2877 KDB_ENABLE_ALWAYS_SAFE);
2878 kdb_register_flags("help", kdb_help, "",
2879 "Display Help Message", 1,
2880 KDB_ENABLE_ALWAYS_SAFE);
2881 kdb_register_flags("?", kdb_help, "",
2882 "Display Help Message", 0,
2883 KDB_ENABLE_ALWAYS_SAFE);
2884 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2885 "Switch to new cpu", 0,
2886 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2887 kdb_register_flags("kgdb", kdb_kgdb, "",
2888 "Enter kgdb mode", 0, 0);
2889 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2890 "Display active task list", 0,
2891 KDB_ENABLE_INSPECT);
2892 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2893 "Switch to another task", 0,
2894 KDB_ENABLE_INSPECT);
2895 kdb_register_flags("reboot", kdb_reboot, "",
2896 "Reboot the machine immediately", 0,
2897 KDB_ENABLE_REBOOT);
2898 #if defined(CONFIG_MODULES)
2899 kdb_register_flags("lsmod", kdb_lsmod, "",
2900 "List loaded kernel modules", 0,
2901 KDB_ENABLE_INSPECT);
2902 #endif
2903 #if defined(CONFIG_MAGIC_SYSRQ)
2904 kdb_register_flags("sr", kdb_sr, "<key>",
2905 "Magic SysRq key", 0,
2906 KDB_ENABLE_ALWAYS_SAFE);
2907 #endif
2908 #if defined(CONFIG_PRINTK)
2909 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2910 "Display syslog buffer", 0,
2911 KDB_ENABLE_ALWAYS_SAFE);
2912 #endif
2913 if (arch_kgdb_ops.enable_nmi) {
2914 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2915 "Disable NMI entry to KDB", 0,
2916 KDB_ENABLE_ALWAYS_SAFE);
2917 }
2918 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2919 "Define a set of commands, down to endefcmd", 0,
2920 KDB_ENABLE_ALWAYS_SAFE);
2921 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2922 "Send a signal to a process", 0,
2923 KDB_ENABLE_SIGNAL);
2924 kdb_register_flags("summary", kdb_summary, "",
2925 "Summarize the system", 4,
2926 KDB_ENABLE_ALWAYS_SAFE);
2927 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2928 "Display per_cpu variables", 3,
2929 KDB_ENABLE_MEM_READ);
2930 kdb_register_flags("grephelp", kdb_grep_help, "",
2931 "Display help on | grep", 0,
2932 KDB_ENABLE_ALWAYS_SAFE);
2933 }
2934
2935 /* Execute any commands defined in kdb_cmds. */
2936 static void __init kdb_cmd_init(void)
2937 {
2938 int i, diag;
2939 for (i = 0; kdb_cmds[i]; ++i) {
2940 diag = kdb_parse(kdb_cmds[i]);
2941 if (diag)
2942 kdb_printf("kdb command %s failed, kdb diag %d\n",
2943 kdb_cmds[i], diag);
2944 }
2945 if (defcmd_in_progress) {
2946 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2947 kdb_parse("endefcmd");
2948 }
2949 }
2950
2951 /* Initialize kdb_printf, breakpoint tables and kdb state */
2952 void __init kdb_init(int lvl)
2953 {
2954 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2955 int i;
2956
2957 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2958 return;
2959 for (i = kdb_init_lvl; i < lvl; i++) {
2960 switch (i) {
2961 case KDB_NOT_INITIALIZED:
2962 kdb_inittab(); /* Initialize Command Table */
2963 kdb_initbptab(); /* Initialize Breakpoints */
2964 break;
2965 case KDB_INIT_EARLY:
2966 kdb_cmd_init(); /* Build kdb_cmds tables */
2967 break;
2968 }
2969 }
2970 kdb_init_lvl = lvl;
2971 }