]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/dma/mapping.c
mmc: core: Allow setting slot index via device tree alias
[mirror_ubuntu-jammy-kernel.git] / kernel / dma / mapping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 /*
19 * Managed DMA API
20 */
21 struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
26 };
27
28 static void dmam_release(struct device *dev, void *res)
29 {
30 struct dma_devres *this = res;
31
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
34 }
35
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46 }
47
48 /**
49 * dmam_free_coherent - Managed dma_free_coherent()
50 * @dev: Device to free coherent memory for
51 * @size: Size of allocation
52 * @vaddr: Virtual address of the memory to free
53 * @dma_handle: DMA handle of the memory to free
54 *
55 * Managed dma_free_coherent().
56 */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 dma_addr_t dma_handle)
59 {
60 struct dma_devres match_data = { size, vaddr, dma_handle };
61
62 dma_free_coherent(dev, size, vaddr, dma_handle);
63 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66
67 /**
68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
69 * @dev: Device to allocate non_coherent memory for
70 * @size: Size of allocation
71 * @dma_handle: Out argument for allocated DMA handle
72 * @gfp: Allocation flags
73 * @attrs: Flags in the DMA_ATTR_* namespace.
74 *
75 * Managed dma_alloc_attrs(). Memory allocated using this function will be
76 * automatically released on driver detach.
77 *
78 * RETURNS:
79 * Pointer to allocated memory on success, NULL on failure.
80 */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 gfp_t gfp, unsigned long attrs)
83 {
84 struct dma_devres *dr;
85 void *vaddr;
86
87 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 if (!dr)
89 return NULL;
90
91 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 if (!vaddr) {
93 devres_free(dr);
94 return NULL;
95 }
96
97 dr->vaddr = vaddr;
98 dr->dma_handle = *dma_handle;
99 dr->size = size;
100 dr->attrs = attrs;
101
102 devres_add(dev, dr);
103
104 return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107
108 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
109 const struct dma_map_ops *ops)
110 {
111 if (likely(!ops))
112 return true;
113 #ifdef CONFIG_DMA_OPS_BYPASS
114 if (dev->dma_ops_bypass)
115 return min_not_zero(mask, dev->bus_dma_limit) >=
116 dma_direct_get_required_mask(dev);
117 #endif
118 return false;
119 }
120
121
122 /*
123 * Check if the devices uses a direct mapping for streaming DMA operations.
124 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
125 * enough.
126 */
127 static inline bool dma_alloc_direct(struct device *dev,
128 const struct dma_map_ops *ops)
129 {
130 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
131 }
132
133 static inline bool dma_map_direct(struct device *dev,
134 const struct dma_map_ops *ops)
135 {
136 return dma_go_direct(dev, *dev->dma_mask, ops);
137 }
138
139 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
140 size_t offset, size_t size, enum dma_data_direction dir,
141 unsigned long attrs)
142 {
143 const struct dma_map_ops *ops = get_dma_ops(dev);
144 dma_addr_t addr;
145
146 BUG_ON(!valid_dma_direction(dir));
147 if (dma_map_direct(dev, ops))
148 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
149 else
150 addr = ops->map_page(dev, page, offset, size, dir, attrs);
151 debug_dma_map_page(dev, page, offset, size, dir, addr);
152
153 return addr;
154 }
155 EXPORT_SYMBOL(dma_map_page_attrs);
156
157 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
158 enum dma_data_direction dir, unsigned long attrs)
159 {
160 const struct dma_map_ops *ops = get_dma_ops(dev);
161
162 BUG_ON(!valid_dma_direction(dir));
163 if (dma_map_direct(dev, ops))
164 dma_direct_unmap_page(dev, addr, size, dir, attrs);
165 else if (ops->unmap_page)
166 ops->unmap_page(dev, addr, size, dir, attrs);
167 debug_dma_unmap_page(dev, addr, size, dir);
168 }
169 EXPORT_SYMBOL(dma_unmap_page_attrs);
170
171 /*
172 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
173 * It should never return a value < 0.
174 */
175 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
176 enum dma_data_direction dir, unsigned long attrs)
177 {
178 const struct dma_map_ops *ops = get_dma_ops(dev);
179 int ents;
180
181 BUG_ON(!valid_dma_direction(dir));
182 if (dma_map_direct(dev, ops))
183 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
184 else
185 ents = ops->map_sg(dev, sg, nents, dir, attrs);
186 BUG_ON(ents < 0);
187 debug_dma_map_sg(dev, sg, nents, ents, dir);
188
189 return ents;
190 }
191 EXPORT_SYMBOL(dma_map_sg_attrs);
192
193 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
194 int nents, enum dma_data_direction dir,
195 unsigned long attrs)
196 {
197 const struct dma_map_ops *ops = get_dma_ops(dev);
198
199 BUG_ON(!valid_dma_direction(dir));
200 debug_dma_unmap_sg(dev, sg, nents, dir);
201 if (dma_map_direct(dev, ops))
202 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
203 else if (ops->unmap_sg)
204 ops->unmap_sg(dev, sg, nents, dir, attrs);
205 }
206 EXPORT_SYMBOL(dma_unmap_sg_attrs);
207
208 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
209 size_t size, enum dma_data_direction dir, unsigned long attrs)
210 {
211 const struct dma_map_ops *ops = get_dma_ops(dev);
212 dma_addr_t addr = DMA_MAPPING_ERROR;
213
214 BUG_ON(!valid_dma_direction(dir));
215
216 /* Don't allow RAM to be mapped */
217 if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
218 return DMA_MAPPING_ERROR;
219
220 if (dma_map_direct(dev, ops))
221 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
222 else if (ops->map_resource)
223 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
224
225 debug_dma_map_resource(dev, phys_addr, size, dir, addr);
226 return addr;
227 }
228 EXPORT_SYMBOL(dma_map_resource);
229
230 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
231 enum dma_data_direction dir, unsigned long attrs)
232 {
233 const struct dma_map_ops *ops = get_dma_ops(dev);
234
235 BUG_ON(!valid_dma_direction(dir));
236 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
237 ops->unmap_resource(dev, addr, size, dir, attrs);
238 debug_dma_unmap_resource(dev, addr, size, dir);
239 }
240 EXPORT_SYMBOL(dma_unmap_resource);
241
242 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
243 enum dma_data_direction dir)
244 {
245 const struct dma_map_ops *ops = get_dma_ops(dev);
246
247 BUG_ON(!valid_dma_direction(dir));
248 if (dma_map_direct(dev, ops))
249 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
250 else if (ops->sync_single_for_cpu)
251 ops->sync_single_for_cpu(dev, addr, size, dir);
252 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
253 }
254 EXPORT_SYMBOL(dma_sync_single_for_cpu);
255
256 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
257 size_t size, enum dma_data_direction dir)
258 {
259 const struct dma_map_ops *ops = get_dma_ops(dev);
260
261 BUG_ON(!valid_dma_direction(dir));
262 if (dma_map_direct(dev, ops))
263 dma_direct_sync_single_for_device(dev, addr, size, dir);
264 else if (ops->sync_single_for_device)
265 ops->sync_single_for_device(dev, addr, size, dir);
266 debug_dma_sync_single_for_device(dev, addr, size, dir);
267 }
268 EXPORT_SYMBOL(dma_sync_single_for_device);
269
270 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
271 int nelems, enum dma_data_direction dir)
272 {
273 const struct dma_map_ops *ops = get_dma_ops(dev);
274
275 BUG_ON(!valid_dma_direction(dir));
276 if (dma_map_direct(dev, ops))
277 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
278 else if (ops->sync_sg_for_cpu)
279 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
280 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
281 }
282 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
283
284 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
285 int nelems, enum dma_data_direction dir)
286 {
287 const struct dma_map_ops *ops = get_dma_ops(dev);
288
289 BUG_ON(!valid_dma_direction(dir));
290 if (dma_map_direct(dev, ops))
291 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
292 else if (ops->sync_sg_for_device)
293 ops->sync_sg_for_device(dev, sg, nelems, dir);
294 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
295 }
296 EXPORT_SYMBOL(dma_sync_sg_for_device);
297
298 /*
299 * Create scatter-list for the already allocated DMA buffer.
300 */
301 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
302 void *cpu_addr, dma_addr_t dma_addr, size_t size,
303 unsigned long attrs)
304 {
305 struct page *page = virt_to_page(cpu_addr);
306 int ret;
307
308 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
309 if (!ret)
310 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
311 return ret;
312 }
313
314 /*
315 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
316 * that the intention is to allow exporting memory allocated via the
317 * coherent DMA APIs through the dma_buf API, which only accepts a
318 * scattertable. This presents a couple of problems:
319 * 1. Not all memory allocated via the coherent DMA APIs is backed by
320 * a struct page
321 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
322 * as we will try to flush the memory through a different alias to that
323 * actually being used (and the flushes are redundant.)
324 */
325 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
326 void *cpu_addr, dma_addr_t dma_addr, size_t size,
327 unsigned long attrs)
328 {
329 const struct dma_map_ops *ops = get_dma_ops(dev);
330
331 if (dma_alloc_direct(dev, ops))
332 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
333 size, attrs);
334 if (!ops->get_sgtable)
335 return -ENXIO;
336 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
337 }
338 EXPORT_SYMBOL(dma_get_sgtable_attrs);
339
340 #ifdef CONFIG_MMU
341 /*
342 * Return the page attributes used for mapping dma_alloc_* memory, either in
343 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
344 */
345 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
346 {
347 if (force_dma_unencrypted(dev))
348 prot = pgprot_decrypted(prot);
349 if (dev_is_dma_coherent(dev) ||
350 (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
351 (attrs & DMA_ATTR_NON_CONSISTENT)))
352 return prot;
353 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
354 if (attrs & DMA_ATTR_WRITE_COMBINE)
355 return pgprot_writecombine(prot);
356 #endif
357 return pgprot_dmacoherent(prot);
358 }
359 #endif /* CONFIG_MMU */
360
361 /*
362 * Create userspace mapping for the DMA-coherent memory.
363 */
364 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
365 void *cpu_addr, dma_addr_t dma_addr, size_t size,
366 unsigned long attrs)
367 {
368 #ifdef CONFIG_MMU
369 unsigned long user_count = vma_pages(vma);
370 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
371 unsigned long off = vma->vm_pgoff;
372 int ret = -ENXIO;
373
374 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
375
376 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
377 return ret;
378
379 if (off >= count || user_count > count - off)
380 return -ENXIO;
381
382 return remap_pfn_range(vma, vma->vm_start,
383 page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff,
384 user_count << PAGE_SHIFT, vma->vm_page_prot);
385 #else
386 return -ENXIO;
387 #endif /* CONFIG_MMU */
388 }
389
390 /**
391 * dma_can_mmap - check if a given device supports dma_mmap_*
392 * @dev: device to check
393 *
394 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
395 * map DMA allocations to userspace.
396 */
397 bool dma_can_mmap(struct device *dev)
398 {
399 const struct dma_map_ops *ops = get_dma_ops(dev);
400
401 if (dma_alloc_direct(dev, ops))
402 return dma_direct_can_mmap(dev);
403 return ops->mmap != NULL;
404 }
405 EXPORT_SYMBOL_GPL(dma_can_mmap);
406
407 /**
408 * dma_mmap_attrs - map a coherent DMA allocation into user space
409 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
410 * @vma: vm_area_struct describing requested user mapping
411 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
412 * @dma_addr: device-view address returned from dma_alloc_attrs
413 * @size: size of memory originally requested in dma_alloc_attrs
414 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
415 *
416 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
417 * space. The coherent DMA buffer must not be freed by the driver until the
418 * user space mapping has been released.
419 */
420 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
421 void *cpu_addr, dma_addr_t dma_addr, size_t size,
422 unsigned long attrs)
423 {
424 const struct dma_map_ops *ops = get_dma_ops(dev);
425
426 if (dma_alloc_direct(dev, ops))
427 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
428 attrs);
429 if (!ops->mmap)
430 return -ENXIO;
431 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
432 }
433 EXPORT_SYMBOL(dma_mmap_attrs);
434
435 u64 dma_get_required_mask(struct device *dev)
436 {
437 const struct dma_map_ops *ops = get_dma_ops(dev);
438
439 if (dma_alloc_direct(dev, ops))
440 return dma_direct_get_required_mask(dev);
441 if (ops->get_required_mask)
442 return ops->get_required_mask(dev);
443
444 /*
445 * We require every DMA ops implementation to at least support a 32-bit
446 * DMA mask (and use bounce buffering if that isn't supported in
447 * hardware). As the direct mapping code has its own routine to
448 * actually report an optimal mask we default to 32-bit here as that
449 * is the right thing for most IOMMUs, and at least not actively
450 * harmful in general.
451 */
452 return DMA_BIT_MASK(32);
453 }
454 EXPORT_SYMBOL_GPL(dma_get_required_mask);
455
456 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
457 gfp_t flag, unsigned long attrs)
458 {
459 const struct dma_map_ops *ops = get_dma_ops(dev);
460 void *cpu_addr;
461
462 WARN_ON_ONCE(!dev->coherent_dma_mask);
463
464 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
465 return cpu_addr;
466
467 /* let the implementation decide on the zone to allocate from: */
468 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
469
470 if (dma_alloc_direct(dev, ops))
471 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
472 else if (ops->alloc)
473 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
474 else
475 return NULL;
476
477 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
478 return cpu_addr;
479 }
480 EXPORT_SYMBOL(dma_alloc_attrs);
481
482 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
483 dma_addr_t dma_handle, unsigned long attrs)
484 {
485 const struct dma_map_ops *ops = get_dma_ops(dev);
486
487 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
488 return;
489 /*
490 * On non-coherent platforms which implement DMA-coherent buffers via
491 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
492 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
493 * sleep on some machines, and b) an indication that the driver is
494 * probably misusing the coherent API anyway.
495 */
496 WARN_ON(irqs_disabled());
497
498 if (!cpu_addr)
499 return;
500
501 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
502 if (dma_alloc_direct(dev, ops))
503 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
504 else if (ops->free)
505 ops->free(dev, size, cpu_addr, dma_handle, attrs);
506 }
507 EXPORT_SYMBOL(dma_free_attrs);
508
509 int dma_supported(struct device *dev, u64 mask)
510 {
511 const struct dma_map_ops *ops = get_dma_ops(dev);
512
513 /*
514 * ->dma_supported sets the bypass flag, so we must always call
515 * into the method here unless the device is truly direct mapped.
516 */
517 if (!ops)
518 return dma_direct_supported(dev, mask);
519 if (!ops->dma_supported)
520 return 1;
521 return ops->dma_supported(dev, mask);
522 }
523 EXPORT_SYMBOL(dma_supported);
524
525 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
526 void arch_dma_set_mask(struct device *dev, u64 mask);
527 #else
528 #define arch_dma_set_mask(dev, mask) do { } while (0)
529 #endif
530
531 int dma_set_mask(struct device *dev, u64 mask)
532 {
533 /*
534 * Truncate the mask to the actually supported dma_addr_t width to
535 * avoid generating unsupportable addresses.
536 */
537 mask = (dma_addr_t)mask;
538
539 if (!dev->dma_mask || !dma_supported(dev, mask))
540 return -EIO;
541
542 arch_dma_set_mask(dev, mask);
543 *dev->dma_mask = mask;
544 return 0;
545 }
546 EXPORT_SYMBOL(dma_set_mask);
547
548 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
549 int dma_set_coherent_mask(struct device *dev, u64 mask)
550 {
551 /*
552 * Truncate the mask to the actually supported dma_addr_t width to
553 * avoid generating unsupportable addresses.
554 */
555 mask = (dma_addr_t)mask;
556
557 if (!dma_supported(dev, mask))
558 return -EIO;
559
560 dev->coherent_dma_mask = mask;
561 return 0;
562 }
563 EXPORT_SYMBOL(dma_set_coherent_mask);
564 #endif
565
566 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
567 enum dma_data_direction dir)
568 {
569 const struct dma_map_ops *ops = get_dma_ops(dev);
570
571 BUG_ON(!valid_dma_direction(dir));
572
573 if (dma_alloc_direct(dev, ops))
574 arch_dma_cache_sync(dev, vaddr, size, dir);
575 else if (ops->cache_sync)
576 ops->cache_sync(dev, vaddr, size, dir);
577 }
578 EXPORT_SYMBOL(dma_cache_sync);
579
580 size_t dma_max_mapping_size(struct device *dev)
581 {
582 const struct dma_map_ops *ops = get_dma_ops(dev);
583 size_t size = SIZE_MAX;
584
585 if (dma_map_direct(dev, ops))
586 size = dma_direct_max_mapping_size(dev);
587 else if (ops && ops->max_mapping_size)
588 size = ops->max_mapping_size(dev);
589
590 return size;
591 }
592 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
593
594 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
595 {
596 const struct dma_map_ops *ops = get_dma_ops(dev);
597
598 if (dma_map_direct(dev, ops))
599 return dma_direct_need_sync(dev, dma_addr);
600 return ops->sync_single_for_cpu || ops->sync_single_for_device;
601 }
602 EXPORT_SYMBOL_GPL(dma_need_sync);
603
604 unsigned long dma_get_merge_boundary(struct device *dev)
605 {
606 const struct dma_map_ops *ops = get_dma_ops(dev);
607
608 if (!ops || !ops->get_merge_boundary)
609 return 0; /* can't merge */
610
611 return ops->get_merge_boundary(dev);
612 }
613 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);