]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/dma/swiotlb.c
swiotlb: Skip cache maintenance on map error
[mirror_ubuntu-jammy-kernel.git] / kernel / dma / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #define pr_fmt(fmt) "software IO TLB: " fmt
21
22 #include <linux/cache.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-noncoherent.h>
25 #include <linux/mm.h>
26 #include <linux/export.h>
27 #include <linux/spinlock.h>
28 #include <linux/string.h>
29 #include <linux/swiotlb.h>
30 #include <linux/pfn.h>
31 #include <linux/types.h>
32 #include <linux/ctype.h>
33 #include <linux/highmem.h>
34 #include <linux/gfp.h>
35 #include <linux/scatterlist.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/set_memory.h>
38
39 #include <asm/io.h>
40 #include <asm/dma.h>
41
42 #include <linux/init.h>
43 #include <linux/memblock.h>
44 #include <linux/iommu-helper.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/swiotlb.h>
48
49 #define OFFSET(val,align) ((unsigned long) \
50 ( (val) & ( (align) - 1)))
51
52 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
53
54 /*
55 * Minimum IO TLB size to bother booting with. Systems with mainly
56 * 64bit capable cards will only lightly use the swiotlb. If we can't
57 * allocate a contiguous 1MB, we're probably in trouble anyway.
58 */
59 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
60
61 enum swiotlb_force swiotlb_force;
62
63 /*
64 * Used to do a quick range check in swiotlb_tbl_unmap_single and
65 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
66 * API.
67 */
68 static phys_addr_t io_tlb_start, io_tlb_end;
69
70 /*
71 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
73 */
74 static unsigned long io_tlb_nslabs;
75
76 /*
77 * This is a free list describing the number of free entries available from
78 * each index
79 */
80 static unsigned int *io_tlb_list;
81 static unsigned int io_tlb_index;
82
83 /*
84 * Max segment that we can provide which (if pages are contingous) will
85 * not be bounced (unless SWIOTLB_FORCE is set).
86 */
87 unsigned int max_segment;
88
89 /*
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
92 */
93 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
94 static phys_addr_t *io_tlb_orig_addr;
95
96 /*
97 * Protect the above data structures in the map and unmap calls
98 */
99 static DEFINE_SPINLOCK(io_tlb_lock);
100
101 static int late_alloc;
102
103 static int __init
104 setup_io_tlb_npages(char *str)
105 {
106 if (isdigit(*str)) {
107 io_tlb_nslabs = simple_strtoul(str, &str, 0);
108 /* avoid tail segment of size < IO_TLB_SEGSIZE */
109 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
110 }
111 if (*str == ',')
112 ++str;
113 if (!strcmp(str, "force")) {
114 swiotlb_force = SWIOTLB_FORCE;
115 } else if (!strcmp(str, "noforce")) {
116 swiotlb_force = SWIOTLB_NO_FORCE;
117 io_tlb_nslabs = 1;
118 }
119
120 return 0;
121 }
122 early_param("swiotlb", setup_io_tlb_npages);
123
124 unsigned long swiotlb_nr_tbl(void)
125 {
126 return io_tlb_nslabs;
127 }
128 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
129
130 unsigned int swiotlb_max_segment(void)
131 {
132 return max_segment;
133 }
134 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
135
136 void swiotlb_set_max_segment(unsigned int val)
137 {
138 if (swiotlb_force == SWIOTLB_FORCE)
139 max_segment = 1;
140 else
141 max_segment = rounddown(val, PAGE_SIZE);
142 }
143
144 /* default to 64MB */
145 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
146 unsigned long swiotlb_size_or_default(void)
147 {
148 unsigned long size;
149
150 size = io_tlb_nslabs << IO_TLB_SHIFT;
151
152 return size ? size : (IO_TLB_DEFAULT_SIZE);
153 }
154
155 static bool no_iotlb_memory;
156
157 void swiotlb_print_info(void)
158 {
159 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
160
161 if (no_iotlb_memory) {
162 pr_warn("No low mem\n");
163 return;
164 }
165
166 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
167 (unsigned long long)io_tlb_start,
168 (unsigned long long)io_tlb_end,
169 bytes >> 20);
170 }
171
172 /*
173 * Early SWIOTLB allocation may be too early to allow an architecture to
174 * perform the desired operations. This function allows the architecture to
175 * call SWIOTLB when the operations are possible. It needs to be called
176 * before the SWIOTLB memory is used.
177 */
178 void __init swiotlb_update_mem_attributes(void)
179 {
180 void *vaddr;
181 unsigned long bytes;
182
183 if (no_iotlb_memory || late_alloc)
184 return;
185
186 vaddr = phys_to_virt(io_tlb_start);
187 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
188 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
189 memset(vaddr, 0, bytes);
190 }
191
192 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
193 {
194 unsigned long i, bytes;
195
196 bytes = nslabs << IO_TLB_SHIFT;
197
198 io_tlb_nslabs = nslabs;
199 io_tlb_start = __pa(tlb);
200 io_tlb_end = io_tlb_start + bytes;
201
202 /*
203 * Allocate and initialize the free list array. This array is used
204 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
205 * between io_tlb_start and io_tlb_end.
206 */
207 io_tlb_list = memblock_alloc(
208 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
209 PAGE_SIZE);
210 io_tlb_orig_addr = memblock_alloc(
211 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
212 PAGE_SIZE);
213 for (i = 0; i < io_tlb_nslabs; i++) {
214 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
215 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
216 }
217 io_tlb_index = 0;
218
219 if (verbose)
220 swiotlb_print_info();
221
222 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
223 return 0;
224 }
225
226 /*
227 * Statically reserve bounce buffer space and initialize bounce buffer data
228 * structures for the software IO TLB used to implement the DMA API.
229 */
230 void __init
231 swiotlb_init(int verbose)
232 {
233 size_t default_size = IO_TLB_DEFAULT_SIZE;
234 unsigned char *vstart;
235 unsigned long bytes;
236
237 if (!io_tlb_nslabs) {
238 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
239 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
240 }
241
242 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
243
244 /* Get IO TLB memory from the low pages */
245 vstart = memblock_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
246 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
247 return;
248
249 if (io_tlb_start)
250 memblock_free_early(io_tlb_start,
251 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
252 pr_warn("Cannot allocate buffer");
253 no_iotlb_memory = true;
254 }
255
256 /*
257 * Systems with larger DMA zones (those that don't support ISA) can
258 * initialize the swiotlb later using the slab allocator if needed.
259 * This should be just like above, but with some error catching.
260 */
261 int
262 swiotlb_late_init_with_default_size(size_t default_size)
263 {
264 unsigned long bytes, req_nslabs = io_tlb_nslabs;
265 unsigned char *vstart = NULL;
266 unsigned int order;
267 int rc = 0;
268
269 if (!io_tlb_nslabs) {
270 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
271 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
272 }
273
274 /*
275 * Get IO TLB memory from the low pages
276 */
277 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
278 io_tlb_nslabs = SLABS_PER_PAGE << order;
279 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
280
281 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
282 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
283 order);
284 if (vstart)
285 break;
286 order--;
287 }
288
289 if (!vstart) {
290 io_tlb_nslabs = req_nslabs;
291 return -ENOMEM;
292 }
293 if (order != get_order(bytes)) {
294 pr_warn("only able to allocate %ld MB\n",
295 (PAGE_SIZE << order) >> 20);
296 io_tlb_nslabs = SLABS_PER_PAGE << order;
297 }
298 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
299 if (rc)
300 free_pages((unsigned long)vstart, order);
301
302 return rc;
303 }
304
305 int
306 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
307 {
308 unsigned long i, bytes;
309
310 bytes = nslabs << IO_TLB_SHIFT;
311
312 io_tlb_nslabs = nslabs;
313 io_tlb_start = virt_to_phys(tlb);
314 io_tlb_end = io_tlb_start + bytes;
315
316 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
317 memset(tlb, 0, bytes);
318
319 /*
320 * Allocate and initialize the free list array. This array is used
321 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
322 * between io_tlb_start and io_tlb_end.
323 */
324 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
325 get_order(io_tlb_nslabs * sizeof(int)));
326 if (!io_tlb_list)
327 goto cleanup3;
328
329 io_tlb_orig_addr = (phys_addr_t *)
330 __get_free_pages(GFP_KERNEL,
331 get_order(io_tlb_nslabs *
332 sizeof(phys_addr_t)));
333 if (!io_tlb_orig_addr)
334 goto cleanup4;
335
336 for (i = 0; i < io_tlb_nslabs; i++) {
337 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
338 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
339 }
340 io_tlb_index = 0;
341
342 swiotlb_print_info();
343
344 late_alloc = 1;
345
346 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
347
348 return 0;
349
350 cleanup4:
351 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
352 sizeof(int)));
353 io_tlb_list = NULL;
354 cleanup3:
355 io_tlb_end = 0;
356 io_tlb_start = 0;
357 io_tlb_nslabs = 0;
358 max_segment = 0;
359 return -ENOMEM;
360 }
361
362 void __init swiotlb_exit(void)
363 {
364 if (!io_tlb_orig_addr)
365 return;
366
367 if (late_alloc) {
368 free_pages((unsigned long)io_tlb_orig_addr,
369 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
370 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
371 sizeof(int)));
372 free_pages((unsigned long)phys_to_virt(io_tlb_start),
373 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
374 } else {
375 memblock_free_late(__pa(io_tlb_orig_addr),
376 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
377 memblock_free_late(__pa(io_tlb_list),
378 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
379 memblock_free_late(io_tlb_start,
380 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
381 }
382 io_tlb_nslabs = 0;
383 max_segment = 0;
384 }
385
386 static int is_swiotlb_buffer(phys_addr_t paddr)
387 {
388 return paddr >= io_tlb_start && paddr < io_tlb_end;
389 }
390
391 /*
392 * Bounce: copy the swiotlb buffer back to the original dma location
393 */
394 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
395 size_t size, enum dma_data_direction dir)
396 {
397 unsigned long pfn = PFN_DOWN(orig_addr);
398 unsigned char *vaddr = phys_to_virt(tlb_addr);
399
400 if (PageHighMem(pfn_to_page(pfn))) {
401 /* The buffer does not have a mapping. Map it in and copy */
402 unsigned int offset = orig_addr & ~PAGE_MASK;
403 char *buffer;
404 unsigned int sz = 0;
405 unsigned long flags;
406
407 while (size) {
408 sz = min_t(size_t, PAGE_SIZE - offset, size);
409
410 local_irq_save(flags);
411 buffer = kmap_atomic(pfn_to_page(pfn));
412 if (dir == DMA_TO_DEVICE)
413 memcpy(vaddr, buffer + offset, sz);
414 else
415 memcpy(buffer + offset, vaddr, sz);
416 kunmap_atomic(buffer);
417 local_irq_restore(flags);
418
419 size -= sz;
420 pfn++;
421 vaddr += sz;
422 offset = 0;
423 }
424 } else if (dir == DMA_TO_DEVICE) {
425 memcpy(vaddr, phys_to_virt(orig_addr), size);
426 } else {
427 memcpy(phys_to_virt(orig_addr), vaddr, size);
428 }
429 }
430
431 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
432 dma_addr_t tbl_dma_addr,
433 phys_addr_t orig_addr, size_t size,
434 enum dma_data_direction dir,
435 unsigned long attrs)
436 {
437 unsigned long flags;
438 phys_addr_t tlb_addr;
439 unsigned int nslots, stride, index, wrap;
440 int i;
441 unsigned long mask;
442 unsigned long offset_slots;
443 unsigned long max_slots;
444
445 if (no_iotlb_memory)
446 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
447
448 if (mem_encrypt_active())
449 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
450 sme_active() ? "SME" : "SEV");
451
452 mask = dma_get_seg_boundary(hwdev);
453
454 tbl_dma_addr &= mask;
455
456 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
457
458 /*
459 * Carefully handle integer overflow which can occur when mask == ~0UL.
460 */
461 max_slots = mask + 1
462 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
463 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
464
465 /*
466 * For mappings greater than or equal to a page, we limit the stride
467 * (and hence alignment) to a page size.
468 */
469 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
470 if (size >= PAGE_SIZE)
471 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
472 else
473 stride = 1;
474
475 BUG_ON(!nslots);
476
477 /*
478 * Find suitable number of IO TLB entries size that will fit this
479 * request and allocate a buffer from that IO TLB pool.
480 */
481 spin_lock_irqsave(&io_tlb_lock, flags);
482 index = ALIGN(io_tlb_index, stride);
483 if (index >= io_tlb_nslabs)
484 index = 0;
485 wrap = index;
486
487 do {
488 while (iommu_is_span_boundary(index, nslots, offset_slots,
489 max_slots)) {
490 index += stride;
491 if (index >= io_tlb_nslabs)
492 index = 0;
493 if (index == wrap)
494 goto not_found;
495 }
496
497 /*
498 * If we find a slot that indicates we have 'nslots' number of
499 * contiguous buffers, we allocate the buffers from that slot
500 * and mark the entries as '0' indicating unavailable.
501 */
502 if (io_tlb_list[index] >= nslots) {
503 int count = 0;
504
505 for (i = index; i < (int) (index + nslots); i++)
506 io_tlb_list[i] = 0;
507 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
508 io_tlb_list[i] = ++count;
509 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
510
511 /*
512 * Update the indices to avoid searching in the next
513 * round.
514 */
515 io_tlb_index = ((index + nslots) < io_tlb_nslabs
516 ? (index + nslots) : 0);
517
518 goto found;
519 }
520 index += stride;
521 if (index >= io_tlb_nslabs)
522 index = 0;
523 } while (index != wrap);
524
525 not_found:
526 spin_unlock_irqrestore(&io_tlb_lock, flags);
527 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
528 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
529 return SWIOTLB_MAP_ERROR;
530 found:
531 spin_unlock_irqrestore(&io_tlb_lock, flags);
532
533 /*
534 * Save away the mapping from the original address to the DMA address.
535 * This is needed when we sync the memory. Then we sync the buffer if
536 * needed.
537 */
538 for (i = 0; i < nslots; i++)
539 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
540 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
541 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
542 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
543
544 return tlb_addr;
545 }
546
547 /*
548 * tlb_addr is the physical address of the bounce buffer to unmap.
549 */
550 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
551 size_t size, enum dma_data_direction dir,
552 unsigned long attrs)
553 {
554 unsigned long flags;
555 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
556 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
557 phys_addr_t orig_addr = io_tlb_orig_addr[index];
558
559 /*
560 * First, sync the memory before unmapping the entry
561 */
562 if (orig_addr != INVALID_PHYS_ADDR &&
563 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
564 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
565 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
566
567 /*
568 * Return the buffer to the free list by setting the corresponding
569 * entries to indicate the number of contiguous entries available.
570 * While returning the entries to the free list, we merge the entries
571 * with slots below and above the pool being returned.
572 */
573 spin_lock_irqsave(&io_tlb_lock, flags);
574 {
575 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
576 io_tlb_list[index + nslots] : 0);
577 /*
578 * Step 1: return the slots to the free list, merging the
579 * slots with superceeding slots
580 */
581 for (i = index + nslots - 1; i >= index; i--) {
582 io_tlb_list[i] = ++count;
583 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
584 }
585 /*
586 * Step 2: merge the returned slots with the preceding slots,
587 * if available (non zero)
588 */
589 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
590 io_tlb_list[i] = ++count;
591 }
592 spin_unlock_irqrestore(&io_tlb_lock, flags);
593 }
594
595 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
596 size_t size, enum dma_data_direction dir,
597 enum dma_sync_target target)
598 {
599 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
600 phys_addr_t orig_addr = io_tlb_orig_addr[index];
601
602 if (orig_addr == INVALID_PHYS_ADDR)
603 return;
604 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
605
606 switch (target) {
607 case SYNC_FOR_CPU:
608 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
609 swiotlb_bounce(orig_addr, tlb_addr,
610 size, DMA_FROM_DEVICE);
611 else
612 BUG_ON(dir != DMA_TO_DEVICE);
613 break;
614 case SYNC_FOR_DEVICE:
615 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
616 swiotlb_bounce(orig_addr, tlb_addr,
617 size, DMA_TO_DEVICE);
618 else
619 BUG_ON(dir != DMA_FROM_DEVICE);
620 break;
621 default:
622 BUG();
623 }
624 }
625
626 static dma_addr_t swiotlb_bounce_page(struct device *dev, phys_addr_t *phys,
627 size_t size, enum dma_data_direction dir, unsigned long attrs)
628 {
629 dma_addr_t dma_addr;
630
631 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) {
632 dev_warn_ratelimited(dev,
633 "Cannot do DMA to address %pa\n", phys);
634 return DIRECT_MAPPING_ERROR;
635 }
636
637 /* Oh well, have to allocate and map a bounce buffer. */
638 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start),
639 *phys, size, dir, attrs);
640 if (*phys == SWIOTLB_MAP_ERROR)
641 return DIRECT_MAPPING_ERROR;
642
643 /* Ensure that the address returned is DMA'ble */
644 dma_addr = __phys_to_dma(dev, *phys);
645 if (unlikely(!dma_capable(dev, dma_addr, size))) {
646 swiotlb_tbl_unmap_single(dev, *phys, size, dir,
647 attrs | DMA_ATTR_SKIP_CPU_SYNC);
648 return DIRECT_MAPPING_ERROR;
649 }
650
651 return dma_addr;
652 }
653
654 /*
655 * Map a single buffer of the indicated size for DMA in streaming mode. The
656 * physical address to use is returned.
657 *
658 * Once the device is given the dma address, the device owns this memory until
659 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
660 */
661 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
662 unsigned long offset, size_t size,
663 enum dma_data_direction dir,
664 unsigned long attrs)
665 {
666 phys_addr_t phys = page_to_phys(page) + offset;
667 dma_addr_t dev_addr = phys_to_dma(dev, phys);
668
669 BUG_ON(dir == DMA_NONE);
670 /*
671 * If the address happens to be in the device's DMA window,
672 * we can safely return the device addr and not worry about bounce
673 * buffering it.
674 */
675 if (!dma_capable(dev, dev_addr, size) ||
676 swiotlb_force == SWIOTLB_FORCE) {
677 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
678 dev_addr = swiotlb_bounce_page(dev, &phys, size, dir, attrs);
679 }
680
681 if (!dev_is_dma_coherent(dev) &&
682 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0 &&
683 dev_addr != DIRECT_MAPPING_ERROR)
684 arch_sync_dma_for_device(dev, phys, size, dir);
685
686 return dev_addr;
687 }
688
689 /*
690 * Unmap a single streaming mode DMA translation. The dma_addr and size must
691 * match what was provided for in a previous swiotlb_map_page call. All
692 * other usages are undefined.
693 *
694 * After this call, reads by the cpu to the buffer are guaranteed to see
695 * whatever the device wrote there.
696 */
697 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
698 size_t size, enum dma_data_direction dir,
699 unsigned long attrs)
700 {
701 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
702
703 BUG_ON(dir == DMA_NONE);
704
705 if (!dev_is_dma_coherent(hwdev) &&
706 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
707 arch_sync_dma_for_cpu(hwdev, paddr, size, dir);
708
709 if (is_swiotlb_buffer(paddr)) {
710 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
711 return;
712 }
713
714 if (dir != DMA_FROM_DEVICE)
715 return;
716
717 /*
718 * phys_to_virt doesn't work with hihgmem page but we could
719 * call dma_mark_clean() with hihgmem page here. However, we
720 * are fine since dma_mark_clean() is null on POWERPC. We can
721 * make dma_mark_clean() take a physical address if necessary.
722 */
723 dma_mark_clean(phys_to_virt(paddr), size);
724 }
725
726 /*
727 * Make physical memory consistent for a single streaming mode DMA translation
728 * after a transfer.
729 *
730 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
731 * using the cpu, yet do not wish to teardown the dma mapping, you must
732 * call this function before doing so. At the next point you give the dma
733 * address back to the card, you must first perform a
734 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
735 */
736 static void
737 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
738 size_t size, enum dma_data_direction dir,
739 enum dma_sync_target target)
740 {
741 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
742
743 BUG_ON(dir == DMA_NONE);
744
745 if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_CPU)
746 arch_sync_dma_for_cpu(hwdev, paddr, size, dir);
747
748 if (is_swiotlb_buffer(paddr))
749 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
750
751 if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_DEVICE)
752 arch_sync_dma_for_device(hwdev, paddr, size, dir);
753
754 if (!is_swiotlb_buffer(paddr) && dir == DMA_FROM_DEVICE)
755 dma_mark_clean(phys_to_virt(paddr), size);
756 }
757
758 void
759 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
760 size_t size, enum dma_data_direction dir)
761 {
762 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
763 }
764
765 void
766 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
767 size_t size, enum dma_data_direction dir)
768 {
769 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
770 }
771
772 /*
773 * Map a set of buffers described by scatterlist in streaming mode for DMA.
774 * This is the scatter-gather version of the above swiotlb_map_page
775 * interface. Here the scatter gather list elements are each tagged with the
776 * appropriate dma address and length. They are obtained via
777 * sg_dma_{address,length}(SG).
778 *
779 * Device ownership issues as mentioned above for swiotlb_map_page are the
780 * same here.
781 */
782 int
783 swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems,
784 enum dma_data_direction dir, unsigned long attrs)
785 {
786 struct scatterlist *sg;
787 int i;
788
789 for_each_sg(sgl, sg, nelems, i) {
790 sg->dma_address = swiotlb_map_page(dev, sg_page(sg), sg->offset,
791 sg->length, dir, attrs);
792 if (sg->dma_address == DIRECT_MAPPING_ERROR)
793 goto out_error;
794 sg_dma_len(sg) = sg->length;
795 }
796
797 return nelems;
798
799 out_error:
800 swiotlb_unmap_sg_attrs(dev, sgl, i, dir,
801 attrs | DMA_ATTR_SKIP_CPU_SYNC);
802 sg_dma_len(sgl) = 0;
803 return 0;
804 }
805
806 /*
807 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
808 * concerning calls here are the same as for swiotlb_unmap_page() above.
809 */
810 void
811 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
812 int nelems, enum dma_data_direction dir,
813 unsigned long attrs)
814 {
815 struct scatterlist *sg;
816 int i;
817
818 BUG_ON(dir == DMA_NONE);
819
820 for_each_sg(sgl, sg, nelems, i)
821 swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), dir,
822 attrs);
823 }
824
825 /*
826 * Make physical memory consistent for a set of streaming mode DMA translations
827 * after a transfer.
828 *
829 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
830 * and usage.
831 */
832 static void
833 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
834 int nelems, enum dma_data_direction dir,
835 enum dma_sync_target target)
836 {
837 struct scatterlist *sg;
838 int i;
839
840 for_each_sg(sgl, sg, nelems, i)
841 swiotlb_sync_single(hwdev, sg->dma_address,
842 sg_dma_len(sg), dir, target);
843 }
844
845 void
846 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
847 int nelems, enum dma_data_direction dir)
848 {
849 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
850 }
851
852 void
853 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
854 int nelems, enum dma_data_direction dir)
855 {
856 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
857 }
858
859 /*
860 * Return whether the given device DMA address mask can be supported
861 * properly. For example, if your device can only drive the low 24-bits
862 * during bus mastering, then you would pass 0x00ffffff as the mask to
863 * this function.
864 */
865 int
866 swiotlb_dma_supported(struct device *hwdev, u64 mask)
867 {
868 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
869 }
870
871 const struct dma_map_ops swiotlb_dma_ops = {
872 .mapping_error = dma_direct_mapping_error,
873 .alloc = dma_direct_alloc,
874 .free = dma_direct_free,
875 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
876 .sync_single_for_device = swiotlb_sync_single_for_device,
877 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
878 .sync_sg_for_device = swiotlb_sync_sg_for_device,
879 .map_sg = swiotlb_map_sg_attrs,
880 .unmap_sg = swiotlb_unmap_sg_attrs,
881 .map_page = swiotlb_map_page,
882 .unmap_page = swiotlb_unmap_page,
883 .dma_supported = dma_direct_supported,
884 };
885 EXPORT_SYMBOL(swiotlb_dma_ops);