]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/dma/swiotlb.c
Revert "swiotlb: rework "fix info leak with DMA_FROM_DEVICE""
[mirror_ubuntu-jammy-kernel.git] / kernel / dma / swiotlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Dynamic DMA mapping support.
4 *
5 * This implementation is a fallback for platforms that do not support
6 * I/O TLBs (aka DMA address translation hardware).
7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 *
12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
14 * unnecessary i-cache flushing.
15 * 04/07/.. ak Better overflow handling. Assorted fixes.
16 * 05/09/10 linville Add support for syncing ranges, support syncing for
17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18 * 08/12/11 beckyb Add highmem support
19 */
20
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22
23 #include <linux/cache.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/mm.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pfn.h>
32 #include <linux/types.h>
33 #include <linux/ctype.h>
34 #include <linux/highmem.h>
35 #include <linux/gfp.h>
36 #include <linux/scatterlist.h>
37 #include <linux/mem_encrypt.h>
38 #include <linux/set_memory.h>
39 #ifdef CONFIG_DEBUG_FS
40 #include <linux/debugfs.h>
41 #endif
42 #ifdef CONFIG_DMA_RESTRICTED_POOL
43 #include <linux/io.h>
44 #include <linux/of.h>
45 #include <linux/of_fdt.h>
46 #include <linux/of_reserved_mem.h>
47 #include <linux/slab.h>
48 #endif
49
50 #include <asm/io.h>
51 #include <asm/dma.h>
52
53 #include <linux/init.h>
54 #include <linux/memblock.h>
55 #include <linux/iommu-helper.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/swiotlb.h>
59
60 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
61
62 /*
63 * Minimum IO TLB size to bother booting with. Systems with mainly
64 * 64bit capable cards will only lightly use the swiotlb. If we can't
65 * allocate a contiguous 1MB, we're probably in trouble anyway.
66 */
67 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
68
69 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
70
71 enum swiotlb_force swiotlb_force;
72
73 struct io_tlb_mem io_tlb_default_mem;
74
75 /*
76 * Max segment that we can provide which (if pages are contingous) will
77 * not be bounced (unless SWIOTLB_FORCE is set).
78 */
79 static unsigned int max_segment;
80
81 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
82
83 static int __init
84 setup_io_tlb_npages(char *str)
85 {
86 if (isdigit(*str)) {
87 /* avoid tail segment of size < IO_TLB_SEGSIZE */
88 default_nslabs =
89 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
90 }
91 if (*str == ',')
92 ++str;
93 if (!strcmp(str, "force"))
94 swiotlb_force = SWIOTLB_FORCE;
95 else if (!strcmp(str, "noforce"))
96 swiotlb_force = SWIOTLB_NO_FORCE;
97
98 return 0;
99 }
100 early_param("swiotlb", setup_io_tlb_npages);
101
102 unsigned int swiotlb_max_segment(void)
103 {
104 return io_tlb_default_mem.nslabs ? max_segment : 0;
105 }
106 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
107
108 void swiotlb_set_max_segment(unsigned int val)
109 {
110 if (swiotlb_force == SWIOTLB_FORCE)
111 max_segment = 1;
112 else
113 max_segment = rounddown(val, PAGE_SIZE);
114 }
115
116 unsigned long swiotlb_size_or_default(void)
117 {
118 return default_nslabs << IO_TLB_SHIFT;
119 }
120
121 void __init swiotlb_adjust_size(unsigned long size)
122 {
123 /*
124 * If swiotlb parameter has not been specified, give a chance to
125 * architectures such as those supporting memory encryption to
126 * adjust/expand SWIOTLB size for their use.
127 */
128 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
129 return;
130 size = ALIGN(size, IO_TLB_SIZE);
131 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
132 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
133 }
134
135 void swiotlb_print_info(void)
136 {
137 struct io_tlb_mem *mem = &io_tlb_default_mem;
138
139 if (!mem->nslabs) {
140 pr_warn("No low mem\n");
141 return;
142 }
143
144 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
145 (mem->nslabs << IO_TLB_SHIFT) >> 20);
146 }
147
148 static inline unsigned long io_tlb_offset(unsigned long val)
149 {
150 return val & (IO_TLB_SEGSIZE - 1);
151 }
152
153 static inline unsigned long nr_slots(u64 val)
154 {
155 return DIV_ROUND_UP(val, IO_TLB_SIZE);
156 }
157
158 /*
159 * Early SWIOTLB allocation may be too early to allow an architecture to
160 * perform the desired operations. This function allows the architecture to
161 * call SWIOTLB when the operations are possible. It needs to be called
162 * before the SWIOTLB memory is used.
163 */
164 void __init swiotlb_update_mem_attributes(void)
165 {
166 struct io_tlb_mem *mem = &io_tlb_default_mem;
167 void *vaddr;
168 unsigned long bytes;
169
170 if (!mem->nslabs || mem->late_alloc)
171 return;
172 vaddr = phys_to_virt(mem->start);
173 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
174 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
175 memset(vaddr, 0, bytes);
176 }
177
178 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
179 unsigned long nslabs, bool late_alloc)
180 {
181 void *vaddr = phys_to_virt(start);
182 unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
183
184 mem->nslabs = nslabs;
185 mem->start = start;
186 mem->end = mem->start + bytes;
187 mem->index = 0;
188 mem->late_alloc = late_alloc;
189
190 if (swiotlb_force == SWIOTLB_FORCE)
191 mem->force_bounce = true;
192
193 spin_lock_init(&mem->lock);
194 for (i = 0; i < mem->nslabs; i++) {
195 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
196 mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
197 mem->slots[i].alloc_size = 0;
198 }
199 memset(vaddr, 0, bytes);
200 }
201
202 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
203 {
204 struct io_tlb_mem *mem = &io_tlb_default_mem;
205 size_t alloc_size;
206
207 if (swiotlb_force == SWIOTLB_NO_FORCE)
208 return 0;
209
210 /* protect against double initialization */
211 if (WARN_ON_ONCE(mem->nslabs))
212 return -ENOMEM;
213
214 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
215 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
216 if (!mem->slots)
217 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
218 __func__, alloc_size, PAGE_SIZE);
219
220 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
221
222 if (verbose)
223 swiotlb_print_info();
224 swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
225 return 0;
226 }
227
228 /*
229 * Statically reserve bounce buffer space and initialize bounce buffer data
230 * structures for the software IO TLB used to implement the DMA API.
231 */
232 void __init
233 swiotlb_init(int verbose)
234 {
235 size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT);
236 void *tlb;
237
238 if (swiotlb_force == SWIOTLB_NO_FORCE)
239 return;
240
241 /* Get IO TLB memory from the low pages */
242 tlb = memblock_alloc_low(bytes, PAGE_SIZE);
243 if (!tlb)
244 goto fail;
245 if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose))
246 goto fail_free_mem;
247 return;
248
249 fail_free_mem:
250 memblock_free_early(__pa(tlb), bytes);
251 fail:
252 pr_warn("Cannot allocate buffer");
253 }
254
255 /*
256 * Systems with larger DMA zones (those that don't support ISA) can
257 * initialize the swiotlb later using the slab allocator if needed.
258 * This should be just like above, but with some error catching.
259 */
260 int
261 swiotlb_late_init_with_default_size(size_t default_size)
262 {
263 unsigned long nslabs =
264 ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
265 unsigned long bytes;
266 unsigned char *vstart = NULL;
267 unsigned int order;
268 int rc = 0;
269
270 if (swiotlb_force == SWIOTLB_NO_FORCE)
271 return 0;
272
273 /*
274 * Get IO TLB memory from the low pages
275 */
276 order = get_order(nslabs << IO_TLB_SHIFT);
277 nslabs = SLABS_PER_PAGE << order;
278 bytes = nslabs << IO_TLB_SHIFT;
279
280 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
281 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
282 order);
283 if (vstart)
284 break;
285 order--;
286 }
287
288 if (!vstart)
289 return -ENOMEM;
290
291 if (order != get_order(bytes)) {
292 pr_warn("only able to allocate %ld MB\n",
293 (PAGE_SIZE << order) >> 20);
294 nslabs = SLABS_PER_PAGE << order;
295 }
296 rc = swiotlb_late_init_with_tbl(vstart, nslabs);
297 if (rc)
298 free_pages((unsigned long)vstart, order);
299
300 return rc;
301 }
302
303 int
304 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
305 {
306 struct io_tlb_mem *mem = &io_tlb_default_mem;
307 unsigned long bytes = nslabs << IO_TLB_SHIFT;
308
309 if (swiotlb_force == SWIOTLB_NO_FORCE)
310 return 0;
311
312 /* protect against double initialization */
313 if (WARN_ON_ONCE(mem->nslabs))
314 return -ENOMEM;
315
316 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
317 get_order(array_size(sizeof(*mem->slots), nslabs)));
318 if (!mem->slots)
319 return -ENOMEM;
320
321 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
322 swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true);
323
324 swiotlb_print_info();
325 swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
326 return 0;
327 }
328
329 void __init swiotlb_exit(void)
330 {
331 struct io_tlb_mem *mem = &io_tlb_default_mem;
332 unsigned long tbl_vaddr;
333 size_t tbl_size, slots_size;
334
335 if (!mem->nslabs)
336 return;
337
338 pr_info("tearing down default memory pool\n");
339 tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
340 tbl_size = PAGE_ALIGN(mem->end - mem->start);
341 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
342
343 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
344 if (mem->late_alloc) {
345 free_pages(tbl_vaddr, get_order(tbl_size));
346 free_pages((unsigned long)mem->slots, get_order(slots_size));
347 } else {
348 memblock_free_late(mem->start, tbl_size);
349 memblock_free_late(__pa(mem->slots), slots_size);
350 }
351
352 memset(mem, 0, sizeof(*mem));
353 }
354
355 /*
356 * Return the offset into a iotlb slot required to keep the device happy.
357 */
358 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
359 {
360 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
361 }
362
363 /*
364 * Bounce: copy the swiotlb buffer from or back to the original dma location
365 */
366 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
367 enum dma_data_direction dir)
368 {
369 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
370 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
371 phys_addr_t orig_addr = mem->slots[index].orig_addr;
372 size_t alloc_size = mem->slots[index].alloc_size;
373 unsigned long pfn = PFN_DOWN(orig_addr);
374 unsigned char *vaddr = phys_to_virt(tlb_addr);
375 unsigned int tlb_offset, orig_addr_offset;
376
377 if (orig_addr == INVALID_PHYS_ADDR)
378 return;
379
380 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
381 orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
382 if (tlb_offset < orig_addr_offset) {
383 dev_WARN_ONCE(dev, 1,
384 "Access before mapping start detected. orig offset %u, requested offset %u.\n",
385 orig_addr_offset, tlb_offset);
386 return;
387 }
388
389 tlb_offset -= orig_addr_offset;
390 if (tlb_offset > alloc_size) {
391 dev_WARN_ONCE(dev, 1,
392 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
393 alloc_size, size, tlb_offset);
394 return;
395 }
396
397 orig_addr += tlb_offset;
398 alloc_size -= tlb_offset;
399
400 if (size > alloc_size) {
401 dev_WARN_ONCE(dev, 1,
402 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
403 alloc_size, size);
404 size = alloc_size;
405 }
406
407 if (PageHighMem(pfn_to_page(pfn))) {
408 /* The buffer does not have a mapping. Map it in and copy */
409 unsigned int offset = orig_addr & ~PAGE_MASK;
410 char *buffer;
411 unsigned int sz = 0;
412 unsigned long flags;
413
414 while (size) {
415 sz = min_t(size_t, PAGE_SIZE - offset, size);
416
417 local_irq_save(flags);
418 buffer = kmap_atomic(pfn_to_page(pfn));
419 if (dir == DMA_TO_DEVICE)
420 memcpy(vaddr, buffer + offset, sz);
421 else
422 memcpy(buffer + offset, vaddr, sz);
423 kunmap_atomic(buffer);
424 local_irq_restore(flags);
425
426 size -= sz;
427 pfn++;
428 vaddr += sz;
429 offset = 0;
430 }
431 } else if (dir == DMA_TO_DEVICE) {
432 memcpy(vaddr, phys_to_virt(orig_addr), size);
433 } else {
434 memcpy(phys_to_virt(orig_addr), vaddr, size);
435 }
436 }
437
438 #define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT))
439
440 /*
441 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
442 */
443 static inline unsigned long get_max_slots(unsigned long boundary_mask)
444 {
445 if (boundary_mask == ~0UL)
446 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
447 return nr_slots(boundary_mask + 1);
448 }
449
450 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
451 {
452 if (index >= mem->nslabs)
453 return 0;
454 return index;
455 }
456
457 /*
458 * Find a suitable number of IO TLB entries size that will fit this request and
459 * allocate a buffer from that IO TLB pool.
460 */
461 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
462 size_t alloc_size)
463 {
464 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
465 unsigned long boundary_mask = dma_get_seg_boundary(dev);
466 dma_addr_t tbl_dma_addr =
467 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
468 unsigned long max_slots = get_max_slots(boundary_mask);
469 unsigned int iotlb_align_mask =
470 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
471 unsigned int nslots = nr_slots(alloc_size), stride;
472 unsigned int index, wrap, count = 0, i;
473 unsigned int offset = swiotlb_align_offset(dev, orig_addr);
474 unsigned long flags;
475
476 BUG_ON(!nslots);
477
478 /*
479 * For mappings with an alignment requirement don't bother looping to
480 * unaligned slots once we found an aligned one. For allocations of
481 * PAGE_SIZE or larger only look for page aligned allocations.
482 */
483 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
484 if (alloc_size >= PAGE_SIZE)
485 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
486
487 spin_lock_irqsave(&mem->lock, flags);
488 if (unlikely(nslots > mem->nslabs - mem->used))
489 goto not_found;
490
491 index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
492 do {
493 if (orig_addr &&
494 (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
495 (orig_addr & iotlb_align_mask)) {
496 index = wrap_index(mem, index + 1);
497 continue;
498 }
499
500 /*
501 * If we find a slot that indicates we have 'nslots' number of
502 * contiguous buffers, we allocate the buffers from that slot
503 * and mark the entries as '0' indicating unavailable.
504 */
505 if (!iommu_is_span_boundary(index, nslots,
506 nr_slots(tbl_dma_addr),
507 max_slots)) {
508 if (mem->slots[index].list >= nslots)
509 goto found;
510 }
511 index = wrap_index(mem, index + stride);
512 } while (index != wrap);
513
514 not_found:
515 spin_unlock_irqrestore(&mem->lock, flags);
516 return -1;
517
518 found:
519 for (i = index; i < index + nslots; i++) {
520 mem->slots[i].list = 0;
521 mem->slots[i].alloc_size =
522 alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
523 }
524 for (i = index - 1;
525 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
526 mem->slots[i].list; i--)
527 mem->slots[i].list = ++count;
528
529 /*
530 * Update the indices to avoid searching in the next round.
531 */
532 if (index + nslots < mem->nslabs)
533 mem->index = index + nslots;
534 else
535 mem->index = 0;
536 mem->used += nslots;
537
538 spin_unlock_irqrestore(&mem->lock, flags);
539 return index;
540 }
541
542 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
543 size_t mapping_size, size_t alloc_size,
544 enum dma_data_direction dir, unsigned long attrs)
545 {
546 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
547 unsigned int offset = swiotlb_align_offset(dev, orig_addr);
548 unsigned int i;
549 int index;
550 phys_addr_t tlb_addr;
551
552 if (!mem)
553 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
554
555 if (mem_encrypt_active())
556 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
557
558 if (mapping_size > alloc_size) {
559 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
560 mapping_size, alloc_size);
561 return (phys_addr_t)DMA_MAPPING_ERROR;
562 }
563
564 index = swiotlb_find_slots(dev, orig_addr, alloc_size + offset);
565 if (index == -1) {
566 if (!(attrs & DMA_ATTR_NO_WARN))
567 dev_warn_ratelimited(dev,
568 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
569 alloc_size, mem->nslabs, mem->used);
570 return (phys_addr_t)DMA_MAPPING_ERROR;
571 }
572
573 /*
574 * Save away the mapping from the original address to the DMA address.
575 * This is needed when we sync the memory. Then we sync the buffer if
576 * needed.
577 */
578 for (i = 0; i < nr_slots(alloc_size + offset); i++)
579 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
580 tlb_addr = slot_addr(mem->start, index) + offset;
581 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
582 (!(attrs & DMA_ATTR_OVERWRITE) || dir == DMA_TO_DEVICE ||
583 dir == DMA_BIDIRECTIONAL))
584 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
585 return tlb_addr;
586 }
587
588 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
589 {
590 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
591 unsigned long flags;
592 unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
593 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
594 int nslots = nr_slots(mem->slots[index].alloc_size + offset);
595 int count, i;
596
597 /*
598 * Return the buffer to the free list by setting the corresponding
599 * entries to indicate the number of contiguous entries available.
600 * While returning the entries to the free list, we merge the entries
601 * with slots below and above the pool being returned.
602 */
603 spin_lock_irqsave(&mem->lock, flags);
604 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
605 count = mem->slots[index + nslots].list;
606 else
607 count = 0;
608
609 /*
610 * Step 1: return the slots to the free list, merging the slots with
611 * superceeding slots
612 */
613 for (i = index + nslots - 1; i >= index; i--) {
614 mem->slots[i].list = ++count;
615 mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
616 mem->slots[i].alloc_size = 0;
617 }
618
619 /*
620 * Step 2: merge the returned slots with the preceding slots, if
621 * available (non zero)
622 */
623 for (i = index - 1;
624 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
625 i--)
626 mem->slots[i].list = ++count;
627 mem->used -= nslots;
628 spin_unlock_irqrestore(&mem->lock, flags);
629 }
630
631 /*
632 * tlb_addr is the physical address of the bounce buffer to unmap.
633 */
634 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
635 size_t mapping_size, enum dma_data_direction dir,
636 unsigned long attrs)
637 {
638 /*
639 * First, sync the memory before unmapping the entry
640 */
641 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
642 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
643 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
644
645 swiotlb_release_slots(dev, tlb_addr);
646 }
647
648 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
649 size_t size, enum dma_data_direction dir)
650 {
651 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
652 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
653 else
654 BUG_ON(dir != DMA_FROM_DEVICE);
655 }
656
657 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
658 size_t size, enum dma_data_direction dir)
659 {
660 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
661 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
662 else
663 BUG_ON(dir != DMA_TO_DEVICE);
664 }
665
666 /*
667 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
668 * to the device copy the data into it as well.
669 */
670 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
671 enum dma_data_direction dir, unsigned long attrs)
672 {
673 phys_addr_t swiotlb_addr;
674 dma_addr_t dma_addr;
675
676 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
677 swiotlb_force);
678
679 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, dir,
680 attrs);
681 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
682 return DMA_MAPPING_ERROR;
683
684 /* Ensure that the address returned is DMA'ble */
685 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
686 if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
687 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
688 attrs | DMA_ATTR_SKIP_CPU_SYNC);
689 dev_WARN_ONCE(dev, 1,
690 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
691 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
692 return DMA_MAPPING_ERROR;
693 }
694
695 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
696 arch_sync_dma_for_device(swiotlb_addr, size, dir);
697 return dma_addr;
698 }
699
700 size_t swiotlb_max_mapping_size(struct device *dev)
701 {
702 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
703 }
704
705 bool is_swiotlb_active(struct device *dev)
706 {
707 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
708
709 return mem && mem->nslabs;
710 }
711 EXPORT_SYMBOL_GPL(is_swiotlb_active);
712
713 #ifdef CONFIG_DEBUG_FS
714 static struct dentry *debugfs_dir;
715
716 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem)
717 {
718 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
719 debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
720 }
721
722 static int __init swiotlb_create_default_debugfs(void)
723 {
724 struct io_tlb_mem *mem = &io_tlb_default_mem;
725
726 debugfs_dir = debugfs_create_dir("swiotlb", NULL);
727 if (mem->nslabs) {
728 mem->debugfs = debugfs_dir;
729 swiotlb_create_debugfs_files(mem);
730 }
731 return 0;
732 }
733
734 late_initcall(swiotlb_create_default_debugfs);
735
736 #endif
737
738 #ifdef CONFIG_DMA_RESTRICTED_POOL
739
740 #ifdef CONFIG_DEBUG_FS
741 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
742 {
743 struct io_tlb_mem *mem = rmem->priv;
744
745 mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir);
746 swiotlb_create_debugfs_files(mem);
747 }
748 #else
749 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
750 {
751 }
752 #endif
753
754 struct page *swiotlb_alloc(struct device *dev, size_t size)
755 {
756 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
757 phys_addr_t tlb_addr;
758 int index;
759
760 if (!mem)
761 return NULL;
762
763 index = swiotlb_find_slots(dev, 0, size);
764 if (index == -1)
765 return NULL;
766
767 tlb_addr = slot_addr(mem->start, index);
768
769 return pfn_to_page(PFN_DOWN(tlb_addr));
770 }
771
772 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
773 {
774 phys_addr_t tlb_addr = page_to_phys(page);
775
776 if (!is_swiotlb_buffer(dev, tlb_addr))
777 return false;
778
779 swiotlb_release_slots(dev, tlb_addr);
780
781 return true;
782 }
783
784 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
785 struct device *dev)
786 {
787 struct io_tlb_mem *mem = rmem->priv;
788 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
789
790 /*
791 * Since multiple devices can share the same pool, the private data,
792 * io_tlb_mem struct, will be initialized by the first device attached
793 * to it.
794 */
795 if (!mem) {
796 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
797 if (!mem)
798 return -ENOMEM;
799
800 mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs),
801 GFP_KERNEL);
802 if (!mem->slots) {
803 kfree(mem);
804 return -ENOMEM;
805 }
806
807 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
808 rmem->size >> PAGE_SHIFT);
809 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
810 mem->force_bounce = true;
811 mem->for_alloc = true;
812
813 rmem->priv = mem;
814
815 rmem_swiotlb_debugfs_init(rmem);
816 }
817
818 dev->dma_io_tlb_mem = mem;
819
820 return 0;
821 }
822
823 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
824 struct device *dev)
825 {
826 dev->dma_io_tlb_mem = &io_tlb_default_mem;
827 }
828
829 static const struct reserved_mem_ops rmem_swiotlb_ops = {
830 .device_init = rmem_swiotlb_device_init,
831 .device_release = rmem_swiotlb_device_release,
832 };
833
834 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
835 {
836 unsigned long node = rmem->fdt_node;
837
838 if (of_get_flat_dt_prop(node, "reusable", NULL) ||
839 of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
840 of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
841 of_get_flat_dt_prop(node, "no-map", NULL))
842 return -EINVAL;
843
844 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
845 pr_err("Restricted DMA pool must be accessible within the linear mapping.");
846 return -EINVAL;
847 }
848
849 rmem->ops = &rmem_swiotlb_ops;
850 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
851 &rmem->base, (unsigned long)rmem->size / SZ_1M);
852 return 0;
853 }
854
855 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
856 #endif /* CONFIG_DMA_RESTRICTED_POOL */