]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/dma/mapping.c
Merge branch 'vmwgfx-fixes-5.1' of git://people.freedesktop.org/~thomash/linux into...
[mirror_ubuntu-eoan-kernel.git] / kernel / dma / mapping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 /*
19 * Managed DMA API
20 */
21 struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
26 };
27
28 static void dmam_release(struct device *dev, void *res)
29 {
30 struct dma_devres *this = res;
31
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
34 }
35
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46 }
47
48 /**
49 * dmam_free_coherent - Managed dma_free_coherent()
50 * @dev: Device to free coherent memory for
51 * @size: Size of allocation
52 * @vaddr: Virtual address of the memory to free
53 * @dma_handle: DMA handle of the memory to free
54 *
55 * Managed dma_free_coherent().
56 */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 dma_addr_t dma_handle)
59 {
60 struct dma_devres match_data = { size, vaddr, dma_handle };
61
62 dma_free_coherent(dev, size, vaddr, dma_handle);
63 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66
67 /**
68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
69 * @dev: Device to allocate non_coherent memory for
70 * @size: Size of allocation
71 * @dma_handle: Out argument for allocated DMA handle
72 * @gfp: Allocation flags
73 * @attrs: Flags in the DMA_ATTR_* namespace.
74 *
75 * Managed dma_alloc_attrs(). Memory allocated using this function will be
76 * automatically released on driver detach.
77 *
78 * RETURNS:
79 * Pointer to allocated memory on success, NULL on failure.
80 */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 gfp_t gfp, unsigned long attrs)
83 {
84 struct dma_devres *dr;
85 void *vaddr;
86
87 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 if (!dr)
89 return NULL;
90
91 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 if (!vaddr) {
93 devres_free(dr);
94 return NULL;
95 }
96
97 dr->vaddr = vaddr;
98 dr->dma_handle = *dma_handle;
99 dr->size = size;
100 dr->attrs = attrs;
101
102 devres_add(dev, dr);
103
104 return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107
108 /*
109 * Create scatter-list for the already allocated DMA buffer.
110 */
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 unsigned long attrs)
114 {
115 struct page *page;
116 int ret;
117
118 if (!dev_is_dma_coherent(dev)) {
119 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
120 return -ENXIO;
121
122 page = pfn_to_page(arch_dma_coherent_to_pfn(dev, cpu_addr,
123 dma_addr));
124 } else {
125 page = virt_to_page(cpu_addr);
126 }
127
128 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
129 if (!ret)
130 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
131 return ret;
132 }
133
134 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
135 void *cpu_addr, dma_addr_t dma_addr, size_t size,
136 unsigned long attrs)
137 {
138 const struct dma_map_ops *ops = get_dma_ops(dev);
139
140 if (!dma_is_direct(ops) && ops->get_sgtable)
141 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
142 attrs);
143 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
144 attrs);
145 }
146 EXPORT_SYMBOL(dma_get_sgtable_attrs);
147
148 /*
149 * Create userspace mapping for the DMA-coherent memory.
150 */
151 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
152 void *cpu_addr, dma_addr_t dma_addr, size_t size,
153 unsigned long attrs)
154 {
155 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
156 unsigned long user_count = vma_pages(vma);
157 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
158 unsigned long off = vma->vm_pgoff;
159 unsigned long pfn;
160 int ret = -ENXIO;
161
162 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
163
164 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
165 return ret;
166
167 if (off >= count || user_count > count - off)
168 return -ENXIO;
169
170 if (!dev_is_dma_coherent(dev)) {
171 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
172 return -ENXIO;
173 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
174 } else {
175 pfn = page_to_pfn(virt_to_page(cpu_addr));
176 }
177
178 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
179 user_count << PAGE_SHIFT, vma->vm_page_prot);
180 #else
181 return -ENXIO;
182 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
183 }
184
185 /**
186 * dma_mmap_attrs - map a coherent DMA allocation into user space
187 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
188 * @vma: vm_area_struct describing requested user mapping
189 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
190 * @dma_addr: device-view address returned from dma_alloc_attrs
191 * @size: size of memory originally requested in dma_alloc_attrs
192 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
193 *
194 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
195 * space. The coherent DMA buffer must not be freed by the driver until the
196 * user space mapping has been released.
197 */
198 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
199 void *cpu_addr, dma_addr_t dma_addr, size_t size,
200 unsigned long attrs)
201 {
202 const struct dma_map_ops *ops = get_dma_ops(dev);
203
204 if (!dma_is_direct(ops) && ops->mmap)
205 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
206 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
207 }
208 EXPORT_SYMBOL(dma_mmap_attrs);
209
210 static u64 dma_default_get_required_mask(struct device *dev)
211 {
212 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
213 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
214 u64 mask;
215
216 if (!high_totalram) {
217 /* convert to mask just covering totalram */
218 low_totalram = (1 << (fls(low_totalram) - 1));
219 low_totalram += low_totalram - 1;
220 mask = low_totalram;
221 } else {
222 high_totalram = (1 << (fls(high_totalram) - 1));
223 high_totalram += high_totalram - 1;
224 mask = (((u64)high_totalram) << 32) + 0xffffffff;
225 }
226 return mask;
227 }
228
229 u64 dma_get_required_mask(struct device *dev)
230 {
231 const struct dma_map_ops *ops = get_dma_ops(dev);
232
233 if (dma_is_direct(ops))
234 return dma_direct_get_required_mask(dev);
235 if (ops->get_required_mask)
236 return ops->get_required_mask(dev);
237 return dma_default_get_required_mask(dev);
238 }
239 EXPORT_SYMBOL_GPL(dma_get_required_mask);
240
241 #ifndef arch_dma_alloc_attrs
242 #define arch_dma_alloc_attrs(dev) (true)
243 #endif
244
245 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
246 gfp_t flag, unsigned long attrs)
247 {
248 const struct dma_map_ops *ops = get_dma_ops(dev);
249 void *cpu_addr;
250
251 WARN_ON_ONCE(dev && !dev->coherent_dma_mask);
252
253 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
254 return cpu_addr;
255
256 /* let the implementation decide on the zone to allocate from: */
257 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
258
259 if (!arch_dma_alloc_attrs(&dev))
260 return NULL;
261
262 if (dma_is_direct(ops))
263 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
264 else if (ops->alloc)
265 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
266 else
267 return NULL;
268
269 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
270 return cpu_addr;
271 }
272 EXPORT_SYMBOL(dma_alloc_attrs);
273
274 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
275 dma_addr_t dma_handle, unsigned long attrs)
276 {
277 const struct dma_map_ops *ops = get_dma_ops(dev);
278
279 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
280 return;
281 /*
282 * On non-coherent platforms which implement DMA-coherent buffers via
283 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
284 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
285 * sleep on some machines, and b) an indication that the driver is
286 * probably misusing the coherent API anyway.
287 */
288 WARN_ON(irqs_disabled());
289
290 if (!cpu_addr)
291 return;
292
293 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
294 if (dma_is_direct(ops))
295 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
296 else if (ops->free)
297 ops->free(dev, size, cpu_addr, dma_handle, attrs);
298 }
299 EXPORT_SYMBOL(dma_free_attrs);
300
301 static inline void dma_check_mask(struct device *dev, u64 mask)
302 {
303 if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
304 dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
305 }
306
307 int dma_supported(struct device *dev, u64 mask)
308 {
309 const struct dma_map_ops *ops = get_dma_ops(dev);
310
311 if (dma_is_direct(ops))
312 return dma_direct_supported(dev, mask);
313 if (!ops->dma_supported)
314 return 1;
315 return ops->dma_supported(dev, mask);
316 }
317 EXPORT_SYMBOL(dma_supported);
318
319 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
320 void arch_dma_set_mask(struct device *dev, u64 mask);
321 #else
322 #define arch_dma_set_mask(dev, mask) do { } while (0)
323 #endif
324
325 int dma_set_mask(struct device *dev, u64 mask)
326 {
327 if (!dev->dma_mask || !dma_supported(dev, mask))
328 return -EIO;
329
330 arch_dma_set_mask(dev, mask);
331 dma_check_mask(dev, mask);
332 *dev->dma_mask = mask;
333 return 0;
334 }
335 EXPORT_SYMBOL(dma_set_mask);
336
337 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
338 int dma_set_coherent_mask(struct device *dev, u64 mask)
339 {
340 if (!dma_supported(dev, mask))
341 return -EIO;
342
343 dma_check_mask(dev, mask);
344 dev->coherent_dma_mask = mask;
345 return 0;
346 }
347 EXPORT_SYMBOL(dma_set_coherent_mask);
348 #endif
349
350 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
351 enum dma_data_direction dir)
352 {
353 const struct dma_map_ops *ops = get_dma_ops(dev);
354
355 BUG_ON(!valid_dma_direction(dir));
356
357 if (dma_is_direct(ops))
358 arch_dma_cache_sync(dev, vaddr, size, dir);
359 else if (ops->cache_sync)
360 ops->cache_sync(dev, vaddr, size, dir);
361 }
362 EXPORT_SYMBOL(dma_cache_sync);
363
364 size_t dma_max_mapping_size(struct device *dev)
365 {
366 const struct dma_map_ops *ops = get_dma_ops(dev);
367 size_t size = SIZE_MAX;
368
369 if (dma_is_direct(ops))
370 size = dma_direct_max_mapping_size(dev);
371 else if (ops && ops->max_mapping_size)
372 size = ops->max_mapping_size(dev);
373
374 return size;
375 }
376 EXPORT_SYMBOL_GPL(dma_max_mapping_size);