]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/dma/swiotlb.c
Merge tag 'for-linus-5.3' of git://github.com/cminyard/linux-ipmi
[mirror_ubuntu-eoan-kernel.git] / kernel / dma / swiotlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Dynamic DMA mapping support.
4 *
5 * This implementation is a fallback for platforms that do not support
6 * I/O TLBs (aka DMA address translation hardware).
7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 *
12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
14 * unnecessary i-cache flushing.
15 * 04/07/.. ak Better overflow handling. Assorted fixes.
16 * 05/09/10 linville Add support for syncing ranges, support syncing for
17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18 * 08/12/11 beckyb Add highmem support
19 */
20
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22
23 #include <linux/cache.h>
24 #include <linux/dma-direct.h>
25 #include <linux/mm.h>
26 #include <linux/export.h>
27 #include <linux/spinlock.h>
28 #include <linux/string.h>
29 #include <linux/swiotlb.h>
30 #include <linux/pfn.h>
31 #include <linux/types.h>
32 #include <linux/ctype.h>
33 #include <linux/highmem.h>
34 #include <linux/gfp.h>
35 #include <linux/scatterlist.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/set_memory.h>
38 #ifdef CONFIG_DEBUG_FS
39 #include <linux/debugfs.h>
40 #endif
41
42 #include <asm/io.h>
43 #include <asm/dma.h>
44
45 #include <linux/init.h>
46 #include <linux/memblock.h>
47 #include <linux/iommu-helper.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/swiotlb.h>
51
52 #define OFFSET(val,align) ((unsigned long) \
53 ( (val) & ( (align) - 1)))
54
55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
56
57 /*
58 * Minimum IO TLB size to bother booting with. Systems with mainly
59 * 64bit capable cards will only lightly use the swiotlb. If we can't
60 * allocate a contiguous 1MB, we're probably in trouble anyway.
61 */
62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
63
64 enum swiotlb_force swiotlb_force;
65
66 /*
67 * Used to do a quick range check in swiotlb_tbl_unmap_single and
68 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
69 * API.
70 */
71 phys_addr_t io_tlb_start, io_tlb_end;
72
73 /*
74 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
75 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
76 */
77 static unsigned long io_tlb_nslabs;
78
79 /*
80 * The number of used IO TLB block
81 */
82 static unsigned long io_tlb_used;
83
84 /*
85 * This is a free list describing the number of free entries available from
86 * each index
87 */
88 static unsigned int *io_tlb_list;
89 static unsigned int io_tlb_index;
90
91 /*
92 * Max segment that we can provide which (if pages are contingous) will
93 * not be bounced (unless SWIOTLB_FORCE is set).
94 */
95 unsigned int max_segment;
96
97 /*
98 * We need to save away the original address corresponding to a mapped entry
99 * for the sync operations.
100 */
101 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
102 static phys_addr_t *io_tlb_orig_addr;
103
104 /*
105 * Protect the above data structures in the map and unmap calls
106 */
107 static DEFINE_SPINLOCK(io_tlb_lock);
108
109 static int late_alloc;
110
111 static int __init
112 setup_io_tlb_npages(char *str)
113 {
114 if (isdigit(*str)) {
115 io_tlb_nslabs = simple_strtoul(str, &str, 0);
116 /* avoid tail segment of size < IO_TLB_SEGSIZE */
117 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
118 }
119 if (*str == ',')
120 ++str;
121 if (!strcmp(str, "force")) {
122 swiotlb_force = SWIOTLB_FORCE;
123 } else if (!strcmp(str, "noforce")) {
124 swiotlb_force = SWIOTLB_NO_FORCE;
125 io_tlb_nslabs = 1;
126 }
127
128 return 0;
129 }
130 early_param("swiotlb", setup_io_tlb_npages);
131
132 unsigned long swiotlb_nr_tbl(void)
133 {
134 return io_tlb_nslabs;
135 }
136 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
137
138 unsigned int swiotlb_max_segment(void)
139 {
140 return max_segment;
141 }
142 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
143
144 void swiotlb_set_max_segment(unsigned int val)
145 {
146 if (swiotlb_force == SWIOTLB_FORCE)
147 max_segment = 1;
148 else
149 max_segment = rounddown(val, PAGE_SIZE);
150 }
151
152 /* default to 64MB */
153 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
154 unsigned long swiotlb_size_or_default(void)
155 {
156 unsigned long size;
157
158 size = io_tlb_nslabs << IO_TLB_SHIFT;
159
160 return size ? size : (IO_TLB_DEFAULT_SIZE);
161 }
162
163 static bool no_iotlb_memory;
164
165 void swiotlb_print_info(void)
166 {
167 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
168
169 if (no_iotlb_memory) {
170 pr_warn("No low mem\n");
171 return;
172 }
173
174 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
175 (unsigned long long)io_tlb_start,
176 (unsigned long long)io_tlb_end,
177 bytes >> 20);
178 }
179
180 /*
181 * Early SWIOTLB allocation may be too early to allow an architecture to
182 * perform the desired operations. This function allows the architecture to
183 * call SWIOTLB when the operations are possible. It needs to be called
184 * before the SWIOTLB memory is used.
185 */
186 void __init swiotlb_update_mem_attributes(void)
187 {
188 void *vaddr;
189 unsigned long bytes;
190
191 if (no_iotlb_memory || late_alloc)
192 return;
193
194 vaddr = phys_to_virt(io_tlb_start);
195 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
196 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
197 memset(vaddr, 0, bytes);
198 }
199
200 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
201 {
202 unsigned long i, bytes;
203 size_t alloc_size;
204
205 bytes = nslabs << IO_TLB_SHIFT;
206
207 io_tlb_nslabs = nslabs;
208 io_tlb_start = __pa(tlb);
209 io_tlb_end = io_tlb_start + bytes;
210
211 /*
212 * Allocate and initialize the free list array. This array is used
213 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
214 * between io_tlb_start and io_tlb_end.
215 */
216 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
217 io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
218 if (!io_tlb_list)
219 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
220 __func__, alloc_size, PAGE_SIZE);
221
222 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t));
223 io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE);
224 if (!io_tlb_orig_addr)
225 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
226 __func__, alloc_size, PAGE_SIZE);
227
228 for (i = 0; i < io_tlb_nslabs; i++) {
229 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
230 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
231 }
232 io_tlb_index = 0;
233
234 if (verbose)
235 swiotlb_print_info();
236
237 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
238 return 0;
239 }
240
241 /*
242 * Statically reserve bounce buffer space and initialize bounce buffer data
243 * structures for the software IO TLB used to implement the DMA API.
244 */
245 void __init
246 swiotlb_init(int verbose)
247 {
248 size_t default_size = IO_TLB_DEFAULT_SIZE;
249 unsigned char *vstart;
250 unsigned long bytes;
251
252 if (!io_tlb_nslabs) {
253 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
254 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
255 }
256
257 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
258
259 /* Get IO TLB memory from the low pages */
260 vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE);
261 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
262 return;
263
264 if (io_tlb_start)
265 memblock_free_early(io_tlb_start,
266 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
267 pr_warn("Cannot allocate buffer");
268 no_iotlb_memory = true;
269 }
270
271 /*
272 * Systems with larger DMA zones (those that don't support ISA) can
273 * initialize the swiotlb later using the slab allocator if needed.
274 * This should be just like above, but with some error catching.
275 */
276 int
277 swiotlb_late_init_with_default_size(size_t default_size)
278 {
279 unsigned long bytes, req_nslabs = io_tlb_nslabs;
280 unsigned char *vstart = NULL;
281 unsigned int order;
282 int rc = 0;
283
284 if (!io_tlb_nslabs) {
285 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
286 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
287 }
288
289 /*
290 * Get IO TLB memory from the low pages
291 */
292 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
293 io_tlb_nslabs = SLABS_PER_PAGE << order;
294 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
295
296 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
297 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
298 order);
299 if (vstart)
300 break;
301 order--;
302 }
303
304 if (!vstart) {
305 io_tlb_nslabs = req_nslabs;
306 return -ENOMEM;
307 }
308 if (order != get_order(bytes)) {
309 pr_warn("only able to allocate %ld MB\n",
310 (PAGE_SIZE << order) >> 20);
311 io_tlb_nslabs = SLABS_PER_PAGE << order;
312 }
313 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
314 if (rc)
315 free_pages((unsigned long)vstart, order);
316
317 return rc;
318 }
319
320 int
321 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
322 {
323 unsigned long i, bytes;
324
325 bytes = nslabs << IO_TLB_SHIFT;
326
327 io_tlb_nslabs = nslabs;
328 io_tlb_start = virt_to_phys(tlb);
329 io_tlb_end = io_tlb_start + bytes;
330
331 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
332 memset(tlb, 0, bytes);
333
334 /*
335 * Allocate and initialize the free list array. This array is used
336 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
337 * between io_tlb_start and io_tlb_end.
338 */
339 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
340 get_order(io_tlb_nslabs * sizeof(int)));
341 if (!io_tlb_list)
342 goto cleanup3;
343
344 io_tlb_orig_addr = (phys_addr_t *)
345 __get_free_pages(GFP_KERNEL,
346 get_order(io_tlb_nslabs *
347 sizeof(phys_addr_t)));
348 if (!io_tlb_orig_addr)
349 goto cleanup4;
350
351 for (i = 0; i < io_tlb_nslabs; i++) {
352 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
353 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
354 }
355 io_tlb_index = 0;
356
357 swiotlb_print_info();
358
359 late_alloc = 1;
360
361 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
362
363 return 0;
364
365 cleanup4:
366 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
367 sizeof(int)));
368 io_tlb_list = NULL;
369 cleanup3:
370 io_tlb_end = 0;
371 io_tlb_start = 0;
372 io_tlb_nslabs = 0;
373 max_segment = 0;
374 return -ENOMEM;
375 }
376
377 void __init swiotlb_exit(void)
378 {
379 if (!io_tlb_orig_addr)
380 return;
381
382 if (late_alloc) {
383 free_pages((unsigned long)io_tlb_orig_addr,
384 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
385 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
386 sizeof(int)));
387 free_pages((unsigned long)phys_to_virt(io_tlb_start),
388 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
389 } else {
390 memblock_free_late(__pa(io_tlb_orig_addr),
391 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
392 memblock_free_late(__pa(io_tlb_list),
393 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
394 memblock_free_late(io_tlb_start,
395 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
396 }
397 io_tlb_start = 0;
398 io_tlb_end = 0;
399 io_tlb_nslabs = 0;
400 max_segment = 0;
401 }
402
403 /*
404 * Bounce: copy the swiotlb buffer from or back to the original dma location
405 */
406 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
407 size_t size, enum dma_data_direction dir)
408 {
409 unsigned long pfn = PFN_DOWN(orig_addr);
410 unsigned char *vaddr = phys_to_virt(tlb_addr);
411
412 if (PageHighMem(pfn_to_page(pfn))) {
413 /* The buffer does not have a mapping. Map it in and copy */
414 unsigned int offset = orig_addr & ~PAGE_MASK;
415 char *buffer;
416 unsigned int sz = 0;
417 unsigned long flags;
418
419 while (size) {
420 sz = min_t(size_t, PAGE_SIZE - offset, size);
421
422 local_irq_save(flags);
423 buffer = kmap_atomic(pfn_to_page(pfn));
424 if (dir == DMA_TO_DEVICE)
425 memcpy(vaddr, buffer + offset, sz);
426 else
427 memcpy(buffer + offset, vaddr, sz);
428 kunmap_atomic(buffer);
429 local_irq_restore(flags);
430
431 size -= sz;
432 pfn++;
433 vaddr += sz;
434 offset = 0;
435 }
436 } else if (dir == DMA_TO_DEVICE) {
437 memcpy(vaddr, phys_to_virt(orig_addr), size);
438 } else {
439 memcpy(phys_to_virt(orig_addr), vaddr, size);
440 }
441 }
442
443 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
444 dma_addr_t tbl_dma_addr,
445 phys_addr_t orig_addr, size_t size,
446 enum dma_data_direction dir,
447 unsigned long attrs)
448 {
449 unsigned long flags;
450 phys_addr_t tlb_addr;
451 unsigned int nslots, stride, index, wrap;
452 int i;
453 unsigned long mask;
454 unsigned long offset_slots;
455 unsigned long max_slots;
456 unsigned long tmp_io_tlb_used;
457
458 if (no_iotlb_memory)
459 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
460
461 if (mem_encrypt_active())
462 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
463 sme_active() ? "SME" : "SEV");
464
465 mask = dma_get_seg_boundary(hwdev);
466
467 tbl_dma_addr &= mask;
468
469 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
470
471 /*
472 * Carefully handle integer overflow which can occur when mask == ~0UL.
473 */
474 max_slots = mask + 1
475 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
476 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
477
478 /*
479 * For mappings greater than or equal to a page, we limit the stride
480 * (and hence alignment) to a page size.
481 */
482 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
483 if (size >= PAGE_SIZE)
484 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
485 else
486 stride = 1;
487
488 BUG_ON(!nslots);
489
490 /*
491 * Find suitable number of IO TLB entries size that will fit this
492 * request and allocate a buffer from that IO TLB pool.
493 */
494 spin_lock_irqsave(&io_tlb_lock, flags);
495
496 if (unlikely(nslots > io_tlb_nslabs - io_tlb_used))
497 goto not_found;
498
499 index = ALIGN(io_tlb_index, stride);
500 if (index >= io_tlb_nslabs)
501 index = 0;
502 wrap = index;
503
504 do {
505 while (iommu_is_span_boundary(index, nslots, offset_slots,
506 max_slots)) {
507 index += stride;
508 if (index >= io_tlb_nslabs)
509 index = 0;
510 if (index == wrap)
511 goto not_found;
512 }
513
514 /*
515 * If we find a slot that indicates we have 'nslots' number of
516 * contiguous buffers, we allocate the buffers from that slot
517 * and mark the entries as '0' indicating unavailable.
518 */
519 if (io_tlb_list[index] >= nslots) {
520 int count = 0;
521
522 for (i = index; i < (int) (index + nslots); i++)
523 io_tlb_list[i] = 0;
524 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
525 io_tlb_list[i] = ++count;
526 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
527
528 /*
529 * Update the indices to avoid searching in the next
530 * round.
531 */
532 io_tlb_index = ((index + nslots) < io_tlb_nslabs
533 ? (index + nslots) : 0);
534
535 goto found;
536 }
537 index += stride;
538 if (index >= io_tlb_nslabs)
539 index = 0;
540 } while (index != wrap);
541
542 not_found:
543 tmp_io_tlb_used = io_tlb_used;
544
545 spin_unlock_irqrestore(&io_tlb_lock, flags);
546 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
547 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
548 size, io_tlb_nslabs, tmp_io_tlb_used);
549 return DMA_MAPPING_ERROR;
550 found:
551 io_tlb_used += nslots;
552 spin_unlock_irqrestore(&io_tlb_lock, flags);
553
554 /*
555 * Save away the mapping from the original address to the DMA address.
556 * This is needed when we sync the memory. Then we sync the buffer if
557 * needed.
558 */
559 for (i = 0; i < nslots; i++)
560 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
561 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
562 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
563 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
564
565 return tlb_addr;
566 }
567
568 /*
569 * tlb_addr is the physical address of the bounce buffer to unmap.
570 */
571 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
572 size_t size, enum dma_data_direction dir,
573 unsigned long attrs)
574 {
575 unsigned long flags;
576 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
577 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
578 phys_addr_t orig_addr = io_tlb_orig_addr[index];
579
580 /*
581 * First, sync the memory before unmapping the entry
582 */
583 if (orig_addr != INVALID_PHYS_ADDR &&
584 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
585 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
586 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
587
588 /*
589 * Return the buffer to the free list by setting the corresponding
590 * entries to indicate the number of contiguous entries available.
591 * While returning the entries to the free list, we merge the entries
592 * with slots below and above the pool being returned.
593 */
594 spin_lock_irqsave(&io_tlb_lock, flags);
595 {
596 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
597 io_tlb_list[index + nslots] : 0);
598 /*
599 * Step 1: return the slots to the free list, merging the
600 * slots with superceeding slots
601 */
602 for (i = index + nslots - 1; i >= index; i--) {
603 io_tlb_list[i] = ++count;
604 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
605 }
606 /*
607 * Step 2: merge the returned slots with the preceding slots,
608 * if available (non zero)
609 */
610 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
611 io_tlb_list[i] = ++count;
612
613 io_tlb_used -= nslots;
614 }
615 spin_unlock_irqrestore(&io_tlb_lock, flags);
616 }
617
618 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
619 size_t size, enum dma_data_direction dir,
620 enum dma_sync_target target)
621 {
622 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
623 phys_addr_t orig_addr = io_tlb_orig_addr[index];
624
625 if (orig_addr == INVALID_PHYS_ADDR)
626 return;
627 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
628
629 switch (target) {
630 case SYNC_FOR_CPU:
631 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
632 swiotlb_bounce(orig_addr, tlb_addr,
633 size, DMA_FROM_DEVICE);
634 else
635 BUG_ON(dir != DMA_TO_DEVICE);
636 break;
637 case SYNC_FOR_DEVICE:
638 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
639 swiotlb_bounce(orig_addr, tlb_addr,
640 size, DMA_TO_DEVICE);
641 else
642 BUG_ON(dir != DMA_FROM_DEVICE);
643 break;
644 default:
645 BUG();
646 }
647 }
648
649 /*
650 * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing
651 * to the device copy the data into it as well.
652 */
653 bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr,
654 size_t size, enum dma_data_direction dir, unsigned long attrs)
655 {
656 trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force);
657
658 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) {
659 dev_warn_ratelimited(dev,
660 "Cannot do DMA to address %pa\n", phys);
661 return false;
662 }
663
664 /* Oh well, have to allocate and map a bounce buffer. */
665 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start),
666 *phys, size, dir, attrs);
667 if (*phys == DMA_MAPPING_ERROR)
668 return false;
669
670 /* Ensure that the address returned is DMA'ble */
671 *dma_addr = __phys_to_dma(dev, *phys);
672 if (unlikely(!dma_capable(dev, *dma_addr, size))) {
673 swiotlb_tbl_unmap_single(dev, *phys, size, dir,
674 attrs | DMA_ATTR_SKIP_CPU_SYNC);
675 return false;
676 }
677
678 return true;
679 }
680
681 size_t swiotlb_max_mapping_size(struct device *dev)
682 {
683 return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE;
684 }
685
686 bool is_swiotlb_active(void)
687 {
688 /*
689 * When SWIOTLB is initialized, even if io_tlb_start points to physical
690 * address zero, io_tlb_end surely doesn't.
691 */
692 return io_tlb_end != 0;
693 }
694
695 #ifdef CONFIG_DEBUG_FS
696
697 static int __init swiotlb_create_debugfs(void)
698 {
699 struct dentry *root;
700
701 root = debugfs_create_dir("swiotlb", NULL);
702 debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs);
703 debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used);
704 return 0;
705 }
706
707 late_initcall(swiotlb_create_debugfs);
708
709 #endif