]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/debug/kdb/kdb_main.c
b480cadf9272061306c122748a4fca6c167943dd
[mirror_ubuntu-bionic-kernel.git] / kernel / debug / kdb / kdb_main.c
1 /*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sysrq.h>
25 #include <linux/smp.h>
26 #include <linux/utsname.h>
27 #include <linux/vmalloc.h>
28 #include <linux/atomic.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mm.h>
32 #include <linux/init.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdb.h>
36 #include <linux/notifier.h>
37 #include <linux/interrupt.h>
38 #include <linux/delay.h>
39 #include <linux/nmi.h>
40 #include <linux/time.h>
41 #include <linux/ptrace.h>
42 #include <linux/sysctl.h>
43 #include <linux/cpu.h>
44 #include <linux/kdebug.h>
45 #include <linux/proc_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/slab.h>
48 #include "kdb_private.h"
49
50 #undef MODULE_PARAM_PREFIX
51 #define MODULE_PARAM_PREFIX "kdb."
52
53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56 char kdb_grep_string[KDB_GREP_STRLEN];
57 int kdb_grepping_flag;
58 EXPORT_SYMBOL(kdb_grepping_flag);
59 int kdb_grep_leading;
60 int kdb_grep_trailing;
61
62 /*
63 * Kernel debugger state flags
64 */
65 int kdb_flags;
66
67 /*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72 int kdb_nextline = 1;
73 int kdb_state; /* General KDB state */
74
75 struct task_struct *kdb_current_task;
76 EXPORT_SYMBOL(kdb_current_task);
77 struct pt_regs *kdb_current_regs;
78
79 const char *kdb_diemsg;
80 static int kdb_go_count;
81 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82 static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84 #else
85 static unsigned int kdb_continue_catastrophic;
86 #endif
87
88 /* kdb_commands describes the available commands. */
89 static kdbtab_t *kdb_commands;
90 #define KDB_BASE_CMD_MAX 50
91 static int kdb_max_commands = KDB_BASE_CMD_MAX;
92 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93 #define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
97
98 typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
101 } kdbmsg_t;
102
103 #define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
105
106 static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118 #ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
120 #else
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
122 #endif
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
133 KDBMSG(NOPERM, "Permission denied"),
134 };
135 #undef KDBMSG
136
137 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
138
139
140 /*
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
148 */
149
150 static char *__env[] = {
151 #if defined(CONFIG_SMP)
152 "PROMPT=[%d]kdb> ",
153 #else
154 "PROMPT=kdb> ",
155 #endif
156 "MOREPROMPT=more> ",
157 "RADIX=16",
158 "MDCOUNT=8", /* lines of md output */
159 KDB_PLATFORM_ENV,
160 "DTABCOUNT=30",
161 "NOSECT=1",
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185 (char *)0,
186 };
187
188 static const int __nenv = ARRAY_SIZE(__env);
189
190 struct task_struct *kdb_curr_task(int cpu)
191 {
192 struct task_struct *p = curr_task(cpu);
193 #ifdef _TIF_MCA_INIT
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
195 p = krp->p;
196 #endif
197 return p;
198 }
199
200 /*
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
203 */
204 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
205 bool no_args)
206 {
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
210
211 /* some commands change group when launched with no arguments */
212 if (no_args)
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
214
215 flags |= KDB_ENABLE_ALL;
216
217 return permissions & flags;
218 }
219
220 /*
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
223 * Parameters:
224 * match A character string representing an environment variable.
225 * Returns:
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
228 */
229 char *kdbgetenv(const char *match)
230 {
231 char **ep = __env;
232 int matchlen = strlen(match);
233 int i;
234
235 for (i = 0; i < __nenv; i++) {
236 char *e = *ep++;
237
238 if (!e)
239 continue;
240
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
246 }
247 }
248 return NULL;
249 }
250
251 /*
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long representation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 * Remarks:
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
265 * frequently.
266 */
267 static char *kdballocenv(size_t bytes)
268 {
269 #define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
272 char *ep = NULL;
273
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
276 envbufsize += bytes;
277 }
278 return ep;
279 }
280
281 /*
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
284 * Parameters:
285 * match A character string representing a numeric value
286 * Outputs:
287 * *value the unsigned long represntation of the env variable 'match'
288 * Returns:
289 * Zero on success, a kdb diagnostic on failure.
290 */
291 static int kdbgetulenv(const char *match, unsigned long *value)
292 {
293 char *ep;
294
295 ep = kdbgetenv(match);
296 if (!ep)
297 return KDB_NOTENV;
298 if (strlen(ep) == 0)
299 return KDB_NOENVVALUE;
300
301 *value = simple_strtoul(ep, NULL, 0);
302
303 return 0;
304 }
305
306 /*
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
309 * Parameters:
310 * match A character string representing an integer-valued env variable
311 * Outputs:
312 * *value the integer representation of the environment variable 'match'
313 * Returns:
314 * Zero on success, a kdb diagnostic on failure.
315 */
316 int kdbgetintenv(const char *match, int *value)
317 {
318 unsigned long val;
319 int diag;
320
321 diag = kdbgetulenv(match, &val);
322 if (!diag)
323 *value = (int) val;
324 return diag;
325 }
326
327 /*
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
330 * Parameters:
331 * arg A character string representing a numeric value
332 * Outputs:
333 * *value the unsigned long represntation of arg.
334 * Returns:
335 * Zero on success, a kdb diagnostic on failure.
336 */
337 int kdbgetularg(const char *arg, unsigned long *value)
338 {
339 char *endp;
340 unsigned long val;
341
342 val = simple_strtoul(arg, &endp, 0);
343
344 if (endp == arg) {
345 /*
346 * Also try base 16, for us folks too lazy to type the
347 * leading 0x...
348 */
349 val = simple_strtoul(arg, &endp, 16);
350 if (endp == arg)
351 return KDB_BADINT;
352 }
353
354 *value = val;
355
356 return 0;
357 }
358
359 int kdbgetu64arg(const char *arg, u64 *value)
360 {
361 char *endp;
362 u64 val;
363
364 val = simple_strtoull(arg, &endp, 0);
365
366 if (endp == arg) {
367
368 val = simple_strtoull(arg, &endp, 16);
369 if (endp == arg)
370 return KDB_BADINT;
371 }
372
373 *value = val;
374
375 return 0;
376 }
377
378 /*
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
381 */
382 int kdb_set(int argc, const char **argv)
383 {
384 int i;
385 char *ep;
386 size_t varlen, vallen;
387
388 /*
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
393 */
394 if (argc == 3) {
395 argv[2] = argv[3];
396 argc--;
397 }
398
399 if (argc != 2)
400 return KDB_ARGCOUNT;
401
402 /*
403 * Check for internal variables
404 */
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
407 char *cp;
408
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
412 argv[2]);
413 return 0;
414 }
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
418
419 return 0;
420 }
421
422 /*
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
425 */
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
429 if (ep == (char *)0)
430 return KDB_ENVBUFFULL;
431
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
433
434 ep[varlen+vallen+1] = '\0';
435
436 for (i = 0; i < __nenv; i++) {
437 if (__env[i]
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
441 __env[i] = ep;
442 return 0;
443 }
444 }
445
446 /*
447 * Wasn't existing variable. Fit into slot.
448 */
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
451 __env[i] = ep;
452 return 0;
453 }
454 }
455
456 return KDB_ENVFULL;
457 }
458
459 static int kdb_check_regs(void)
460 {
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
464 return KDB_BADREG;
465 }
466 return 0;
467 }
468
469 /*
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
473 *
474 * The argument may consist of a numeric value (decimal or
475 * hexidecimal), a symbol name, a register name (preceded by the
476 * percent sign), an environment variable with a numeric value
477 * (preceded by a dollar sign) or a simple arithmetic expression
478 * consisting of a symbol name, +/-, and a numeric constant value
479 * (offset).
480 * Parameters:
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
485 * Outputs:
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
490 * Returns:
491 * zero is returned on success, a kdb diagnostic code is
492 * returned on error.
493 */
494 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
496 char **name)
497 {
498 unsigned long addr;
499 unsigned long off = 0;
500 int positive;
501 int diag;
502 int found = 0;
503 char *symname;
504 char symbol = '\0';
505 char *cp;
506 kdb_symtab_t symtab;
507
508 /*
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
512 */
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
515 return KDB_NOPERM;
516
517 /*
518 * Process arguments which follow the following syntax:
519 *
520 * symbol | numeric-address [+/- numeric-offset]
521 * %register
522 * $environment-variable
523 */
524
525 if (*nextarg > argc)
526 return KDB_ARGCOUNT;
527
528 symname = (char *)argv[*nextarg];
529
530 /*
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
535 */
536 cp = strpbrk(symname, "+-");
537 if (cp != NULL) {
538 symbol = *cp;
539 *cp++ = '\0';
540 }
541
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
544 if (diag)
545 return diag;
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
548 if (diag)
549 return diag;
550 /* Implement register values with % at a later time as it is
551 * arch optional.
552 */
553 return KDB_NOTIMP;
554 } else {
555 found = kdbgetsymval(symname, &symtab);
556 if (found) {
557 addr = symtab.sym_start;
558 } else {
559 diag = kdbgetularg(argv[*nextarg], &addr);
560 if (diag)
561 return diag;
562 }
563 }
564
565 if (!found)
566 found = kdbnearsym(addr, &symtab);
567
568 (*nextarg)++;
569
570 if (name)
571 *name = symname;
572 if (value)
573 *value = addr;
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
576
577 if ((*nextarg > argc)
578 && (symbol == '\0'))
579 return 0;
580
581 /*
582 * check for +/- and offset
583 */
584
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
588 /*
589 * Not our argument. Return.
590 */
591 return 0;
592 } else {
593 positive = (argv[*nextarg][0] == '+');
594 (*nextarg)++;
595 }
596 } else
597 positive = (symbol == '+');
598
599 /*
600 * Now there must be an offset!
601 */
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
605 }
606
607 if (!symbol) {
608 cp = (char *)argv[*nextarg];
609 (*nextarg)++;
610 }
611
612 diag = kdbgetularg(cp, &off);
613 if (diag)
614 return diag;
615
616 if (!positive)
617 off = -off;
618
619 if (offset)
620 *offset += off;
621
622 if (value)
623 *value += off;
624
625 return 0;
626 }
627
628 static void kdb_cmderror(int diag)
629 {
630 int i;
631
632 if (diag >= 0) {
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
634 return;
635 }
636
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
640 return;
641 }
642 }
643
644 kdb_printf("Unknown diag %d\n", -diag);
645 }
646
647 /*
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
653 * Inputs:
654 * argc argument count
655 * argv argument vector
656 * Returns:
657 * zero for success, a kdb diagnostic if error
658 */
659 struct defcmd_set {
660 int count;
661 int usable;
662 char *name;
663 char *usage;
664 char *help;
665 char **command;
666 };
667 static struct defcmd_set *defcmd_set;
668 static int defcmd_set_count;
669 static int defcmd_in_progress;
670
671 /* Forward references */
672 static int kdb_exec_defcmd(int argc, const char **argv);
673
674 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
675 {
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = 0;
680 if (!s->count)
681 s->usable = 0;
682 if (s->usable)
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
686 */
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
688 s->help, 0,
689 KDB_ENABLE_ALWAYS_SAFE);
690 return 0;
691 }
692 if (!s->usable)
693 return KDB_NOTIMP;
694 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
695 if (!s->command) {
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
697 cmdstr);
698 s->usable = 0;
699 return KDB_NOTIMP;
700 }
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
703 kfree(save_command);
704 return 0;
705 }
706
707 static int kdb_defcmd(int argc, const char **argv)
708 {
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
712 "endefcmd\n");
713 kdb_defcmd2("endefcmd", "endefcmd");
714 }
715 if (argc == 0) {
716 int i;
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
719 s->usage, s->help);
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
723 }
724 return 0;
725 }
726 if (argc != 3)
727 return KDB_ARGCOUNT;
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
730 return KDB_NOTIMP;
731 }
732 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
733 GFP_KDB);
734 if (!defcmd_set)
735 goto fail_defcmd;
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
740 s->usable = 1;
741 s->name = kdb_strdup(argv[1], GFP_KDB);
742 if (!s->name)
743 goto fail_name;
744 s->usage = kdb_strdup(argv[2], GFP_KDB);
745 if (!s->usage)
746 goto fail_usage;
747 s->help = kdb_strdup(argv[3], GFP_KDB);
748 if (!s->help)
749 goto fail_help;
750 if (s->usage[0] == '"') {
751 strcpy(s->usage, argv[2]+1);
752 s->usage[strlen(s->usage)-1] = '\0';
753 }
754 if (s->help[0] == '"') {
755 strcpy(s->help, argv[3]+1);
756 s->help[strlen(s->help)-1] = '\0';
757 }
758 ++defcmd_set_count;
759 defcmd_in_progress = 1;
760 kfree(save_defcmd_set);
761 return 0;
762 fail_help:
763 kfree(s->usage);
764 fail_usage:
765 kfree(s->name);
766 fail_name:
767 kfree(defcmd_set);
768 fail_defcmd:
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
771 return KDB_NOTIMP;
772 }
773
774 /*
775 * kdb_exec_defcmd - Execute the set of commands associated with this
776 * defcmd name.
777 * Inputs:
778 * argc argument count
779 * argv argument vector
780 * Returns:
781 * zero for success, a kdb diagnostic if error
782 */
783 static int kdb_exec_defcmd(int argc, const char **argv)
784 {
785 int i, ret;
786 struct defcmd_set *s;
787 if (argc != 0)
788 return KDB_ARGCOUNT;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
791 break;
792 }
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
795 argv[0]);
796 return KDB_NOTIMP;
797 }
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
800 * this point */
801 argv = NULL;
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
804 if (ret)
805 return ret;
806 }
807 return 0;
808 }
809
810 /* Command history */
811 #define KDB_CMD_HISTORY_COUNT 32
812 #define CMD_BUFLEN 200 /* kdb_printf: max printline
813 * size == 256 */
814 static unsigned int cmd_head, cmd_tail;
815 static unsigned int cmdptr;
816 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817 static char cmd_cur[CMD_BUFLEN];
818
819 /*
820 * The "str" argument may point to something like | grep xyz
821 */
822 static void parse_grep(const char *str)
823 {
824 int len;
825 char *cp = (char *)str, *cp2;
826
827 /* sanity check: we should have been called with the \ first */
828 if (*cp != '|')
829 return;
830 cp++;
831 while (isspace(*cp))
832 cp++;
833 if (strncmp(cp, "grep ", 5)) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
835 return;
836 }
837 cp += 5;
838 while (isspace(*cp))
839 cp++;
840 cp2 = strchr(cp, '\n');
841 if (cp2)
842 *cp2 = '\0'; /* remove the trailing newline */
843 len = strlen(cp);
844 if (len == 0) {
845 kdb_printf("invalid 'pipe', see grephelp\n");
846 return;
847 }
848 /* now cp points to a nonzero length search string */
849 if (*cp == '"') {
850 /* allow it be "x y z" by removing the "'s - there must
851 be two of them */
852 cp++;
853 cp2 = strchr(cp, '"');
854 if (!cp2) {
855 kdb_printf("invalid quoted string, see grephelp\n");
856 return;
857 }
858 *cp2 = '\0'; /* end the string where the 2nd " was */
859 }
860 kdb_grep_leading = 0;
861 if (*cp == '^') {
862 kdb_grep_leading = 1;
863 cp++;
864 }
865 len = strlen(cp);
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
869 *(cp+len-1) = '\0';
870 }
871 len = strlen(cp);
872 if (!len)
873 return;
874 if (len >= KDB_GREP_STRLEN) {
875 kdb_printf("search string too long\n");
876 return;
877 }
878 strcpy(kdb_grep_string, cp);
879 kdb_grepping_flag++;
880 return;
881 }
882
883 /*
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
889 * kdb_parse().
890 * Parameters:
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
893 * Returns:
894 * Zero for success, a kdb diagnostic if failure.
895 * Remarks:
896 * Limited to 20 tokens.
897 *
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
901 *
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
906 * token string.
907 */
908
909 #define MAXARGC 20
910
911 int kdb_parse(const char *cmdstr)
912 {
913 static char *argv[MAXARGC];
914 static int argc;
915 static char cbuf[CMD_BUFLEN+2];
916 char *cp;
917 char *cpp, quoted;
918 kdbtab_t *tp;
919 int i, escaped, ignore_errors = 0, check_grep = 0;
920
921 /*
922 * First tokenize the command string.
923 */
924 cp = (char *)cmdstr;
925
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
932 }
933
934 if (*cp != '\n' && *cp != '\0') {
935 argc = 0;
936 cpp = cbuf;
937 while (*cp) {
938 /* skip whitespace */
939 while (isspace(*cp))
940 cp++;
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
943 break;
944 /* special case: check for | grep pattern */
945 if (*cp == '|') {
946 check_grep++;
947 break;
948 }
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
952 cmdstr);
953 return KDB_NOTFOUND;
954 }
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
958 return KDB_NOTFOUND;
959 }
960 argv[argc++] = cpp;
961 escaped = 0;
962 quoted = '\0';
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
968 break;
969 if (escaped) {
970 escaped = 0;
971 *cpp++ = *cp++;
972 continue;
973 }
974 if (*cp == '\\') {
975 escaped = 1;
976 ++cp;
977 continue;
978 }
979 if (*cp == quoted)
980 quoted = '\0';
981 else if (*cp == '\'' || *cp == '"')
982 quoted = *cp;
983 *cpp = *cp++;
984 if (*cpp == '=' && !quoted)
985 break;
986 ++cpp;
987 }
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
989 }
990 }
991 if (!argc)
992 return 0;
993 if (check_grep)
994 parse_grep(cp);
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
999 *(argv[0]) = '\0';
1000 }
1001 return result;
1002 }
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 ignore_errors = 1;
1006 ++argv[0];
1007 }
1008
1009 for_each_kdbcmd(tp, i) {
1010 if (tp->cmd_name) {
1011 /*
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1014 */
1015
1016 if (tp->cmd_minlen
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1019 tp->cmd_name,
1020 tp->cmd_minlen) == 0) {
1021 break;
1022 }
1023 }
1024
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1034 */
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1037 if (tp->cmd_name) {
1038 if (strncmp(argv[0],
1039 tp->cmd_name,
1040 strlen(tp->cmd_name)) == 0) {
1041 break;
1042 }
1043 }
1044 }
1045 }
1046
1047 if (i < kdb_max_commands) {
1048 int result;
1049
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 return KDB_NOPERM;
1052
1053 KDB_STATE_SET(CMD);
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1056 result = 0;
1057 KDB_STATE_CLEAR(CMD);
1058
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 return result;
1061
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 if (argv[argc])
1064 *(argv[argc]) = '\0';
1065 return result;
1066 }
1067
1068 /*
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1074 */
1075 {
1076 unsigned long value;
1077 char *name = NULL;
1078 long offset;
1079 int nextarg = 0;
1080
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1084 }
1085
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 kdb_printf("\n");
1089 return 0;
1090 }
1091 }
1092
1093
1094 static int handle_ctrl_cmd(char *cmd)
1095 {
1096 #define CTRL_P 16
1097 #define CTRL_N 14
1098
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1101 return 0;
1102 switch (*cmd) {
1103 case CTRL_P:
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 return 1;
1108 case CTRL_N:
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 return 1;
1113 }
1114 return 0;
1115 }
1116
1117 /*
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1120 */
1121 static int kdb_reboot(int argc, const char **argv)
1122 {
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 while (1)
1126 cpu_relax();
1127 /* NOTREACHED */
1128 return 0;
1129 }
1130
1131 static void kdb_dumpregs(struct pt_regs *regs)
1132 {
1133 int old_lvl = console_loglevel;
1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135 kdb_trap_printk++;
1136 show_regs(regs);
1137 kdb_trap_printk--;
1138 kdb_printf("\n");
1139 console_loglevel = old_lvl;
1140 }
1141
1142 void kdb_set_current_task(struct task_struct *p)
1143 {
1144 kdb_current_task = p;
1145
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 return;
1149 }
1150 kdb_current_regs = NULL;
1151 }
1152
1153 /*
1154 * kdb_local - The main code for kdb. This routine is invoked on a
1155 * specific processor, it is not global. The main kdb() routine
1156 * ensures that only one processor at a time is in this routine.
1157 * This code is called with the real reason code on the first
1158 * entry to a kdb session, thereafter it is called with reason
1159 * SWITCH, even if the user goes back to the original cpu.
1160 * Inputs:
1161 * reason The reason KDB was invoked
1162 * error The hardware-defined error code
1163 * regs The exception frame at time of fault/breakpoint.
1164 * db_result Result code from the break or debug point.
1165 * Returns:
1166 * 0 KDB was invoked for an event which it wasn't responsible
1167 * 1 KDB handled the event for which it was invoked.
1168 * KDB_CMD_GO User typed 'go'.
1169 * KDB_CMD_CPU User switched to another cpu.
1170 * KDB_CMD_SS Single step.
1171 */
1172 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1173 kdb_dbtrap_t db_result)
1174 {
1175 char *cmdbuf;
1176 int diag;
1177 struct task_struct *kdb_current =
1178 kdb_curr_task(raw_smp_processor_id());
1179
1180 KDB_DEBUG_STATE("kdb_local 1", reason);
1181 kdb_go_count = 0;
1182 if (reason == KDB_REASON_DEBUG) {
1183 /* special case below */
1184 } else {
1185 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1186 kdb_current, kdb_current ? kdb_current->pid : 0);
1187 #if defined(CONFIG_SMP)
1188 kdb_printf("on processor %d ", raw_smp_processor_id());
1189 #endif
1190 }
1191
1192 switch (reason) {
1193 case KDB_REASON_DEBUG:
1194 {
1195 /*
1196 * If re-entering kdb after a single step
1197 * command, don't print the message.
1198 */
1199 switch (db_result) {
1200 case KDB_DB_BPT:
1201 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1202 kdb_current, kdb_current->pid);
1203 #if defined(CONFIG_SMP)
1204 kdb_printf("on processor %d ", raw_smp_processor_id());
1205 #endif
1206 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1207 instruction_pointer(regs));
1208 break;
1209 case KDB_DB_SS:
1210 break;
1211 case KDB_DB_SSBPT:
1212 KDB_DEBUG_STATE("kdb_local 4", reason);
1213 return 1; /* kdba_db_trap did the work */
1214 default:
1215 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1216 db_result);
1217 break;
1218 }
1219
1220 }
1221 break;
1222 case KDB_REASON_ENTER:
1223 if (KDB_STATE(KEYBOARD))
1224 kdb_printf("due to Keyboard Entry\n");
1225 else
1226 kdb_printf("due to KDB_ENTER()\n");
1227 break;
1228 case KDB_REASON_KEYBOARD:
1229 KDB_STATE_SET(KEYBOARD);
1230 kdb_printf("due to Keyboard Entry\n");
1231 break;
1232 case KDB_REASON_ENTER_SLAVE:
1233 /* drop through, slaves only get released via cpu switch */
1234 case KDB_REASON_SWITCH:
1235 kdb_printf("due to cpu switch\n");
1236 break;
1237 case KDB_REASON_OOPS:
1238 kdb_printf("Oops: %s\n", kdb_diemsg);
1239 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1240 instruction_pointer(regs));
1241 kdb_dumpregs(regs);
1242 break;
1243 case KDB_REASON_SYSTEM_NMI:
1244 kdb_printf("due to System NonMaskable Interrupt\n");
1245 break;
1246 case KDB_REASON_NMI:
1247 kdb_printf("due to NonMaskable Interrupt @ "
1248 kdb_machreg_fmt "\n",
1249 instruction_pointer(regs));
1250 break;
1251 case KDB_REASON_SSTEP:
1252 case KDB_REASON_BREAK:
1253 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1254 reason == KDB_REASON_BREAK ?
1255 "Breakpoint" : "SS trap", instruction_pointer(regs));
1256 /*
1257 * Determine if this breakpoint is one that we
1258 * are interested in.
1259 */
1260 if (db_result != KDB_DB_BPT) {
1261 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1262 db_result);
1263 KDB_DEBUG_STATE("kdb_local 6", reason);
1264 return 0; /* Not for us, dismiss it */
1265 }
1266 break;
1267 case KDB_REASON_RECURSE:
1268 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1269 instruction_pointer(regs));
1270 break;
1271 default:
1272 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1273 KDB_DEBUG_STATE("kdb_local 8", reason);
1274 return 0; /* Not for us, dismiss it */
1275 }
1276
1277 while (1) {
1278 /*
1279 * Initialize pager context.
1280 */
1281 kdb_nextline = 1;
1282 KDB_STATE_CLEAR(SUPPRESS);
1283 kdb_grepping_flag = 0;
1284 /* ensure the old search does not leak into '/' commands */
1285 kdb_grep_string[0] = '\0';
1286
1287 cmdbuf = cmd_cur;
1288 *cmdbuf = '\0';
1289 *(cmd_hist[cmd_head]) = '\0';
1290
1291 do_full_getstr:
1292 #if defined(CONFIG_SMP)
1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1294 raw_smp_processor_id());
1295 #else
1296 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1297 #endif
1298 if (defcmd_in_progress)
1299 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1300
1301 /*
1302 * Fetch command from keyboard
1303 */
1304 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1305 if (*cmdbuf != '\n') {
1306 if (*cmdbuf < 32) {
1307 if (cmdptr == cmd_head) {
1308 strncpy(cmd_hist[cmd_head], cmd_cur,
1309 CMD_BUFLEN);
1310 *(cmd_hist[cmd_head] +
1311 strlen(cmd_hist[cmd_head])-1) = '\0';
1312 }
1313 if (!handle_ctrl_cmd(cmdbuf))
1314 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1315 cmdbuf = cmd_cur;
1316 goto do_full_getstr;
1317 } else {
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1319 CMD_BUFLEN);
1320 }
1321
1322 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1323 if (cmd_head == cmd_tail)
1324 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1325 }
1326
1327 cmdptr = cmd_head;
1328 diag = kdb_parse(cmdbuf);
1329 if (diag == KDB_NOTFOUND) {
1330 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1331 diag = 0;
1332 }
1333 if (diag == KDB_CMD_GO
1334 || diag == KDB_CMD_CPU
1335 || diag == KDB_CMD_SS
1336 || diag == KDB_CMD_KGDB)
1337 break;
1338
1339 if (diag)
1340 kdb_cmderror(diag);
1341 }
1342 KDB_DEBUG_STATE("kdb_local 9", diag);
1343 return diag;
1344 }
1345
1346
1347 /*
1348 * kdb_print_state - Print the state data for the current processor
1349 * for debugging.
1350 * Inputs:
1351 * text Identifies the debug point
1352 * value Any integer value to be printed, e.g. reason code.
1353 */
1354 void kdb_print_state(const char *text, int value)
1355 {
1356 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1357 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1358 kdb_state);
1359 }
1360
1361 /*
1362 * kdb_main_loop - After initial setup and assignment of the
1363 * controlling cpu, all cpus are in this loop. One cpu is in
1364 * control and will issue the kdb prompt, the others will spin
1365 * until 'go' or cpu switch.
1366 *
1367 * To get a consistent view of the kernel stacks for all
1368 * processes, this routine is invoked from the main kdb code via
1369 * an architecture specific routine. kdba_main_loop is
1370 * responsible for making the kernel stacks consistent for all
1371 * processes, there should be no difference between a blocked
1372 * process and a running process as far as kdb is concerned.
1373 * Inputs:
1374 * reason The reason KDB was invoked
1375 * error The hardware-defined error code
1376 * reason2 kdb's current reason code.
1377 * Initially error but can change
1378 * according to kdb state.
1379 * db_result Result code from break or debug point.
1380 * regs The exception frame at time of fault/breakpoint.
1381 * should always be valid.
1382 * Returns:
1383 * 0 KDB was invoked for an event which it wasn't responsible
1384 * 1 KDB handled the event for which it was invoked.
1385 */
1386 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1387 kdb_dbtrap_t db_result, struct pt_regs *regs)
1388 {
1389 int result = 1;
1390 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1391 while (1) {
1392 /*
1393 * All processors except the one that is in control
1394 * will spin here.
1395 */
1396 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1397 while (KDB_STATE(HOLD_CPU)) {
1398 /* state KDB is turned off by kdb_cpu to see if the
1399 * other cpus are still live, each cpu in this loop
1400 * turns it back on.
1401 */
1402 if (!KDB_STATE(KDB))
1403 KDB_STATE_SET(KDB);
1404 }
1405
1406 KDB_STATE_CLEAR(SUPPRESS);
1407 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1408 if (KDB_STATE(LEAVING))
1409 break; /* Another cpu said 'go' */
1410 /* Still using kdb, this processor is in control */
1411 result = kdb_local(reason2, error, regs, db_result);
1412 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1413
1414 if (result == KDB_CMD_CPU)
1415 break;
1416
1417 if (result == KDB_CMD_SS) {
1418 KDB_STATE_SET(DOING_SS);
1419 break;
1420 }
1421
1422 if (result == KDB_CMD_KGDB) {
1423 if (!KDB_STATE(DOING_KGDB))
1424 kdb_printf("Entering please attach debugger "
1425 "or use $D#44+ or $3#33\n");
1426 break;
1427 }
1428 if (result && result != 1 && result != KDB_CMD_GO)
1429 kdb_printf("\nUnexpected kdb_local return code %d\n",
1430 result);
1431 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1432 break;
1433 }
1434 if (KDB_STATE(DOING_SS))
1435 KDB_STATE_CLEAR(SSBPT);
1436
1437 /* Clean up any keyboard devices before leaving */
1438 kdb_kbd_cleanup_state();
1439
1440 return result;
1441 }
1442
1443 /*
1444 * kdb_mdr - This function implements the guts of the 'mdr', memory
1445 * read command.
1446 * mdr <addr arg>,<byte count>
1447 * Inputs:
1448 * addr Start address
1449 * count Number of bytes
1450 * Returns:
1451 * Always 0. Any errors are detected and printed by kdb_getarea.
1452 */
1453 static int kdb_mdr(unsigned long addr, unsigned int count)
1454 {
1455 unsigned char c;
1456 while (count--) {
1457 if (kdb_getarea(c, addr))
1458 return 0;
1459 kdb_printf("%02x", c);
1460 addr++;
1461 }
1462 kdb_printf("\n");
1463 return 0;
1464 }
1465
1466 /*
1467 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1468 * 'md8' 'mdr' and 'mds' commands.
1469 *
1470 * md|mds [<addr arg> [<line count> [<radix>]]]
1471 * mdWcN [<addr arg> [<line count> [<radix>]]]
1472 * where W = is the width (1, 2, 4 or 8) and N is the count.
1473 * for eg., md1c20 reads 20 bytes, 1 at a time.
1474 * mdr <addr arg>,<byte count>
1475 */
1476 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1477 int symbolic, int nosect, int bytesperword,
1478 int num, int repeat, int phys)
1479 {
1480 /* print just one line of data */
1481 kdb_symtab_t symtab;
1482 char cbuf[32];
1483 char *c = cbuf;
1484 int i;
1485 unsigned long word;
1486
1487 memset(cbuf, '\0', sizeof(cbuf));
1488 if (phys)
1489 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1490 else
1491 kdb_printf(kdb_machreg_fmt0 " ", addr);
1492
1493 for (i = 0; i < num && repeat--; i++) {
1494 if (phys) {
1495 if (kdb_getphysword(&word, addr, bytesperword))
1496 break;
1497 } else if (kdb_getword(&word, addr, bytesperword))
1498 break;
1499 kdb_printf(fmtstr, word);
1500 if (symbolic)
1501 kdbnearsym(word, &symtab);
1502 else
1503 memset(&symtab, 0, sizeof(symtab));
1504 if (symtab.sym_name) {
1505 kdb_symbol_print(word, &symtab, 0);
1506 if (!nosect) {
1507 kdb_printf("\n");
1508 kdb_printf(" %s %s "
1509 kdb_machreg_fmt " "
1510 kdb_machreg_fmt " "
1511 kdb_machreg_fmt, symtab.mod_name,
1512 symtab.sec_name, symtab.sec_start,
1513 symtab.sym_start, symtab.sym_end);
1514 }
1515 addr += bytesperword;
1516 } else {
1517 union {
1518 u64 word;
1519 unsigned char c[8];
1520 } wc;
1521 unsigned char *cp;
1522 #ifdef __BIG_ENDIAN
1523 cp = wc.c + 8 - bytesperword;
1524 #else
1525 cp = wc.c;
1526 #endif
1527 wc.word = word;
1528 #define printable_char(c) \
1529 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1530 switch (bytesperword) {
1531 case 8:
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 *c++ = printable_char(*cp++);
1535 *c++ = printable_char(*cp++);
1536 addr += 4;
1537 case 4:
1538 *c++ = printable_char(*cp++);
1539 *c++ = printable_char(*cp++);
1540 addr += 2;
1541 case 2:
1542 *c++ = printable_char(*cp++);
1543 addr++;
1544 case 1:
1545 *c++ = printable_char(*cp++);
1546 addr++;
1547 break;
1548 }
1549 #undef printable_char
1550 }
1551 }
1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553 " ", cbuf);
1554 }
1555
1556 static int kdb_md(int argc, const char **argv)
1557 {
1558 static unsigned long last_addr;
1559 static int last_radix, last_bytesperword, last_repeat;
1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561 int nosect = 0;
1562 char fmtchar, fmtstr[64];
1563 unsigned long addr;
1564 unsigned long word;
1565 long offset = 0;
1566 int symbolic = 0;
1567 int valid = 0;
1568 int phys = 0;
1569
1570 kdbgetintenv("MDCOUNT", &mdcount);
1571 kdbgetintenv("RADIX", &radix);
1572 kdbgetintenv("BYTESPERWORD", &bytesperword);
1573
1574 /* Assume 'md <addr>' and start with environment values */
1575 repeat = mdcount * 16 / bytesperword;
1576
1577 if (strcmp(argv[0], "mdr") == 0) {
1578 if (argc != 2)
1579 return KDB_ARGCOUNT;
1580 valid = 1;
1581 } else if (isdigit(argv[0][2])) {
1582 bytesperword = (int)(argv[0][2] - '0');
1583 if (bytesperword == 0) {
1584 bytesperword = last_bytesperword;
1585 if (bytesperword == 0)
1586 bytesperword = 4;
1587 }
1588 last_bytesperword = bytesperword;
1589 repeat = mdcount * 16 / bytesperword;
1590 if (!argv[0][3])
1591 valid = 1;
1592 else if (argv[0][3] == 'c' && argv[0][4]) {
1593 char *p;
1594 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1595 mdcount = ((repeat * bytesperword) + 15) / 16;
1596 valid = !*p;
1597 }
1598 last_repeat = repeat;
1599 } else if (strcmp(argv[0], "md") == 0)
1600 valid = 1;
1601 else if (strcmp(argv[0], "mds") == 0)
1602 valid = 1;
1603 else if (strcmp(argv[0], "mdp") == 0) {
1604 phys = valid = 1;
1605 }
1606 if (!valid)
1607 return KDB_NOTFOUND;
1608
1609 if (argc == 0) {
1610 if (last_addr == 0)
1611 return KDB_ARGCOUNT;
1612 addr = last_addr;
1613 radix = last_radix;
1614 bytesperword = last_bytesperword;
1615 repeat = last_repeat;
1616 mdcount = ((repeat * bytesperword) + 15) / 16;
1617 }
1618
1619 if (argc) {
1620 unsigned long val;
1621 int diag, nextarg = 1;
1622 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1623 &offset, NULL);
1624 if (diag)
1625 return diag;
1626 if (argc > nextarg+2)
1627 return KDB_ARGCOUNT;
1628
1629 if (argc >= nextarg) {
1630 diag = kdbgetularg(argv[nextarg], &val);
1631 if (!diag) {
1632 mdcount = (int) val;
1633 repeat = mdcount * 16 / bytesperword;
1634 }
1635 }
1636 if (argc >= nextarg+1) {
1637 diag = kdbgetularg(argv[nextarg+1], &val);
1638 if (!diag)
1639 radix = (int) val;
1640 }
1641 }
1642
1643 if (strcmp(argv[0], "mdr") == 0)
1644 return kdb_mdr(addr, mdcount);
1645
1646 switch (radix) {
1647 case 10:
1648 fmtchar = 'd';
1649 break;
1650 case 16:
1651 fmtchar = 'x';
1652 break;
1653 case 8:
1654 fmtchar = 'o';
1655 break;
1656 default:
1657 return KDB_BADRADIX;
1658 }
1659
1660 last_radix = radix;
1661
1662 if (bytesperword > KDB_WORD_SIZE)
1663 return KDB_BADWIDTH;
1664
1665 switch (bytesperword) {
1666 case 8:
1667 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1668 break;
1669 case 4:
1670 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1671 break;
1672 case 2:
1673 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1674 break;
1675 case 1:
1676 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1677 break;
1678 default:
1679 return KDB_BADWIDTH;
1680 }
1681
1682 last_repeat = repeat;
1683 last_bytesperword = bytesperword;
1684
1685 if (strcmp(argv[0], "mds") == 0) {
1686 symbolic = 1;
1687 /* Do not save these changes as last_*, they are temporary mds
1688 * overrides.
1689 */
1690 bytesperword = KDB_WORD_SIZE;
1691 repeat = mdcount;
1692 kdbgetintenv("NOSECT", &nosect);
1693 }
1694
1695 /* Round address down modulo BYTESPERWORD */
1696
1697 addr &= ~(bytesperword-1);
1698
1699 while (repeat > 0) {
1700 unsigned long a;
1701 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1702
1703 if (KDB_FLAG(CMD_INTERRUPT))
1704 return 0;
1705 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1706 if (phys) {
1707 if (kdb_getphysword(&word, a, bytesperword)
1708 || word)
1709 break;
1710 } else if (kdb_getword(&word, a, bytesperword) || word)
1711 break;
1712 }
1713 n = min(num, repeat);
1714 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1715 num, repeat, phys);
1716 addr += bytesperword * n;
1717 repeat -= n;
1718 z = (z + num - 1) / num;
1719 if (z > 2) {
1720 int s = num * (z-2);
1721 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1722 " zero suppressed\n",
1723 addr, addr + bytesperword * s - 1);
1724 addr += bytesperword * s;
1725 repeat -= s;
1726 }
1727 }
1728 last_addr = addr;
1729
1730 return 0;
1731 }
1732
1733 /*
1734 * kdb_mm - This function implements the 'mm' command.
1735 * mm address-expression new-value
1736 * Remarks:
1737 * mm works on machine words, mmW works on bytes.
1738 */
1739 static int kdb_mm(int argc, const char **argv)
1740 {
1741 int diag;
1742 unsigned long addr;
1743 long offset = 0;
1744 unsigned long contents;
1745 int nextarg;
1746 int width;
1747
1748 if (argv[0][2] && !isdigit(argv[0][2]))
1749 return KDB_NOTFOUND;
1750
1751 if (argc < 2)
1752 return KDB_ARGCOUNT;
1753
1754 nextarg = 1;
1755 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1756 if (diag)
1757 return diag;
1758
1759 if (nextarg > argc)
1760 return KDB_ARGCOUNT;
1761 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1762 if (diag)
1763 return diag;
1764
1765 if (nextarg != argc + 1)
1766 return KDB_ARGCOUNT;
1767
1768 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1769 diag = kdb_putword(addr, contents, width);
1770 if (diag)
1771 return diag;
1772
1773 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1774
1775 return 0;
1776 }
1777
1778 /*
1779 * kdb_go - This function implements the 'go' command.
1780 * go [address-expression]
1781 */
1782 static int kdb_go(int argc, const char **argv)
1783 {
1784 unsigned long addr;
1785 int diag;
1786 int nextarg;
1787 long offset;
1788
1789 if (raw_smp_processor_id() != kdb_initial_cpu) {
1790 kdb_printf("go must execute on the entry cpu, "
1791 "please use \"cpu %d\" and then execute go\n",
1792 kdb_initial_cpu);
1793 return KDB_BADCPUNUM;
1794 }
1795 if (argc == 1) {
1796 nextarg = 1;
1797 diag = kdbgetaddrarg(argc, argv, &nextarg,
1798 &addr, &offset, NULL);
1799 if (diag)
1800 return diag;
1801 } else if (argc) {
1802 return KDB_ARGCOUNT;
1803 }
1804
1805 diag = KDB_CMD_GO;
1806 if (KDB_FLAG(CATASTROPHIC)) {
1807 kdb_printf("Catastrophic error detected\n");
1808 kdb_printf("kdb_continue_catastrophic=%d, ",
1809 kdb_continue_catastrophic);
1810 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1811 kdb_printf("type go a second time if you really want "
1812 "to continue\n");
1813 return 0;
1814 }
1815 if (kdb_continue_catastrophic == 2) {
1816 kdb_printf("forcing reboot\n");
1817 kdb_reboot(0, NULL);
1818 }
1819 kdb_printf("attempting to continue\n");
1820 }
1821 return diag;
1822 }
1823
1824 /*
1825 * kdb_rd - This function implements the 'rd' command.
1826 */
1827 static int kdb_rd(int argc, const char **argv)
1828 {
1829 int len = kdb_check_regs();
1830 #if DBG_MAX_REG_NUM > 0
1831 int i;
1832 char *rname;
1833 int rsize;
1834 u64 reg64;
1835 u32 reg32;
1836 u16 reg16;
1837 u8 reg8;
1838
1839 if (len)
1840 return len;
1841
1842 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1843 rsize = dbg_reg_def[i].size * 2;
1844 if (rsize > 16)
1845 rsize = 2;
1846 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1847 len = 0;
1848 kdb_printf("\n");
1849 }
1850 if (len)
1851 len += kdb_printf(" ");
1852 switch(dbg_reg_def[i].size * 8) {
1853 case 8:
1854 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1855 if (!rname)
1856 break;
1857 len += kdb_printf("%s: %02x", rname, reg8);
1858 break;
1859 case 16:
1860 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1861 if (!rname)
1862 break;
1863 len += kdb_printf("%s: %04x", rname, reg16);
1864 break;
1865 case 32:
1866 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1867 if (!rname)
1868 break;
1869 len += kdb_printf("%s: %08x", rname, reg32);
1870 break;
1871 case 64:
1872 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1873 if (!rname)
1874 break;
1875 len += kdb_printf("%s: %016llx", rname, reg64);
1876 break;
1877 default:
1878 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1879 }
1880 }
1881 kdb_printf("\n");
1882 #else
1883 if (len)
1884 return len;
1885
1886 kdb_dumpregs(kdb_current_regs);
1887 #endif
1888 return 0;
1889 }
1890
1891 /*
1892 * kdb_rm - This function implements the 'rm' (register modify) command.
1893 * rm register-name new-contents
1894 * Remarks:
1895 * Allows register modification with the same restrictions as gdb
1896 */
1897 static int kdb_rm(int argc, const char **argv)
1898 {
1899 #if DBG_MAX_REG_NUM > 0
1900 int diag;
1901 const char *rname;
1902 int i;
1903 u64 reg64;
1904 u32 reg32;
1905 u16 reg16;
1906 u8 reg8;
1907
1908 if (argc != 2)
1909 return KDB_ARGCOUNT;
1910 /*
1911 * Allow presence or absence of leading '%' symbol.
1912 */
1913 rname = argv[1];
1914 if (*rname == '%')
1915 rname++;
1916
1917 diag = kdbgetu64arg(argv[2], &reg64);
1918 if (diag)
1919 return diag;
1920
1921 diag = kdb_check_regs();
1922 if (diag)
1923 return diag;
1924
1925 diag = KDB_BADREG;
1926 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1927 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1928 diag = 0;
1929 break;
1930 }
1931 }
1932 if (!diag) {
1933 switch(dbg_reg_def[i].size * 8) {
1934 case 8:
1935 reg8 = reg64;
1936 dbg_set_reg(i, &reg8, kdb_current_regs);
1937 break;
1938 case 16:
1939 reg16 = reg64;
1940 dbg_set_reg(i, &reg16, kdb_current_regs);
1941 break;
1942 case 32:
1943 reg32 = reg64;
1944 dbg_set_reg(i, &reg32, kdb_current_regs);
1945 break;
1946 case 64:
1947 dbg_set_reg(i, &reg64, kdb_current_regs);
1948 break;
1949 }
1950 }
1951 return diag;
1952 #else
1953 kdb_printf("ERROR: Register set currently not implemented\n");
1954 return 0;
1955 #endif
1956 }
1957
1958 #if defined(CONFIG_MAGIC_SYSRQ)
1959 /*
1960 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1961 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1962 * sr <magic-sysrq-code>
1963 */
1964 static int kdb_sr(int argc, const char **argv)
1965 {
1966 bool check_mask =
1967 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1968
1969 if (argc != 1)
1970 return KDB_ARGCOUNT;
1971
1972 kdb_trap_printk++;
1973 __handle_sysrq(*argv[1], check_mask ? SYSRQ_FROM_KERNEL : 0);
1974 kdb_trap_printk--;
1975
1976 return 0;
1977 }
1978 #endif /* CONFIG_MAGIC_SYSRQ */
1979
1980 /*
1981 * kdb_ef - This function implements the 'regs' (display exception
1982 * frame) command. This command takes an address and expects to
1983 * find an exception frame at that address, formats and prints
1984 * it.
1985 * regs address-expression
1986 * Remarks:
1987 * Not done yet.
1988 */
1989 static int kdb_ef(int argc, const char **argv)
1990 {
1991 int diag;
1992 unsigned long addr;
1993 long offset;
1994 int nextarg;
1995
1996 if (argc != 1)
1997 return KDB_ARGCOUNT;
1998
1999 nextarg = 1;
2000 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2001 if (diag)
2002 return diag;
2003 show_regs((struct pt_regs *)addr);
2004 return 0;
2005 }
2006
2007 #if defined(CONFIG_MODULES)
2008 /*
2009 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2010 * currently loaded kernel modules.
2011 * Mostly taken from userland lsmod.
2012 */
2013 static int kdb_lsmod(int argc, const char **argv)
2014 {
2015 struct module *mod;
2016
2017 if (argc != 0)
2018 return KDB_ARGCOUNT;
2019
2020 kdb_printf("Module Size modstruct Used by\n");
2021 list_for_each_entry(mod, kdb_modules, list) {
2022 if (mod->state == MODULE_STATE_UNFORMED)
2023 continue;
2024
2025 kdb_printf("%-20s%8u 0x%p ", mod->name,
2026 mod->core_layout.size, (void *)mod);
2027 #ifdef CONFIG_MODULE_UNLOAD
2028 kdb_printf("%4d ", module_refcount(mod));
2029 #endif
2030 if (mod->state == MODULE_STATE_GOING)
2031 kdb_printf(" (Unloading)");
2032 else if (mod->state == MODULE_STATE_COMING)
2033 kdb_printf(" (Loading)");
2034 else
2035 kdb_printf(" (Live)");
2036 kdb_printf(" 0x%p", mod->core_layout.base);
2037
2038 #ifdef CONFIG_MODULE_UNLOAD
2039 {
2040 struct module_use *use;
2041 kdb_printf(" [ ");
2042 list_for_each_entry(use, &mod->source_list,
2043 source_list)
2044 kdb_printf("%s ", use->target->name);
2045 kdb_printf("]\n");
2046 }
2047 #endif
2048 }
2049
2050 return 0;
2051 }
2052
2053 #endif /* CONFIG_MODULES */
2054
2055 /*
2056 * kdb_env - This function implements the 'env' command. Display the
2057 * current environment variables.
2058 */
2059
2060 static int kdb_env(int argc, const char **argv)
2061 {
2062 int i;
2063
2064 for (i = 0; i < __nenv; i++) {
2065 if (__env[i])
2066 kdb_printf("%s\n", __env[i]);
2067 }
2068
2069 if (KDB_DEBUG(MASK))
2070 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2071
2072 return 0;
2073 }
2074
2075 #ifdef CONFIG_PRINTK
2076 /*
2077 * kdb_dmesg - This function implements the 'dmesg' command to display
2078 * the contents of the syslog buffer.
2079 * dmesg [lines] [adjust]
2080 */
2081 static int kdb_dmesg(int argc, const char **argv)
2082 {
2083 int diag;
2084 int logging;
2085 int lines = 0;
2086 int adjust = 0;
2087 int n = 0;
2088 int skip = 0;
2089 struct kmsg_dumper dumper = { .active = 1 };
2090 size_t len;
2091 char buf[201];
2092
2093 if (argc > 2)
2094 return KDB_ARGCOUNT;
2095 if (argc) {
2096 char *cp;
2097 lines = simple_strtol(argv[1], &cp, 0);
2098 if (*cp)
2099 lines = 0;
2100 if (argc > 1) {
2101 adjust = simple_strtoul(argv[2], &cp, 0);
2102 if (*cp || adjust < 0)
2103 adjust = 0;
2104 }
2105 }
2106
2107 /* disable LOGGING if set */
2108 diag = kdbgetintenv("LOGGING", &logging);
2109 if (!diag && logging) {
2110 const char *setargs[] = { "set", "LOGGING", "0" };
2111 kdb_set(2, setargs);
2112 }
2113
2114 kmsg_dump_rewind_nolock(&dumper);
2115 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2116 n++;
2117
2118 if (lines < 0) {
2119 if (adjust >= n)
2120 kdb_printf("buffer only contains %d lines, nothing "
2121 "printed\n", n);
2122 else if (adjust - lines >= n)
2123 kdb_printf("buffer only contains %d lines, last %d "
2124 "lines printed\n", n, n - adjust);
2125 skip = adjust;
2126 lines = abs(lines);
2127 } else if (lines > 0) {
2128 skip = n - lines - adjust;
2129 lines = abs(lines);
2130 if (adjust >= n) {
2131 kdb_printf("buffer only contains %d lines, "
2132 "nothing printed\n", n);
2133 skip = n;
2134 } else if (skip < 0) {
2135 lines += skip;
2136 skip = 0;
2137 kdb_printf("buffer only contains %d lines, first "
2138 "%d lines printed\n", n, lines);
2139 }
2140 } else {
2141 lines = n;
2142 }
2143
2144 if (skip >= n || skip < 0)
2145 return 0;
2146
2147 kmsg_dump_rewind_nolock(&dumper);
2148 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2149 if (skip) {
2150 skip--;
2151 continue;
2152 }
2153 if (!lines--)
2154 break;
2155 if (KDB_FLAG(CMD_INTERRUPT))
2156 return 0;
2157
2158 kdb_printf("%.*s\n", (int)len - 1, buf);
2159 }
2160
2161 return 0;
2162 }
2163 #endif /* CONFIG_PRINTK */
2164
2165 /* Make sure we balance enable/disable calls, must disable first. */
2166 static atomic_t kdb_nmi_disabled;
2167
2168 static int kdb_disable_nmi(int argc, const char *argv[])
2169 {
2170 if (atomic_read(&kdb_nmi_disabled))
2171 return 0;
2172 atomic_set(&kdb_nmi_disabled, 1);
2173 arch_kgdb_ops.enable_nmi(0);
2174 return 0;
2175 }
2176
2177 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2178 {
2179 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2180 return -EINVAL;
2181 arch_kgdb_ops.enable_nmi(1);
2182 return 0;
2183 }
2184
2185 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2186 .set = kdb_param_enable_nmi,
2187 };
2188 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2189
2190 /*
2191 * kdb_cpu - This function implements the 'cpu' command.
2192 * cpu [<cpunum>]
2193 * Returns:
2194 * KDB_CMD_CPU for success, a kdb diagnostic if error
2195 */
2196 static void kdb_cpu_status(void)
2197 {
2198 int i, start_cpu, first_print = 1;
2199 char state, prev_state = '?';
2200
2201 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2202 kdb_printf("Available cpus: ");
2203 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2204 if (!cpu_online(i)) {
2205 state = 'F'; /* cpu is offline */
2206 } else if (!kgdb_info[i].enter_kgdb) {
2207 state = 'D'; /* cpu is online but unresponsive */
2208 } else {
2209 state = ' '; /* cpu is responding to kdb */
2210 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2211 state = 'I'; /* idle task */
2212 }
2213 if (state != prev_state) {
2214 if (prev_state != '?') {
2215 if (!first_print)
2216 kdb_printf(", ");
2217 first_print = 0;
2218 kdb_printf("%d", start_cpu);
2219 if (start_cpu < i-1)
2220 kdb_printf("-%d", i-1);
2221 if (prev_state != ' ')
2222 kdb_printf("(%c)", prev_state);
2223 }
2224 prev_state = state;
2225 start_cpu = i;
2226 }
2227 }
2228 /* print the trailing cpus, ignoring them if they are all offline */
2229 if (prev_state != 'F') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 kdb_printf("%d", start_cpu);
2233 if (start_cpu < i-1)
2234 kdb_printf("-%d", i-1);
2235 if (prev_state != ' ')
2236 kdb_printf("(%c)", prev_state);
2237 }
2238 kdb_printf("\n");
2239 }
2240
2241 static int kdb_cpu(int argc, const char **argv)
2242 {
2243 unsigned long cpunum;
2244 int diag;
2245
2246 if (argc == 0) {
2247 kdb_cpu_status();
2248 return 0;
2249 }
2250
2251 if (argc != 1)
2252 return KDB_ARGCOUNT;
2253
2254 diag = kdbgetularg(argv[1], &cpunum);
2255 if (diag)
2256 return diag;
2257
2258 /*
2259 * Validate cpunum
2260 */
2261 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2262 return KDB_BADCPUNUM;
2263
2264 dbg_switch_cpu = cpunum;
2265
2266 /*
2267 * Switch to other cpu
2268 */
2269 return KDB_CMD_CPU;
2270 }
2271
2272 /* The user may not realize that ps/bta with no parameters does not print idle
2273 * or sleeping system daemon processes, so tell them how many were suppressed.
2274 */
2275 void kdb_ps_suppressed(void)
2276 {
2277 int idle = 0, daemon = 0;
2278 unsigned long mask_I = kdb_task_state_string("I"),
2279 mask_M = kdb_task_state_string("M");
2280 unsigned long cpu;
2281 const struct task_struct *p, *g;
2282 for_each_online_cpu(cpu) {
2283 p = kdb_curr_task(cpu);
2284 if (kdb_task_state(p, mask_I))
2285 ++idle;
2286 }
2287 kdb_do_each_thread(g, p) {
2288 if (kdb_task_state(p, mask_M))
2289 ++daemon;
2290 } kdb_while_each_thread(g, p);
2291 if (idle || daemon) {
2292 if (idle)
2293 kdb_printf("%d idle process%s (state I)%s\n",
2294 idle, idle == 1 ? "" : "es",
2295 daemon ? " and " : "");
2296 if (daemon)
2297 kdb_printf("%d sleeping system daemon (state M) "
2298 "process%s", daemon,
2299 daemon == 1 ? "" : "es");
2300 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2301 }
2302 }
2303
2304 /*
2305 * kdb_ps - This function implements the 'ps' command which shows a
2306 * list of the active processes.
2307 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2308 */
2309 void kdb_ps1(const struct task_struct *p)
2310 {
2311 int cpu;
2312 unsigned long tmp;
2313
2314 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2315 return;
2316
2317 cpu = kdb_process_cpu(p);
2318 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2319 (void *)p, p->pid, p->parent->pid,
2320 kdb_task_has_cpu(p), kdb_process_cpu(p),
2321 kdb_task_state_char(p),
2322 (void *)(&p->thread),
2323 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2324 p->comm);
2325 if (kdb_task_has_cpu(p)) {
2326 if (!KDB_TSK(cpu)) {
2327 kdb_printf(" Error: no saved data for this cpu\n");
2328 } else {
2329 if (KDB_TSK(cpu) != p)
2330 kdb_printf(" Error: does not match running "
2331 "process table (0x%p)\n", KDB_TSK(cpu));
2332 }
2333 }
2334 }
2335
2336 static int kdb_ps(int argc, const char **argv)
2337 {
2338 struct task_struct *g, *p;
2339 unsigned long mask, cpu;
2340
2341 if (argc == 0)
2342 kdb_ps_suppressed();
2343 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2344 (int)(2*sizeof(void *))+2, "Task Addr",
2345 (int)(2*sizeof(void *))+2, "Thread");
2346 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2347 /* Run the active tasks first */
2348 for_each_online_cpu(cpu) {
2349 if (KDB_FLAG(CMD_INTERRUPT))
2350 return 0;
2351 p = kdb_curr_task(cpu);
2352 if (kdb_task_state(p, mask))
2353 kdb_ps1(p);
2354 }
2355 kdb_printf("\n");
2356 /* Now the real tasks */
2357 kdb_do_each_thread(g, p) {
2358 if (KDB_FLAG(CMD_INTERRUPT))
2359 return 0;
2360 if (kdb_task_state(p, mask))
2361 kdb_ps1(p);
2362 } kdb_while_each_thread(g, p);
2363
2364 return 0;
2365 }
2366
2367 /*
2368 * kdb_pid - This function implements the 'pid' command which switches
2369 * the currently active process.
2370 * pid [<pid> | R]
2371 */
2372 static int kdb_pid(int argc, const char **argv)
2373 {
2374 struct task_struct *p;
2375 unsigned long val;
2376 int diag;
2377
2378 if (argc > 1)
2379 return KDB_ARGCOUNT;
2380
2381 if (argc) {
2382 if (strcmp(argv[1], "R") == 0) {
2383 p = KDB_TSK(kdb_initial_cpu);
2384 } else {
2385 diag = kdbgetularg(argv[1], &val);
2386 if (diag)
2387 return KDB_BADINT;
2388
2389 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2390 if (!p) {
2391 kdb_printf("No task with pid=%d\n", (pid_t)val);
2392 return 0;
2393 }
2394 }
2395 kdb_set_current_task(p);
2396 }
2397 kdb_printf("KDB current process is %s(pid=%d)\n",
2398 kdb_current_task->comm,
2399 kdb_current_task->pid);
2400
2401 return 0;
2402 }
2403
2404 static int kdb_kgdb(int argc, const char **argv)
2405 {
2406 return KDB_CMD_KGDB;
2407 }
2408
2409 /*
2410 * kdb_help - This function implements the 'help' and '?' commands.
2411 */
2412 static int kdb_help(int argc, const char **argv)
2413 {
2414 kdbtab_t *kt;
2415 int i;
2416
2417 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2418 kdb_printf("-----------------------------"
2419 "-----------------------------\n");
2420 for_each_kdbcmd(kt, i) {
2421 char *space = "";
2422 if (KDB_FLAG(CMD_INTERRUPT))
2423 return 0;
2424 if (!kt->cmd_name)
2425 continue;
2426 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2427 continue;
2428 if (strlen(kt->cmd_usage) > 20)
2429 space = "\n ";
2430 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2431 kt->cmd_usage, space, kt->cmd_help);
2432 }
2433 return 0;
2434 }
2435
2436 /*
2437 * kdb_kill - This function implements the 'kill' commands.
2438 */
2439 static int kdb_kill(int argc, const char **argv)
2440 {
2441 long sig, pid;
2442 char *endp;
2443 struct task_struct *p;
2444 struct siginfo info;
2445
2446 if (argc != 2)
2447 return KDB_ARGCOUNT;
2448
2449 sig = simple_strtol(argv[1], &endp, 0);
2450 if (*endp)
2451 return KDB_BADINT;
2452 if (sig >= 0) {
2453 kdb_printf("Invalid signal parameter.<-signal>\n");
2454 return 0;
2455 }
2456 sig = -sig;
2457
2458 pid = simple_strtol(argv[2], &endp, 0);
2459 if (*endp)
2460 return KDB_BADINT;
2461 if (pid <= 0) {
2462 kdb_printf("Process ID must be large than 0.\n");
2463 return 0;
2464 }
2465
2466 /* Find the process. */
2467 p = find_task_by_pid_ns(pid, &init_pid_ns);
2468 if (!p) {
2469 kdb_printf("The specified process isn't found.\n");
2470 return 0;
2471 }
2472 p = p->group_leader;
2473 info.si_signo = sig;
2474 info.si_errno = 0;
2475 info.si_code = SI_USER;
2476 info.si_pid = pid; /* same capabilities as process being signalled */
2477 info.si_uid = 0; /* kdb has root authority */
2478 kdb_send_sig_info(p, &info);
2479 return 0;
2480 }
2481
2482 struct kdb_tm {
2483 int tm_sec; /* seconds */
2484 int tm_min; /* minutes */
2485 int tm_hour; /* hours */
2486 int tm_mday; /* day of the month */
2487 int tm_mon; /* month */
2488 int tm_year; /* year */
2489 };
2490
2491 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2492 {
2493 /* This will work from 1970-2099, 2100 is not a leap year */
2494 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2495 31, 30, 31, 30, 31 };
2496 memset(tm, 0, sizeof(*tm));
2497 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2498 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2499 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2500 tm->tm_min = tm->tm_sec / 60 % 60;
2501 tm->tm_hour = tm->tm_sec / 60 / 60;
2502 tm->tm_sec = tm->tm_sec % 60;
2503 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2504 tm->tm_mday %= (4*365+1);
2505 mon_day[1] = 29;
2506 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2507 tm->tm_mday -= mon_day[tm->tm_mon];
2508 if (++tm->tm_mon == 12) {
2509 tm->tm_mon = 0;
2510 ++tm->tm_year;
2511 mon_day[1] = 28;
2512 }
2513 }
2514 ++tm->tm_mday;
2515 }
2516
2517 /*
2518 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2519 * I cannot call that code directly from kdb, it has an unconditional
2520 * cli()/sti() and calls routines that take locks which can stop the debugger.
2521 */
2522 static void kdb_sysinfo(struct sysinfo *val)
2523 {
2524 struct timespec uptime;
2525 ktime_get_ts(&uptime);
2526 memset(val, 0, sizeof(*val));
2527 val->uptime = uptime.tv_sec;
2528 val->loads[0] = avenrun[0];
2529 val->loads[1] = avenrun[1];
2530 val->loads[2] = avenrun[2];
2531 val->procs = nr_threads-1;
2532 si_meminfo(val);
2533
2534 return;
2535 }
2536
2537 /*
2538 * kdb_summary - This function implements the 'summary' command.
2539 */
2540 static int kdb_summary(int argc, const char **argv)
2541 {
2542 struct timespec now;
2543 struct kdb_tm tm;
2544 struct sysinfo val;
2545
2546 if (argc)
2547 return KDB_ARGCOUNT;
2548
2549 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2550 kdb_printf("release %s\n", init_uts_ns.name.release);
2551 kdb_printf("version %s\n", init_uts_ns.name.version);
2552 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2553 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2554 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2555 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2556
2557 now = __current_kernel_time();
2558 kdb_gmtime(&now, &tm);
2559 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2560 "tz_minuteswest %d\n",
2561 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2562 tm.tm_hour, tm.tm_min, tm.tm_sec,
2563 sys_tz.tz_minuteswest);
2564
2565 kdb_sysinfo(&val);
2566 kdb_printf("uptime ");
2567 if (val.uptime > (24*60*60)) {
2568 int days = val.uptime / (24*60*60);
2569 val.uptime %= (24*60*60);
2570 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2571 }
2572 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2573
2574 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2575
2576 #define LOAD_INT(x) ((x) >> FSHIFT)
2577 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2578 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2579 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2580 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2581 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2582 #undef LOAD_INT
2583 #undef LOAD_FRAC
2584 /* Display in kilobytes */
2585 #define K(x) ((x) << (PAGE_SHIFT - 10))
2586 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2587 "Buffers: %8lu kB\n",
2588 K(val.totalram), K(val.freeram), K(val.bufferram));
2589 return 0;
2590 }
2591
2592 /*
2593 * kdb_per_cpu - This function implements the 'per_cpu' command.
2594 */
2595 static int kdb_per_cpu(int argc, const char **argv)
2596 {
2597 char fmtstr[64];
2598 int cpu, diag, nextarg = 1;
2599 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2600
2601 if (argc < 1 || argc > 3)
2602 return KDB_ARGCOUNT;
2603
2604 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2605 if (diag)
2606 return diag;
2607
2608 if (argc >= 2) {
2609 diag = kdbgetularg(argv[2], &bytesperword);
2610 if (diag)
2611 return diag;
2612 }
2613 if (!bytesperword)
2614 bytesperword = KDB_WORD_SIZE;
2615 else if (bytesperword > KDB_WORD_SIZE)
2616 return KDB_BADWIDTH;
2617 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2618 if (argc >= 3) {
2619 diag = kdbgetularg(argv[3], &whichcpu);
2620 if (diag)
2621 return diag;
2622 if (!cpu_online(whichcpu)) {
2623 kdb_printf("cpu %ld is not online\n", whichcpu);
2624 return KDB_BADCPUNUM;
2625 }
2626 }
2627
2628 /* Most architectures use __per_cpu_offset[cpu], some use
2629 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2630 */
2631 #ifdef __per_cpu_offset
2632 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2633 #else
2634 #ifdef CONFIG_SMP
2635 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2636 #else
2637 #define KDB_PCU(cpu) 0
2638 #endif
2639 #endif
2640 for_each_online_cpu(cpu) {
2641 if (KDB_FLAG(CMD_INTERRUPT))
2642 return 0;
2643
2644 if (whichcpu != ~0UL && whichcpu != cpu)
2645 continue;
2646 addr = symaddr + KDB_PCU(cpu);
2647 diag = kdb_getword(&val, addr, bytesperword);
2648 if (diag) {
2649 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2650 "read, diag=%d\n", cpu, addr, diag);
2651 continue;
2652 }
2653 kdb_printf("%5d ", cpu);
2654 kdb_md_line(fmtstr, addr,
2655 bytesperword == KDB_WORD_SIZE,
2656 1, bytesperword, 1, 1, 0);
2657 }
2658 #undef KDB_PCU
2659 return 0;
2660 }
2661
2662 /*
2663 * display help for the use of cmd | grep pattern
2664 */
2665 static int kdb_grep_help(int argc, const char **argv)
2666 {
2667 kdb_printf("Usage of cmd args | grep pattern:\n");
2668 kdb_printf(" Any command's output may be filtered through an ");
2669 kdb_printf("emulated 'pipe'.\n");
2670 kdb_printf(" 'grep' is just a key word.\n");
2671 kdb_printf(" The pattern may include a very limited set of "
2672 "metacharacters:\n");
2673 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2674 kdb_printf(" And if there are spaces in the pattern, you may "
2675 "quote it:\n");
2676 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2677 " or \"^pat tern$\"\n");
2678 return 0;
2679 }
2680
2681 /*
2682 * kdb_register_flags - This function is used to register a kernel
2683 * debugger command.
2684 * Inputs:
2685 * cmd Command name
2686 * func Function to execute the command
2687 * usage A simple usage string showing arguments
2688 * help A simple help string describing command
2689 * repeat Does the command auto repeat on enter?
2690 * Returns:
2691 * zero for success, one if a duplicate command.
2692 */
2693 #define kdb_command_extend 50 /* arbitrary */
2694 int kdb_register_flags(char *cmd,
2695 kdb_func_t func,
2696 char *usage,
2697 char *help,
2698 short minlen,
2699 kdb_cmdflags_t flags)
2700 {
2701 int i;
2702 kdbtab_t *kp;
2703
2704 /*
2705 * Brute force method to determine duplicates
2706 */
2707 for_each_kdbcmd(kp, i) {
2708 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2709 kdb_printf("Duplicate kdb command registered: "
2710 "%s, func %p help %s\n", cmd, func, help);
2711 return 1;
2712 }
2713 }
2714
2715 /*
2716 * Insert command into first available location in table
2717 */
2718 for_each_kdbcmd(kp, i) {
2719 if (kp->cmd_name == NULL)
2720 break;
2721 }
2722
2723 if (i >= kdb_max_commands) {
2724 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2725 kdb_command_extend) * sizeof(*new), GFP_KDB);
2726 if (!new) {
2727 kdb_printf("Could not allocate new kdb_command "
2728 "table\n");
2729 return 1;
2730 }
2731 if (kdb_commands) {
2732 memcpy(new, kdb_commands,
2733 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2734 kfree(kdb_commands);
2735 }
2736 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2737 kdb_command_extend * sizeof(*new));
2738 kdb_commands = new;
2739 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2740 kdb_max_commands += kdb_command_extend;
2741 }
2742
2743 kp->cmd_name = cmd;
2744 kp->cmd_func = func;
2745 kp->cmd_usage = usage;
2746 kp->cmd_help = help;
2747 kp->cmd_minlen = minlen;
2748 kp->cmd_flags = flags;
2749
2750 return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(kdb_register_flags);
2753
2754
2755 /*
2756 * kdb_register - Compatibility register function for commands that do
2757 * not need to specify a repeat state. Equivalent to
2758 * kdb_register_flags with flags set to 0.
2759 * Inputs:
2760 * cmd Command name
2761 * func Function to execute the command
2762 * usage A simple usage string showing arguments
2763 * help A simple help string describing command
2764 * Returns:
2765 * zero for success, one if a duplicate command.
2766 */
2767 int kdb_register(char *cmd,
2768 kdb_func_t func,
2769 char *usage,
2770 char *help,
2771 short minlen)
2772 {
2773 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2774 }
2775 EXPORT_SYMBOL_GPL(kdb_register);
2776
2777 /*
2778 * kdb_unregister - This function is used to unregister a kernel
2779 * debugger command. It is generally called when a module which
2780 * implements kdb commands is unloaded.
2781 * Inputs:
2782 * cmd Command name
2783 * Returns:
2784 * zero for success, one command not registered.
2785 */
2786 int kdb_unregister(char *cmd)
2787 {
2788 int i;
2789 kdbtab_t *kp;
2790
2791 /*
2792 * find the command.
2793 */
2794 for_each_kdbcmd(kp, i) {
2795 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2796 kp->cmd_name = NULL;
2797 return 0;
2798 }
2799 }
2800
2801 /* Couldn't find it. */
2802 return 1;
2803 }
2804 EXPORT_SYMBOL_GPL(kdb_unregister);
2805
2806 /* Initialize the kdb command table. */
2807 static void __init kdb_inittab(void)
2808 {
2809 int i;
2810 kdbtab_t *kp;
2811
2812 for_each_kdbcmd(kp, i)
2813 kp->cmd_name = NULL;
2814
2815 kdb_register_flags("md", kdb_md, "<vaddr>",
2816 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2817 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2819 "Display Raw Memory", 0,
2820 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2822 "Display Physical Memory", 0,
2823 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824 kdb_register_flags("mds", kdb_md, "<vaddr>",
2825 "Display Memory Symbolically", 0,
2826 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2827 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2828 "Modify Memory Contents", 0,
2829 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2830 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2831 "Continue Execution", 1,
2832 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2833 kdb_register_flags("rd", kdb_rd, "",
2834 "Display Registers", 0,
2835 KDB_ENABLE_REG_READ);
2836 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2837 "Modify Registers", 0,
2838 KDB_ENABLE_REG_WRITE);
2839 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2840 "Display exception frame", 0,
2841 KDB_ENABLE_MEM_READ);
2842 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2843 "Stack traceback", 1,
2844 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2845 kdb_register_flags("btp", kdb_bt, "<pid>",
2846 "Display stack for process <pid>", 0,
2847 KDB_ENABLE_INSPECT);
2848 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2849 "Backtrace all processes matching state flag", 0,
2850 KDB_ENABLE_INSPECT);
2851 kdb_register_flags("btc", kdb_bt, "",
2852 "Backtrace current process on each cpu", 0,
2853 KDB_ENABLE_INSPECT);
2854 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2855 "Backtrace process given its struct task address", 0,
2856 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2857 kdb_register_flags("env", kdb_env, "",
2858 "Show environment variables", 0,
2859 KDB_ENABLE_ALWAYS_SAFE);
2860 kdb_register_flags("set", kdb_set, "",
2861 "Set environment variables", 0,
2862 KDB_ENABLE_ALWAYS_SAFE);
2863 kdb_register_flags("help", kdb_help, "",
2864 "Display Help Message", 1,
2865 KDB_ENABLE_ALWAYS_SAFE);
2866 kdb_register_flags("?", kdb_help, "",
2867 "Display Help Message", 0,
2868 KDB_ENABLE_ALWAYS_SAFE);
2869 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2870 "Switch to new cpu", 0,
2871 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2872 kdb_register_flags("kgdb", kdb_kgdb, "",
2873 "Enter kgdb mode", 0, 0);
2874 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2875 "Display active task list", 0,
2876 KDB_ENABLE_INSPECT);
2877 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2878 "Switch to another task", 0,
2879 KDB_ENABLE_INSPECT);
2880 kdb_register_flags("reboot", kdb_reboot, "",
2881 "Reboot the machine immediately", 0,
2882 KDB_ENABLE_REBOOT);
2883 #if defined(CONFIG_MODULES)
2884 kdb_register_flags("lsmod", kdb_lsmod, "",
2885 "List loaded kernel modules", 0,
2886 KDB_ENABLE_INSPECT);
2887 #endif
2888 #if defined(CONFIG_MAGIC_SYSRQ)
2889 kdb_register_flags("sr", kdb_sr, "<key>",
2890 "Magic SysRq key", 0,
2891 KDB_ENABLE_ALWAYS_SAFE);
2892 #endif
2893 #if defined(CONFIG_PRINTK)
2894 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2895 "Display syslog buffer", 0,
2896 KDB_ENABLE_ALWAYS_SAFE);
2897 #endif
2898 if (arch_kgdb_ops.enable_nmi) {
2899 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2900 "Disable NMI entry to KDB", 0,
2901 KDB_ENABLE_ALWAYS_SAFE);
2902 }
2903 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2904 "Define a set of commands, down to endefcmd", 0,
2905 KDB_ENABLE_ALWAYS_SAFE);
2906 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2907 "Send a signal to a process", 0,
2908 KDB_ENABLE_SIGNAL);
2909 kdb_register_flags("summary", kdb_summary, "",
2910 "Summarize the system", 4,
2911 KDB_ENABLE_ALWAYS_SAFE);
2912 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2913 "Display per_cpu variables", 3,
2914 KDB_ENABLE_MEM_READ);
2915 kdb_register_flags("grephelp", kdb_grep_help, "",
2916 "Display help on | grep", 0,
2917 KDB_ENABLE_ALWAYS_SAFE);
2918 }
2919
2920 /* Execute any commands defined in kdb_cmds. */
2921 static void __init kdb_cmd_init(void)
2922 {
2923 int i, diag;
2924 for (i = 0; kdb_cmds[i]; ++i) {
2925 diag = kdb_parse(kdb_cmds[i]);
2926 if (diag)
2927 kdb_printf("kdb command %s failed, kdb diag %d\n",
2928 kdb_cmds[i], diag);
2929 }
2930 if (defcmd_in_progress) {
2931 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2932 kdb_parse("endefcmd");
2933 }
2934 }
2935
2936 /* Initialize kdb_printf, breakpoint tables and kdb state */
2937 void __init kdb_init(int lvl)
2938 {
2939 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2940 int i;
2941
2942 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2943 return;
2944 for (i = kdb_init_lvl; i < lvl; i++) {
2945 switch (i) {
2946 case KDB_NOT_INITIALIZED:
2947 kdb_inittab(); /* Initialize Command Table */
2948 kdb_initbptab(); /* Initialize Breakpoints */
2949 break;
2950 case KDB_INIT_EARLY:
2951 kdb_cmd_init(); /* Build kdb_cmds tables */
2952 break;
2953 }
2954 }
2955 kdb_init_lvl = lvl;
2956 }