]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/events/core.c
cdrom: Fix info leak/OOB read in cdrom_ioctl_drive_status
[mirror_ubuntu-bionic-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 lockdep_assert_irqs_disabled();
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 lockdep_assert_irqs_disabled();
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 * 3 - disallow all unpriv perf event use
401 */
402 #ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
403 int sysctl_perf_event_paranoid __read_mostly = 3;
404 #else
405 int sysctl_perf_event_paranoid __read_mostly = 1;
406 #endif
407
408 /* Minimum for 512 kiB + 1 user control page */
409 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
410
411 /*
412 * max perf event sample rate
413 */
414 #define DEFAULT_MAX_SAMPLE_RATE 100000
415 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
416 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
417
418 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
419
420 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
421 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
422
423 static int perf_sample_allowed_ns __read_mostly =
424 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
425
426 static void update_perf_cpu_limits(void)
427 {
428 u64 tmp = perf_sample_period_ns;
429
430 tmp *= sysctl_perf_cpu_time_max_percent;
431 tmp = div_u64(tmp, 100);
432 if (!tmp)
433 tmp = 1;
434
435 WRITE_ONCE(perf_sample_allowed_ns, tmp);
436 }
437
438 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
439
440 int perf_proc_update_handler(struct ctl_table *table, int write,
441 void __user *buffer, size_t *lenp,
442 loff_t *ppos)
443 {
444 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
445
446 if (ret || !write)
447 return ret;
448
449 /*
450 * If throttling is disabled don't allow the write:
451 */
452 if (sysctl_perf_cpu_time_max_percent == 100 ||
453 sysctl_perf_cpu_time_max_percent == 0)
454 return -EINVAL;
455
456 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
457 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
458 update_perf_cpu_limits();
459
460 return 0;
461 }
462
463 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
464
465 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
466 void __user *buffer, size_t *lenp,
467 loff_t *ppos)
468 {
469 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
470
471 if (ret || !write)
472 return ret;
473
474 if (sysctl_perf_cpu_time_max_percent == 100 ||
475 sysctl_perf_cpu_time_max_percent == 0) {
476 printk(KERN_WARNING
477 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
478 WRITE_ONCE(perf_sample_allowed_ns, 0);
479 } else {
480 update_perf_cpu_limits();
481 }
482
483 return 0;
484 }
485
486 /*
487 * perf samples are done in some very critical code paths (NMIs).
488 * If they take too much CPU time, the system can lock up and not
489 * get any real work done. This will drop the sample rate when
490 * we detect that events are taking too long.
491 */
492 #define NR_ACCUMULATED_SAMPLES 128
493 static DEFINE_PER_CPU(u64, running_sample_length);
494
495 static u64 __report_avg;
496 static u64 __report_allowed;
497
498 static void perf_duration_warn(struct irq_work *w)
499 {
500 printk_ratelimited(KERN_INFO
501 "perf: interrupt took too long (%lld > %lld), lowering "
502 "kernel.perf_event_max_sample_rate to %d\n",
503 __report_avg, __report_allowed,
504 sysctl_perf_event_sample_rate);
505 }
506
507 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
508
509 void perf_sample_event_took(u64 sample_len_ns)
510 {
511 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
512 u64 running_len;
513 u64 avg_len;
514 u32 max;
515
516 if (max_len == 0)
517 return;
518
519 /* Decay the counter by 1 average sample. */
520 running_len = __this_cpu_read(running_sample_length);
521 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
522 running_len += sample_len_ns;
523 __this_cpu_write(running_sample_length, running_len);
524
525 /*
526 * Note: this will be biased artifically low until we have
527 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
528 * from having to maintain a count.
529 */
530 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
531 if (avg_len <= max_len)
532 return;
533
534 __report_avg = avg_len;
535 __report_allowed = max_len;
536
537 /*
538 * Compute a throttle threshold 25% below the current duration.
539 */
540 avg_len += avg_len / 4;
541 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
542 if (avg_len < max)
543 max /= (u32)avg_len;
544 else
545 max = 1;
546
547 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
548 WRITE_ONCE(max_samples_per_tick, max);
549
550 sysctl_perf_event_sample_rate = max * HZ;
551 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
552
553 if (!irq_work_queue(&perf_duration_work)) {
554 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
555 "kernel.perf_event_max_sample_rate to %d\n",
556 __report_avg, __report_allowed,
557 sysctl_perf_event_sample_rate);
558 }
559 }
560
561 static atomic64_t perf_event_id;
562
563 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
564 enum event_type_t event_type);
565
566 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
567 enum event_type_t event_type,
568 struct task_struct *task);
569
570 static void update_context_time(struct perf_event_context *ctx);
571 static u64 perf_event_time(struct perf_event *event);
572
573 void __weak perf_event_print_debug(void) { }
574
575 extern __weak const char *perf_pmu_name(void)
576 {
577 return "pmu";
578 }
579
580 static inline u64 perf_clock(void)
581 {
582 return local_clock();
583 }
584
585 static inline u64 perf_event_clock(struct perf_event *event)
586 {
587 return event->clock();
588 }
589
590 /*
591 * State based event timekeeping...
592 *
593 * The basic idea is to use event->state to determine which (if any) time
594 * fields to increment with the current delta. This means we only need to
595 * update timestamps when we change state or when they are explicitly requested
596 * (read).
597 *
598 * Event groups make things a little more complicated, but not terribly so. The
599 * rules for a group are that if the group leader is OFF the entire group is
600 * OFF, irrespecive of what the group member states are. This results in
601 * __perf_effective_state().
602 *
603 * A futher ramification is that when a group leader flips between OFF and
604 * !OFF, we need to update all group member times.
605 *
606 *
607 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
608 * need to make sure the relevant context time is updated before we try and
609 * update our timestamps.
610 */
611
612 static __always_inline enum perf_event_state
613 __perf_effective_state(struct perf_event *event)
614 {
615 struct perf_event *leader = event->group_leader;
616
617 if (leader->state <= PERF_EVENT_STATE_OFF)
618 return leader->state;
619
620 return event->state;
621 }
622
623 static __always_inline void
624 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
625 {
626 enum perf_event_state state = __perf_effective_state(event);
627 u64 delta = now - event->tstamp;
628
629 *enabled = event->total_time_enabled;
630 if (state >= PERF_EVENT_STATE_INACTIVE)
631 *enabled += delta;
632
633 *running = event->total_time_running;
634 if (state >= PERF_EVENT_STATE_ACTIVE)
635 *running += delta;
636 }
637
638 static void perf_event_update_time(struct perf_event *event)
639 {
640 u64 now = perf_event_time(event);
641
642 __perf_update_times(event, now, &event->total_time_enabled,
643 &event->total_time_running);
644 event->tstamp = now;
645 }
646
647 static void perf_event_update_sibling_time(struct perf_event *leader)
648 {
649 struct perf_event *sibling;
650
651 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
652 perf_event_update_time(sibling);
653 }
654
655 static void
656 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
657 {
658 if (event->state == state)
659 return;
660
661 perf_event_update_time(event);
662 /*
663 * If a group leader gets enabled/disabled all its siblings
664 * are affected too.
665 */
666 if ((event->state < 0) ^ (state < 0))
667 perf_event_update_sibling_time(event);
668
669 WRITE_ONCE(event->state, state);
670 }
671
672 #ifdef CONFIG_CGROUP_PERF
673
674 static inline bool
675 perf_cgroup_match(struct perf_event *event)
676 {
677 struct perf_event_context *ctx = event->ctx;
678 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
679
680 /* @event doesn't care about cgroup */
681 if (!event->cgrp)
682 return true;
683
684 /* wants specific cgroup scope but @cpuctx isn't associated with any */
685 if (!cpuctx->cgrp)
686 return false;
687
688 /*
689 * Cgroup scoping is recursive. An event enabled for a cgroup is
690 * also enabled for all its descendant cgroups. If @cpuctx's
691 * cgroup is a descendant of @event's (the test covers identity
692 * case), it's a match.
693 */
694 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
695 event->cgrp->css.cgroup);
696 }
697
698 static inline void perf_detach_cgroup(struct perf_event *event)
699 {
700 css_put(&event->cgrp->css);
701 event->cgrp = NULL;
702 }
703
704 static inline int is_cgroup_event(struct perf_event *event)
705 {
706 return event->cgrp != NULL;
707 }
708
709 static inline u64 perf_cgroup_event_time(struct perf_event *event)
710 {
711 struct perf_cgroup_info *t;
712
713 t = per_cpu_ptr(event->cgrp->info, event->cpu);
714 return t->time;
715 }
716
717 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
718 {
719 struct perf_cgroup_info *info;
720 u64 now;
721
722 now = perf_clock();
723
724 info = this_cpu_ptr(cgrp->info);
725
726 info->time += now - info->timestamp;
727 info->timestamp = now;
728 }
729
730 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
731 {
732 struct perf_cgroup *cgrp = cpuctx->cgrp;
733 struct cgroup_subsys_state *css;
734
735 if (cgrp) {
736 for (css = &cgrp->css; css; css = css->parent) {
737 cgrp = container_of(css, struct perf_cgroup, css);
738 __update_cgrp_time(cgrp);
739 }
740 }
741 }
742
743 static inline void update_cgrp_time_from_event(struct perf_event *event)
744 {
745 struct perf_cgroup *cgrp;
746
747 /*
748 * ensure we access cgroup data only when needed and
749 * when we know the cgroup is pinned (css_get)
750 */
751 if (!is_cgroup_event(event))
752 return;
753
754 cgrp = perf_cgroup_from_task(current, event->ctx);
755 /*
756 * Do not update time when cgroup is not active
757 */
758 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
759 __update_cgrp_time(event->cgrp);
760 }
761
762 static inline void
763 perf_cgroup_set_timestamp(struct task_struct *task,
764 struct perf_event_context *ctx)
765 {
766 struct perf_cgroup *cgrp;
767 struct perf_cgroup_info *info;
768 struct cgroup_subsys_state *css;
769
770 /*
771 * ctx->lock held by caller
772 * ensure we do not access cgroup data
773 * unless we have the cgroup pinned (css_get)
774 */
775 if (!task || !ctx->nr_cgroups)
776 return;
777
778 cgrp = perf_cgroup_from_task(task, ctx);
779
780 for (css = &cgrp->css; css; css = css->parent) {
781 cgrp = container_of(css, struct perf_cgroup, css);
782 info = this_cpu_ptr(cgrp->info);
783 info->timestamp = ctx->timestamp;
784 }
785 }
786
787 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
788
789 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
790 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
791
792 /*
793 * reschedule events based on the cgroup constraint of task.
794 *
795 * mode SWOUT : schedule out everything
796 * mode SWIN : schedule in based on cgroup for next
797 */
798 static void perf_cgroup_switch(struct task_struct *task, int mode)
799 {
800 struct perf_cpu_context *cpuctx;
801 struct list_head *list;
802 unsigned long flags;
803
804 /*
805 * Disable interrupts and preemption to avoid this CPU's
806 * cgrp_cpuctx_entry to change under us.
807 */
808 local_irq_save(flags);
809
810 list = this_cpu_ptr(&cgrp_cpuctx_list);
811 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
812 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
813
814 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
815 perf_pmu_disable(cpuctx->ctx.pmu);
816
817 if (mode & PERF_CGROUP_SWOUT) {
818 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
819 /*
820 * must not be done before ctxswout due
821 * to event_filter_match() in event_sched_out()
822 */
823 cpuctx->cgrp = NULL;
824 }
825
826 if (mode & PERF_CGROUP_SWIN) {
827 WARN_ON_ONCE(cpuctx->cgrp);
828 /*
829 * set cgrp before ctxsw in to allow
830 * event_filter_match() to not have to pass
831 * task around
832 * we pass the cpuctx->ctx to perf_cgroup_from_task()
833 * because cgorup events are only per-cpu
834 */
835 cpuctx->cgrp = perf_cgroup_from_task(task,
836 &cpuctx->ctx);
837 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
838 }
839 perf_pmu_enable(cpuctx->ctx.pmu);
840 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
841 }
842
843 local_irq_restore(flags);
844 }
845
846 static inline void perf_cgroup_sched_out(struct task_struct *task,
847 struct task_struct *next)
848 {
849 struct perf_cgroup *cgrp1;
850 struct perf_cgroup *cgrp2 = NULL;
851
852 rcu_read_lock();
853 /*
854 * we come here when we know perf_cgroup_events > 0
855 * we do not need to pass the ctx here because we know
856 * we are holding the rcu lock
857 */
858 cgrp1 = perf_cgroup_from_task(task, NULL);
859 cgrp2 = perf_cgroup_from_task(next, NULL);
860
861 /*
862 * only schedule out current cgroup events if we know
863 * that we are switching to a different cgroup. Otherwise,
864 * do no touch the cgroup events.
865 */
866 if (cgrp1 != cgrp2)
867 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
868
869 rcu_read_unlock();
870 }
871
872 static inline void perf_cgroup_sched_in(struct task_struct *prev,
873 struct task_struct *task)
874 {
875 struct perf_cgroup *cgrp1;
876 struct perf_cgroup *cgrp2 = NULL;
877
878 rcu_read_lock();
879 /*
880 * we come here when we know perf_cgroup_events > 0
881 * we do not need to pass the ctx here because we know
882 * we are holding the rcu lock
883 */
884 cgrp1 = perf_cgroup_from_task(task, NULL);
885 cgrp2 = perf_cgroup_from_task(prev, NULL);
886
887 /*
888 * only need to schedule in cgroup events if we are changing
889 * cgroup during ctxsw. Cgroup events were not scheduled
890 * out of ctxsw out if that was not the case.
891 */
892 if (cgrp1 != cgrp2)
893 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
894
895 rcu_read_unlock();
896 }
897
898 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
899 struct perf_event_attr *attr,
900 struct perf_event *group_leader)
901 {
902 struct perf_cgroup *cgrp;
903 struct cgroup_subsys_state *css;
904 struct fd f = fdget(fd);
905 int ret = 0;
906
907 if (!f.file)
908 return -EBADF;
909
910 css = css_tryget_online_from_dir(f.file->f_path.dentry,
911 &perf_event_cgrp_subsys);
912 if (IS_ERR(css)) {
913 ret = PTR_ERR(css);
914 goto out;
915 }
916
917 cgrp = container_of(css, struct perf_cgroup, css);
918 event->cgrp = cgrp;
919
920 /*
921 * all events in a group must monitor
922 * the same cgroup because a task belongs
923 * to only one perf cgroup at a time
924 */
925 if (group_leader && group_leader->cgrp != cgrp) {
926 perf_detach_cgroup(event);
927 ret = -EINVAL;
928 }
929 out:
930 fdput(f);
931 return ret;
932 }
933
934 static inline void
935 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
936 {
937 struct perf_cgroup_info *t;
938 t = per_cpu_ptr(event->cgrp->info, event->cpu);
939 event->shadow_ctx_time = now - t->timestamp;
940 }
941
942 /*
943 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
944 * cleared when last cgroup event is removed.
945 */
946 static inline void
947 list_update_cgroup_event(struct perf_event *event,
948 struct perf_event_context *ctx, bool add)
949 {
950 struct perf_cpu_context *cpuctx;
951 struct list_head *cpuctx_entry;
952
953 if (!is_cgroup_event(event))
954 return;
955
956 /*
957 * Because cgroup events are always per-cpu events,
958 * this will always be called from the right CPU.
959 */
960 cpuctx = __get_cpu_context(ctx);
961
962 /*
963 * Since setting cpuctx->cgrp is conditional on the current @cgrp
964 * matching the event's cgroup, we must do this for every new event,
965 * because if the first would mismatch, the second would not try again
966 * and we would leave cpuctx->cgrp unset.
967 */
968 if (add && !cpuctx->cgrp) {
969 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
970
971 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
972 cpuctx->cgrp = cgrp;
973 }
974
975 if (add && ctx->nr_cgroups++)
976 return;
977 else if (!add && --ctx->nr_cgroups)
978 return;
979
980 /* no cgroup running */
981 if (!add)
982 cpuctx->cgrp = NULL;
983
984 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
985 if (add)
986 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
987 else
988 list_del(cpuctx_entry);
989 }
990
991 #else /* !CONFIG_CGROUP_PERF */
992
993 static inline bool
994 perf_cgroup_match(struct perf_event *event)
995 {
996 return true;
997 }
998
999 static inline void perf_detach_cgroup(struct perf_event *event)
1000 {}
1001
1002 static inline int is_cgroup_event(struct perf_event *event)
1003 {
1004 return 0;
1005 }
1006
1007 static inline void update_cgrp_time_from_event(struct perf_event *event)
1008 {
1009 }
1010
1011 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_out(struct task_struct *task,
1016 struct task_struct *next)
1017 {
1018 }
1019
1020 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1021 struct task_struct *task)
1022 {
1023 }
1024
1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1026 struct perf_event_attr *attr,
1027 struct perf_event *group_leader)
1028 {
1029 return -EINVAL;
1030 }
1031
1032 static inline void
1033 perf_cgroup_set_timestamp(struct task_struct *task,
1034 struct perf_event_context *ctx)
1035 {
1036 }
1037
1038 void
1039 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1040 {
1041 }
1042
1043 static inline void
1044 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1045 {
1046 }
1047
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 return 0;
1051 }
1052
1053 static inline void
1054 list_update_cgroup_event(struct perf_event *event,
1055 struct perf_event_context *ctx, bool add)
1056 {
1057 }
1058
1059 #endif
1060
1061 /*
1062 * set default to be dependent on timer tick just
1063 * like original code
1064 */
1065 #define PERF_CPU_HRTIMER (1000 / HZ)
1066 /*
1067 * function must be called with interrupts disabled
1068 */
1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1070 {
1071 struct perf_cpu_context *cpuctx;
1072 int rotations = 0;
1073
1074 lockdep_assert_irqs_disabled();
1075
1076 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1077 rotations = perf_rotate_context(cpuctx);
1078
1079 raw_spin_lock(&cpuctx->hrtimer_lock);
1080 if (rotations)
1081 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1082 else
1083 cpuctx->hrtimer_active = 0;
1084 raw_spin_unlock(&cpuctx->hrtimer_lock);
1085
1086 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1087 }
1088
1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1090 {
1091 struct hrtimer *timer = &cpuctx->hrtimer;
1092 struct pmu *pmu = cpuctx->ctx.pmu;
1093 u64 interval;
1094
1095 /* no multiplexing needed for SW PMU */
1096 if (pmu->task_ctx_nr == perf_sw_context)
1097 return;
1098
1099 /*
1100 * check default is sane, if not set then force to
1101 * default interval (1/tick)
1102 */
1103 interval = pmu->hrtimer_interval_ms;
1104 if (interval < 1)
1105 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1106
1107 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1108
1109 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1110 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1111 timer->function = perf_mux_hrtimer_handler;
1112 }
1113
1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1115 {
1116 struct hrtimer *timer = &cpuctx->hrtimer;
1117 struct pmu *pmu = cpuctx->ctx.pmu;
1118 unsigned long flags;
1119
1120 /* not for SW PMU */
1121 if (pmu->task_ctx_nr == perf_sw_context)
1122 return 0;
1123
1124 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1125 if (!cpuctx->hrtimer_active) {
1126 cpuctx->hrtimer_active = 1;
1127 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1129 }
1130 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131
1132 return 0;
1133 }
1134
1135 void perf_pmu_disable(struct pmu *pmu)
1136 {
1137 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1138 if (!(*count)++)
1139 pmu->pmu_disable(pmu);
1140 }
1141
1142 void perf_pmu_enable(struct pmu *pmu)
1143 {
1144 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145 if (!--(*count))
1146 pmu->pmu_enable(pmu);
1147 }
1148
1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1150
1151 /*
1152 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1153 * perf_event_task_tick() are fully serialized because they're strictly cpu
1154 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1155 * disabled, while perf_event_task_tick is called from IRQ context.
1156 */
1157 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1158 {
1159 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1160
1161 lockdep_assert_irqs_disabled();
1162
1163 WARN_ON(!list_empty(&ctx->active_ctx_list));
1164
1165 list_add(&ctx->active_ctx_list, head);
1166 }
1167
1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1169 {
1170 lockdep_assert_irqs_disabled();
1171
1172 WARN_ON(list_empty(&ctx->active_ctx_list));
1173
1174 list_del_init(&ctx->active_ctx_list);
1175 }
1176
1177 static void get_ctx(struct perf_event_context *ctx)
1178 {
1179 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1180 }
1181
1182 static void free_ctx(struct rcu_head *head)
1183 {
1184 struct perf_event_context *ctx;
1185
1186 ctx = container_of(head, struct perf_event_context, rcu_head);
1187 kfree(ctx->task_ctx_data);
1188 kfree(ctx);
1189 }
1190
1191 static void put_ctx(struct perf_event_context *ctx)
1192 {
1193 if (atomic_dec_and_test(&ctx->refcount)) {
1194 if (ctx->parent_ctx)
1195 put_ctx(ctx->parent_ctx);
1196 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1197 put_task_struct(ctx->task);
1198 call_rcu(&ctx->rcu_head, free_ctx);
1199 }
1200 }
1201
1202 /*
1203 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1204 * perf_pmu_migrate_context() we need some magic.
1205 *
1206 * Those places that change perf_event::ctx will hold both
1207 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1208 *
1209 * Lock ordering is by mutex address. There are two other sites where
1210 * perf_event_context::mutex nests and those are:
1211 *
1212 * - perf_event_exit_task_context() [ child , 0 ]
1213 * perf_event_exit_event()
1214 * put_event() [ parent, 1 ]
1215 *
1216 * - perf_event_init_context() [ parent, 0 ]
1217 * inherit_task_group()
1218 * inherit_group()
1219 * inherit_event()
1220 * perf_event_alloc()
1221 * perf_init_event()
1222 * perf_try_init_event() [ child , 1 ]
1223 *
1224 * While it appears there is an obvious deadlock here -- the parent and child
1225 * nesting levels are inverted between the two. This is in fact safe because
1226 * life-time rules separate them. That is an exiting task cannot fork, and a
1227 * spawning task cannot (yet) exit.
1228 *
1229 * But remember that that these are parent<->child context relations, and
1230 * migration does not affect children, therefore these two orderings should not
1231 * interact.
1232 *
1233 * The change in perf_event::ctx does not affect children (as claimed above)
1234 * because the sys_perf_event_open() case will install a new event and break
1235 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1236 * concerned with cpuctx and that doesn't have children.
1237 *
1238 * The places that change perf_event::ctx will issue:
1239 *
1240 * perf_remove_from_context();
1241 * synchronize_rcu();
1242 * perf_install_in_context();
1243 *
1244 * to affect the change. The remove_from_context() + synchronize_rcu() should
1245 * quiesce the event, after which we can install it in the new location. This
1246 * means that only external vectors (perf_fops, prctl) can perturb the event
1247 * while in transit. Therefore all such accessors should also acquire
1248 * perf_event_context::mutex to serialize against this.
1249 *
1250 * However; because event->ctx can change while we're waiting to acquire
1251 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1252 * function.
1253 *
1254 * Lock order:
1255 * cred_guard_mutex
1256 * task_struct::perf_event_mutex
1257 * perf_event_context::mutex
1258 * perf_event::child_mutex;
1259 * perf_event_context::lock
1260 * perf_event::mmap_mutex
1261 * mmap_sem
1262 *
1263 * cpu_hotplug_lock
1264 * pmus_lock
1265 * cpuctx->mutex / perf_event_context::mutex
1266 */
1267 static struct perf_event_context *
1268 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1269 {
1270 struct perf_event_context *ctx;
1271
1272 again:
1273 rcu_read_lock();
1274 ctx = READ_ONCE(event->ctx);
1275 if (!atomic_inc_not_zero(&ctx->refcount)) {
1276 rcu_read_unlock();
1277 goto again;
1278 }
1279 rcu_read_unlock();
1280
1281 mutex_lock_nested(&ctx->mutex, nesting);
1282 if (event->ctx != ctx) {
1283 mutex_unlock(&ctx->mutex);
1284 put_ctx(ctx);
1285 goto again;
1286 }
1287
1288 return ctx;
1289 }
1290
1291 static inline struct perf_event_context *
1292 perf_event_ctx_lock(struct perf_event *event)
1293 {
1294 return perf_event_ctx_lock_nested(event, 0);
1295 }
1296
1297 static void perf_event_ctx_unlock(struct perf_event *event,
1298 struct perf_event_context *ctx)
1299 {
1300 mutex_unlock(&ctx->mutex);
1301 put_ctx(ctx);
1302 }
1303
1304 /*
1305 * This must be done under the ctx->lock, such as to serialize against
1306 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1307 * calling scheduler related locks and ctx->lock nests inside those.
1308 */
1309 static __must_check struct perf_event_context *
1310 unclone_ctx(struct perf_event_context *ctx)
1311 {
1312 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1313
1314 lockdep_assert_held(&ctx->lock);
1315
1316 if (parent_ctx)
1317 ctx->parent_ctx = NULL;
1318 ctx->generation++;
1319
1320 return parent_ctx;
1321 }
1322
1323 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1324 enum pid_type type)
1325 {
1326 u32 nr;
1327 /*
1328 * only top level events have the pid namespace they were created in
1329 */
1330 if (event->parent)
1331 event = event->parent;
1332
1333 nr = __task_pid_nr_ns(p, type, event->ns);
1334 /* avoid -1 if it is idle thread or runs in another ns */
1335 if (!nr && !pid_alive(p))
1336 nr = -1;
1337 return nr;
1338 }
1339
1340 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1341 {
1342 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1343 }
1344
1345 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1346 {
1347 return perf_event_pid_type(event, p, PIDTYPE_PID);
1348 }
1349
1350 /*
1351 * If we inherit events we want to return the parent event id
1352 * to userspace.
1353 */
1354 static u64 primary_event_id(struct perf_event *event)
1355 {
1356 u64 id = event->id;
1357
1358 if (event->parent)
1359 id = event->parent->id;
1360
1361 return id;
1362 }
1363
1364 /*
1365 * Get the perf_event_context for a task and lock it.
1366 *
1367 * This has to cope with with the fact that until it is locked,
1368 * the context could get moved to another task.
1369 */
1370 static struct perf_event_context *
1371 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1372 {
1373 struct perf_event_context *ctx;
1374
1375 retry:
1376 /*
1377 * One of the few rules of preemptible RCU is that one cannot do
1378 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1379 * part of the read side critical section was irqs-enabled -- see
1380 * rcu_read_unlock_special().
1381 *
1382 * Since ctx->lock nests under rq->lock we must ensure the entire read
1383 * side critical section has interrupts disabled.
1384 */
1385 local_irq_save(*flags);
1386 rcu_read_lock();
1387 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1388 if (ctx) {
1389 /*
1390 * If this context is a clone of another, it might
1391 * get swapped for another underneath us by
1392 * perf_event_task_sched_out, though the
1393 * rcu_read_lock() protects us from any context
1394 * getting freed. Lock the context and check if it
1395 * got swapped before we could get the lock, and retry
1396 * if so. If we locked the right context, then it
1397 * can't get swapped on us any more.
1398 */
1399 raw_spin_lock(&ctx->lock);
1400 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1401 raw_spin_unlock(&ctx->lock);
1402 rcu_read_unlock();
1403 local_irq_restore(*flags);
1404 goto retry;
1405 }
1406
1407 if (ctx->task == TASK_TOMBSTONE ||
1408 !atomic_inc_not_zero(&ctx->refcount)) {
1409 raw_spin_unlock(&ctx->lock);
1410 ctx = NULL;
1411 } else {
1412 WARN_ON_ONCE(ctx->task != task);
1413 }
1414 }
1415 rcu_read_unlock();
1416 if (!ctx)
1417 local_irq_restore(*flags);
1418 return ctx;
1419 }
1420
1421 /*
1422 * Get the context for a task and increment its pin_count so it
1423 * can't get swapped to another task. This also increments its
1424 * reference count so that the context can't get freed.
1425 */
1426 static struct perf_event_context *
1427 perf_pin_task_context(struct task_struct *task, int ctxn)
1428 {
1429 struct perf_event_context *ctx;
1430 unsigned long flags;
1431
1432 ctx = perf_lock_task_context(task, ctxn, &flags);
1433 if (ctx) {
1434 ++ctx->pin_count;
1435 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1436 }
1437 return ctx;
1438 }
1439
1440 static void perf_unpin_context(struct perf_event_context *ctx)
1441 {
1442 unsigned long flags;
1443
1444 raw_spin_lock_irqsave(&ctx->lock, flags);
1445 --ctx->pin_count;
1446 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1447 }
1448
1449 /*
1450 * Update the record of the current time in a context.
1451 */
1452 static void update_context_time(struct perf_event_context *ctx)
1453 {
1454 u64 now = perf_clock();
1455
1456 ctx->time += now - ctx->timestamp;
1457 ctx->timestamp = now;
1458 }
1459
1460 static u64 perf_event_time(struct perf_event *event)
1461 {
1462 struct perf_event_context *ctx = event->ctx;
1463
1464 if (is_cgroup_event(event))
1465 return perf_cgroup_event_time(event);
1466
1467 return ctx ? ctx->time : 0;
1468 }
1469
1470 static enum event_type_t get_event_type(struct perf_event *event)
1471 {
1472 struct perf_event_context *ctx = event->ctx;
1473 enum event_type_t event_type;
1474
1475 lockdep_assert_held(&ctx->lock);
1476
1477 /*
1478 * It's 'group type', really, because if our group leader is
1479 * pinned, so are we.
1480 */
1481 if (event->group_leader != event)
1482 event = event->group_leader;
1483
1484 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1485 if (!ctx->task)
1486 event_type |= EVENT_CPU;
1487
1488 return event_type;
1489 }
1490
1491 static struct list_head *
1492 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1493 {
1494 if (event->attr.pinned)
1495 return &ctx->pinned_groups;
1496 else
1497 return &ctx->flexible_groups;
1498 }
1499
1500 /*
1501 * Add a event from the lists for its context.
1502 * Must be called with ctx->mutex and ctx->lock held.
1503 */
1504 static void
1505 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1506 {
1507 lockdep_assert_held(&ctx->lock);
1508
1509 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1510 event->attach_state |= PERF_ATTACH_CONTEXT;
1511
1512 event->tstamp = perf_event_time(event);
1513
1514 /*
1515 * If we're a stand alone event or group leader, we go to the context
1516 * list, group events are kept attached to the group so that
1517 * perf_group_detach can, at all times, locate all siblings.
1518 */
1519 if (event->group_leader == event) {
1520 struct list_head *list;
1521
1522 event->group_caps = event->event_caps;
1523
1524 list = ctx_group_list(event, ctx);
1525 list_add_tail(&event->group_entry, list);
1526 }
1527
1528 list_update_cgroup_event(event, ctx, true);
1529
1530 list_add_rcu(&event->event_entry, &ctx->event_list);
1531 ctx->nr_events++;
1532 if (event->attr.inherit_stat)
1533 ctx->nr_stat++;
1534
1535 ctx->generation++;
1536 }
1537
1538 /*
1539 * Initialize event state based on the perf_event_attr::disabled.
1540 */
1541 static inline void perf_event__state_init(struct perf_event *event)
1542 {
1543 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1544 PERF_EVENT_STATE_INACTIVE;
1545 }
1546
1547 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1548 {
1549 int entry = sizeof(u64); /* value */
1550 int size = 0;
1551 int nr = 1;
1552
1553 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1554 size += sizeof(u64);
1555
1556 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1557 size += sizeof(u64);
1558
1559 if (event->attr.read_format & PERF_FORMAT_ID)
1560 entry += sizeof(u64);
1561
1562 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1563 nr += nr_siblings;
1564 size += sizeof(u64);
1565 }
1566
1567 size += entry * nr;
1568 event->read_size = size;
1569 }
1570
1571 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1572 {
1573 struct perf_sample_data *data;
1574 u16 size = 0;
1575
1576 if (sample_type & PERF_SAMPLE_IP)
1577 size += sizeof(data->ip);
1578
1579 if (sample_type & PERF_SAMPLE_ADDR)
1580 size += sizeof(data->addr);
1581
1582 if (sample_type & PERF_SAMPLE_PERIOD)
1583 size += sizeof(data->period);
1584
1585 if (sample_type & PERF_SAMPLE_WEIGHT)
1586 size += sizeof(data->weight);
1587
1588 if (sample_type & PERF_SAMPLE_READ)
1589 size += event->read_size;
1590
1591 if (sample_type & PERF_SAMPLE_DATA_SRC)
1592 size += sizeof(data->data_src.val);
1593
1594 if (sample_type & PERF_SAMPLE_TRANSACTION)
1595 size += sizeof(data->txn);
1596
1597 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1598 size += sizeof(data->phys_addr);
1599
1600 event->header_size = size;
1601 }
1602
1603 /*
1604 * Called at perf_event creation and when events are attached/detached from a
1605 * group.
1606 */
1607 static void perf_event__header_size(struct perf_event *event)
1608 {
1609 __perf_event_read_size(event,
1610 event->group_leader->nr_siblings);
1611 __perf_event_header_size(event, event->attr.sample_type);
1612 }
1613
1614 static void perf_event__id_header_size(struct perf_event *event)
1615 {
1616 struct perf_sample_data *data;
1617 u64 sample_type = event->attr.sample_type;
1618 u16 size = 0;
1619
1620 if (sample_type & PERF_SAMPLE_TID)
1621 size += sizeof(data->tid_entry);
1622
1623 if (sample_type & PERF_SAMPLE_TIME)
1624 size += sizeof(data->time);
1625
1626 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1627 size += sizeof(data->id);
1628
1629 if (sample_type & PERF_SAMPLE_ID)
1630 size += sizeof(data->id);
1631
1632 if (sample_type & PERF_SAMPLE_STREAM_ID)
1633 size += sizeof(data->stream_id);
1634
1635 if (sample_type & PERF_SAMPLE_CPU)
1636 size += sizeof(data->cpu_entry);
1637
1638 event->id_header_size = size;
1639 }
1640
1641 static bool perf_event_validate_size(struct perf_event *event)
1642 {
1643 /*
1644 * The values computed here will be over-written when we actually
1645 * attach the event.
1646 */
1647 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1648 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1649 perf_event__id_header_size(event);
1650
1651 /*
1652 * Sum the lot; should not exceed the 64k limit we have on records.
1653 * Conservative limit to allow for callchains and other variable fields.
1654 */
1655 if (event->read_size + event->header_size +
1656 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1657 return false;
1658
1659 return true;
1660 }
1661
1662 static void perf_group_attach(struct perf_event *event)
1663 {
1664 struct perf_event *group_leader = event->group_leader, *pos;
1665
1666 lockdep_assert_held(&event->ctx->lock);
1667
1668 /*
1669 * We can have double attach due to group movement in perf_event_open.
1670 */
1671 if (event->attach_state & PERF_ATTACH_GROUP)
1672 return;
1673
1674 event->attach_state |= PERF_ATTACH_GROUP;
1675
1676 if (group_leader == event)
1677 return;
1678
1679 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1680
1681 group_leader->group_caps &= event->event_caps;
1682
1683 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1684 group_leader->nr_siblings++;
1685
1686 perf_event__header_size(group_leader);
1687
1688 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1689 perf_event__header_size(pos);
1690 }
1691
1692 /*
1693 * Remove a event from the lists for its context.
1694 * Must be called with ctx->mutex and ctx->lock held.
1695 */
1696 static void
1697 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1698 {
1699 WARN_ON_ONCE(event->ctx != ctx);
1700 lockdep_assert_held(&ctx->lock);
1701
1702 /*
1703 * We can have double detach due to exit/hot-unplug + close.
1704 */
1705 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1706 return;
1707
1708 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1709
1710 list_update_cgroup_event(event, ctx, false);
1711
1712 ctx->nr_events--;
1713 if (event->attr.inherit_stat)
1714 ctx->nr_stat--;
1715
1716 list_del_rcu(&event->event_entry);
1717
1718 if (event->group_leader == event)
1719 list_del_init(&event->group_entry);
1720
1721 /*
1722 * If event was in error state, then keep it
1723 * that way, otherwise bogus counts will be
1724 * returned on read(). The only way to get out
1725 * of error state is by explicit re-enabling
1726 * of the event
1727 */
1728 if (event->state > PERF_EVENT_STATE_OFF)
1729 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1730
1731 ctx->generation++;
1732 }
1733
1734 static void perf_group_detach(struct perf_event *event)
1735 {
1736 struct perf_event *sibling, *tmp;
1737 struct list_head *list = NULL;
1738
1739 lockdep_assert_held(&event->ctx->lock);
1740
1741 /*
1742 * We can have double detach due to exit/hot-unplug + close.
1743 */
1744 if (!(event->attach_state & PERF_ATTACH_GROUP))
1745 return;
1746
1747 event->attach_state &= ~PERF_ATTACH_GROUP;
1748
1749 /*
1750 * If this is a sibling, remove it from its group.
1751 */
1752 if (event->group_leader != event) {
1753 list_del_init(&event->group_entry);
1754 event->group_leader->nr_siblings--;
1755 goto out;
1756 }
1757
1758 if (!list_empty(&event->group_entry))
1759 list = &event->group_entry;
1760
1761 /*
1762 * If this was a group event with sibling events then
1763 * upgrade the siblings to singleton events by adding them
1764 * to whatever list we are on.
1765 */
1766 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1767 if (list)
1768 list_move_tail(&sibling->group_entry, list);
1769 sibling->group_leader = sibling;
1770
1771 /* Inherit group flags from the previous leader */
1772 sibling->group_caps = event->group_caps;
1773
1774 WARN_ON_ONCE(sibling->ctx != event->ctx);
1775 }
1776
1777 out:
1778 perf_event__header_size(event->group_leader);
1779
1780 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1781 perf_event__header_size(tmp);
1782 }
1783
1784 static bool is_orphaned_event(struct perf_event *event)
1785 {
1786 return event->state == PERF_EVENT_STATE_DEAD;
1787 }
1788
1789 static inline int __pmu_filter_match(struct perf_event *event)
1790 {
1791 struct pmu *pmu = event->pmu;
1792 return pmu->filter_match ? pmu->filter_match(event) : 1;
1793 }
1794
1795 /*
1796 * Check whether we should attempt to schedule an event group based on
1797 * PMU-specific filtering. An event group can consist of HW and SW events,
1798 * potentially with a SW leader, so we must check all the filters, to
1799 * determine whether a group is schedulable:
1800 */
1801 static inline int pmu_filter_match(struct perf_event *event)
1802 {
1803 struct perf_event *child;
1804
1805 if (!__pmu_filter_match(event))
1806 return 0;
1807
1808 list_for_each_entry(child, &event->sibling_list, group_entry) {
1809 if (!__pmu_filter_match(child))
1810 return 0;
1811 }
1812
1813 return 1;
1814 }
1815
1816 static inline int
1817 event_filter_match(struct perf_event *event)
1818 {
1819 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1820 perf_cgroup_match(event) && pmu_filter_match(event);
1821 }
1822
1823 static void
1824 event_sched_out(struct perf_event *event,
1825 struct perf_cpu_context *cpuctx,
1826 struct perf_event_context *ctx)
1827 {
1828 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1829
1830 WARN_ON_ONCE(event->ctx != ctx);
1831 lockdep_assert_held(&ctx->lock);
1832
1833 if (event->state != PERF_EVENT_STATE_ACTIVE)
1834 return;
1835
1836 perf_pmu_disable(event->pmu);
1837
1838 event->pmu->del(event, 0);
1839 event->oncpu = -1;
1840
1841 if (event->pending_disable) {
1842 event->pending_disable = 0;
1843 state = PERF_EVENT_STATE_OFF;
1844 }
1845 perf_event_set_state(event, state);
1846
1847 if (!is_software_event(event))
1848 cpuctx->active_oncpu--;
1849 if (!--ctx->nr_active)
1850 perf_event_ctx_deactivate(ctx);
1851 if (event->attr.freq && event->attr.sample_freq)
1852 ctx->nr_freq--;
1853 if (event->attr.exclusive || !cpuctx->active_oncpu)
1854 cpuctx->exclusive = 0;
1855
1856 perf_pmu_enable(event->pmu);
1857 }
1858
1859 static void
1860 group_sched_out(struct perf_event *group_event,
1861 struct perf_cpu_context *cpuctx,
1862 struct perf_event_context *ctx)
1863 {
1864 struct perf_event *event;
1865
1866 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1867 return;
1868
1869 perf_pmu_disable(ctx->pmu);
1870
1871 event_sched_out(group_event, cpuctx, ctx);
1872
1873 /*
1874 * Schedule out siblings (if any):
1875 */
1876 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1877 event_sched_out(event, cpuctx, ctx);
1878
1879 perf_pmu_enable(ctx->pmu);
1880
1881 if (group_event->attr.exclusive)
1882 cpuctx->exclusive = 0;
1883 }
1884
1885 #define DETACH_GROUP 0x01UL
1886
1887 /*
1888 * Cross CPU call to remove a performance event
1889 *
1890 * We disable the event on the hardware level first. After that we
1891 * remove it from the context list.
1892 */
1893 static void
1894 __perf_remove_from_context(struct perf_event *event,
1895 struct perf_cpu_context *cpuctx,
1896 struct perf_event_context *ctx,
1897 void *info)
1898 {
1899 unsigned long flags = (unsigned long)info;
1900
1901 if (ctx->is_active & EVENT_TIME) {
1902 update_context_time(ctx);
1903 update_cgrp_time_from_cpuctx(cpuctx);
1904 }
1905
1906 event_sched_out(event, cpuctx, ctx);
1907 if (flags & DETACH_GROUP)
1908 perf_group_detach(event);
1909 list_del_event(event, ctx);
1910
1911 if (!ctx->nr_events && ctx->is_active) {
1912 ctx->is_active = 0;
1913 if (ctx->task) {
1914 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1915 cpuctx->task_ctx = NULL;
1916 }
1917 }
1918 }
1919
1920 /*
1921 * Remove the event from a task's (or a CPU's) list of events.
1922 *
1923 * If event->ctx is a cloned context, callers must make sure that
1924 * every task struct that event->ctx->task could possibly point to
1925 * remains valid. This is OK when called from perf_release since
1926 * that only calls us on the top-level context, which can't be a clone.
1927 * When called from perf_event_exit_task, it's OK because the
1928 * context has been detached from its task.
1929 */
1930 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1931 {
1932 struct perf_event_context *ctx = event->ctx;
1933
1934 lockdep_assert_held(&ctx->mutex);
1935
1936 event_function_call(event, __perf_remove_from_context, (void *)flags);
1937
1938 /*
1939 * The above event_function_call() can NO-OP when it hits
1940 * TASK_TOMBSTONE. In that case we must already have been detached
1941 * from the context (by perf_event_exit_event()) but the grouping
1942 * might still be in-tact.
1943 */
1944 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1945 if ((flags & DETACH_GROUP) &&
1946 (event->attach_state & PERF_ATTACH_GROUP)) {
1947 /*
1948 * Since in that case we cannot possibly be scheduled, simply
1949 * detach now.
1950 */
1951 raw_spin_lock_irq(&ctx->lock);
1952 perf_group_detach(event);
1953 raw_spin_unlock_irq(&ctx->lock);
1954 }
1955 }
1956
1957 /*
1958 * Cross CPU call to disable a performance event
1959 */
1960 static void __perf_event_disable(struct perf_event *event,
1961 struct perf_cpu_context *cpuctx,
1962 struct perf_event_context *ctx,
1963 void *info)
1964 {
1965 if (event->state < PERF_EVENT_STATE_INACTIVE)
1966 return;
1967
1968 if (ctx->is_active & EVENT_TIME) {
1969 update_context_time(ctx);
1970 update_cgrp_time_from_event(event);
1971 }
1972
1973 if (event == event->group_leader)
1974 group_sched_out(event, cpuctx, ctx);
1975 else
1976 event_sched_out(event, cpuctx, ctx);
1977
1978 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1979 }
1980
1981 /*
1982 * Disable a event.
1983 *
1984 * If event->ctx is a cloned context, callers must make sure that
1985 * every task struct that event->ctx->task could possibly point to
1986 * remains valid. This condition is satisifed when called through
1987 * perf_event_for_each_child or perf_event_for_each because they
1988 * hold the top-level event's child_mutex, so any descendant that
1989 * goes to exit will block in perf_event_exit_event().
1990 *
1991 * When called from perf_pending_event it's OK because event->ctx
1992 * is the current context on this CPU and preemption is disabled,
1993 * hence we can't get into perf_event_task_sched_out for this context.
1994 */
1995 static void _perf_event_disable(struct perf_event *event)
1996 {
1997 struct perf_event_context *ctx = event->ctx;
1998
1999 raw_spin_lock_irq(&ctx->lock);
2000 if (event->state <= PERF_EVENT_STATE_OFF) {
2001 raw_spin_unlock_irq(&ctx->lock);
2002 return;
2003 }
2004 raw_spin_unlock_irq(&ctx->lock);
2005
2006 event_function_call(event, __perf_event_disable, NULL);
2007 }
2008
2009 void perf_event_disable_local(struct perf_event *event)
2010 {
2011 event_function_local(event, __perf_event_disable, NULL);
2012 }
2013
2014 /*
2015 * Strictly speaking kernel users cannot create groups and therefore this
2016 * interface does not need the perf_event_ctx_lock() magic.
2017 */
2018 void perf_event_disable(struct perf_event *event)
2019 {
2020 struct perf_event_context *ctx;
2021
2022 ctx = perf_event_ctx_lock(event);
2023 _perf_event_disable(event);
2024 perf_event_ctx_unlock(event, ctx);
2025 }
2026 EXPORT_SYMBOL_GPL(perf_event_disable);
2027
2028 void perf_event_disable_inatomic(struct perf_event *event)
2029 {
2030 event->pending_disable = 1;
2031 irq_work_queue(&event->pending);
2032 }
2033
2034 static void perf_set_shadow_time(struct perf_event *event,
2035 struct perf_event_context *ctx)
2036 {
2037 /*
2038 * use the correct time source for the time snapshot
2039 *
2040 * We could get by without this by leveraging the
2041 * fact that to get to this function, the caller
2042 * has most likely already called update_context_time()
2043 * and update_cgrp_time_xx() and thus both timestamp
2044 * are identical (or very close). Given that tstamp is,
2045 * already adjusted for cgroup, we could say that:
2046 * tstamp - ctx->timestamp
2047 * is equivalent to
2048 * tstamp - cgrp->timestamp.
2049 *
2050 * Then, in perf_output_read(), the calculation would
2051 * work with no changes because:
2052 * - event is guaranteed scheduled in
2053 * - no scheduled out in between
2054 * - thus the timestamp would be the same
2055 *
2056 * But this is a bit hairy.
2057 *
2058 * So instead, we have an explicit cgroup call to remain
2059 * within the time time source all along. We believe it
2060 * is cleaner and simpler to understand.
2061 */
2062 if (is_cgroup_event(event))
2063 perf_cgroup_set_shadow_time(event, event->tstamp);
2064 else
2065 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2066 }
2067
2068 #define MAX_INTERRUPTS (~0ULL)
2069
2070 static void perf_log_throttle(struct perf_event *event, int enable);
2071 static void perf_log_itrace_start(struct perf_event *event);
2072
2073 static int
2074 event_sched_in(struct perf_event *event,
2075 struct perf_cpu_context *cpuctx,
2076 struct perf_event_context *ctx)
2077 {
2078 int ret = 0;
2079
2080 lockdep_assert_held(&ctx->lock);
2081
2082 if (event->state <= PERF_EVENT_STATE_OFF)
2083 return 0;
2084
2085 WRITE_ONCE(event->oncpu, smp_processor_id());
2086 /*
2087 * Order event::oncpu write to happen before the ACTIVE state is
2088 * visible. This allows perf_event_{stop,read}() to observe the correct
2089 * ->oncpu if it sees ACTIVE.
2090 */
2091 smp_wmb();
2092 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2093
2094 /*
2095 * Unthrottle events, since we scheduled we might have missed several
2096 * ticks already, also for a heavily scheduling task there is little
2097 * guarantee it'll get a tick in a timely manner.
2098 */
2099 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2100 perf_log_throttle(event, 1);
2101 event->hw.interrupts = 0;
2102 }
2103
2104 perf_pmu_disable(event->pmu);
2105
2106 perf_set_shadow_time(event, ctx);
2107
2108 perf_log_itrace_start(event);
2109
2110 if (event->pmu->add(event, PERF_EF_START)) {
2111 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2112 event->oncpu = -1;
2113 ret = -EAGAIN;
2114 goto out;
2115 }
2116
2117 if (!is_software_event(event))
2118 cpuctx->active_oncpu++;
2119 if (!ctx->nr_active++)
2120 perf_event_ctx_activate(ctx);
2121 if (event->attr.freq && event->attr.sample_freq)
2122 ctx->nr_freq++;
2123
2124 if (event->attr.exclusive)
2125 cpuctx->exclusive = 1;
2126
2127 out:
2128 perf_pmu_enable(event->pmu);
2129
2130 return ret;
2131 }
2132
2133 static int
2134 group_sched_in(struct perf_event *group_event,
2135 struct perf_cpu_context *cpuctx,
2136 struct perf_event_context *ctx)
2137 {
2138 struct perf_event *event, *partial_group = NULL;
2139 struct pmu *pmu = ctx->pmu;
2140
2141 if (group_event->state == PERF_EVENT_STATE_OFF)
2142 return 0;
2143
2144 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2145
2146 if (event_sched_in(group_event, cpuctx, ctx)) {
2147 pmu->cancel_txn(pmu);
2148 perf_mux_hrtimer_restart(cpuctx);
2149 return -EAGAIN;
2150 }
2151
2152 /*
2153 * Schedule in siblings as one group (if any):
2154 */
2155 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2156 if (event_sched_in(event, cpuctx, ctx)) {
2157 partial_group = event;
2158 goto group_error;
2159 }
2160 }
2161
2162 if (!pmu->commit_txn(pmu))
2163 return 0;
2164
2165 group_error:
2166 /*
2167 * Groups can be scheduled in as one unit only, so undo any
2168 * partial group before returning:
2169 * The events up to the failed event are scheduled out normally.
2170 */
2171 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2172 if (event == partial_group)
2173 break;
2174
2175 event_sched_out(event, cpuctx, ctx);
2176 }
2177 event_sched_out(group_event, cpuctx, ctx);
2178
2179 pmu->cancel_txn(pmu);
2180
2181 perf_mux_hrtimer_restart(cpuctx);
2182
2183 return -EAGAIN;
2184 }
2185
2186 /*
2187 * Work out whether we can put this event group on the CPU now.
2188 */
2189 static int group_can_go_on(struct perf_event *event,
2190 struct perf_cpu_context *cpuctx,
2191 int can_add_hw)
2192 {
2193 /*
2194 * Groups consisting entirely of software events can always go on.
2195 */
2196 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2197 return 1;
2198 /*
2199 * If an exclusive group is already on, no other hardware
2200 * events can go on.
2201 */
2202 if (cpuctx->exclusive)
2203 return 0;
2204 /*
2205 * If this group is exclusive and there are already
2206 * events on the CPU, it can't go on.
2207 */
2208 if (event->attr.exclusive && cpuctx->active_oncpu)
2209 return 0;
2210 /*
2211 * Otherwise, try to add it if all previous groups were able
2212 * to go on.
2213 */
2214 return can_add_hw;
2215 }
2216
2217 static void add_event_to_ctx(struct perf_event *event,
2218 struct perf_event_context *ctx)
2219 {
2220 list_add_event(event, ctx);
2221 perf_group_attach(event);
2222 }
2223
2224 static void ctx_sched_out(struct perf_event_context *ctx,
2225 struct perf_cpu_context *cpuctx,
2226 enum event_type_t event_type);
2227 static void
2228 ctx_sched_in(struct perf_event_context *ctx,
2229 struct perf_cpu_context *cpuctx,
2230 enum event_type_t event_type,
2231 struct task_struct *task);
2232
2233 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234 struct perf_event_context *ctx,
2235 enum event_type_t event_type)
2236 {
2237 if (!cpuctx->task_ctx)
2238 return;
2239
2240 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241 return;
2242
2243 ctx_sched_out(ctx, cpuctx, event_type);
2244 }
2245
2246 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247 struct perf_event_context *ctx,
2248 struct task_struct *task)
2249 {
2250 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251 if (ctx)
2252 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254 if (ctx)
2255 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256 }
2257
2258 /*
2259 * We want to maintain the following priority of scheduling:
2260 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261 * - task pinned (EVENT_PINNED)
2262 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263 * - task flexible (EVENT_FLEXIBLE).
2264 *
2265 * In order to avoid unscheduling and scheduling back in everything every
2266 * time an event is added, only do it for the groups of equal priority and
2267 * below.
2268 *
2269 * This can be called after a batch operation on task events, in which case
2270 * event_type is a bit mask of the types of events involved. For CPU events,
2271 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272 */
2273 static void ctx_resched(struct perf_cpu_context *cpuctx,
2274 struct perf_event_context *task_ctx,
2275 enum event_type_t event_type)
2276 {
2277 enum event_type_t ctx_event_type;
2278 bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280 /*
2281 * If pinned groups are involved, flexible groups also need to be
2282 * scheduled out.
2283 */
2284 if (event_type & EVENT_PINNED)
2285 event_type |= EVENT_FLEXIBLE;
2286
2287 ctx_event_type = event_type & EVENT_ALL;
2288
2289 perf_pmu_disable(cpuctx->ctx.pmu);
2290 if (task_ctx)
2291 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2292
2293 /*
2294 * Decide which cpu ctx groups to schedule out based on the types
2295 * of events that caused rescheduling:
2296 * - EVENT_CPU: schedule out corresponding groups;
2297 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2298 * - otherwise, do nothing more.
2299 */
2300 if (cpu_event)
2301 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2302 else if (ctx_event_type & EVENT_PINNED)
2303 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2304
2305 perf_event_sched_in(cpuctx, task_ctx, current);
2306 perf_pmu_enable(cpuctx->ctx.pmu);
2307 }
2308
2309 /*
2310 * Cross CPU call to install and enable a performance event
2311 *
2312 * Very similar to remote_function() + event_function() but cannot assume that
2313 * things like ctx->is_active and cpuctx->task_ctx are set.
2314 */
2315 static int __perf_install_in_context(void *info)
2316 {
2317 struct perf_event *event = info;
2318 struct perf_event_context *ctx = event->ctx;
2319 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2320 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2321 bool reprogram = true;
2322 int ret = 0;
2323
2324 raw_spin_lock(&cpuctx->ctx.lock);
2325 if (ctx->task) {
2326 raw_spin_lock(&ctx->lock);
2327 task_ctx = ctx;
2328
2329 reprogram = (ctx->task == current);
2330
2331 /*
2332 * If the task is running, it must be running on this CPU,
2333 * otherwise we cannot reprogram things.
2334 *
2335 * If its not running, we don't care, ctx->lock will
2336 * serialize against it becoming runnable.
2337 */
2338 if (task_curr(ctx->task) && !reprogram) {
2339 ret = -ESRCH;
2340 goto unlock;
2341 }
2342
2343 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2344 } else if (task_ctx) {
2345 raw_spin_lock(&task_ctx->lock);
2346 }
2347
2348 #ifdef CONFIG_CGROUP_PERF
2349 if (is_cgroup_event(event)) {
2350 /*
2351 * If the current cgroup doesn't match the event's
2352 * cgroup, we should not try to schedule it.
2353 */
2354 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2355 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2356 event->cgrp->css.cgroup);
2357 }
2358 #endif
2359
2360 if (reprogram) {
2361 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2362 add_event_to_ctx(event, ctx);
2363 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2364 } else {
2365 add_event_to_ctx(event, ctx);
2366 }
2367
2368 unlock:
2369 perf_ctx_unlock(cpuctx, task_ctx);
2370
2371 return ret;
2372 }
2373
2374 /*
2375 * Attach a performance event to a context.
2376 *
2377 * Very similar to event_function_call, see comment there.
2378 */
2379 static void
2380 perf_install_in_context(struct perf_event_context *ctx,
2381 struct perf_event *event,
2382 int cpu)
2383 {
2384 struct task_struct *task = READ_ONCE(ctx->task);
2385
2386 lockdep_assert_held(&ctx->mutex);
2387
2388 if (event->cpu != -1)
2389 event->cpu = cpu;
2390
2391 /*
2392 * Ensures that if we can observe event->ctx, both the event and ctx
2393 * will be 'complete'. See perf_iterate_sb_cpu().
2394 */
2395 smp_store_release(&event->ctx, ctx);
2396
2397 if (!task) {
2398 cpu_function_call(cpu, __perf_install_in_context, event);
2399 return;
2400 }
2401
2402 /*
2403 * Should not happen, we validate the ctx is still alive before calling.
2404 */
2405 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2406 return;
2407
2408 /*
2409 * Installing events is tricky because we cannot rely on ctx->is_active
2410 * to be set in case this is the nr_events 0 -> 1 transition.
2411 *
2412 * Instead we use task_curr(), which tells us if the task is running.
2413 * However, since we use task_curr() outside of rq::lock, we can race
2414 * against the actual state. This means the result can be wrong.
2415 *
2416 * If we get a false positive, we retry, this is harmless.
2417 *
2418 * If we get a false negative, things are complicated. If we are after
2419 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2420 * value must be correct. If we're before, it doesn't matter since
2421 * perf_event_context_sched_in() will program the counter.
2422 *
2423 * However, this hinges on the remote context switch having observed
2424 * our task->perf_event_ctxp[] store, such that it will in fact take
2425 * ctx::lock in perf_event_context_sched_in().
2426 *
2427 * We do this by task_function_call(), if the IPI fails to hit the task
2428 * we know any future context switch of task must see the
2429 * perf_event_ctpx[] store.
2430 */
2431
2432 /*
2433 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2434 * task_cpu() load, such that if the IPI then does not find the task
2435 * running, a future context switch of that task must observe the
2436 * store.
2437 */
2438 smp_mb();
2439 again:
2440 if (!task_function_call(task, __perf_install_in_context, event))
2441 return;
2442
2443 raw_spin_lock_irq(&ctx->lock);
2444 task = ctx->task;
2445 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2446 /*
2447 * Cannot happen because we already checked above (which also
2448 * cannot happen), and we hold ctx->mutex, which serializes us
2449 * against perf_event_exit_task_context().
2450 */
2451 raw_spin_unlock_irq(&ctx->lock);
2452 return;
2453 }
2454 /*
2455 * If the task is not running, ctx->lock will avoid it becoming so,
2456 * thus we can safely install the event.
2457 */
2458 if (task_curr(task)) {
2459 raw_spin_unlock_irq(&ctx->lock);
2460 goto again;
2461 }
2462 add_event_to_ctx(event, ctx);
2463 raw_spin_unlock_irq(&ctx->lock);
2464 }
2465
2466 /*
2467 * Cross CPU call to enable a performance event
2468 */
2469 static void __perf_event_enable(struct perf_event *event,
2470 struct perf_cpu_context *cpuctx,
2471 struct perf_event_context *ctx,
2472 void *info)
2473 {
2474 struct perf_event *leader = event->group_leader;
2475 struct perf_event_context *task_ctx;
2476
2477 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2478 event->state <= PERF_EVENT_STATE_ERROR)
2479 return;
2480
2481 if (ctx->is_active)
2482 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2483
2484 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2485
2486 if (!ctx->is_active)
2487 return;
2488
2489 if (!event_filter_match(event)) {
2490 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2491 return;
2492 }
2493
2494 /*
2495 * If the event is in a group and isn't the group leader,
2496 * then don't put it on unless the group is on.
2497 */
2498 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2499 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500 return;
2501 }
2502
2503 task_ctx = cpuctx->task_ctx;
2504 if (ctx->task)
2505 WARN_ON_ONCE(task_ctx != ctx);
2506
2507 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2508 }
2509
2510 /*
2511 * Enable a event.
2512 *
2513 * If event->ctx is a cloned context, callers must make sure that
2514 * every task struct that event->ctx->task could possibly point to
2515 * remains valid. This condition is satisfied when called through
2516 * perf_event_for_each_child or perf_event_for_each as described
2517 * for perf_event_disable.
2518 */
2519 static void _perf_event_enable(struct perf_event *event)
2520 {
2521 struct perf_event_context *ctx = event->ctx;
2522
2523 raw_spin_lock_irq(&ctx->lock);
2524 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2525 event->state < PERF_EVENT_STATE_ERROR) {
2526 raw_spin_unlock_irq(&ctx->lock);
2527 return;
2528 }
2529
2530 /*
2531 * If the event is in error state, clear that first.
2532 *
2533 * That way, if we see the event in error state below, we know that it
2534 * has gone back into error state, as distinct from the task having
2535 * been scheduled away before the cross-call arrived.
2536 */
2537 if (event->state == PERF_EVENT_STATE_ERROR)
2538 event->state = PERF_EVENT_STATE_OFF;
2539 raw_spin_unlock_irq(&ctx->lock);
2540
2541 event_function_call(event, __perf_event_enable, NULL);
2542 }
2543
2544 /*
2545 * See perf_event_disable();
2546 */
2547 void perf_event_enable(struct perf_event *event)
2548 {
2549 struct perf_event_context *ctx;
2550
2551 ctx = perf_event_ctx_lock(event);
2552 _perf_event_enable(event);
2553 perf_event_ctx_unlock(event, ctx);
2554 }
2555 EXPORT_SYMBOL_GPL(perf_event_enable);
2556
2557 struct stop_event_data {
2558 struct perf_event *event;
2559 unsigned int restart;
2560 };
2561
2562 static int __perf_event_stop(void *info)
2563 {
2564 struct stop_event_data *sd = info;
2565 struct perf_event *event = sd->event;
2566
2567 /* if it's already INACTIVE, do nothing */
2568 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2569 return 0;
2570
2571 /* matches smp_wmb() in event_sched_in() */
2572 smp_rmb();
2573
2574 /*
2575 * There is a window with interrupts enabled before we get here,
2576 * so we need to check again lest we try to stop another CPU's event.
2577 */
2578 if (READ_ONCE(event->oncpu) != smp_processor_id())
2579 return -EAGAIN;
2580
2581 event->pmu->stop(event, PERF_EF_UPDATE);
2582
2583 /*
2584 * May race with the actual stop (through perf_pmu_output_stop()),
2585 * but it is only used for events with AUX ring buffer, and such
2586 * events will refuse to restart because of rb::aux_mmap_count==0,
2587 * see comments in perf_aux_output_begin().
2588 *
2589 * Since this is happening on a event-local CPU, no trace is lost
2590 * while restarting.
2591 */
2592 if (sd->restart)
2593 event->pmu->start(event, 0);
2594
2595 return 0;
2596 }
2597
2598 static int perf_event_stop(struct perf_event *event, int restart)
2599 {
2600 struct stop_event_data sd = {
2601 .event = event,
2602 .restart = restart,
2603 };
2604 int ret = 0;
2605
2606 do {
2607 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2608 return 0;
2609
2610 /* matches smp_wmb() in event_sched_in() */
2611 smp_rmb();
2612
2613 /*
2614 * We only want to restart ACTIVE events, so if the event goes
2615 * inactive here (event->oncpu==-1), there's nothing more to do;
2616 * fall through with ret==-ENXIO.
2617 */
2618 ret = cpu_function_call(READ_ONCE(event->oncpu),
2619 __perf_event_stop, &sd);
2620 } while (ret == -EAGAIN);
2621
2622 return ret;
2623 }
2624
2625 /*
2626 * In order to contain the amount of racy and tricky in the address filter
2627 * configuration management, it is a two part process:
2628 *
2629 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2630 * we update the addresses of corresponding vmas in
2631 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2632 * (p2) when an event is scheduled in (pmu::add), it calls
2633 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2634 * if the generation has changed since the previous call.
2635 *
2636 * If (p1) happens while the event is active, we restart it to force (p2).
2637 *
2638 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2639 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2640 * ioctl;
2641 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2642 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2643 * for reading;
2644 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2645 * of exec.
2646 */
2647 void perf_event_addr_filters_sync(struct perf_event *event)
2648 {
2649 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2650
2651 if (!has_addr_filter(event))
2652 return;
2653
2654 raw_spin_lock(&ifh->lock);
2655 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2656 event->pmu->addr_filters_sync(event);
2657 event->hw.addr_filters_gen = event->addr_filters_gen;
2658 }
2659 raw_spin_unlock(&ifh->lock);
2660 }
2661 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2662
2663 static int _perf_event_refresh(struct perf_event *event, int refresh)
2664 {
2665 /*
2666 * not supported on inherited events
2667 */
2668 if (event->attr.inherit || !is_sampling_event(event))
2669 return -EINVAL;
2670
2671 atomic_add(refresh, &event->event_limit);
2672 _perf_event_enable(event);
2673
2674 return 0;
2675 }
2676
2677 /*
2678 * See perf_event_disable()
2679 */
2680 int perf_event_refresh(struct perf_event *event, int refresh)
2681 {
2682 struct perf_event_context *ctx;
2683 int ret;
2684
2685 ctx = perf_event_ctx_lock(event);
2686 ret = _perf_event_refresh(event, refresh);
2687 perf_event_ctx_unlock(event, ctx);
2688
2689 return ret;
2690 }
2691 EXPORT_SYMBOL_GPL(perf_event_refresh);
2692
2693 static void ctx_sched_out(struct perf_event_context *ctx,
2694 struct perf_cpu_context *cpuctx,
2695 enum event_type_t event_type)
2696 {
2697 int is_active = ctx->is_active;
2698 struct perf_event *event;
2699
2700 lockdep_assert_held(&ctx->lock);
2701
2702 if (likely(!ctx->nr_events)) {
2703 /*
2704 * See __perf_remove_from_context().
2705 */
2706 WARN_ON_ONCE(ctx->is_active);
2707 if (ctx->task)
2708 WARN_ON_ONCE(cpuctx->task_ctx);
2709 return;
2710 }
2711
2712 ctx->is_active &= ~event_type;
2713 if (!(ctx->is_active & EVENT_ALL))
2714 ctx->is_active = 0;
2715
2716 if (ctx->task) {
2717 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2718 if (!ctx->is_active)
2719 cpuctx->task_ctx = NULL;
2720 }
2721
2722 /*
2723 * Always update time if it was set; not only when it changes.
2724 * Otherwise we can 'forget' to update time for any but the last
2725 * context we sched out. For example:
2726 *
2727 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2728 * ctx_sched_out(.event_type = EVENT_PINNED)
2729 *
2730 * would only update time for the pinned events.
2731 */
2732 if (is_active & EVENT_TIME) {
2733 /* update (and stop) ctx time */
2734 update_context_time(ctx);
2735 update_cgrp_time_from_cpuctx(cpuctx);
2736 }
2737
2738 is_active ^= ctx->is_active; /* changed bits */
2739
2740 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2741 return;
2742
2743 perf_pmu_disable(ctx->pmu);
2744 if (is_active & EVENT_PINNED) {
2745 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2746 group_sched_out(event, cpuctx, ctx);
2747 }
2748
2749 if (is_active & EVENT_FLEXIBLE) {
2750 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2751 group_sched_out(event, cpuctx, ctx);
2752 }
2753 perf_pmu_enable(ctx->pmu);
2754 }
2755
2756 /*
2757 * Test whether two contexts are equivalent, i.e. whether they have both been
2758 * cloned from the same version of the same context.
2759 *
2760 * Equivalence is measured using a generation number in the context that is
2761 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2762 * and list_del_event().
2763 */
2764 static int context_equiv(struct perf_event_context *ctx1,
2765 struct perf_event_context *ctx2)
2766 {
2767 lockdep_assert_held(&ctx1->lock);
2768 lockdep_assert_held(&ctx2->lock);
2769
2770 /* Pinning disables the swap optimization */
2771 if (ctx1->pin_count || ctx2->pin_count)
2772 return 0;
2773
2774 /* If ctx1 is the parent of ctx2 */
2775 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2776 return 1;
2777
2778 /* If ctx2 is the parent of ctx1 */
2779 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2780 return 1;
2781
2782 /*
2783 * If ctx1 and ctx2 have the same parent; we flatten the parent
2784 * hierarchy, see perf_event_init_context().
2785 */
2786 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2787 ctx1->parent_gen == ctx2->parent_gen)
2788 return 1;
2789
2790 /* Unmatched */
2791 return 0;
2792 }
2793
2794 static void __perf_event_sync_stat(struct perf_event *event,
2795 struct perf_event *next_event)
2796 {
2797 u64 value;
2798
2799 if (!event->attr.inherit_stat)
2800 return;
2801
2802 /*
2803 * Update the event value, we cannot use perf_event_read()
2804 * because we're in the middle of a context switch and have IRQs
2805 * disabled, which upsets smp_call_function_single(), however
2806 * we know the event must be on the current CPU, therefore we
2807 * don't need to use it.
2808 */
2809 if (event->state == PERF_EVENT_STATE_ACTIVE)
2810 event->pmu->read(event);
2811
2812 perf_event_update_time(event);
2813
2814 /*
2815 * In order to keep per-task stats reliable we need to flip the event
2816 * values when we flip the contexts.
2817 */
2818 value = local64_read(&next_event->count);
2819 value = local64_xchg(&event->count, value);
2820 local64_set(&next_event->count, value);
2821
2822 swap(event->total_time_enabled, next_event->total_time_enabled);
2823 swap(event->total_time_running, next_event->total_time_running);
2824
2825 /*
2826 * Since we swizzled the values, update the user visible data too.
2827 */
2828 perf_event_update_userpage(event);
2829 perf_event_update_userpage(next_event);
2830 }
2831
2832 static void perf_event_sync_stat(struct perf_event_context *ctx,
2833 struct perf_event_context *next_ctx)
2834 {
2835 struct perf_event *event, *next_event;
2836
2837 if (!ctx->nr_stat)
2838 return;
2839
2840 update_context_time(ctx);
2841
2842 event = list_first_entry(&ctx->event_list,
2843 struct perf_event, event_entry);
2844
2845 next_event = list_first_entry(&next_ctx->event_list,
2846 struct perf_event, event_entry);
2847
2848 while (&event->event_entry != &ctx->event_list &&
2849 &next_event->event_entry != &next_ctx->event_list) {
2850
2851 __perf_event_sync_stat(event, next_event);
2852
2853 event = list_next_entry(event, event_entry);
2854 next_event = list_next_entry(next_event, event_entry);
2855 }
2856 }
2857
2858 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2859 struct task_struct *next)
2860 {
2861 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2862 struct perf_event_context *next_ctx;
2863 struct perf_event_context *parent, *next_parent;
2864 struct perf_cpu_context *cpuctx;
2865 int do_switch = 1;
2866
2867 if (likely(!ctx))
2868 return;
2869
2870 cpuctx = __get_cpu_context(ctx);
2871 if (!cpuctx->task_ctx)
2872 return;
2873
2874 rcu_read_lock();
2875 next_ctx = next->perf_event_ctxp[ctxn];
2876 if (!next_ctx)
2877 goto unlock;
2878
2879 parent = rcu_dereference(ctx->parent_ctx);
2880 next_parent = rcu_dereference(next_ctx->parent_ctx);
2881
2882 /* If neither context have a parent context; they cannot be clones. */
2883 if (!parent && !next_parent)
2884 goto unlock;
2885
2886 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2887 /*
2888 * Looks like the two contexts are clones, so we might be
2889 * able to optimize the context switch. We lock both
2890 * contexts and check that they are clones under the
2891 * lock (including re-checking that neither has been
2892 * uncloned in the meantime). It doesn't matter which
2893 * order we take the locks because no other cpu could
2894 * be trying to lock both of these tasks.
2895 */
2896 raw_spin_lock(&ctx->lock);
2897 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2898 if (context_equiv(ctx, next_ctx)) {
2899 WRITE_ONCE(ctx->task, next);
2900 WRITE_ONCE(next_ctx->task, task);
2901
2902 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2903
2904 /*
2905 * RCU_INIT_POINTER here is safe because we've not
2906 * modified the ctx and the above modification of
2907 * ctx->task and ctx->task_ctx_data are immaterial
2908 * since those values are always verified under
2909 * ctx->lock which we're now holding.
2910 */
2911 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2912 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2913
2914 do_switch = 0;
2915
2916 perf_event_sync_stat(ctx, next_ctx);
2917 }
2918 raw_spin_unlock(&next_ctx->lock);
2919 raw_spin_unlock(&ctx->lock);
2920 }
2921 unlock:
2922 rcu_read_unlock();
2923
2924 if (do_switch) {
2925 raw_spin_lock(&ctx->lock);
2926 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2927 raw_spin_unlock(&ctx->lock);
2928 }
2929 }
2930
2931 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2932
2933 void perf_sched_cb_dec(struct pmu *pmu)
2934 {
2935 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2936
2937 this_cpu_dec(perf_sched_cb_usages);
2938
2939 if (!--cpuctx->sched_cb_usage)
2940 list_del(&cpuctx->sched_cb_entry);
2941 }
2942
2943
2944 void perf_sched_cb_inc(struct pmu *pmu)
2945 {
2946 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2947
2948 if (!cpuctx->sched_cb_usage++)
2949 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2950
2951 this_cpu_inc(perf_sched_cb_usages);
2952 }
2953
2954 /*
2955 * This function provides the context switch callback to the lower code
2956 * layer. It is invoked ONLY when the context switch callback is enabled.
2957 *
2958 * This callback is relevant even to per-cpu events; for example multi event
2959 * PEBS requires this to provide PID/TID information. This requires we flush
2960 * all queued PEBS records before we context switch to a new task.
2961 */
2962 static void perf_pmu_sched_task(struct task_struct *prev,
2963 struct task_struct *next,
2964 bool sched_in)
2965 {
2966 struct perf_cpu_context *cpuctx;
2967 struct pmu *pmu;
2968
2969 if (prev == next)
2970 return;
2971
2972 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2973 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2974
2975 if (WARN_ON_ONCE(!pmu->sched_task))
2976 continue;
2977
2978 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2979 perf_pmu_disable(pmu);
2980
2981 pmu->sched_task(cpuctx->task_ctx, sched_in);
2982
2983 perf_pmu_enable(pmu);
2984 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2985 }
2986 }
2987
2988 static void perf_event_switch(struct task_struct *task,
2989 struct task_struct *next_prev, bool sched_in);
2990
2991 #define for_each_task_context_nr(ctxn) \
2992 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2993
2994 /*
2995 * Called from scheduler to remove the events of the current task,
2996 * with interrupts disabled.
2997 *
2998 * We stop each event and update the event value in event->count.
2999 *
3000 * This does not protect us against NMI, but disable()
3001 * sets the disabled bit in the control field of event _before_
3002 * accessing the event control register. If a NMI hits, then it will
3003 * not restart the event.
3004 */
3005 void __perf_event_task_sched_out(struct task_struct *task,
3006 struct task_struct *next)
3007 {
3008 int ctxn;
3009
3010 if (__this_cpu_read(perf_sched_cb_usages))
3011 perf_pmu_sched_task(task, next, false);
3012
3013 if (atomic_read(&nr_switch_events))
3014 perf_event_switch(task, next, false);
3015
3016 for_each_task_context_nr(ctxn)
3017 perf_event_context_sched_out(task, ctxn, next);
3018
3019 /*
3020 * if cgroup events exist on this CPU, then we need
3021 * to check if we have to switch out PMU state.
3022 * cgroup event are system-wide mode only
3023 */
3024 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3025 perf_cgroup_sched_out(task, next);
3026 }
3027
3028 /*
3029 * Called with IRQs disabled
3030 */
3031 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3032 enum event_type_t event_type)
3033 {
3034 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3035 }
3036
3037 static void
3038 ctx_pinned_sched_in(struct perf_event_context *ctx,
3039 struct perf_cpu_context *cpuctx)
3040 {
3041 struct perf_event *event;
3042
3043 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3044 if (event->state <= PERF_EVENT_STATE_OFF)
3045 continue;
3046 if (!event_filter_match(event))
3047 continue;
3048
3049 if (group_can_go_on(event, cpuctx, 1))
3050 group_sched_in(event, cpuctx, ctx);
3051
3052 /*
3053 * If this pinned group hasn't been scheduled,
3054 * put it in error state.
3055 */
3056 if (event->state == PERF_EVENT_STATE_INACTIVE)
3057 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3058 }
3059 }
3060
3061 static void
3062 ctx_flexible_sched_in(struct perf_event_context *ctx,
3063 struct perf_cpu_context *cpuctx)
3064 {
3065 struct perf_event *event;
3066 int can_add_hw = 1;
3067
3068 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3069 /* Ignore events in OFF or ERROR state */
3070 if (event->state <= PERF_EVENT_STATE_OFF)
3071 continue;
3072 /*
3073 * Listen to the 'cpu' scheduling filter constraint
3074 * of events:
3075 */
3076 if (!event_filter_match(event))
3077 continue;
3078
3079 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3080 if (group_sched_in(event, cpuctx, ctx))
3081 can_add_hw = 0;
3082 }
3083 }
3084 }
3085
3086 static void
3087 ctx_sched_in(struct perf_event_context *ctx,
3088 struct perf_cpu_context *cpuctx,
3089 enum event_type_t event_type,
3090 struct task_struct *task)
3091 {
3092 int is_active = ctx->is_active;
3093 u64 now;
3094
3095 lockdep_assert_held(&ctx->lock);
3096
3097 if (likely(!ctx->nr_events))
3098 return;
3099
3100 ctx->is_active |= (event_type | EVENT_TIME);
3101 if (ctx->task) {
3102 if (!is_active)
3103 cpuctx->task_ctx = ctx;
3104 else
3105 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3106 }
3107
3108 is_active ^= ctx->is_active; /* changed bits */
3109
3110 if (is_active & EVENT_TIME) {
3111 /* start ctx time */
3112 now = perf_clock();
3113 ctx->timestamp = now;
3114 perf_cgroup_set_timestamp(task, ctx);
3115 }
3116
3117 /*
3118 * First go through the list and put on any pinned groups
3119 * in order to give them the best chance of going on.
3120 */
3121 if (is_active & EVENT_PINNED)
3122 ctx_pinned_sched_in(ctx, cpuctx);
3123
3124 /* Then walk through the lower prio flexible groups */
3125 if (is_active & EVENT_FLEXIBLE)
3126 ctx_flexible_sched_in(ctx, cpuctx);
3127 }
3128
3129 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3130 enum event_type_t event_type,
3131 struct task_struct *task)
3132 {
3133 struct perf_event_context *ctx = &cpuctx->ctx;
3134
3135 ctx_sched_in(ctx, cpuctx, event_type, task);
3136 }
3137
3138 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3139 struct task_struct *task)
3140 {
3141 struct perf_cpu_context *cpuctx;
3142
3143 cpuctx = __get_cpu_context(ctx);
3144 if (cpuctx->task_ctx == ctx)
3145 return;
3146
3147 perf_ctx_lock(cpuctx, ctx);
3148 /*
3149 * We must check ctx->nr_events while holding ctx->lock, such
3150 * that we serialize against perf_install_in_context().
3151 */
3152 if (!ctx->nr_events)
3153 goto unlock;
3154
3155 perf_pmu_disable(ctx->pmu);
3156 /*
3157 * We want to keep the following priority order:
3158 * cpu pinned (that don't need to move), task pinned,
3159 * cpu flexible, task flexible.
3160 *
3161 * However, if task's ctx is not carrying any pinned
3162 * events, no need to flip the cpuctx's events around.
3163 */
3164 if (!list_empty(&ctx->pinned_groups))
3165 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3166 perf_event_sched_in(cpuctx, ctx, task);
3167 perf_pmu_enable(ctx->pmu);
3168
3169 unlock:
3170 perf_ctx_unlock(cpuctx, ctx);
3171 }
3172
3173 /*
3174 * Called from scheduler to add the events of the current task
3175 * with interrupts disabled.
3176 *
3177 * We restore the event value and then enable it.
3178 *
3179 * This does not protect us against NMI, but enable()
3180 * sets the enabled bit in the control field of event _before_
3181 * accessing the event control register. If a NMI hits, then it will
3182 * keep the event running.
3183 */
3184 void __perf_event_task_sched_in(struct task_struct *prev,
3185 struct task_struct *task)
3186 {
3187 struct perf_event_context *ctx;
3188 int ctxn;
3189
3190 /*
3191 * If cgroup events exist on this CPU, then we need to check if we have
3192 * to switch in PMU state; cgroup event are system-wide mode only.
3193 *
3194 * Since cgroup events are CPU events, we must schedule these in before
3195 * we schedule in the task events.
3196 */
3197 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3198 perf_cgroup_sched_in(prev, task);
3199
3200 for_each_task_context_nr(ctxn) {
3201 ctx = task->perf_event_ctxp[ctxn];
3202 if (likely(!ctx))
3203 continue;
3204
3205 perf_event_context_sched_in(ctx, task);
3206 }
3207
3208 if (atomic_read(&nr_switch_events))
3209 perf_event_switch(task, prev, true);
3210
3211 if (__this_cpu_read(perf_sched_cb_usages))
3212 perf_pmu_sched_task(prev, task, true);
3213 }
3214
3215 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3216 {
3217 u64 frequency = event->attr.sample_freq;
3218 u64 sec = NSEC_PER_SEC;
3219 u64 divisor, dividend;
3220
3221 int count_fls, nsec_fls, frequency_fls, sec_fls;
3222
3223 count_fls = fls64(count);
3224 nsec_fls = fls64(nsec);
3225 frequency_fls = fls64(frequency);
3226 sec_fls = 30;
3227
3228 /*
3229 * We got @count in @nsec, with a target of sample_freq HZ
3230 * the target period becomes:
3231 *
3232 * @count * 10^9
3233 * period = -------------------
3234 * @nsec * sample_freq
3235 *
3236 */
3237
3238 /*
3239 * Reduce accuracy by one bit such that @a and @b converge
3240 * to a similar magnitude.
3241 */
3242 #define REDUCE_FLS(a, b) \
3243 do { \
3244 if (a##_fls > b##_fls) { \
3245 a >>= 1; \
3246 a##_fls--; \
3247 } else { \
3248 b >>= 1; \
3249 b##_fls--; \
3250 } \
3251 } while (0)
3252
3253 /*
3254 * Reduce accuracy until either term fits in a u64, then proceed with
3255 * the other, so that finally we can do a u64/u64 division.
3256 */
3257 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3258 REDUCE_FLS(nsec, frequency);
3259 REDUCE_FLS(sec, count);
3260 }
3261
3262 if (count_fls + sec_fls > 64) {
3263 divisor = nsec * frequency;
3264
3265 while (count_fls + sec_fls > 64) {
3266 REDUCE_FLS(count, sec);
3267 divisor >>= 1;
3268 }
3269
3270 dividend = count * sec;
3271 } else {
3272 dividend = count * sec;
3273
3274 while (nsec_fls + frequency_fls > 64) {
3275 REDUCE_FLS(nsec, frequency);
3276 dividend >>= 1;
3277 }
3278
3279 divisor = nsec * frequency;
3280 }
3281
3282 if (!divisor)
3283 return dividend;
3284
3285 return div64_u64(dividend, divisor);
3286 }
3287
3288 static DEFINE_PER_CPU(int, perf_throttled_count);
3289 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3290
3291 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3292 {
3293 struct hw_perf_event *hwc = &event->hw;
3294 s64 period, sample_period;
3295 s64 delta;
3296
3297 period = perf_calculate_period(event, nsec, count);
3298
3299 delta = (s64)(period - hwc->sample_period);
3300 delta = (delta + 7) / 8; /* low pass filter */
3301
3302 sample_period = hwc->sample_period + delta;
3303
3304 if (!sample_period)
3305 sample_period = 1;
3306
3307 hwc->sample_period = sample_period;
3308
3309 if (local64_read(&hwc->period_left) > 8*sample_period) {
3310 if (disable)
3311 event->pmu->stop(event, PERF_EF_UPDATE);
3312
3313 local64_set(&hwc->period_left, 0);
3314
3315 if (disable)
3316 event->pmu->start(event, PERF_EF_RELOAD);
3317 }
3318 }
3319
3320 /*
3321 * combine freq adjustment with unthrottling to avoid two passes over the
3322 * events. At the same time, make sure, having freq events does not change
3323 * the rate of unthrottling as that would introduce bias.
3324 */
3325 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3326 int needs_unthr)
3327 {
3328 struct perf_event *event;
3329 struct hw_perf_event *hwc;
3330 u64 now, period = TICK_NSEC;
3331 s64 delta;
3332
3333 /*
3334 * only need to iterate over all events iff:
3335 * - context have events in frequency mode (needs freq adjust)
3336 * - there are events to unthrottle on this cpu
3337 */
3338 if (!(ctx->nr_freq || needs_unthr))
3339 return;
3340
3341 raw_spin_lock(&ctx->lock);
3342 perf_pmu_disable(ctx->pmu);
3343
3344 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3345 if (event->state != PERF_EVENT_STATE_ACTIVE)
3346 continue;
3347
3348 if (!event_filter_match(event))
3349 continue;
3350
3351 perf_pmu_disable(event->pmu);
3352
3353 hwc = &event->hw;
3354
3355 if (hwc->interrupts == MAX_INTERRUPTS) {
3356 hwc->interrupts = 0;
3357 perf_log_throttle(event, 1);
3358 event->pmu->start(event, 0);
3359 }
3360
3361 if (!event->attr.freq || !event->attr.sample_freq)
3362 goto next;
3363
3364 /*
3365 * stop the event and update event->count
3366 */
3367 event->pmu->stop(event, PERF_EF_UPDATE);
3368
3369 now = local64_read(&event->count);
3370 delta = now - hwc->freq_count_stamp;
3371 hwc->freq_count_stamp = now;
3372
3373 /*
3374 * restart the event
3375 * reload only if value has changed
3376 * we have stopped the event so tell that
3377 * to perf_adjust_period() to avoid stopping it
3378 * twice.
3379 */
3380 if (delta > 0)
3381 perf_adjust_period(event, period, delta, false);
3382
3383 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3384 next:
3385 perf_pmu_enable(event->pmu);
3386 }
3387
3388 perf_pmu_enable(ctx->pmu);
3389 raw_spin_unlock(&ctx->lock);
3390 }
3391
3392 /*
3393 * Round-robin a context's events:
3394 */
3395 static void rotate_ctx(struct perf_event_context *ctx)
3396 {
3397 /*
3398 * Rotate the first entry last of non-pinned groups. Rotation might be
3399 * disabled by the inheritance code.
3400 */
3401 if (!ctx->rotate_disable)
3402 list_rotate_left(&ctx->flexible_groups);
3403 }
3404
3405 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3406 {
3407 struct perf_event_context *ctx = NULL;
3408 int rotate = 0;
3409
3410 if (cpuctx->ctx.nr_events) {
3411 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3412 rotate = 1;
3413 }
3414
3415 ctx = cpuctx->task_ctx;
3416 if (ctx && ctx->nr_events) {
3417 if (ctx->nr_events != ctx->nr_active)
3418 rotate = 1;
3419 }
3420
3421 if (!rotate)
3422 goto done;
3423
3424 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3425 perf_pmu_disable(cpuctx->ctx.pmu);
3426
3427 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428 if (ctx)
3429 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3430
3431 rotate_ctx(&cpuctx->ctx);
3432 if (ctx)
3433 rotate_ctx(ctx);
3434
3435 perf_event_sched_in(cpuctx, ctx, current);
3436
3437 perf_pmu_enable(cpuctx->ctx.pmu);
3438 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3439 done:
3440
3441 return rotate;
3442 }
3443
3444 void perf_event_task_tick(void)
3445 {
3446 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3447 struct perf_event_context *ctx, *tmp;
3448 int throttled;
3449
3450 lockdep_assert_irqs_disabled();
3451
3452 __this_cpu_inc(perf_throttled_seq);
3453 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3454 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3455
3456 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3457 perf_adjust_freq_unthr_context(ctx, throttled);
3458 }
3459
3460 static int event_enable_on_exec(struct perf_event *event,
3461 struct perf_event_context *ctx)
3462 {
3463 if (!event->attr.enable_on_exec)
3464 return 0;
3465
3466 event->attr.enable_on_exec = 0;
3467 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3468 return 0;
3469
3470 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3471
3472 return 1;
3473 }
3474
3475 /*
3476 * Enable all of a task's events that have been marked enable-on-exec.
3477 * This expects task == current.
3478 */
3479 static void perf_event_enable_on_exec(int ctxn)
3480 {
3481 struct perf_event_context *ctx, *clone_ctx = NULL;
3482 enum event_type_t event_type = 0;
3483 struct perf_cpu_context *cpuctx;
3484 struct perf_event *event;
3485 unsigned long flags;
3486 int enabled = 0;
3487
3488 local_irq_save(flags);
3489 ctx = current->perf_event_ctxp[ctxn];
3490 if (!ctx || !ctx->nr_events)
3491 goto out;
3492
3493 cpuctx = __get_cpu_context(ctx);
3494 perf_ctx_lock(cpuctx, ctx);
3495 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3496 list_for_each_entry(event, &ctx->event_list, event_entry) {
3497 enabled |= event_enable_on_exec(event, ctx);
3498 event_type |= get_event_type(event);
3499 }
3500
3501 /*
3502 * Unclone and reschedule this context if we enabled any event.
3503 */
3504 if (enabled) {
3505 clone_ctx = unclone_ctx(ctx);
3506 ctx_resched(cpuctx, ctx, event_type);
3507 } else {
3508 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3509 }
3510 perf_ctx_unlock(cpuctx, ctx);
3511
3512 out:
3513 local_irq_restore(flags);
3514
3515 if (clone_ctx)
3516 put_ctx(clone_ctx);
3517 }
3518
3519 struct perf_read_data {
3520 struct perf_event *event;
3521 bool group;
3522 int ret;
3523 };
3524
3525 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3526 {
3527 u16 local_pkg, event_pkg;
3528
3529 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3530 int local_cpu = smp_processor_id();
3531
3532 event_pkg = topology_physical_package_id(event_cpu);
3533 local_pkg = topology_physical_package_id(local_cpu);
3534
3535 if (event_pkg == local_pkg)
3536 return local_cpu;
3537 }
3538
3539 return event_cpu;
3540 }
3541
3542 /*
3543 * Cross CPU call to read the hardware event
3544 */
3545 static void __perf_event_read(void *info)
3546 {
3547 struct perf_read_data *data = info;
3548 struct perf_event *sub, *event = data->event;
3549 struct perf_event_context *ctx = event->ctx;
3550 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3551 struct pmu *pmu = event->pmu;
3552
3553 /*
3554 * If this is a task context, we need to check whether it is
3555 * the current task context of this cpu. If not it has been
3556 * scheduled out before the smp call arrived. In that case
3557 * event->count would have been updated to a recent sample
3558 * when the event was scheduled out.
3559 */
3560 if (ctx->task && cpuctx->task_ctx != ctx)
3561 return;
3562
3563 raw_spin_lock(&ctx->lock);
3564 if (ctx->is_active & EVENT_TIME) {
3565 update_context_time(ctx);
3566 update_cgrp_time_from_event(event);
3567 }
3568
3569 perf_event_update_time(event);
3570 if (data->group)
3571 perf_event_update_sibling_time(event);
3572
3573 if (event->state != PERF_EVENT_STATE_ACTIVE)
3574 goto unlock;
3575
3576 if (!data->group) {
3577 pmu->read(event);
3578 data->ret = 0;
3579 goto unlock;
3580 }
3581
3582 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3583
3584 pmu->read(event);
3585
3586 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3587 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3588 /*
3589 * Use sibling's PMU rather than @event's since
3590 * sibling could be on different (eg: software) PMU.
3591 */
3592 sub->pmu->read(sub);
3593 }
3594 }
3595
3596 data->ret = pmu->commit_txn(pmu);
3597
3598 unlock:
3599 raw_spin_unlock(&ctx->lock);
3600 }
3601
3602 static inline u64 perf_event_count(struct perf_event *event)
3603 {
3604 return local64_read(&event->count) + atomic64_read(&event->child_count);
3605 }
3606
3607 /*
3608 * NMI-safe method to read a local event, that is an event that
3609 * is:
3610 * - either for the current task, or for this CPU
3611 * - does not have inherit set, for inherited task events
3612 * will not be local and we cannot read them atomically
3613 * - must not have a pmu::count method
3614 */
3615 int perf_event_read_local(struct perf_event *event, u64 *value,
3616 u64 *enabled, u64 *running)
3617 {
3618 unsigned long flags;
3619 int ret = 0;
3620
3621 /*
3622 * Disabling interrupts avoids all counter scheduling (context
3623 * switches, timer based rotation and IPIs).
3624 */
3625 local_irq_save(flags);
3626
3627 /*
3628 * It must not be an event with inherit set, we cannot read
3629 * all child counters from atomic context.
3630 */
3631 if (event->attr.inherit) {
3632 ret = -EOPNOTSUPP;
3633 goto out;
3634 }
3635
3636 /* If this is a per-task event, it must be for current */
3637 if ((event->attach_state & PERF_ATTACH_TASK) &&
3638 event->hw.target != current) {
3639 ret = -EINVAL;
3640 goto out;
3641 }
3642
3643 /* If this is a per-CPU event, it must be for this CPU */
3644 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3645 event->cpu != smp_processor_id()) {
3646 ret = -EINVAL;
3647 goto out;
3648 }
3649
3650 /*
3651 * If the event is currently on this CPU, its either a per-task event,
3652 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3653 * oncpu == -1).
3654 */
3655 if (event->oncpu == smp_processor_id())
3656 event->pmu->read(event);
3657
3658 *value = local64_read(&event->count);
3659 if (enabled || running) {
3660 u64 now = event->shadow_ctx_time + perf_clock();
3661 u64 __enabled, __running;
3662
3663 __perf_update_times(event, now, &__enabled, &__running);
3664 if (enabled)
3665 *enabled = __enabled;
3666 if (running)
3667 *running = __running;
3668 }
3669 out:
3670 local_irq_restore(flags);
3671
3672 return ret;
3673 }
3674
3675 static int perf_event_read(struct perf_event *event, bool group)
3676 {
3677 enum perf_event_state state = READ_ONCE(event->state);
3678 int event_cpu, ret = 0;
3679
3680 /*
3681 * If event is enabled and currently active on a CPU, update the
3682 * value in the event structure:
3683 */
3684 again:
3685 if (state == PERF_EVENT_STATE_ACTIVE) {
3686 struct perf_read_data data;
3687
3688 /*
3689 * Orders the ->state and ->oncpu loads such that if we see
3690 * ACTIVE we must also see the right ->oncpu.
3691 *
3692 * Matches the smp_wmb() from event_sched_in().
3693 */
3694 smp_rmb();
3695
3696 event_cpu = READ_ONCE(event->oncpu);
3697 if ((unsigned)event_cpu >= nr_cpu_ids)
3698 return 0;
3699
3700 data = (struct perf_read_data){
3701 .event = event,
3702 .group = group,
3703 .ret = 0,
3704 };
3705
3706 preempt_disable();
3707 event_cpu = __perf_event_read_cpu(event, event_cpu);
3708
3709 /*
3710 * Purposely ignore the smp_call_function_single() return
3711 * value.
3712 *
3713 * If event_cpu isn't a valid CPU it means the event got
3714 * scheduled out and that will have updated the event count.
3715 *
3716 * Therefore, either way, we'll have an up-to-date event count
3717 * after this.
3718 */
3719 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3720 preempt_enable();
3721 ret = data.ret;
3722
3723 } else if (state == PERF_EVENT_STATE_INACTIVE) {
3724 struct perf_event_context *ctx = event->ctx;
3725 unsigned long flags;
3726
3727 raw_spin_lock_irqsave(&ctx->lock, flags);
3728 state = event->state;
3729 if (state != PERF_EVENT_STATE_INACTIVE) {
3730 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3731 goto again;
3732 }
3733
3734 /*
3735 * May read while context is not active (e.g., thread is
3736 * blocked), in that case we cannot update context time
3737 */
3738 if (ctx->is_active & EVENT_TIME) {
3739 update_context_time(ctx);
3740 update_cgrp_time_from_event(event);
3741 }
3742
3743 perf_event_update_time(event);
3744 if (group)
3745 perf_event_update_sibling_time(event);
3746 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3747 }
3748
3749 return ret;
3750 }
3751
3752 /*
3753 * Initialize the perf_event context in a task_struct:
3754 */
3755 static void __perf_event_init_context(struct perf_event_context *ctx)
3756 {
3757 raw_spin_lock_init(&ctx->lock);
3758 mutex_init(&ctx->mutex);
3759 INIT_LIST_HEAD(&ctx->active_ctx_list);
3760 INIT_LIST_HEAD(&ctx->pinned_groups);
3761 INIT_LIST_HEAD(&ctx->flexible_groups);
3762 INIT_LIST_HEAD(&ctx->event_list);
3763 atomic_set(&ctx->refcount, 1);
3764 }
3765
3766 static struct perf_event_context *
3767 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3768 {
3769 struct perf_event_context *ctx;
3770
3771 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3772 if (!ctx)
3773 return NULL;
3774
3775 __perf_event_init_context(ctx);
3776 if (task) {
3777 ctx->task = task;
3778 get_task_struct(task);
3779 }
3780 ctx->pmu = pmu;
3781
3782 return ctx;
3783 }
3784
3785 static struct task_struct *
3786 find_lively_task_by_vpid(pid_t vpid)
3787 {
3788 struct task_struct *task;
3789
3790 rcu_read_lock();
3791 if (!vpid)
3792 task = current;
3793 else
3794 task = find_task_by_vpid(vpid);
3795 if (task)
3796 get_task_struct(task);
3797 rcu_read_unlock();
3798
3799 if (!task)
3800 return ERR_PTR(-ESRCH);
3801
3802 return task;
3803 }
3804
3805 /*
3806 * Returns a matching context with refcount and pincount.
3807 */
3808 static struct perf_event_context *
3809 find_get_context(struct pmu *pmu, struct task_struct *task,
3810 struct perf_event *event)
3811 {
3812 struct perf_event_context *ctx, *clone_ctx = NULL;
3813 struct perf_cpu_context *cpuctx;
3814 void *task_ctx_data = NULL;
3815 unsigned long flags;
3816 int ctxn, err;
3817 int cpu = event->cpu;
3818
3819 if (!task) {
3820 /* Must be root to operate on a CPU event: */
3821 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3822 return ERR_PTR(-EACCES);
3823
3824 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3825 ctx = &cpuctx->ctx;
3826 get_ctx(ctx);
3827 ++ctx->pin_count;
3828
3829 return ctx;
3830 }
3831
3832 err = -EINVAL;
3833 ctxn = pmu->task_ctx_nr;
3834 if (ctxn < 0)
3835 goto errout;
3836
3837 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3838 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3839 if (!task_ctx_data) {
3840 err = -ENOMEM;
3841 goto errout;
3842 }
3843 }
3844
3845 retry:
3846 ctx = perf_lock_task_context(task, ctxn, &flags);
3847 if (ctx) {
3848 clone_ctx = unclone_ctx(ctx);
3849 ++ctx->pin_count;
3850
3851 if (task_ctx_data && !ctx->task_ctx_data) {
3852 ctx->task_ctx_data = task_ctx_data;
3853 task_ctx_data = NULL;
3854 }
3855 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3856
3857 if (clone_ctx)
3858 put_ctx(clone_ctx);
3859 } else {
3860 ctx = alloc_perf_context(pmu, task);
3861 err = -ENOMEM;
3862 if (!ctx)
3863 goto errout;
3864
3865 if (task_ctx_data) {
3866 ctx->task_ctx_data = task_ctx_data;
3867 task_ctx_data = NULL;
3868 }
3869
3870 err = 0;
3871 mutex_lock(&task->perf_event_mutex);
3872 /*
3873 * If it has already passed perf_event_exit_task().
3874 * we must see PF_EXITING, it takes this mutex too.
3875 */
3876 if (task->flags & PF_EXITING)
3877 err = -ESRCH;
3878 else if (task->perf_event_ctxp[ctxn])
3879 err = -EAGAIN;
3880 else {
3881 get_ctx(ctx);
3882 ++ctx->pin_count;
3883 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3884 }
3885 mutex_unlock(&task->perf_event_mutex);
3886
3887 if (unlikely(err)) {
3888 put_ctx(ctx);
3889
3890 if (err == -EAGAIN)
3891 goto retry;
3892 goto errout;
3893 }
3894 }
3895
3896 kfree(task_ctx_data);
3897 return ctx;
3898
3899 errout:
3900 kfree(task_ctx_data);
3901 return ERR_PTR(err);
3902 }
3903
3904 static void perf_event_free_filter(struct perf_event *event);
3905 static void perf_event_free_bpf_prog(struct perf_event *event);
3906
3907 static void free_event_rcu(struct rcu_head *head)
3908 {
3909 struct perf_event *event;
3910
3911 event = container_of(head, struct perf_event, rcu_head);
3912 if (event->ns)
3913 put_pid_ns(event->ns);
3914 perf_event_free_filter(event);
3915 kfree(event);
3916 }
3917
3918 static void ring_buffer_attach(struct perf_event *event,
3919 struct ring_buffer *rb);
3920
3921 static void detach_sb_event(struct perf_event *event)
3922 {
3923 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3924
3925 raw_spin_lock(&pel->lock);
3926 list_del_rcu(&event->sb_list);
3927 raw_spin_unlock(&pel->lock);
3928 }
3929
3930 static bool is_sb_event(struct perf_event *event)
3931 {
3932 struct perf_event_attr *attr = &event->attr;
3933
3934 if (event->parent)
3935 return false;
3936
3937 if (event->attach_state & PERF_ATTACH_TASK)
3938 return false;
3939
3940 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3941 attr->comm || attr->comm_exec ||
3942 attr->task ||
3943 attr->context_switch)
3944 return true;
3945 return false;
3946 }
3947
3948 static void unaccount_pmu_sb_event(struct perf_event *event)
3949 {
3950 if (is_sb_event(event))
3951 detach_sb_event(event);
3952 }
3953
3954 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3955 {
3956 if (event->parent)
3957 return;
3958
3959 if (is_cgroup_event(event))
3960 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3961 }
3962
3963 #ifdef CONFIG_NO_HZ_FULL
3964 static DEFINE_SPINLOCK(nr_freq_lock);
3965 #endif
3966
3967 static void unaccount_freq_event_nohz(void)
3968 {
3969 #ifdef CONFIG_NO_HZ_FULL
3970 spin_lock(&nr_freq_lock);
3971 if (atomic_dec_and_test(&nr_freq_events))
3972 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3973 spin_unlock(&nr_freq_lock);
3974 #endif
3975 }
3976
3977 static void unaccount_freq_event(void)
3978 {
3979 if (tick_nohz_full_enabled())
3980 unaccount_freq_event_nohz();
3981 else
3982 atomic_dec(&nr_freq_events);
3983 }
3984
3985 static void unaccount_event(struct perf_event *event)
3986 {
3987 bool dec = false;
3988
3989 if (event->parent)
3990 return;
3991
3992 if (event->attach_state & PERF_ATTACH_TASK)
3993 dec = true;
3994 if (event->attr.mmap || event->attr.mmap_data)
3995 atomic_dec(&nr_mmap_events);
3996 if (event->attr.comm)
3997 atomic_dec(&nr_comm_events);
3998 if (event->attr.namespaces)
3999 atomic_dec(&nr_namespaces_events);
4000 if (event->attr.task)
4001 atomic_dec(&nr_task_events);
4002 if (event->attr.freq)
4003 unaccount_freq_event();
4004 if (event->attr.context_switch) {
4005 dec = true;
4006 atomic_dec(&nr_switch_events);
4007 }
4008 if (is_cgroup_event(event))
4009 dec = true;
4010 if (has_branch_stack(event))
4011 dec = true;
4012
4013 if (dec) {
4014 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4015 schedule_delayed_work(&perf_sched_work, HZ);
4016 }
4017
4018 unaccount_event_cpu(event, event->cpu);
4019
4020 unaccount_pmu_sb_event(event);
4021 }
4022
4023 static void perf_sched_delayed(struct work_struct *work)
4024 {
4025 mutex_lock(&perf_sched_mutex);
4026 if (atomic_dec_and_test(&perf_sched_count))
4027 static_branch_disable(&perf_sched_events);
4028 mutex_unlock(&perf_sched_mutex);
4029 }
4030
4031 /*
4032 * The following implement mutual exclusion of events on "exclusive" pmus
4033 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4034 * at a time, so we disallow creating events that might conflict, namely:
4035 *
4036 * 1) cpu-wide events in the presence of per-task events,
4037 * 2) per-task events in the presence of cpu-wide events,
4038 * 3) two matching events on the same context.
4039 *
4040 * The former two cases are handled in the allocation path (perf_event_alloc(),
4041 * _free_event()), the latter -- before the first perf_install_in_context().
4042 */
4043 static int exclusive_event_init(struct perf_event *event)
4044 {
4045 struct pmu *pmu = event->pmu;
4046
4047 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4048 return 0;
4049
4050 /*
4051 * Prevent co-existence of per-task and cpu-wide events on the
4052 * same exclusive pmu.
4053 *
4054 * Negative pmu::exclusive_cnt means there are cpu-wide
4055 * events on this "exclusive" pmu, positive means there are
4056 * per-task events.
4057 *
4058 * Since this is called in perf_event_alloc() path, event::ctx
4059 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4060 * to mean "per-task event", because unlike other attach states it
4061 * never gets cleared.
4062 */
4063 if (event->attach_state & PERF_ATTACH_TASK) {
4064 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4065 return -EBUSY;
4066 } else {
4067 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4068 return -EBUSY;
4069 }
4070
4071 return 0;
4072 }
4073
4074 static void exclusive_event_destroy(struct perf_event *event)
4075 {
4076 struct pmu *pmu = event->pmu;
4077
4078 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4079 return;
4080
4081 /* see comment in exclusive_event_init() */
4082 if (event->attach_state & PERF_ATTACH_TASK)
4083 atomic_dec(&pmu->exclusive_cnt);
4084 else
4085 atomic_inc(&pmu->exclusive_cnt);
4086 }
4087
4088 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4089 {
4090 if ((e1->pmu == e2->pmu) &&
4091 (e1->cpu == e2->cpu ||
4092 e1->cpu == -1 ||
4093 e2->cpu == -1))
4094 return true;
4095 return false;
4096 }
4097
4098 /* Called under the same ctx::mutex as perf_install_in_context() */
4099 static bool exclusive_event_installable(struct perf_event *event,
4100 struct perf_event_context *ctx)
4101 {
4102 struct perf_event *iter_event;
4103 struct pmu *pmu = event->pmu;
4104
4105 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4106 return true;
4107
4108 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4109 if (exclusive_event_match(iter_event, event))
4110 return false;
4111 }
4112
4113 return true;
4114 }
4115
4116 static void perf_addr_filters_splice(struct perf_event *event,
4117 struct list_head *head);
4118
4119 static void _free_event(struct perf_event *event)
4120 {
4121 irq_work_sync(&event->pending);
4122
4123 unaccount_event(event);
4124
4125 if (event->rb) {
4126 /*
4127 * Can happen when we close an event with re-directed output.
4128 *
4129 * Since we have a 0 refcount, perf_mmap_close() will skip
4130 * over us; possibly making our ring_buffer_put() the last.
4131 */
4132 mutex_lock(&event->mmap_mutex);
4133 ring_buffer_attach(event, NULL);
4134 mutex_unlock(&event->mmap_mutex);
4135 }
4136
4137 if (is_cgroup_event(event))
4138 perf_detach_cgroup(event);
4139
4140 if (!event->parent) {
4141 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4142 put_callchain_buffers();
4143 }
4144
4145 perf_event_free_bpf_prog(event);
4146 perf_addr_filters_splice(event, NULL);
4147 kfree(event->addr_filters_offs);
4148
4149 if (event->destroy)
4150 event->destroy(event);
4151
4152 if (event->ctx)
4153 put_ctx(event->ctx);
4154
4155 if (event->hw.target)
4156 put_task_struct(event->hw.target);
4157
4158 exclusive_event_destroy(event);
4159 module_put(event->pmu->module);
4160
4161 call_rcu(&event->rcu_head, free_event_rcu);
4162 }
4163
4164 /*
4165 * Used to free events which have a known refcount of 1, such as in error paths
4166 * where the event isn't exposed yet and inherited events.
4167 */
4168 static void free_event(struct perf_event *event)
4169 {
4170 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4171 "unexpected event refcount: %ld; ptr=%p\n",
4172 atomic_long_read(&event->refcount), event)) {
4173 /* leak to avoid use-after-free */
4174 return;
4175 }
4176
4177 _free_event(event);
4178 }
4179
4180 /*
4181 * Remove user event from the owner task.
4182 */
4183 static void perf_remove_from_owner(struct perf_event *event)
4184 {
4185 struct task_struct *owner;
4186
4187 rcu_read_lock();
4188 /*
4189 * Matches the smp_store_release() in perf_event_exit_task(). If we
4190 * observe !owner it means the list deletion is complete and we can
4191 * indeed free this event, otherwise we need to serialize on
4192 * owner->perf_event_mutex.
4193 */
4194 owner = READ_ONCE(event->owner);
4195 if (owner) {
4196 /*
4197 * Since delayed_put_task_struct() also drops the last
4198 * task reference we can safely take a new reference
4199 * while holding the rcu_read_lock().
4200 */
4201 get_task_struct(owner);
4202 }
4203 rcu_read_unlock();
4204
4205 if (owner) {
4206 /*
4207 * If we're here through perf_event_exit_task() we're already
4208 * holding ctx->mutex which would be an inversion wrt. the
4209 * normal lock order.
4210 *
4211 * However we can safely take this lock because its the child
4212 * ctx->mutex.
4213 */
4214 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4215
4216 /*
4217 * We have to re-check the event->owner field, if it is cleared
4218 * we raced with perf_event_exit_task(), acquiring the mutex
4219 * ensured they're done, and we can proceed with freeing the
4220 * event.
4221 */
4222 if (event->owner) {
4223 list_del_init(&event->owner_entry);
4224 smp_store_release(&event->owner, NULL);
4225 }
4226 mutex_unlock(&owner->perf_event_mutex);
4227 put_task_struct(owner);
4228 }
4229 }
4230
4231 static void put_event(struct perf_event *event)
4232 {
4233 if (!atomic_long_dec_and_test(&event->refcount))
4234 return;
4235
4236 _free_event(event);
4237 }
4238
4239 /*
4240 * Kill an event dead; while event:refcount will preserve the event
4241 * object, it will not preserve its functionality. Once the last 'user'
4242 * gives up the object, we'll destroy the thing.
4243 */
4244 int perf_event_release_kernel(struct perf_event *event)
4245 {
4246 struct perf_event_context *ctx = event->ctx;
4247 struct perf_event *child, *tmp;
4248 LIST_HEAD(free_list);
4249
4250 /*
4251 * If we got here through err_file: fput(event_file); we will not have
4252 * attached to a context yet.
4253 */
4254 if (!ctx) {
4255 WARN_ON_ONCE(event->attach_state &
4256 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4257 goto no_ctx;
4258 }
4259
4260 if (!is_kernel_event(event))
4261 perf_remove_from_owner(event);
4262
4263 ctx = perf_event_ctx_lock(event);
4264 WARN_ON_ONCE(ctx->parent_ctx);
4265 perf_remove_from_context(event, DETACH_GROUP);
4266
4267 raw_spin_lock_irq(&ctx->lock);
4268 /*
4269 * Mark this event as STATE_DEAD, there is no external reference to it
4270 * anymore.
4271 *
4272 * Anybody acquiring event->child_mutex after the below loop _must_
4273 * also see this, most importantly inherit_event() which will avoid
4274 * placing more children on the list.
4275 *
4276 * Thus this guarantees that we will in fact observe and kill _ALL_
4277 * child events.
4278 */
4279 event->state = PERF_EVENT_STATE_DEAD;
4280 raw_spin_unlock_irq(&ctx->lock);
4281
4282 perf_event_ctx_unlock(event, ctx);
4283
4284 again:
4285 mutex_lock(&event->child_mutex);
4286 list_for_each_entry(child, &event->child_list, child_list) {
4287
4288 /*
4289 * Cannot change, child events are not migrated, see the
4290 * comment with perf_event_ctx_lock_nested().
4291 */
4292 ctx = READ_ONCE(child->ctx);
4293 /*
4294 * Since child_mutex nests inside ctx::mutex, we must jump
4295 * through hoops. We start by grabbing a reference on the ctx.
4296 *
4297 * Since the event cannot get freed while we hold the
4298 * child_mutex, the context must also exist and have a !0
4299 * reference count.
4300 */
4301 get_ctx(ctx);
4302
4303 /*
4304 * Now that we have a ctx ref, we can drop child_mutex, and
4305 * acquire ctx::mutex without fear of it going away. Then we
4306 * can re-acquire child_mutex.
4307 */
4308 mutex_unlock(&event->child_mutex);
4309 mutex_lock(&ctx->mutex);
4310 mutex_lock(&event->child_mutex);
4311
4312 /*
4313 * Now that we hold ctx::mutex and child_mutex, revalidate our
4314 * state, if child is still the first entry, it didn't get freed
4315 * and we can continue doing so.
4316 */
4317 tmp = list_first_entry_or_null(&event->child_list,
4318 struct perf_event, child_list);
4319 if (tmp == child) {
4320 perf_remove_from_context(child, DETACH_GROUP);
4321 list_move(&child->child_list, &free_list);
4322 /*
4323 * This matches the refcount bump in inherit_event();
4324 * this can't be the last reference.
4325 */
4326 put_event(event);
4327 }
4328
4329 mutex_unlock(&event->child_mutex);
4330 mutex_unlock(&ctx->mutex);
4331 put_ctx(ctx);
4332 goto again;
4333 }
4334 mutex_unlock(&event->child_mutex);
4335
4336 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4337 list_del(&child->child_list);
4338 free_event(child);
4339 }
4340
4341 no_ctx:
4342 put_event(event); /* Must be the 'last' reference */
4343 return 0;
4344 }
4345 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4346
4347 /*
4348 * Called when the last reference to the file is gone.
4349 */
4350 static int perf_release(struct inode *inode, struct file *file)
4351 {
4352 perf_event_release_kernel(file->private_data);
4353 return 0;
4354 }
4355
4356 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4357 {
4358 struct perf_event *child;
4359 u64 total = 0;
4360
4361 *enabled = 0;
4362 *running = 0;
4363
4364 mutex_lock(&event->child_mutex);
4365
4366 (void)perf_event_read(event, false);
4367 total += perf_event_count(event);
4368
4369 *enabled += event->total_time_enabled +
4370 atomic64_read(&event->child_total_time_enabled);
4371 *running += event->total_time_running +
4372 atomic64_read(&event->child_total_time_running);
4373
4374 list_for_each_entry(child, &event->child_list, child_list) {
4375 (void)perf_event_read(child, false);
4376 total += perf_event_count(child);
4377 *enabled += child->total_time_enabled;
4378 *running += child->total_time_running;
4379 }
4380 mutex_unlock(&event->child_mutex);
4381
4382 return total;
4383 }
4384
4385 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4386 {
4387 struct perf_event_context *ctx;
4388 u64 count;
4389
4390 ctx = perf_event_ctx_lock(event);
4391 count = __perf_event_read_value(event, enabled, running);
4392 perf_event_ctx_unlock(event, ctx);
4393
4394 return count;
4395 }
4396 EXPORT_SYMBOL_GPL(perf_event_read_value);
4397
4398 static int __perf_read_group_add(struct perf_event *leader,
4399 u64 read_format, u64 *values)
4400 {
4401 struct perf_event_context *ctx = leader->ctx;
4402 struct perf_event *sub;
4403 unsigned long flags;
4404 int n = 1; /* skip @nr */
4405 int ret;
4406
4407 ret = perf_event_read(leader, true);
4408 if (ret)
4409 return ret;
4410
4411 raw_spin_lock_irqsave(&ctx->lock, flags);
4412
4413 /*
4414 * Since we co-schedule groups, {enabled,running} times of siblings
4415 * will be identical to those of the leader, so we only publish one
4416 * set.
4417 */
4418 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4419 values[n++] += leader->total_time_enabled +
4420 atomic64_read(&leader->child_total_time_enabled);
4421 }
4422
4423 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4424 values[n++] += leader->total_time_running +
4425 atomic64_read(&leader->child_total_time_running);
4426 }
4427
4428 /*
4429 * Write {count,id} tuples for every sibling.
4430 */
4431 values[n++] += perf_event_count(leader);
4432 if (read_format & PERF_FORMAT_ID)
4433 values[n++] = primary_event_id(leader);
4434
4435 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4436 values[n++] += perf_event_count(sub);
4437 if (read_format & PERF_FORMAT_ID)
4438 values[n++] = primary_event_id(sub);
4439 }
4440
4441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4442 return 0;
4443 }
4444
4445 static int perf_read_group(struct perf_event *event,
4446 u64 read_format, char __user *buf)
4447 {
4448 struct perf_event *leader = event->group_leader, *child;
4449 struct perf_event_context *ctx = leader->ctx;
4450 int ret;
4451 u64 *values;
4452
4453 lockdep_assert_held(&ctx->mutex);
4454
4455 values = kzalloc(event->read_size, GFP_KERNEL);
4456 if (!values)
4457 return -ENOMEM;
4458
4459 values[0] = 1 + leader->nr_siblings;
4460
4461 /*
4462 * By locking the child_mutex of the leader we effectively
4463 * lock the child list of all siblings.. XXX explain how.
4464 */
4465 mutex_lock(&leader->child_mutex);
4466
4467 ret = __perf_read_group_add(leader, read_format, values);
4468 if (ret)
4469 goto unlock;
4470
4471 list_for_each_entry(child, &leader->child_list, child_list) {
4472 ret = __perf_read_group_add(child, read_format, values);
4473 if (ret)
4474 goto unlock;
4475 }
4476
4477 mutex_unlock(&leader->child_mutex);
4478
4479 ret = event->read_size;
4480 if (copy_to_user(buf, values, event->read_size))
4481 ret = -EFAULT;
4482 goto out;
4483
4484 unlock:
4485 mutex_unlock(&leader->child_mutex);
4486 out:
4487 kfree(values);
4488 return ret;
4489 }
4490
4491 static int perf_read_one(struct perf_event *event,
4492 u64 read_format, char __user *buf)
4493 {
4494 u64 enabled, running;
4495 u64 values[4];
4496 int n = 0;
4497
4498 values[n++] = __perf_event_read_value(event, &enabled, &running);
4499 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4500 values[n++] = enabled;
4501 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4502 values[n++] = running;
4503 if (read_format & PERF_FORMAT_ID)
4504 values[n++] = primary_event_id(event);
4505
4506 if (copy_to_user(buf, values, n * sizeof(u64)))
4507 return -EFAULT;
4508
4509 return n * sizeof(u64);
4510 }
4511
4512 static bool is_event_hup(struct perf_event *event)
4513 {
4514 bool no_children;
4515
4516 if (event->state > PERF_EVENT_STATE_EXIT)
4517 return false;
4518
4519 mutex_lock(&event->child_mutex);
4520 no_children = list_empty(&event->child_list);
4521 mutex_unlock(&event->child_mutex);
4522 return no_children;
4523 }
4524
4525 /*
4526 * Read the performance event - simple non blocking version for now
4527 */
4528 static ssize_t
4529 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4530 {
4531 u64 read_format = event->attr.read_format;
4532 int ret;
4533
4534 /*
4535 * Return end-of-file for a read on a event that is in
4536 * error state (i.e. because it was pinned but it couldn't be
4537 * scheduled on to the CPU at some point).
4538 */
4539 if (event->state == PERF_EVENT_STATE_ERROR)
4540 return 0;
4541
4542 if (count < event->read_size)
4543 return -ENOSPC;
4544
4545 WARN_ON_ONCE(event->ctx->parent_ctx);
4546 if (read_format & PERF_FORMAT_GROUP)
4547 ret = perf_read_group(event, read_format, buf);
4548 else
4549 ret = perf_read_one(event, read_format, buf);
4550
4551 return ret;
4552 }
4553
4554 static ssize_t
4555 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4556 {
4557 struct perf_event *event = file->private_data;
4558 struct perf_event_context *ctx;
4559 int ret;
4560
4561 ctx = perf_event_ctx_lock(event);
4562 ret = __perf_read(event, buf, count);
4563 perf_event_ctx_unlock(event, ctx);
4564
4565 return ret;
4566 }
4567
4568 static unsigned int perf_poll(struct file *file, poll_table *wait)
4569 {
4570 struct perf_event *event = file->private_data;
4571 struct ring_buffer *rb;
4572 unsigned int events = POLLHUP;
4573
4574 poll_wait(file, &event->waitq, wait);
4575
4576 if (is_event_hup(event))
4577 return events;
4578
4579 /*
4580 * Pin the event->rb by taking event->mmap_mutex; otherwise
4581 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4582 */
4583 mutex_lock(&event->mmap_mutex);
4584 rb = event->rb;
4585 if (rb)
4586 events = atomic_xchg(&rb->poll, 0);
4587 mutex_unlock(&event->mmap_mutex);
4588 return events;
4589 }
4590
4591 static void _perf_event_reset(struct perf_event *event)
4592 {
4593 (void)perf_event_read(event, false);
4594 local64_set(&event->count, 0);
4595 perf_event_update_userpage(event);
4596 }
4597
4598 /*
4599 * Holding the top-level event's child_mutex means that any
4600 * descendant process that has inherited this event will block
4601 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4602 * task existence requirements of perf_event_enable/disable.
4603 */
4604 static void perf_event_for_each_child(struct perf_event *event,
4605 void (*func)(struct perf_event *))
4606 {
4607 struct perf_event *child;
4608
4609 WARN_ON_ONCE(event->ctx->parent_ctx);
4610
4611 mutex_lock(&event->child_mutex);
4612 func(event);
4613 list_for_each_entry(child, &event->child_list, child_list)
4614 func(child);
4615 mutex_unlock(&event->child_mutex);
4616 }
4617
4618 static void perf_event_for_each(struct perf_event *event,
4619 void (*func)(struct perf_event *))
4620 {
4621 struct perf_event_context *ctx = event->ctx;
4622 struct perf_event *sibling;
4623
4624 lockdep_assert_held(&ctx->mutex);
4625
4626 event = event->group_leader;
4627
4628 perf_event_for_each_child(event, func);
4629 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4630 perf_event_for_each_child(sibling, func);
4631 }
4632
4633 static void __perf_event_period(struct perf_event *event,
4634 struct perf_cpu_context *cpuctx,
4635 struct perf_event_context *ctx,
4636 void *info)
4637 {
4638 u64 value = *((u64 *)info);
4639 bool active;
4640
4641 if (event->attr.freq) {
4642 event->attr.sample_freq = value;
4643 } else {
4644 event->attr.sample_period = value;
4645 event->hw.sample_period = value;
4646 }
4647
4648 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4649 if (active) {
4650 perf_pmu_disable(ctx->pmu);
4651 /*
4652 * We could be throttled; unthrottle now to avoid the tick
4653 * trying to unthrottle while we already re-started the event.
4654 */
4655 if (event->hw.interrupts == MAX_INTERRUPTS) {
4656 event->hw.interrupts = 0;
4657 perf_log_throttle(event, 1);
4658 }
4659 event->pmu->stop(event, PERF_EF_UPDATE);
4660 }
4661
4662 local64_set(&event->hw.period_left, 0);
4663
4664 if (active) {
4665 event->pmu->start(event, PERF_EF_RELOAD);
4666 perf_pmu_enable(ctx->pmu);
4667 }
4668 }
4669
4670 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4671 {
4672 u64 value;
4673
4674 if (!is_sampling_event(event))
4675 return -EINVAL;
4676
4677 if (copy_from_user(&value, arg, sizeof(value)))
4678 return -EFAULT;
4679
4680 if (!value)
4681 return -EINVAL;
4682
4683 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4684 return -EINVAL;
4685
4686 event_function_call(event, __perf_event_period, &value);
4687
4688 return 0;
4689 }
4690
4691 static const struct file_operations perf_fops;
4692
4693 static inline int perf_fget_light(int fd, struct fd *p)
4694 {
4695 struct fd f = fdget(fd);
4696 if (!f.file)
4697 return -EBADF;
4698
4699 if (f.file->f_op != &perf_fops) {
4700 fdput(f);
4701 return -EBADF;
4702 }
4703 *p = f;
4704 return 0;
4705 }
4706
4707 static int perf_event_set_output(struct perf_event *event,
4708 struct perf_event *output_event);
4709 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4710 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4711
4712 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4713 {
4714 void (*func)(struct perf_event *);
4715 u32 flags = arg;
4716
4717 switch (cmd) {
4718 case PERF_EVENT_IOC_ENABLE:
4719 func = _perf_event_enable;
4720 break;
4721 case PERF_EVENT_IOC_DISABLE:
4722 func = _perf_event_disable;
4723 break;
4724 case PERF_EVENT_IOC_RESET:
4725 func = _perf_event_reset;
4726 break;
4727
4728 case PERF_EVENT_IOC_REFRESH:
4729 return _perf_event_refresh(event, arg);
4730
4731 case PERF_EVENT_IOC_PERIOD:
4732 return perf_event_period(event, (u64 __user *)arg);
4733
4734 case PERF_EVENT_IOC_ID:
4735 {
4736 u64 id = primary_event_id(event);
4737
4738 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4739 return -EFAULT;
4740 return 0;
4741 }
4742
4743 case PERF_EVENT_IOC_SET_OUTPUT:
4744 {
4745 int ret;
4746 if (arg != -1) {
4747 struct perf_event *output_event;
4748 struct fd output;
4749 ret = perf_fget_light(arg, &output);
4750 if (ret)
4751 return ret;
4752 output_event = output.file->private_data;
4753 ret = perf_event_set_output(event, output_event);
4754 fdput(output);
4755 } else {
4756 ret = perf_event_set_output(event, NULL);
4757 }
4758 return ret;
4759 }
4760
4761 case PERF_EVENT_IOC_SET_FILTER:
4762 return perf_event_set_filter(event, (void __user *)arg);
4763
4764 case PERF_EVENT_IOC_SET_BPF:
4765 return perf_event_set_bpf_prog(event, arg);
4766
4767 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4768 struct ring_buffer *rb;
4769
4770 rcu_read_lock();
4771 rb = rcu_dereference(event->rb);
4772 if (!rb || !rb->nr_pages) {
4773 rcu_read_unlock();
4774 return -EINVAL;
4775 }
4776 rb_toggle_paused(rb, !!arg);
4777 rcu_read_unlock();
4778 return 0;
4779 }
4780 default:
4781 return -ENOTTY;
4782 }
4783
4784 if (flags & PERF_IOC_FLAG_GROUP)
4785 perf_event_for_each(event, func);
4786 else
4787 perf_event_for_each_child(event, func);
4788
4789 return 0;
4790 }
4791
4792 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4793 {
4794 struct perf_event *event = file->private_data;
4795 struct perf_event_context *ctx;
4796 long ret;
4797
4798 ctx = perf_event_ctx_lock(event);
4799 ret = _perf_ioctl(event, cmd, arg);
4800 perf_event_ctx_unlock(event, ctx);
4801
4802 return ret;
4803 }
4804
4805 #ifdef CONFIG_COMPAT
4806 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4807 unsigned long arg)
4808 {
4809 switch (_IOC_NR(cmd)) {
4810 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4811 case _IOC_NR(PERF_EVENT_IOC_ID):
4812 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4813 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4814 cmd &= ~IOCSIZE_MASK;
4815 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4816 }
4817 break;
4818 }
4819 return perf_ioctl(file, cmd, arg);
4820 }
4821 #else
4822 # define perf_compat_ioctl NULL
4823 #endif
4824
4825 int perf_event_task_enable(void)
4826 {
4827 struct perf_event_context *ctx;
4828 struct perf_event *event;
4829
4830 mutex_lock(&current->perf_event_mutex);
4831 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4832 ctx = perf_event_ctx_lock(event);
4833 perf_event_for_each_child(event, _perf_event_enable);
4834 perf_event_ctx_unlock(event, ctx);
4835 }
4836 mutex_unlock(&current->perf_event_mutex);
4837
4838 return 0;
4839 }
4840
4841 int perf_event_task_disable(void)
4842 {
4843 struct perf_event_context *ctx;
4844 struct perf_event *event;
4845
4846 mutex_lock(&current->perf_event_mutex);
4847 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4848 ctx = perf_event_ctx_lock(event);
4849 perf_event_for_each_child(event, _perf_event_disable);
4850 perf_event_ctx_unlock(event, ctx);
4851 }
4852 mutex_unlock(&current->perf_event_mutex);
4853
4854 return 0;
4855 }
4856
4857 static int perf_event_index(struct perf_event *event)
4858 {
4859 if (event->hw.state & PERF_HES_STOPPED)
4860 return 0;
4861
4862 if (event->state != PERF_EVENT_STATE_ACTIVE)
4863 return 0;
4864
4865 return event->pmu->event_idx(event);
4866 }
4867
4868 static void calc_timer_values(struct perf_event *event,
4869 u64 *now,
4870 u64 *enabled,
4871 u64 *running)
4872 {
4873 u64 ctx_time;
4874
4875 *now = perf_clock();
4876 ctx_time = event->shadow_ctx_time + *now;
4877 __perf_update_times(event, ctx_time, enabled, running);
4878 }
4879
4880 static void perf_event_init_userpage(struct perf_event *event)
4881 {
4882 struct perf_event_mmap_page *userpg;
4883 struct ring_buffer *rb;
4884
4885 rcu_read_lock();
4886 rb = rcu_dereference(event->rb);
4887 if (!rb)
4888 goto unlock;
4889
4890 userpg = rb->user_page;
4891
4892 /* Allow new userspace to detect that bit 0 is deprecated */
4893 userpg->cap_bit0_is_deprecated = 1;
4894 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4895 userpg->data_offset = PAGE_SIZE;
4896 userpg->data_size = perf_data_size(rb);
4897
4898 unlock:
4899 rcu_read_unlock();
4900 }
4901
4902 void __weak arch_perf_update_userpage(
4903 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4904 {
4905 }
4906
4907 /*
4908 * Callers need to ensure there can be no nesting of this function, otherwise
4909 * the seqlock logic goes bad. We can not serialize this because the arch
4910 * code calls this from NMI context.
4911 */
4912 void perf_event_update_userpage(struct perf_event *event)
4913 {
4914 struct perf_event_mmap_page *userpg;
4915 struct ring_buffer *rb;
4916 u64 enabled, running, now;
4917
4918 rcu_read_lock();
4919 rb = rcu_dereference(event->rb);
4920 if (!rb)
4921 goto unlock;
4922
4923 /*
4924 * compute total_time_enabled, total_time_running
4925 * based on snapshot values taken when the event
4926 * was last scheduled in.
4927 *
4928 * we cannot simply called update_context_time()
4929 * because of locking issue as we can be called in
4930 * NMI context
4931 */
4932 calc_timer_values(event, &now, &enabled, &running);
4933
4934 userpg = rb->user_page;
4935 /*
4936 * Disable preemption so as to not let the corresponding user-space
4937 * spin too long if we get preempted.
4938 */
4939 preempt_disable();
4940 ++userpg->lock;
4941 barrier();
4942 userpg->index = perf_event_index(event);
4943 userpg->offset = perf_event_count(event);
4944 if (userpg->index)
4945 userpg->offset -= local64_read(&event->hw.prev_count);
4946
4947 userpg->time_enabled = enabled +
4948 atomic64_read(&event->child_total_time_enabled);
4949
4950 userpg->time_running = running +
4951 atomic64_read(&event->child_total_time_running);
4952
4953 arch_perf_update_userpage(event, userpg, now);
4954
4955 barrier();
4956 ++userpg->lock;
4957 preempt_enable();
4958 unlock:
4959 rcu_read_unlock();
4960 }
4961
4962 static int perf_mmap_fault(struct vm_fault *vmf)
4963 {
4964 struct perf_event *event = vmf->vma->vm_file->private_data;
4965 struct ring_buffer *rb;
4966 int ret = VM_FAULT_SIGBUS;
4967
4968 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4969 if (vmf->pgoff == 0)
4970 ret = 0;
4971 return ret;
4972 }
4973
4974 rcu_read_lock();
4975 rb = rcu_dereference(event->rb);
4976 if (!rb)
4977 goto unlock;
4978
4979 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4980 goto unlock;
4981
4982 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4983 if (!vmf->page)
4984 goto unlock;
4985
4986 get_page(vmf->page);
4987 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4988 vmf->page->index = vmf->pgoff;
4989
4990 ret = 0;
4991 unlock:
4992 rcu_read_unlock();
4993
4994 return ret;
4995 }
4996
4997 static void ring_buffer_attach(struct perf_event *event,
4998 struct ring_buffer *rb)
4999 {
5000 struct ring_buffer *old_rb = NULL;
5001 unsigned long flags;
5002
5003 if (event->rb) {
5004 /*
5005 * Should be impossible, we set this when removing
5006 * event->rb_entry and wait/clear when adding event->rb_entry.
5007 */
5008 WARN_ON_ONCE(event->rcu_pending);
5009
5010 old_rb = event->rb;
5011 spin_lock_irqsave(&old_rb->event_lock, flags);
5012 list_del_rcu(&event->rb_entry);
5013 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5014
5015 event->rcu_batches = get_state_synchronize_rcu();
5016 event->rcu_pending = 1;
5017 }
5018
5019 if (rb) {
5020 if (event->rcu_pending) {
5021 cond_synchronize_rcu(event->rcu_batches);
5022 event->rcu_pending = 0;
5023 }
5024
5025 spin_lock_irqsave(&rb->event_lock, flags);
5026 list_add_rcu(&event->rb_entry, &rb->event_list);
5027 spin_unlock_irqrestore(&rb->event_lock, flags);
5028 }
5029
5030 /*
5031 * Avoid racing with perf_mmap_close(AUX): stop the event
5032 * before swizzling the event::rb pointer; if it's getting
5033 * unmapped, its aux_mmap_count will be 0 and it won't
5034 * restart. See the comment in __perf_pmu_output_stop().
5035 *
5036 * Data will inevitably be lost when set_output is done in
5037 * mid-air, but then again, whoever does it like this is
5038 * not in for the data anyway.
5039 */
5040 if (has_aux(event))
5041 perf_event_stop(event, 0);
5042
5043 rcu_assign_pointer(event->rb, rb);
5044
5045 if (old_rb) {
5046 ring_buffer_put(old_rb);
5047 /*
5048 * Since we detached before setting the new rb, so that we
5049 * could attach the new rb, we could have missed a wakeup.
5050 * Provide it now.
5051 */
5052 wake_up_all(&event->waitq);
5053 }
5054 }
5055
5056 static void ring_buffer_wakeup(struct perf_event *event)
5057 {
5058 struct ring_buffer *rb;
5059
5060 rcu_read_lock();
5061 rb = rcu_dereference(event->rb);
5062 if (rb) {
5063 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5064 wake_up_all(&event->waitq);
5065 }
5066 rcu_read_unlock();
5067 }
5068
5069 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5070 {
5071 struct ring_buffer *rb;
5072
5073 rcu_read_lock();
5074 rb = rcu_dereference(event->rb);
5075 if (rb) {
5076 if (!atomic_inc_not_zero(&rb->refcount))
5077 rb = NULL;
5078 }
5079 rcu_read_unlock();
5080
5081 return rb;
5082 }
5083
5084 void ring_buffer_put(struct ring_buffer *rb)
5085 {
5086 if (!atomic_dec_and_test(&rb->refcount))
5087 return;
5088
5089 WARN_ON_ONCE(!list_empty(&rb->event_list));
5090
5091 call_rcu(&rb->rcu_head, rb_free_rcu);
5092 }
5093
5094 static void perf_mmap_open(struct vm_area_struct *vma)
5095 {
5096 struct perf_event *event = vma->vm_file->private_data;
5097
5098 atomic_inc(&event->mmap_count);
5099 atomic_inc(&event->rb->mmap_count);
5100
5101 if (vma->vm_pgoff)
5102 atomic_inc(&event->rb->aux_mmap_count);
5103
5104 if (event->pmu->event_mapped)
5105 event->pmu->event_mapped(event, vma->vm_mm);
5106 }
5107
5108 static void perf_pmu_output_stop(struct perf_event *event);
5109
5110 /*
5111 * A buffer can be mmap()ed multiple times; either directly through the same
5112 * event, or through other events by use of perf_event_set_output().
5113 *
5114 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5115 * the buffer here, where we still have a VM context. This means we need
5116 * to detach all events redirecting to us.
5117 */
5118 static void perf_mmap_close(struct vm_area_struct *vma)
5119 {
5120 struct perf_event *event = vma->vm_file->private_data;
5121
5122 struct ring_buffer *rb = ring_buffer_get(event);
5123 struct user_struct *mmap_user = rb->mmap_user;
5124 int mmap_locked = rb->mmap_locked;
5125 unsigned long size = perf_data_size(rb);
5126
5127 if (event->pmu->event_unmapped)
5128 event->pmu->event_unmapped(event, vma->vm_mm);
5129
5130 /*
5131 * rb->aux_mmap_count will always drop before rb->mmap_count and
5132 * event->mmap_count, so it is ok to use event->mmap_mutex to
5133 * serialize with perf_mmap here.
5134 */
5135 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5136 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5137 /*
5138 * Stop all AUX events that are writing to this buffer,
5139 * so that we can free its AUX pages and corresponding PMU
5140 * data. Note that after rb::aux_mmap_count dropped to zero,
5141 * they won't start any more (see perf_aux_output_begin()).
5142 */
5143 perf_pmu_output_stop(event);
5144
5145 /* now it's safe to free the pages */
5146 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5147 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5148
5149 /* this has to be the last one */
5150 rb_free_aux(rb);
5151 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5152
5153 mutex_unlock(&event->mmap_mutex);
5154 }
5155
5156 atomic_dec(&rb->mmap_count);
5157
5158 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5159 goto out_put;
5160
5161 ring_buffer_attach(event, NULL);
5162 mutex_unlock(&event->mmap_mutex);
5163
5164 /* If there's still other mmap()s of this buffer, we're done. */
5165 if (atomic_read(&rb->mmap_count))
5166 goto out_put;
5167
5168 /*
5169 * No other mmap()s, detach from all other events that might redirect
5170 * into the now unreachable buffer. Somewhat complicated by the
5171 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5172 */
5173 again:
5174 rcu_read_lock();
5175 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5176 if (!atomic_long_inc_not_zero(&event->refcount)) {
5177 /*
5178 * This event is en-route to free_event() which will
5179 * detach it and remove it from the list.
5180 */
5181 continue;
5182 }
5183 rcu_read_unlock();
5184
5185 mutex_lock(&event->mmap_mutex);
5186 /*
5187 * Check we didn't race with perf_event_set_output() which can
5188 * swizzle the rb from under us while we were waiting to
5189 * acquire mmap_mutex.
5190 *
5191 * If we find a different rb; ignore this event, a next
5192 * iteration will no longer find it on the list. We have to
5193 * still restart the iteration to make sure we're not now
5194 * iterating the wrong list.
5195 */
5196 if (event->rb == rb)
5197 ring_buffer_attach(event, NULL);
5198
5199 mutex_unlock(&event->mmap_mutex);
5200 put_event(event);
5201
5202 /*
5203 * Restart the iteration; either we're on the wrong list or
5204 * destroyed its integrity by doing a deletion.
5205 */
5206 goto again;
5207 }
5208 rcu_read_unlock();
5209
5210 /*
5211 * It could be there's still a few 0-ref events on the list; they'll
5212 * get cleaned up by free_event() -- they'll also still have their
5213 * ref on the rb and will free it whenever they are done with it.
5214 *
5215 * Aside from that, this buffer is 'fully' detached and unmapped,
5216 * undo the VM accounting.
5217 */
5218
5219 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5220 vma->vm_mm->pinned_vm -= mmap_locked;
5221 free_uid(mmap_user);
5222
5223 out_put:
5224 ring_buffer_put(rb); /* could be last */
5225 }
5226
5227 static const struct vm_operations_struct perf_mmap_vmops = {
5228 .open = perf_mmap_open,
5229 .close = perf_mmap_close, /* non mergable */
5230 .fault = perf_mmap_fault,
5231 .page_mkwrite = perf_mmap_fault,
5232 };
5233
5234 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5235 {
5236 struct perf_event *event = file->private_data;
5237 unsigned long user_locked, user_lock_limit;
5238 struct user_struct *user = current_user();
5239 unsigned long locked, lock_limit;
5240 struct ring_buffer *rb = NULL;
5241 unsigned long vma_size;
5242 unsigned long nr_pages;
5243 long user_extra = 0, extra = 0;
5244 int ret = 0, flags = 0;
5245
5246 /*
5247 * Don't allow mmap() of inherited per-task counters. This would
5248 * create a performance issue due to all children writing to the
5249 * same rb.
5250 */
5251 if (event->cpu == -1 && event->attr.inherit)
5252 return -EINVAL;
5253
5254 if (!(vma->vm_flags & VM_SHARED))
5255 return -EINVAL;
5256
5257 vma_size = vma->vm_end - vma->vm_start;
5258
5259 if (vma->vm_pgoff == 0) {
5260 nr_pages = (vma_size / PAGE_SIZE) - 1;
5261 } else {
5262 /*
5263 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5264 * mapped, all subsequent mappings should have the same size
5265 * and offset. Must be above the normal perf buffer.
5266 */
5267 u64 aux_offset, aux_size;
5268
5269 if (!event->rb)
5270 return -EINVAL;
5271
5272 nr_pages = vma_size / PAGE_SIZE;
5273
5274 mutex_lock(&event->mmap_mutex);
5275 ret = -EINVAL;
5276
5277 rb = event->rb;
5278 if (!rb)
5279 goto aux_unlock;
5280
5281 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5282 aux_size = READ_ONCE(rb->user_page->aux_size);
5283
5284 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5285 goto aux_unlock;
5286
5287 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5288 goto aux_unlock;
5289
5290 /* already mapped with a different offset */
5291 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5292 goto aux_unlock;
5293
5294 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5295 goto aux_unlock;
5296
5297 /* already mapped with a different size */
5298 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5299 goto aux_unlock;
5300
5301 if (!is_power_of_2(nr_pages))
5302 goto aux_unlock;
5303
5304 if (!atomic_inc_not_zero(&rb->mmap_count))
5305 goto aux_unlock;
5306
5307 if (rb_has_aux(rb)) {
5308 atomic_inc(&rb->aux_mmap_count);
5309 ret = 0;
5310 goto unlock;
5311 }
5312
5313 atomic_set(&rb->aux_mmap_count, 1);
5314 user_extra = nr_pages;
5315
5316 goto accounting;
5317 }
5318
5319 /*
5320 * If we have rb pages ensure they're a power-of-two number, so we
5321 * can do bitmasks instead of modulo.
5322 */
5323 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5324 return -EINVAL;
5325
5326 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5327 return -EINVAL;
5328
5329 WARN_ON_ONCE(event->ctx->parent_ctx);
5330 again:
5331 mutex_lock(&event->mmap_mutex);
5332 if (event->rb) {
5333 if (event->rb->nr_pages != nr_pages) {
5334 ret = -EINVAL;
5335 goto unlock;
5336 }
5337
5338 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5339 /*
5340 * Raced against perf_mmap_close() through
5341 * perf_event_set_output(). Try again, hope for better
5342 * luck.
5343 */
5344 mutex_unlock(&event->mmap_mutex);
5345 goto again;
5346 }
5347
5348 goto unlock;
5349 }
5350
5351 user_extra = nr_pages + 1;
5352
5353 accounting:
5354 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5355
5356 /*
5357 * Increase the limit linearly with more CPUs:
5358 */
5359 user_lock_limit *= num_online_cpus();
5360
5361 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5362
5363 if (user_locked > user_lock_limit)
5364 extra = user_locked - user_lock_limit;
5365
5366 lock_limit = rlimit(RLIMIT_MEMLOCK);
5367 lock_limit >>= PAGE_SHIFT;
5368 locked = vma->vm_mm->pinned_vm + extra;
5369
5370 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5371 !capable(CAP_IPC_LOCK)) {
5372 ret = -EPERM;
5373 goto unlock;
5374 }
5375
5376 WARN_ON(!rb && event->rb);
5377
5378 if (vma->vm_flags & VM_WRITE)
5379 flags |= RING_BUFFER_WRITABLE;
5380
5381 if (!rb) {
5382 rb = rb_alloc(nr_pages,
5383 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5384 event->cpu, flags);
5385
5386 if (!rb) {
5387 ret = -ENOMEM;
5388 goto unlock;
5389 }
5390
5391 atomic_set(&rb->mmap_count, 1);
5392 rb->mmap_user = get_current_user();
5393 rb->mmap_locked = extra;
5394
5395 ring_buffer_attach(event, rb);
5396
5397 perf_event_init_userpage(event);
5398 perf_event_update_userpage(event);
5399 } else {
5400 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5401 event->attr.aux_watermark, flags);
5402 if (!ret)
5403 rb->aux_mmap_locked = extra;
5404 }
5405
5406 unlock:
5407 if (!ret) {
5408 atomic_long_add(user_extra, &user->locked_vm);
5409 vma->vm_mm->pinned_vm += extra;
5410
5411 atomic_inc(&event->mmap_count);
5412 } else if (rb) {
5413 atomic_dec(&rb->mmap_count);
5414 }
5415 aux_unlock:
5416 mutex_unlock(&event->mmap_mutex);
5417
5418 /*
5419 * Since pinned accounting is per vm we cannot allow fork() to copy our
5420 * vma.
5421 */
5422 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5423 vma->vm_ops = &perf_mmap_vmops;
5424
5425 if (event->pmu->event_mapped)
5426 event->pmu->event_mapped(event, vma->vm_mm);
5427
5428 return ret;
5429 }
5430
5431 static int perf_fasync(int fd, struct file *filp, int on)
5432 {
5433 struct inode *inode = file_inode(filp);
5434 struct perf_event *event = filp->private_data;
5435 int retval;
5436
5437 inode_lock(inode);
5438 retval = fasync_helper(fd, filp, on, &event->fasync);
5439 inode_unlock(inode);
5440
5441 if (retval < 0)
5442 return retval;
5443
5444 return 0;
5445 }
5446
5447 static const struct file_operations perf_fops = {
5448 .llseek = no_llseek,
5449 .release = perf_release,
5450 .read = perf_read,
5451 .poll = perf_poll,
5452 .unlocked_ioctl = perf_ioctl,
5453 .compat_ioctl = perf_compat_ioctl,
5454 .mmap = perf_mmap,
5455 .fasync = perf_fasync,
5456 };
5457
5458 /*
5459 * Perf event wakeup
5460 *
5461 * If there's data, ensure we set the poll() state and publish everything
5462 * to user-space before waking everybody up.
5463 */
5464
5465 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5466 {
5467 /* only the parent has fasync state */
5468 if (event->parent)
5469 event = event->parent;
5470 return &event->fasync;
5471 }
5472
5473 void perf_event_wakeup(struct perf_event *event)
5474 {
5475 ring_buffer_wakeup(event);
5476
5477 if (event->pending_kill) {
5478 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5479 event->pending_kill = 0;
5480 }
5481 }
5482
5483 static void perf_pending_event(struct irq_work *entry)
5484 {
5485 struct perf_event *event = container_of(entry,
5486 struct perf_event, pending);
5487 int rctx;
5488
5489 rctx = perf_swevent_get_recursion_context();
5490 /*
5491 * If we 'fail' here, that's OK, it means recursion is already disabled
5492 * and we won't recurse 'further'.
5493 */
5494
5495 if (event->pending_disable) {
5496 event->pending_disable = 0;
5497 perf_event_disable_local(event);
5498 }
5499
5500 if (event->pending_wakeup) {
5501 event->pending_wakeup = 0;
5502 perf_event_wakeup(event);
5503 }
5504
5505 if (rctx >= 0)
5506 perf_swevent_put_recursion_context(rctx);
5507 }
5508
5509 /*
5510 * We assume there is only KVM supporting the callbacks.
5511 * Later on, we might change it to a list if there is
5512 * another virtualization implementation supporting the callbacks.
5513 */
5514 struct perf_guest_info_callbacks *perf_guest_cbs;
5515
5516 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5517 {
5518 perf_guest_cbs = cbs;
5519 return 0;
5520 }
5521 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5522
5523 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5524 {
5525 perf_guest_cbs = NULL;
5526 return 0;
5527 }
5528 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5529
5530 static void
5531 perf_output_sample_regs(struct perf_output_handle *handle,
5532 struct pt_regs *regs, u64 mask)
5533 {
5534 int bit;
5535 DECLARE_BITMAP(_mask, 64);
5536
5537 bitmap_from_u64(_mask, mask);
5538 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5539 u64 val;
5540
5541 val = perf_reg_value(regs, bit);
5542 perf_output_put(handle, val);
5543 }
5544 }
5545
5546 static void perf_sample_regs_user(struct perf_regs *regs_user,
5547 struct pt_regs *regs,
5548 struct pt_regs *regs_user_copy)
5549 {
5550 if (user_mode(regs)) {
5551 regs_user->abi = perf_reg_abi(current);
5552 regs_user->regs = regs;
5553 } else if (current->mm) {
5554 perf_get_regs_user(regs_user, regs, regs_user_copy);
5555 } else {
5556 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5557 regs_user->regs = NULL;
5558 }
5559 }
5560
5561 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5562 struct pt_regs *regs)
5563 {
5564 regs_intr->regs = regs;
5565 regs_intr->abi = perf_reg_abi(current);
5566 }
5567
5568
5569 /*
5570 * Get remaining task size from user stack pointer.
5571 *
5572 * It'd be better to take stack vma map and limit this more
5573 * precisly, but there's no way to get it safely under interrupt,
5574 * so using TASK_SIZE as limit.
5575 */
5576 static u64 perf_ustack_task_size(struct pt_regs *regs)
5577 {
5578 unsigned long addr = perf_user_stack_pointer(regs);
5579
5580 if (!addr || addr >= TASK_SIZE)
5581 return 0;
5582
5583 return TASK_SIZE - addr;
5584 }
5585
5586 static u16
5587 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5588 struct pt_regs *regs)
5589 {
5590 u64 task_size;
5591
5592 /* No regs, no stack pointer, no dump. */
5593 if (!regs)
5594 return 0;
5595
5596 /*
5597 * Check if we fit in with the requested stack size into the:
5598 * - TASK_SIZE
5599 * If we don't, we limit the size to the TASK_SIZE.
5600 *
5601 * - remaining sample size
5602 * If we don't, we customize the stack size to
5603 * fit in to the remaining sample size.
5604 */
5605
5606 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5607 stack_size = min(stack_size, (u16) task_size);
5608
5609 /* Current header size plus static size and dynamic size. */
5610 header_size += 2 * sizeof(u64);
5611
5612 /* Do we fit in with the current stack dump size? */
5613 if ((u16) (header_size + stack_size) < header_size) {
5614 /*
5615 * If we overflow the maximum size for the sample,
5616 * we customize the stack dump size to fit in.
5617 */
5618 stack_size = USHRT_MAX - header_size - sizeof(u64);
5619 stack_size = round_up(stack_size, sizeof(u64));
5620 }
5621
5622 return stack_size;
5623 }
5624
5625 static void
5626 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5627 struct pt_regs *regs)
5628 {
5629 /* Case of a kernel thread, nothing to dump */
5630 if (!regs) {
5631 u64 size = 0;
5632 perf_output_put(handle, size);
5633 } else {
5634 unsigned long sp;
5635 unsigned int rem;
5636 u64 dyn_size;
5637
5638 /*
5639 * We dump:
5640 * static size
5641 * - the size requested by user or the best one we can fit
5642 * in to the sample max size
5643 * data
5644 * - user stack dump data
5645 * dynamic size
5646 * - the actual dumped size
5647 */
5648
5649 /* Static size. */
5650 perf_output_put(handle, dump_size);
5651
5652 /* Data. */
5653 sp = perf_user_stack_pointer(regs);
5654 rem = __output_copy_user(handle, (void *) sp, dump_size);
5655 dyn_size = dump_size - rem;
5656
5657 perf_output_skip(handle, rem);
5658
5659 /* Dynamic size. */
5660 perf_output_put(handle, dyn_size);
5661 }
5662 }
5663
5664 static void __perf_event_header__init_id(struct perf_event_header *header,
5665 struct perf_sample_data *data,
5666 struct perf_event *event)
5667 {
5668 u64 sample_type = event->attr.sample_type;
5669
5670 data->type = sample_type;
5671 header->size += event->id_header_size;
5672
5673 if (sample_type & PERF_SAMPLE_TID) {
5674 /* namespace issues */
5675 data->tid_entry.pid = perf_event_pid(event, current);
5676 data->tid_entry.tid = perf_event_tid(event, current);
5677 }
5678
5679 if (sample_type & PERF_SAMPLE_TIME)
5680 data->time = perf_event_clock(event);
5681
5682 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5683 data->id = primary_event_id(event);
5684
5685 if (sample_type & PERF_SAMPLE_STREAM_ID)
5686 data->stream_id = event->id;
5687
5688 if (sample_type & PERF_SAMPLE_CPU) {
5689 data->cpu_entry.cpu = raw_smp_processor_id();
5690 data->cpu_entry.reserved = 0;
5691 }
5692 }
5693
5694 void perf_event_header__init_id(struct perf_event_header *header,
5695 struct perf_sample_data *data,
5696 struct perf_event *event)
5697 {
5698 if (event->attr.sample_id_all)
5699 __perf_event_header__init_id(header, data, event);
5700 }
5701
5702 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5703 struct perf_sample_data *data)
5704 {
5705 u64 sample_type = data->type;
5706
5707 if (sample_type & PERF_SAMPLE_TID)
5708 perf_output_put(handle, data->tid_entry);
5709
5710 if (sample_type & PERF_SAMPLE_TIME)
5711 perf_output_put(handle, data->time);
5712
5713 if (sample_type & PERF_SAMPLE_ID)
5714 perf_output_put(handle, data->id);
5715
5716 if (sample_type & PERF_SAMPLE_STREAM_ID)
5717 perf_output_put(handle, data->stream_id);
5718
5719 if (sample_type & PERF_SAMPLE_CPU)
5720 perf_output_put(handle, data->cpu_entry);
5721
5722 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5723 perf_output_put(handle, data->id);
5724 }
5725
5726 void perf_event__output_id_sample(struct perf_event *event,
5727 struct perf_output_handle *handle,
5728 struct perf_sample_data *sample)
5729 {
5730 if (event->attr.sample_id_all)
5731 __perf_event__output_id_sample(handle, sample);
5732 }
5733
5734 static void perf_output_read_one(struct perf_output_handle *handle,
5735 struct perf_event *event,
5736 u64 enabled, u64 running)
5737 {
5738 u64 read_format = event->attr.read_format;
5739 u64 values[4];
5740 int n = 0;
5741
5742 values[n++] = perf_event_count(event);
5743 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5744 values[n++] = enabled +
5745 atomic64_read(&event->child_total_time_enabled);
5746 }
5747 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5748 values[n++] = running +
5749 atomic64_read(&event->child_total_time_running);
5750 }
5751 if (read_format & PERF_FORMAT_ID)
5752 values[n++] = primary_event_id(event);
5753
5754 __output_copy(handle, values, n * sizeof(u64));
5755 }
5756
5757 static void perf_output_read_group(struct perf_output_handle *handle,
5758 struct perf_event *event,
5759 u64 enabled, u64 running)
5760 {
5761 struct perf_event *leader = event->group_leader, *sub;
5762 u64 read_format = event->attr.read_format;
5763 u64 values[5];
5764 int n = 0;
5765
5766 values[n++] = 1 + leader->nr_siblings;
5767
5768 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5769 values[n++] = enabled;
5770
5771 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5772 values[n++] = running;
5773
5774 if ((leader != event) &&
5775 (leader->state == PERF_EVENT_STATE_ACTIVE))
5776 leader->pmu->read(leader);
5777
5778 values[n++] = perf_event_count(leader);
5779 if (read_format & PERF_FORMAT_ID)
5780 values[n++] = primary_event_id(leader);
5781
5782 __output_copy(handle, values, n * sizeof(u64));
5783
5784 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5785 n = 0;
5786
5787 if ((sub != event) &&
5788 (sub->state == PERF_EVENT_STATE_ACTIVE))
5789 sub->pmu->read(sub);
5790
5791 values[n++] = perf_event_count(sub);
5792 if (read_format & PERF_FORMAT_ID)
5793 values[n++] = primary_event_id(sub);
5794
5795 __output_copy(handle, values, n * sizeof(u64));
5796 }
5797 }
5798
5799 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5800 PERF_FORMAT_TOTAL_TIME_RUNNING)
5801
5802 /*
5803 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5804 *
5805 * The problem is that its both hard and excessively expensive to iterate the
5806 * child list, not to mention that its impossible to IPI the children running
5807 * on another CPU, from interrupt/NMI context.
5808 */
5809 static void perf_output_read(struct perf_output_handle *handle,
5810 struct perf_event *event)
5811 {
5812 u64 enabled = 0, running = 0, now;
5813 u64 read_format = event->attr.read_format;
5814
5815 /*
5816 * compute total_time_enabled, total_time_running
5817 * based on snapshot values taken when the event
5818 * was last scheduled in.
5819 *
5820 * we cannot simply called update_context_time()
5821 * because of locking issue as we are called in
5822 * NMI context
5823 */
5824 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5825 calc_timer_values(event, &now, &enabled, &running);
5826
5827 if (event->attr.read_format & PERF_FORMAT_GROUP)
5828 perf_output_read_group(handle, event, enabled, running);
5829 else
5830 perf_output_read_one(handle, event, enabled, running);
5831 }
5832
5833 void perf_output_sample(struct perf_output_handle *handle,
5834 struct perf_event_header *header,
5835 struct perf_sample_data *data,
5836 struct perf_event *event)
5837 {
5838 u64 sample_type = data->type;
5839
5840 perf_output_put(handle, *header);
5841
5842 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5843 perf_output_put(handle, data->id);
5844
5845 if (sample_type & PERF_SAMPLE_IP)
5846 perf_output_put(handle, data->ip);
5847
5848 if (sample_type & PERF_SAMPLE_TID)
5849 perf_output_put(handle, data->tid_entry);
5850
5851 if (sample_type & PERF_SAMPLE_TIME)
5852 perf_output_put(handle, data->time);
5853
5854 if (sample_type & PERF_SAMPLE_ADDR)
5855 perf_output_put(handle, data->addr);
5856
5857 if (sample_type & PERF_SAMPLE_ID)
5858 perf_output_put(handle, data->id);
5859
5860 if (sample_type & PERF_SAMPLE_STREAM_ID)
5861 perf_output_put(handle, data->stream_id);
5862
5863 if (sample_type & PERF_SAMPLE_CPU)
5864 perf_output_put(handle, data->cpu_entry);
5865
5866 if (sample_type & PERF_SAMPLE_PERIOD)
5867 perf_output_put(handle, data->period);
5868
5869 if (sample_type & PERF_SAMPLE_READ)
5870 perf_output_read(handle, event);
5871
5872 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5873 if (data->callchain) {
5874 int size = 1;
5875
5876 if (data->callchain)
5877 size += data->callchain->nr;
5878
5879 size *= sizeof(u64);
5880
5881 __output_copy(handle, data->callchain, size);
5882 } else {
5883 u64 nr = 0;
5884 perf_output_put(handle, nr);
5885 }
5886 }
5887
5888 if (sample_type & PERF_SAMPLE_RAW) {
5889 struct perf_raw_record *raw = data->raw;
5890
5891 if (raw) {
5892 struct perf_raw_frag *frag = &raw->frag;
5893
5894 perf_output_put(handle, raw->size);
5895 do {
5896 if (frag->copy) {
5897 __output_custom(handle, frag->copy,
5898 frag->data, frag->size);
5899 } else {
5900 __output_copy(handle, frag->data,
5901 frag->size);
5902 }
5903 if (perf_raw_frag_last(frag))
5904 break;
5905 frag = frag->next;
5906 } while (1);
5907 if (frag->pad)
5908 __output_skip(handle, NULL, frag->pad);
5909 } else {
5910 struct {
5911 u32 size;
5912 u32 data;
5913 } raw = {
5914 .size = sizeof(u32),
5915 .data = 0,
5916 };
5917 perf_output_put(handle, raw);
5918 }
5919 }
5920
5921 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5922 if (data->br_stack) {
5923 size_t size;
5924
5925 size = data->br_stack->nr
5926 * sizeof(struct perf_branch_entry);
5927
5928 perf_output_put(handle, data->br_stack->nr);
5929 perf_output_copy(handle, data->br_stack->entries, size);
5930 } else {
5931 /*
5932 * we always store at least the value of nr
5933 */
5934 u64 nr = 0;
5935 perf_output_put(handle, nr);
5936 }
5937 }
5938
5939 if (sample_type & PERF_SAMPLE_REGS_USER) {
5940 u64 abi = data->regs_user.abi;
5941
5942 /*
5943 * If there are no regs to dump, notice it through
5944 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5945 */
5946 perf_output_put(handle, abi);
5947
5948 if (abi) {
5949 u64 mask = event->attr.sample_regs_user;
5950 perf_output_sample_regs(handle,
5951 data->regs_user.regs,
5952 mask);
5953 }
5954 }
5955
5956 if (sample_type & PERF_SAMPLE_STACK_USER) {
5957 perf_output_sample_ustack(handle,
5958 data->stack_user_size,
5959 data->regs_user.regs);
5960 }
5961
5962 if (sample_type & PERF_SAMPLE_WEIGHT)
5963 perf_output_put(handle, data->weight);
5964
5965 if (sample_type & PERF_SAMPLE_DATA_SRC)
5966 perf_output_put(handle, data->data_src.val);
5967
5968 if (sample_type & PERF_SAMPLE_TRANSACTION)
5969 perf_output_put(handle, data->txn);
5970
5971 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5972 u64 abi = data->regs_intr.abi;
5973 /*
5974 * If there are no regs to dump, notice it through
5975 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5976 */
5977 perf_output_put(handle, abi);
5978
5979 if (abi) {
5980 u64 mask = event->attr.sample_regs_intr;
5981
5982 perf_output_sample_regs(handle,
5983 data->regs_intr.regs,
5984 mask);
5985 }
5986 }
5987
5988 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5989 perf_output_put(handle, data->phys_addr);
5990
5991 if (!event->attr.watermark) {
5992 int wakeup_events = event->attr.wakeup_events;
5993
5994 if (wakeup_events) {
5995 struct ring_buffer *rb = handle->rb;
5996 int events = local_inc_return(&rb->events);
5997
5998 if (events >= wakeup_events) {
5999 local_sub(wakeup_events, &rb->events);
6000 local_inc(&rb->wakeup);
6001 }
6002 }
6003 }
6004 }
6005
6006 static u64 perf_virt_to_phys(u64 virt)
6007 {
6008 u64 phys_addr = 0;
6009 struct page *p = NULL;
6010
6011 if (!virt)
6012 return 0;
6013
6014 if (virt >= TASK_SIZE) {
6015 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6016 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6017 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6018 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6019 } else {
6020 /*
6021 * Walking the pages tables for user address.
6022 * Interrupts are disabled, so it prevents any tear down
6023 * of the page tables.
6024 * Try IRQ-safe __get_user_pages_fast first.
6025 * If failed, leave phys_addr as 0.
6026 */
6027 if ((current->mm != NULL) &&
6028 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6029 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6030
6031 if (p)
6032 put_page(p);
6033 }
6034
6035 return phys_addr;
6036 }
6037
6038 void perf_prepare_sample(struct perf_event_header *header,
6039 struct perf_sample_data *data,
6040 struct perf_event *event,
6041 struct pt_regs *regs)
6042 {
6043 u64 sample_type = event->attr.sample_type;
6044
6045 header->type = PERF_RECORD_SAMPLE;
6046 header->size = sizeof(*header) + event->header_size;
6047
6048 header->misc = 0;
6049 header->misc |= perf_misc_flags(regs);
6050
6051 __perf_event_header__init_id(header, data, event);
6052
6053 if (sample_type & PERF_SAMPLE_IP)
6054 data->ip = perf_instruction_pointer(regs);
6055
6056 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6057 int size = 1;
6058
6059 data->callchain = perf_callchain(event, regs);
6060
6061 if (data->callchain)
6062 size += data->callchain->nr;
6063
6064 header->size += size * sizeof(u64);
6065 }
6066
6067 if (sample_type & PERF_SAMPLE_RAW) {
6068 struct perf_raw_record *raw = data->raw;
6069 int size;
6070
6071 if (raw) {
6072 struct perf_raw_frag *frag = &raw->frag;
6073 u32 sum = 0;
6074
6075 do {
6076 sum += frag->size;
6077 if (perf_raw_frag_last(frag))
6078 break;
6079 frag = frag->next;
6080 } while (1);
6081
6082 size = round_up(sum + sizeof(u32), sizeof(u64));
6083 raw->size = size - sizeof(u32);
6084 frag->pad = raw->size - sum;
6085 } else {
6086 size = sizeof(u64);
6087 }
6088
6089 header->size += size;
6090 }
6091
6092 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6093 int size = sizeof(u64); /* nr */
6094 if (data->br_stack) {
6095 size += data->br_stack->nr
6096 * sizeof(struct perf_branch_entry);
6097 }
6098 header->size += size;
6099 }
6100
6101 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6102 perf_sample_regs_user(&data->regs_user, regs,
6103 &data->regs_user_copy);
6104
6105 if (sample_type & PERF_SAMPLE_REGS_USER) {
6106 /* regs dump ABI info */
6107 int size = sizeof(u64);
6108
6109 if (data->regs_user.regs) {
6110 u64 mask = event->attr.sample_regs_user;
6111 size += hweight64(mask) * sizeof(u64);
6112 }
6113
6114 header->size += size;
6115 }
6116
6117 if (sample_type & PERF_SAMPLE_STACK_USER) {
6118 /*
6119 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6120 * processed as the last one or have additional check added
6121 * in case new sample type is added, because we could eat
6122 * up the rest of the sample size.
6123 */
6124 u16 stack_size = event->attr.sample_stack_user;
6125 u16 size = sizeof(u64);
6126
6127 stack_size = perf_sample_ustack_size(stack_size, header->size,
6128 data->regs_user.regs);
6129
6130 /*
6131 * If there is something to dump, add space for the dump
6132 * itself and for the field that tells the dynamic size,
6133 * which is how many have been actually dumped.
6134 */
6135 if (stack_size)
6136 size += sizeof(u64) + stack_size;
6137
6138 data->stack_user_size = stack_size;
6139 header->size += size;
6140 }
6141
6142 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6143 /* regs dump ABI info */
6144 int size = sizeof(u64);
6145
6146 perf_sample_regs_intr(&data->regs_intr, regs);
6147
6148 if (data->regs_intr.regs) {
6149 u64 mask = event->attr.sample_regs_intr;
6150
6151 size += hweight64(mask) * sizeof(u64);
6152 }
6153
6154 header->size += size;
6155 }
6156
6157 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6158 data->phys_addr = perf_virt_to_phys(data->addr);
6159 }
6160
6161 static void __always_inline
6162 __perf_event_output(struct perf_event *event,
6163 struct perf_sample_data *data,
6164 struct pt_regs *regs,
6165 int (*output_begin)(struct perf_output_handle *,
6166 struct perf_event *,
6167 unsigned int))
6168 {
6169 struct perf_output_handle handle;
6170 struct perf_event_header header;
6171
6172 /* protect the callchain buffers */
6173 rcu_read_lock();
6174
6175 perf_prepare_sample(&header, data, event, regs);
6176
6177 if (output_begin(&handle, event, header.size))
6178 goto exit;
6179
6180 perf_output_sample(&handle, &header, data, event);
6181
6182 perf_output_end(&handle);
6183
6184 exit:
6185 rcu_read_unlock();
6186 }
6187
6188 void
6189 perf_event_output_forward(struct perf_event *event,
6190 struct perf_sample_data *data,
6191 struct pt_regs *regs)
6192 {
6193 __perf_event_output(event, data, regs, perf_output_begin_forward);
6194 }
6195
6196 void
6197 perf_event_output_backward(struct perf_event *event,
6198 struct perf_sample_data *data,
6199 struct pt_regs *regs)
6200 {
6201 __perf_event_output(event, data, regs, perf_output_begin_backward);
6202 }
6203
6204 void
6205 perf_event_output(struct perf_event *event,
6206 struct perf_sample_data *data,
6207 struct pt_regs *regs)
6208 {
6209 __perf_event_output(event, data, regs, perf_output_begin);
6210 }
6211
6212 /*
6213 * read event_id
6214 */
6215
6216 struct perf_read_event {
6217 struct perf_event_header header;
6218
6219 u32 pid;
6220 u32 tid;
6221 };
6222
6223 static void
6224 perf_event_read_event(struct perf_event *event,
6225 struct task_struct *task)
6226 {
6227 struct perf_output_handle handle;
6228 struct perf_sample_data sample;
6229 struct perf_read_event read_event = {
6230 .header = {
6231 .type = PERF_RECORD_READ,
6232 .misc = 0,
6233 .size = sizeof(read_event) + event->read_size,
6234 },
6235 .pid = perf_event_pid(event, task),
6236 .tid = perf_event_tid(event, task),
6237 };
6238 int ret;
6239
6240 perf_event_header__init_id(&read_event.header, &sample, event);
6241 ret = perf_output_begin(&handle, event, read_event.header.size);
6242 if (ret)
6243 return;
6244
6245 perf_output_put(&handle, read_event);
6246 perf_output_read(&handle, event);
6247 perf_event__output_id_sample(event, &handle, &sample);
6248
6249 perf_output_end(&handle);
6250 }
6251
6252 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6253
6254 static void
6255 perf_iterate_ctx(struct perf_event_context *ctx,
6256 perf_iterate_f output,
6257 void *data, bool all)
6258 {
6259 struct perf_event *event;
6260
6261 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6262 if (!all) {
6263 if (event->state < PERF_EVENT_STATE_INACTIVE)
6264 continue;
6265 if (!event_filter_match(event))
6266 continue;
6267 }
6268
6269 output(event, data);
6270 }
6271 }
6272
6273 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6274 {
6275 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6276 struct perf_event *event;
6277
6278 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6279 /*
6280 * Skip events that are not fully formed yet; ensure that
6281 * if we observe event->ctx, both event and ctx will be
6282 * complete enough. See perf_install_in_context().
6283 */
6284 if (!smp_load_acquire(&event->ctx))
6285 continue;
6286
6287 if (event->state < PERF_EVENT_STATE_INACTIVE)
6288 continue;
6289 if (!event_filter_match(event))
6290 continue;
6291 output(event, data);
6292 }
6293 }
6294
6295 /*
6296 * Iterate all events that need to receive side-band events.
6297 *
6298 * For new callers; ensure that account_pmu_sb_event() includes
6299 * your event, otherwise it might not get delivered.
6300 */
6301 static void
6302 perf_iterate_sb(perf_iterate_f output, void *data,
6303 struct perf_event_context *task_ctx)
6304 {
6305 struct perf_event_context *ctx;
6306 int ctxn;
6307
6308 rcu_read_lock();
6309 preempt_disable();
6310
6311 /*
6312 * If we have task_ctx != NULL we only notify the task context itself.
6313 * The task_ctx is set only for EXIT events before releasing task
6314 * context.
6315 */
6316 if (task_ctx) {
6317 perf_iterate_ctx(task_ctx, output, data, false);
6318 goto done;
6319 }
6320
6321 perf_iterate_sb_cpu(output, data);
6322
6323 for_each_task_context_nr(ctxn) {
6324 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6325 if (ctx)
6326 perf_iterate_ctx(ctx, output, data, false);
6327 }
6328 done:
6329 preempt_enable();
6330 rcu_read_unlock();
6331 }
6332
6333 /*
6334 * Clear all file-based filters at exec, they'll have to be
6335 * re-instated when/if these objects are mmapped again.
6336 */
6337 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6338 {
6339 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6340 struct perf_addr_filter *filter;
6341 unsigned int restart = 0, count = 0;
6342 unsigned long flags;
6343
6344 if (!has_addr_filter(event))
6345 return;
6346
6347 raw_spin_lock_irqsave(&ifh->lock, flags);
6348 list_for_each_entry(filter, &ifh->list, entry) {
6349 if (filter->inode) {
6350 event->addr_filters_offs[count] = 0;
6351 restart++;
6352 }
6353
6354 count++;
6355 }
6356
6357 if (restart)
6358 event->addr_filters_gen++;
6359 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6360
6361 if (restart)
6362 perf_event_stop(event, 1);
6363 }
6364
6365 void perf_event_exec(void)
6366 {
6367 struct perf_event_context *ctx;
6368 int ctxn;
6369
6370 rcu_read_lock();
6371 for_each_task_context_nr(ctxn) {
6372 ctx = current->perf_event_ctxp[ctxn];
6373 if (!ctx)
6374 continue;
6375
6376 perf_event_enable_on_exec(ctxn);
6377
6378 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6379 true);
6380 }
6381 rcu_read_unlock();
6382 }
6383
6384 struct remote_output {
6385 struct ring_buffer *rb;
6386 int err;
6387 };
6388
6389 static void __perf_event_output_stop(struct perf_event *event, void *data)
6390 {
6391 struct perf_event *parent = event->parent;
6392 struct remote_output *ro = data;
6393 struct ring_buffer *rb = ro->rb;
6394 struct stop_event_data sd = {
6395 .event = event,
6396 };
6397
6398 if (!has_aux(event))
6399 return;
6400
6401 if (!parent)
6402 parent = event;
6403
6404 /*
6405 * In case of inheritance, it will be the parent that links to the
6406 * ring-buffer, but it will be the child that's actually using it.
6407 *
6408 * We are using event::rb to determine if the event should be stopped,
6409 * however this may race with ring_buffer_attach() (through set_output),
6410 * which will make us skip the event that actually needs to be stopped.
6411 * So ring_buffer_attach() has to stop an aux event before re-assigning
6412 * its rb pointer.
6413 */
6414 if (rcu_dereference(parent->rb) == rb)
6415 ro->err = __perf_event_stop(&sd);
6416 }
6417
6418 static int __perf_pmu_output_stop(void *info)
6419 {
6420 struct perf_event *event = info;
6421 struct pmu *pmu = event->pmu;
6422 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6423 struct remote_output ro = {
6424 .rb = event->rb,
6425 };
6426
6427 rcu_read_lock();
6428 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6429 if (cpuctx->task_ctx)
6430 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6431 &ro, false);
6432 rcu_read_unlock();
6433
6434 return ro.err;
6435 }
6436
6437 static void perf_pmu_output_stop(struct perf_event *event)
6438 {
6439 struct perf_event *iter;
6440 int err, cpu;
6441
6442 restart:
6443 rcu_read_lock();
6444 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6445 /*
6446 * For per-CPU events, we need to make sure that neither they
6447 * nor their children are running; for cpu==-1 events it's
6448 * sufficient to stop the event itself if it's active, since
6449 * it can't have children.
6450 */
6451 cpu = iter->cpu;
6452 if (cpu == -1)
6453 cpu = READ_ONCE(iter->oncpu);
6454
6455 if (cpu == -1)
6456 continue;
6457
6458 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6459 if (err == -EAGAIN) {
6460 rcu_read_unlock();
6461 goto restart;
6462 }
6463 }
6464 rcu_read_unlock();
6465 }
6466
6467 /*
6468 * task tracking -- fork/exit
6469 *
6470 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6471 */
6472
6473 struct perf_task_event {
6474 struct task_struct *task;
6475 struct perf_event_context *task_ctx;
6476
6477 struct {
6478 struct perf_event_header header;
6479
6480 u32 pid;
6481 u32 ppid;
6482 u32 tid;
6483 u32 ptid;
6484 u64 time;
6485 } event_id;
6486 };
6487
6488 static int perf_event_task_match(struct perf_event *event)
6489 {
6490 return event->attr.comm || event->attr.mmap ||
6491 event->attr.mmap2 || event->attr.mmap_data ||
6492 event->attr.task;
6493 }
6494
6495 static void perf_event_task_output(struct perf_event *event,
6496 void *data)
6497 {
6498 struct perf_task_event *task_event = data;
6499 struct perf_output_handle handle;
6500 struct perf_sample_data sample;
6501 struct task_struct *task = task_event->task;
6502 int ret, size = task_event->event_id.header.size;
6503
6504 if (!perf_event_task_match(event))
6505 return;
6506
6507 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6508
6509 ret = perf_output_begin(&handle, event,
6510 task_event->event_id.header.size);
6511 if (ret)
6512 goto out;
6513
6514 task_event->event_id.pid = perf_event_pid(event, task);
6515 task_event->event_id.ppid = perf_event_pid(event, current);
6516
6517 task_event->event_id.tid = perf_event_tid(event, task);
6518 task_event->event_id.ptid = perf_event_tid(event, current);
6519
6520 task_event->event_id.time = perf_event_clock(event);
6521
6522 perf_output_put(&handle, task_event->event_id);
6523
6524 perf_event__output_id_sample(event, &handle, &sample);
6525
6526 perf_output_end(&handle);
6527 out:
6528 task_event->event_id.header.size = size;
6529 }
6530
6531 static void perf_event_task(struct task_struct *task,
6532 struct perf_event_context *task_ctx,
6533 int new)
6534 {
6535 struct perf_task_event task_event;
6536
6537 if (!atomic_read(&nr_comm_events) &&
6538 !atomic_read(&nr_mmap_events) &&
6539 !atomic_read(&nr_task_events))
6540 return;
6541
6542 task_event = (struct perf_task_event){
6543 .task = task,
6544 .task_ctx = task_ctx,
6545 .event_id = {
6546 .header = {
6547 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6548 .misc = 0,
6549 .size = sizeof(task_event.event_id),
6550 },
6551 /* .pid */
6552 /* .ppid */
6553 /* .tid */
6554 /* .ptid */
6555 /* .time */
6556 },
6557 };
6558
6559 perf_iterate_sb(perf_event_task_output,
6560 &task_event,
6561 task_ctx);
6562 }
6563
6564 void perf_event_fork(struct task_struct *task)
6565 {
6566 perf_event_task(task, NULL, 1);
6567 perf_event_namespaces(task);
6568 }
6569
6570 /*
6571 * comm tracking
6572 */
6573
6574 struct perf_comm_event {
6575 struct task_struct *task;
6576 char *comm;
6577 int comm_size;
6578
6579 struct {
6580 struct perf_event_header header;
6581
6582 u32 pid;
6583 u32 tid;
6584 } event_id;
6585 };
6586
6587 static int perf_event_comm_match(struct perf_event *event)
6588 {
6589 return event->attr.comm;
6590 }
6591
6592 static void perf_event_comm_output(struct perf_event *event,
6593 void *data)
6594 {
6595 struct perf_comm_event *comm_event = data;
6596 struct perf_output_handle handle;
6597 struct perf_sample_data sample;
6598 int size = comm_event->event_id.header.size;
6599 int ret;
6600
6601 if (!perf_event_comm_match(event))
6602 return;
6603
6604 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6605 ret = perf_output_begin(&handle, event,
6606 comm_event->event_id.header.size);
6607
6608 if (ret)
6609 goto out;
6610
6611 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6612 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6613
6614 perf_output_put(&handle, comm_event->event_id);
6615 __output_copy(&handle, comm_event->comm,
6616 comm_event->comm_size);
6617
6618 perf_event__output_id_sample(event, &handle, &sample);
6619
6620 perf_output_end(&handle);
6621 out:
6622 comm_event->event_id.header.size = size;
6623 }
6624
6625 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6626 {
6627 char comm[TASK_COMM_LEN];
6628 unsigned int size;
6629
6630 memset(comm, 0, sizeof(comm));
6631 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6632 size = ALIGN(strlen(comm)+1, sizeof(u64));
6633
6634 comm_event->comm = comm;
6635 comm_event->comm_size = size;
6636
6637 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6638
6639 perf_iterate_sb(perf_event_comm_output,
6640 comm_event,
6641 NULL);
6642 }
6643
6644 void perf_event_comm(struct task_struct *task, bool exec)
6645 {
6646 struct perf_comm_event comm_event;
6647
6648 if (!atomic_read(&nr_comm_events))
6649 return;
6650
6651 comm_event = (struct perf_comm_event){
6652 .task = task,
6653 /* .comm */
6654 /* .comm_size */
6655 .event_id = {
6656 .header = {
6657 .type = PERF_RECORD_COMM,
6658 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6659 /* .size */
6660 },
6661 /* .pid */
6662 /* .tid */
6663 },
6664 };
6665
6666 perf_event_comm_event(&comm_event);
6667 }
6668
6669 /*
6670 * namespaces tracking
6671 */
6672
6673 struct perf_namespaces_event {
6674 struct task_struct *task;
6675
6676 struct {
6677 struct perf_event_header header;
6678
6679 u32 pid;
6680 u32 tid;
6681 u64 nr_namespaces;
6682 struct perf_ns_link_info link_info[NR_NAMESPACES];
6683 } event_id;
6684 };
6685
6686 static int perf_event_namespaces_match(struct perf_event *event)
6687 {
6688 return event->attr.namespaces;
6689 }
6690
6691 static void perf_event_namespaces_output(struct perf_event *event,
6692 void *data)
6693 {
6694 struct perf_namespaces_event *namespaces_event = data;
6695 struct perf_output_handle handle;
6696 struct perf_sample_data sample;
6697 u16 header_size = namespaces_event->event_id.header.size;
6698 int ret;
6699
6700 if (!perf_event_namespaces_match(event))
6701 return;
6702
6703 perf_event_header__init_id(&namespaces_event->event_id.header,
6704 &sample, event);
6705 ret = perf_output_begin(&handle, event,
6706 namespaces_event->event_id.header.size);
6707 if (ret)
6708 goto out;
6709
6710 namespaces_event->event_id.pid = perf_event_pid(event,
6711 namespaces_event->task);
6712 namespaces_event->event_id.tid = perf_event_tid(event,
6713 namespaces_event->task);
6714
6715 perf_output_put(&handle, namespaces_event->event_id);
6716
6717 perf_event__output_id_sample(event, &handle, &sample);
6718
6719 perf_output_end(&handle);
6720 out:
6721 namespaces_event->event_id.header.size = header_size;
6722 }
6723
6724 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6725 struct task_struct *task,
6726 const struct proc_ns_operations *ns_ops)
6727 {
6728 struct path ns_path;
6729 struct inode *ns_inode;
6730 void *error;
6731
6732 error = ns_get_path(&ns_path, task, ns_ops);
6733 if (!error) {
6734 ns_inode = ns_path.dentry->d_inode;
6735 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6736 ns_link_info->ino = ns_inode->i_ino;
6737 path_put(&ns_path);
6738 }
6739 }
6740
6741 void perf_event_namespaces(struct task_struct *task)
6742 {
6743 struct perf_namespaces_event namespaces_event;
6744 struct perf_ns_link_info *ns_link_info;
6745
6746 if (!atomic_read(&nr_namespaces_events))
6747 return;
6748
6749 namespaces_event = (struct perf_namespaces_event){
6750 .task = task,
6751 .event_id = {
6752 .header = {
6753 .type = PERF_RECORD_NAMESPACES,
6754 .misc = 0,
6755 .size = sizeof(namespaces_event.event_id),
6756 },
6757 /* .pid */
6758 /* .tid */
6759 .nr_namespaces = NR_NAMESPACES,
6760 /* .link_info[NR_NAMESPACES] */
6761 },
6762 };
6763
6764 ns_link_info = namespaces_event.event_id.link_info;
6765
6766 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6767 task, &mntns_operations);
6768
6769 #ifdef CONFIG_USER_NS
6770 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6771 task, &userns_operations);
6772 #endif
6773 #ifdef CONFIG_NET_NS
6774 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6775 task, &netns_operations);
6776 #endif
6777 #ifdef CONFIG_UTS_NS
6778 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6779 task, &utsns_operations);
6780 #endif
6781 #ifdef CONFIG_IPC_NS
6782 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6783 task, &ipcns_operations);
6784 #endif
6785 #ifdef CONFIG_PID_NS
6786 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6787 task, &pidns_operations);
6788 #endif
6789 #ifdef CONFIG_CGROUPS
6790 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6791 task, &cgroupns_operations);
6792 #endif
6793
6794 perf_iterate_sb(perf_event_namespaces_output,
6795 &namespaces_event,
6796 NULL);
6797 }
6798
6799 /*
6800 * mmap tracking
6801 */
6802
6803 struct perf_mmap_event {
6804 struct vm_area_struct *vma;
6805
6806 const char *file_name;
6807 int file_size;
6808 int maj, min;
6809 u64 ino;
6810 u64 ino_generation;
6811 u32 prot, flags;
6812
6813 struct {
6814 struct perf_event_header header;
6815
6816 u32 pid;
6817 u32 tid;
6818 u64 start;
6819 u64 len;
6820 u64 pgoff;
6821 } event_id;
6822 };
6823
6824 static int perf_event_mmap_match(struct perf_event *event,
6825 void *data)
6826 {
6827 struct perf_mmap_event *mmap_event = data;
6828 struct vm_area_struct *vma = mmap_event->vma;
6829 int executable = vma->vm_flags & VM_EXEC;
6830
6831 return (!executable && event->attr.mmap_data) ||
6832 (executable && (event->attr.mmap || event->attr.mmap2));
6833 }
6834
6835 static void perf_event_mmap_output(struct perf_event *event,
6836 void *data)
6837 {
6838 struct perf_mmap_event *mmap_event = data;
6839 struct perf_output_handle handle;
6840 struct perf_sample_data sample;
6841 int size = mmap_event->event_id.header.size;
6842 int ret;
6843
6844 if (!perf_event_mmap_match(event, data))
6845 return;
6846
6847 if (event->attr.mmap2) {
6848 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6849 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6850 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6851 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6852 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6853 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6854 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6855 }
6856
6857 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6858 ret = perf_output_begin(&handle, event,
6859 mmap_event->event_id.header.size);
6860 if (ret)
6861 goto out;
6862
6863 mmap_event->event_id.pid = perf_event_pid(event, current);
6864 mmap_event->event_id.tid = perf_event_tid(event, current);
6865
6866 perf_output_put(&handle, mmap_event->event_id);
6867
6868 if (event->attr.mmap2) {
6869 perf_output_put(&handle, mmap_event->maj);
6870 perf_output_put(&handle, mmap_event->min);
6871 perf_output_put(&handle, mmap_event->ino);
6872 perf_output_put(&handle, mmap_event->ino_generation);
6873 perf_output_put(&handle, mmap_event->prot);
6874 perf_output_put(&handle, mmap_event->flags);
6875 }
6876
6877 __output_copy(&handle, mmap_event->file_name,
6878 mmap_event->file_size);
6879
6880 perf_event__output_id_sample(event, &handle, &sample);
6881
6882 perf_output_end(&handle);
6883 out:
6884 mmap_event->event_id.header.size = size;
6885 }
6886
6887 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6888 {
6889 struct vm_area_struct *vma = mmap_event->vma;
6890 struct file *file = vma->vm_file;
6891 int maj = 0, min = 0;
6892 u64 ino = 0, gen = 0;
6893 u32 prot = 0, flags = 0;
6894 unsigned int size;
6895 char tmp[16];
6896 char *buf = NULL;
6897 char *name;
6898
6899 if (vma->vm_flags & VM_READ)
6900 prot |= PROT_READ;
6901 if (vma->vm_flags & VM_WRITE)
6902 prot |= PROT_WRITE;
6903 if (vma->vm_flags & VM_EXEC)
6904 prot |= PROT_EXEC;
6905
6906 if (vma->vm_flags & VM_MAYSHARE)
6907 flags = MAP_SHARED;
6908 else
6909 flags = MAP_PRIVATE;
6910
6911 if (vma->vm_flags & VM_DENYWRITE)
6912 flags |= MAP_DENYWRITE;
6913 if (vma->vm_flags & VM_MAYEXEC)
6914 flags |= MAP_EXECUTABLE;
6915 if (vma->vm_flags & VM_LOCKED)
6916 flags |= MAP_LOCKED;
6917 if (vma->vm_flags & VM_HUGETLB)
6918 flags |= MAP_HUGETLB;
6919
6920 if (file) {
6921 struct inode *inode;
6922 dev_t dev;
6923
6924 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6925 if (!buf) {
6926 name = "//enomem";
6927 goto cpy_name;
6928 }
6929 /*
6930 * d_path() works from the end of the rb backwards, so we
6931 * need to add enough zero bytes after the string to handle
6932 * the 64bit alignment we do later.
6933 */
6934 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6935 if (IS_ERR(name)) {
6936 name = "//toolong";
6937 goto cpy_name;
6938 }
6939 inode = file_inode(vma->vm_file);
6940 dev = inode->i_sb->s_dev;
6941 ino = inode->i_ino;
6942 gen = inode->i_generation;
6943 maj = MAJOR(dev);
6944 min = MINOR(dev);
6945
6946 goto got_name;
6947 } else {
6948 if (vma->vm_ops && vma->vm_ops->name) {
6949 name = (char *) vma->vm_ops->name(vma);
6950 if (name)
6951 goto cpy_name;
6952 }
6953
6954 name = (char *)arch_vma_name(vma);
6955 if (name)
6956 goto cpy_name;
6957
6958 if (vma->vm_start <= vma->vm_mm->start_brk &&
6959 vma->vm_end >= vma->vm_mm->brk) {
6960 name = "[heap]";
6961 goto cpy_name;
6962 }
6963 if (vma->vm_start <= vma->vm_mm->start_stack &&
6964 vma->vm_end >= vma->vm_mm->start_stack) {
6965 name = "[stack]";
6966 goto cpy_name;
6967 }
6968
6969 name = "//anon";
6970 goto cpy_name;
6971 }
6972
6973 cpy_name:
6974 strlcpy(tmp, name, sizeof(tmp));
6975 name = tmp;
6976 got_name:
6977 /*
6978 * Since our buffer works in 8 byte units we need to align our string
6979 * size to a multiple of 8. However, we must guarantee the tail end is
6980 * zero'd out to avoid leaking random bits to userspace.
6981 */
6982 size = strlen(name)+1;
6983 while (!IS_ALIGNED(size, sizeof(u64)))
6984 name[size++] = '\0';
6985
6986 mmap_event->file_name = name;
6987 mmap_event->file_size = size;
6988 mmap_event->maj = maj;
6989 mmap_event->min = min;
6990 mmap_event->ino = ino;
6991 mmap_event->ino_generation = gen;
6992 mmap_event->prot = prot;
6993 mmap_event->flags = flags;
6994
6995 if (!(vma->vm_flags & VM_EXEC))
6996 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6997
6998 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6999
7000 perf_iterate_sb(perf_event_mmap_output,
7001 mmap_event,
7002 NULL);
7003
7004 kfree(buf);
7005 }
7006
7007 /*
7008 * Check whether inode and address range match filter criteria.
7009 */
7010 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7011 struct file *file, unsigned long offset,
7012 unsigned long size)
7013 {
7014 if (filter->inode != file_inode(file))
7015 return false;
7016
7017 if (filter->offset > offset + size)
7018 return false;
7019
7020 if (filter->offset + filter->size < offset)
7021 return false;
7022
7023 return true;
7024 }
7025
7026 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7027 {
7028 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7029 struct vm_area_struct *vma = data;
7030 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7031 struct file *file = vma->vm_file;
7032 struct perf_addr_filter *filter;
7033 unsigned int restart = 0, count = 0;
7034
7035 if (!has_addr_filter(event))
7036 return;
7037
7038 if (!file)
7039 return;
7040
7041 raw_spin_lock_irqsave(&ifh->lock, flags);
7042 list_for_each_entry(filter, &ifh->list, entry) {
7043 if (perf_addr_filter_match(filter, file, off,
7044 vma->vm_end - vma->vm_start)) {
7045 event->addr_filters_offs[count] = vma->vm_start;
7046 restart++;
7047 }
7048
7049 count++;
7050 }
7051
7052 if (restart)
7053 event->addr_filters_gen++;
7054 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7055
7056 if (restart)
7057 perf_event_stop(event, 1);
7058 }
7059
7060 /*
7061 * Adjust all task's events' filters to the new vma
7062 */
7063 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7064 {
7065 struct perf_event_context *ctx;
7066 int ctxn;
7067
7068 /*
7069 * Data tracing isn't supported yet and as such there is no need
7070 * to keep track of anything that isn't related to executable code:
7071 */
7072 if (!(vma->vm_flags & VM_EXEC))
7073 return;
7074
7075 rcu_read_lock();
7076 for_each_task_context_nr(ctxn) {
7077 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7078 if (!ctx)
7079 continue;
7080
7081 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7082 }
7083 rcu_read_unlock();
7084 }
7085
7086 void perf_event_mmap(struct vm_area_struct *vma)
7087 {
7088 struct perf_mmap_event mmap_event;
7089
7090 if (!atomic_read(&nr_mmap_events))
7091 return;
7092
7093 mmap_event = (struct perf_mmap_event){
7094 .vma = vma,
7095 /* .file_name */
7096 /* .file_size */
7097 .event_id = {
7098 .header = {
7099 .type = PERF_RECORD_MMAP,
7100 .misc = PERF_RECORD_MISC_USER,
7101 /* .size */
7102 },
7103 /* .pid */
7104 /* .tid */
7105 .start = vma->vm_start,
7106 .len = vma->vm_end - vma->vm_start,
7107 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7108 },
7109 /* .maj (attr_mmap2 only) */
7110 /* .min (attr_mmap2 only) */
7111 /* .ino (attr_mmap2 only) */
7112 /* .ino_generation (attr_mmap2 only) */
7113 /* .prot (attr_mmap2 only) */
7114 /* .flags (attr_mmap2 only) */
7115 };
7116
7117 perf_addr_filters_adjust(vma);
7118 perf_event_mmap_event(&mmap_event);
7119 }
7120
7121 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7122 unsigned long size, u64 flags)
7123 {
7124 struct perf_output_handle handle;
7125 struct perf_sample_data sample;
7126 struct perf_aux_event {
7127 struct perf_event_header header;
7128 u64 offset;
7129 u64 size;
7130 u64 flags;
7131 } rec = {
7132 .header = {
7133 .type = PERF_RECORD_AUX,
7134 .misc = 0,
7135 .size = sizeof(rec),
7136 },
7137 .offset = head,
7138 .size = size,
7139 .flags = flags,
7140 };
7141 int ret;
7142
7143 perf_event_header__init_id(&rec.header, &sample, event);
7144 ret = perf_output_begin(&handle, event, rec.header.size);
7145
7146 if (ret)
7147 return;
7148
7149 perf_output_put(&handle, rec);
7150 perf_event__output_id_sample(event, &handle, &sample);
7151
7152 perf_output_end(&handle);
7153 }
7154
7155 /*
7156 * Lost/dropped samples logging
7157 */
7158 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7159 {
7160 struct perf_output_handle handle;
7161 struct perf_sample_data sample;
7162 int ret;
7163
7164 struct {
7165 struct perf_event_header header;
7166 u64 lost;
7167 } lost_samples_event = {
7168 .header = {
7169 .type = PERF_RECORD_LOST_SAMPLES,
7170 .misc = 0,
7171 .size = sizeof(lost_samples_event),
7172 },
7173 .lost = lost,
7174 };
7175
7176 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7177
7178 ret = perf_output_begin(&handle, event,
7179 lost_samples_event.header.size);
7180 if (ret)
7181 return;
7182
7183 perf_output_put(&handle, lost_samples_event);
7184 perf_event__output_id_sample(event, &handle, &sample);
7185 perf_output_end(&handle);
7186 }
7187
7188 /*
7189 * context_switch tracking
7190 */
7191
7192 struct perf_switch_event {
7193 struct task_struct *task;
7194 struct task_struct *next_prev;
7195
7196 struct {
7197 struct perf_event_header header;
7198 u32 next_prev_pid;
7199 u32 next_prev_tid;
7200 } event_id;
7201 };
7202
7203 static int perf_event_switch_match(struct perf_event *event)
7204 {
7205 return event->attr.context_switch;
7206 }
7207
7208 static void perf_event_switch_output(struct perf_event *event, void *data)
7209 {
7210 struct perf_switch_event *se = data;
7211 struct perf_output_handle handle;
7212 struct perf_sample_data sample;
7213 int ret;
7214
7215 if (!perf_event_switch_match(event))
7216 return;
7217
7218 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7219 if (event->ctx->task) {
7220 se->event_id.header.type = PERF_RECORD_SWITCH;
7221 se->event_id.header.size = sizeof(se->event_id.header);
7222 } else {
7223 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7224 se->event_id.header.size = sizeof(se->event_id);
7225 se->event_id.next_prev_pid =
7226 perf_event_pid(event, se->next_prev);
7227 se->event_id.next_prev_tid =
7228 perf_event_tid(event, se->next_prev);
7229 }
7230
7231 perf_event_header__init_id(&se->event_id.header, &sample, event);
7232
7233 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7234 if (ret)
7235 return;
7236
7237 if (event->ctx->task)
7238 perf_output_put(&handle, se->event_id.header);
7239 else
7240 perf_output_put(&handle, se->event_id);
7241
7242 perf_event__output_id_sample(event, &handle, &sample);
7243
7244 perf_output_end(&handle);
7245 }
7246
7247 static void perf_event_switch(struct task_struct *task,
7248 struct task_struct *next_prev, bool sched_in)
7249 {
7250 struct perf_switch_event switch_event;
7251
7252 /* N.B. caller checks nr_switch_events != 0 */
7253
7254 switch_event = (struct perf_switch_event){
7255 .task = task,
7256 .next_prev = next_prev,
7257 .event_id = {
7258 .header = {
7259 /* .type */
7260 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7261 /* .size */
7262 },
7263 /* .next_prev_pid */
7264 /* .next_prev_tid */
7265 },
7266 };
7267
7268 perf_iterate_sb(perf_event_switch_output,
7269 &switch_event,
7270 NULL);
7271 }
7272
7273 /*
7274 * IRQ throttle logging
7275 */
7276
7277 static void perf_log_throttle(struct perf_event *event, int enable)
7278 {
7279 struct perf_output_handle handle;
7280 struct perf_sample_data sample;
7281 int ret;
7282
7283 struct {
7284 struct perf_event_header header;
7285 u64 time;
7286 u64 id;
7287 u64 stream_id;
7288 } throttle_event = {
7289 .header = {
7290 .type = PERF_RECORD_THROTTLE,
7291 .misc = 0,
7292 .size = sizeof(throttle_event),
7293 },
7294 .time = perf_event_clock(event),
7295 .id = primary_event_id(event),
7296 .stream_id = event->id,
7297 };
7298
7299 if (enable)
7300 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7301
7302 perf_event_header__init_id(&throttle_event.header, &sample, event);
7303
7304 ret = perf_output_begin(&handle, event,
7305 throttle_event.header.size);
7306 if (ret)
7307 return;
7308
7309 perf_output_put(&handle, throttle_event);
7310 perf_event__output_id_sample(event, &handle, &sample);
7311 perf_output_end(&handle);
7312 }
7313
7314 void perf_event_itrace_started(struct perf_event *event)
7315 {
7316 event->attach_state |= PERF_ATTACH_ITRACE;
7317 }
7318
7319 static void perf_log_itrace_start(struct perf_event *event)
7320 {
7321 struct perf_output_handle handle;
7322 struct perf_sample_data sample;
7323 struct perf_aux_event {
7324 struct perf_event_header header;
7325 u32 pid;
7326 u32 tid;
7327 } rec;
7328 int ret;
7329
7330 if (event->parent)
7331 event = event->parent;
7332
7333 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7334 event->attach_state & PERF_ATTACH_ITRACE)
7335 return;
7336
7337 rec.header.type = PERF_RECORD_ITRACE_START;
7338 rec.header.misc = 0;
7339 rec.header.size = sizeof(rec);
7340 rec.pid = perf_event_pid(event, current);
7341 rec.tid = perf_event_tid(event, current);
7342
7343 perf_event_header__init_id(&rec.header, &sample, event);
7344 ret = perf_output_begin(&handle, event, rec.header.size);
7345
7346 if (ret)
7347 return;
7348
7349 perf_output_put(&handle, rec);
7350 perf_event__output_id_sample(event, &handle, &sample);
7351
7352 perf_output_end(&handle);
7353 }
7354
7355 static int
7356 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7357 {
7358 struct hw_perf_event *hwc = &event->hw;
7359 int ret = 0;
7360 u64 seq;
7361
7362 seq = __this_cpu_read(perf_throttled_seq);
7363 if (seq != hwc->interrupts_seq) {
7364 hwc->interrupts_seq = seq;
7365 hwc->interrupts = 1;
7366 } else {
7367 hwc->interrupts++;
7368 if (unlikely(throttle
7369 && hwc->interrupts >= max_samples_per_tick)) {
7370 __this_cpu_inc(perf_throttled_count);
7371 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7372 hwc->interrupts = MAX_INTERRUPTS;
7373 perf_log_throttle(event, 0);
7374 ret = 1;
7375 }
7376 }
7377
7378 if (event->attr.freq) {
7379 u64 now = perf_clock();
7380 s64 delta = now - hwc->freq_time_stamp;
7381
7382 hwc->freq_time_stamp = now;
7383
7384 if (delta > 0 && delta < 2*TICK_NSEC)
7385 perf_adjust_period(event, delta, hwc->last_period, true);
7386 }
7387
7388 return ret;
7389 }
7390
7391 int perf_event_account_interrupt(struct perf_event *event)
7392 {
7393 return __perf_event_account_interrupt(event, 1);
7394 }
7395
7396 /*
7397 * Generic event overflow handling, sampling.
7398 */
7399
7400 static int __perf_event_overflow(struct perf_event *event,
7401 int throttle, struct perf_sample_data *data,
7402 struct pt_regs *regs)
7403 {
7404 int events = atomic_read(&event->event_limit);
7405 int ret = 0;
7406
7407 /*
7408 * Non-sampling counters might still use the PMI to fold short
7409 * hardware counters, ignore those.
7410 */
7411 if (unlikely(!is_sampling_event(event)))
7412 return 0;
7413
7414 ret = __perf_event_account_interrupt(event, throttle);
7415
7416 /*
7417 * XXX event_limit might not quite work as expected on inherited
7418 * events
7419 */
7420
7421 event->pending_kill = POLL_IN;
7422 if (events && atomic_dec_and_test(&event->event_limit)) {
7423 ret = 1;
7424 event->pending_kill = POLL_HUP;
7425
7426 perf_event_disable_inatomic(event);
7427 }
7428
7429 READ_ONCE(event->overflow_handler)(event, data, regs);
7430
7431 if (*perf_event_fasync(event) && event->pending_kill) {
7432 event->pending_wakeup = 1;
7433 irq_work_queue(&event->pending);
7434 }
7435
7436 return ret;
7437 }
7438
7439 int perf_event_overflow(struct perf_event *event,
7440 struct perf_sample_data *data,
7441 struct pt_regs *regs)
7442 {
7443 return __perf_event_overflow(event, 1, data, regs);
7444 }
7445
7446 /*
7447 * Generic software event infrastructure
7448 */
7449
7450 struct swevent_htable {
7451 struct swevent_hlist *swevent_hlist;
7452 struct mutex hlist_mutex;
7453 int hlist_refcount;
7454
7455 /* Recursion avoidance in each contexts */
7456 int recursion[PERF_NR_CONTEXTS];
7457 };
7458
7459 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7460
7461 /*
7462 * We directly increment event->count and keep a second value in
7463 * event->hw.period_left to count intervals. This period event
7464 * is kept in the range [-sample_period, 0] so that we can use the
7465 * sign as trigger.
7466 */
7467
7468 u64 perf_swevent_set_period(struct perf_event *event)
7469 {
7470 struct hw_perf_event *hwc = &event->hw;
7471 u64 period = hwc->last_period;
7472 u64 nr, offset;
7473 s64 old, val;
7474
7475 hwc->last_period = hwc->sample_period;
7476
7477 again:
7478 old = val = local64_read(&hwc->period_left);
7479 if (val < 0)
7480 return 0;
7481
7482 nr = div64_u64(period + val, period);
7483 offset = nr * period;
7484 val -= offset;
7485 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7486 goto again;
7487
7488 return nr;
7489 }
7490
7491 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7492 struct perf_sample_data *data,
7493 struct pt_regs *regs)
7494 {
7495 struct hw_perf_event *hwc = &event->hw;
7496 int throttle = 0;
7497
7498 if (!overflow)
7499 overflow = perf_swevent_set_period(event);
7500
7501 if (hwc->interrupts == MAX_INTERRUPTS)
7502 return;
7503
7504 for (; overflow; overflow--) {
7505 if (__perf_event_overflow(event, throttle,
7506 data, regs)) {
7507 /*
7508 * We inhibit the overflow from happening when
7509 * hwc->interrupts == MAX_INTERRUPTS.
7510 */
7511 break;
7512 }
7513 throttle = 1;
7514 }
7515 }
7516
7517 static void perf_swevent_event(struct perf_event *event, u64 nr,
7518 struct perf_sample_data *data,
7519 struct pt_regs *regs)
7520 {
7521 struct hw_perf_event *hwc = &event->hw;
7522
7523 local64_add(nr, &event->count);
7524
7525 if (!regs)
7526 return;
7527
7528 if (!is_sampling_event(event))
7529 return;
7530
7531 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7532 data->period = nr;
7533 return perf_swevent_overflow(event, 1, data, regs);
7534 } else
7535 data->period = event->hw.last_period;
7536
7537 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7538 return perf_swevent_overflow(event, 1, data, regs);
7539
7540 if (local64_add_negative(nr, &hwc->period_left))
7541 return;
7542
7543 perf_swevent_overflow(event, 0, data, regs);
7544 }
7545
7546 static int perf_exclude_event(struct perf_event *event,
7547 struct pt_regs *regs)
7548 {
7549 if (event->hw.state & PERF_HES_STOPPED)
7550 return 1;
7551
7552 if (regs) {
7553 if (event->attr.exclude_user && user_mode(regs))
7554 return 1;
7555
7556 if (event->attr.exclude_kernel && !user_mode(regs))
7557 return 1;
7558 }
7559
7560 return 0;
7561 }
7562
7563 static int perf_swevent_match(struct perf_event *event,
7564 enum perf_type_id type,
7565 u32 event_id,
7566 struct perf_sample_data *data,
7567 struct pt_regs *regs)
7568 {
7569 if (event->attr.type != type)
7570 return 0;
7571
7572 if (event->attr.config != event_id)
7573 return 0;
7574
7575 if (perf_exclude_event(event, regs))
7576 return 0;
7577
7578 return 1;
7579 }
7580
7581 static inline u64 swevent_hash(u64 type, u32 event_id)
7582 {
7583 u64 val = event_id | (type << 32);
7584
7585 return hash_64(val, SWEVENT_HLIST_BITS);
7586 }
7587
7588 static inline struct hlist_head *
7589 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7590 {
7591 u64 hash = swevent_hash(type, event_id);
7592
7593 return &hlist->heads[hash];
7594 }
7595
7596 /* For the read side: events when they trigger */
7597 static inline struct hlist_head *
7598 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7599 {
7600 struct swevent_hlist *hlist;
7601
7602 hlist = rcu_dereference(swhash->swevent_hlist);
7603 if (!hlist)
7604 return NULL;
7605
7606 return __find_swevent_head(hlist, type, event_id);
7607 }
7608
7609 /* For the event head insertion and removal in the hlist */
7610 static inline struct hlist_head *
7611 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7612 {
7613 struct swevent_hlist *hlist;
7614 u32 event_id = event->attr.config;
7615 u64 type = event->attr.type;
7616
7617 /*
7618 * Event scheduling is always serialized against hlist allocation
7619 * and release. Which makes the protected version suitable here.
7620 * The context lock guarantees that.
7621 */
7622 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7623 lockdep_is_held(&event->ctx->lock));
7624 if (!hlist)
7625 return NULL;
7626
7627 return __find_swevent_head(hlist, type, event_id);
7628 }
7629
7630 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7631 u64 nr,
7632 struct perf_sample_data *data,
7633 struct pt_regs *regs)
7634 {
7635 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7636 struct perf_event *event;
7637 struct hlist_head *head;
7638
7639 rcu_read_lock();
7640 head = find_swevent_head_rcu(swhash, type, event_id);
7641 if (!head)
7642 goto end;
7643
7644 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7645 if (perf_swevent_match(event, type, event_id, data, regs))
7646 perf_swevent_event(event, nr, data, regs);
7647 }
7648 end:
7649 rcu_read_unlock();
7650 }
7651
7652 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7653
7654 int perf_swevent_get_recursion_context(void)
7655 {
7656 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657
7658 return get_recursion_context(swhash->recursion);
7659 }
7660 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7661
7662 void perf_swevent_put_recursion_context(int rctx)
7663 {
7664 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7665
7666 put_recursion_context(swhash->recursion, rctx);
7667 }
7668
7669 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7670 {
7671 struct perf_sample_data data;
7672
7673 if (WARN_ON_ONCE(!regs))
7674 return;
7675
7676 perf_sample_data_init(&data, addr, 0);
7677 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7678 }
7679
7680 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7681 {
7682 int rctx;
7683
7684 preempt_disable_notrace();
7685 rctx = perf_swevent_get_recursion_context();
7686 if (unlikely(rctx < 0))
7687 goto fail;
7688
7689 ___perf_sw_event(event_id, nr, regs, addr);
7690
7691 perf_swevent_put_recursion_context(rctx);
7692 fail:
7693 preempt_enable_notrace();
7694 }
7695
7696 static void perf_swevent_read(struct perf_event *event)
7697 {
7698 }
7699
7700 static int perf_swevent_add(struct perf_event *event, int flags)
7701 {
7702 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7703 struct hw_perf_event *hwc = &event->hw;
7704 struct hlist_head *head;
7705
7706 if (is_sampling_event(event)) {
7707 hwc->last_period = hwc->sample_period;
7708 perf_swevent_set_period(event);
7709 }
7710
7711 hwc->state = !(flags & PERF_EF_START);
7712
7713 head = find_swevent_head(swhash, event);
7714 if (WARN_ON_ONCE(!head))
7715 return -EINVAL;
7716
7717 hlist_add_head_rcu(&event->hlist_entry, head);
7718 perf_event_update_userpage(event);
7719
7720 return 0;
7721 }
7722
7723 static void perf_swevent_del(struct perf_event *event, int flags)
7724 {
7725 hlist_del_rcu(&event->hlist_entry);
7726 }
7727
7728 static void perf_swevent_start(struct perf_event *event, int flags)
7729 {
7730 event->hw.state = 0;
7731 }
7732
7733 static void perf_swevent_stop(struct perf_event *event, int flags)
7734 {
7735 event->hw.state = PERF_HES_STOPPED;
7736 }
7737
7738 /* Deref the hlist from the update side */
7739 static inline struct swevent_hlist *
7740 swevent_hlist_deref(struct swevent_htable *swhash)
7741 {
7742 return rcu_dereference_protected(swhash->swevent_hlist,
7743 lockdep_is_held(&swhash->hlist_mutex));
7744 }
7745
7746 static void swevent_hlist_release(struct swevent_htable *swhash)
7747 {
7748 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7749
7750 if (!hlist)
7751 return;
7752
7753 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7754 kfree_rcu(hlist, rcu_head);
7755 }
7756
7757 static void swevent_hlist_put_cpu(int cpu)
7758 {
7759 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7760
7761 mutex_lock(&swhash->hlist_mutex);
7762
7763 if (!--swhash->hlist_refcount)
7764 swevent_hlist_release(swhash);
7765
7766 mutex_unlock(&swhash->hlist_mutex);
7767 }
7768
7769 static void swevent_hlist_put(void)
7770 {
7771 int cpu;
7772
7773 for_each_possible_cpu(cpu)
7774 swevent_hlist_put_cpu(cpu);
7775 }
7776
7777 static int swevent_hlist_get_cpu(int cpu)
7778 {
7779 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7780 int err = 0;
7781
7782 mutex_lock(&swhash->hlist_mutex);
7783 if (!swevent_hlist_deref(swhash) &&
7784 cpumask_test_cpu(cpu, perf_online_mask)) {
7785 struct swevent_hlist *hlist;
7786
7787 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7788 if (!hlist) {
7789 err = -ENOMEM;
7790 goto exit;
7791 }
7792 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7793 }
7794 swhash->hlist_refcount++;
7795 exit:
7796 mutex_unlock(&swhash->hlist_mutex);
7797
7798 return err;
7799 }
7800
7801 static int swevent_hlist_get(void)
7802 {
7803 int err, cpu, failed_cpu;
7804
7805 mutex_lock(&pmus_lock);
7806 for_each_possible_cpu(cpu) {
7807 err = swevent_hlist_get_cpu(cpu);
7808 if (err) {
7809 failed_cpu = cpu;
7810 goto fail;
7811 }
7812 }
7813 mutex_unlock(&pmus_lock);
7814 return 0;
7815 fail:
7816 for_each_possible_cpu(cpu) {
7817 if (cpu == failed_cpu)
7818 break;
7819 swevent_hlist_put_cpu(cpu);
7820 }
7821 mutex_unlock(&pmus_lock);
7822 return err;
7823 }
7824
7825 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7826
7827 static void sw_perf_event_destroy(struct perf_event *event)
7828 {
7829 u64 event_id = event->attr.config;
7830
7831 WARN_ON(event->parent);
7832
7833 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7834 swevent_hlist_put();
7835 }
7836
7837 static int perf_swevent_init(struct perf_event *event)
7838 {
7839 u64 event_id = event->attr.config;
7840
7841 if (event->attr.type != PERF_TYPE_SOFTWARE)
7842 return -ENOENT;
7843
7844 /*
7845 * no branch sampling for software events
7846 */
7847 if (has_branch_stack(event))
7848 return -EOPNOTSUPP;
7849
7850 switch (event_id) {
7851 case PERF_COUNT_SW_CPU_CLOCK:
7852 case PERF_COUNT_SW_TASK_CLOCK:
7853 return -ENOENT;
7854
7855 default:
7856 break;
7857 }
7858
7859 if (event_id >= PERF_COUNT_SW_MAX)
7860 return -ENOENT;
7861
7862 if (!event->parent) {
7863 int err;
7864
7865 err = swevent_hlist_get();
7866 if (err)
7867 return err;
7868
7869 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7870 event->destroy = sw_perf_event_destroy;
7871 }
7872
7873 return 0;
7874 }
7875
7876 static struct pmu perf_swevent = {
7877 .task_ctx_nr = perf_sw_context,
7878
7879 .capabilities = PERF_PMU_CAP_NO_NMI,
7880
7881 .event_init = perf_swevent_init,
7882 .add = perf_swevent_add,
7883 .del = perf_swevent_del,
7884 .start = perf_swevent_start,
7885 .stop = perf_swevent_stop,
7886 .read = perf_swevent_read,
7887 };
7888
7889 #ifdef CONFIG_EVENT_TRACING
7890
7891 static int perf_tp_filter_match(struct perf_event *event,
7892 struct perf_sample_data *data)
7893 {
7894 void *record = data->raw->frag.data;
7895
7896 /* only top level events have filters set */
7897 if (event->parent)
7898 event = event->parent;
7899
7900 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7901 return 1;
7902 return 0;
7903 }
7904
7905 static int perf_tp_event_match(struct perf_event *event,
7906 struct perf_sample_data *data,
7907 struct pt_regs *regs)
7908 {
7909 if (event->hw.state & PERF_HES_STOPPED)
7910 return 0;
7911 /*
7912 * All tracepoints are from kernel-space.
7913 */
7914 if (event->attr.exclude_kernel)
7915 return 0;
7916
7917 if (!perf_tp_filter_match(event, data))
7918 return 0;
7919
7920 return 1;
7921 }
7922
7923 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7924 struct trace_event_call *call, u64 count,
7925 struct pt_regs *regs, struct hlist_head *head,
7926 struct task_struct *task)
7927 {
7928 if (bpf_prog_array_valid(call)) {
7929 *(struct pt_regs **)raw_data = regs;
7930 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7931 perf_swevent_put_recursion_context(rctx);
7932 return;
7933 }
7934 }
7935 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7936 rctx, task);
7937 }
7938 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7939
7940 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7941 struct pt_regs *regs, struct hlist_head *head, int rctx,
7942 struct task_struct *task)
7943 {
7944 struct perf_sample_data data;
7945 struct perf_event *event;
7946
7947 struct perf_raw_record raw = {
7948 .frag = {
7949 .size = entry_size,
7950 .data = record,
7951 },
7952 };
7953
7954 perf_sample_data_init(&data, 0, 0);
7955 data.raw = &raw;
7956
7957 perf_trace_buf_update(record, event_type);
7958
7959 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7960 if (perf_tp_event_match(event, &data, regs))
7961 perf_swevent_event(event, count, &data, regs);
7962 }
7963
7964 /*
7965 * If we got specified a target task, also iterate its context and
7966 * deliver this event there too.
7967 */
7968 if (task && task != current) {
7969 struct perf_event_context *ctx;
7970 struct trace_entry *entry = record;
7971
7972 rcu_read_lock();
7973 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7974 if (!ctx)
7975 goto unlock;
7976
7977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7978 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7979 continue;
7980 if (event->attr.config != entry->type)
7981 continue;
7982 if (perf_tp_event_match(event, &data, regs))
7983 perf_swevent_event(event, count, &data, regs);
7984 }
7985 unlock:
7986 rcu_read_unlock();
7987 }
7988
7989 perf_swevent_put_recursion_context(rctx);
7990 }
7991 EXPORT_SYMBOL_GPL(perf_tp_event);
7992
7993 static void tp_perf_event_destroy(struct perf_event *event)
7994 {
7995 perf_trace_destroy(event);
7996 }
7997
7998 static int perf_tp_event_init(struct perf_event *event)
7999 {
8000 int err;
8001
8002 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8003 return -ENOENT;
8004
8005 /*
8006 * no branch sampling for tracepoint events
8007 */
8008 if (has_branch_stack(event))
8009 return -EOPNOTSUPP;
8010
8011 err = perf_trace_init(event);
8012 if (err)
8013 return err;
8014
8015 event->destroy = tp_perf_event_destroy;
8016
8017 return 0;
8018 }
8019
8020 static struct pmu perf_tracepoint = {
8021 .task_ctx_nr = perf_sw_context,
8022
8023 .event_init = perf_tp_event_init,
8024 .add = perf_trace_add,
8025 .del = perf_trace_del,
8026 .start = perf_swevent_start,
8027 .stop = perf_swevent_stop,
8028 .read = perf_swevent_read,
8029 };
8030
8031 static inline void perf_tp_register(void)
8032 {
8033 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8034 }
8035
8036 static void perf_event_free_filter(struct perf_event *event)
8037 {
8038 ftrace_profile_free_filter(event);
8039 }
8040
8041 #ifdef CONFIG_BPF_SYSCALL
8042 static void bpf_overflow_handler(struct perf_event *event,
8043 struct perf_sample_data *data,
8044 struct pt_regs *regs)
8045 {
8046 struct bpf_perf_event_data_kern ctx = {
8047 .data = data,
8048 .event = event,
8049 };
8050 int ret = 0;
8051
8052 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8053 preempt_disable();
8054 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8055 goto out;
8056 rcu_read_lock();
8057 ret = BPF_PROG_RUN(event->prog, &ctx);
8058 rcu_read_unlock();
8059 out:
8060 __this_cpu_dec(bpf_prog_active);
8061 preempt_enable();
8062 if (!ret)
8063 return;
8064
8065 event->orig_overflow_handler(event, data, regs);
8066 }
8067
8068 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8069 {
8070 struct bpf_prog *prog;
8071
8072 if (event->overflow_handler_context)
8073 /* hw breakpoint or kernel counter */
8074 return -EINVAL;
8075
8076 if (event->prog)
8077 return -EEXIST;
8078
8079 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8080 if (IS_ERR(prog))
8081 return PTR_ERR(prog);
8082
8083 event->prog = prog;
8084 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8085 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8086 return 0;
8087 }
8088
8089 static void perf_event_free_bpf_handler(struct perf_event *event)
8090 {
8091 struct bpf_prog *prog = event->prog;
8092
8093 if (!prog)
8094 return;
8095
8096 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8097 event->prog = NULL;
8098 bpf_prog_put(prog);
8099 }
8100 #else
8101 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8102 {
8103 return -EOPNOTSUPP;
8104 }
8105 static void perf_event_free_bpf_handler(struct perf_event *event)
8106 {
8107 }
8108 #endif
8109
8110 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8111 {
8112 bool is_kprobe, is_tracepoint, is_syscall_tp;
8113 struct bpf_prog *prog;
8114 int ret;
8115
8116 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8117 return perf_event_set_bpf_handler(event, prog_fd);
8118
8119 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8120 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8121 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8122 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8123 /* bpf programs can only be attached to u/kprobe or tracepoint */
8124 return -EINVAL;
8125
8126 prog = bpf_prog_get(prog_fd);
8127 if (IS_ERR(prog))
8128 return PTR_ERR(prog);
8129
8130 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8131 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8132 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8133 /* valid fd, but invalid bpf program type */
8134 bpf_prog_put(prog);
8135 return -EINVAL;
8136 }
8137
8138 if (is_tracepoint || is_syscall_tp) {
8139 int off = trace_event_get_offsets(event->tp_event);
8140
8141 if (prog->aux->max_ctx_offset > off) {
8142 bpf_prog_put(prog);
8143 return -EACCES;
8144 }
8145 }
8146
8147 ret = perf_event_attach_bpf_prog(event, prog);
8148 if (ret)
8149 bpf_prog_put(prog);
8150 return ret;
8151 }
8152
8153 static void perf_event_free_bpf_prog(struct perf_event *event)
8154 {
8155 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8156 perf_event_free_bpf_handler(event);
8157 return;
8158 }
8159 perf_event_detach_bpf_prog(event);
8160 }
8161
8162 #else
8163
8164 static inline void perf_tp_register(void)
8165 {
8166 }
8167
8168 static void perf_event_free_filter(struct perf_event *event)
8169 {
8170 }
8171
8172 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8173 {
8174 return -ENOENT;
8175 }
8176
8177 static void perf_event_free_bpf_prog(struct perf_event *event)
8178 {
8179 }
8180 #endif /* CONFIG_EVENT_TRACING */
8181
8182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8183 void perf_bp_event(struct perf_event *bp, void *data)
8184 {
8185 struct perf_sample_data sample;
8186 struct pt_regs *regs = data;
8187
8188 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8189
8190 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8191 perf_swevent_event(bp, 1, &sample, regs);
8192 }
8193 #endif
8194
8195 /*
8196 * Allocate a new address filter
8197 */
8198 static struct perf_addr_filter *
8199 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8200 {
8201 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8202 struct perf_addr_filter *filter;
8203
8204 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8205 if (!filter)
8206 return NULL;
8207
8208 INIT_LIST_HEAD(&filter->entry);
8209 list_add_tail(&filter->entry, filters);
8210
8211 return filter;
8212 }
8213
8214 static void free_filters_list(struct list_head *filters)
8215 {
8216 struct perf_addr_filter *filter, *iter;
8217
8218 list_for_each_entry_safe(filter, iter, filters, entry) {
8219 if (filter->inode)
8220 iput(filter->inode);
8221 list_del(&filter->entry);
8222 kfree(filter);
8223 }
8224 }
8225
8226 /*
8227 * Free existing address filters and optionally install new ones
8228 */
8229 static void perf_addr_filters_splice(struct perf_event *event,
8230 struct list_head *head)
8231 {
8232 unsigned long flags;
8233 LIST_HEAD(list);
8234
8235 if (!has_addr_filter(event))
8236 return;
8237
8238 /* don't bother with children, they don't have their own filters */
8239 if (event->parent)
8240 return;
8241
8242 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8243
8244 list_splice_init(&event->addr_filters.list, &list);
8245 if (head)
8246 list_splice(head, &event->addr_filters.list);
8247
8248 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8249
8250 free_filters_list(&list);
8251 }
8252
8253 /*
8254 * Scan through mm's vmas and see if one of them matches the
8255 * @filter; if so, adjust filter's address range.
8256 * Called with mm::mmap_sem down for reading.
8257 */
8258 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8259 struct mm_struct *mm)
8260 {
8261 struct vm_area_struct *vma;
8262
8263 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8264 struct file *file = vma->vm_file;
8265 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8266 unsigned long vma_size = vma->vm_end - vma->vm_start;
8267
8268 if (!file)
8269 continue;
8270
8271 if (!perf_addr_filter_match(filter, file, off, vma_size))
8272 continue;
8273
8274 return vma->vm_start;
8275 }
8276
8277 return 0;
8278 }
8279
8280 /*
8281 * Update event's address range filters based on the
8282 * task's existing mappings, if any.
8283 */
8284 static void perf_event_addr_filters_apply(struct perf_event *event)
8285 {
8286 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8287 struct task_struct *task = READ_ONCE(event->ctx->task);
8288 struct perf_addr_filter *filter;
8289 struct mm_struct *mm = NULL;
8290 unsigned int count = 0;
8291 unsigned long flags;
8292
8293 /*
8294 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8295 * will stop on the parent's child_mutex that our caller is also holding
8296 */
8297 if (task == TASK_TOMBSTONE)
8298 return;
8299
8300 if (!ifh->nr_file_filters)
8301 return;
8302
8303 mm = get_task_mm(event->ctx->task);
8304 if (!mm)
8305 goto restart;
8306
8307 down_read(&mm->mmap_sem);
8308
8309 raw_spin_lock_irqsave(&ifh->lock, flags);
8310 list_for_each_entry(filter, &ifh->list, entry) {
8311 event->addr_filters_offs[count] = 0;
8312
8313 /*
8314 * Adjust base offset if the filter is associated to a binary
8315 * that needs to be mapped:
8316 */
8317 if (filter->inode)
8318 event->addr_filters_offs[count] =
8319 perf_addr_filter_apply(filter, mm);
8320
8321 count++;
8322 }
8323
8324 event->addr_filters_gen++;
8325 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8326
8327 up_read(&mm->mmap_sem);
8328
8329 mmput(mm);
8330
8331 restart:
8332 perf_event_stop(event, 1);
8333 }
8334
8335 /*
8336 * Address range filtering: limiting the data to certain
8337 * instruction address ranges. Filters are ioctl()ed to us from
8338 * userspace as ascii strings.
8339 *
8340 * Filter string format:
8341 *
8342 * ACTION RANGE_SPEC
8343 * where ACTION is one of the
8344 * * "filter": limit the trace to this region
8345 * * "start": start tracing from this address
8346 * * "stop": stop tracing at this address/region;
8347 * RANGE_SPEC is
8348 * * for kernel addresses: <start address>[/<size>]
8349 * * for object files: <start address>[/<size>]@</path/to/object/file>
8350 *
8351 * if <size> is not specified, the range is treated as a single address.
8352 */
8353 enum {
8354 IF_ACT_NONE = -1,
8355 IF_ACT_FILTER,
8356 IF_ACT_START,
8357 IF_ACT_STOP,
8358 IF_SRC_FILE,
8359 IF_SRC_KERNEL,
8360 IF_SRC_FILEADDR,
8361 IF_SRC_KERNELADDR,
8362 };
8363
8364 enum {
8365 IF_STATE_ACTION = 0,
8366 IF_STATE_SOURCE,
8367 IF_STATE_END,
8368 };
8369
8370 static const match_table_t if_tokens = {
8371 { IF_ACT_FILTER, "filter" },
8372 { IF_ACT_START, "start" },
8373 { IF_ACT_STOP, "stop" },
8374 { IF_SRC_FILE, "%u/%u@%s" },
8375 { IF_SRC_KERNEL, "%u/%u" },
8376 { IF_SRC_FILEADDR, "%u@%s" },
8377 { IF_SRC_KERNELADDR, "%u" },
8378 { IF_ACT_NONE, NULL },
8379 };
8380
8381 /*
8382 * Address filter string parser
8383 */
8384 static int
8385 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8386 struct list_head *filters)
8387 {
8388 struct perf_addr_filter *filter = NULL;
8389 char *start, *orig, *filename = NULL;
8390 struct path path;
8391 substring_t args[MAX_OPT_ARGS];
8392 int state = IF_STATE_ACTION, token;
8393 unsigned int kernel = 0;
8394 int ret = -EINVAL;
8395
8396 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8397 if (!fstr)
8398 return -ENOMEM;
8399
8400 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8401 ret = -EINVAL;
8402
8403 if (!*start)
8404 continue;
8405
8406 /* filter definition begins */
8407 if (state == IF_STATE_ACTION) {
8408 filter = perf_addr_filter_new(event, filters);
8409 if (!filter)
8410 goto fail;
8411 }
8412
8413 token = match_token(start, if_tokens, args);
8414 switch (token) {
8415 case IF_ACT_FILTER:
8416 case IF_ACT_START:
8417 filter->filter = 1;
8418
8419 case IF_ACT_STOP:
8420 if (state != IF_STATE_ACTION)
8421 goto fail;
8422
8423 state = IF_STATE_SOURCE;
8424 break;
8425
8426 case IF_SRC_KERNELADDR:
8427 case IF_SRC_KERNEL:
8428 kernel = 1;
8429
8430 case IF_SRC_FILEADDR:
8431 case IF_SRC_FILE:
8432 if (state != IF_STATE_SOURCE)
8433 goto fail;
8434
8435 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8436 filter->range = 1;
8437
8438 *args[0].to = 0;
8439 ret = kstrtoul(args[0].from, 0, &filter->offset);
8440 if (ret)
8441 goto fail;
8442
8443 if (filter->range) {
8444 *args[1].to = 0;
8445 ret = kstrtoul(args[1].from, 0, &filter->size);
8446 if (ret)
8447 goto fail;
8448 }
8449
8450 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8451 int fpos = filter->range ? 2 : 1;
8452
8453 filename = match_strdup(&args[fpos]);
8454 if (!filename) {
8455 ret = -ENOMEM;
8456 goto fail;
8457 }
8458 }
8459
8460 state = IF_STATE_END;
8461 break;
8462
8463 default:
8464 goto fail;
8465 }
8466
8467 /*
8468 * Filter definition is fully parsed, validate and install it.
8469 * Make sure that it doesn't contradict itself or the event's
8470 * attribute.
8471 */
8472 if (state == IF_STATE_END) {
8473 ret = -EINVAL;
8474 if (kernel && event->attr.exclude_kernel)
8475 goto fail;
8476
8477 if (!kernel) {
8478 if (!filename)
8479 goto fail;
8480
8481 /*
8482 * For now, we only support file-based filters
8483 * in per-task events; doing so for CPU-wide
8484 * events requires additional context switching
8485 * trickery, since same object code will be
8486 * mapped at different virtual addresses in
8487 * different processes.
8488 */
8489 ret = -EOPNOTSUPP;
8490 if (!event->ctx->task)
8491 goto fail_free_name;
8492
8493 /* look up the path and grab its inode */
8494 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8495 if (ret)
8496 goto fail_free_name;
8497
8498 filter->inode = igrab(d_inode(path.dentry));
8499 path_put(&path);
8500 kfree(filename);
8501 filename = NULL;
8502
8503 ret = -EINVAL;
8504 if (!filter->inode ||
8505 !S_ISREG(filter->inode->i_mode))
8506 /* free_filters_list() will iput() */
8507 goto fail;
8508
8509 event->addr_filters.nr_file_filters++;
8510 }
8511
8512 /* ready to consume more filters */
8513 state = IF_STATE_ACTION;
8514 filter = NULL;
8515 }
8516 }
8517
8518 if (state != IF_STATE_ACTION)
8519 goto fail;
8520
8521 kfree(orig);
8522
8523 return 0;
8524
8525 fail_free_name:
8526 kfree(filename);
8527 fail:
8528 free_filters_list(filters);
8529 kfree(orig);
8530
8531 return ret;
8532 }
8533
8534 static int
8535 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8536 {
8537 LIST_HEAD(filters);
8538 int ret;
8539
8540 /*
8541 * Since this is called in perf_ioctl() path, we're already holding
8542 * ctx::mutex.
8543 */
8544 lockdep_assert_held(&event->ctx->mutex);
8545
8546 if (WARN_ON_ONCE(event->parent))
8547 return -EINVAL;
8548
8549 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8550 if (ret)
8551 goto fail_clear_files;
8552
8553 ret = event->pmu->addr_filters_validate(&filters);
8554 if (ret)
8555 goto fail_free_filters;
8556
8557 /* remove existing filters, if any */
8558 perf_addr_filters_splice(event, &filters);
8559
8560 /* install new filters */
8561 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8562
8563 return ret;
8564
8565 fail_free_filters:
8566 free_filters_list(&filters);
8567
8568 fail_clear_files:
8569 event->addr_filters.nr_file_filters = 0;
8570
8571 return ret;
8572 }
8573
8574 static int
8575 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8576 {
8577 struct perf_event_context *ctx = event->ctx;
8578 int ret;
8579
8580 /*
8581 * Beware, here be dragons!!
8582 *
8583 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8584 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8585 * perf_event_ctx_lock() we already have a reference on ctx.
8586 *
8587 * This can result in event getting moved to a different ctx, but that
8588 * does not affect the tracepoint state.
8589 */
8590 mutex_unlock(&ctx->mutex);
8591 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8592 mutex_lock(&ctx->mutex);
8593
8594 return ret;
8595 }
8596
8597 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8598 {
8599 char *filter_str;
8600 int ret = -EINVAL;
8601
8602 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8603 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8604 !has_addr_filter(event))
8605 return -EINVAL;
8606
8607 filter_str = strndup_user(arg, PAGE_SIZE);
8608 if (IS_ERR(filter_str))
8609 return PTR_ERR(filter_str);
8610
8611 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8612 event->attr.type == PERF_TYPE_TRACEPOINT)
8613 ret = perf_tracepoint_set_filter(event, filter_str);
8614 else if (has_addr_filter(event))
8615 ret = perf_event_set_addr_filter(event, filter_str);
8616
8617 kfree(filter_str);
8618 return ret;
8619 }
8620
8621 /*
8622 * hrtimer based swevent callback
8623 */
8624
8625 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8626 {
8627 enum hrtimer_restart ret = HRTIMER_RESTART;
8628 struct perf_sample_data data;
8629 struct pt_regs *regs;
8630 struct perf_event *event;
8631 u64 period;
8632
8633 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8634
8635 if (event->state != PERF_EVENT_STATE_ACTIVE)
8636 return HRTIMER_NORESTART;
8637
8638 event->pmu->read(event);
8639
8640 perf_sample_data_init(&data, 0, event->hw.last_period);
8641 regs = get_irq_regs();
8642
8643 if (regs && !perf_exclude_event(event, regs)) {
8644 if (!(event->attr.exclude_idle && is_idle_task(current)))
8645 if (__perf_event_overflow(event, 1, &data, regs))
8646 ret = HRTIMER_NORESTART;
8647 }
8648
8649 period = max_t(u64, 10000, event->hw.sample_period);
8650 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8651
8652 return ret;
8653 }
8654
8655 static void perf_swevent_start_hrtimer(struct perf_event *event)
8656 {
8657 struct hw_perf_event *hwc = &event->hw;
8658 s64 period;
8659
8660 if (!is_sampling_event(event))
8661 return;
8662
8663 period = local64_read(&hwc->period_left);
8664 if (period) {
8665 if (period < 0)
8666 period = 10000;
8667
8668 local64_set(&hwc->period_left, 0);
8669 } else {
8670 period = max_t(u64, 10000, hwc->sample_period);
8671 }
8672 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8673 HRTIMER_MODE_REL_PINNED);
8674 }
8675
8676 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8677 {
8678 struct hw_perf_event *hwc = &event->hw;
8679
8680 if (is_sampling_event(event)) {
8681 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8682 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8683
8684 hrtimer_cancel(&hwc->hrtimer);
8685 }
8686 }
8687
8688 static void perf_swevent_init_hrtimer(struct perf_event *event)
8689 {
8690 struct hw_perf_event *hwc = &event->hw;
8691
8692 if (!is_sampling_event(event))
8693 return;
8694
8695 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8696 hwc->hrtimer.function = perf_swevent_hrtimer;
8697
8698 /*
8699 * Since hrtimers have a fixed rate, we can do a static freq->period
8700 * mapping and avoid the whole period adjust feedback stuff.
8701 */
8702 if (event->attr.freq) {
8703 long freq = event->attr.sample_freq;
8704
8705 event->attr.sample_period = NSEC_PER_SEC / freq;
8706 hwc->sample_period = event->attr.sample_period;
8707 local64_set(&hwc->period_left, hwc->sample_period);
8708 hwc->last_period = hwc->sample_period;
8709 event->attr.freq = 0;
8710 }
8711 }
8712
8713 /*
8714 * Software event: cpu wall time clock
8715 */
8716
8717 static void cpu_clock_event_update(struct perf_event *event)
8718 {
8719 s64 prev;
8720 u64 now;
8721
8722 now = local_clock();
8723 prev = local64_xchg(&event->hw.prev_count, now);
8724 local64_add(now - prev, &event->count);
8725 }
8726
8727 static void cpu_clock_event_start(struct perf_event *event, int flags)
8728 {
8729 local64_set(&event->hw.prev_count, local_clock());
8730 perf_swevent_start_hrtimer(event);
8731 }
8732
8733 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8734 {
8735 perf_swevent_cancel_hrtimer(event);
8736 cpu_clock_event_update(event);
8737 }
8738
8739 static int cpu_clock_event_add(struct perf_event *event, int flags)
8740 {
8741 if (flags & PERF_EF_START)
8742 cpu_clock_event_start(event, flags);
8743 perf_event_update_userpage(event);
8744
8745 return 0;
8746 }
8747
8748 static void cpu_clock_event_del(struct perf_event *event, int flags)
8749 {
8750 cpu_clock_event_stop(event, flags);
8751 }
8752
8753 static void cpu_clock_event_read(struct perf_event *event)
8754 {
8755 cpu_clock_event_update(event);
8756 }
8757
8758 static int cpu_clock_event_init(struct perf_event *event)
8759 {
8760 if (event->attr.type != PERF_TYPE_SOFTWARE)
8761 return -ENOENT;
8762
8763 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8764 return -ENOENT;
8765
8766 /*
8767 * no branch sampling for software events
8768 */
8769 if (has_branch_stack(event))
8770 return -EOPNOTSUPP;
8771
8772 perf_swevent_init_hrtimer(event);
8773
8774 return 0;
8775 }
8776
8777 static struct pmu perf_cpu_clock = {
8778 .task_ctx_nr = perf_sw_context,
8779
8780 .capabilities = PERF_PMU_CAP_NO_NMI,
8781
8782 .event_init = cpu_clock_event_init,
8783 .add = cpu_clock_event_add,
8784 .del = cpu_clock_event_del,
8785 .start = cpu_clock_event_start,
8786 .stop = cpu_clock_event_stop,
8787 .read = cpu_clock_event_read,
8788 };
8789
8790 /*
8791 * Software event: task time clock
8792 */
8793
8794 static void task_clock_event_update(struct perf_event *event, u64 now)
8795 {
8796 u64 prev;
8797 s64 delta;
8798
8799 prev = local64_xchg(&event->hw.prev_count, now);
8800 delta = now - prev;
8801 local64_add(delta, &event->count);
8802 }
8803
8804 static void task_clock_event_start(struct perf_event *event, int flags)
8805 {
8806 local64_set(&event->hw.prev_count, event->ctx->time);
8807 perf_swevent_start_hrtimer(event);
8808 }
8809
8810 static void task_clock_event_stop(struct perf_event *event, int flags)
8811 {
8812 perf_swevent_cancel_hrtimer(event);
8813 task_clock_event_update(event, event->ctx->time);
8814 }
8815
8816 static int task_clock_event_add(struct perf_event *event, int flags)
8817 {
8818 if (flags & PERF_EF_START)
8819 task_clock_event_start(event, flags);
8820 perf_event_update_userpage(event);
8821
8822 return 0;
8823 }
8824
8825 static void task_clock_event_del(struct perf_event *event, int flags)
8826 {
8827 task_clock_event_stop(event, PERF_EF_UPDATE);
8828 }
8829
8830 static void task_clock_event_read(struct perf_event *event)
8831 {
8832 u64 now = perf_clock();
8833 u64 delta = now - event->ctx->timestamp;
8834 u64 time = event->ctx->time + delta;
8835
8836 task_clock_event_update(event, time);
8837 }
8838
8839 static int task_clock_event_init(struct perf_event *event)
8840 {
8841 if (event->attr.type != PERF_TYPE_SOFTWARE)
8842 return -ENOENT;
8843
8844 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8845 return -ENOENT;
8846
8847 /*
8848 * no branch sampling for software events
8849 */
8850 if (has_branch_stack(event))
8851 return -EOPNOTSUPP;
8852
8853 perf_swevent_init_hrtimer(event);
8854
8855 return 0;
8856 }
8857
8858 static struct pmu perf_task_clock = {
8859 .task_ctx_nr = perf_sw_context,
8860
8861 .capabilities = PERF_PMU_CAP_NO_NMI,
8862
8863 .event_init = task_clock_event_init,
8864 .add = task_clock_event_add,
8865 .del = task_clock_event_del,
8866 .start = task_clock_event_start,
8867 .stop = task_clock_event_stop,
8868 .read = task_clock_event_read,
8869 };
8870
8871 static void perf_pmu_nop_void(struct pmu *pmu)
8872 {
8873 }
8874
8875 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8876 {
8877 }
8878
8879 static int perf_pmu_nop_int(struct pmu *pmu)
8880 {
8881 return 0;
8882 }
8883
8884 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8885
8886 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8887 {
8888 __this_cpu_write(nop_txn_flags, flags);
8889
8890 if (flags & ~PERF_PMU_TXN_ADD)
8891 return;
8892
8893 perf_pmu_disable(pmu);
8894 }
8895
8896 static int perf_pmu_commit_txn(struct pmu *pmu)
8897 {
8898 unsigned int flags = __this_cpu_read(nop_txn_flags);
8899
8900 __this_cpu_write(nop_txn_flags, 0);
8901
8902 if (flags & ~PERF_PMU_TXN_ADD)
8903 return 0;
8904
8905 perf_pmu_enable(pmu);
8906 return 0;
8907 }
8908
8909 static void perf_pmu_cancel_txn(struct pmu *pmu)
8910 {
8911 unsigned int flags = __this_cpu_read(nop_txn_flags);
8912
8913 __this_cpu_write(nop_txn_flags, 0);
8914
8915 if (flags & ~PERF_PMU_TXN_ADD)
8916 return;
8917
8918 perf_pmu_enable(pmu);
8919 }
8920
8921 static int perf_event_idx_default(struct perf_event *event)
8922 {
8923 return 0;
8924 }
8925
8926 /*
8927 * Ensures all contexts with the same task_ctx_nr have the same
8928 * pmu_cpu_context too.
8929 */
8930 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8931 {
8932 struct pmu *pmu;
8933
8934 if (ctxn < 0)
8935 return NULL;
8936
8937 list_for_each_entry(pmu, &pmus, entry) {
8938 if (pmu->task_ctx_nr == ctxn)
8939 return pmu->pmu_cpu_context;
8940 }
8941
8942 return NULL;
8943 }
8944
8945 static void free_pmu_context(struct pmu *pmu)
8946 {
8947 /*
8948 * Static contexts such as perf_sw_context have a global lifetime
8949 * and may be shared between different PMUs. Avoid freeing them
8950 * when a single PMU is going away.
8951 */
8952 if (pmu->task_ctx_nr > perf_invalid_context)
8953 return;
8954
8955 mutex_lock(&pmus_lock);
8956 free_percpu(pmu->pmu_cpu_context);
8957 mutex_unlock(&pmus_lock);
8958 }
8959
8960 /*
8961 * Let userspace know that this PMU supports address range filtering:
8962 */
8963 static ssize_t nr_addr_filters_show(struct device *dev,
8964 struct device_attribute *attr,
8965 char *page)
8966 {
8967 struct pmu *pmu = dev_get_drvdata(dev);
8968
8969 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8970 }
8971 DEVICE_ATTR_RO(nr_addr_filters);
8972
8973 static struct idr pmu_idr;
8974
8975 static ssize_t
8976 type_show(struct device *dev, struct device_attribute *attr, char *page)
8977 {
8978 struct pmu *pmu = dev_get_drvdata(dev);
8979
8980 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8981 }
8982 static DEVICE_ATTR_RO(type);
8983
8984 static ssize_t
8985 perf_event_mux_interval_ms_show(struct device *dev,
8986 struct device_attribute *attr,
8987 char *page)
8988 {
8989 struct pmu *pmu = dev_get_drvdata(dev);
8990
8991 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8992 }
8993
8994 static DEFINE_MUTEX(mux_interval_mutex);
8995
8996 static ssize_t
8997 perf_event_mux_interval_ms_store(struct device *dev,
8998 struct device_attribute *attr,
8999 const char *buf, size_t count)
9000 {
9001 struct pmu *pmu = dev_get_drvdata(dev);
9002 int timer, cpu, ret;
9003
9004 ret = kstrtoint(buf, 0, &timer);
9005 if (ret)
9006 return ret;
9007
9008 if (timer < 1)
9009 return -EINVAL;
9010
9011 /* same value, noting to do */
9012 if (timer == pmu->hrtimer_interval_ms)
9013 return count;
9014
9015 mutex_lock(&mux_interval_mutex);
9016 pmu->hrtimer_interval_ms = timer;
9017
9018 /* update all cpuctx for this PMU */
9019 cpus_read_lock();
9020 for_each_online_cpu(cpu) {
9021 struct perf_cpu_context *cpuctx;
9022 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9023 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9024
9025 cpu_function_call(cpu,
9026 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9027 }
9028 cpus_read_unlock();
9029 mutex_unlock(&mux_interval_mutex);
9030
9031 return count;
9032 }
9033 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9034
9035 static struct attribute *pmu_dev_attrs[] = {
9036 &dev_attr_type.attr,
9037 &dev_attr_perf_event_mux_interval_ms.attr,
9038 NULL,
9039 };
9040 ATTRIBUTE_GROUPS(pmu_dev);
9041
9042 static int pmu_bus_running;
9043 static struct bus_type pmu_bus = {
9044 .name = "event_source",
9045 .dev_groups = pmu_dev_groups,
9046 };
9047
9048 static void pmu_dev_release(struct device *dev)
9049 {
9050 kfree(dev);
9051 }
9052
9053 static int pmu_dev_alloc(struct pmu *pmu)
9054 {
9055 int ret = -ENOMEM;
9056
9057 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9058 if (!pmu->dev)
9059 goto out;
9060
9061 pmu->dev->groups = pmu->attr_groups;
9062 device_initialize(pmu->dev);
9063 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9064 if (ret)
9065 goto free_dev;
9066
9067 dev_set_drvdata(pmu->dev, pmu);
9068 pmu->dev->bus = &pmu_bus;
9069 pmu->dev->release = pmu_dev_release;
9070 ret = device_add(pmu->dev);
9071 if (ret)
9072 goto free_dev;
9073
9074 /* For PMUs with address filters, throw in an extra attribute: */
9075 if (pmu->nr_addr_filters)
9076 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9077
9078 if (ret)
9079 goto del_dev;
9080
9081 out:
9082 return ret;
9083
9084 del_dev:
9085 device_del(pmu->dev);
9086
9087 free_dev:
9088 put_device(pmu->dev);
9089 goto out;
9090 }
9091
9092 static struct lock_class_key cpuctx_mutex;
9093 static struct lock_class_key cpuctx_lock;
9094
9095 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9096 {
9097 int cpu, ret;
9098
9099 mutex_lock(&pmus_lock);
9100 ret = -ENOMEM;
9101 pmu->pmu_disable_count = alloc_percpu(int);
9102 if (!pmu->pmu_disable_count)
9103 goto unlock;
9104
9105 pmu->type = -1;
9106 if (!name)
9107 goto skip_type;
9108 pmu->name = name;
9109
9110 if (type < 0) {
9111 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9112 if (type < 0) {
9113 ret = type;
9114 goto free_pdc;
9115 }
9116 }
9117 pmu->type = type;
9118
9119 if (pmu_bus_running) {
9120 ret = pmu_dev_alloc(pmu);
9121 if (ret)
9122 goto free_idr;
9123 }
9124
9125 skip_type:
9126 if (pmu->task_ctx_nr == perf_hw_context) {
9127 static int hw_context_taken = 0;
9128
9129 /*
9130 * Other than systems with heterogeneous CPUs, it never makes
9131 * sense for two PMUs to share perf_hw_context. PMUs which are
9132 * uncore must use perf_invalid_context.
9133 */
9134 if (WARN_ON_ONCE(hw_context_taken &&
9135 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9136 pmu->task_ctx_nr = perf_invalid_context;
9137
9138 hw_context_taken = 1;
9139 }
9140
9141 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9142 if (pmu->pmu_cpu_context)
9143 goto got_cpu_context;
9144
9145 ret = -ENOMEM;
9146 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9147 if (!pmu->pmu_cpu_context)
9148 goto free_dev;
9149
9150 for_each_possible_cpu(cpu) {
9151 struct perf_cpu_context *cpuctx;
9152
9153 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9154 __perf_event_init_context(&cpuctx->ctx);
9155 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9156 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9157 cpuctx->ctx.pmu = pmu;
9158 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9159
9160 __perf_mux_hrtimer_init(cpuctx, cpu);
9161 }
9162
9163 got_cpu_context:
9164 if (!pmu->start_txn) {
9165 if (pmu->pmu_enable) {
9166 /*
9167 * If we have pmu_enable/pmu_disable calls, install
9168 * transaction stubs that use that to try and batch
9169 * hardware accesses.
9170 */
9171 pmu->start_txn = perf_pmu_start_txn;
9172 pmu->commit_txn = perf_pmu_commit_txn;
9173 pmu->cancel_txn = perf_pmu_cancel_txn;
9174 } else {
9175 pmu->start_txn = perf_pmu_nop_txn;
9176 pmu->commit_txn = perf_pmu_nop_int;
9177 pmu->cancel_txn = perf_pmu_nop_void;
9178 }
9179 }
9180
9181 if (!pmu->pmu_enable) {
9182 pmu->pmu_enable = perf_pmu_nop_void;
9183 pmu->pmu_disable = perf_pmu_nop_void;
9184 }
9185
9186 if (!pmu->event_idx)
9187 pmu->event_idx = perf_event_idx_default;
9188
9189 list_add_rcu(&pmu->entry, &pmus);
9190 atomic_set(&pmu->exclusive_cnt, 0);
9191 ret = 0;
9192 unlock:
9193 mutex_unlock(&pmus_lock);
9194
9195 return ret;
9196
9197 free_dev:
9198 device_del(pmu->dev);
9199 put_device(pmu->dev);
9200
9201 free_idr:
9202 if (pmu->type >= PERF_TYPE_MAX)
9203 idr_remove(&pmu_idr, pmu->type);
9204
9205 free_pdc:
9206 free_percpu(pmu->pmu_disable_count);
9207 goto unlock;
9208 }
9209 EXPORT_SYMBOL_GPL(perf_pmu_register);
9210
9211 void perf_pmu_unregister(struct pmu *pmu)
9212 {
9213 int remove_device;
9214
9215 mutex_lock(&pmus_lock);
9216 remove_device = pmu_bus_running;
9217 list_del_rcu(&pmu->entry);
9218 mutex_unlock(&pmus_lock);
9219
9220 /*
9221 * We dereference the pmu list under both SRCU and regular RCU, so
9222 * synchronize against both of those.
9223 */
9224 synchronize_srcu(&pmus_srcu);
9225 synchronize_rcu();
9226
9227 free_percpu(pmu->pmu_disable_count);
9228 if (pmu->type >= PERF_TYPE_MAX)
9229 idr_remove(&pmu_idr, pmu->type);
9230 if (remove_device) {
9231 if (pmu->nr_addr_filters)
9232 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9233 device_del(pmu->dev);
9234 put_device(pmu->dev);
9235 }
9236 free_pmu_context(pmu);
9237 }
9238 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9239
9240 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9241 {
9242 struct perf_event_context *ctx = NULL;
9243 int ret;
9244
9245 if (!try_module_get(pmu->module))
9246 return -ENODEV;
9247
9248 /*
9249 * A number of pmu->event_init() methods iterate the sibling_list to,
9250 * for example, validate if the group fits on the PMU. Therefore,
9251 * if this is a sibling event, acquire the ctx->mutex to protect
9252 * the sibling_list.
9253 */
9254 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9255 /*
9256 * This ctx->mutex can nest when we're called through
9257 * inheritance. See the perf_event_ctx_lock_nested() comment.
9258 */
9259 ctx = perf_event_ctx_lock_nested(event->group_leader,
9260 SINGLE_DEPTH_NESTING);
9261 BUG_ON(!ctx);
9262 }
9263
9264 event->pmu = pmu;
9265 ret = pmu->event_init(event);
9266
9267 if (ctx)
9268 perf_event_ctx_unlock(event->group_leader, ctx);
9269
9270 if (ret)
9271 module_put(pmu->module);
9272
9273 return ret;
9274 }
9275
9276 static struct pmu *perf_init_event(struct perf_event *event)
9277 {
9278 struct pmu *pmu;
9279 int idx;
9280 int ret;
9281
9282 idx = srcu_read_lock(&pmus_srcu);
9283
9284 /* Try parent's PMU first: */
9285 if (event->parent && event->parent->pmu) {
9286 pmu = event->parent->pmu;
9287 ret = perf_try_init_event(pmu, event);
9288 if (!ret)
9289 goto unlock;
9290 }
9291
9292 rcu_read_lock();
9293 pmu = idr_find(&pmu_idr, event->attr.type);
9294 rcu_read_unlock();
9295 if (pmu) {
9296 ret = perf_try_init_event(pmu, event);
9297 if (ret)
9298 pmu = ERR_PTR(ret);
9299 goto unlock;
9300 }
9301
9302 list_for_each_entry_rcu(pmu, &pmus, entry) {
9303 ret = perf_try_init_event(pmu, event);
9304 if (!ret)
9305 goto unlock;
9306
9307 if (ret != -ENOENT) {
9308 pmu = ERR_PTR(ret);
9309 goto unlock;
9310 }
9311 }
9312 pmu = ERR_PTR(-ENOENT);
9313 unlock:
9314 srcu_read_unlock(&pmus_srcu, idx);
9315
9316 return pmu;
9317 }
9318
9319 static void attach_sb_event(struct perf_event *event)
9320 {
9321 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9322
9323 raw_spin_lock(&pel->lock);
9324 list_add_rcu(&event->sb_list, &pel->list);
9325 raw_spin_unlock(&pel->lock);
9326 }
9327
9328 /*
9329 * We keep a list of all !task (and therefore per-cpu) events
9330 * that need to receive side-band records.
9331 *
9332 * This avoids having to scan all the various PMU per-cpu contexts
9333 * looking for them.
9334 */
9335 static void account_pmu_sb_event(struct perf_event *event)
9336 {
9337 if (is_sb_event(event))
9338 attach_sb_event(event);
9339 }
9340
9341 static void account_event_cpu(struct perf_event *event, int cpu)
9342 {
9343 if (event->parent)
9344 return;
9345
9346 if (is_cgroup_event(event))
9347 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9348 }
9349
9350 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9351 static void account_freq_event_nohz(void)
9352 {
9353 #ifdef CONFIG_NO_HZ_FULL
9354 /* Lock so we don't race with concurrent unaccount */
9355 spin_lock(&nr_freq_lock);
9356 if (atomic_inc_return(&nr_freq_events) == 1)
9357 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9358 spin_unlock(&nr_freq_lock);
9359 #endif
9360 }
9361
9362 static void account_freq_event(void)
9363 {
9364 if (tick_nohz_full_enabled())
9365 account_freq_event_nohz();
9366 else
9367 atomic_inc(&nr_freq_events);
9368 }
9369
9370
9371 static void account_event(struct perf_event *event)
9372 {
9373 bool inc = false;
9374
9375 if (event->parent)
9376 return;
9377
9378 if (event->attach_state & PERF_ATTACH_TASK)
9379 inc = true;
9380 if (event->attr.mmap || event->attr.mmap_data)
9381 atomic_inc(&nr_mmap_events);
9382 if (event->attr.comm)
9383 atomic_inc(&nr_comm_events);
9384 if (event->attr.namespaces)
9385 atomic_inc(&nr_namespaces_events);
9386 if (event->attr.task)
9387 atomic_inc(&nr_task_events);
9388 if (event->attr.freq)
9389 account_freq_event();
9390 if (event->attr.context_switch) {
9391 atomic_inc(&nr_switch_events);
9392 inc = true;
9393 }
9394 if (has_branch_stack(event))
9395 inc = true;
9396 if (is_cgroup_event(event))
9397 inc = true;
9398
9399 if (inc) {
9400 /*
9401 * We need the mutex here because static_branch_enable()
9402 * must complete *before* the perf_sched_count increment
9403 * becomes visible.
9404 */
9405 if (atomic_inc_not_zero(&perf_sched_count))
9406 goto enabled;
9407
9408 mutex_lock(&perf_sched_mutex);
9409 if (!atomic_read(&perf_sched_count)) {
9410 static_branch_enable(&perf_sched_events);
9411 /*
9412 * Guarantee that all CPUs observe they key change and
9413 * call the perf scheduling hooks before proceeding to
9414 * install events that need them.
9415 */
9416 synchronize_sched();
9417 }
9418 /*
9419 * Now that we have waited for the sync_sched(), allow further
9420 * increments to by-pass the mutex.
9421 */
9422 atomic_inc(&perf_sched_count);
9423 mutex_unlock(&perf_sched_mutex);
9424 }
9425 enabled:
9426
9427 account_event_cpu(event, event->cpu);
9428
9429 account_pmu_sb_event(event);
9430 }
9431
9432 /*
9433 * Allocate and initialize a event structure
9434 */
9435 static struct perf_event *
9436 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9437 struct task_struct *task,
9438 struct perf_event *group_leader,
9439 struct perf_event *parent_event,
9440 perf_overflow_handler_t overflow_handler,
9441 void *context, int cgroup_fd)
9442 {
9443 struct pmu *pmu;
9444 struct perf_event *event;
9445 struct hw_perf_event *hwc;
9446 long err = -EINVAL;
9447
9448 if ((unsigned)cpu >= nr_cpu_ids) {
9449 if (!task || cpu != -1)
9450 return ERR_PTR(-EINVAL);
9451 }
9452
9453 event = kzalloc(sizeof(*event), GFP_KERNEL);
9454 if (!event)
9455 return ERR_PTR(-ENOMEM);
9456
9457 /*
9458 * Single events are their own group leaders, with an
9459 * empty sibling list:
9460 */
9461 if (!group_leader)
9462 group_leader = event;
9463
9464 mutex_init(&event->child_mutex);
9465 INIT_LIST_HEAD(&event->child_list);
9466
9467 INIT_LIST_HEAD(&event->group_entry);
9468 INIT_LIST_HEAD(&event->event_entry);
9469 INIT_LIST_HEAD(&event->sibling_list);
9470 INIT_LIST_HEAD(&event->rb_entry);
9471 INIT_LIST_HEAD(&event->active_entry);
9472 INIT_LIST_HEAD(&event->addr_filters.list);
9473 INIT_HLIST_NODE(&event->hlist_entry);
9474
9475
9476 init_waitqueue_head(&event->waitq);
9477 init_irq_work(&event->pending, perf_pending_event);
9478
9479 mutex_init(&event->mmap_mutex);
9480 raw_spin_lock_init(&event->addr_filters.lock);
9481
9482 atomic_long_set(&event->refcount, 1);
9483 event->cpu = cpu;
9484 event->attr = *attr;
9485 event->group_leader = group_leader;
9486 event->pmu = NULL;
9487 event->oncpu = -1;
9488
9489 event->parent = parent_event;
9490
9491 event->ns = get_pid_ns(task_active_pid_ns(current));
9492 event->id = atomic64_inc_return(&perf_event_id);
9493
9494 event->state = PERF_EVENT_STATE_INACTIVE;
9495
9496 if (task) {
9497 event->attach_state = PERF_ATTACH_TASK;
9498 /*
9499 * XXX pmu::event_init needs to know what task to account to
9500 * and we cannot use the ctx information because we need the
9501 * pmu before we get a ctx.
9502 */
9503 get_task_struct(task);
9504 event->hw.target = task;
9505 }
9506
9507 event->clock = &local_clock;
9508 if (parent_event)
9509 event->clock = parent_event->clock;
9510
9511 if (!overflow_handler && parent_event) {
9512 overflow_handler = parent_event->overflow_handler;
9513 context = parent_event->overflow_handler_context;
9514 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9515 if (overflow_handler == bpf_overflow_handler) {
9516 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9517
9518 if (IS_ERR(prog)) {
9519 err = PTR_ERR(prog);
9520 goto err_ns;
9521 }
9522 event->prog = prog;
9523 event->orig_overflow_handler =
9524 parent_event->orig_overflow_handler;
9525 }
9526 #endif
9527 }
9528
9529 if (overflow_handler) {
9530 event->overflow_handler = overflow_handler;
9531 event->overflow_handler_context = context;
9532 } else if (is_write_backward(event)){
9533 event->overflow_handler = perf_event_output_backward;
9534 event->overflow_handler_context = NULL;
9535 } else {
9536 event->overflow_handler = perf_event_output_forward;
9537 event->overflow_handler_context = NULL;
9538 }
9539
9540 perf_event__state_init(event);
9541
9542 pmu = NULL;
9543
9544 hwc = &event->hw;
9545 hwc->sample_period = attr->sample_period;
9546 if (attr->freq && attr->sample_freq)
9547 hwc->sample_period = 1;
9548 hwc->last_period = hwc->sample_period;
9549
9550 local64_set(&hwc->period_left, hwc->sample_period);
9551
9552 /*
9553 * We currently do not support PERF_SAMPLE_READ on inherited events.
9554 * See perf_output_read().
9555 */
9556 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9557 goto err_ns;
9558
9559 if (!has_branch_stack(event))
9560 event->attr.branch_sample_type = 0;
9561
9562 if (cgroup_fd != -1) {
9563 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9564 if (err)
9565 goto err_ns;
9566 }
9567
9568 pmu = perf_init_event(event);
9569 if (IS_ERR(pmu)) {
9570 err = PTR_ERR(pmu);
9571 goto err_ns;
9572 }
9573
9574 err = exclusive_event_init(event);
9575 if (err)
9576 goto err_pmu;
9577
9578 if (has_addr_filter(event)) {
9579 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9580 sizeof(unsigned long),
9581 GFP_KERNEL);
9582 if (!event->addr_filters_offs) {
9583 err = -ENOMEM;
9584 goto err_per_task;
9585 }
9586
9587 /* force hw sync on the address filters */
9588 event->addr_filters_gen = 1;
9589 }
9590
9591 if (!event->parent) {
9592 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9593 err = get_callchain_buffers(attr->sample_max_stack);
9594 if (err)
9595 goto err_addr_filters;
9596 }
9597 }
9598
9599 /* symmetric to unaccount_event() in _free_event() */
9600 account_event(event);
9601
9602 return event;
9603
9604 err_addr_filters:
9605 kfree(event->addr_filters_offs);
9606
9607 err_per_task:
9608 exclusive_event_destroy(event);
9609
9610 err_pmu:
9611 if (event->destroy)
9612 event->destroy(event);
9613 module_put(pmu->module);
9614 err_ns:
9615 if (is_cgroup_event(event))
9616 perf_detach_cgroup(event);
9617 if (event->ns)
9618 put_pid_ns(event->ns);
9619 if (event->hw.target)
9620 put_task_struct(event->hw.target);
9621 kfree(event);
9622
9623 return ERR_PTR(err);
9624 }
9625
9626 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9627 struct perf_event_attr *attr)
9628 {
9629 u32 size;
9630 int ret;
9631
9632 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9633 return -EFAULT;
9634
9635 /*
9636 * zero the full structure, so that a short copy will be nice.
9637 */
9638 memset(attr, 0, sizeof(*attr));
9639
9640 ret = get_user(size, &uattr->size);
9641 if (ret)
9642 return ret;
9643
9644 if (size > PAGE_SIZE) /* silly large */
9645 goto err_size;
9646
9647 if (!size) /* abi compat */
9648 size = PERF_ATTR_SIZE_VER0;
9649
9650 if (size < PERF_ATTR_SIZE_VER0)
9651 goto err_size;
9652
9653 /*
9654 * If we're handed a bigger struct than we know of,
9655 * ensure all the unknown bits are 0 - i.e. new
9656 * user-space does not rely on any kernel feature
9657 * extensions we dont know about yet.
9658 */
9659 if (size > sizeof(*attr)) {
9660 unsigned char __user *addr;
9661 unsigned char __user *end;
9662 unsigned char val;
9663
9664 addr = (void __user *)uattr + sizeof(*attr);
9665 end = (void __user *)uattr + size;
9666
9667 for (; addr < end; addr++) {
9668 ret = get_user(val, addr);
9669 if (ret)
9670 return ret;
9671 if (val)
9672 goto err_size;
9673 }
9674 size = sizeof(*attr);
9675 }
9676
9677 ret = copy_from_user(attr, uattr, size);
9678 if (ret)
9679 return -EFAULT;
9680
9681 attr->size = size;
9682
9683 if (attr->__reserved_1)
9684 return -EINVAL;
9685
9686 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9687 return -EINVAL;
9688
9689 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9690 return -EINVAL;
9691
9692 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9693 u64 mask = attr->branch_sample_type;
9694
9695 /* only using defined bits */
9696 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9697 return -EINVAL;
9698
9699 /* at least one branch bit must be set */
9700 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9701 return -EINVAL;
9702
9703 /* propagate priv level, when not set for branch */
9704 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9705
9706 /* exclude_kernel checked on syscall entry */
9707 if (!attr->exclude_kernel)
9708 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9709
9710 if (!attr->exclude_user)
9711 mask |= PERF_SAMPLE_BRANCH_USER;
9712
9713 if (!attr->exclude_hv)
9714 mask |= PERF_SAMPLE_BRANCH_HV;
9715 /*
9716 * adjust user setting (for HW filter setup)
9717 */
9718 attr->branch_sample_type = mask;
9719 }
9720 /* privileged levels capture (kernel, hv): check permissions */
9721 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9722 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9723 return -EACCES;
9724 }
9725
9726 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9727 ret = perf_reg_validate(attr->sample_regs_user);
9728 if (ret)
9729 return ret;
9730 }
9731
9732 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9733 if (!arch_perf_have_user_stack_dump())
9734 return -ENOSYS;
9735
9736 /*
9737 * We have __u32 type for the size, but so far
9738 * we can only use __u16 as maximum due to the
9739 * __u16 sample size limit.
9740 */
9741 if (attr->sample_stack_user >= USHRT_MAX)
9742 return -EINVAL;
9743 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9744 return -EINVAL;
9745 }
9746
9747 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9748 ret = perf_reg_validate(attr->sample_regs_intr);
9749 out:
9750 return ret;
9751
9752 err_size:
9753 put_user(sizeof(*attr), &uattr->size);
9754 ret = -E2BIG;
9755 goto out;
9756 }
9757
9758 static int
9759 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9760 {
9761 struct ring_buffer *rb = NULL;
9762 int ret = -EINVAL;
9763
9764 if (!output_event)
9765 goto set;
9766
9767 /* don't allow circular references */
9768 if (event == output_event)
9769 goto out;
9770
9771 /*
9772 * Don't allow cross-cpu buffers
9773 */
9774 if (output_event->cpu != event->cpu)
9775 goto out;
9776
9777 /*
9778 * If its not a per-cpu rb, it must be the same task.
9779 */
9780 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9781 goto out;
9782
9783 /*
9784 * Mixing clocks in the same buffer is trouble you don't need.
9785 */
9786 if (output_event->clock != event->clock)
9787 goto out;
9788
9789 /*
9790 * Either writing ring buffer from beginning or from end.
9791 * Mixing is not allowed.
9792 */
9793 if (is_write_backward(output_event) != is_write_backward(event))
9794 goto out;
9795
9796 /*
9797 * If both events generate aux data, they must be on the same PMU
9798 */
9799 if (has_aux(event) && has_aux(output_event) &&
9800 event->pmu != output_event->pmu)
9801 goto out;
9802
9803 set:
9804 mutex_lock(&event->mmap_mutex);
9805 /* Can't redirect output if we've got an active mmap() */
9806 if (atomic_read(&event->mmap_count))
9807 goto unlock;
9808
9809 if (output_event) {
9810 /* get the rb we want to redirect to */
9811 rb = ring_buffer_get(output_event);
9812 if (!rb)
9813 goto unlock;
9814 }
9815
9816 ring_buffer_attach(event, rb);
9817
9818 ret = 0;
9819 unlock:
9820 mutex_unlock(&event->mmap_mutex);
9821
9822 out:
9823 return ret;
9824 }
9825
9826 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9827 {
9828 if (b < a)
9829 swap(a, b);
9830
9831 mutex_lock(a);
9832 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9833 }
9834
9835 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9836 {
9837 bool nmi_safe = false;
9838
9839 switch (clk_id) {
9840 case CLOCK_MONOTONIC:
9841 event->clock = &ktime_get_mono_fast_ns;
9842 nmi_safe = true;
9843 break;
9844
9845 case CLOCK_MONOTONIC_RAW:
9846 event->clock = &ktime_get_raw_fast_ns;
9847 nmi_safe = true;
9848 break;
9849
9850 case CLOCK_REALTIME:
9851 event->clock = &ktime_get_real_ns;
9852 break;
9853
9854 case CLOCK_BOOTTIME:
9855 event->clock = &ktime_get_boot_ns;
9856 break;
9857
9858 case CLOCK_TAI:
9859 event->clock = &ktime_get_tai_ns;
9860 break;
9861
9862 default:
9863 return -EINVAL;
9864 }
9865
9866 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9867 return -EINVAL;
9868
9869 return 0;
9870 }
9871
9872 /*
9873 * Variation on perf_event_ctx_lock_nested(), except we take two context
9874 * mutexes.
9875 */
9876 static struct perf_event_context *
9877 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9878 struct perf_event_context *ctx)
9879 {
9880 struct perf_event_context *gctx;
9881
9882 again:
9883 rcu_read_lock();
9884 gctx = READ_ONCE(group_leader->ctx);
9885 if (!atomic_inc_not_zero(&gctx->refcount)) {
9886 rcu_read_unlock();
9887 goto again;
9888 }
9889 rcu_read_unlock();
9890
9891 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9892
9893 if (group_leader->ctx != gctx) {
9894 mutex_unlock(&ctx->mutex);
9895 mutex_unlock(&gctx->mutex);
9896 put_ctx(gctx);
9897 goto again;
9898 }
9899
9900 return gctx;
9901 }
9902
9903 /**
9904 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9905 *
9906 * @attr_uptr: event_id type attributes for monitoring/sampling
9907 * @pid: target pid
9908 * @cpu: target cpu
9909 * @group_fd: group leader event fd
9910 */
9911 SYSCALL_DEFINE5(perf_event_open,
9912 struct perf_event_attr __user *, attr_uptr,
9913 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9914 {
9915 struct perf_event *group_leader = NULL, *output_event = NULL;
9916 struct perf_event *event, *sibling;
9917 struct perf_event_attr attr;
9918 struct perf_event_context *ctx, *uninitialized_var(gctx);
9919 struct file *event_file = NULL;
9920 struct fd group = {NULL, 0};
9921 struct task_struct *task = NULL;
9922 struct pmu *pmu;
9923 int event_fd;
9924 int move_group = 0;
9925 int err;
9926 int f_flags = O_RDWR;
9927 int cgroup_fd = -1;
9928
9929 /* for future expandability... */
9930 if (flags & ~PERF_FLAG_ALL)
9931 return -EINVAL;
9932
9933 if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
9934 return -EACCES;
9935
9936 err = perf_copy_attr(attr_uptr, &attr);
9937 if (err)
9938 return err;
9939
9940 if (!attr.exclude_kernel) {
9941 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9942 return -EACCES;
9943 }
9944
9945 if (attr.namespaces) {
9946 if (!capable(CAP_SYS_ADMIN))
9947 return -EACCES;
9948 }
9949
9950 if (attr.freq) {
9951 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9952 return -EINVAL;
9953 } else {
9954 if (attr.sample_period & (1ULL << 63))
9955 return -EINVAL;
9956 }
9957
9958 /* Only privileged users can get physical addresses */
9959 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9960 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9961 return -EACCES;
9962
9963 if (!attr.sample_max_stack)
9964 attr.sample_max_stack = sysctl_perf_event_max_stack;
9965
9966 /*
9967 * In cgroup mode, the pid argument is used to pass the fd
9968 * opened to the cgroup directory in cgroupfs. The cpu argument
9969 * designates the cpu on which to monitor threads from that
9970 * cgroup.
9971 */
9972 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9973 return -EINVAL;
9974
9975 if (flags & PERF_FLAG_FD_CLOEXEC)
9976 f_flags |= O_CLOEXEC;
9977
9978 event_fd = get_unused_fd_flags(f_flags);
9979 if (event_fd < 0)
9980 return event_fd;
9981
9982 if (group_fd != -1) {
9983 err = perf_fget_light(group_fd, &group);
9984 if (err)
9985 goto err_fd;
9986 group_leader = group.file->private_data;
9987 if (flags & PERF_FLAG_FD_OUTPUT)
9988 output_event = group_leader;
9989 if (flags & PERF_FLAG_FD_NO_GROUP)
9990 group_leader = NULL;
9991 }
9992
9993 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9994 task = find_lively_task_by_vpid(pid);
9995 if (IS_ERR(task)) {
9996 err = PTR_ERR(task);
9997 goto err_group_fd;
9998 }
9999 }
10000
10001 if (task && group_leader &&
10002 group_leader->attr.inherit != attr.inherit) {
10003 err = -EINVAL;
10004 goto err_task;
10005 }
10006
10007 if (task) {
10008 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10009 if (err)
10010 goto err_task;
10011
10012 /*
10013 * Reuse ptrace permission checks for now.
10014 *
10015 * We must hold cred_guard_mutex across this and any potential
10016 * perf_install_in_context() call for this new event to
10017 * serialize against exec() altering our credentials (and the
10018 * perf_event_exit_task() that could imply).
10019 */
10020 err = -EACCES;
10021 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10022 goto err_cred;
10023 }
10024
10025 if (flags & PERF_FLAG_PID_CGROUP)
10026 cgroup_fd = pid;
10027
10028 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10029 NULL, NULL, cgroup_fd);
10030 if (IS_ERR(event)) {
10031 err = PTR_ERR(event);
10032 goto err_cred;
10033 }
10034
10035 if (is_sampling_event(event)) {
10036 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10037 err = -EOPNOTSUPP;
10038 goto err_alloc;
10039 }
10040 }
10041
10042 /*
10043 * Special case software events and allow them to be part of
10044 * any hardware group.
10045 */
10046 pmu = event->pmu;
10047
10048 if (attr.use_clockid) {
10049 err = perf_event_set_clock(event, attr.clockid);
10050 if (err)
10051 goto err_alloc;
10052 }
10053
10054 if (pmu->task_ctx_nr == perf_sw_context)
10055 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10056
10057 if (group_leader &&
10058 (is_software_event(event) != is_software_event(group_leader))) {
10059 if (is_software_event(event)) {
10060 /*
10061 * If event and group_leader are not both a software
10062 * event, and event is, then group leader is not.
10063 *
10064 * Allow the addition of software events to !software
10065 * groups, this is safe because software events never
10066 * fail to schedule.
10067 */
10068 pmu = group_leader->pmu;
10069 } else if (is_software_event(group_leader) &&
10070 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10071 /*
10072 * In case the group is a pure software group, and we
10073 * try to add a hardware event, move the whole group to
10074 * the hardware context.
10075 */
10076 move_group = 1;
10077 }
10078 }
10079
10080 /*
10081 * Get the target context (task or percpu):
10082 */
10083 ctx = find_get_context(pmu, task, event);
10084 if (IS_ERR(ctx)) {
10085 err = PTR_ERR(ctx);
10086 goto err_alloc;
10087 }
10088
10089 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10090 err = -EBUSY;
10091 goto err_context;
10092 }
10093
10094 /*
10095 * Look up the group leader (we will attach this event to it):
10096 */
10097 if (group_leader) {
10098 err = -EINVAL;
10099
10100 /*
10101 * Do not allow a recursive hierarchy (this new sibling
10102 * becoming part of another group-sibling):
10103 */
10104 if (group_leader->group_leader != group_leader)
10105 goto err_context;
10106
10107 /* All events in a group should have the same clock */
10108 if (group_leader->clock != event->clock)
10109 goto err_context;
10110
10111 /*
10112 * Make sure we're both events for the same CPU;
10113 * grouping events for different CPUs is broken; since
10114 * you can never concurrently schedule them anyhow.
10115 */
10116 if (group_leader->cpu != event->cpu)
10117 goto err_context;
10118
10119 /*
10120 * Make sure we're both on the same task, or both
10121 * per-CPU events.
10122 */
10123 if (group_leader->ctx->task != ctx->task)
10124 goto err_context;
10125
10126 /*
10127 * Do not allow to attach to a group in a different task
10128 * or CPU context. If we're moving SW events, we'll fix
10129 * this up later, so allow that.
10130 */
10131 if (!move_group && group_leader->ctx != ctx)
10132 goto err_context;
10133
10134 /*
10135 * Only a group leader can be exclusive or pinned
10136 */
10137 if (attr.exclusive || attr.pinned)
10138 goto err_context;
10139 }
10140
10141 if (output_event) {
10142 err = perf_event_set_output(event, output_event);
10143 if (err)
10144 goto err_context;
10145 }
10146
10147 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10148 f_flags);
10149 if (IS_ERR(event_file)) {
10150 err = PTR_ERR(event_file);
10151 event_file = NULL;
10152 goto err_context;
10153 }
10154
10155 if (move_group) {
10156 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10157
10158 if (gctx->task == TASK_TOMBSTONE) {
10159 err = -ESRCH;
10160 goto err_locked;
10161 }
10162
10163 /*
10164 * Check if we raced against another sys_perf_event_open() call
10165 * moving the software group underneath us.
10166 */
10167 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10168 /*
10169 * If someone moved the group out from under us, check
10170 * if this new event wound up on the same ctx, if so
10171 * its the regular !move_group case, otherwise fail.
10172 */
10173 if (gctx != ctx) {
10174 err = -EINVAL;
10175 goto err_locked;
10176 } else {
10177 perf_event_ctx_unlock(group_leader, gctx);
10178 move_group = 0;
10179 }
10180 }
10181 } else {
10182 mutex_lock(&ctx->mutex);
10183 }
10184
10185 if (ctx->task == TASK_TOMBSTONE) {
10186 err = -ESRCH;
10187 goto err_locked;
10188 }
10189
10190 if (!perf_event_validate_size(event)) {
10191 err = -E2BIG;
10192 goto err_locked;
10193 }
10194
10195 if (!task) {
10196 /*
10197 * Check if the @cpu we're creating an event for is online.
10198 *
10199 * We use the perf_cpu_context::ctx::mutex to serialize against
10200 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10201 */
10202 struct perf_cpu_context *cpuctx =
10203 container_of(ctx, struct perf_cpu_context, ctx);
10204
10205 if (!cpuctx->online) {
10206 err = -ENODEV;
10207 goto err_locked;
10208 }
10209 }
10210
10211
10212 /*
10213 * Must be under the same ctx::mutex as perf_install_in_context(),
10214 * because we need to serialize with concurrent event creation.
10215 */
10216 if (!exclusive_event_installable(event, ctx)) {
10217 /* exclusive and group stuff are assumed mutually exclusive */
10218 WARN_ON_ONCE(move_group);
10219
10220 err = -EBUSY;
10221 goto err_locked;
10222 }
10223
10224 WARN_ON_ONCE(ctx->parent_ctx);
10225
10226 /*
10227 * This is the point on no return; we cannot fail hereafter. This is
10228 * where we start modifying current state.
10229 */
10230
10231 if (move_group) {
10232 /*
10233 * See perf_event_ctx_lock() for comments on the details
10234 * of swizzling perf_event::ctx.
10235 */
10236 perf_remove_from_context(group_leader, 0);
10237 put_ctx(gctx);
10238
10239 list_for_each_entry(sibling, &group_leader->sibling_list,
10240 group_entry) {
10241 perf_remove_from_context(sibling, 0);
10242 put_ctx(gctx);
10243 }
10244
10245 /*
10246 * Wait for everybody to stop referencing the events through
10247 * the old lists, before installing it on new lists.
10248 */
10249 synchronize_rcu();
10250
10251 /*
10252 * Install the group siblings before the group leader.
10253 *
10254 * Because a group leader will try and install the entire group
10255 * (through the sibling list, which is still in-tact), we can
10256 * end up with siblings installed in the wrong context.
10257 *
10258 * By installing siblings first we NO-OP because they're not
10259 * reachable through the group lists.
10260 */
10261 list_for_each_entry(sibling, &group_leader->sibling_list,
10262 group_entry) {
10263 perf_event__state_init(sibling);
10264 perf_install_in_context(ctx, sibling, sibling->cpu);
10265 get_ctx(ctx);
10266 }
10267
10268 /*
10269 * Removing from the context ends up with disabled
10270 * event. What we want here is event in the initial
10271 * startup state, ready to be add into new context.
10272 */
10273 perf_event__state_init(group_leader);
10274 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10275 get_ctx(ctx);
10276 }
10277
10278 /*
10279 * Precalculate sample_data sizes; do while holding ctx::mutex such
10280 * that we're serialized against further additions and before
10281 * perf_install_in_context() which is the point the event is active and
10282 * can use these values.
10283 */
10284 perf_event__header_size(event);
10285 perf_event__id_header_size(event);
10286
10287 event->owner = current;
10288
10289 perf_install_in_context(ctx, event, event->cpu);
10290 perf_unpin_context(ctx);
10291
10292 if (move_group)
10293 perf_event_ctx_unlock(group_leader, gctx);
10294 mutex_unlock(&ctx->mutex);
10295
10296 if (task) {
10297 mutex_unlock(&task->signal->cred_guard_mutex);
10298 put_task_struct(task);
10299 }
10300
10301 mutex_lock(&current->perf_event_mutex);
10302 list_add_tail(&event->owner_entry, &current->perf_event_list);
10303 mutex_unlock(&current->perf_event_mutex);
10304
10305 /*
10306 * Drop the reference on the group_event after placing the
10307 * new event on the sibling_list. This ensures destruction
10308 * of the group leader will find the pointer to itself in
10309 * perf_group_detach().
10310 */
10311 fdput(group);
10312 fd_install(event_fd, event_file);
10313 return event_fd;
10314
10315 err_locked:
10316 if (move_group)
10317 perf_event_ctx_unlock(group_leader, gctx);
10318 mutex_unlock(&ctx->mutex);
10319 /* err_file: */
10320 fput(event_file);
10321 err_context:
10322 perf_unpin_context(ctx);
10323 put_ctx(ctx);
10324 err_alloc:
10325 /*
10326 * If event_file is set, the fput() above will have called ->release()
10327 * and that will take care of freeing the event.
10328 */
10329 if (!event_file)
10330 free_event(event);
10331 err_cred:
10332 if (task)
10333 mutex_unlock(&task->signal->cred_guard_mutex);
10334 err_task:
10335 if (task)
10336 put_task_struct(task);
10337 err_group_fd:
10338 fdput(group);
10339 err_fd:
10340 put_unused_fd(event_fd);
10341 return err;
10342 }
10343
10344 /**
10345 * perf_event_create_kernel_counter
10346 *
10347 * @attr: attributes of the counter to create
10348 * @cpu: cpu in which the counter is bound
10349 * @task: task to profile (NULL for percpu)
10350 */
10351 struct perf_event *
10352 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10353 struct task_struct *task,
10354 perf_overflow_handler_t overflow_handler,
10355 void *context)
10356 {
10357 struct perf_event_context *ctx;
10358 struct perf_event *event;
10359 int err;
10360
10361 /*
10362 * Get the target context (task or percpu):
10363 */
10364
10365 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10366 overflow_handler, context, -1);
10367 if (IS_ERR(event)) {
10368 err = PTR_ERR(event);
10369 goto err;
10370 }
10371
10372 /* Mark owner so we could distinguish it from user events. */
10373 event->owner = TASK_TOMBSTONE;
10374
10375 ctx = find_get_context(event->pmu, task, event);
10376 if (IS_ERR(ctx)) {
10377 err = PTR_ERR(ctx);
10378 goto err_free;
10379 }
10380
10381 WARN_ON_ONCE(ctx->parent_ctx);
10382 mutex_lock(&ctx->mutex);
10383 if (ctx->task == TASK_TOMBSTONE) {
10384 err = -ESRCH;
10385 goto err_unlock;
10386 }
10387
10388 if (!task) {
10389 /*
10390 * Check if the @cpu we're creating an event for is online.
10391 *
10392 * We use the perf_cpu_context::ctx::mutex to serialize against
10393 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10394 */
10395 struct perf_cpu_context *cpuctx =
10396 container_of(ctx, struct perf_cpu_context, ctx);
10397 if (!cpuctx->online) {
10398 err = -ENODEV;
10399 goto err_unlock;
10400 }
10401 }
10402
10403 if (!exclusive_event_installable(event, ctx)) {
10404 err = -EBUSY;
10405 goto err_unlock;
10406 }
10407
10408 perf_install_in_context(ctx, event, cpu);
10409 perf_unpin_context(ctx);
10410 mutex_unlock(&ctx->mutex);
10411
10412 return event;
10413
10414 err_unlock:
10415 mutex_unlock(&ctx->mutex);
10416 perf_unpin_context(ctx);
10417 put_ctx(ctx);
10418 err_free:
10419 free_event(event);
10420 err:
10421 return ERR_PTR(err);
10422 }
10423 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10424
10425 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10426 {
10427 struct perf_event_context *src_ctx;
10428 struct perf_event_context *dst_ctx;
10429 struct perf_event *event, *tmp;
10430 LIST_HEAD(events);
10431
10432 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10433 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10434
10435 /*
10436 * See perf_event_ctx_lock() for comments on the details
10437 * of swizzling perf_event::ctx.
10438 */
10439 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10440 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10441 event_entry) {
10442 perf_remove_from_context(event, 0);
10443 unaccount_event_cpu(event, src_cpu);
10444 put_ctx(src_ctx);
10445 list_add(&event->migrate_entry, &events);
10446 }
10447
10448 /*
10449 * Wait for the events to quiesce before re-instating them.
10450 */
10451 synchronize_rcu();
10452
10453 /*
10454 * Re-instate events in 2 passes.
10455 *
10456 * Skip over group leaders and only install siblings on this first
10457 * pass, siblings will not get enabled without a leader, however a
10458 * leader will enable its siblings, even if those are still on the old
10459 * context.
10460 */
10461 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10462 if (event->group_leader == event)
10463 continue;
10464
10465 list_del(&event->migrate_entry);
10466 if (event->state >= PERF_EVENT_STATE_OFF)
10467 event->state = PERF_EVENT_STATE_INACTIVE;
10468 account_event_cpu(event, dst_cpu);
10469 perf_install_in_context(dst_ctx, event, dst_cpu);
10470 get_ctx(dst_ctx);
10471 }
10472
10473 /*
10474 * Once all the siblings are setup properly, install the group leaders
10475 * to make it go.
10476 */
10477 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10478 list_del(&event->migrate_entry);
10479 if (event->state >= PERF_EVENT_STATE_OFF)
10480 event->state = PERF_EVENT_STATE_INACTIVE;
10481 account_event_cpu(event, dst_cpu);
10482 perf_install_in_context(dst_ctx, event, dst_cpu);
10483 get_ctx(dst_ctx);
10484 }
10485 mutex_unlock(&dst_ctx->mutex);
10486 mutex_unlock(&src_ctx->mutex);
10487 }
10488 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10489
10490 static void sync_child_event(struct perf_event *child_event,
10491 struct task_struct *child)
10492 {
10493 struct perf_event *parent_event = child_event->parent;
10494 u64 child_val;
10495
10496 if (child_event->attr.inherit_stat)
10497 perf_event_read_event(child_event, child);
10498
10499 child_val = perf_event_count(child_event);
10500
10501 /*
10502 * Add back the child's count to the parent's count:
10503 */
10504 atomic64_add(child_val, &parent_event->child_count);
10505 atomic64_add(child_event->total_time_enabled,
10506 &parent_event->child_total_time_enabled);
10507 atomic64_add(child_event->total_time_running,
10508 &parent_event->child_total_time_running);
10509 }
10510
10511 static void
10512 perf_event_exit_event(struct perf_event *child_event,
10513 struct perf_event_context *child_ctx,
10514 struct task_struct *child)
10515 {
10516 struct perf_event *parent_event = child_event->parent;
10517
10518 /*
10519 * Do not destroy the 'original' grouping; because of the context
10520 * switch optimization the original events could've ended up in a
10521 * random child task.
10522 *
10523 * If we were to destroy the original group, all group related
10524 * operations would cease to function properly after this random
10525 * child dies.
10526 *
10527 * Do destroy all inherited groups, we don't care about those
10528 * and being thorough is better.
10529 */
10530 raw_spin_lock_irq(&child_ctx->lock);
10531 WARN_ON_ONCE(child_ctx->is_active);
10532
10533 if (parent_event)
10534 perf_group_detach(child_event);
10535 list_del_event(child_event, child_ctx);
10536 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10537 raw_spin_unlock_irq(&child_ctx->lock);
10538
10539 /*
10540 * Parent events are governed by their filedesc, retain them.
10541 */
10542 if (!parent_event) {
10543 perf_event_wakeup(child_event);
10544 return;
10545 }
10546 /*
10547 * Child events can be cleaned up.
10548 */
10549
10550 sync_child_event(child_event, child);
10551
10552 /*
10553 * Remove this event from the parent's list
10554 */
10555 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10556 mutex_lock(&parent_event->child_mutex);
10557 list_del_init(&child_event->child_list);
10558 mutex_unlock(&parent_event->child_mutex);
10559
10560 /*
10561 * Kick perf_poll() for is_event_hup().
10562 */
10563 perf_event_wakeup(parent_event);
10564 free_event(child_event);
10565 put_event(parent_event);
10566 }
10567
10568 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10569 {
10570 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10571 struct perf_event *child_event, *next;
10572
10573 WARN_ON_ONCE(child != current);
10574
10575 child_ctx = perf_pin_task_context(child, ctxn);
10576 if (!child_ctx)
10577 return;
10578
10579 /*
10580 * In order to reduce the amount of tricky in ctx tear-down, we hold
10581 * ctx::mutex over the entire thing. This serializes against almost
10582 * everything that wants to access the ctx.
10583 *
10584 * The exception is sys_perf_event_open() /
10585 * perf_event_create_kernel_count() which does find_get_context()
10586 * without ctx::mutex (it cannot because of the move_group double mutex
10587 * lock thing). See the comments in perf_install_in_context().
10588 */
10589 mutex_lock(&child_ctx->mutex);
10590
10591 /*
10592 * In a single ctx::lock section, de-schedule the events and detach the
10593 * context from the task such that we cannot ever get it scheduled back
10594 * in.
10595 */
10596 raw_spin_lock_irq(&child_ctx->lock);
10597 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10598
10599 /*
10600 * Now that the context is inactive, destroy the task <-> ctx relation
10601 * and mark the context dead.
10602 */
10603 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10604 put_ctx(child_ctx); /* cannot be last */
10605 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10606 put_task_struct(current); /* cannot be last */
10607
10608 clone_ctx = unclone_ctx(child_ctx);
10609 raw_spin_unlock_irq(&child_ctx->lock);
10610
10611 if (clone_ctx)
10612 put_ctx(clone_ctx);
10613
10614 /*
10615 * Report the task dead after unscheduling the events so that we
10616 * won't get any samples after PERF_RECORD_EXIT. We can however still
10617 * get a few PERF_RECORD_READ events.
10618 */
10619 perf_event_task(child, child_ctx, 0);
10620
10621 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10622 perf_event_exit_event(child_event, child_ctx, child);
10623
10624 mutex_unlock(&child_ctx->mutex);
10625
10626 put_ctx(child_ctx);
10627 }
10628
10629 /*
10630 * When a child task exits, feed back event values to parent events.
10631 *
10632 * Can be called with cred_guard_mutex held when called from
10633 * install_exec_creds().
10634 */
10635 void perf_event_exit_task(struct task_struct *child)
10636 {
10637 struct perf_event *event, *tmp;
10638 int ctxn;
10639
10640 mutex_lock(&child->perf_event_mutex);
10641 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10642 owner_entry) {
10643 list_del_init(&event->owner_entry);
10644
10645 /*
10646 * Ensure the list deletion is visible before we clear
10647 * the owner, closes a race against perf_release() where
10648 * we need to serialize on the owner->perf_event_mutex.
10649 */
10650 smp_store_release(&event->owner, NULL);
10651 }
10652 mutex_unlock(&child->perf_event_mutex);
10653
10654 for_each_task_context_nr(ctxn)
10655 perf_event_exit_task_context(child, ctxn);
10656
10657 /*
10658 * The perf_event_exit_task_context calls perf_event_task
10659 * with child's task_ctx, which generates EXIT events for
10660 * child contexts and sets child->perf_event_ctxp[] to NULL.
10661 * At this point we need to send EXIT events to cpu contexts.
10662 */
10663 perf_event_task(child, NULL, 0);
10664 }
10665
10666 static void perf_free_event(struct perf_event *event,
10667 struct perf_event_context *ctx)
10668 {
10669 struct perf_event *parent = event->parent;
10670
10671 if (WARN_ON_ONCE(!parent))
10672 return;
10673
10674 mutex_lock(&parent->child_mutex);
10675 list_del_init(&event->child_list);
10676 mutex_unlock(&parent->child_mutex);
10677
10678 put_event(parent);
10679
10680 raw_spin_lock_irq(&ctx->lock);
10681 perf_group_detach(event);
10682 list_del_event(event, ctx);
10683 raw_spin_unlock_irq(&ctx->lock);
10684 free_event(event);
10685 }
10686
10687 /*
10688 * Free an unexposed, unused context as created by inheritance by
10689 * perf_event_init_task below, used by fork() in case of fail.
10690 *
10691 * Not all locks are strictly required, but take them anyway to be nice and
10692 * help out with the lockdep assertions.
10693 */
10694 void perf_event_free_task(struct task_struct *task)
10695 {
10696 struct perf_event_context *ctx;
10697 struct perf_event *event, *tmp;
10698 int ctxn;
10699
10700 for_each_task_context_nr(ctxn) {
10701 ctx = task->perf_event_ctxp[ctxn];
10702 if (!ctx)
10703 continue;
10704
10705 mutex_lock(&ctx->mutex);
10706 raw_spin_lock_irq(&ctx->lock);
10707 /*
10708 * Destroy the task <-> ctx relation and mark the context dead.
10709 *
10710 * This is important because even though the task hasn't been
10711 * exposed yet the context has been (through child_list).
10712 */
10713 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10714 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10715 put_task_struct(task); /* cannot be last */
10716 raw_spin_unlock_irq(&ctx->lock);
10717
10718 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10719 perf_free_event(event, ctx);
10720
10721 mutex_unlock(&ctx->mutex);
10722 put_ctx(ctx);
10723 }
10724 }
10725
10726 void perf_event_delayed_put(struct task_struct *task)
10727 {
10728 int ctxn;
10729
10730 for_each_task_context_nr(ctxn)
10731 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10732 }
10733
10734 struct file *perf_event_get(unsigned int fd)
10735 {
10736 struct file *file;
10737
10738 file = fget_raw(fd);
10739 if (!file)
10740 return ERR_PTR(-EBADF);
10741
10742 if (file->f_op != &perf_fops) {
10743 fput(file);
10744 return ERR_PTR(-EBADF);
10745 }
10746
10747 return file;
10748 }
10749
10750 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10751 {
10752 if (!event)
10753 return ERR_PTR(-EINVAL);
10754
10755 return &event->attr;
10756 }
10757
10758 /*
10759 * Inherit a event from parent task to child task.
10760 *
10761 * Returns:
10762 * - valid pointer on success
10763 * - NULL for orphaned events
10764 * - IS_ERR() on error
10765 */
10766 static struct perf_event *
10767 inherit_event(struct perf_event *parent_event,
10768 struct task_struct *parent,
10769 struct perf_event_context *parent_ctx,
10770 struct task_struct *child,
10771 struct perf_event *group_leader,
10772 struct perf_event_context *child_ctx)
10773 {
10774 enum perf_event_state parent_state = parent_event->state;
10775 struct perf_event *child_event;
10776 unsigned long flags;
10777
10778 /*
10779 * Instead of creating recursive hierarchies of events,
10780 * we link inherited events back to the original parent,
10781 * which has a filp for sure, which we use as the reference
10782 * count:
10783 */
10784 if (parent_event->parent)
10785 parent_event = parent_event->parent;
10786
10787 child_event = perf_event_alloc(&parent_event->attr,
10788 parent_event->cpu,
10789 child,
10790 group_leader, parent_event,
10791 NULL, NULL, -1);
10792 if (IS_ERR(child_event))
10793 return child_event;
10794
10795 /*
10796 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10797 * must be under the same lock in order to serialize against
10798 * perf_event_release_kernel(), such that either we must observe
10799 * is_orphaned_event() or they will observe us on the child_list.
10800 */
10801 mutex_lock(&parent_event->child_mutex);
10802 if (is_orphaned_event(parent_event) ||
10803 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10804 mutex_unlock(&parent_event->child_mutex);
10805 free_event(child_event);
10806 return NULL;
10807 }
10808
10809 get_ctx(child_ctx);
10810
10811 /*
10812 * Make the child state follow the state of the parent event,
10813 * not its attr.disabled bit. We hold the parent's mutex,
10814 * so we won't race with perf_event_{en, dis}able_family.
10815 */
10816 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10817 child_event->state = PERF_EVENT_STATE_INACTIVE;
10818 else
10819 child_event->state = PERF_EVENT_STATE_OFF;
10820
10821 if (parent_event->attr.freq) {
10822 u64 sample_period = parent_event->hw.sample_period;
10823 struct hw_perf_event *hwc = &child_event->hw;
10824
10825 hwc->sample_period = sample_period;
10826 hwc->last_period = sample_period;
10827
10828 local64_set(&hwc->period_left, sample_period);
10829 }
10830
10831 child_event->ctx = child_ctx;
10832 child_event->overflow_handler = parent_event->overflow_handler;
10833 child_event->overflow_handler_context
10834 = parent_event->overflow_handler_context;
10835
10836 /*
10837 * Precalculate sample_data sizes
10838 */
10839 perf_event__header_size(child_event);
10840 perf_event__id_header_size(child_event);
10841
10842 /*
10843 * Link it up in the child's context:
10844 */
10845 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10846 add_event_to_ctx(child_event, child_ctx);
10847 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10848
10849 /*
10850 * Link this into the parent event's child list
10851 */
10852 list_add_tail(&child_event->child_list, &parent_event->child_list);
10853 mutex_unlock(&parent_event->child_mutex);
10854
10855 return child_event;
10856 }
10857
10858 /*
10859 * Inherits an event group.
10860 *
10861 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10862 * This matches with perf_event_release_kernel() removing all child events.
10863 *
10864 * Returns:
10865 * - 0 on success
10866 * - <0 on error
10867 */
10868 static int inherit_group(struct perf_event *parent_event,
10869 struct task_struct *parent,
10870 struct perf_event_context *parent_ctx,
10871 struct task_struct *child,
10872 struct perf_event_context *child_ctx)
10873 {
10874 struct perf_event *leader;
10875 struct perf_event *sub;
10876 struct perf_event *child_ctr;
10877
10878 leader = inherit_event(parent_event, parent, parent_ctx,
10879 child, NULL, child_ctx);
10880 if (IS_ERR(leader))
10881 return PTR_ERR(leader);
10882 /*
10883 * @leader can be NULL here because of is_orphaned_event(). In this
10884 * case inherit_event() will create individual events, similar to what
10885 * perf_group_detach() would do anyway.
10886 */
10887 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10888 child_ctr = inherit_event(sub, parent, parent_ctx,
10889 child, leader, child_ctx);
10890 if (IS_ERR(child_ctr))
10891 return PTR_ERR(child_ctr);
10892 }
10893 return 0;
10894 }
10895
10896 /*
10897 * Creates the child task context and tries to inherit the event-group.
10898 *
10899 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10900 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10901 * consistent with perf_event_release_kernel() removing all child events.
10902 *
10903 * Returns:
10904 * - 0 on success
10905 * - <0 on error
10906 */
10907 static int
10908 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10909 struct perf_event_context *parent_ctx,
10910 struct task_struct *child, int ctxn,
10911 int *inherited_all)
10912 {
10913 int ret;
10914 struct perf_event_context *child_ctx;
10915
10916 if (!event->attr.inherit) {
10917 *inherited_all = 0;
10918 return 0;
10919 }
10920
10921 child_ctx = child->perf_event_ctxp[ctxn];
10922 if (!child_ctx) {
10923 /*
10924 * This is executed from the parent task context, so
10925 * inherit events that have been marked for cloning.
10926 * First allocate and initialize a context for the
10927 * child.
10928 */
10929 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10930 if (!child_ctx)
10931 return -ENOMEM;
10932
10933 child->perf_event_ctxp[ctxn] = child_ctx;
10934 }
10935
10936 ret = inherit_group(event, parent, parent_ctx,
10937 child, child_ctx);
10938
10939 if (ret)
10940 *inherited_all = 0;
10941
10942 return ret;
10943 }
10944
10945 /*
10946 * Initialize the perf_event context in task_struct
10947 */
10948 static int perf_event_init_context(struct task_struct *child, int ctxn)
10949 {
10950 struct perf_event_context *child_ctx, *parent_ctx;
10951 struct perf_event_context *cloned_ctx;
10952 struct perf_event *event;
10953 struct task_struct *parent = current;
10954 int inherited_all = 1;
10955 unsigned long flags;
10956 int ret = 0;
10957
10958 if (likely(!parent->perf_event_ctxp[ctxn]))
10959 return 0;
10960
10961 /*
10962 * If the parent's context is a clone, pin it so it won't get
10963 * swapped under us.
10964 */
10965 parent_ctx = perf_pin_task_context(parent, ctxn);
10966 if (!parent_ctx)
10967 return 0;
10968
10969 /*
10970 * No need to check if parent_ctx != NULL here; since we saw
10971 * it non-NULL earlier, the only reason for it to become NULL
10972 * is if we exit, and since we're currently in the middle of
10973 * a fork we can't be exiting at the same time.
10974 */
10975
10976 /*
10977 * Lock the parent list. No need to lock the child - not PID
10978 * hashed yet and not running, so nobody can access it.
10979 */
10980 mutex_lock(&parent_ctx->mutex);
10981
10982 /*
10983 * We dont have to disable NMIs - we are only looking at
10984 * the list, not manipulating it:
10985 */
10986 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10987 ret = inherit_task_group(event, parent, parent_ctx,
10988 child, ctxn, &inherited_all);
10989 if (ret)
10990 goto out_unlock;
10991 }
10992
10993 /*
10994 * We can't hold ctx->lock when iterating the ->flexible_group list due
10995 * to allocations, but we need to prevent rotation because
10996 * rotate_ctx() will change the list from interrupt context.
10997 */
10998 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10999 parent_ctx->rotate_disable = 1;
11000 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11001
11002 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11003 ret = inherit_task_group(event, parent, parent_ctx,
11004 child, ctxn, &inherited_all);
11005 if (ret)
11006 goto out_unlock;
11007 }
11008
11009 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11010 parent_ctx->rotate_disable = 0;
11011
11012 child_ctx = child->perf_event_ctxp[ctxn];
11013
11014 if (child_ctx && inherited_all) {
11015 /*
11016 * Mark the child context as a clone of the parent
11017 * context, or of whatever the parent is a clone of.
11018 *
11019 * Note that if the parent is a clone, the holding of
11020 * parent_ctx->lock avoids it from being uncloned.
11021 */
11022 cloned_ctx = parent_ctx->parent_ctx;
11023 if (cloned_ctx) {
11024 child_ctx->parent_ctx = cloned_ctx;
11025 child_ctx->parent_gen = parent_ctx->parent_gen;
11026 } else {
11027 child_ctx->parent_ctx = parent_ctx;
11028 child_ctx->parent_gen = parent_ctx->generation;
11029 }
11030 get_ctx(child_ctx->parent_ctx);
11031 }
11032
11033 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11034 out_unlock:
11035 mutex_unlock(&parent_ctx->mutex);
11036
11037 perf_unpin_context(parent_ctx);
11038 put_ctx(parent_ctx);
11039
11040 return ret;
11041 }
11042
11043 /*
11044 * Initialize the perf_event context in task_struct
11045 */
11046 int perf_event_init_task(struct task_struct *child)
11047 {
11048 int ctxn, ret;
11049
11050 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11051 mutex_init(&child->perf_event_mutex);
11052 INIT_LIST_HEAD(&child->perf_event_list);
11053
11054 for_each_task_context_nr(ctxn) {
11055 ret = perf_event_init_context(child, ctxn);
11056 if (ret) {
11057 perf_event_free_task(child);
11058 return ret;
11059 }
11060 }
11061
11062 return 0;
11063 }
11064
11065 static void __init perf_event_init_all_cpus(void)
11066 {
11067 struct swevent_htable *swhash;
11068 int cpu;
11069
11070 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11071
11072 for_each_possible_cpu(cpu) {
11073 swhash = &per_cpu(swevent_htable, cpu);
11074 mutex_init(&swhash->hlist_mutex);
11075 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11076
11077 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11078 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11079
11080 #ifdef CONFIG_CGROUP_PERF
11081 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11082 #endif
11083 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11084 }
11085 }
11086
11087 void perf_swevent_init_cpu(unsigned int cpu)
11088 {
11089 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11090
11091 mutex_lock(&swhash->hlist_mutex);
11092 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11093 struct swevent_hlist *hlist;
11094
11095 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11096 WARN_ON(!hlist);
11097 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11098 }
11099 mutex_unlock(&swhash->hlist_mutex);
11100 }
11101
11102 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11103 static void __perf_event_exit_context(void *__info)
11104 {
11105 struct perf_event_context *ctx = __info;
11106 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11107 struct perf_event *event;
11108
11109 raw_spin_lock(&ctx->lock);
11110 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11111 list_for_each_entry(event, &ctx->event_list, event_entry)
11112 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11113 raw_spin_unlock(&ctx->lock);
11114 }
11115
11116 static void perf_event_exit_cpu_context(int cpu)
11117 {
11118 struct perf_cpu_context *cpuctx;
11119 struct perf_event_context *ctx;
11120 struct pmu *pmu;
11121
11122 mutex_lock(&pmus_lock);
11123 list_for_each_entry(pmu, &pmus, entry) {
11124 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11125 ctx = &cpuctx->ctx;
11126
11127 mutex_lock(&ctx->mutex);
11128 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11129 cpuctx->online = 0;
11130 mutex_unlock(&ctx->mutex);
11131 }
11132 cpumask_clear_cpu(cpu, perf_online_mask);
11133 mutex_unlock(&pmus_lock);
11134 }
11135 #else
11136
11137 static void perf_event_exit_cpu_context(int cpu) { }
11138
11139 #endif
11140
11141 int perf_event_init_cpu(unsigned int cpu)
11142 {
11143 struct perf_cpu_context *cpuctx;
11144 struct perf_event_context *ctx;
11145 struct pmu *pmu;
11146
11147 perf_swevent_init_cpu(cpu);
11148
11149 mutex_lock(&pmus_lock);
11150 cpumask_set_cpu(cpu, perf_online_mask);
11151 list_for_each_entry(pmu, &pmus, entry) {
11152 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11153 ctx = &cpuctx->ctx;
11154
11155 mutex_lock(&ctx->mutex);
11156 cpuctx->online = 1;
11157 mutex_unlock(&ctx->mutex);
11158 }
11159 mutex_unlock(&pmus_lock);
11160
11161 return 0;
11162 }
11163
11164 int perf_event_exit_cpu(unsigned int cpu)
11165 {
11166 perf_event_exit_cpu_context(cpu);
11167 return 0;
11168 }
11169
11170 static int
11171 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11172 {
11173 int cpu;
11174
11175 for_each_online_cpu(cpu)
11176 perf_event_exit_cpu(cpu);
11177
11178 return NOTIFY_OK;
11179 }
11180
11181 /*
11182 * Run the perf reboot notifier at the very last possible moment so that
11183 * the generic watchdog code runs as long as possible.
11184 */
11185 static struct notifier_block perf_reboot_notifier = {
11186 .notifier_call = perf_reboot,
11187 .priority = INT_MIN,
11188 };
11189
11190 void __init perf_event_init(void)
11191 {
11192 int ret;
11193
11194 idr_init(&pmu_idr);
11195
11196 perf_event_init_all_cpus();
11197 init_srcu_struct(&pmus_srcu);
11198 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11199 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11200 perf_pmu_register(&perf_task_clock, NULL, -1);
11201 perf_tp_register();
11202 perf_event_init_cpu(smp_processor_id());
11203 register_reboot_notifier(&perf_reboot_notifier);
11204
11205 ret = init_hw_breakpoint();
11206 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11207
11208 /*
11209 * Build time assertion that we keep the data_head at the intended
11210 * location. IOW, validation we got the __reserved[] size right.
11211 */
11212 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11213 != 1024);
11214 }
11215
11216 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11217 char *page)
11218 {
11219 struct perf_pmu_events_attr *pmu_attr =
11220 container_of(attr, struct perf_pmu_events_attr, attr);
11221
11222 if (pmu_attr->event_str)
11223 return sprintf(page, "%s\n", pmu_attr->event_str);
11224
11225 return 0;
11226 }
11227 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11228
11229 static int __init perf_event_sysfs_init(void)
11230 {
11231 struct pmu *pmu;
11232 int ret;
11233
11234 mutex_lock(&pmus_lock);
11235
11236 ret = bus_register(&pmu_bus);
11237 if (ret)
11238 goto unlock;
11239
11240 list_for_each_entry(pmu, &pmus, entry) {
11241 if (!pmu->name || pmu->type < 0)
11242 continue;
11243
11244 ret = pmu_dev_alloc(pmu);
11245 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11246 }
11247 pmu_bus_running = 1;
11248 ret = 0;
11249
11250 unlock:
11251 mutex_unlock(&pmus_lock);
11252
11253 return ret;
11254 }
11255 device_initcall(perf_event_sysfs_init);
11256
11257 #ifdef CONFIG_CGROUP_PERF
11258 static struct cgroup_subsys_state *
11259 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11260 {
11261 struct perf_cgroup *jc;
11262
11263 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11264 if (!jc)
11265 return ERR_PTR(-ENOMEM);
11266
11267 jc->info = alloc_percpu(struct perf_cgroup_info);
11268 if (!jc->info) {
11269 kfree(jc);
11270 return ERR_PTR(-ENOMEM);
11271 }
11272
11273 return &jc->css;
11274 }
11275
11276 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11277 {
11278 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11279
11280 free_percpu(jc->info);
11281 kfree(jc);
11282 }
11283
11284 static int __perf_cgroup_move(void *info)
11285 {
11286 struct task_struct *task = info;
11287 rcu_read_lock();
11288 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11289 rcu_read_unlock();
11290 return 0;
11291 }
11292
11293 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11294 {
11295 struct task_struct *task;
11296 struct cgroup_subsys_state *css;
11297
11298 cgroup_taskset_for_each(task, css, tset)
11299 task_function_call(task, __perf_cgroup_move, task);
11300 }
11301
11302 struct cgroup_subsys perf_event_cgrp_subsys = {
11303 .css_alloc = perf_cgroup_css_alloc,
11304 .css_free = perf_cgroup_css_free,
11305 .attach = perf_cgroup_attach,
11306 /*
11307 * Implicitly enable on dfl hierarchy so that perf events can
11308 * always be filtered by cgroup2 path as long as perf_event
11309 * controller is not mounted on a legacy hierarchy.
11310 */
11311 .implicit_on_dfl = true,
11312 .threaded = true,
11313 };
11314 #endif /* CONFIG_CGROUP_PERF */