]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/events/callchain.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / callchain.c
1 /*
2 * Performance events callchain code, extracted from core.c:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include "internal.h"
15
16 struct callchain_cpus_entries {
17 struct rcu_head rcu_head;
18 struct perf_callchain_entry *cpu_entries[0];
19 };
20
21 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
22
23 static inline size_t perf_callchain_entry__sizeof(void)
24 {
25 return (sizeof(struct perf_callchain_entry) +
26 sizeof(__u64) * sysctl_perf_event_max_stack);
27 }
28
29 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
30 static atomic_t nr_callchain_events;
31 static DEFINE_MUTEX(callchain_mutex);
32 static struct callchain_cpus_entries *callchain_cpus_entries;
33
34
35 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
36 struct pt_regs *regs)
37 {
38 }
39
40 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
41 struct pt_regs *regs)
42 {
43 }
44
45 static void release_callchain_buffers_rcu(struct rcu_head *head)
46 {
47 struct callchain_cpus_entries *entries;
48 int cpu;
49
50 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
51
52 for_each_possible_cpu(cpu)
53 kfree(entries->cpu_entries[cpu]);
54
55 kfree(entries);
56 }
57
58 static void release_callchain_buffers(void)
59 {
60 struct callchain_cpus_entries *entries;
61
62 entries = callchain_cpus_entries;
63 RCU_INIT_POINTER(callchain_cpus_entries, NULL);
64 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
65 }
66
67 static int alloc_callchain_buffers(void)
68 {
69 int cpu;
70 int size;
71 struct callchain_cpus_entries *entries;
72
73 /*
74 * We can't use the percpu allocation API for data that can be
75 * accessed from NMI. Use a temporary manual per cpu allocation
76 * until that gets sorted out.
77 */
78 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
79
80 entries = kzalloc(size, GFP_KERNEL);
81 if (!entries)
82 return -ENOMEM;
83
84 size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
85
86 for_each_possible_cpu(cpu) {
87 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
88 cpu_to_node(cpu));
89 if (!entries->cpu_entries[cpu])
90 goto fail;
91 }
92
93 rcu_assign_pointer(callchain_cpus_entries, entries);
94
95 return 0;
96
97 fail:
98 for_each_possible_cpu(cpu)
99 kfree(entries->cpu_entries[cpu]);
100 kfree(entries);
101
102 return -ENOMEM;
103 }
104
105 int get_callchain_buffers(void)
106 {
107 int err = 0;
108 int count;
109
110 mutex_lock(&callchain_mutex);
111
112 count = atomic_inc_return(&nr_callchain_events);
113 if (WARN_ON_ONCE(count < 1)) {
114 err = -EINVAL;
115 goto exit;
116 }
117
118 if (count > 1) {
119 /* If the allocation failed, give up */
120 if (!callchain_cpus_entries)
121 err = -ENOMEM;
122 goto exit;
123 }
124
125 err = alloc_callchain_buffers();
126 exit:
127 if (err)
128 atomic_dec(&nr_callchain_events);
129
130 mutex_unlock(&callchain_mutex);
131
132 return err;
133 }
134
135 void put_callchain_buffers(void)
136 {
137 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
138 release_callchain_buffers();
139 mutex_unlock(&callchain_mutex);
140 }
141 }
142
143 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
144 {
145 int cpu;
146 struct callchain_cpus_entries *entries;
147
148 *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
149 if (*rctx == -1)
150 return NULL;
151
152 entries = rcu_dereference(callchain_cpus_entries);
153 if (!entries)
154 return NULL;
155
156 cpu = smp_processor_id();
157
158 return (((void *)entries->cpu_entries[cpu]) +
159 (*rctx * perf_callchain_entry__sizeof()));
160 }
161
162 static void
163 put_callchain_entry(int rctx)
164 {
165 put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
166 }
167
168 struct perf_callchain_entry *
169 perf_callchain(struct perf_event *event, struct pt_regs *regs)
170 {
171 bool kernel = !event->attr.exclude_callchain_kernel;
172 bool user = !event->attr.exclude_callchain_user;
173 /* Disallow cross-task user callchains. */
174 bool crosstask = event->ctx->task && event->ctx->task != current;
175
176 if (!kernel && !user)
177 return NULL;
178
179 return get_perf_callchain(regs, 0, kernel, user, crosstask, true);
180 }
181
182 struct perf_callchain_entry *
183 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
184 bool crosstask, bool add_mark)
185 {
186 struct perf_callchain_entry *entry;
187 int rctx;
188
189 entry = get_callchain_entry(&rctx);
190 if (rctx == -1)
191 return NULL;
192
193 if (!entry)
194 goto exit_put;
195
196 entry->nr = init_nr;
197
198 if (kernel && !user_mode(regs)) {
199 if (add_mark)
200 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
201 perf_callchain_kernel(entry, regs);
202 }
203
204 if (user) {
205 if (!user_mode(regs)) {
206 if (current->mm)
207 regs = task_pt_regs(current);
208 else
209 regs = NULL;
210 }
211
212 if (regs) {
213 if (crosstask)
214 goto exit_put;
215
216 if (add_mark)
217 perf_callchain_store(entry, PERF_CONTEXT_USER);
218 perf_callchain_user(entry, regs);
219 }
220 }
221
222 exit_put:
223 put_callchain_entry(rctx);
224
225 return entry;
226 }
227
228 int perf_event_max_stack_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp, loff_t *ppos)
230 {
231 int new_value = sysctl_perf_event_max_stack, ret;
232 struct ctl_table new_table = *table;
233
234 new_table.data = &new_value;
235 ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
236 if (ret || !write)
237 return ret;
238
239 mutex_lock(&callchain_mutex);
240 if (atomic_read(&nr_callchain_events))
241 ret = -EBUSY;
242 else
243 sysctl_perf_event_max_stack = new_value;
244
245 mutex_unlock(&callchain_mutex);
246
247 return ret;
248 }