]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/events/callchain.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / events / callchain.c
1 /*
2 * Performance events callchain code, extracted from core.c:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include <linux/sched/task_stack.h>
15
16 #include "internal.h"
17
18 struct callchain_cpus_entries {
19 struct rcu_head rcu_head;
20 struct perf_callchain_entry *cpu_entries[0];
21 };
22
23 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
24 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
25
26 static inline size_t perf_callchain_entry__sizeof(void)
27 {
28 return (sizeof(struct perf_callchain_entry) +
29 sizeof(__u64) * (sysctl_perf_event_max_stack +
30 sysctl_perf_event_max_contexts_per_stack));
31 }
32
33 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
34 static atomic_t nr_callchain_events;
35 static DEFINE_MUTEX(callchain_mutex);
36 static struct callchain_cpus_entries *callchain_cpus_entries;
37
38
39 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
40 struct pt_regs *regs)
41 {
42 }
43
44 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
45 struct pt_regs *regs)
46 {
47 }
48
49 static void release_callchain_buffers_rcu(struct rcu_head *head)
50 {
51 struct callchain_cpus_entries *entries;
52 int cpu;
53
54 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
55
56 for_each_possible_cpu(cpu)
57 kfree(entries->cpu_entries[cpu]);
58
59 kfree(entries);
60 }
61
62 static void release_callchain_buffers(void)
63 {
64 struct callchain_cpus_entries *entries;
65
66 entries = callchain_cpus_entries;
67 RCU_INIT_POINTER(callchain_cpus_entries, NULL);
68 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
69 }
70
71 static int alloc_callchain_buffers(void)
72 {
73 int cpu;
74 int size;
75 struct callchain_cpus_entries *entries;
76
77 /*
78 * We can't use the percpu allocation API for data that can be
79 * accessed from NMI. Use a temporary manual per cpu allocation
80 * until that gets sorted out.
81 */
82 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
83
84 entries = kzalloc(size, GFP_KERNEL);
85 if (!entries)
86 return -ENOMEM;
87
88 size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
89
90 for_each_possible_cpu(cpu) {
91 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
92 cpu_to_node(cpu));
93 if (!entries->cpu_entries[cpu])
94 goto fail;
95 }
96
97 rcu_assign_pointer(callchain_cpus_entries, entries);
98
99 return 0;
100
101 fail:
102 for_each_possible_cpu(cpu)
103 kfree(entries->cpu_entries[cpu]);
104 kfree(entries);
105
106 return -ENOMEM;
107 }
108
109 int get_callchain_buffers(int event_max_stack)
110 {
111 int err = 0;
112 int count;
113
114 mutex_lock(&callchain_mutex);
115
116 count = atomic_inc_return(&nr_callchain_events);
117 if (WARN_ON_ONCE(count < 1)) {
118 err = -EINVAL;
119 goto exit;
120 }
121
122 if (count > 1) {
123 /* If the allocation failed, give up */
124 if (!callchain_cpus_entries)
125 err = -ENOMEM;
126 /*
127 * If requesting per event more than the global cap,
128 * return a different error to help userspace figure
129 * this out.
130 *
131 * And also do it here so that we have &callchain_mutex held.
132 */
133 if (event_max_stack > sysctl_perf_event_max_stack)
134 err = -EOVERFLOW;
135 goto exit;
136 }
137
138 err = alloc_callchain_buffers();
139 exit:
140 if (err)
141 atomic_dec(&nr_callchain_events);
142
143 mutex_unlock(&callchain_mutex);
144
145 return err;
146 }
147
148 void put_callchain_buffers(void)
149 {
150 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
151 release_callchain_buffers();
152 mutex_unlock(&callchain_mutex);
153 }
154 }
155
156 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
157 {
158 int cpu;
159 struct callchain_cpus_entries *entries;
160
161 *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
162 if (*rctx == -1)
163 return NULL;
164
165 entries = rcu_dereference(callchain_cpus_entries);
166 if (!entries)
167 return NULL;
168
169 cpu = smp_processor_id();
170
171 return (((void *)entries->cpu_entries[cpu]) +
172 (*rctx * perf_callchain_entry__sizeof()));
173 }
174
175 static void
176 put_callchain_entry(int rctx)
177 {
178 put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
179 }
180
181 struct perf_callchain_entry *
182 perf_callchain(struct perf_event *event, struct pt_regs *regs)
183 {
184 bool kernel = !event->attr.exclude_callchain_kernel;
185 bool user = !event->attr.exclude_callchain_user;
186 /* Disallow cross-task user callchains. */
187 bool crosstask = event->ctx->task && event->ctx->task != current;
188 const u32 max_stack = event->attr.sample_max_stack;
189
190 if (!kernel && !user)
191 return NULL;
192
193 return get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true);
194 }
195
196 struct perf_callchain_entry *
197 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
198 u32 max_stack, bool crosstask, bool add_mark)
199 {
200 struct perf_callchain_entry *entry;
201 struct perf_callchain_entry_ctx ctx;
202 int rctx;
203
204 entry = get_callchain_entry(&rctx);
205 if (rctx == -1)
206 return NULL;
207
208 if (!entry)
209 goto exit_put;
210
211 ctx.entry = entry;
212 ctx.max_stack = max_stack;
213 ctx.nr = entry->nr = init_nr;
214 ctx.contexts = 0;
215 ctx.contexts_maxed = false;
216
217 if (kernel && !user_mode(regs)) {
218 if (add_mark)
219 perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
220 perf_callchain_kernel(&ctx, regs);
221 }
222
223 if (user) {
224 if (!user_mode(regs)) {
225 if (current->mm)
226 regs = task_pt_regs(current);
227 else
228 regs = NULL;
229 }
230
231 if (regs) {
232 if (crosstask)
233 goto exit_put;
234
235 if (add_mark)
236 perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
237 perf_callchain_user(&ctx, regs);
238 }
239 }
240
241 exit_put:
242 put_callchain_entry(rctx);
243
244 return entry;
245 }
246
247 /*
248 * Used for sysctl_perf_event_max_stack and
249 * sysctl_perf_event_max_contexts_per_stack.
250 */
251 int perf_event_max_stack_handler(struct ctl_table *table, int write,
252 void __user *buffer, size_t *lenp, loff_t *ppos)
253 {
254 int *value = table->data;
255 int new_value = *value, ret;
256 struct ctl_table new_table = *table;
257
258 new_table.data = &new_value;
259 ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
260 if (ret || !write)
261 return ret;
262
263 mutex_lock(&callchain_mutex);
264 if (atomic_read(&nr_callchain_events))
265 ret = -EBUSY;
266 else
267 *value = new_value;
268
269 mutex_unlock(&callchain_mutex);
270
271 return ret;
272 }