]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/dma/mapping.c
68992e35c8c3a7010c283e0aaf02dcc84b2c445d
[mirror_ubuntu-jammy-kernel.git] / kernel / dma / mapping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18
19 /*
20 * Managed DMA API
21 */
22 struct dma_devres {
23 size_t size;
24 void *vaddr;
25 dma_addr_t dma_handle;
26 unsigned long attrs;
27 };
28
29 static void dmam_release(struct device *dev, void *res)
30 {
31 struct dma_devres *this = res;
32
33 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
34 this->attrs);
35 }
36
37 static int dmam_match(struct device *dev, void *res, void *match_data)
38 {
39 struct dma_devres *this = res, *match = match_data;
40
41 if (this->vaddr == match->vaddr) {
42 WARN_ON(this->size != match->size ||
43 this->dma_handle != match->dma_handle);
44 return 1;
45 }
46 return 0;
47 }
48
49 /**
50 * dmam_free_coherent - Managed dma_free_coherent()
51 * @dev: Device to free coherent memory for
52 * @size: Size of allocation
53 * @vaddr: Virtual address of the memory to free
54 * @dma_handle: DMA handle of the memory to free
55 *
56 * Managed dma_free_coherent().
57 */
58 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
59 dma_addr_t dma_handle)
60 {
61 struct dma_devres match_data = { size, vaddr, dma_handle };
62
63 dma_free_coherent(dev, size, vaddr, dma_handle);
64 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
65 }
66 EXPORT_SYMBOL(dmam_free_coherent);
67
68 /**
69 * dmam_alloc_attrs - Managed dma_alloc_attrs()
70 * @dev: Device to allocate non_coherent memory for
71 * @size: Size of allocation
72 * @dma_handle: Out argument for allocated DMA handle
73 * @gfp: Allocation flags
74 * @attrs: Flags in the DMA_ATTR_* namespace.
75 *
76 * Managed dma_alloc_attrs(). Memory allocated using this function will be
77 * automatically released on driver detach.
78 *
79 * RETURNS:
80 * Pointer to allocated memory on success, NULL on failure.
81 */
82 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
83 gfp_t gfp, unsigned long attrs)
84 {
85 struct dma_devres *dr;
86 void *vaddr;
87
88 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
89 if (!dr)
90 return NULL;
91
92 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
93 if (!vaddr) {
94 devres_free(dr);
95 return NULL;
96 }
97
98 dr->vaddr = vaddr;
99 dr->dma_handle = *dma_handle;
100 dr->size = size;
101 dr->attrs = attrs;
102
103 devres_add(dev, dr);
104
105 return vaddr;
106 }
107 EXPORT_SYMBOL(dmam_alloc_attrs);
108
109 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
110 const struct dma_map_ops *ops)
111 {
112 if (likely(!ops))
113 return true;
114 #ifdef CONFIG_DMA_OPS_BYPASS
115 if (dev->dma_ops_bypass)
116 return min_not_zero(mask, dev->bus_dma_limit) >=
117 dma_direct_get_required_mask(dev);
118 #endif
119 return false;
120 }
121
122
123 /*
124 * Check if the devices uses a direct mapping for streaming DMA operations.
125 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
126 * enough.
127 */
128 static inline bool dma_alloc_direct(struct device *dev,
129 const struct dma_map_ops *ops)
130 {
131 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
132 }
133
134 static inline bool dma_map_direct(struct device *dev,
135 const struct dma_map_ops *ops)
136 {
137 return dma_go_direct(dev, *dev->dma_mask, ops);
138 }
139
140 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
141 size_t offset, size_t size, enum dma_data_direction dir,
142 unsigned long attrs)
143 {
144 const struct dma_map_ops *ops = get_dma_ops(dev);
145 dma_addr_t addr;
146
147 BUG_ON(!valid_dma_direction(dir));
148
149 if (WARN_ON_ONCE(!dev->dma_mask))
150 return DMA_MAPPING_ERROR;
151
152 if (dma_map_direct(dev, ops) ||
153 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
154 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
155 else
156 addr = ops->map_page(dev, page, offset, size, dir, attrs);
157 debug_dma_map_page(dev, page, offset, size, dir, addr);
158
159 return addr;
160 }
161 EXPORT_SYMBOL(dma_map_page_attrs);
162
163 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
164 enum dma_data_direction dir, unsigned long attrs)
165 {
166 const struct dma_map_ops *ops = get_dma_ops(dev);
167
168 BUG_ON(!valid_dma_direction(dir));
169 if (dma_map_direct(dev, ops) ||
170 arch_dma_unmap_page_direct(dev, addr + size))
171 dma_direct_unmap_page(dev, addr, size, dir, attrs);
172 else if (ops->unmap_page)
173 ops->unmap_page(dev, addr, size, dir, attrs);
174 debug_dma_unmap_page(dev, addr, size, dir);
175 }
176 EXPORT_SYMBOL(dma_unmap_page_attrs);
177
178 /*
179 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
180 * It should never return a value < 0.
181 */
182 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
183 enum dma_data_direction dir, unsigned long attrs)
184 {
185 const struct dma_map_ops *ops = get_dma_ops(dev);
186 int ents;
187
188 BUG_ON(!valid_dma_direction(dir));
189
190 if (WARN_ON_ONCE(!dev->dma_mask))
191 return 0;
192
193 if (dma_map_direct(dev, ops) ||
194 arch_dma_map_sg_direct(dev, sg, nents))
195 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
196 else
197 ents = ops->map_sg(dev, sg, nents, dir, attrs);
198 BUG_ON(ents < 0);
199 debug_dma_map_sg(dev, sg, nents, ents, dir);
200
201 return ents;
202 }
203 EXPORT_SYMBOL(dma_map_sg_attrs);
204
205 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
206 int nents, enum dma_data_direction dir,
207 unsigned long attrs)
208 {
209 const struct dma_map_ops *ops = get_dma_ops(dev);
210
211 BUG_ON(!valid_dma_direction(dir));
212 debug_dma_unmap_sg(dev, sg, nents, dir);
213 if (dma_map_direct(dev, ops) ||
214 arch_dma_unmap_sg_direct(dev, sg, nents))
215 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
216 else if (ops->unmap_sg)
217 ops->unmap_sg(dev, sg, nents, dir, attrs);
218 }
219 EXPORT_SYMBOL(dma_unmap_sg_attrs);
220
221 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
222 size_t size, enum dma_data_direction dir, unsigned long attrs)
223 {
224 const struct dma_map_ops *ops = get_dma_ops(dev);
225 dma_addr_t addr = DMA_MAPPING_ERROR;
226
227 BUG_ON(!valid_dma_direction(dir));
228
229 if (WARN_ON_ONCE(!dev->dma_mask))
230 return DMA_MAPPING_ERROR;
231
232 /* Don't allow RAM to be mapped */
233 if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
234 return DMA_MAPPING_ERROR;
235
236 if (dma_map_direct(dev, ops))
237 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
238 else if (ops->map_resource)
239 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
240
241 debug_dma_map_resource(dev, phys_addr, size, dir, addr);
242 return addr;
243 }
244 EXPORT_SYMBOL(dma_map_resource);
245
246 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
247 enum dma_data_direction dir, unsigned long attrs)
248 {
249 const struct dma_map_ops *ops = get_dma_ops(dev);
250
251 BUG_ON(!valid_dma_direction(dir));
252 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
253 ops->unmap_resource(dev, addr, size, dir, attrs);
254 debug_dma_unmap_resource(dev, addr, size, dir);
255 }
256 EXPORT_SYMBOL(dma_unmap_resource);
257
258 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
259 enum dma_data_direction dir)
260 {
261 const struct dma_map_ops *ops = get_dma_ops(dev);
262
263 BUG_ON(!valid_dma_direction(dir));
264 if (dma_map_direct(dev, ops))
265 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
266 else if (ops->sync_single_for_cpu)
267 ops->sync_single_for_cpu(dev, addr, size, dir);
268 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
269 }
270 EXPORT_SYMBOL(dma_sync_single_for_cpu);
271
272 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
273 size_t size, enum dma_data_direction dir)
274 {
275 const struct dma_map_ops *ops = get_dma_ops(dev);
276
277 BUG_ON(!valid_dma_direction(dir));
278 if (dma_map_direct(dev, ops))
279 dma_direct_sync_single_for_device(dev, addr, size, dir);
280 else if (ops->sync_single_for_device)
281 ops->sync_single_for_device(dev, addr, size, dir);
282 debug_dma_sync_single_for_device(dev, addr, size, dir);
283 }
284 EXPORT_SYMBOL(dma_sync_single_for_device);
285
286 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
287 int nelems, enum dma_data_direction dir)
288 {
289 const struct dma_map_ops *ops = get_dma_ops(dev);
290
291 BUG_ON(!valid_dma_direction(dir));
292 if (dma_map_direct(dev, ops))
293 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
294 else if (ops->sync_sg_for_cpu)
295 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
296 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
297 }
298 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
299
300 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
301 int nelems, enum dma_data_direction dir)
302 {
303 const struct dma_map_ops *ops = get_dma_ops(dev);
304
305 BUG_ON(!valid_dma_direction(dir));
306 if (dma_map_direct(dev, ops))
307 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
308 else if (ops->sync_sg_for_device)
309 ops->sync_sg_for_device(dev, sg, nelems, dir);
310 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
311 }
312 EXPORT_SYMBOL(dma_sync_sg_for_device);
313
314 /*
315 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
316 * that the intention is to allow exporting memory allocated via the
317 * coherent DMA APIs through the dma_buf API, which only accepts a
318 * scattertable. This presents a couple of problems:
319 * 1. Not all memory allocated via the coherent DMA APIs is backed by
320 * a struct page
321 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
322 * as we will try to flush the memory through a different alias to that
323 * actually being used (and the flushes are redundant.)
324 */
325 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
326 void *cpu_addr, dma_addr_t dma_addr, size_t size,
327 unsigned long attrs)
328 {
329 const struct dma_map_ops *ops = get_dma_ops(dev);
330
331 if (dma_alloc_direct(dev, ops))
332 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
333 size, attrs);
334 if (!ops->get_sgtable)
335 return -ENXIO;
336 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
337 }
338 EXPORT_SYMBOL(dma_get_sgtable_attrs);
339
340 #ifdef CONFIG_MMU
341 /*
342 * Return the page attributes used for mapping dma_alloc_* memory, either in
343 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
344 */
345 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
346 {
347 if (force_dma_unencrypted(dev))
348 prot = pgprot_decrypted(prot);
349 if (dev_is_dma_coherent(dev))
350 return prot;
351 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
352 if (attrs & DMA_ATTR_WRITE_COMBINE)
353 return pgprot_writecombine(prot);
354 #endif
355 return pgprot_dmacoherent(prot);
356 }
357 #endif /* CONFIG_MMU */
358
359 /**
360 * dma_can_mmap - check if a given device supports dma_mmap_*
361 * @dev: device to check
362 *
363 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
364 * map DMA allocations to userspace.
365 */
366 bool dma_can_mmap(struct device *dev)
367 {
368 const struct dma_map_ops *ops = get_dma_ops(dev);
369
370 if (dma_alloc_direct(dev, ops))
371 return dma_direct_can_mmap(dev);
372 return ops->mmap != NULL;
373 }
374 EXPORT_SYMBOL_GPL(dma_can_mmap);
375
376 /**
377 * dma_mmap_attrs - map a coherent DMA allocation into user space
378 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
379 * @vma: vm_area_struct describing requested user mapping
380 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
381 * @dma_addr: device-view address returned from dma_alloc_attrs
382 * @size: size of memory originally requested in dma_alloc_attrs
383 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
384 *
385 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
386 * space. The coherent DMA buffer must not be freed by the driver until the
387 * user space mapping has been released.
388 */
389 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
390 void *cpu_addr, dma_addr_t dma_addr, size_t size,
391 unsigned long attrs)
392 {
393 const struct dma_map_ops *ops = get_dma_ops(dev);
394
395 if (dma_alloc_direct(dev, ops))
396 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
397 attrs);
398 if (!ops->mmap)
399 return -ENXIO;
400 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
401 }
402 EXPORT_SYMBOL(dma_mmap_attrs);
403
404 u64 dma_get_required_mask(struct device *dev)
405 {
406 const struct dma_map_ops *ops = get_dma_ops(dev);
407
408 if (dma_alloc_direct(dev, ops))
409 return dma_direct_get_required_mask(dev);
410 if (ops->get_required_mask)
411 return ops->get_required_mask(dev);
412
413 /*
414 * We require every DMA ops implementation to at least support a 32-bit
415 * DMA mask (and use bounce buffering if that isn't supported in
416 * hardware). As the direct mapping code has its own routine to
417 * actually report an optimal mask we default to 32-bit here as that
418 * is the right thing for most IOMMUs, and at least not actively
419 * harmful in general.
420 */
421 return DMA_BIT_MASK(32);
422 }
423 EXPORT_SYMBOL_GPL(dma_get_required_mask);
424
425 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
426 gfp_t flag, unsigned long attrs)
427 {
428 const struct dma_map_ops *ops = get_dma_ops(dev);
429 void *cpu_addr;
430
431 WARN_ON_ONCE(!dev->coherent_dma_mask);
432
433 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
434 return cpu_addr;
435
436 /* let the implementation decide on the zone to allocate from: */
437 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
438
439 if (dma_alloc_direct(dev, ops))
440 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
441 else if (ops->alloc)
442 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
443 else
444 return NULL;
445
446 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
447 return cpu_addr;
448 }
449 EXPORT_SYMBOL(dma_alloc_attrs);
450
451 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
452 dma_addr_t dma_handle, unsigned long attrs)
453 {
454 const struct dma_map_ops *ops = get_dma_ops(dev);
455
456 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
457 return;
458 /*
459 * On non-coherent platforms which implement DMA-coherent buffers via
460 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
461 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
462 * sleep on some machines, and b) an indication that the driver is
463 * probably misusing the coherent API anyway.
464 */
465 WARN_ON(irqs_disabled());
466
467 if (!cpu_addr)
468 return;
469
470 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
471 if (dma_alloc_direct(dev, ops))
472 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
473 else if (ops->free)
474 ops->free(dev, size, cpu_addr, dma_handle, attrs);
475 }
476 EXPORT_SYMBOL(dma_free_attrs);
477
478 struct page *dma_alloc_pages(struct device *dev, size_t size,
479 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
480 {
481 const struct dma_map_ops *ops = get_dma_ops(dev);
482 struct page *page;
483
484 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
485 return NULL;
486 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
487 return NULL;
488
489 size = PAGE_ALIGN(size);
490 if (dma_alloc_direct(dev, ops))
491 page = dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
492 else if (ops->alloc_pages)
493 page = ops->alloc_pages(dev, size, dma_handle, dir, gfp);
494 else
495 return NULL;
496
497 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
498
499 return page;
500 }
501 EXPORT_SYMBOL_GPL(dma_alloc_pages);
502
503 void dma_free_pages(struct device *dev, size_t size, struct page *page,
504 dma_addr_t dma_handle, enum dma_data_direction dir)
505 {
506 const struct dma_map_ops *ops = get_dma_ops(dev);
507
508 size = PAGE_ALIGN(size);
509 debug_dma_unmap_page(dev, dma_handle, size, dir);
510
511 if (dma_alloc_direct(dev, ops))
512 dma_direct_free_pages(dev, size, page, dma_handle, dir);
513 else if (ops->free_pages)
514 ops->free_pages(dev, size, page, dma_handle, dir);
515 }
516 EXPORT_SYMBOL_GPL(dma_free_pages);
517
518 int dma_supported(struct device *dev, u64 mask)
519 {
520 const struct dma_map_ops *ops = get_dma_ops(dev);
521
522 /*
523 * ->dma_supported sets the bypass flag, so we must always call
524 * into the method here unless the device is truly direct mapped.
525 */
526 if (!ops)
527 return dma_direct_supported(dev, mask);
528 if (!ops->dma_supported)
529 return 1;
530 return ops->dma_supported(dev, mask);
531 }
532 EXPORT_SYMBOL(dma_supported);
533
534 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
535 void arch_dma_set_mask(struct device *dev, u64 mask);
536 #else
537 #define arch_dma_set_mask(dev, mask) do { } while (0)
538 #endif
539
540 int dma_set_mask(struct device *dev, u64 mask)
541 {
542 /*
543 * Truncate the mask to the actually supported dma_addr_t width to
544 * avoid generating unsupportable addresses.
545 */
546 mask = (dma_addr_t)mask;
547
548 if (!dev->dma_mask || !dma_supported(dev, mask))
549 return -EIO;
550
551 arch_dma_set_mask(dev, mask);
552 *dev->dma_mask = mask;
553 return 0;
554 }
555 EXPORT_SYMBOL(dma_set_mask);
556
557 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
558 int dma_set_coherent_mask(struct device *dev, u64 mask)
559 {
560 /*
561 * Truncate the mask to the actually supported dma_addr_t width to
562 * avoid generating unsupportable addresses.
563 */
564 mask = (dma_addr_t)mask;
565
566 if (!dma_supported(dev, mask))
567 return -EIO;
568
569 dev->coherent_dma_mask = mask;
570 return 0;
571 }
572 EXPORT_SYMBOL(dma_set_coherent_mask);
573 #endif
574
575 size_t dma_max_mapping_size(struct device *dev)
576 {
577 const struct dma_map_ops *ops = get_dma_ops(dev);
578 size_t size = SIZE_MAX;
579
580 if (dma_map_direct(dev, ops))
581 size = dma_direct_max_mapping_size(dev);
582 else if (ops && ops->max_mapping_size)
583 size = ops->max_mapping_size(dev);
584
585 return size;
586 }
587 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
588
589 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
590 {
591 const struct dma_map_ops *ops = get_dma_ops(dev);
592
593 if (dma_map_direct(dev, ops))
594 return dma_direct_need_sync(dev, dma_addr);
595 return ops->sync_single_for_cpu || ops->sync_single_for_device;
596 }
597 EXPORT_SYMBOL_GPL(dma_need_sync);
598
599 unsigned long dma_get_merge_boundary(struct device *dev)
600 {
601 const struct dma_map_ops *ops = get_dma_ops(dev);
602
603 if (!ops || !ops->get_merge_boundary)
604 return 0; /* can't merge */
605
606 return ops->get_merge_boundary(dev);
607 }
608 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);