]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/core.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 WARN_ON_ONCE(!irqs_disabled());
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407 * max perf event sample rate
408 */
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438 {
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441 if (ret || !write)
442 return ret;
443
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463 {
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466 if (ret || !write)
467 return ret;
468
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
477
478 return 0;
479 }
480
481 /*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
510
511 if (max_len == 0)
512 return;
513
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
519
520 /*
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
524 */
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
528
529 __report_avg = avg_len;
530 __report_allowed = max_len;
531
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
541
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
553 }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void) { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572 return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577 return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613 css_put(&event->cgrp->css);
614 event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619 return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652 struct perf_cgroup *cgrp;
653
654 /*
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
657 */
658 if (!is_cgroup_event(event))
659 return;
660
661 cgrp = perf_cgroup_from_task(current, event->ctx);
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgrp == event->cgrp)
666 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
672 {
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
682 return;
683
684 cgrp = perf_cgroup_from_task(task, ctx);
685 info = this_cpu_ptr(cgrp->info);
686 info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694 /*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702 struct perf_cpu_context *cpuctx;
703 struct list_head *list;
704 unsigned long flags;
705
706 /*
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
709 */
710 local_irq_save(flags);
711
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
718
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
727
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740 }
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743 }
744
745 local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
750 {
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
754 rcu_read_lock();
755 /*
756 * we come here when we know perf_cgroup_events > 0
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
759 */
760 cgrp1 = perf_cgroup_from_task(task, NULL);
761 cgrp2 = perf_cgroup_from_task(next, NULL);
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771 rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
776 {
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
780 rcu_read_lock();
781 /*
782 * we come here when we know perf_cgroup_events > 0
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
785 */
786 cgrp1 = perf_cgroup_from_task(task, NULL);
787 cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797 rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803 {
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
806 struct fd f = fdget(fd);
807 int ret = 0;
808
809 if (!f.file)
810 return -EBADF;
811
812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 &perf_event_cgrp_subsys);
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
830 }
831 out:
832 fdput(f);
833 return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860 {
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876 }
877
878 /*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885 {
886 struct perf_cpu_context *cpuctx;
887 struct list_head *cpuctx_entry;
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
909 cpuctx->cgrp = NULL;
910 }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918 return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926 return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950 {
951 return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000 * function must be called with interrupts disabled
1001 */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 struct perf_cpu_context *cpuctx;
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 rotations = perf_rotate_context(cpuctx);
1011
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 struct hrtimer *timer = &cpuctx->hrtimer;
1025 struct pmu *pmu = cpuctx->ctx.pmu;
1026 u64 interval;
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 struct hrtimer *timer = &cpuctx->hrtimer;
1050 struct pmu *pmu = cpuctx->ctx.pmu;
1051 unsigned long flags;
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
1055 return 0;
1056
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065 return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1089 */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094 WARN_ON(!irqs_disabled());
1095
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 put_task_struct(ctx->task);
1131 call_rcu(&ctx->rcu_head, free_ctx);
1132 }
1133 }
1134
1135 /*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
1188 * cred_guard_mutex
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 struct perf_event_context *ctx;
1200
1201 again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
1210 mutex_lock_nested(&ctx->mutex, nesting);
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228 {
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231 }
1232
1233 /*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
1246 ctx->parent_ctx = NULL;
1247 ctx->generation++;
1248
1249 return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275 * If we inherit events we want to return the parent event id
1276 * to userspace.
1277 */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 u64 id = event->id;
1281
1282 if (event->parent)
1283 id = event->parent->id;
1284
1285 return id;
1286 }
1287
1288 /*
1289 * Get the perf_event_context for a task and lock it.
1290 *
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 struct perf_event_context *ctx;
1298
1299 retry:
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 * part of the read side critical section was irqs-enabled -- see
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 * side critical section has interrupts disabled.
1308 */
1309 local_irq_save(*flags);
1310 rcu_read_lock();
1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
1316 * perf_event_task_sched_out, though the
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
1323 raw_spin_lock(&ctx->lock);
1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 raw_spin_unlock(&ctx->lock);
1326 rcu_read_unlock();
1327 local_irq_restore(*flags);
1328 goto retry;
1329 }
1330
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
1333 raw_spin_unlock(&ctx->lock);
1334 ctx = NULL;
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
1337 }
1338 }
1339 rcu_read_unlock();
1340 if (!ctx)
1341 local_irq_restore(*flags);
1342 return ctx;
1343 }
1344
1345 /*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 struct perf_event_context *ctx;
1354 unsigned long flags;
1355
1356 ctx = perf_lock_task_context(task, ctxn, &flags);
1357 if (ctx) {
1358 ++ctx->pin_count;
1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 }
1361 return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 unsigned long flags;
1367
1368 raw_spin_lock_irqsave(&ctx->lock, flags);
1369 --ctx->pin_count;
1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374 * Update the record of the current time in a context.
1375 */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 struct perf_event_context *ctx = event->ctx;
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
1391 return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
1402 lockdep_assert_held(&ctx->lock);
1403
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
1407
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
1419 run_end = perf_cgroup_event_time(event);
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
1430 run_end = perf_event_time(event);
1431
1432 event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446 }
1447
1448 static enum event_type_t get_event_type(struct perf_event *event)
1449 {
1450 struct perf_event_context *ctx = event->ctx;
1451 enum event_type_t event_type;
1452
1453 lockdep_assert_held(&ctx->lock);
1454
1455 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1456 if (!ctx->task)
1457 event_type |= EVENT_CPU;
1458
1459 return event_type;
1460 }
1461
1462 static struct list_head *
1463 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1464 {
1465 if (event->attr.pinned)
1466 return &ctx->pinned_groups;
1467 else
1468 return &ctx->flexible_groups;
1469 }
1470
1471 /*
1472 * Add a event from the lists for its context.
1473 * Must be called with ctx->mutex and ctx->lock held.
1474 */
1475 static void
1476 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1477 {
1478 lockdep_assert_held(&ctx->lock);
1479
1480 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1481 event->attach_state |= PERF_ATTACH_CONTEXT;
1482
1483 /*
1484 * If we're a stand alone event or group leader, we go to the context
1485 * list, group events are kept attached to the group so that
1486 * perf_group_detach can, at all times, locate all siblings.
1487 */
1488 if (event->group_leader == event) {
1489 struct list_head *list;
1490
1491 event->group_caps = event->event_caps;
1492
1493 list = ctx_group_list(event, ctx);
1494 list_add_tail(&event->group_entry, list);
1495 }
1496
1497 list_update_cgroup_event(event, ctx, true);
1498
1499 list_add_rcu(&event->event_entry, &ctx->event_list);
1500 ctx->nr_events++;
1501 if (event->attr.inherit_stat)
1502 ctx->nr_stat++;
1503
1504 ctx->generation++;
1505 }
1506
1507 /*
1508 * Initialize event state based on the perf_event_attr::disabled.
1509 */
1510 static inline void perf_event__state_init(struct perf_event *event)
1511 {
1512 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1513 PERF_EVENT_STATE_INACTIVE;
1514 }
1515
1516 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1517 {
1518 int entry = sizeof(u64); /* value */
1519 int size = 0;
1520 int nr = 1;
1521
1522 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1523 size += sizeof(u64);
1524
1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1526 size += sizeof(u64);
1527
1528 if (event->attr.read_format & PERF_FORMAT_ID)
1529 entry += sizeof(u64);
1530
1531 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1532 nr += nr_siblings;
1533 size += sizeof(u64);
1534 }
1535
1536 size += entry * nr;
1537 event->read_size = size;
1538 }
1539
1540 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1541 {
1542 struct perf_sample_data *data;
1543 u16 size = 0;
1544
1545 if (sample_type & PERF_SAMPLE_IP)
1546 size += sizeof(data->ip);
1547
1548 if (sample_type & PERF_SAMPLE_ADDR)
1549 size += sizeof(data->addr);
1550
1551 if (sample_type & PERF_SAMPLE_PERIOD)
1552 size += sizeof(data->period);
1553
1554 if (sample_type & PERF_SAMPLE_WEIGHT)
1555 size += sizeof(data->weight);
1556
1557 if (sample_type & PERF_SAMPLE_READ)
1558 size += event->read_size;
1559
1560 if (sample_type & PERF_SAMPLE_DATA_SRC)
1561 size += sizeof(data->data_src.val);
1562
1563 if (sample_type & PERF_SAMPLE_TRANSACTION)
1564 size += sizeof(data->txn);
1565
1566 event->header_size = size;
1567 }
1568
1569 /*
1570 * Called at perf_event creation and when events are attached/detached from a
1571 * group.
1572 */
1573 static void perf_event__header_size(struct perf_event *event)
1574 {
1575 __perf_event_read_size(event,
1576 event->group_leader->nr_siblings);
1577 __perf_event_header_size(event, event->attr.sample_type);
1578 }
1579
1580 static void perf_event__id_header_size(struct perf_event *event)
1581 {
1582 struct perf_sample_data *data;
1583 u64 sample_type = event->attr.sample_type;
1584 u16 size = 0;
1585
1586 if (sample_type & PERF_SAMPLE_TID)
1587 size += sizeof(data->tid_entry);
1588
1589 if (sample_type & PERF_SAMPLE_TIME)
1590 size += sizeof(data->time);
1591
1592 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1593 size += sizeof(data->id);
1594
1595 if (sample_type & PERF_SAMPLE_ID)
1596 size += sizeof(data->id);
1597
1598 if (sample_type & PERF_SAMPLE_STREAM_ID)
1599 size += sizeof(data->stream_id);
1600
1601 if (sample_type & PERF_SAMPLE_CPU)
1602 size += sizeof(data->cpu_entry);
1603
1604 event->id_header_size = size;
1605 }
1606
1607 static bool perf_event_validate_size(struct perf_event *event)
1608 {
1609 /*
1610 * The values computed here will be over-written when we actually
1611 * attach the event.
1612 */
1613 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1614 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1615 perf_event__id_header_size(event);
1616
1617 /*
1618 * Sum the lot; should not exceed the 64k limit we have on records.
1619 * Conservative limit to allow for callchains and other variable fields.
1620 */
1621 if (event->read_size + event->header_size +
1622 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1623 return false;
1624
1625 return true;
1626 }
1627
1628 static void perf_group_attach(struct perf_event *event)
1629 {
1630 struct perf_event *group_leader = event->group_leader, *pos;
1631
1632 lockdep_assert_held(&event->ctx->lock);
1633
1634 /*
1635 * We can have double attach due to group movement in perf_event_open.
1636 */
1637 if (event->attach_state & PERF_ATTACH_GROUP)
1638 return;
1639
1640 event->attach_state |= PERF_ATTACH_GROUP;
1641
1642 if (group_leader == event)
1643 return;
1644
1645 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1646
1647 group_leader->group_caps &= event->event_caps;
1648
1649 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1650 group_leader->nr_siblings++;
1651
1652 perf_event__header_size(group_leader);
1653
1654 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1655 perf_event__header_size(pos);
1656 }
1657
1658 /*
1659 * Remove a event from the lists for its context.
1660 * Must be called with ctx->mutex and ctx->lock held.
1661 */
1662 static void
1663 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665 WARN_ON_ONCE(event->ctx != ctx);
1666 lockdep_assert_held(&ctx->lock);
1667
1668 /*
1669 * We can have double detach due to exit/hot-unplug + close.
1670 */
1671 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1672 return;
1673
1674 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1675
1676 list_update_cgroup_event(event, ctx, false);
1677
1678 ctx->nr_events--;
1679 if (event->attr.inherit_stat)
1680 ctx->nr_stat--;
1681
1682 list_del_rcu(&event->event_entry);
1683
1684 if (event->group_leader == event)
1685 list_del_init(&event->group_entry);
1686
1687 update_group_times(event);
1688
1689 /*
1690 * If event was in error state, then keep it
1691 * that way, otherwise bogus counts will be
1692 * returned on read(). The only way to get out
1693 * of error state is by explicit re-enabling
1694 * of the event
1695 */
1696 if (event->state > PERF_EVENT_STATE_OFF)
1697 event->state = PERF_EVENT_STATE_OFF;
1698
1699 ctx->generation++;
1700 }
1701
1702 static void perf_group_detach(struct perf_event *event)
1703 {
1704 struct perf_event *sibling, *tmp;
1705 struct list_head *list = NULL;
1706
1707 lockdep_assert_held(&event->ctx->lock);
1708
1709 /*
1710 * We can have double detach due to exit/hot-unplug + close.
1711 */
1712 if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 return;
1714
1715 event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717 /*
1718 * If this is a sibling, remove it from its group.
1719 */
1720 if (event->group_leader != event) {
1721 list_del_init(&event->group_entry);
1722 event->group_leader->nr_siblings--;
1723 goto out;
1724 }
1725
1726 if (!list_empty(&event->group_entry))
1727 list = &event->group_entry;
1728
1729 /*
1730 * If this was a group event with sibling events then
1731 * upgrade the siblings to singleton events by adding them
1732 * to whatever list we are on.
1733 */
1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735 if (list)
1736 list_move_tail(&sibling->group_entry, list);
1737 sibling->group_leader = sibling;
1738
1739 /* Inherit group flags from the previous leader */
1740 sibling->group_caps = event->group_caps;
1741
1742 WARN_ON_ONCE(sibling->ctx != event->ctx);
1743 }
1744
1745 out:
1746 perf_event__header_size(event->group_leader);
1747
1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 perf_event__header_size(tmp);
1750 }
1751
1752 static bool is_orphaned_event(struct perf_event *event)
1753 {
1754 return event->state == PERF_EVENT_STATE_DEAD;
1755 }
1756
1757 static inline int __pmu_filter_match(struct perf_event *event)
1758 {
1759 struct pmu *pmu = event->pmu;
1760 return pmu->filter_match ? pmu->filter_match(event) : 1;
1761 }
1762
1763 /*
1764 * Check whether we should attempt to schedule an event group based on
1765 * PMU-specific filtering. An event group can consist of HW and SW events,
1766 * potentially with a SW leader, so we must check all the filters, to
1767 * determine whether a group is schedulable:
1768 */
1769 static inline int pmu_filter_match(struct perf_event *event)
1770 {
1771 struct perf_event *child;
1772
1773 if (!__pmu_filter_match(event))
1774 return 0;
1775
1776 list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 if (!__pmu_filter_match(child))
1778 return 0;
1779 }
1780
1781 return 1;
1782 }
1783
1784 static inline int
1785 event_filter_match(struct perf_event *event)
1786 {
1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 perf_cgroup_match(event) && pmu_filter_match(event);
1789 }
1790
1791 static void
1792 event_sched_out(struct perf_event *event,
1793 struct perf_cpu_context *cpuctx,
1794 struct perf_event_context *ctx)
1795 {
1796 u64 tstamp = perf_event_time(event);
1797 u64 delta;
1798
1799 WARN_ON_ONCE(event->ctx != ctx);
1800 lockdep_assert_held(&ctx->lock);
1801
1802 /*
1803 * An event which could not be activated because of
1804 * filter mismatch still needs to have its timings
1805 * maintained, otherwise bogus information is return
1806 * via read() for time_enabled, time_running:
1807 */
1808 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1809 !event_filter_match(event)) {
1810 delta = tstamp - event->tstamp_stopped;
1811 event->tstamp_running += delta;
1812 event->tstamp_stopped = tstamp;
1813 }
1814
1815 if (event->state != PERF_EVENT_STATE_ACTIVE)
1816 return;
1817
1818 perf_pmu_disable(event->pmu);
1819
1820 event->tstamp_stopped = tstamp;
1821 event->pmu->del(event, 0);
1822 event->oncpu = -1;
1823 event->state = PERF_EVENT_STATE_INACTIVE;
1824 if (event->pending_disable) {
1825 event->pending_disable = 0;
1826 event->state = PERF_EVENT_STATE_OFF;
1827 }
1828
1829 if (!is_software_event(event))
1830 cpuctx->active_oncpu--;
1831 if (!--ctx->nr_active)
1832 perf_event_ctx_deactivate(ctx);
1833 if (event->attr.freq && event->attr.sample_freq)
1834 ctx->nr_freq--;
1835 if (event->attr.exclusive || !cpuctx->active_oncpu)
1836 cpuctx->exclusive = 0;
1837
1838 perf_pmu_enable(event->pmu);
1839 }
1840
1841 static void
1842 group_sched_out(struct perf_event *group_event,
1843 struct perf_cpu_context *cpuctx,
1844 struct perf_event_context *ctx)
1845 {
1846 struct perf_event *event;
1847 int state = group_event->state;
1848
1849 perf_pmu_disable(ctx->pmu);
1850
1851 event_sched_out(group_event, cpuctx, ctx);
1852
1853 /*
1854 * Schedule out siblings (if any):
1855 */
1856 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1857 event_sched_out(event, cpuctx, ctx);
1858
1859 perf_pmu_enable(ctx->pmu);
1860
1861 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1862 cpuctx->exclusive = 0;
1863 }
1864
1865 #define DETACH_GROUP 0x01UL
1866
1867 /*
1868 * Cross CPU call to remove a performance event
1869 *
1870 * We disable the event on the hardware level first. After that we
1871 * remove it from the context list.
1872 */
1873 static void
1874 __perf_remove_from_context(struct perf_event *event,
1875 struct perf_cpu_context *cpuctx,
1876 struct perf_event_context *ctx,
1877 void *info)
1878 {
1879 unsigned long flags = (unsigned long)info;
1880
1881 event_sched_out(event, cpuctx, ctx);
1882 if (flags & DETACH_GROUP)
1883 perf_group_detach(event);
1884 list_del_event(event, ctx);
1885
1886 if (!ctx->nr_events && ctx->is_active) {
1887 ctx->is_active = 0;
1888 if (ctx->task) {
1889 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1890 cpuctx->task_ctx = NULL;
1891 }
1892 }
1893 }
1894
1895 /*
1896 * Remove the event from a task's (or a CPU's) list of events.
1897 *
1898 * If event->ctx is a cloned context, callers must make sure that
1899 * every task struct that event->ctx->task could possibly point to
1900 * remains valid. This is OK when called from perf_release since
1901 * that only calls us on the top-level context, which can't be a clone.
1902 * When called from perf_event_exit_task, it's OK because the
1903 * context has been detached from its task.
1904 */
1905 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1906 {
1907 struct perf_event_context *ctx = event->ctx;
1908
1909 lockdep_assert_held(&ctx->mutex);
1910
1911 event_function_call(event, __perf_remove_from_context, (void *)flags);
1912
1913 /*
1914 * The above event_function_call() can NO-OP when it hits
1915 * TASK_TOMBSTONE. In that case we must already have been detached
1916 * from the context (by perf_event_exit_event()) but the grouping
1917 * might still be in-tact.
1918 */
1919 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1920 if ((flags & DETACH_GROUP) &&
1921 (event->attach_state & PERF_ATTACH_GROUP)) {
1922 /*
1923 * Since in that case we cannot possibly be scheduled, simply
1924 * detach now.
1925 */
1926 raw_spin_lock_irq(&ctx->lock);
1927 perf_group_detach(event);
1928 raw_spin_unlock_irq(&ctx->lock);
1929 }
1930 }
1931
1932 /*
1933 * Cross CPU call to disable a performance event
1934 */
1935 static void __perf_event_disable(struct perf_event *event,
1936 struct perf_cpu_context *cpuctx,
1937 struct perf_event_context *ctx,
1938 void *info)
1939 {
1940 if (event->state < PERF_EVENT_STATE_INACTIVE)
1941 return;
1942
1943 update_context_time(ctx);
1944 update_cgrp_time_from_event(event);
1945 update_group_times(event);
1946 if (event == event->group_leader)
1947 group_sched_out(event, cpuctx, ctx);
1948 else
1949 event_sched_out(event, cpuctx, ctx);
1950 event->state = PERF_EVENT_STATE_OFF;
1951 }
1952
1953 /*
1954 * Disable a event.
1955 *
1956 * If event->ctx is a cloned context, callers must make sure that
1957 * every task struct that event->ctx->task could possibly point to
1958 * remains valid. This condition is satisifed when called through
1959 * perf_event_for_each_child or perf_event_for_each because they
1960 * hold the top-level event's child_mutex, so any descendant that
1961 * goes to exit will block in perf_event_exit_event().
1962 *
1963 * When called from perf_pending_event it's OK because event->ctx
1964 * is the current context on this CPU and preemption is disabled,
1965 * hence we can't get into perf_event_task_sched_out for this context.
1966 */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969 struct perf_event_context *ctx = event->ctx;
1970
1971 raw_spin_lock_irq(&ctx->lock);
1972 if (event->state <= PERF_EVENT_STATE_OFF) {
1973 raw_spin_unlock_irq(&ctx->lock);
1974 return;
1975 }
1976 raw_spin_unlock_irq(&ctx->lock);
1977
1978 event_function_call(event, __perf_event_disable, NULL);
1979 }
1980
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983 event_function_local(event, __perf_event_disable, NULL);
1984 }
1985
1986 /*
1987 * Strictly speaking kernel users cannot create groups and therefore this
1988 * interface does not need the perf_event_ctx_lock() magic.
1989 */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992 struct perf_event_context *ctx;
1993
1994 ctx = perf_event_ctx_lock(event);
1995 _perf_event_disable(event);
1996 perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002 event->pending_disable = 1;
2003 irq_work_queue(&event->pending);
2004 }
2005
2006 static void perf_set_shadow_time(struct perf_event *event,
2007 struct perf_event_context *ctx,
2008 u64 tstamp)
2009 {
2010 /*
2011 * use the correct time source for the time snapshot
2012 *
2013 * We could get by without this by leveraging the
2014 * fact that to get to this function, the caller
2015 * has most likely already called update_context_time()
2016 * and update_cgrp_time_xx() and thus both timestamp
2017 * are identical (or very close). Given that tstamp is,
2018 * already adjusted for cgroup, we could say that:
2019 * tstamp - ctx->timestamp
2020 * is equivalent to
2021 * tstamp - cgrp->timestamp.
2022 *
2023 * Then, in perf_output_read(), the calculation would
2024 * work with no changes because:
2025 * - event is guaranteed scheduled in
2026 * - no scheduled out in between
2027 * - thus the timestamp would be the same
2028 *
2029 * But this is a bit hairy.
2030 *
2031 * So instead, we have an explicit cgroup call to remain
2032 * within the time time source all along. We believe it
2033 * is cleaner and simpler to understand.
2034 */
2035 if (is_cgroup_event(event))
2036 perf_cgroup_set_shadow_time(event, tstamp);
2037 else
2038 event->shadow_ctx_time = tstamp - ctx->timestamp;
2039 }
2040
2041 #define MAX_INTERRUPTS (~0ULL)
2042
2043 static void perf_log_throttle(struct perf_event *event, int enable);
2044 static void perf_log_itrace_start(struct perf_event *event);
2045
2046 static int
2047 event_sched_in(struct perf_event *event,
2048 struct perf_cpu_context *cpuctx,
2049 struct perf_event_context *ctx)
2050 {
2051 u64 tstamp = perf_event_time(event);
2052 int ret = 0;
2053
2054 lockdep_assert_held(&ctx->lock);
2055
2056 if (event->state <= PERF_EVENT_STATE_OFF)
2057 return 0;
2058
2059 WRITE_ONCE(event->oncpu, smp_processor_id());
2060 /*
2061 * Order event::oncpu write to happen before the ACTIVE state
2062 * is visible.
2063 */
2064 smp_wmb();
2065 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2066
2067 /*
2068 * Unthrottle events, since we scheduled we might have missed several
2069 * ticks already, also for a heavily scheduling task there is little
2070 * guarantee it'll get a tick in a timely manner.
2071 */
2072 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2073 perf_log_throttle(event, 1);
2074 event->hw.interrupts = 0;
2075 }
2076
2077 /*
2078 * The new state must be visible before we turn it on in the hardware:
2079 */
2080 smp_wmb();
2081
2082 perf_pmu_disable(event->pmu);
2083
2084 perf_set_shadow_time(event, ctx, tstamp);
2085
2086 perf_log_itrace_start(event);
2087
2088 if (event->pmu->add(event, PERF_EF_START)) {
2089 event->state = PERF_EVENT_STATE_INACTIVE;
2090 event->oncpu = -1;
2091 ret = -EAGAIN;
2092 goto out;
2093 }
2094
2095 event->tstamp_running += tstamp - event->tstamp_stopped;
2096
2097 if (!is_software_event(event))
2098 cpuctx->active_oncpu++;
2099 if (!ctx->nr_active++)
2100 perf_event_ctx_activate(ctx);
2101 if (event->attr.freq && event->attr.sample_freq)
2102 ctx->nr_freq++;
2103
2104 if (event->attr.exclusive)
2105 cpuctx->exclusive = 1;
2106
2107 out:
2108 perf_pmu_enable(event->pmu);
2109
2110 return ret;
2111 }
2112
2113 static int
2114 group_sched_in(struct perf_event *group_event,
2115 struct perf_cpu_context *cpuctx,
2116 struct perf_event_context *ctx)
2117 {
2118 struct perf_event *event, *partial_group = NULL;
2119 struct pmu *pmu = ctx->pmu;
2120 u64 now = ctx->time;
2121 bool simulate = false;
2122
2123 if (group_event->state == PERF_EVENT_STATE_OFF)
2124 return 0;
2125
2126 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2127
2128 if (event_sched_in(group_event, cpuctx, ctx)) {
2129 pmu->cancel_txn(pmu);
2130 perf_mux_hrtimer_restart(cpuctx);
2131 return -EAGAIN;
2132 }
2133
2134 /*
2135 * Schedule in siblings as one group (if any):
2136 */
2137 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2138 if (event_sched_in(event, cpuctx, ctx)) {
2139 partial_group = event;
2140 goto group_error;
2141 }
2142 }
2143
2144 if (!pmu->commit_txn(pmu))
2145 return 0;
2146
2147 group_error:
2148 /*
2149 * Groups can be scheduled in as one unit only, so undo any
2150 * partial group before returning:
2151 * The events up to the failed event are scheduled out normally,
2152 * tstamp_stopped will be updated.
2153 *
2154 * The failed events and the remaining siblings need to have
2155 * their timings updated as if they had gone thru event_sched_in()
2156 * and event_sched_out(). This is required to get consistent timings
2157 * across the group. This also takes care of the case where the group
2158 * could never be scheduled by ensuring tstamp_stopped is set to mark
2159 * the time the event was actually stopped, such that time delta
2160 * calculation in update_event_times() is correct.
2161 */
2162 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2163 if (event == partial_group)
2164 simulate = true;
2165
2166 if (simulate) {
2167 event->tstamp_running += now - event->tstamp_stopped;
2168 event->tstamp_stopped = now;
2169 } else {
2170 event_sched_out(event, cpuctx, ctx);
2171 }
2172 }
2173 event_sched_out(group_event, cpuctx, ctx);
2174
2175 pmu->cancel_txn(pmu);
2176
2177 perf_mux_hrtimer_restart(cpuctx);
2178
2179 return -EAGAIN;
2180 }
2181
2182 /*
2183 * Work out whether we can put this event group on the CPU now.
2184 */
2185 static int group_can_go_on(struct perf_event *event,
2186 struct perf_cpu_context *cpuctx,
2187 int can_add_hw)
2188 {
2189 /*
2190 * Groups consisting entirely of software events can always go on.
2191 */
2192 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2193 return 1;
2194 /*
2195 * If an exclusive group is already on, no other hardware
2196 * events can go on.
2197 */
2198 if (cpuctx->exclusive)
2199 return 0;
2200 /*
2201 * If this group is exclusive and there are already
2202 * events on the CPU, it can't go on.
2203 */
2204 if (event->attr.exclusive && cpuctx->active_oncpu)
2205 return 0;
2206 /*
2207 * Otherwise, try to add it if all previous groups were able
2208 * to go on.
2209 */
2210 return can_add_hw;
2211 }
2212
2213 static void add_event_to_ctx(struct perf_event *event,
2214 struct perf_event_context *ctx)
2215 {
2216 u64 tstamp = perf_event_time(event);
2217
2218 list_add_event(event, ctx);
2219 perf_group_attach(event);
2220 event->tstamp_enabled = tstamp;
2221 event->tstamp_running = tstamp;
2222 event->tstamp_stopped = tstamp;
2223 }
2224
2225 static void ctx_sched_out(struct perf_event_context *ctx,
2226 struct perf_cpu_context *cpuctx,
2227 enum event_type_t event_type);
2228 static void
2229 ctx_sched_in(struct perf_event_context *ctx,
2230 struct perf_cpu_context *cpuctx,
2231 enum event_type_t event_type,
2232 struct task_struct *task);
2233
2234 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2235 struct perf_event_context *ctx,
2236 enum event_type_t event_type)
2237 {
2238 if (!cpuctx->task_ctx)
2239 return;
2240
2241 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2242 return;
2243
2244 ctx_sched_out(ctx, cpuctx, event_type);
2245 }
2246
2247 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2248 struct perf_event_context *ctx,
2249 struct task_struct *task)
2250 {
2251 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2252 if (ctx)
2253 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2254 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2255 if (ctx)
2256 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2257 }
2258
2259 /*
2260 * We want to maintain the following priority of scheduling:
2261 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2262 * - task pinned (EVENT_PINNED)
2263 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2264 * - task flexible (EVENT_FLEXIBLE).
2265 *
2266 * In order to avoid unscheduling and scheduling back in everything every
2267 * time an event is added, only do it for the groups of equal priority and
2268 * below.
2269 *
2270 * This can be called after a batch operation on task events, in which case
2271 * event_type is a bit mask of the types of events involved. For CPU events,
2272 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2273 */
2274 static void ctx_resched(struct perf_cpu_context *cpuctx,
2275 struct perf_event_context *task_ctx,
2276 enum event_type_t event_type)
2277 {
2278 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2279 bool cpu_event = !!(event_type & EVENT_CPU);
2280
2281 /*
2282 * If pinned groups are involved, flexible groups also need to be
2283 * scheduled out.
2284 */
2285 if (event_type & EVENT_PINNED)
2286 event_type |= EVENT_FLEXIBLE;
2287
2288 perf_pmu_disable(cpuctx->ctx.pmu);
2289 if (task_ctx)
2290 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2291
2292 /*
2293 * Decide which cpu ctx groups to schedule out based on the types
2294 * of events that caused rescheduling:
2295 * - EVENT_CPU: schedule out corresponding groups;
2296 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2297 * - otherwise, do nothing more.
2298 */
2299 if (cpu_event)
2300 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2301 else if (ctx_event_type & EVENT_PINNED)
2302 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2303
2304 perf_event_sched_in(cpuctx, task_ctx, current);
2305 perf_pmu_enable(cpuctx->ctx.pmu);
2306 }
2307
2308 /*
2309 * Cross CPU call to install and enable a performance event
2310 *
2311 * Very similar to remote_function() + event_function() but cannot assume that
2312 * things like ctx->is_active and cpuctx->task_ctx are set.
2313 */
2314 static int __perf_install_in_context(void *info)
2315 {
2316 struct perf_event *event = info;
2317 struct perf_event_context *ctx = event->ctx;
2318 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2319 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2320 bool reprogram = true;
2321 int ret = 0;
2322
2323 raw_spin_lock(&cpuctx->ctx.lock);
2324 if (ctx->task) {
2325 raw_spin_lock(&ctx->lock);
2326 task_ctx = ctx;
2327
2328 reprogram = (ctx->task == current);
2329
2330 /*
2331 * If the task is running, it must be running on this CPU,
2332 * otherwise we cannot reprogram things.
2333 *
2334 * If its not running, we don't care, ctx->lock will
2335 * serialize against it becoming runnable.
2336 */
2337 if (task_curr(ctx->task) && !reprogram) {
2338 ret = -ESRCH;
2339 goto unlock;
2340 }
2341
2342 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2343 } else if (task_ctx) {
2344 raw_spin_lock(&task_ctx->lock);
2345 }
2346
2347 if (reprogram) {
2348 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2349 add_event_to_ctx(event, ctx);
2350 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2351 } else {
2352 add_event_to_ctx(event, ctx);
2353 }
2354
2355 unlock:
2356 perf_ctx_unlock(cpuctx, task_ctx);
2357
2358 return ret;
2359 }
2360
2361 /*
2362 * Attach a performance event to a context.
2363 *
2364 * Very similar to event_function_call, see comment there.
2365 */
2366 static void
2367 perf_install_in_context(struct perf_event_context *ctx,
2368 struct perf_event *event,
2369 int cpu)
2370 {
2371 struct task_struct *task = READ_ONCE(ctx->task);
2372
2373 lockdep_assert_held(&ctx->mutex);
2374
2375 if (event->cpu != -1)
2376 event->cpu = cpu;
2377
2378 /*
2379 * Ensures that if we can observe event->ctx, both the event and ctx
2380 * will be 'complete'. See perf_iterate_sb_cpu().
2381 */
2382 smp_store_release(&event->ctx, ctx);
2383
2384 if (!task) {
2385 cpu_function_call(cpu, __perf_install_in_context, event);
2386 return;
2387 }
2388
2389 /*
2390 * Should not happen, we validate the ctx is still alive before calling.
2391 */
2392 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2393 return;
2394
2395 /*
2396 * Installing events is tricky because we cannot rely on ctx->is_active
2397 * to be set in case this is the nr_events 0 -> 1 transition.
2398 *
2399 * Instead we use task_curr(), which tells us if the task is running.
2400 * However, since we use task_curr() outside of rq::lock, we can race
2401 * against the actual state. This means the result can be wrong.
2402 *
2403 * If we get a false positive, we retry, this is harmless.
2404 *
2405 * If we get a false negative, things are complicated. If we are after
2406 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2407 * value must be correct. If we're before, it doesn't matter since
2408 * perf_event_context_sched_in() will program the counter.
2409 *
2410 * However, this hinges on the remote context switch having observed
2411 * our task->perf_event_ctxp[] store, such that it will in fact take
2412 * ctx::lock in perf_event_context_sched_in().
2413 *
2414 * We do this by task_function_call(), if the IPI fails to hit the task
2415 * we know any future context switch of task must see the
2416 * perf_event_ctpx[] store.
2417 */
2418
2419 /*
2420 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2421 * task_cpu() load, such that if the IPI then does not find the task
2422 * running, a future context switch of that task must observe the
2423 * store.
2424 */
2425 smp_mb();
2426 again:
2427 if (!task_function_call(task, __perf_install_in_context, event))
2428 return;
2429
2430 raw_spin_lock_irq(&ctx->lock);
2431 task = ctx->task;
2432 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2433 /*
2434 * Cannot happen because we already checked above (which also
2435 * cannot happen), and we hold ctx->mutex, which serializes us
2436 * against perf_event_exit_task_context().
2437 */
2438 raw_spin_unlock_irq(&ctx->lock);
2439 return;
2440 }
2441 /*
2442 * If the task is not running, ctx->lock will avoid it becoming so,
2443 * thus we can safely install the event.
2444 */
2445 if (task_curr(task)) {
2446 raw_spin_unlock_irq(&ctx->lock);
2447 goto again;
2448 }
2449 add_event_to_ctx(event, ctx);
2450 raw_spin_unlock_irq(&ctx->lock);
2451 }
2452
2453 /*
2454 * Put a event into inactive state and update time fields.
2455 * Enabling the leader of a group effectively enables all
2456 * the group members that aren't explicitly disabled, so we
2457 * have to update their ->tstamp_enabled also.
2458 * Note: this works for group members as well as group leaders
2459 * since the non-leader members' sibling_lists will be empty.
2460 */
2461 static void __perf_event_mark_enabled(struct perf_event *event)
2462 {
2463 struct perf_event *sub;
2464 u64 tstamp = perf_event_time(event);
2465
2466 event->state = PERF_EVENT_STATE_INACTIVE;
2467 event->tstamp_enabled = tstamp - event->total_time_enabled;
2468 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2469 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2470 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2471 }
2472 }
2473
2474 /*
2475 * Cross CPU call to enable a performance event
2476 */
2477 static void __perf_event_enable(struct perf_event *event,
2478 struct perf_cpu_context *cpuctx,
2479 struct perf_event_context *ctx,
2480 void *info)
2481 {
2482 struct perf_event *leader = event->group_leader;
2483 struct perf_event_context *task_ctx;
2484
2485 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2486 event->state <= PERF_EVENT_STATE_ERROR)
2487 return;
2488
2489 if (ctx->is_active)
2490 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2491
2492 __perf_event_mark_enabled(event);
2493
2494 if (!ctx->is_active)
2495 return;
2496
2497 if (!event_filter_match(event)) {
2498 if (is_cgroup_event(event))
2499 perf_cgroup_defer_enabled(event);
2500 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2501 return;
2502 }
2503
2504 /*
2505 * If the event is in a group and isn't the group leader,
2506 * then don't put it on unless the group is on.
2507 */
2508 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2509 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2510 return;
2511 }
2512
2513 task_ctx = cpuctx->task_ctx;
2514 if (ctx->task)
2515 WARN_ON_ONCE(task_ctx != ctx);
2516
2517 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2518 }
2519
2520 /*
2521 * Enable a event.
2522 *
2523 * If event->ctx is a cloned context, callers must make sure that
2524 * every task struct that event->ctx->task could possibly point to
2525 * remains valid. This condition is satisfied when called through
2526 * perf_event_for_each_child or perf_event_for_each as described
2527 * for perf_event_disable.
2528 */
2529 static void _perf_event_enable(struct perf_event *event)
2530 {
2531 struct perf_event_context *ctx = event->ctx;
2532
2533 raw_spin_lock_irq(&ctx->lock);
2534 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2535 event->state < PERF_EVENT_STATE_ERROR) {
2536 raw_spin_unlock_irq(&ctx->lock);
2537 return;
2538 }
2539
2540 /*
2541 * If the event is in error state, clear that first.
2542 *
2543 * That way, if we see the event in error state below, we know that it
2544 * has gone back into error state, as distinct from the task having
2545 * been scheduled away before the cross-call arrived.
2546 */
2547 if (event->state == PERF_EVENT_STATE_ERROR)
2548 event->state = PERF_EVENT_STATE_OFF;
2549 raw_spin_unlock_irq(&ctx->lock);
2550
2551 event_function_call(event, __perf_event_enable, NULL);
2552 }
2553
2554 /*
2555 * See perf_event_disable();
2556 */
2557 void perf_event_enable(struct perf_event *event)
2558 {
2559 struct perf_event_context *ctx;
2560
2561 ctx = perf_event_ctx_lock(event);
2562 _perf_event_enable(event);
2563 perf_event_ctx_unlock(event, ctx);
2564 }
2565 EXPORT_SYMBOL_GPL(perf_event_enable);
2566
2567 struct stop_event_data {
2568 struct perf_event *event;
2569 unsigned int restart;
2570 };
2571
2572 static int __perf_event_stop(void *info)
2573 {
2574 struct stop_event_data *sd = info;
2575 struct perf_event *event = sd->event;
2576
2577 /* if it's already INACTIVE, do nothing */
2578 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2579 return 0;
2580
2581 /* matches smp_wmb() in event_sched_in() */
2582 smp_rmb();
2583
2584 /*
2585 * There is a window with interrupts enabled before we get here,
2586 * so we need to check again lest we try to stop another CPU's event.
2587 */
2588 if (READ_ONCE(event->oncpu) != smp_processor_id())
2589 return -EAGAIN;
2590
2591 event->pmu->stop(event, PERF_EF_UPDATE);
2592
2593 /*
2594 * May race with the actual stop (through perf_pmu_output_stop()),
2595 * but it is only used for events with AUX ring buffer, and such
2596 * events will refuse to restart because of rb::aux_mmap_count==0,
2597 * see comments in perf_aux_output_begin().
2598 *
2599 * Since this is happening on a event-local CPU, no trace is lost
2600 * while restarting.
2601 */
2602 if (sd->restart)
2603 event->pmu->start(event, 0);
2604
2605 return 0;
2606 }
2607
2608 static int perf_event_stop(struct perf_event *event, int restart)
2609 {
2610 struct stop_event_data sd = {
2611 .event = event,
2612 .restart = restart,
2613 };
2614 int ret = 0;
2615
2616 do {
2617 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2618 return 0;
2619
2620 /* matches smp_wmb() in event_sched_in() */
2621 smp_rmb();
2622
2623 /*
2624 * We only want to restart ACTIVE events, so if the event goes
2625 * inactive here (event->oncpu==-1), there's nothing more to do;
2626 * fall through with ret==-ENXIO.
2627 */
2628 ret = cpu_function_call(READ_ONCE(event->oncpu),
2629 __perf_event_stop, &sd);
2630 } while (ret == -EAGAIN);
2631
2632 return ret;
2633 }
2634
2635 /*
2636 * In order to contain the amount of racy and tricky in the address filter
2637 * configuration management, it is a two part process:
2638 *
2639 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2640 * we update the addresses of corresponding vmas in
2641 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2642 * (p2) when an event is scheduled in (pmu::add), it calls
2643 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2644 * if the generation has changed since the previous call.
2645 *
2646 * If (p1) happens while the event is active, we restart it to force (p2).
2647 *
2648 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2649 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2650 * ioctl;
2651 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2652 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2653 * for reading;
2654 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2655 * of exec.
2656 */
2657 void perf_event_addr_filters_sync(struct perf_event *event)
2658 {
2659 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2660
2661 if (!has_addr_filter(event))
2662 return;
2663
2664 raw_spin_lock(&ifh->lock);
2665 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2666 event->pmu->addr_filters_sync(event);
2667 event->hw.addr_filters_gen = event->addr_filters_gen;
2668 }
2669 raw_spin_unlock(&ifh->lock);
2670 }
2671 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2672
2673 static int _perf_event_refresh(struct perf_event *event, int refresh)
2674 {
2675 /*
2676 * not supported on inherited events
2677 */
2678 if (event->attr.inherit || !is_sampling_event(event))
2679 return -EINVAL;
2680
2681 atomic_add(refresh, &event->event_limit);
2682 _perf_event_enable(event);
2683
2684 return 0;
2685 }
2686
2687 /*
2688 * See perf_event_disable()
2689 */
2690 int perf_event_refresh(struct perf_event *event, int refresh)
2691 {
2692 struct perf_event_context *ctx;
2693 int ret;
2694
2695 ctx = perf_event_ctx_lock(event);
2696 ret = _perf_event_refresh(event, refresh);
2697 perf_event_ctx_unlock(event, ctx);
2698
2699 return ret;
2700 }
2701 EXPORT_SYMBOL_GPL(perf_event_refresh);
2702
2703 static void ctx_sched_out(struct perf_event_context *ctx,
2704 struct perf_cpu_context *cpuctx,
2705 enum event_type_t event_type)
2706 {
2707 int is_active = ctx->is_active;
2708 struct perf_event *event;
2709
2710 lockdep_assert_held(&ctx->lock);
2711
2712 if (likely(!ctx->nr_events)) {
2713 /*
2714 * See __perf_remove_from_context().
2715 */
2716 WARN_ON_ONCE(ctx->is_active);
2717 if (ctx->task)
2718 WARN_ON_ONCE(cpuctx->task_ctx);
2719 return;
2720 }
2721
2722 ctx->is_active &= ~event_type;
2723 if (!(ctx->is_active & EVENT_ALL))
2724 ctx->is_active = 0;
2725
2726 if (ctx->task) {
2727 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2728 if (!ctx->is_active)
2729 cpuctx->task_ctx = NULL;
2730 }
2731
2732 /*
2733 * Always update time if it was set; not only when it changes.
2734 * Otherwise we can 'forget' to update time for any but the last
2735 * context we sched out. For example:
2736 *
2737 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2738 * ctx_sched_out(.event_type = EVENT_PINNED)
2739 *
2740 * would only update time for the pinned events.
2741 */
2742 if (is_active & EVENT_TIME) {
2743 /* update (and stop) ctx time */
2744 update_context_time(ctx);
2745 update_cgrp_time_from_cpuctx(cpuctx);
2746 }
2747
2748 is_active ^= ctx->is_active; /* changed bits */
2749
2750 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2751 return;
2752
2753 perf_pmu_disable(ctx->pmu);
2754 if (is_active & EVENT_PINNED) {
2755 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2756 group_sched_out(event, cpuctx, ctx);
2757 }
2758
2759 if (is_active & EVENT_FLEXIBLE) {
2760 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2761 group_sched_out(event, cpuctx, ctx);
2762 }
2763 perf_pmu_enable(ctx->pmu);
2764 }
2765
2766 /*
2767 * Test whether two contexts are equivalent, i.e. whether they have both been
2768 * cloned from the same version of the same context.
2769 *
2770 * Equivalence is measured using a generation number in the context that is
2771 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2772 * and list_del_event().
2773 */
2774 static int context_equiv(struct perf_event_context *ctx1,
2775 struct perf_event_context *ctx2)
2776 {
2777 lockdep_assert_held(&ctx1->lock);
2778 lockdep_assert_held(&ctx2->lock);
2779
2780 /* Pinning disables the swap optimization */
2781 if (ctx1->pin_count || ctx2->pin_count)
2782 return 0;
2783
2784 /* If ctx1 is the parent of ctx2 */
2785 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2786 return 1;
2787
2788 /* If ctx2 is the parent of ctx1 */
2789 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2790 return 1;
2791
2792 /*
2793 * If ctx1 and ctx2 have the same parent; we flatten the parent
2794 * hierarchy, see perf_event_init_context().
2795 */
2796 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2797 ctx1->parent_gen == ctx2->parent_gen)
2798 return 1;
2799
2800 /* Unmatched */
2801 return 0;
2802 }
2803
2804 static void __perf_event_sync_stat(struct perf_event *event,
2805 struct perf_event *next_event)
2806 {
2807 u64 value;
2808
2809 if (!event->attr.inherit_stat)
2810 return;
2811
2812 /*
2813 * Update the event value, we cannot use perf_event_read()
2814 * because we're in the middle of a context switch and have IRQs
2815 * disabled, which upsets smp_call_function_single(), however
2816 * we know the event must be on the current CPU, therefore we
2817 * don't need to use it.
2818 */
2819 switch (event->state) {
2820 case PERF_EVENT_STATE_ACTIVE:
2821 event->pmu->read(event);
2822 /* fall-through */
2823
2824 case PERF_EVENT_STATE_INACTIVE:
2825 update_event_times(event);
2826 break;
2827
2828 default:
2829 break;
2830 }
2831
2832 /*
2833 * In order to keep per-task stats reliable we need to flip the event
2834 * values when we flip the contexts.
2835 */
2836 value = local64_read(&next_event->count);
2837 value = local64_xchg(&event->count, value);
2838 local64_set(&next_event->count, value);
2839
2840 swap(event->total_time_enabled, next_event->total_time_enabled);
2841 swap(event->total_time_running, next_event->total_time_running);
2842
2843 /*
2844 * Since we swizzled the values, update the user visible data too.
2845 */
2846 perf_event_update_userpage(event);
2847 perf_event_update_userpage(next_event);
2848 }
2849
2850 static void perf_event_sync_stat(struct perf_event_context *ctx,
2851 struct perf_event_context *next_ctx)
2852 {
2853 struct perf_event *event, *next_event;
2854
2855 if (!ctx->nr_stat)
2856 return;
2857
2858 update_context_time(ctx);
2859
2860 event = list_first_entry(&ctx->event_list,
2861 struct perf_event, event_entry);
2862
2863 next_event = list_first_entry(&next_ctx->event_list,
2864 struct perf_event, event_entry);
2865
2866 while (&event->event_entry != &ctx->event_list &&
2867 &next_event->event_entry != &next_ctx->event_list) {
2868
2869 __perf_event_sync_stat(event, next_event);
2870
2871 event = list_next_entry(event, event_entry);
2872 next_event = list_next_entry(next_event, event_entry);
2873 }
2874 }
2875
2876 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2877 struct task_struct *next)
2878 {
2879 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2880 struct perf_event_context *next_ctx;
2881 struct perf_event_context *parent, *next_parent;
2882 struct perf_cpu_context *cpuctx;
2883 int do_switch = 1;
2884
2885 if (likely(!ctx))
2886 return;
2887
2888 cpuctx = __get_cpu_context(ctx);
2889 if (!cpuctx->task_ctx)
2890 return;
2891
2892 rcu_read_lock();
2893 next_ctx = next->perf_event_ctxp[ctxn];
2894 if (!next_ctx)
2895 goto unlock;
2896
2897 parent = rcu_dereference(ctx->parent_ctx);
2898 next_parent = rcu_dereference(next_ctx->parent_ctx);
2899
2900 /* If neither context have a parent context; they cannot be clones. */
2901 if (!parent && !next_parent)
2902 goto unlock;
2903
2904 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2905 /*
2906 * Looks like the two contexts are clones, so we might be
2907 * able to optimize the context switch. We lock both
2908 * contexts and check that they are clones under the
2909 * lock (including re-checking that neither has been
2910 * uncloned in the meantime). It doesn't matter which
2911 * order we take the locks because no other cpu could
2912 * be trying to lock both of these tasks.
2913 */
2914 raw_spin_lock(&ctx->lock);
2915 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2916 if (context_equiv(ctx, next_ctx)) {
2917 WRITE_ONCE(ctx->task, next);
2918 WRITE_ONCE(next_ctx->task, task);
2919
2920 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2921
2922 /*
2923 * RCU_INIT_POINTER here is safe because we've not
2924 * modified the ctx and the above modification of
2925 * ctx->task and ctx->task_ctx_data are immaterial
2926 * since those values are always verified under
2927 * ctx->lock which we're now holding.
2928 */
2929 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2930 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2931
2932 do_switch = 0;
2933
2934 perf_event_sync_stat(ctx, next_ctx);
2935 }
2936 raw_spin_unlock(&next_ctx->lock);
2937 raw_spin_unlock(&ctx->lock);
2938 }
2939 unlock:
2940 rcu_read_unlock();
2941
2942 if (do_switch) {
2943 raw_spin_lock(&ctx->lock);
2944 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2945 raw_spin_unlock(&ctx->lock);
2946 }
2947 }
2948
2949 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2950
2951 void perf_sched_cb_dec(struct pmu *pmu)
2952 {
2953 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2954
2955 this_cpu_dec(perf_sched_cb_usages);
2956
2957 if (!--cpuctx->sched_cb_usage)
2958 list_del(&cpuctx->sched_cb_entry);
2959 }
2960
2961
2962 void perf_sched_cb_inc(struct pmu *pmu)
2963 {
2964 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2965
2966 if (!cpuctx->sched_cb_usage++)
2967 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2968
2969 this_cpu_inc(perf_sched_cb_usages);
2970 }
2971
2972 /*
2973 * This function provides the context switch callback to the lower code
2974 * layer. It is invoked ONLY when the context switch callback is enabled.
2975 *
2976 * This callback is relevant even to per-cpu events; for example multi event
2977 * PEBS requires this to provide PID/TID information. This requires we flush
2978 * all queued PEBS records before we context switch to a new task.
2979 */
2980 static void perf_pmu_sched_task(struct task_struct *prev,
2981 struct task_struct *next,
2982 bool sched_in)
2983 {
2984 struct perf_cpu_context *cpuctx;
2985 struct pmu *pmu;
2986
2987 if (prev == next)
2988 return;
2989
2990 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2991 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2992
2993 if (WARN_ON_ONCE(!pmu->sched_task))
2994 continue;
2995
2996 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2997 perf_pmu_disable(pmu);
2998
2999 pmu->sched_task(cpuctx->task_ctx, sched_in);
3000
3001 perf_pmu_enable(pmu);
3002 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3003 }
3004 }
3005
3006 static void perf_event_switch(struct task_struct *task,
3007 struct task_struct *next_prev, bool sched_in);
3008
3009 #define for_each_task_context_nr(ctxn) \
3010 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3011
3012 /*
3013 * Called from scheduler to remove the events of the current task,
3014 * with interrupts disabled.
3015 *
3016 * We stop each event and update the event value in event->count.
3017 *
3018 * This does not protect us against NMI, but disable()
3019 * sets the disabled bit in the control field of event _before_
3020 * accessing the event control register. If a NMI hits, then it will
3021 * not restart the event.
3022 */
3023 void __perf_event_task_sched_out(struct task_struct *task,
3024 struct task_struct *next)
3025 {
3026 int ctxn;
3027
3028 if (__this_cpu_read(perf_sched_cb_usages))
3029 perf_pmu_sched_task(task, next, false);
3030
3031 if (atomic_read(&nr_switch_events))
3032 perf_event_switch(task, next, false);
3033
3034 for_each_task_context_nr(ctxn)
3035 perf_event_context_sched_out(task, ctxn, next);
3036
3037 /*
3038 * if cgroup events exist on this CPU, then we need
3039 * to check if we have to switch out PMU state.
3040 * cgroup event are system-wide mode only
3041 */
3042 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3043 perf_cgroup_sched_out(task, next);
3044 }
3045
3046 /*
3047 * Called with IRQs disabled
3048 */
3049 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3050 enum event_type_t event_type)
3051 {
3052 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3053 }
3054
3055 static void
3056 ctx_pinned_sched_in(struct perf_event_context *ctx,
3057 struct perf_cpu_context *cpuctx)
3058 {
3059 struct perf_event *event;
3060
3061 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3062 if (event->state <= PERF_EVENT_STATE_OFF)
3063 continue;
3064 if (!event_filter_match(event))
3065 continue;
3066
3067 /* may need to reset tstamp_enabled */
3068 if (is_cgroup_event(event))
3069 perf_cgroup_mark_enabled(event, ctx);
3070
3071 if (group_can_go_on(event, cpuctx, 1))
3072 group_sched_in(event, cpuctx, ctx);
3073
3074 /*
3075 * If this pinned group hasn't been scheduled,
3076 * put it in error state.
3077 */
3078 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3079 update_group_times(event);
3080 event->state = PERF_EVENT_STATE_ERROR;
3081 }
3082 }
3083 }
3084
3085 static void
3086 ctx_flexible_sched_in(struct perf_event_context *ctx,
3087 struct perf_cpu_context *cpuctx)
3088 {
3089 struct perf_event *event;
3090 int can_add_hw = 1;
3091
3092 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3093 /* Ignore events in OFF or ERROR state */
3094 if (event->state <= PERF_EVENT_STATE_OFF)
3095 continue;
3096 /*
3097 * Listen to the 'cpu' scheduling filter constraint
3098 * of events:
3099 */
3100 if (!event_filter_match(event))
3101 continue;
3102
3103 /* may need to reset tstamp_enabled */
3104 if (is_cgroup_event(event))
3105 perf_cgroup_mark_enabled(event, ctx);
3106
3107 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3108 if (group_sched_in(event, cpuctx, ctx))
3109 can_add_hw = 0;
3110 }
3111 }
3112 }
3113
3114 static void
3115 ctx_sched_in(struct perf_event_context *ctx,
3116 struct perf_cpu_context *cpuctx,
3117 enum event_type_t event_type,
3118 struct task_struct *task)
3119 {
3120 int is_active = ctx->is_active;
3121 u64 now;
3122
3123 lockdep_assert_held(&ctx->lock);
3124
3125 if (likely(!ctx->nr_events))
3126 return;
3127
3128 ctx->is_active |= (event_type | EVENT_TIME);
3129 if (ctx->task) {
3130 if (!is_active)
3131 cpuctx->task_ctx = ctx;
3132 else
3133 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3134 }
3135
3136 is_active ^= ctx->is_active; /* changed bits */
3137
3138 if (is_active & EVENT_TIME) {
3139 /* start ctx time */
3140 now = perf_clock();
3141 ctx->timestamp = now;
3142 perf_cgroup_set_timestamp(task, ctx);
3143 }
3144
3145 /*
3146 * First go through the list and put on any pinned groups
3147 * in order to give them the best chance of going on.
3148 */
3149 if (is_active & EVENT_PINNED)
3150 ctx_pinned_sched_in(ctx, cpuctx);
3151
3152 /* Then walk through the lower prio flexible groups */
3153 if (is_active & EVENT_FLEXIBLE)
3154 ctx_flexible_sched_in(ctx, cpuctx);
3155 }
3156
3157 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3158 enum event_type_t event_type,
3159 struct task_struct *task)
3160 {
3161 struct perf_event_context *ctx = &cpuctx->ctx;
3162
3163 ctx_sched_in(ctx, cpuctx, event_type, task);
3164 }
3165
3166 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3167 struct task_struct *task)
3168 {
3169 struct perf_cpu_context *cpuctx;
3170
3171 cpuctx = __get_cpu_context(ctx);
3172 if (cpuctx->task_ctx == ctx)
3173 return;
3174
3175 perf_ctx_lock(cpuctx, ctx);
3176 perf_pmu_disable(ctx->pmu);
3177 /*
3178 * We want to keep the following priority order:
3179 * cpu pinned (that don't need to move), task pinned,
3180 * cpu flexible, task flexible.
3181 *
3182 * However, if task's ctx is not carrying any pinned
3183 * events, no need to flip the cpuctx's events around.
3184 */
3185 if (!list_empty(&ctx->pinned_groups))
3186 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3187 perf_event_sched_in(cpuctx, ctx, task);
3188 perf_pmu_enable(ctx->pmu);
3189 perf_ctx_unlock(cpuctx, ctx);
3190 }
3191
3192 /*
3193 * Called from scheduler to add the events of the current task
3194 * with interrupts disabled.
3195 *
3196 * We restore the event value and then enable it.
3197 *
3198 * This does not protect us against NMI, but enable()
3199 * sets the enabled bit in the control field of event _before_
3200 * accessing the event control register. If a NMI hits, then it will
3201 * keep the event running.
3202 */
3203 void __perf_event_task_sched_in(struct task_struct *prev,
3204 struct task_struct *task)
3205 {
3206 struct perf_event_context *ctx;
3207 int ctxn;
3208
3209 /*
3210 * If cgroup events exist on this CPU, then we need to check if we have
3211 * to switch in PMU state; cgroup event are system-wide mode only.
3212 *
3213 * Since cgroup events are CPU events, we must schedule these in before
3214 * we schedule in the task events.
3215 */
3216 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3217 perf_cgroup_sched_in(prev, task);
3218
3219 for_each_task_context_nr(ctxn) {
3220 ctx = task->perf_event_ctxp[ctxn];
3221 if (likely(!ctx))
3222 continue;
3223
3224 perf_event_context_sched_in(ctx, task);
3225 }
3226
3227 if (atomic_read(&nr_switch_events))
3228 perf_event_switch(task, prev, true);
3229
3230 if (__this_cpu_read(perf_sched_cb_usages))
3231 perf_pmu_sched_task(prev, task, true);
3232 }
3233
3234 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3235 {
3236 u64 frequency = event->attr.sample_freq;
3237 u64 sec = NSEC_PER_SEC;
3238 u64 divisor, dividend;
3239
3240 int count_fls, nsec_fls, frequency_fls, sec_fls;
3241
3242 count_fls = fls64(count);
3243 nsec_fls = fls64(nsec);
3244 frequency_fls = fls64(frequency);
3245 sec_fls = 30;
3246
3247 /*
3248 * We got @count in @nsec, with a target of sample_freq HZ
3249 * the target period becomes:
3250 *
3251 * @count * 10^9
3252 * period = -------------------
3253 * @nsec * sample_freq
3254 *
3255 */
3256
3257 /*
3258 * Reduce accuracy by one bit such that @a and @b converge
3259 * to a similar magnitude.
3260 */
3261 #define REDUCE_FLS(a, b) \
3262 do { \
3263 if (a##_fls > b##_fls) { \
3264 a >>= 1; \
3265 a##_fls--; \
3266 } else { \
3267 b >>= 1; \
3268 b##_fls--; \
3269 } \
3270 } while (0)
3271
3272 /*
3273 * Reduce accuracy until either term fits in a u64, then proceed with
3274 * the other, so that finally we can do a u64/u64 division.
3275 */
3276 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3277 REDUCE_FLS(nsec, frequency);
3278 REDUCE_FLS(sec, count);
3279 }
3280
3281 if (count_fls + sec_fls > 64) {
3282 divisor = nsec * frequency;
3283
3284 while (count_fls + sec_fls > 64) {
3285 REDUCE_FLS(count, sec);
3286 divisor >>= 1;
3287 }
3288
3289 dividend = count * sec;
3290 } else {
3291 dividend = count * sec;
3292
3293 while (nsec_fls + frequency_fls > 64) {
3294 REDUCE_FLS(nsec, frequency);
3295 dividend >>= 1;
3296 }
3297
3298 divisor = nsec * frequency;
3299 }
3300
3301 if (!divisor)
3302 return dividend;
3303
3304 return div64_u64(dividend, divisor);
3305 }
3306
3307 static DEFINE_PER_CPU(int, perf_throttled_count);
3308 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3309
3310 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3311 {
3312 struct hw_perf_event *hwc = &event->hw;
3313 s64 period, sample_period;
3314 s64 delta;
3315
3316 period = perf_calculate_period(event, nsec, count);
3317
3318 delta = (s64)(period - hwc->sample_period);
3319 delta = (delta + 7) / 8; /* low pass filter */
3320
3321 sample_period = hwc->sample_period + delta;
3322
3323 if (!sample_period)
3324 sample_period = 1;
3325
3326 hwc->sample_period = sample_period;
3327
3328 if (local64_read(&hwc->period_left) > 8*sample_period) {
3329 if (disable)
3330 event->pmu->stop(event, PERF_EF_UPDATE);
3331
3332 local64_set(&hwc->period_left, 0);
3333
3334 if (disable)
3335 event->pmu->start(event, PERF_EF_RELOAD);
3336 }
3337 }
3338
3339 /*
3340 * combine freq adjustment with unthrottling to avoid two passes over the
3341 * events. At the same time, make sure, having freq events does not change
3342 * the rate of unthrottling as that would introduce bias.
3343 */
3344 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3345 int needs_unthr)
3346 {
3347 struct perf_event *event;
3348 struct hw_perf_event *hwc;
3349 u64 now, period = TICK_NSEC;
3350 s64 delta;
3351
3352 /*
3353 * only need to iterate over all events iff:
3354 * - context have events in frequency mode (needs freq adjust)
3355 * - there are events to unthrottle on this cpu
3356 */
3357 if (!(ctx->nr_freq || needs_unthr))
3358 return;
3359
3360 raw_spin_lock(&ctx->lock);
3361 perf_pmu_disable(ctx->pmu);
3362
3363 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3364 if (event->state != PERF_EVENT_STATE_ACTIVE)
3365 continue;
3366
3367 if (!event_filter_match(event))
3368 continue;
3369
3370 perf_pmu_disable(event->pmu);
3371
3372 hwc = &event->hw;
3373
3374 if (hwc->interrupts == MAX_INTERRUPTS) {
3375 hwc->interrupts = 0;
3376 perf_log_throttle(event, 1);
3377 event->pmu->start(event, 0);
3378 }
3379
3380 if (!event->attr.freq || !event->attr.sample_freq)
3381 goto next;
3382
3383 /*
3384 * stop the event and update event->count
3385 */
3386 event->pmu->stop(event, PERF_EF_UPDATE);
3387
3388 now = local64_read(&event->count);
3389 delta = now - hwc->freq_count_stamp;
3390 hwc->freq_count_stamp = now;
3391
3392 /*
3393 * restart the event
3394 * reload only if value has changed
3395 * we have stopped the event so tell that
3396 * to perf_adjust_period() to avoid stopping it
3397 * twice.
3398 */
3399 if (delta > 0)
3400 perf_adjust_period(event, period, delta, false);
3401
3402 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3403 next:
3404 perf_pmu_enable(event->pmu);
3405 }
3406
3407 perf_pmu_enable(ctx->pmu);
3408 raw_spin_unlock(&ctx->lock);
3409 }
3410
3411 /*
3412 * Round-robin a context's events:
3413 */
3414 static void rotate_ctx(struct perf_event_context *ctx)
3415 {
3416 /*
3417 * Rotate the first entry last of non-pinned groups. Rotation might be
3418 * disabled by the inheritance code.
3419 */
3420 if (!ctx->rotate_disable)
3421 list_rotate_left(&ctx->flexible_groups);
3422 }
3423
3424 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3425 {
3426 struct perf_event_context *ctx = NULL;
3427 int rotate = 0;
3428
3429 if (cpuctx->ctx.nr_events) {
3430 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3431 rotate = 1;
3432 }
3433
3434 ctx = cpuctx->task_ctx;
3435 if (ctx && ctx->nr_events) {
3436 if (ctx->nr_events != ctx->nr_active)
3437 rotate = 1;
3438 }
3439
3440 if (!rotate)
3441 goto done;
3442
3443 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3444 perf_pmu_disable(cpuctx->ctx.pmu);
3445
3446 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3447 if (ctx)
3448 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3449
3450 rotate_ctx(&cpuctx->ctx);
3451 if (ctx)
3452 rotate_ctx(ctx);
3453
3454 perf_event_sched_in(cpuctx, ctx, current);
3455
3456 perf_pmu_enable(cpuctx->ctx.pmu);
3457 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3458 done:
3459
3460 return rotate;
3461 }
3462
3463 void perf_event_task_tick(void)
3464 {
3465 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3466 struct perf_event_context *ctx, *tmp;
3467 int throttled;
3468
3469 WARN_ON(!irqs_disabled());
3470
3471 __this_cpu_inc(perf_throttled_seq);
3472 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3473 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3474
3475 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3476 perf_adjust_freq_unthr_context(ctx, throttled);
3477 }
3478
3479 static int event_enable_on_exec(struct perf_event *event,
3480 struct perf_event_context *ctx)
3481 {
3482 if (!event->attr.enable_on_exec)
3483 return 0;
3484
3485 event->attr.enable_on_exec = 0;
3486 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3487 return 0;
3488
3489 __perf_event_mark_enabled(event);
3490
3491 return 1;
3492 }
3493
3494 /*
3495 * Enable all of a task's events that have been marked enable-on-exec.
3496 * This expects task == current.
3497 */
3498 static void perf_event_enable_on_exec(int ctxn)
3499 {
3500 struct perf_event_context *ctx, *clone_ctx = NULL;
3501 enum event_type_t event_type = 0;
3502 struct perf_cpu_context *cpuctx;
3503 struct perf_event *event;
3504 unsigned long flags;
3505 int enabled = 0;
3506
3507 local_irq_save(flags);
3508 ctx = current->perf_event_ctxp[ctxn];
3509 if (!ctx || !ctx->nr_events)
3510 goto out;
3511
3512 cpuctx = __get_cpu_context(ctx);
3513 perf_ctx_lock(cpuctx, ctx);
3514 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3515 list_for_each_entry(event, &ctx->event_list, event_entry) {
3516 enabled |= event_enable_on_exec(event, ctx);
3517 event_type |= get_event_type(event);
3518 }
3519
3520 /*
3521 * Unclone and reschedule this context if we enabled any event.
3522 */
3523 if (enabled) {
3524 clone_ctx = unclone_ctx(ctx);
3525 ctx_resched(cpuctx, ctx, event_type);
3526 } else {
3527 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3528 }
3529 perf_ctx_unlock(cpuctx, ctx);
3530
3531 out:
3532 local_irq_restore(flags);
3533
3534 if (clone_ctx)
3535 put_ctx(clone_ctx);
3536 }
3537
3538 struct perf_read_data {
3539 struct perf_event *event;
3540 bool group;
3541 int ret;
3542 };
3543
3544 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3545 {
3546 u16 local_pkg, event_pkg;
3547
3548 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3549 int local_cpu = smp_processor_id();
3550
3551 event_pkg = topology_physical_package_id(event_cpu);
3552 local_pkg = topology_physical_package_id(local_cpu);
3553
3554 if (event_pkg == local_pkg)
3555 return local_cpu;
3556 }
3557
3558 return event_cpu;
3559 }
3560
3561 /*
3562 * Cross CPU call to read the hardware event
3563 */
3564 static void __perf_event_read(void *info)
3565 {
3566 struct perf_read_data *data = info;
3567 struct perf_event *sub, *event = data->event;
3568 struct perf_event_context *ctx = event->ctx;
3569 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3570 struct pmu *pmu = event->pmu;
3571
3572 /*
3573 * If this is a task context, we need to check whether it is
3574 * the current task context of this cpu. If not it has been
3575 * scheduled out before the smp call arrived. In that case
3576 * event->count would have been updated to a recent sample
3577 * when the event was scheduled out.
3578 */
3579 if (ctx->task && cpuctx->task_ctx != ctx)
3580 return;
3581
3582 raw_spin_lock(&ctx->lock);
3583 if (ctx->is_active) {
3584 update_context_time(ctx);
3585 update_cgrp_time_from_event(event);
3586 }
3587
3588 update_event_times(event);
3589 if (event->state != PERF_EVENT_STATE_ACTIVE)
3590 goto unlock;
3591
3592 if (!data->group) {
3593 pmu->read(event);
3594 data->ret = 0;
3595 goto unlock;
3596 }
3597
3598 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3599
3600 pmu->read(event);
3601
3602 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3603 update_event_times(sub);
3604 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3605 /*
3606 * Use sibling's PMU rather than @event's since
3607 * sibling could be on different (eg: software) PMU.
3608 */
3609 sub->pmu->read(sub);
3610 }
3611 }
3612
3613 data->ret = pmu->commit_txn(pmu);
3614
3615 unlock:
3616 raw_spin_unlock(&ctx->lock);
3617 }
3618
3619 static inline u64 perf_event_count(struct perf_event *event)
3620 {
3621 if (event->pmu->count)
3622 return event->pmu->count(event);
3623
3624 return __perf_event_count(event);
3625 }
3626
3627 /*
3628 * NMI-safe method to read a local event, that is an event that
3629 * is:
3630 * - either for the current task, or for this CPU
3631 * - does not have inherit set, for inherited task events
3632 * will not be local and we cannot read them atomically
3633 * - must not have a pmu::count method
3634 */
3635 int perf_event_read_local(struct perf_event *event, u64 *value)
3636 {
3637 unsigned long flags;
3638 int ret = 0;
3639
3640 /*
3641 * Disabling interrupts avoids all counter scheduling (context
3642 * switches, timer based rotation and IPIs).
3643 */
3644 local_irq_save(flags);
3645
3646 /*
3647 * It must not be an event with inherit set, we cannot read
3648 * all child counters from atomic context.
3649 */
3650 if (event->attr.inherit) {
3651 ret = -EOPNOTSUPP;
3652 goto out;
3653 }
3654
3655 /*
3656 * It must not have a pmu::count method, those are not
3657 * NMI safe.
3658 */
3659 if (event->pmu->count) {
3660 ret = -EOPNOTSUPP;
3661 goto out;
3662 }
3663
3664 /* If this is a per-task event, it must be for current */
3665 if ((event->attach_state & PERF_ATTACH_TASK) &&
3666 event->hw.target != current) {
3667 ret = -EINVAL;
3668 goto out;
3669 }
3670
3671 /* If this is a per-CPU event, it must be for this CPU */
3672 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3673 event->cpu != smp_processor_id()) {
3674 ret = -EINVAL;
3675 goto out;
3676 }
3677
3678 /*
3679 * If the event is currently on this CPU, its either a per-task event,
3680 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3681 * oncpu == -1).
3682 */
3683 if (event->oncpu == smp_processor_id())
3684 event->pmu->read(event);
3685
3686 *value = local64_read(&event->count);
3687 out:
3688 local_irq_restore(flags);
3689
3690 return ret;
3691 }
3692
3693 static int perf_event_read(struct perf_event *event, bool group)
3694 {
3695 int event_cpu, ret = 0;
3696
3697 /*
3698 * If event is enabled and currently active on a CPU, update the
3699 * value in the event structure:
3700 */
3701 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3702 struct perf_read_data data = {
3703 .event = event,
3704 .group = group,
3705 .ret = 0,
3706 };
3707
3708 event_cpu = READ_ONCE(event->oncpu);
3709 if ((unsigned)event_cpu >= nr_cpu_ids)
3710 return 0;
3711
3712 preempt_disable();
3713 event_cpu = __perf_event_read_cpu(event, event_cpu);
3714
3715 /*
3716 * Purposely ignore the smp_call_function_single() return
3717 * value.
3718 *
3719 * If event_cpu isn't a valid CPU it means the event got
3720 * scheduled out and that will have updated the event count.
3721 *
3722 * Therefore, either way, we'll have an up-to-date event count
3723 * after this.
3724 */
3725 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3726 preempt_enable();
3727 ret = data.ret;
3728 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3729 struct perf_event_context *ctx = event->ctx;
3730 unsigned long flags;
3731
3732 raw_spin_lock_irqsave(&ctx->lock, flags);
3733 /*
3734 * may read while context is not active
3735 * (e.g., thread is blocked), in that case
3736 * we cannot update context time
3737 */
3738 if (ctx->is_active) {
3739 update_context_time(ctx);
3740 update_cgrp_time_from_event(event);
3741 }
3742 if (group)
3743 update_group_times(event);
3744 else
3745 update_event_times(event);
3746 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3747 }
3748
3749 return ret;
3750 }
3751
3752 /*
3753 * Initialize the perf_event context in a task_struct:
3754 */
3755 static void __perf_event_init_context(struct perf_event_context *ctx)
3756 {
3757 raw_spin_lock_init(&ctx->lock);
3758 mutex_init(&ctx->mutex);
3759 INIT_LIST_HEAD(&ctx->active_ctx_list);
3760 INIT_LIST_HEAD(&ctx->pinned_groups);
3761 INIT_LIST_HEAD(&ctx->flexible_groups);
3762 INIT_LIST_HEAD(&ctx->event_list);
3763 atomic_set(&ctx->refcount, 1);
3764 }
3765
3766 static struct perf_event_context *
3767 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3768 {
3769 struct perf_event_context *ctx;
3770
3771 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3772 if (!ctx)
3773 return NULL;
3774
3775 __perf_event_init_context(ctx);
3776 if (task) {
3777 ctx->task = task;
3778 get_task_struct(task);
3779 }
3780 ctx->pmu = pmu;
3781
3782 return ctx;
3783 }
3784
3785 static struct task_struct *
3786 find_lively_task_by_vpid(pid_t vpid)
3787 {
3788 struct task_struct *task;
3789
3790 rcu_read_lock();
3791 if (!vpid)
3792 task = current;
3793 else
3794 task = find_task_by_vpid(vpid);
3795 if (task)
3796 get_task_struct(task);
3797 rcu_read_unlock();
3798
3799 if (!task)
3800 return ERR_PTR(-ESRCH);
3801
3802 return task;
3803 }
3804
3805 /*
3806 * Returns a matching context with refcount and pincount.
3807 */
3808 static struct perf_event_context *
3809 find_get_context(struct pmu *pmu, struct task_struct *task,
3810 struct perf_event *event)
3811 {
3812 struct perf_event_context *ctx, *clone_ctx = NULL;
3813 struct perf_cpu_context *cpuctx;
3814 void *task_ctx_data = NULL;
3815 unsigned long flags;
3816 int ctxn, err;
3817 int cpu = event->cpu;
3818
3819 if (!task) {
3820 /* Must be root to operate on a CPU event: */
3821 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3822 return ERR_PTR(-EACCES);
3823
3824 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3825 ctx = &cpuctx->ctx;
3826 get_ctx(ctx);
3827 ++ctx->pin_count;
3828
3829 return ctx;
3830 }
3831
3832 err = -EINVAL;
3833 ctxn = pmu->task_ctx_nr;
3834 if (ctxn < 0)
3835 goto errout;
3836
3837 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3838 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3839 if (!task_ctx_data) {
3840 err = -ENOMEM;
3841 goto errout;
3842 }
3843 }
3844
3845 retry:
3846 ctx = perf_lock_task_context(task, ctxn, &flags);
3847 if (ctx) {
3848 clone_ctx = unclone_ctx(ctx);
3849 ++ctx->pin_count;
3850
3851 if (task_ctx_data && !ctx->task_ctx_data) {
3852 ctx->task_ctx_data = task_ctx_data;
3853 task_ctx_data = NULL;
3854 }
3855 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3856
3857 if (clone_ctx)
3858 put_ctx(clone_ctx);
3859 } else {
3860 ctx = alloc_perf_context(pmu, task);
3861 err = -ENOMEM;
3862 if (!ctx)
3863 goto errout;
3864
3865 if (task_ctx_data) {
3866 ctx->task_ctx_data = task_ctx_data;
3867 task_ctx_data = NULL;
3868 }
3869
3870 err = 0;
3871 mutex_lock(&task->perf_event_mutex);
3872 /*
3873 * If it has already passed perf_event_exit_task().
3874 * we must see PF_EXITING, it takes this mutex too.
3875 */
3876 if (task->flags & PF_EXITING)
3877 err = -ESRCH;
3878 else if (task->perf_event_ctxp[ctxn])
3879 err = -EAGAIN;
3880 else {
3881 get_ctx(ctx);
3882 ++ctx->pin_count;
3883 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3884 }
3885 mutex_unlock(&task->perf_event_mutex);
3886
3887 if (unlikely(err)) {
3888 put_ctx(ctx);
3889
3890 if (err == -EAGAIN)
3891 goto retry;
3892 goto errout;
3893 }
3894 }
3895
3896 kfree(task_ctx_data);
3897 return ctx;
3898
3899 errout:
3900 kfree(task_ctx_data);
3901 return ERR_PTR(err);
3902 }
3903
3904 static void perf_event_free_filter(struct perf_event *event);
3905 static void perf_event_free_bpf_prog(struct perf_event *event);
3906
3907 static void free_event_rcu(struct rcu_head *head)
3908 {
3909 struct perf_event *event;
3910
3911 event = container_of(head, struct perf_event, rcu_head);
3912 if (event->ns)
3913 put_pid_ns(event->ns);
3914 perf_event_free_filter(event);
3915 kfree(event);
3916 }
3917
3918 static void ring_buffer_attach(struct perf_event *event,
3919 struct ring_buffer *rb);
3920
3921 static void detach_sb_event(struct perf_event *event)
3922 {
3923 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3924
3925 raw_spin_lock(&pel->lock);
3926 list_del_rcu(&event->sb_list);
3927 raw_spin_unlock(&pel->lock);
3928 }
3929
3930 static bool is_sb_event(struct perf_event *event)
3931 {
3932 struct perf_event_attr *attr = &event->attr;
3933
3934 if (event->parent)
3935 return false;
3936
3937 if (event->attach_state & PERF_ATTACH_TASK)
3938 return false;
3939
3940 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3941 attr->comm || attr->comm_exec ||
3942 attr->task ||
3943 attr->context_switch)
3944 return true;
3945 return false;
3946 }
3947
3948 static void unaccount_pmu_sb_event(struct perf_event *event)
3949 {
3950 if (is_sb_event(event))
3951 detach_sb_event(event);
3952 }
3953
3954 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3955 {
3956 if (event->parent)
3957 return;
3958
3959 if (is_cgroup_event(event))
3960 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3961 }
3962
3963 #ifdef CONFIG_NO_HZ_FULL
3964 static DEFINE_SPINLOCK(nr_freq_lock);
3965 #endif
3966
3967 static void unaccount_freq_event_nohz(void)
3968 {
3969 #ifdef CONFIG_NO_HZ_FULL
3970 spin_lock(&nr_freq_lock);
3971 if (atomic_dec_and_test(&nr_freq_events))
3972 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3973 spin_unlock(&nr_freq_lock);
3974 #endif
3975 }
3976
3977 static void unaccount_freq_event(void)
3978 {
3979 if (tick_nohz_full_enabled())
3980 unaccount_freq_event_nohz();
3981 else
3982 atomic_dec(&nr_freq_events);
3983 }
3984
3985 static void unaccount_event(struct perf_event *event)
3986 {
3987 bool dec = false;
3988
3989 if (event->parent)
3990 return;
3991
3992 if (event->attach_state & PERF_ATTACH_TASK)
3993 dec = true;
3994 if (event->attr.mmap || event->attr.mmap_data)
3995 atomic_dec(&nr_mmap_events);
3996 if (event->attr.comm)
3997 atomic_dec(&nr_comm_events);
3998 if (event->attr.namespaces)
3999 atomic_dec(&nr_namespaces_events);
4000 if (event->attr.task)
4001 atomic_dec(&nr_task_events);
4002 if (event->attr.freq)
4003 unaccount_freq_event();
4004 if (event->attr.context_switch) {
4005 dec = true;
4006 atomic_dec(&nr_switch_events);
4007 }
4008 if (is_cgroup_event(event))
4009 dec = true;
4010 if (has_branch_stack(event))
4011 dec = true;
4012
4013 if (dec) {
4014 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4015 schedule_delayed_work(&perf_sched_work, HZ);
4016 }
4017
4018 unaccount_event_cpu(event, event->cpu);
4019
4020 unaccount_pmu_sb_event(event);
4021 }
4022
4023 static void perf_sched_delayed(struct work_struct *work)
4024 {
4025 mutex_lock(&perf_sched_mutex);
4026 if (atomic_dec_and_test(&perf_sched_count))
4027 static_branch_disable(&perf_sched_events);
4028 mutex_unlock(&perf_sched_mutex);
4029 }
4030
4031 /*
4032 * The following implement mutual exclusion of events on "exclusive" pmus
4033 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4034 * at a time, so we disallow creating events that might conflict, namely:
4035 *
4036 * 1) cpu-wide events in the presence of per-task events,
4037 * 2) per-task events in the presence of cpu-wide events,
4038 * 3) two matching events on the same context.
4039 *
4040 * The former two cases are handled in the allocation path (perf_event_alloc(),
4041 * _free_event()), the latter -- before the first perf_install_in_context().
4042 */
4043 static int exclusive_event_init(struct perf_event *event)
4044 {
4045 struct pmu *pmu = event->pmu;
4046
4047 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4048 return 0;
4049
4050 /*
4051 * Prevent co-existence of per-task and cpu-wide events on the
4052 * same exclusive pmu.
4053 *
4054 * Negative pmu::exclusive_cnt means there are cpu-wide
4055 * events on this "exclusive" pmu, positive means there are
4056 * per-task events.
4057 *
4058 * Since this is called in perf_event_alloc() path, event::ctx
4059 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4060 * to mean "per-task event", because unlike other attach states it
4061 * never gets cleared.
4062 */
4063 if (event->attach_state & PERF_ATTACH_TASK) {
4064 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4065 return -EBUSY;
4066 } else {
4067 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4068 return -EBUSY;
4069 }
4070
4071 return 0;
4072 }
4073
4074 static void exclusive_event_destroy(struct perf_event *event)
4075 {
4076 struct pmu *pmu = event->pmu;
4077
4078 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4079 return;
4080
4081 /* see comment in exclusive_event_init() */
4082 if (event->attach_state & PERF_ATTACH_TASK)
4083 atomic_dec(&pmu->exclusive_cnt);
4084 else
4085 atomic_inc(&pmu->exclusive_cnt);
4086 }
4087
4088 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4089 {
4090 if ((e1->pmu == e2->pmu) &&
4091 (e1->cpu == e2->cpu ||
4092 e1->cpu == -1 ||
4093 e2->cpu == -1))
4094 return true;
4095 return false;
4096 }
4097
4098 /* Called under the same ctx::mutex as perf_install_in_context() */
4099 static bool exclusive_event_installable(struct perf_event *event,
4100 struct perf_event_context *ctx)
4101 {
4102 struct perf_event *iter_event;
4103 struct pmu *pmu = event->pmu;
4104
4105 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4106 return true;
4107
4108 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4109 if (exclusive_event_match(iter_event, event))
4110 return false;
4111 }
4112
4113 return true;
4114 }
4115
4116 static void perf_addr_filters_splice(struct perf_event *event,
4117 struct list_head *head);
4118
4119 static void _free_event(struct perf_event *event)
4120 {
4121 irq_work_sync(&event->pending);
4122
4123 unaccount_event(event);
4124
4125 if (event->rb) {
4126 /*
4127 * Can happen when we close an event with re-directed output.
4128 *
4129 * Since we have a 0 refcount, perf_mmap_close() will skip
4130 * over us; possibly making our ring_buffer_put() the last.
4131 */
4132 mutex_lock(&event->mmap_mutex);
4133 ring_buffer_attach(event, NULL);
4134 mutex_unlock(&event->mmap_mutex);
4135 }
4136
4137 if (is_cgroup_event(event))
4138 perf_detach_cgroup(event);
4139
4140 if (!event->parent) {
4141 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4142 put_callchain_buffers();
4143 }
4144
4145 perf_event_free_bpf_prog(event);
4146 perf_addr_filters_splice(event, NULL);
4147 kfree(event->addr_filters_offs);
4148
4149 if (event->destroy)
4150 event->destroy(event);
4151
4152 if (event->ctx)
4153 put_ctx(event->ctx);
4154
4155 exclusive_event_destroy(event);
4156 module_put(event->pmu->module);
4157
4158 call_rcu(&event->rcu_head, free_event_rcu);
4159 }
4160
4161 /*
4162 * Used to free events which have a known refcount of 1, such as in error paths
4163 * where the event isn't exposed yet and inherited events.
4164 */
4165 static void free_event(struct perf_event *event)
4166 {
4167 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4168 "unexpected event refcount: %ld; ptr=%p\n",
4169 atomic_long_read(&event->refcount), event)) {
4170 /* leak to avoid use-after-free */
4171 return;
4172 }
4173
4174 _free_event(event);
4175 }
4176
4177 /*
4178 * Remove user event from the owner task.
4179 */
4180 static void perf_remove_from_owner(struct perf_event *event)
4181 {
4182 struct task_struct *owner;
4183
4184 rcu_read_lock();
4185 /*
4186 * Matches the smp_store_release() in perf_event_exit_task(). If we
4187 * observe !owner it means the list deletion is complete and we can
4188 * indeed free this event, otherwise we need to serialize on
4189 * owner->perf_event_mutex.
4190 */
4191 owner = lockless_dereference(event->owner);
4192 if (owner) {
4193 /*
4194 * Since delayed_put_task_struct() also drops the last
4195 * task reference we can safely take a new reference
4196 * while holding the rcu_read_lock().
4197 */
4198 get_task_struct(owner);
4199 }
4200 rcu_read_unlock();
4201
4202 if (owner) {
4203 /*
4204 * If we're here through perf_event_exit_task() we're already
4205 * holding ctx->mutex which would be an inversion wrt. the
4206 * normal lock order.
4207 *
4208 * However we can safely take this lock because its the child
4209 * ctx->mutex.
4210 */
4211 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4212
4213 /*
4214 * We have to re-check the event->owner field, if it is cleared
4215 * we raced with perf_event_exit_task(), acquiring the mutex
4216 * ensured they're done, and we can proceed with freeing the
4217 * event.
4218 */
4219 if (event->owner) {
4220 list_del_init(&event->owner_entry);
4221 smp_store_release(&event->owner, NULL);
4222 }
4223 mutex_unlock(&owner->perf_event_mutex);
4224 put_task_struct(owner);
4225 }
4226 }
4227
4228 static void put_event(struct perf_event *event)
4229 {
4230 if (!atomic_long_dec_and_test(&event->refcount))
4231 return;
4232
4233 _free_event(event);
4234 }
4235
4236 /*
4237 * Kill an event dead; while event:refcount will preserve the event
4238 * object, it will not preserve its functionality. Once the last 'user'
4239 * gives up the object, we'll destroy the thing.
4240 */
4241 int perf_event_release_kernel(struct perf_event *event)
4242 {
4243 struct perf_event_context *ctx = event->ctx;
4244 struct perf_event *child, *tmp;
4245
4246 /*
4247 * If we got here through err_file: fput(event_file); we will not have
4248 * attached to a context yet.
4249 */
4250 if (!ctx) {
4251 WARN_ON_ONCE(event->attach_state &
4252 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4253 goto no_ctx;
4254 }
4255
4256 if (!is_kernel_event(event))
4257 perf_remove_from_owner(event);
4258
4259 ctx = perf_event_ctx_lock(event);
4260 WARN_ON_ONCE(ctx->parent_ctx);
4261 perf_remove_from_context(event, DETACH_GROUP);
4262
4263 raw_spin_lock_irq(&ctx->lock);
4264 /*
4265 * Mark this event as STATE_DEAD, there is no external reference to it
4266 * anymore.
4267 *
4268 * Anybody acquiring event->child_mutex after the below loop _must_
4269 * also see this, most importantly inherit_event() which will avoid
4270 * placing more children on the list.
4271 *
4272 * Thus this guarantees that we will in fact observe and kill _ALL_
4273 * child events.
4274 */
4275 event->state = PERF_EVENT_STATE_DEAD;
4276 raw_spin_unlock_irq(&ctx->lock);
4277
4278 perf_event_ctx_unlock(event, ctx);
4279
4280 again:
4281 mutex_lock(&event->child_mutex);
4282 list_for_each_entry(child, &event->child_list, child_list) {
4283
4284 /*
4285 * Cannot change, child events are not migrated, see the
4286 * comment with perf_event_ctx_lock_nested().
4287 */
4288 ctx = lockless_dereference(child->ctx);
4289 /*
4290 * Since child_mutex nests inside ctx::mutex, we must jump
4291 * through hoops. We start by grabbing a reference on the ctx.
4292 *
4293 * Since the event cannot get freed while we hold the
4294 * child_mutex, the context must also exist and have a !0
4295 * reference count.
4296 */
4297 get_ctx(ctx);
4298
4299 /*
4300 * Now that we have a ctx ref, we can drop child_mutex, and
4301 * acquire ctx::mutex without fear of it going away. Then we
4302 * can re-acquire child_mutex.
4303 */
4304 mutex_unlock(&event->child_mutex);
4305 mutex_lock(&ctx->mutex);
4306 mutex_lock(&event->child_mutex);
4307
4308 /*
4309 * Now that we hold ctx::mutex and child_mutex, revalidate our
4310 * state, if child is still the first entry, it didn't get freed
4311 * and we can continue doing so.
4312 */
4313 tmp = list_first_entry_or_null(&event->child_list,
4314 struct perf_event, child_list);
4315 if (tmp == child) {
4316 perf_remove_from_context(child, DETACH_GROUP);
4317 list_del(&child->child_list);
4318 free_event(child);
4319 /*
4320 * This matches the refcount bump in inherit_event();
4321 * this can't be the last reference.
4322 */
4323 put_event(event);
4324 }
4325
4326 mutex_unlock(&event->child_mutex);
4327 mutex_unlock(&ctx->mutex);
4328 put_ctx(ctx);
4329 goto again;
4330 }
4331 mutex_unlock(&event->child_mutex);
4332
4333 no_ctx:
4334 put_event(event); /* Must be the 'last' reference */
4335 return 0;
4336 }
4337 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4338
4339 /*
4340 * Called when the last reference to the file is gone.
4341 */
4342 static int perf_release(struct inode *inode, struct file *file)
4343 {
4344 perf_event_release_kernel(file->private_data);
4345 return 0;
4346 }
4347
4348 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4349 {
4350 struct perf_event *child;
4351 u64 total = 0;
4352
4353 *enabled = 0;
4354 *running = 0;
4355
4356 mutex_lock(&event->child_mutex);
4357
4358 (void)perf_event_read(event, false);
4359 total += perf_event_count(event);
4360
4361 *enabled += event->total_time_enabled +
4362 atomic64_read(&event->child_total_time_enabled);
4363 *running += event->total_time_running +
4364 atomic64_read(&event->child_total_time_running);
4365
4366 list_for_each_entry(child, &event->child_list, child_list) {
4367 (void)perf_event_read(child, false);
4368 total += perf_event_count(child);
4369 *enabled += child->total_time_enabled;
4370 *running += child->total_time_running;
4371 }
4372 mutex_unlock(&event->child_mutex);
4373
4374 return total;
4375 }
4376 EXPORT_SYMBOL_GPL(perf_event_read_value);
4377
4378 static int __perf_read_group_add(struct perf_event *leader,
4379 u64 read_format, u64 *values)
4380 {
4381 struct perf_event *sub;
4382 int n = 1; /* skip @nr */
4383 int ret;
4384
4385 ret = perf_event_read(leader, true);
4386 if (ret)
4387 return ret;
4388
4389 /*
4390 * Since we co-schedule groups, {enabled,running} times of siblings
4391 * will be identical to those of the leader, so we only publish one
4392 * set.
4393 */
4394 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4395 values[n++] += leader->total_time_enabled +
4396 atomic64_read(&leader->child_total_time_enabled);
4397 }
4398
4399 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4400 values[n++] += leader->total_time_running +
4401 atomic64_read(&leader->child_total_time_running);
4402 }
4403
4404 /*
4405 * Write {count,id} tuples for every sibling.
4406 */
4407 values[n++] += perf_event_count(leader);
4408 if (read_format & PERF_FORMAT_ID)
4409 values[n++] = primary_event_id(leader);
4410
4411 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4412 values[n++] += perf_event_count(sub);
4413 if (read_format & PERF_FORMAT_ID)
4414 values[n++] = primary_event_id(sub);
4415 }
4416
4417 return 0;
4418 }
4419
4420 static int perf_read_group(struct perf_event *event,
4421 u64 read_format, char __user *buf)
4422 {
4423 struct perf_event *leader = event->group_leader, *child;
4424 struct perf_event_context *ctx = leader->ctx;
4425 int ret;
4426 u64 *values;
4427
4428 lockdep_assert_held(&ctx->mutex);
4429
4430 values = kzalloc(event->read_size, GFP_KERNEL);
4431 if (!values)
4432 return -ENOMEM;
4433
4434 values[0] = 1 + leader->nr_siblings;
4435
4436 /*
4437 * By locking the child_mutex of the leader we effectively
4438 * lock the child list of all siblings.. XXX explain how.
4439 */
4440 mutex_lock(&leader->child_mutex);
4441
4442 ret = __perf_read_group_add(leader, read_format, values);
4443 if (ret)
4444 goto unlock;
4445
4446 list_for_each_entry(child, &leader->child_list, child_list) {
4447 ret = __perf_read_group_add(child, read_format, values);
4448 if (ret)
4449 goto unlock;
4450 }
4451
4452 mutex_unlock(&leader->child_mutex);
4453
4454 ret = event->read_size;
4455 if (copy_to_user(buf, values, event->read_size))
4456 ret = -EFAULT;
4457 goto out;
4458
4459 unlock:
4460 mutex_unlock(&leader->child_mutex);
4461 out:
4462 kfree(values);
4463 return ret;
4464 }
4465
4466 static int perf_read_one(struct perf_event *event,
4467 u64 read_format, char __user *buf)
4468 {
4469 u64 enabled, running;
4470 u64 values[4];
4471 int n = 0;
4472
4473 values[n++] = perf_event_read_value(event, &enabled, &running);
4474 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4475 values[n++] = enabled;
4476 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4477 values[n++] = running;
4478 if (read_format & PERF_FORMAT_ID)
4479 values[n++] = primary_event_id(event);
4480
4481 if (copy_to_user(buf, values, n * sizeof(u64)))
4482 return -EFAULT;
4483
4484 return n * sizeof(u64);
4485 }
4486
4487 static bool is_event_hup(struct perf_event *event)
4488 {
4489 bool no_children;
4490
4491 if (event->state > PERF_EVENT_STATE_EXIT)
4492 return false;
4493
4494 mutex_lock(&event->child_mutex);
4495 no_children = list_empty(&event->child_list);
4496 mutex_unlock(&event->child_mutex);
4497 return no_children;
4498 }
4499
4500 /*
4501 * Read the performance event - simple non blocking version for now
4502 */
4503 static ssize_t
4504 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4505 {
4506 u64 read_format = event->attr.read_format;
4507 int ret;
4508
4509 /*
4510 * Return end-of-file for a read on a event that is in
4511 * error state (i.e. because it was pinned but it couldn't be
4512 * scheduled on to the CPU at some point).
4513 */
4514 if (event->state == PERF_EVENT_STATE_ERROR)
4515 return 0;
4516
4517 if (count < event->read_size)
4518 return -ENOSPC;
4519
4520 WARN_ON_ONCE(event->ctx->parent_ctx);
4521 if (read_format & PERF_FORMAT_GROUP)
4522 ret = perf_read_group(event, read_format, buf);
4523 else
4524 ret = perf_read_one(event, read_format, buf);
4525
4526 return ret;
4527 }
4528
4529 static ssize_t
4530 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4531 {
4532 struct perf_event *event = file->private_data;
4533 struct perf_event_context *ctx;
4534 int ret;
4535
4536 ctx = perf_event_ctx_lock(event);
4537 ret = __perf_read(event, buf, count);
4538 perf_event_ctx_unlock(event, ctx);
4539
4540 return ret;
4541 }
4542
4543 static unsigned int perf_poll(struct file *file, poll_table *wait)
4544 {
4545 struct perf_event *event = file->private_data;
4546 struct ring_buffer *rb;
4547 unsigned int events = POLLHUP;
4548
4549 poll_wait(file, &event->waitq, wait);
4550
4551 if (is_event_hup(event))
4552 return events;
4553
4554 /*
4555 * Pin the event->rb by taking event->mmap_mutex; otherwise
4556 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4557 */
4558 mutex_lock(&event->mmap_mutex);
4559 rb = event->rb;
4560 if (rb)
4561 events = atomic_xchg(&rb->poll, 0);
4562 mutex_unlock(&event->mmap_mutex);
4563 return events;
4564 }
4565
4566 static void _perf_event_reset(struct perf_event *event)
4567 {
4568 (void)perf_event_read(event, false);
4569 local64_set(&event->count, 0);
4570 perf_event_update_userpage(event);
4571 }
4572
4573 /*
4574 * Holding the top-level event's child_mutex means that any
4575 * descendant process that has inherited this event will block
4576 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4577 * task existence requirements of perf_event_enable/disable.
4578 */
4579 static void perf_event_for_each_child(struct perf_event *event,
4580 void (*func)(struct perf_event *))
4581 {
4582 struct perf_event *child;
4583
4584 WARN_ON_ONCE(event->ctx->parent_ctx);
4585
4586 mutex_lock(&event->child_mutex);
4587 func(event);
4588 list_for_each_entry(child, &event->child_list, child_list)
4589 func(child);
4590 mutex_unlock(&event->child_mutex);
4591 }
4592
4593 static void perf_event_for_each(struct perf_event *event,
4594 void (*func)(struct perf_event *))
4595 {
4596 struct perf_event_context *ctx = event->ctx;
4597 struct perf_event *sibling;
4598
4599 lockdep_assert_held(&ctx->mutex);
4600
4601 event = event->group_leader;
4602
4603 perf_event_for_each_child(event, func);
4604 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4605 perf_event_for_each_child(sibling, func);
4606 }
4607
4608 static void __perf_event_period(struct perf_event *event,
4609 struct perf_cpu_context *cpuctx,
4610 struct perf_event_context *ctx,
4611 void *info)
4612 {
4613 u64 value = *((u64 *)info);
4614 bool active;
4615
4616 if (event->attr.freq) {
4617 event->attr.sample_freq = value;
4618 } else {
4619 event->attr.sample_period = value;
4620 event->hw.sample_period = value;
4621 }
4622
4623 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4624 if (active) {
4625 perf_pmu_disable(ctx->pmu);
4626 /*
4627 * We could be throttled; unthrottle now to avoid the tick
4628 * trying to unthrottle while we already re-started the event.
4629 */
4630 if (event->hw.interrupts == MAX_INTERRUPTS) {
4631 event->hw.interrupts = 0;
4632 perf_log_throttle(event, 1);
4633 }
4634 event->pmu->stop(event, PERF_EF_UPDATE);
4635 }
4636
4637 local64_set(&event->hw.period_left, 0);
4638
4639 if (active) {
4640 event->pmu->start(event, PERF_EF_RELOAD);
4641 perf_pmu_enable(ctx->pmu);
4642 }
4643 }
4644
4645 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4646 {
4647 u64 value;
4648
4649 if (!is_sampling_event(event))
4650 return -EINVAL;
4651
4652 if (copy_from_user(&value, arg, sizeof(value)))
4653 return -EFAULT;
4654
4655 if (!value)
4656 return -EINVAL;
4657
4658 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4659 return -EINVAL;
4660
4661 event_function_call(event, __perf_event_period, &value);
4662
4663 return 0;
4664 }
4665
4666 static const struct file_operations perf_fops;
4667
4668 static inline int perf_fget_light(int fd, struct fd *p)
4669 {
4670 struct fd f = fdget(fd);
4671 if (!f.file)
4672 return -EBADF;
4673
4674 if (f.file->f_op != &perf_fops) {
4675 fdput(f);
4676 return -EBADF;
4677 }
4678 *p = f;
4679 return 0;
4680 }
4681
4682 static int perf_event_set_output(struct perf_event *event,
4683 struct perf_event *output_event);
4684 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4685 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4686
4687 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4688 {
4689 void (*func)(struct perf_event *);
4690 u32 flags = arg;
4691
4692 switch (cmd) {
4693 case PERF_EVENT_IOC_ENABLE:
4694 func = _perf_event_enable;
4695 break;
4696 case PERF_EVENT_IOC_DISABLE:
4697 func = _perf_event_disable;
4698 break;
4699 case PERF_EVENT_IOC_RESET:
4700 func = _perf_event_reset;
4701 break;
4702
4703 case PERF_EVENT_IOC_REFRESH:
4704 return _perf_event_refresh(event, arg);
4705
4706 case PERF_EVENT_IOC_PERIOD:
4707 return perf_event_period(event, (u64 __user *)arg);
4708
4709 case PERF_EVENT_IOC_ID:
4710 {
4711 u64 id = primary_event_id(event);
4712
4713 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4714 return -EFAULT;
4715 return 0;
4716 }
4717
4718 case PERF_EVENT_IOC_SET_OUTPUT:
4719 {
4720 int ret;
4721 if (arg != -1) {
4722 struct perf_event *output_event;
4723 struct fd output;
4724 ret = perf_fget_light(arg, &output);
4725 if (ret)
4726 return ret;
4727 output_event = output.file->private_data;
4728 ret = perf_event_set_output(event, output_event);
4729 fdput(output);
4730 } else {
4731 ret = perf_event_set_output(event, NULL);
4732 }
4733 return ret;
4734 }
4735
4736 case PERF_EVENT_IOC_SET_FILTER:
4737 return perf_event_set_filter(event, (void __user *)arg);
4738
4739 case PERF_EVENT_IOC_SET_BPF:
4740 return perf_event_set_bpf_prog(event, arg);
4741
4742 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4743 struct ring_buffer *rb;
4744
4745 rcu_read_lock();
4746 rb = rcu_dereference(event->rb);
4747 if (!rb || !rb->nr_pages) {
4748 rcu_read_unlock();
4749 return -EINVAL;
4750 }
4751 rb_toggle_paused(rb, !!arg);
4752 rcu_read_unlock();
4753 return 0;
4754 }
4755 default:
4756 return -ENOTTY;
4757 }
4758
4759 if (flags & PERF_IOC_FLAG_GROUP)
4760 perf_event_for_each(event, func);
4761 else
4762 perf_event_for_each_child(event, func);
4763
4764 return 0;
4765 }
4766
4767 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4768 {
4769 struct perf_event *event = file->private_data;
4770 struct perf_event_context *ctx;
4771 long ret;
4772
4773 ctx = perf_event_ctx_lock(event);
4774 ret = _perf_ioctl(event, cmd, arg);
4775 perf_event_ctx_unlock(event, ctx);
4776
4777 return ret;
4778 }
4779
4780 #ifdef CONFIG_COMPAT
4781 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4782 unsigned long arg)
4783 {
4784 switch (_IOC_NR(cmd)) {
4785 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4786 case _IOC_NR(PERF_EVENT_IOC_ID):
4787 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4788 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4789 cmd &= ~IOCSIZE_MASK;
4790 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4791 }
4792 break;
4793 }
4794 return perf_ioctl(file, cmd, arg);
4795 }
4796 #else
4797 # define perf_compat_ioctl NULL
4798 #endif
4799
4800 int perf_event_task_enable(void)
4801 {
4802 struct perf_event_context *ctx;
4803 struct perf_event *event;
4804
4805 mutex_lock(&current->perf_event_mutex);
4806 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4807 ctx = perf_event_ctx_lock(event);
4808 perf_event_for_each_child(event, _perf_event_enable);
4809 perf_event_ctx_unlock(event, ctx);
4810 }
4811 mutex_unlock(&current->perf_event_mutex);
4812
4813 return 0;
4814 }
4815
4816 int perf_event_task_disable(void)
4817 {
4818 struct perf_event_context *ctx;
4819 struct perf_event *event;
4820
4821 mutex_lock(&current->perf_event_mutex);
4822 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4823 ctx = perf_event_ctx_lock(event);
4824 perf_event_for_each_child(event, _perf_event_disable);
4825 perf_event_ctx_unlock(event, ctx);
4826 }
4827 mutex_unlock(&current->perf_event_mutex);
4828
4829 return 0;
4830 }
4831
4832 static int perf_event_index(struct perf_event *event)
4833 {
4834 if (event->hw.state & PERF_HES_STOPPED)
4835 return 0;
4836
4837 if (event->state != PERF_EVENT_STATE_ACTIVE)
4838 return 0;
4839
4840 return event->pmu->event_idx(event);
4841 }
4842
4843 static void calc_timer_values(struct perf_event *event,
4844 u64 *now,
4845 u64 *enabled,
4846 u64 *running)
4847 {
4848 u64 ctx_time;
4849
4850 *now = perf_clock();
4851 ctx_time = event->shadow_ctx_time + *now;
4852 *enabled = ctx_time - event->tstamp_enabled;
4853 *running = ctx_time - event->tstamp_running;
4854 }
4855
4856 static void perf_event_init_userpage(struct perf_event *event)
4857 {
4858 struct perf_event_mmap_page *userpg;
4859 struct ring_buffer *rb;
4860
4861 rcu_read_lock();
4862 rb = rcu_dereference(event->rb);
4863 if (!rb)
4864 goto unlock;
4865
4866 userpg = rb->user_page;
4867
4868 /* Allow new userspace to detect that bit 0 is deprecated */
4869 userpg->cap_bit0_is_deprecated = 1;
4870 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4871 userpg->data_offset = PAGE_SIZE;
4872 userpg->data_size = perf_data_size(rb);
4873
4874 unlock:
4875 rcu_read_unlock();
4876 }
4877
4878 void __weak arch_perf_update_userpage(
4879 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4880 {
4881 }
4882
4883 /*
4884 * Callers need to ensure there can be no nesting of this function, otherwise
4885 * the seqlock logic goes bad. We can not serialize this because the arch
4886 * code calls this from NMI context.
4887 */
4888 void perf_event_update_userpage(struct perf_event *event)
4889 {
4890 struct perf_event_mmap_page *userpg;
4891 struct ring_buffer *rb;
4892 u64 enabled, running, now;
4893
4894 rcu_read_lock();
4895 rb = rcu_dereference(event->rb);
4896 if (!rb)
4897 goto unlock;
4898
4899 /*
4900 * compute total_time_enabled, total_time_running
4901 * based on snapshot values taken when the event
4902 * was last scheduled in.
4903 *
4904 * we cannot simply called update_context_time()
4905 * because of locking issue as we can be called in
4906 * NMI context
4907 */
4908 calc_timer_values(event, &now, &enabled, &running);
4909
4910 userpg = rb->user_page;
4911 /*
4912 * Disable preemption so as to not let the corresponding user-space
4913 * spin too long if we get preempted.
4914 */
4915 preempt_disable();
4916 ++userpg->lock;
4917 barrier();
4918 userpg->index = perf_event_index(event);
4919 userpg->offset = perf_event_count(event);
4920 if (userpg->index)
4921 userpg->offset -= local64_read(&event->hw.prev_count);
4922
4923 userpg->time_enabled = enabled +
4924 atomic64_read(&event->child_total_time_enabled);
4925
4926 userpg->time_running = running +
4927 atomic64_read(&event->child_total_time_running);
4928
4929 arch_perf_update_userpage(event, userpg, now);
4930
4931 barrier();
4932 ++userpg->lock;
4933 preempt_enable();
4934 unlock:
4935 rcu_read_unlock();
4936 }
4937
4938 static int perf_mmap_fault(struct vm_fault *vmf)
4939 {
4940 struct perf_event *event = vmf->vma->vm_file->private_data;
4941 struct ring_buffer *rb;
4942 int ret = VM_FAULT_SIGBUS;
4943
4944 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4945 if (vmf->pgoff == 0)
4946 ret = 0;
4947 return ret;
4948 }
4949
4950 rcu_read_lock();
4951 rb = rcu_dereference(event->rb);
4952 if (!rb)
4953 goto unlock;
4954
4955 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4956 goto unlock;
4957
4958 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4959 if (!vmf->page)
4960 goto unlock;
4961
4962 get_page(vmf->page);
4963 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4964 vmf->page->index = vmf->pgoff;
4965
4966 ret = 0;
4967 unlock:
4968 rcu_read_unlock();
4969
4970 return ret;
4971 }
4972
4973 static void ring_buffer_attach(struct perf_event *event,
4974 struct ring_buffer *rb)
4975 {
4976 struct ring_buffer *old_rb = NULL;
4977 unsigned long flags;
4978
4979 if (event->rb) {
4980 /*
4981 * Should be impossible, we set this when removing
4982 * event->rb_entry and wait/clear when adding event->rb_entry.
4983 */
4984 WARN_ON_ONCE(event->rcu_pending);
4985
4986 old_rb = event->rb;
4987 spin_lock_irqsave(&old_rb->event_lock, flags);
4988 list_del_rcu(&event->rb_entry);
4989 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4990
4991 event->rcu_batches = get_state_synchronize_rcu();
4992 event->rcu_pending = 1;
4993 }
4994
4995 if (rb) {
4996 if (event->rcu_pending) {
4997 cond_synchronize_rcu(event->rcu_batches);
4998 event->rcu_pending = 0;
4999 }
5000
5001 spin_lock_irqsave(&rb->event_lock, flags);
5002 list_add_rcu(&event->rb_entry, &rb->event_list);
5003 spin_unlock_irqrestore(&rb->event_lock, flags);
5004 }
5005
5006 /*
5007 * Avoid racing with perf_mmap_close(AUX): stop the event
5008 * before swizzling the event::rb pointer; if it's getting
5009 * unmapped, its aux_mmap_count will be 0 and it won't
5010 * restart. See the comment in __perf_pmu_output_stop().
5011 *
5012 * Data will inevitably be lost when set_output is done in
5013 * mid-air, but then again, whoever does it like this is
5014 * not in for the data anyway.
5015 */
5016 if (has_aux(event))
5017 perf_event_stop(event, 0);
5018
5019 rcu_assign_pointer(event->rb, rb);
5020
5021 if (old_rb) {
5022 ring_buffer_put(old_rb);
5023 /*
5024 * Since we detached before setting the new rb, so that we
5025 * could attach the new rb, we could have missed a wakeup.
5026 * Provide it now.
5027 */
5028 wake_up_all(&event->waitq);
5029 }
5030 }
5031
5032 static void ring_buffer_wakeup(struct perf_event *event)
5033 {
5034 struct ring_buffer *rb;
5035
5036 rcu_read_lock();
5037 rb = rcu_dereference(event->rb);
5038 if (rb) {
5039 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5040 wake_up_all(&event->waitq);
5041 }
5042 rcu_read_unlock();
5043 }
5044
5045 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5046 {
5047 struct ring_buffer *rb;
5048
5049 rcu_read_lock();
5050 rb = rcu_dereference(event->rb);
5051 if (rb) {
5052 if (!atomic_inc_not_zero(&rb->refcount))
5053 rb = NULL;
5054 }
5055 rcu_read_unlock();
5056
5057 return rb;
5058 }
5059
5060 void ring_buffer_put(struct ring_buffer *rb)
5061 {
5062 if (!atomic_dec_and_test(&rb->refcount))
5063 return;
5064
5065 WARN_ON_ONCE(!list_empty(&rb->event_list));
5066
5067 call_rcu(&rb->rcu_head, rb_free_rcu);
5068 }
5069
5070 static void perf_mmap_open(struct vm_area_struct *vma)
5071 {
5072 struct perf_event *event = vma->vm_file->private_data;
5073
5074 atomic_inc(&event->mmap_count);
5075 atomic_inc(&event->rb->mmap_count);
5076
5077 if (vma->vm_pgoff)
5078 atomic_inc(&event->rb->aux_mmap_count);
5079
5080 if (event->pmu->event_mapped)
5081 event->pmu->event_mapped(event);
5082 }
5083
5084 static void perf_pmu_output_stop(struct perf_event *event);
5085
5086 /*
5087 * A buffer can be mmap()ed multiple times; either directly through the same
5088 * event, or through other events by use of perf_event_set_output().
5089 *
5090 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5091 * the buffer here, where we still have a VM context. This means we need
5092 * to detach all events redirecting to us.
5093 */
5094 static void perf_mmap_close(struct vm_area_struct *vma)
5095 {
5096 struct perf_event *event = vma->vm_file->private_data;
5097
5098 struct ring_buffer *rb = ring_buffer_get(event);
5099 struct user_struct *mmap_user = rb->mmap_user;
5100 int mmap_locked = rb->mmap_locked;
5101 unsigned long size = perf_data_size(rb);
5102
5103 if (event->pmu->event_unmapped)
5104 event->pmu->event_unmapped(event);
5105
5106 /*
5107 * rb->aux_mmap_count will always drop before rb->mmap_count and
5108 * event->mmap_count, so it is ok to use event->mmap_mutex to
5109 * serialize with perf_mmap here.
5110 */
5111 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5112 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5113 /*
5114 * Stop all AUX events that are writing to this buffer,
5115 * so that we can free its AUX pages and corresponding PMU
5116 * data. Note that after rb::aux_mmap_count dropped to zero,
5117 * they won't start any more (see perf_aux_output_begin()).
5118 */
5119 perf_pmu_output_stop(event);
5120
5121 /* now it's safe to free the pages */
5122 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5123 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5124
5125 /* this has to be the last one */
5126 rb_free_aux(rb);
5127 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5128
5129 mutex_unlock(&event->mmap_mutex);
5130 }
5131
5132 atomic_dec(&rb->mmap_count);
5133
5134 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5135 goto out_put;
5136
5137 ring_buffer_attach(event, NULL);
5138 mutex_unlock(&event->mmap_mutex);
5139
5140 /* If there's still other mmap()s of this buffer, we're done. */
5141 if (atomic_read(&rb->mmap_count))
5142 goto out_put;
5143
5144 /*
5145 * No other mmap()s, detach from all other events that might redirect
5146 * into the now unreachable buffer. Somewhat complicated by the
5147 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5148 */
5149 again:
5150 rcu_read_lock();
5151 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5152 if (!atomic_long_inc_not_zero(&event->refcount)) {
5153 /*
5154 * This event is en-route to free_event() which will
5155 * detach it and remove it from the list.
5156 */
5157 continue;
5158 }
5159 rcu_read_unlock();
5160
5161 mutex_lock(&event->mmap_mutex);
5162 /*
5163 * Check we didn't race with perf_event_set_output() which can
5164 * swizzle the rb from under us while we were waiting to
5165 * acquire mmap_mutex.
5166 *
5167 * If we find a different rb; ignore this event, a next
5168 * iteration will no longer find it on the list. We have to
5169 * still restart the iteration to make sure we're not now
5170 * iterating the wrong list.
5171 */
5172 if (event->rb == rb)
5173 ring_buffer_attach(event, NULL);
5174
5175 mutex_unlock(&event->mmap_mutex);
5176 put_event(event);
5177
5178 /*
5179 * Restart the iteration; either we're on the wrong list or
5180 * destroyed its integrity by doing a deletion.
5181 */
5182 goto again;
5183 }
5184 rcu_read_unlock();
5185
5186 /*
5187 * It could be there's still a few 0-ref events on the list; they'll
5188 * get cleaned up by free_event() -- they'll also still have their
5189 * ref on the rb and will free it whenever they are done with it.
5190 *
5191 * Aside from that, this buffer is 'fully' detached and unmapped,
5192 * undo the VM accounting.
5193 */
5194
5195 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5196 vma->vm_mm->pinned_vm -= mmap_locked;
5197 free_uid(mmap_user);
5198
5199 out_put:
5200 ring_buffer_put(rb); /* could be last */
5201 }
5202
5203 static const struct vm_operations_struct perf_mmap_vmops = {
5204 .open = perf_mmap_open,
5205 .close = perf_mmap_close, /* non mergable */
5206 .fault = perf_mmap_fault,
5207 .page_mkwrite = perf_mmap_fault,
5208 };
5209
5210 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5211 {
5212 struct perf_event *event = file->private_data;
5213 unsigned long user_locked, user_lock_limit;
5214 struct user_struct *user = current_user();
5215 unsigned long locked, lock_limit;
5216 struct ring_buffer *rb = NULL;
5217 unsigned long vma_size;
5218 unsigned long nr_pages;
5219 long user_extra = 0, extra = 0;
5220 int ret = 0, flags = 0;
5221
5222 /*
5223 * Don't allow mmap() of inherited per-task counters. This would
5224 * create a performance issue due to all children writing to the
5225 * same rb.
5226 */
5227 if (event->cpu == -1 && event->attr.inherit)
5228 return -EINVAL;
5229
5230 if (!(vma->vm_flags & VM_SHARED))
5231 return -EINVAL;
5232
5233 vma_size = vma->vm_end - vma->vm_start;
5234
5235 if (vma->vm_pgoff == 0) {
5236 nr_pages = (vma_size / PAGE_SIZE) - 1;
5237 } else {
5238 /*
5239 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5240 * mapped, all subsequent mappings should have the same size
5241 * and offset. Must be above the normal perf buffer.
5242 */
5243 u64 aux_offset, aux_size;
5244
5245 if (!event->rb)
5246 return -EINVAL;
5247
5248 nr_pages = vma_size / PAGE_SIZE;
5249
5250 mutex_lock(&event->mmap_mutex);
5251 ret = -EINVAL;
5252
5253 rb = event->rb;
5254 if (!rb)
5255 goto aux_unlock;
5256
5257 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5258 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5259
5260 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5261 goto aux_unlock;
5262
5263 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5264 goto aux_unlock;
5265
5266 /* already mapped with a different offset */
5267 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5268 goto aux_unlock;
5269
5270 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5271 goto aux_unlock;
5272
5273 /* already mapped with a different size */
5274 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5275 goto aux_unlock;
5276
5277 if (!is_power_of_2(nr_pages))
5278 goto aux_unlock;
5279
5280 if (!atomic_inc_not_zero(&rb->mmap_count))
5281 goto aux_unlock;
5282
5283 if (rb_has_aux(rb)) {
5284 atomic_inc(&rb->aux_mmap_count);
5285 ret = 0;
5286 goto unlock;
5287 }
5288
5289 atomic_set(&rb->aux_mmap_count, 1);
5290 user_extra = nr_pages;
5291
5292 goto accounting;
5293 }
5294
5295 /*
5296 * If we have rb pages ensure they're a power-of-two number, so we
5297 * can do bitmasks instead of modulo.
5298 */
5299 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5300 return -EINVAL;
5301
5302 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5303 return -EINVAL;
5304
5305 WARN_ON_ONCE(event->ctx->parent_ctx);
5306 again:
5307 mutex_lock(&event->mmap_mutex);
5308 if (event->rb) {
5309 if (event->rb->nr_pages != nr_pages) {
5310 ret = -EINVAL;
5311 goto unlock;
5312 }
5313
5314 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5315 /*
5316 * Raced against perf_mmap_close() through
5317 * perf_event_set_output(). Try again, hope for better
5318 * luck.
5319 */
5320 mutex_unlock(&event->mmap_mutex);
5321 goto again;
5322 }
5323
5324 goto unlock;
5325 }
5326
5327 user_extra = nr_pages + 1;
5328
5329 accounting:
5330 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5331
5332 /*
5333 * Increase the limit linearly with more CPUs:
5334 */
5335 user_lock_limit *= num_online_cpus();
5336
5337 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5338
5339 if (user_locked > user_lock_limit)
5340 extra = user_locked - user_lock_limit;
5341
5342 lock_limit = rlimit(RLIMIT_MEMLOCK);
5343 lock_limit >>= PAGE_SHIFT;
5344 locked = vma->vm_mm->pinned_vm + extra;
5345
5346 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5347 !capable(CAP_IPC_LOCK)) {
5348 ret = -EPERM;
5349 goto unlock;
5350 }
5351
5352 WARN_ON(!rb && event->rb);
5353
5354 if (vma->vm_flags & VM_WRITE)
5355 flags |= RING_BUFFER_WRITABLE;
5356
5357 if (!rb) {
5358 rb = rb_alloc(nr_pages,
5359 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5360 event->cpu, flags);
5361
5362 if (!rb) {
5363 ret = -ENOMEM;
5364 goto unlock;
5365 }
5366
5367 atomic_set(&rb->mmap_count, 1);
5368 rb->mmap_user = get_current_user();
5369 rb->mmap_locked = extra;
5370
5371 ring_buffer_attach(event, rb);
5372
5373 perf_event_init_userpage(event);
5374 perf_event_update_userpage(event);
5375 } else {
5376 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5377 event->attr.aux_watermark, flags);
5378 if (!ret)
5379 rb->aux_mmap_locked = extra;
5380 }
5381
5382 unlock:
5383 if (!ret) {
5384 atomic_long_add(user_extra, &user->locked_vm);
5385 vma->vm_mm->pinned_vm += extra;
5386
5387 atomic_inc(&event->mmap_count);
5388 } else if (rb) {
5389 atomic_dec(&rb->mmap_count);
5390 }
5391 aux_unlock:
5392 mutex_unlock(&event->mmap_mutex);
5393
5394 /*
5395 * Since pinned accounting is per vm we cannot allow fork() to copy our
5396 * vma.
5397 */
5398 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5399 vma->vm_ops = &perf_mmap_vmops;
5400
5401 if (event->pmu->event_mapped)
5402 event->pmu->event_mapped(event);
5403
5404 return ret;
5405 }
5406
5407 static int perf_fasync(int fd, struct file *filp, int on)
5408 {
5409 struct inode *inode = file_inode(filp);
5410 struct perf_event *event = filp->private_data;
5411 int retval;
5412
5413 inode_lock(inode);
5414 retval = fasync_helper(fd, filp, on, &event->fasync);
5415 inode_unlock(inode);
5416
5417 if (retval < 0)
5418 return retval;
5419
5420 return 0;
5421 }
5422
5423 static const struct file_operations perf_fops = {
5424 .llseek = no_llseek,
5425 .release = perf_release,
5426 .read = perf_read,
5427 .poll = perf_poll,
5428 .unlocked_ioctl = perf_ioctl,
5429 .compat_ioctl = perf_compat_ioctl,
5430 .mmap = perf_mmap,
5431 .fasync = perf_fasync,
5432 };
5433
5434 /*
5435 * Perf event wakeup
5436 *
5437 * If there's data, ensure we set the poll() state and publish everything
5438 * to user-space before waking everybody up.
5439 */
5440
5441 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5442 {
5443 /* only the parent has fasync state */
5444 if (event->parent)
5445 event = event->parent;
5446 return &event->fasync;
5447 }
5448
5449 void perf_event_wakeup(struct perf_event *event)
5450 {
5451 ring_buffer_wakeup(event);
5452
5453 if (event->pending_kill) {
5454 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5455 event->pending_kill = 0;
5456 }
5457 }
5458
5459 static void perf_pending_event(struct irq_work *entry)
5460 {
5461 struct perf_event *event = container_of(entry,
5462 struct perf_event, pending);
5463 int rctx;
5464
5465 rctx = perf_swevent_get_recursion_context();
5466 /*
5467 * If we 'fail' here, that's OK, it means recursion is already disabled
5468 * and we won't recurse 'further'.
5469 */
5470
5471 if (event->pending_disable) {
5472 event->pending_disable = 0;
5473 perf_event_disable_local(event);
5474 }
5475
5476 if (event->pending_wakeup) {
5477 event->pending_wakeup = 0;
5478 perf_event_wakeup(event);
5479 }
5480
5481 if (rctx >= 0)
5482 perf_swevent_put_recursion_context(rctx);
5483 }
5484
5485 /*
5486 * We assume there is only KVM supporting the callbacks.
5487 * Later on, we might change it to a list if there is
5488 * another virtualization implementation supporting the callbacks.
5489 */
5490 struct perf_guest_info_callbacks *perf_guest_cbs;
5491
5492 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5493 {
5494 perf_guest_cbs = cbs;
5495 return 0;
5496 }
5497 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5498
5499 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5500 {
5501 perf_guest_cbs = NULL;
5502 return 0;
5503 }
5504 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5505
5506 static void
5507 perf_output_sample_regs(struct perf_output_handle *handle,
5508 struct pt_regs *regs, u64 mask)
5509 {
5510 int bit;
5511 DECLARE_BITMAP(_mask, 64);
5512
5513 bitmap_from_u64(_mask, mask);
5514 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5515 u64 val;
5516
5517 val = perf_reg_value(regs, bit);
5518 perf_output_put(handle, val);
5519 }
5520 }
5521
5522 static void perf_sample_regs_user(struct perf_regs *regs_user,
5523 struct pt_regs *regs,
5524 struct pt_regs *regs_user_copy)
5525 {
5526 if (user_mode(regs)) {
5527 regs_user->abi = perf_reg_abi(current);
5528 regs_user->regs = regs;
5529 } else if (current->mm) {
5530 perf_get_regs_user(regs_user, regs, regs_user_copy);
5531 } else {
5532 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5533 regs_user->regs = NULL;
5534 }
5535 }
5536
5537 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5538 struct pt_regs *regs)
5539 {
5540 regs_intr->regs = regs;
5541 regs_intr->abi = perf_reg_abi(current);
5542 }
5543
5544
5545 /*
5546 * Get remaining task size from user stack pointer.
5547 *
5548 * It'd be better to take stack vma map and limit this more
5549 * precisly, but there's no way to get it safely under interrupt,
5550 * so using TASK_SIZE as limit.
5551 */
5552 static u64 perf_ustack_task_size(struct pt_regs *regs)
5553 {
5554 unsigned long addr = perf_user_stack_pointer(regs);
5555
5556 if (!addr || addr >= TASK_SIZE)
5557 return 0;
5558
5559 return TASK_SIZE - addr;
5560 }
5561
5562 static u16
5563 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5564 struct pt_regs *regs)
5565 {
5566 u64 task_size;
5567
5568 /* No regs, no stack pointer, no dump. */
5569 if (!regs)
5570 return 0;
5571
5572 /*
5573 * Check if we fit in with the requested stack size into the:
5574 * - TASK_SIZE
5575 * If we don't, we limit the size to the TASK_SIZE.
5576 *
5577 * - remaining sample size
5578 * If we don't, we customize the stack size to
5579 * fit in to the remaining sample size.
5580 */
5581
5582 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5583 stack_size = min(stack_size, (u16) task_size);
5584
5585 /* Current header size plus static size and dynamic size. */
5586 header_size += 2 * sizeof(u64);
5587
5588 /* Do we fit in with the current stack dump size? */
5589 if ((u16) (header_size + stack_size) < header_size) {
5590 /*
5591 * If we overflow the maximum size for the sample,
5592 * we customize the stack dump size to fit in.
5593 */
5594 stack_size = USHRT_MAX - header_size - sizeof(u64);
5595 stack_size = round_up(stack_size, sizeof(u64));
5596 }
5597
5598 return stack_size;
5599 }
5600
5601 static void
5602 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5603 struct pt_regs *regs)
5604 {
5605 /* Case of a kernel thread, nothing to dump */
5606 if (!regs) {
5607 u64 size = 0;
5608 perf_output_put(handle, size);
5609 } else {
5610 unsigned long sp;
5611 unsigned int rem;
5612 u64 dyn_size;
5613
5614 /*
5615 * We dump:
5616 * static size
5617 * - the size requested by user or the best one we can fit
5618 * in to the sample max size
5619 * data
5620 * - user stack dump data
5621 * dynamic size
5622 * - the actual dumped size
5623 */
5624
5625 /* Static size. */
5626 perf_output_put(handle, dump_size);
5627
5628 /* Data. */
5629 sp = perf_user_stack_pointer(regs);
5630 rem = __output_copy_user(handle, (void *) sp, dump_size);
5631 dyn_size = dump_size - rem;
5632
5633 perf_output_skip(handle, rem);
5634
5635 /* Dynamic size. */
5636 perf_output_put(handle, dyn_size);
5637 }
5638 }
5639
5640 static void __perf_event_header__init_id(struct perf_event_header *header,
5641 struct perf_sample_data *data,
5642 struct perf_event *event)
5643 {
5644 u64 sample_type = event->attr.sample_type;
5645
5646 data->type = sample_type;
5647 header->size += event->id_header_size;
5648
5649 if (sample_type & PERF_SAMPLE_TID) {
5650 /* namespace issues */
5651 data->tid_entry.pid = perf_event_pid(event, current);
5652 data->tid_entry.tid = perf_event_tid(event, current);
5653 }
5654
5655 if (sample_type & PERF_SAMPLE_TIME)
5656 data->time = perf_event_clock(event);
5657
5658 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5659 data->id = primary_event_id(event);
5660
5661 if (sample_type & PERF_SAMPLE_STREAM_ID)
5662 data->stream_id = event->id;
5663
5664 if (sample_type & PERF_SAMPLE_CPU) {
5665 data->cpu_entry.cpu = raw_smp_processor_id();
5666 data->cpu_entry.reserved = 0;
5667 }
5668 }
5669
5670 void perf_event_header__init_id(struct perf_event_header *header,
5671 struct perf_sample_data *data,
5672 struct perf_event *event)
5673 {
5674 if (event->attr.sample_id_all)
5675 __perf_event_header__init_id(header, data, event);
5676 }
5677
5678 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5679 struct perf_sample_data *data)
5680 {
5681 u64 sample_type = data->type;
5682
5683 if (sample_type & PERF_SAMPLE_TID)
5684 perf_output_put(handle, data->tid_entry);
5685
5686 if (sample_type & PERF_SAMPLE_TIME)
5687 perf_output_put(handle, data->time);
5688
5689 if (sample_type & PERF_SAMPLE_ID)
5690 perf_output_put(handle, data->id);
5691
5692 if (sample_type & PERF_SAMPLE_STREAM_ID)
5693 perf_output_put(handle, data->stream_id);
5694
5695 if (sample_type & PERF_SAMPLE_CPU)
5696 perf_output_put(handle, data->cpu_entry);
5697
5698 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5699 perf_output_put(handle, data->id);
5700 }
5701
5702 void perf_event__output_id_sample(struct perf_event *event,
5703 struct perf_output_handle *handle,
5704 struct perf_sample_data *sample)
5705 {
5706 if (event->attr.sample_id_all)
5707 __perf_event__output_id_sample(handle, sample);
5708 }
5709
5710 static void perf_output_read_one(struct perf_output_handle *handle,
5711 struct perf_event *event,
5712 u64 enabled, u64 running)
5713 {
5714 u64 read_format = event->attr.read_format;
5715 u64 values[4];
5716 int n = 0;
5717
5718 values[n++] = perf_event_count(event);
5719 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5720 values[n++] = enabled +
5721 atomic64_read(&event->child_total_time_enabled);
5722 }
5723 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5724 values[n++] = running +
5725 atomic64_read(&event->child_total_time_running);
5726 }
5727 if (read_format & PERF_FORMAT_ID)
5728 values[n++] = primary_event_id(event);
5729
5730 __output_copy(handle, values, n * sizeof(u64));
5731 }
5732
5733 static void perf_output_read_group(struct perf_output_handle *handle,
5734 struct perf_event *event,
5735 u64 enabled, u64 running)
5736 {
5737 struct perf_event *leader = event->group_leader, *sub;
5738 u64 read_format = event->attr.read_format;
5739 u64 values[5];
5740 int n = 0;
5741
5742 values[n++] = 1 + leader->nr_siblings;
5743
5744 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5745 values[n++] = enabled;
5746
5747 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5748 values[n++] = running;
5749
5750 if (leader != event)
5751 leader->pmu->read(leader);
5752
5753 values[n++] = perf_event_count(leader);
5754 if (read_format & PERF_FORMAT_ID)
5755 values[n++] = primary_event_id(leader);
5756
5757 __output_copy(handle, values, n * sizeof(u64));
5758
5759 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5760 n = 0;
5761
5762 if ((sub != event) &&
5763 (sub->state == PERF_EVENT_STATE_ACTIVE))
5764 sub->pmu->read(sub);
5765
5766 values[n++] = perf_event_count(sub);
5767 if (read_format & PERF_FORMAT_ID)
5768 values[n++] = primary_event_id(sub);
5769
5770 __output_copy(handle, values, n * sizeof(u64));
5771 }
5772 }
5773
5774 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5775 PERF_FORMAT_TOTAL_TIME_RUNNING)
5776
5777 /*
5778 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5779 *
5780 * The problem is that its both hard and excessively expensive to iterate the
5781 * child list, not to mention that its impossible to IPI the children running
5782 * on another CPU, from interrupt/NMI context.
5783 */
5784 static void perf_output_read(struct perf_output_handle *handle,
5785 struct perf_event *event)
5786 {
5787 u64 enabled = 0, running = 0, now;
5788 u64 read_format = event->attr.read_format;
5789
5790 /*
5791 * compute total_time_enabled, total_time_running
5792 * based on snapshot values taken when the event
5793 * was last scheduled in.
5794 *
5795 * we cannot simply called update_context_time()
5796 * because of locking issue as we are called in
5797 * NMI context
5798 */
5799 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5800 calc_timer_values(event, &now, &enabled, &running);
5801
5802 if (event->attr.read_format & PERF_FORMAT_GROUP)
5803 perf_output_read_group(handle, event, enabled, running);
5804 else
5805 perf_output_read_one(handle, event, enabled, running);
5806 }
5807
5808 void perf_output_sample(struct perf_output_handle *handle,
5809 struct perf_event_header *header,
5810 struct perf_sample_data *data,
5811 struct perf_event *event)
5812 {
5813 u64 sample_type = data->type;
5814
5815 perf_output_put(handle, *header);
5816
5817 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5818 perf_output_put(handle, data->id);
5819
5820 if (sample_type & PERF_SAMPLE_IP)
5821 perf_output_put(handle, data->ip);
5822
5823 if (sample_type & PERF_SAMPLE_TID)
5824 perf_output_put(handle, data->tid_entry);
5825
5826 if (sample_type & PERF_SAMPLE_TIME)
5827 perf_output_put(handle, data->time);
5828
5829 if (sample_type & PERF_SAMPLE_ADDR)
5830 perf_output_put(handle, data->addr);
5831
5832 if (sample_type & PERF_SAMPLE_ID)
5833 perf_output_put(handle, data->id);
5834
5835 if (sample_type & PERF_SAMPLE_STREAM_ID)
5836 perf_output_put(handle, data->stream_id);
5837
5838 if (sample_type & PERF_SAMPLE_CPU)
5839 perf_output_put(handle, data->cpu_entry);
5840
5841 if (sample_type & PERF_SAMPLE_PERIOD)
5842 perf_output_put(handle, data->period);
5843
5844 if (sample_type & PERF_SAMPLE_READ)
5845 perf_output_read(handle, event);
5846
5847 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5848 if (data->callchain) {
5849 int size = 1;
5850
5851 if (data->callchain)
5852 size += data->callchain->nr;
5853
5854 size *= sizeof(u64);
5855
5856 __output_copy(handle, data->callchain, size);
5857 } else {
5858 u64 nr = 0;
5859 perf_output_put(handle, nr);
5860 }
5861 }
5862
5863 if (sample_type & PERF_SAMPLE_RAW) {
5864 struct perf_raw_record *raw = data->raw;
5865
5866 if (raw) {
5867 struct perf_raw_frag *frag = &raw->frag;
5868
5869 perf_output_put(handle, raw->size);
5870 do {
5871 if (frag->copy) {
5872 __output_custom(handle, frag->copy,
5873 frag->data, frag->size);
5874 } else {
5875 __output_copy(handle, frag->data,
5876 frag->size);
5877 }
5878 if (perf_raw_frag_last(frag))
5879 break;
5880 frag = frag->next;
5881 } while (1);
5882 if (frag->pad)
5883 __output_skip(handle, NULL, frag->pad);
5884 } else {
5885 struct {
5886 u32 size;
5887 u32 data;
5888 } raw = {
5889 .size = sizeof(u32),
5890 .data = 0,
5891 };
5892 perf_output_put(handle, raw);
5893 }
5894 }
5895
5896 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5897 if (data->br_stack) {
5898 size_t size;
5899
5900 size = data->br_stack->nr
5901 * sizeof(struct perf_branch_entry);
5902
5903 perf_output_put(handle, data->br_stack->nr);
5904 perf_output_copy(handle, data->br_stack->entries, size);
5905 } else {
5906 /*
5907 * we always store at least the value of nr
5908 */
5909 u64 nr = 0;
5910 perf_output_put(handle, nr);
5911 }
5912 }
5913
5914 if (sample_type & PERF_SAMPLE_REGS_USER) {
5915 u64 abi = data->regs_user.abi;
5916
5917 /*
5918 * If there are no regs to dump, notice it through
5919 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5920 */
5921 perf_output_put(handle, abi);
5922
5923 if (abi) {
5924 u64 mask = event->attr.sample_regs_user;
5925 perf_output_sample_regs(handle,
5926 data->regs_user.regs,
5927 mask);
5928 }
5929 }
5930
5931 if (sample_type & PERF_SAMPLE_STACK_USER) {
5932 perf_output_sample_ustack(handle,
5933 data->stack_user_size,
5934 data->regs_user.regs);
5935 }
5936
5937 if (sample_type & PERF_SAMPLE_WEIGHT)
5938 perf_output_put(handle, data->weight);
5939
5940 if (sample_type & PERF_SAMPLE_DATA_SRC)
5941 perf_output_put(handle, data->data_src.val);
5942
5943 if (sample_type & PERF_SAMPLE_TRANSACTION)
5944 perf_output_put(handle, data->txn);
5945
5946 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5947 u64 abi = data->regs_intr.abi;
5948 /*
5949 * If there are no regs to dump, notice it through
5950 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5951 */
5952 perf_output_put(handle, abi);
5953
5954 if (abi) {
5955 u64 mask = event->attr.sample_regs_intr;
5956
5957 perf_output_sample_regs(handle,
5958 data->regs_intr.regs,
5959 mask);
5960 }
5961 }
5962
5963 if (!event->attr.watermark) {
5964 int wakeup_events = event->attr.wakeup_events;
5965
5966 if (wakeup_events) {
5967 struct ring_buffer *rb = handle->rb;
5968 int events = local_inc_return(&rb->events);
5969
5970 if (events >= wakeup_events) {
5971 local_sub(wakeup_events, &rb->events);
5972 local_inc(&rb->wakeup);
5973 }
5974 }
5975 }
5976 }
5977
5978 void perf_prepare_sample(struct perf_event_header *header,
5979 struct perf_sample_data *data,
5980 struct perf_event *event,
5981 struct pt_regs *regs)
5982 {
5983 u64 sample_type = event->attr.sample_type;
5984
5985 header->type = PERF_RECORD_SAMPLE;
5986 header->size = sizeof(*header) + event->header_size;
5987
5988 header->misc = 0;
5989 header->misc |= perf_misc_flags(regs);
5990
5991 __perf_event_header__init_id(header, data, event);
5992
5993 if (sample_type & PERF_SAMPLE_IP)
5994 data->ip = perf_instruction_pointer(regs);
5995
5996 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5997 int size = 1;
5998
5999 data->callchain = perf_callchain(event, regs);
6000
6001 if (data->callchain)
6002 size += data->callchain->nr;
6003
6004 header->size += size * sizeof(u64);
6005 }
6006
6007 if (sample_type & PERF_SAMPLE_RAW) {
6008 struct perf_raw_record *raw = data->raw;
6009 int size;
6010
6011 if (raw) {
6012 struct perf_raw_frag *frag = &raw->frag;
6013 u32 sum = 0;
6014
6015 do {
6016 sum += frag->size;
6017 if (perf_raw_frag_last(frag))
6018 break;
6019 frag = frag->next;
6020 } while (1);
6021
6022 size = round_up(sum + sizeof(u32), sizeof(u64));
6023 raw->size = size - sizeof(u32);
6024 frag->pad = raw->size - sum;
6025 } else {
6026 size = sizeof(u64);
6027 }
6028
6029 header->size += size;
6030 }
6031
6032 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6033 int size = sizeof(u64); /* nr */
6034 if (data->br_stack) {
6035 size += data->br_stack->nr
6036 * sizeof(struct perf_branch_entry);
6037 }
6038 header->size += size;
6039 }
6040
6041 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6042 perf_sample_regs_user(&data->regs_user, regs,
6043 &data->regs_user_copy);
6044
6045 if (sample_type & PERF_SAMPLE_REGS_USER) {
6046 /* regs dump ABI info */
6047 int size = sizeof(u64);
6048
6049 if (data->regs_user.regs) {
6050 u64 mask = event->attr.sample_regs_user;
6051 size += hweight64(mask) * sizeof(u64);
6052 }
6053
6054 header->size += size;
6055 }
6056
6057 if (sample_type & PERF_SAMPLE_STACK_USER) {
6058 /*
6059 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6060 * processed as the last one or have additional check added
6061 * in case new sample type is added, because we could eat
6062 * up the rest of the sample size.
6063 */
6064 u16 stack_size = event->attr.sample_stack_user;
6065 u16 size = sizeof(u64);
6066
6067 stack_size = perf_sample_ustack_size(stack_size, header->size,
6068 data->regs_user.regs);
6069
6070 /*
6071 * If there is something to dump, add space for the dump
6072 * itself and for the field that tells the dynamic size,
6073 * which is how many have been actually dumped.
6074 */
6075 if (stack_size)
6076 size += sizeof(u64) + stack_size;
6077
6078 data->stack_user_size = stack_size;
6079 header->size += size;
6080 }
6081
6082 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6083 /* regs dump ABI info */
6084 int size = sizeof(u64);
6085
6086 perf_sample_regs_intr(&data->regs_intr, regs);
6087
6088 if (data->regs_intr.regs) {
6089 u64 mask = event->attr.sample_regs_intr;
6090
6091 size += hweight64(mask) * sizeof(u64);
6092 }
6093
6094 header->size += size;
6095 }
6096 }
6097
6098 static void __always_inline
6099 __perf_event_output(struct perf_event *event,
6100 struct perf_sample_data *data,
6101 struct pt_regs *regs,
6102 int (*output_begin)(struct perf_output_handle *,
6103 struct perf_event *,
6104 unsigned int))
6105 {
6106 struct perf_output_handle handle;
6107 struct perf_event_header header;
6108
6109 /* protect the callchain buffers */
6110 rcu_read_lock();
6111
6112 perf_prepare_sample(&header, data, event, regs);
6113
6114 if (output_begin(&handle, event, header.size))
6115 goto exit;
6116
6117 perf_output_sample(&handle, &header, data, event);
6118
6119 perf_output_end(&handle);
6120
6121 exit:
6122 rcu_read_unlock();
6123 }
6124
6125 void
6126 perf_event_output_forward(struct perf_event *event,
6127 struct perf_sample_data *data,
6128 struct pt_regs *regs)
6129 {
6130 __perf_event_output(event, data, regs, perf_output_begin_forward);
6131 }
6132
6133 void
6134 perf_event_output_backward(struct perf_event *event,
6135 struct perf_sample_data *data,
6136 struct pt_regs *regs)
6137 {
6138 __perf_event_output(event, data, regs, perf_output_begin_backward);
6139 }
6140
6141 void
6142 perf_event_output(struct perf_event *event,
6143 struct perf_sample_data *data,
6144 struct pt_regs *regs)
6145 {
6146 __perf_event_output(event, data, regs, perf_output_begin);
6147 }
6148
6149 /*
6150 * read event_id
6151 */
6152
6153 struct perf_read_event {
6154 struct perf_event_header header;
6155
6156 u32 pid;
6157 u32 tid;
6158 };
6159
6160 static void
6161 perf_event_read_event(struct perf_event *event,
6162 struct task_struct *task)
6163 {
6164 struct perf_output_handle handle;
6165 struct perf_sample_data sample;
6166 struct perf_read_event read_event = {
6167 .header = {
6168 .type = PERF_RECORD_READ,
6169 .misc = 0,
6170 .size = sizeof(read_event) + event->read_size,
6171 },
6172 .pid = perf_event_pid(event, task),
6173 .tid = perf_event_tid(event, task),
6174 };
6175 int ret;
6176
6177 perf_event_header__init_id(&read_event.header, &sample, event);
6178 ret = perf_output_begin(&handle, event, read_event.header.size);
6179 if (ret)
6180 return;
6181
6182 perf_output_put(&handle, read_event);
6183 perf_output_read(&handle, event);
6184 perf_event__output_id_sample(event, &handle, &sample);
6185
6186 perf_output_end(&handle);
6187 }
6188
6189 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6190
6191 static void
6192 perf_iterate_ctx(struct perf_event_context *ctx,
6193 perf_iterate_f output,
6194 void *data, bool all)
6195 {
6196 struct perf_event *event;
6197
6198 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6199 if (!all) {
6200 if (event->state < PERF_EVENT_STATE_INACTIVE)
6201 continue;
6202 if (!event_filter_match(event))
6203 continue;
6204 }
6205
6206 output(event, data);
6207 }
6208 }
6209
6210 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6211 {
6212 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6213 struct perf_event *event;
6214
6215 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6216 /*
6217 * Skip events that are not fully formed yet; ensure that
6218 * if we observe event->ctx, both event and ctx will be
6219 * complete enough. See perf_install_in_context().
6220 */
6221 if (!smp_load_acquire(&event->ctx))
6222 continue;
6223
6224 if (event->state < PERF_EVENT_STATE_INACTIVE)
6225 continue;
6226 if (!event_filter_match(event))
6227 continue;
6228 output(event, data);
6229 }
6230 }
6231
6232 /*
6233 * Iterate all events that need to receive side-band events.
6234 *
6235 * For new callers; ensure that account_pmu_sb_event() includes
6236 * your event, otherwise it might not get delivered.
6237 */
6238 static void
6239 perf_iterate_sb(perf_iterate_f output, void *data,
6240 struct perf_event_context *task_ctx)
6241 {
6242 struct perf_event_context *ctx;
6243 int ctxn;
6244
6245 rcu_read_lock();
6246 preempt_disable();
6247
6248 /*
6249 * If we have task_ctx != NULL we only notify the task context itself.
6250 * The task_ctx is set only for EXIT events before releasing task
6251 * context.
6252 */
6253 if (task_ctx) {
6254 perf_iterate_ctx(task_ctx, output, data, false);
6255 goto done;
6256 }
6257
6258 perf_iterate_sb_cpu(output, data);
6259
6260 for_each_task_context_nr(ctxn) {
6261 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6262 if (ctx)
6263 perf_iterate_ctx(ctx, output, data, false);
6264 }
6265 done:
6266 preempt_enable();
6267 rcu_read_unlock();
6268 }
6269
6270 /*
6271 * Clear all file-based filters at exec, they'll have to be
6272 * re-instated when/if these objects are mmapped again.
6273 */
6274 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6275 {
6276 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6277 struct perf_addr_filter *filter;
6278 unsigned int restart = 0, count = 0;
6279 unsigned long flags;
6280
6281 if (!has_addr_filter(event))
6282 return;
6283
6284 raw_spin_lock_irqsave(&ifh->lock, flags);
6285 list_for_each_entry(filter, &ifh->list, entry) {
6286 if (filter->inode) {
6287 event->addr_filters_offs[count] = 0;
6288 restart++;
6289 }
6290
6291 count++;
6292 }
6293
6294 if (restart)
6295 event->addr_filters_gen++;
6296 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6297
6298 if (restart)
6299 perf_event_stop(event, 1);
6300 }
6301
6302 void perf_event_exec(void)
6303 {
6304 struct perf_event_context *ctx;
6305 int ctxn;
6306
6307 rcu_read_lock();
6308 for_each_task_context_nr(ctxn) {
6309 ctx = current->perf_event_ctxp[ctxn];
6310 if (!ctx)
6311 continue;
6312
6313 perf_event_enable_on_exec(ctxn);
6314
6315 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6316 true);
6317 }
6318 rcu_read_unlock();
6319 }
6320
6321 struct remote_output {
6322 struct ring_buffer *rb;
6323 int err;
6324 };
6325
6326 static void __perf_event_output_stop(struct perf_event *event, void *data)
6327 {
6328 struct perf_event *parent = event->parent;
6329 struct remote_output *ro = data;
6330 struct ring_buffer *rb = ro->rb;
6331 struct stop_event_data sd = {
6332 .event = event,
6333 };
6334
6335 if (!has_aux(event))
6336 return;
6337
6338 if (!parent)
6339 parent = event;
6340
6341 /*
6342 * In case of inheritance, it will be the parent that links to the
6343 * ring-buffer, but it will be the child that's actually using it.
6344 *
6345 * We are using event::rb to determine if the event should be stopped,
6346 * however this may race with ring_buffer_attach() (through set_output),
6347 * which will make us skip the event that actually needs to be stopped.
6348 * So ring_buffer_attach() has to stop an aux event before re-assigning
6349 * its rb pointer.
6350 */
6351 if (rcu_dereference(parent->rb) == rb)
6352 ro->err = __perf_event_stop(&sd);
6353 }
6354
6355 static int __perf_pmu_output_stop(void *info)
6356 {
6357 struct perf_event *event = info;
6358 struct pmu *pmu = event->pmu;
6359 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6360 struct remote_output ro = {
6361 .rb = event->rb,
6362 };
6363
6364 rcu_read_lock();
6365 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6366 if (cpuctx->task_ctx)
6367 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6368 &ro, false);
6369 rcu_read_unlock();
6370
6371 return ro.err;
6372 }
6373
6374 static void perf_pmu_output_stop(struct perf_event *event)
6375 {
6376 struct perf_event *iter;
6377 int err, cpu;
6378
6379 restart:
6380 rcu_read_lock();
6381 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6382 /*
6383 * For per-CPU events, we need to make sure that neither they
6384 * nor their children are running; for cpu==-1 events it's
6385 * sufficient to stop the event itself if it's active, since
6386 * it can't have children.
6387 */
6388 cpu = iter->cpu;
6389 if (cpu == -1)
6390 cpu = READ_ONCE(iter->oncpu);
6391
6392 if (cpu == -1)
6393 continue;
6394
6395 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6396 if (err == -EAGAIN) {
6397 rcu_read_unlock();
6398 goto restart;
6399 }
6400 }
6401 rcu_read_unlock();
6402 }
6403
6404 /*
6405 * task tracking -- fork/exit
6406 *
6407 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6408 */
6409
6410 struct perf_task_event {
6411 struct task_struct *task;
6412 struct perf_event_context *task_ctx;
6413
6414 struct {
6415 struct perf_event_header header;
6416
6417 u32 pid;
6418 u32 ppid;
6419 u32 tid;
6420 u32 ptid;
6421 u64 time;
6422 } event_id;
6423 };
6424
6425 static int perf_event_task_match(struct perf_event *event)
6426 {
6427 return event->attr.comm || event->attr.mmap ||
6428 event->attr.mmap2 || event->attr.mmap_data ||
6429 event->attr.task;
6430 }
6431
6432 static void perf_event_task_output(struct perf_event *event,
6433 void *data)
6434 {
6435 struct perf_task_event *task_event = data;
6436 struct perf_output_handle handle;
6437 struct perf_sample_data sample;
6438 struct task_struct *task = task_event->task;
6439 int ret, size = task_event->event_id.header.size;
6440
6441 if (!perf_event_task_match(event))
6442 return;
6443
6444 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6445
6446 ret = perf_output_begin(&handle, event,
6447 task_event->event_id.header.size);
6448 if (ret)
6449 goto out;
6450
6451 task_event->event_id.pid = perf_event_pid(event, task);
6452 task_event->event_id.ppid = perf_event_pid(event, current);
6453
6454 task_event->event_id.tid = perf_event_tid(event, task);
6455 task_event->event_id.ptid = perf_event_tid(event, current);
6456
6457 task_event->event_id.time = perf_event_clock(event);
6458
6459 perf_output_put(&handle, task_event->event_id);
6460
6461 perf_event__output_id_sample(event, &handle, &sample);
6462
6463 perf_output_end(&handle);
6464 out:
6465 task_event->event_id.header.size = size;
6466 }
6467
6468 static void perf_event_task(struct task_struct *task,
6469 struct perf_event_context *task_ctx,
6470 int new)
6471 {
6472 struct perf_task_event task_event;
6473
6474 if (!atomic_read(&nr_comm_events) &&
6475 !atomic_read(&nr_mmap_events) &&
6476 !atomic_read(&nr_task_events))
6477 return;
6478
6479 task_event = (struct perf_task_event){
6480 .task = task,
6481 .task_ctx = task_ctx,
6482 .event_id = {
6483 .header = {
6484 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6485 .misc = 0,
6486 .size = sizeof(task_event.event_id),
6487 },
6488 /* .pid */
6489 /* .ppid */
6490 /* .tid */
6491 /* .ptid */
6492 /* .time */
6493 },
6494 };
6495
6496 perf_iterate_sb(perf_event_task_output,
6497 &task_event,
6498 task_ctx);
6499 }
6500
6501 void perf_event_fork(struct task_struct *task)
6502 {
6503 perf_event_task(task, NULL, 1);
6504 perf_event_namespaces(task);
6505 }
6506
6507 /*
6508 * comm tracking
6509 */
6510
6511 struct perf_comm_event {
6512 struct task_struct *task;
6513 char *comm;
6514 int comm_size;
6515
6516 struct {
6517 struct perf_event_header header;
6518
6519 u32 pid;
6520 u32 tid;
6521 } event_id;
6522 };
6523
6524 static int perf_event_comm_match(struct perf_event *event)
6525 {
6526 return event->attr.comm;
6527 }
6528
6529 static void perf_event_comm_output(struct perf_event *event,
6530 void *data)
6531 {
6532 struct perf_comm_event *comm_event = data;
6533 struct perf_output_handle handle;
6534 struct perf_sample_data sample;
6535 int size = comm_event->event_id.header.size;
6536 int ret;
6537
6538 if (!perf_event_comm_match(event))
6539 return;
6540
6541 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6542 ret = perf_output_begin(&handle, event,
6543 comm_event->event_id.header.size);
6544
6545 if (ret)
6546 goto out;
6547
6548 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6549 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6550
6551 perf_output_put(&handle, comm_event->event_id);
6552 __output_copy(&handle, comm_event->comm,
6553 comm_event->comm_size);
6554
6555 perf_event__output_id_sample(event, &handle, &sample);
6556
6557 perf_output_end(&handle);
6558 out:
6559 comm_event->event_id.header.size = size;
6560 }
6561
6562 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6563 {
6564 char comm[TASK_COMM_LEN];
6565 unsigned int size;
6566
6567 memset(comm, 0, sizeof(comm));
6568 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6569 size = ALIGN(strlen(comm)+1, sizeof(u64));
6570
6571 comm_event->comm = comm;
6572 comm_event->comm_size = size;
6573
6574 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6575
6576 perf_iterate_sb(perf_event_comm_output,
6577 comm_event,
6578 NULL);
6579 }
6580
6581 void perf_event_comm(struct task_struct *task, bool exec)
6582 {
6583 struct perf_comm_event comm_event;
6584
6585 if (!atomic_read(&nr_comm_events))
6586 return;
6587
6588 comm_event = (struct perf_comm_event){
6589 .task = task,
6590 /* .comm */
6591 /* .comm_size */
6592 .event_id = {
6593 .header = {
6594 .type = PERF_RECORD_COMM,
6595 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6596 /* .size */
6597 },
6598 /* .pid */
6599 /* .tid */
6600 },
6601 };
6602
6603 perf_event_comm_event(&comm_event);
6604 }
6605
6606 /*
6607 * namespaces tracking
6608 */
6609
6610 struct perf_namespaces_event {
6611 struct task_struct *task;
6612
6613 struct {
6614 struct perf_event_header header;
6615
6616 u32 pid;
6617 u32 tid;
6618 u64 nr_namespaces;
6619 struct perf_ns_link_info link_info[NR_NAMESPACES];
6620 } event_id;
6621 };
6622
6623 static int perf_event_namespaces_match(struct perf_event *event)
6624 {
6625 return event->attr.namespaces;
6626 }
6627
6628 static void perf_event_namespaces_output(struct perf_event *event,
6629 void *data)
6630 {
6631 struct perf_namespaces_event *namespaces_event = data;
6632 struct perf_output_handle handle;
6633 struct perf_sample_data sample;
6634 int ret;
6635
6636 if (!perf_event_namespaces_match(event))
6637 return;
6638
6639 perf_event_header__init_id(&namespaces_event->event_id.header,
6640 &sample, event);
6641 ret = perf_output_begin(&handle, event,
6642 namespaces_event->event_id.header.size);
6643 if (ret)
6644 return;
6645
6646 namespaces_event->event_id.pid = perf_event_pid(event,
6647 namespaces_event->task);
6648 namespaces_event->event_id.tid = perf_event_tid(event,
6649 namespaces_event->task);
6650
6651 perf_output_put(&handle, namespaces_event->event_id);
6652
6653 perf_event__output_id_sample(event, &handle, &sample);
6654
6655 perf_output_end(&handle);
6656 }
6657
6658 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6659 struct task_struct *task,
6660 const struct proc_ns_operations *ns_ops)
6661 {
6662 struct path ns_path;
6663 struct inode *ns_inode;
6664 void *error;
6665
6666 error = ns_get_path(&ns_path, task, ns_ops);
6667 if (!error) {
6668 ns_inode = ns_path.dentry->d_inode;
6669 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6670 ns_link_info->ino = ns_inode->i_ino;
6671 }
6672 }
6673
6674 void perf_event_namespaces(struct task_struct *task)
6675 {
6676 struct perf_namespaces_event namespaces_event;
6677 struct perf_ns_link_info *ns_link_info;
6678
6679 if (!atomic_read(&nr_namespaces_events))
6680 return;
6681
6682 namespaces_event = (struct perf_namespaces_event){
6683 .task = task,
6684 .event_id = {
6685 .header = {
6686 .type = PERF_RECORD_NAMESPACES,
6687 .misc = 0,
6688 .size = sizeof(namespaces_event.event_id),
6689 },
6690 /* .pid */
6691 /* .tid */
6692 .nr_namespaces = NR_NAMESPACES,
6693 /* .link_info[NR_NAMESPACES] */
6694 },
6695 };
6696
6697 ns_link_info = namespaces_event.event_id.link_info;
6698
6699 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6700 task, &mntns_operations);
6701
6702 #ifdef CONFIG_USER_NS
6703 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6704 task, &userns_operations);
6705 #endif
6706 #ifdef CONFIG_NET_NS
6707 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6708 task, &netns_operations);
6709 #endif
6710 #ifdef CONFIG_UTS_NS
6711 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6712 task, &utsns_operations);
6713 #endif
6714 #ifdef CONFIG_IPC_NS
6715 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6716 task, &ipcns_operations);
6717 #endif
6718 #ifdef CONFIG_PID_NS
6719 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6720 task, &pidns_operations);
6721 #endif
6722 #ifdef CONFIG_CGROUPS
6723 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6724 task, &cgroupns_operations);
6725 #endif
6726
6727 perf_iterate_sb(perf_event_namespaces_output,
6728 &namespaces_event,
6729 NULL);
6730 }
6731
6732 /*
6733 * mmap tracking
6734 */
6735
6736 struct perf_mmap_event {
6737 struct vm_area_struct *vma;
6738
6739 const char *file_name;
6740 int file_size;
6741 int maj, min;
6742 u64 ino;
6743 u64 ino_generation;
6744 u32 prot, flags;
6745
6746 struct {
6747 struct perf_event_header header;
6748
6749 u32 pid;
6750 u32 tid;
6751 u64 start;
6752 u64 len;
6753 u64 pgoff;
6754 } event_id;
6755 };
6756
6757 static int perf_event_mmap_match(struct perf_event *event,
6758 void *data)
6759 {
6760 struct perf_mmap_event *mmap_event = data;
6761 struct vm_area_struct *vma = mmap_event->vma;
6762 int executable = vma->vm_flags & VM_EXEC;
6763
6764 return (!executable && event->attr.mmap_data) ||
6765 (executable && (event->attr.mmap || event->attr.mmap2));
6766 }
6767
6768 static void perf_event_mmap_output(struct perf_event *event,
6769 void *data)
6770 {
6771 struct perf_mmap_event *mmap_event = data;
6772 struct perf_output_handle handle;
6773 struct perf_sample_data sample;
6774 int size = mmap_event->event_id.header.size;
6775 int ret;
6776
6777 if (!perf_event_mmap_match(event, data))
6778 return;
6779
6780 if (event->attr.mmap2) {
6781 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6782 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6783 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6784 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6785 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6786 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6787 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6788 }
6789
6790 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6791 ret = perf_output_begin(&handle, event,
6792 mmap_event->event_id.header.size);
6793 if (ret)
6794 goto out;
6795
6796 mmap_event->event_id.pid = perf_event_pid(event, current);
6797 mmap_event->event_id.tid = perf_event_tid(event, current);
6798
6799 perf_output_put(&handle, mmap_event->event_id);
6800
6801 if (event->attr.mmap2) {
6802 perf_output_put(&handle, mmap_event->maj);
6803 perf_output_put(&handle, mmap_event->min);
6804 perf_output_put(&handle, mmap_event->ino);
6805 perf_output_put(&handle, mmap_event->ino_generation);
6806 perf_output_put(&handle, mmap_event->prot);
6807 perf_output_put(&handle, mmap_event->flags);
6808 }
6809
6810 __output_copy(&handle, mmap_event->file_name,
6811 mmap_event->file_size);
6812
6813 perf_event__output_id_sample(event, &handle, &sample);
6814
6815 perf_output_end(&handle);
6816 out:
6817 mmap_event->event_id.header.size = size;
6818 }
6819
6820 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6821 {
6822 struct vm_area_struct *vma = mmap_event->vma;
6823 struct file *file = vma->vm_file;
6824 int maj = 0, min = 0;
6825 u64 ino = 0, gen = 0;
6826 u32 prot = 0, flags = 0;
6827 unsigned int size;
6828 char tmp[16];
6829 char *buf = NULL;
6830 char *name;
6831
6832 if (vma->vm_flags & VM_READ)
6833 prot |= PROT_READ;
6834 if (vma->vm_flags & VM_WRITE)
6835 prot |= PROT_WRITE;
6836 if (vma->vm_flags & VM_EXEC)
6837 prot |= PROT_EXEC;
6838
6839 if (vma->vm_flags & VM_MAYSHARE)
6840 flags = MAP_SHARED;
6841 else
6842 flags = MAP_PRIVATE;
6843
6844 if (vma->vm_flags & VM_DENYWRITE)
6845 flags |= MAP_DENYWRITE;
6846 if (vma->vm_flags & VM_MAYEXEC)
6847 flags |= MAP_EXECUTABLE;
6848 if (vma->vm_flags & VM_LOCKED)
6849 flags |= MAP_LOCKED;
6850 if (vma->vm_flags & VM_HUGETLB)
6851 flags |= MAP_HUGETLB;
6852
6853 if (file) {
6854 struct inode *inode;
6855 dev_t dev;
6856
6857 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6858 if (!buf) {
6859 name = "//enomem";
6860 goto cpy_name;
6861 }
6862 /*
6863 * d_path() works from the end of the rb backwards, so we
6864 * need to add enough zero bytes after the string to handle
6865 * the 64bit alignment we do later.
6866 */
6867 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6868 if (IS_ERR(name)) {
6869 name = "//toolong";
6870 goto cpy_name;
6871 }
6872 inode = file_inode(vma->vm_file);
6873 dev = inode->i_sb->s_dev;
6874 ino = inode->i_ino;
6875 gen = inode->i_generation;
6876 maj = MAJOR(dev);
6877 min = MINOR(dev);
6878
6879 goto got_name;
6880 } else {
6881 if (vma->vm_ops && vma->vm_ops->name) {
6882 name = (char *) vma->vm_ops->name(vma);
6883 if (name)
6884 goto cpy_name;
6885 }
6886
6887 name = (char *)arch_vma_name(vma);
6888 if (name)
6889 goto cpy_name;
6890
6891 if (vma->vm_start <= vma->vm_mm->start_brk &&
6892 vma->vm_end >= vma->vm_mm->brk) {
6893 name = "[heap]";
6894 goto cpy_name;
6895 }
6896 if (vma->vm_start <= vma->vm_mm->start_stack &&
6897 vma->vm_end >= vma->vm_mm->start_stack) {
6898 name = "[stack]";
6899 goto cpy_name;
6900 }
6901
6902 name = "//anon";
6903 goto cpy_name;
6904 }
6905
6906 cpy_name:
6907 strlcpy(tmp, name, sizeof(tmp));
6908 name = tmp;
6909 got_name:
6910 /*
6911 * Since our buffer works in 8 byte units we need to align our string
6912 * size to a multiple of 8. However, we must guarantee the tail end is
6913 * zero'd out to avoid leaking random bits to userspace.
6914 */
6915 size = strlen(name)+1;
6916 while (!IS_ALIGNED(size, sizeof(u64)))
6917 name[size++] = '\0';
6918
6919 mmap_event->file_name = name;
6920 mmap_event->file_size = size;
6921 mmap_event->maj = maj;
6922 mmap_event->min = min;
6923 mmap_event->ino = ino;
6924 mmap_event->ino_generation = gen;
6925 mmap_event->prot = prot;
6926 mmap_event->flags = flags;
6927
6928 if (!(vma->vm_flags & VM_EXEC))
6929 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6930
6931 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6932
6933 perf_iterate_sb(perf_event_mmap_output,
6934 mmap_event,
6935 NULL);
6936
6937 kfree(buf);
6938 }
6939
6940 /*
6941 * Check whether inode and address range match filter criteria.
6942 */
6943 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6944 struct file *file, unsigned long offset,
6945 unsigned long size)
6946 {
6947 if (filter->inode != file_inode(file))
6948 return false;
6949
6950 if (filter->offset > offset + size)
6951 return false;
6952
6953 if (filter->offset + filter->size < offset)
6954 return false;
6955
6956 return true;
6957 }
6958
6959 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6960 {
6961 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6962 struct vm_area_struct *vma = data;
6963 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6964 struct file *file = vma->vm_file;
6965 struct perf_addr_filter *filter;
6966 unsigned int restart = 0, count = 0;
6967
6968 if (!has_addr_filter(event))
6969 return;
6970
6971 if (!file)
6972 return;
6973
6974 raw_spin_lock_irqsave(&ifh->lock, flags);
6975 list_for_each_entry(filter, &ifh->list, entry) {
6976 if (perf_addr_filter_match(filter, file, off,
6977 vma->vm_end - vma->vm_start)) {
6978 event->addr_filters_offs[count] = vma->vm_start;
6979 restart++;
6980 }
6981
6982 count++;
6983 }
6984
6985 if (restart)
6986 event->addr_filters_gen++;
6987 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6988
6989 if (restart)
6990 perf_event_stop(event, 1);
6991 }
6992
6993 /*
6994 * Adjust all task's events' filters to the new vma
6995 */
6996 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6997 {
6998 struct perf_event_context *ctx;
6999 int ctxn;
7000
7001 /*
7002 * Data tracing isn't supported yet and as such there is no need
7003 * to keep track of anything that isn't related to executable code:
7004 */
7005 if (!(vma->vm_flags & VM_EXEC))
7006 return;
7007
7008 rcu_read_lock();
7009 for_each_task_context_nr(ctxn) {
7010 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7011 if (!ctx)
7012 continue;
7013
7014 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7015 }
7016 rcu_read_unlock();
7017 }
7018
7019 void perf_event_mmap(struct vm_area_struct *vma)
7020 {
7021 struct perf_mmap_event mmap_event;
7022
7023 if (!atomic_read(&nr_mmap_events))
7024 return;
7025
7026 mmap_event = (struct perf_mmap_event){
7027 .vma = vma,
7028 /* .file_name */
7029 /* .file_size */
7030 .event_id = {
7031 .header = {
7032 .type = PERF_RECORD_MMAP,
7033 .misc = PERF_RECORD_MISC_USER,
7034 /* .size */
7035 },
7036 /* .pid */
7037 /* .tid */
7038 .start = vma->vm_start,
7039 .len = vma->vm_end - vma->vm_start,
7040 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7041 },
7042 /* .maj (attr_mmap2 only) */
7043 /* .min (attr_mmap2 only) */
7044 /* .ino (attr_mmap2 only) */
7045 /* .ino_generation (attr_mmap2 only) */
7046 /* .prot (attr_mmap2 only) */
7047 /* .flags (attr_mmap2 only) */
7048 };
7049
7050 perf_addr_filters_adjust(vma);
7051 perf_event_mmap_event(&mmap_event);
7052 }
7053
7054 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7055 unsigned long size, u64 flags)
7056 {
7057 struct perf_output_handle handle;
7058 struct perf_sample_data sample;
7059 struct perf_aux_event {
7060 struct perf_event_header header;
7061 u64 offset;
7062 u64 size;
7063 u64 flags;
7064 } rec = {
7065 .header = {
7066 .type = PERF_RECORD_AUX,
7067 .misc = 0,
7068 .size = sizeof(rec),
7069 },
7070 .offset = head,
7071 .size = size,
7072 .flags = flags,
7073 };
7074 int ret;
7075
7076 perf_event_header__init_id(&rec.header, &sample, event);
7077 ret = perf_output_begin(&handle, event, rec.header.size);
7078
7079 if (ret)
7080 return;
7081
7082 perf_output_put(&handle, rec);
7083 perf_event__output_id_sample(event, &handle, &sample);
7084
7085 perf_output_end(&handle);
7086 }
7087
7088 /*
7089 * Lost/dropped samples logging
7090 */
7091 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7092 {
7093 struct perf_output_handle handle;
7094 struct perf_sample_data sample;
7095 int ret;
7096
7097 struct {
7098 struct perf_event_header header;
7099 u64 lost;
7100 } lost_samples_event = {
7101 .header = {
7102 .type = PERF_RECORD_LOST_SAMPLES,
7103 .misc = 0,
7104 .size = sizeof(lost_samples_event),
7105 },
7106 .lost = lost,
7107 };
7108
7109 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7110
7111 ret = perf_output_begin(&handle, event,
7112 lost_samples_event.header.size);
7113 if (ret)
7114 return;
7115
7116 perf_output_put(&handle, lost_samples_event);
7117 perf_event__output_id_sample(event, &handle, &sample);
7118 perf_output_end(&handle);
7119 }
7120
7121 /*
7122 * context_switch tracking
7123 */
7124
7125 struct perf_switch_event {
7126 struct task_struct *task;
7127 struct task_struct *next_prev;
7128
7129 struct {
7130 struct perf_event_header header;
7131 u32 next_prev_pid;
7132 u32 next_prev_tid;
7133 } event_id;
7134 };
7135
7136 static int perf_event_switch_match(struct perf_event *event)
7137 {
7138 return event->attr.context_switch;
7139 }
7140
7141 static void perf_event_switch_output(struct perf_event *event, void *data)
7142 {
7143 struct perf_switch_event *se = data;
7144 struct perf_output_handle handle;
7145 struct perf_sample_data sample;
7146 int ret;
7147
7148 if (!perf_event_switch_match(event))
7149 return;
7150
7151 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7152 if (event->ctx->task) {
7153 se->event_id.header.type = PERF_RECORD_SWITCH;
7154 se->event_id.header.size = sizeof(se->event_id.header);
7155 } else {
7156 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7157 se->event_id.header.size = sizeof(se->event_id);
7158 se->event_id.next_prev_pid =
7159 perf_event_pid(event, se->next_prev);
7160 se->event_id.next_prev_tid =
7161 perf_event_tid(event, se->next_prev);
7162 }
7163
7164 perf_event_header__init_id(&se->event_id.header, &sample, event);
7165
7166 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7167 if (ret)
7168 return;
7169
7170 if (event->ctx->task)
7171 perf_output_put(&handle, se->event_id.header);
7172 else
7173 perf_output_put(&handle, se->event_id);
7174
7175 perf_event__output_id_sample(event, &handle, &sample);
7176
7177 perf_output_end(&handle);
7178 }
7179
7180 static void perf_event_switch(struct task_struct *task,
7181 struct task_struct *next_prev, bool sched_in)
7182 {
7183 struct perf_switch_event switch_event;
7184
7185 /* N.B. caller checks nr_switch_events != 0 */
7186
7187 switch_event = (struct perf_switch_event){
7188 .task = task,
7189 .next_prev = next_prev,
7190 .event_id = {
7191 .header = {
7192 /* .type */
7193 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7194 /* .size */
7195 },
7196 /* .next_prev_pid */
7197 /* .next_prev_tid */
7198 },
7199 };
7200
7201 perf_iterate_sb(perf_event_switch_output,
7202 &switch_event,
7203 NULL);
7204 }
7205
7206 /*
7207 * IRQ throttle logging
7208 */
7209
7210 static void perf_log_throttle(struct perf_event *event, int enable)
7211 {
7212 struct perf_output_handle handle;
7213 struct perf_sample_data sample;
7214 int ret;
7215
7216 struct {
7217 struct perf_event_header header;
7218 u64 time;
7219 u64 id;
7220 u64 stream_id;
7221 } throttle_event = {
7222 .header = {
7223 .type = PERF_RECORD_THROTTLE,
7224 .misc = 0,
7225 .size = sizeof(throttle_event),
7226 },
7227 .time = perf_event_clock(event),
7228 .id = primary_event_id(event),
7229 .stream_id = event->id,
7230 };
7231
7232 if (enable)
7233 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7234
7235 perf_event_header__init_id(&throttle_event.header, &sample, event);
7236
7237 ret = perf_output_begin(&handle, event,
7238 throttle_event.header.size);
7239 if (ret)
7240 return;
7241
7242 perf_output_put(&handle, throttle_event);
7243 perf_event__output_id_sample(event, &handle, &sample);
7244 perf_output_end(&handle);
7245 }
7246
7247 static void perf_log_itrace_start(struct perf_event *event)
7248 {
7249 struct perf_output_handle handle;
7250 struct perf_sample_data sample;
7251 struct perf_aux_event {
7252 struct perf_event_header header;
7253 u32 pid;
7254 u32 tid;
7255 } rec;
7256 int ret;
7257
7258 if (event->parent)
7259 event = event->parent;
7260
7261 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7262 event->hw.itrace_started)
7263 return;
7264
7265 rec.header.type = PERF_RECORD_ITRACE_START;
7266 rec.header.misc = 0;
7267 rec.header.size = sizeof(rec);
7268 rec.pid = perf_event_pid(event, current);
7269 rec.tid = perf_event_tid(event, current);
7270
7271 perf_event_header__init_id(&rec.header, &sample, event);
7272 ret = perf_output_begin(&handle, event, rec.header.size);
7273
7274 if (ret)
7275 return;
7276
7277 perf_output_put(&handle, rec);
7278 perf_event__output_id_sample(event, &handle, &sample);
7279
7280 perf_output_end(&handle);
7281 }
7282
7283 static int
7284 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7285 {
7286 struct hw_perf_event *hwc = &event->hw;
7287 int ret = 0;
7288 u64 seq;
7289
7290 seq = __this_cpu_read(perf_throttled_seq);
7291 if (seq != hwc->interrupts_seq) {
7292 hwc->interrupts_seq = seq;
7293 hwc->interrupts = 1;
7294 } else {
7295 hwc->interrupts++;
7296 if (unlikely(throttle
7297 && hwc->interrupts >= max_samples_per_tick)) {
7298 __this_cpu_inc(perf_throttled_count);
7299 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7300 hwc->interrupts = MAX_INTERRUPTS;
7301 perf_log_throttle(event, 0);
7302 ret = 1;
7303 }
7304 }
7305
7306 if (event->attr.freq) {
7307 u64 now = perf_clock();
7308 s64 delta = now - hwc->freq_time_stamp;
7309
7310 hwc->freq_time_stamp = now;
7311
7312 if (delta > 0 && delta < 2*TICK_NSEC)
7313 perf_adjust_period(event, delta, hwc->last_period, true);
7314 }
7315
7316 return ret;
7317 }
7318
7319 int perf_event_account_interrupt(struct perf_event *event)
7320 {
7321 return __perf_event_account_interrupt(event, 1);
7322 }
7323
7324 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7325 {
7326 /*
7327 * Due to interrupt latency (AKA "skid"), we may enter the
7328 * kernel before taking an overflow, even if the PMU is only
7329 * counting user events.
7330 * To avoid leaking information to userspace, we must always
7331 * reject kernel samples when exclude_kernel is set.
7332 */
7333 if (event->attr.exclude_kernel && !user_mode(regs))
7334 return false;
7335
7336 return true;
7337 }
7338
7339 /*
7340 * Generic event overflow handling, sampling.
7341 */
7342
7343 static int __perf_event_overflow(struct perf_event *event,
7344 int throttle, struct perf_sample_data *data,
7345 struct pt_regs *regs)
7346 {
7347 int events = atomic_read(&event->event_limit);
7348 int ret = 0;
7349
7350 /*
7351 * Non-sampling counters might still use the PMI to fold short
7352 * hardware counters, ignore those.
7353 */
7354 if (unlikely(!is_sampling_event(event)))
7355 return 0;
7356
7357 ret = __perf_event_account_interrupt(event, throttle);
7358
7359 /*
7360 * For security, drop the skid kernel samples if necessary.
7361 */
7362 if (!sample_is_allowed(event, regs))
7363 return ret;
7364
7365 /*
7366 * XXX event_limit might not quite work as expected on inherited
7367 * events
7368 */
7369
7370 event->pending_kill = POLL_IN;
7371 if (events && atomic_dec_and_test(&event->event_limit)) {
7372 ret = 1;
7373 event->pending_kill = POLL_HUP;
7374
7375 perf_event_disable_inatomic(event);
7376 }
7377
7378 READ_ONCE(event->overflow_handler)(event, data, regs);
7379
7380 if (*perf_event_fasync(event) && event->pending_kill) {
7381 event->pending_wakeup = 1;
7382 irq_work_queue(&event->pending);
7383 }
7384
7385 return ret;
7386 }
7387
7388 int perf_event_overflow(struct perf_event *event,
7389 struct perf_sample_data *data,
7390 struct pt_regs *regs)
7391 {
7392 return __perf_event_overflow(event, 1, data, regs);
7393 }
7394
7395 /*
7396 * Generic software event infrastructure
7397 */
7398
7399 struct swevent_htable {
7400 struct swevent_hlist *swevent_hlist;
7401 struct mutex hlist_mutex;
7402 int hlist_refcount;
7403
7404 /* Recursion avoidance in each contexts */
7405 int recursion[PERF_NR_CONTEXTS];
7406 };
7407
7408 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7409
7410 /*
7411 * We directly increment event->count and keep a second value in
7412 * event->hw.period_left to count intervals. This period event
7413 * is kept in the range [-sample_period, 0] so that we can use the
7414 * sign as trigger.
7415 */
7416
7417 u64 perf_swevent_set_period(struct perf_event *event)
7418 {
7419 struct hw_perf_event *hwc = &event->hw;
7420 u64 period = hwc->last_period;
7421 u64 nr, offset;
7422 s64 old, val;
7423
7424 hwc->last_period = hwc->sample_period;
7425
7426 again:
7427 old = val = local64_read(&hwc->period_left);
7428 if (val < 0)
7429 return 0;
7430
7431 nr = div64_u64(period + val, period);
7432 offset = nr * period;
7433 val -= offset;
7434 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7435 goto again;
7436
7437 return nr;
7438 }
7439
7440 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7441 struct perf_sample_data *data,
7442 struct pt_regs *regs)
7443 {
7444 struct hw_perf_event *hwc = &event->hw;
7445 int throttle = 0;
7446
7447 if (!overflow)
7448 overflow = perf_swevent_set_period(event);
7449
7450 if (hwc->interrupts == MAX_INTERRUPTS)
7451 return;
7452
7453 for (; overflow; overflow--) {
7454 if (__perf_event_overflow(event, throttle,
7455 data, regs)) {
7456 /*
7457 * We inhibit the overflow from happening when
7458 * hwc->interrupts == MAX_INTERRUPTS.
7459 */
7460 break;
7461 }
7462 throttle = 1;
7463 }
7464 }
7465
7466 static void perf_swevent_event(struct perf_event *event, u64 nr,
7467 struct perf_sample_data *data,
7468 struct pt_regs *regs)
7469 {
7470 struct hw_perf_event *hwc = &event->hw;
7471
7472 local64_add(nr, &event->count);
7473
7474 if (!regs)
7475 return;
7476
7477 if (!is_sampling_event(event))
7478 return;
7479
7480 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7481 data->period = nr;
7482 return perf_swevent_overflow(event, 1, data, regs);
7483 } else
7484 data->period = event->hw.last_period;
7485
7486 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7487 return perf_swevent_overflow(event, 1, data, regs);
7488
7489 if (local64_add_negative(nr, &hwc->period_left))
7490 return;
7491
7492 perf_swevent_overflow(event, 0, data, regs);
7493 }
7494
7495 static int perf_exclude_event(struct perf_event *event,
7496 struct pt_regs *regs)
7497 {
7498 if (event->hw.state & PERF_HES_STOPPED)
7499 return 1;
7500
7501 if (regs) {
7502 if (event->attr.exclude_user && user_mode(regs))
7503 return 1;
7504
7505 if (event->attr.exclude_kernel && !user_mode(regs))
7506 return 1;
7507 }
7508
7509 return 0;
7510 }
7511
7512 static int perf_swevent_match(struct perf_event *event,
7513 enum perf_type_id type,
7514 u32 event_id,
7515 struct perf_sample_data *data,
7516 struct pt_regs *regs)
7517 {
7518 if (event->attr.type != type)
7519 return 0;
7520
7521 if (event->attr.config != event_id)
7522 return 0;
7523
7524 if (perf_exclude_event(event, regs))
7525 return 0;
7526
7527 return 1;
7528 }
7529
7530 static inline u64 swevent_hash(u64 type, u32 event_id)
7531 {
7532 u64 val = event_id | (type << 32);
7533
7534 return hash_64(val, SWEVENT_HLIST_BITS);
7535 }
7536
7537 static inline struct hlist_head *
7538 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7539 {
7540 u64 hash = swevent_hash(type, event_id);
7541
7542 return &hlist->heads[hash];
7543 }
7544
7545 /* For the read side: events when they trigger */
7546 static inline struct hlist_head *
7547 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7548 {
7549 struct swevent_hlist *hlist;
7550
7551 hlist = rcu_dereference(swhash->swevent_hlist);
7552 if (!hlist)
7553 return NULL;
7554
7555 return __find_swevent_head(hlist, type, event_id);
7556 }
7557
7558 /* For the event head insertion and removal in the hlist */
7559 static inline struct hlist_head *
7560 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7561 {
7562 struct swevent_hlist *hlist;
7563 u32 event_id = event->attr.config;
7564 u64 type = event->attr.type;
7565
7566 /*
7567 * Event scheduling is always serialized against hlist allocation
7568 * and release. Which makes the protected version suitable here.
7569 * The context lock guarantees that.
7570 */
7571 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7572 lockdep_is_held(&event->ctx->lock));
7573 if (!hlist)
7574 return NULL;
7575
7576 return __find_swevent_head(hlist, type, event_id);
7577 }
7578
7579 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7580 u64 nr,
7581 struct perf_sample_data *data,
7582 struct pt_regs *regs)
7583 {
7584 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7585 struct perf_event *event;
7586 struct hlist_head *head;
7587
7588 rcu_read_lock();
7589 head = find_swevent_head_rcu(swhash, type, event_id);
7590 if (!head)
7591 goto end;
7592
7593 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7594 if (perf_swevent_match(event, type, event_id, data, regs))
7595 perf_swevent_event(event, nr, data, regs);
7596 }
7597 end:
7598 rcu_read_unlock();
7599 }
7600
7601 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7602
7603 int perf_swevent_get_recursion_context(void)
7604 {
7605 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7606
7607 return get_recursion_context(swhash->recursion);
7608 }
7609 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7610
7611 void perf_swevent_put_recursion_context(int rctx)
7612 {
7613 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7614
7615 put_recursion_context(swhash->recursion, rctx);
7616 }
7617
7618 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7619 {
7620 struct perf_sample_data data;
7621
7622 if (WARN_ON_ONCE(!regs))
7623 return;
7624
7625 perf_sample_data_init(&data, addr, 0);
7626 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7627 }
7628
7629 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7630 {
7631 int rctx;
7632
7633 preempt_disable_notrace();
7634 rctx = perf_swevent_get_recursion_context();
7635 if (unlikely(rctx < 0))
7636 goto fail;
7637
7638 ___perf_sw_event(event_id, nr, regs, addr);
7639
7640 perf_swevent_put_recursion_context(rctx);
7641 fail:
7642 preempt_enable_notrace();
7643 }
7644
7645 static void perf_swevent_read(struct perf_event *event)
7646 {
7647 }
7648
7649 static int perf_swevent_add(struct perf_event *event, int flags)
7650 {
7651 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7652 struct hw_perf_event *hwc = &event->hw;
7653 struct hlist_head *head;
7654
7655 if (is_sampling_event(event)) {
7656 hwc->last_period = hwc->sample_period;
7657 perf_swevent_set_period(event);
7658 }
7659
7660 hwc->state = !(flags & PERF_EF_START);
7661
7662 head = find_swevent_head(swhash, event);
7663 if (WARN_ON_ONCE(!head))
7664 return -EINVAL;
7665
7666 hlist_add_head_rcu(&event->hlist_entry, head);
7667 perf_event_update_userpage(event);
7668
7669 return 0;
7670 }
7671
7672 static void perf_swevent_del(struct perf_event *event, int flags)
7673 {
7674 hlist_del_rcu(&event->hlist_entry);
7675 }
7676
7677 static void perf_swevent_start(struct perf_event *event, int flags)
7678 {
7679 event->hw.state = 0;
7680 }
7681
7682 static void perf_swevent_stop(struct perf_event *event, int flags)
7683 {
7684 event->hw.state = PERF_HES_STOPPED;
7685 }
7686
7687 /* Deref the hlist from the update side */
7688 static inline struct swevent_hlist *
7689 swevent_hlist_deref(struct swevent_htable *swhash)
7690 {
7691 return rcu_dereference_protected(swhash->swevent_hlist,
7692 lockdep_is_held(&swhash->hlist_mutex));
7693 }
7694
7695 static void swevent_hlist_release(struct swevent_htable *swhash)
7696 {
7697 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7698
7699 if (!hlist)
7700 return;
7701
7702 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7703 kfree_rcu(hlist, rcu_head);
7704 }
7705
7706 static void swevent_hlist_put_cpu(int cpu)
7707 {
7708 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7709
7710 mutex_lock(&swhash->hlist_mutex);
7711
7712 if (!--swhash->hlist_refcount)
7713 swevent_hlist_release(swhash);
7714
7715 mutex_unlock(&swhash->hlist_mutex);
7716 }
7717
7718 static void swevent_hlist_put(void)
7719 {
7720 int cpu;
7721
7722 for_each_possible_cpu(cpu)
7723 swevent_hlist_put_cpu(cpu);
7724 }
7725
7726 static int swevent_hlist_get_cpu(int cpu)
7727 {
7728 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7729 int err = 0;
7730
7731 mutex_lock(&swhash->hlist_mutex);
7732 if (!swevent_hlist_deref(swhash) &&
7733 cpumask_test_cpu(cpu, perf_online_mask)) {
7734 struct swevent_hlist *hlist;
7735
7736 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7737 if (!hlist) {
7738 err = -ENOMEM;
7739 goto exit;
7740 }
7741 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7742 }
7743 swhash->hlist_refcount++;
7744 exit:
7745 mutex_unlock(&swhash->hlist_mutex);
7746
7747 return err;
7748 }
7749
7750 static int swevent_hlist_get(void)
7751 {
7752 int err, cpu, failed_cpu;
7753
7754 mutex_lock(&pmus_lock);
7755 for_each_possible_cpu(cpu) {
7756 err = swevent_hlist_get_cpu(cpu);
7757 if (err) {
7758 failed_cpu = cpu;
7759 goto fail;
7760 }
7761 }
7762 mutex_unlock(&pmus_lock);
7763 return 0;
7764 fail:
7765 for_each_possible_cpu(cpu) {
7766 if (cpu == failed_cpu)
7767 break;
7768 swevent_hlist_put_cpu(cpu);
7769 }
7770 mutex_unlock(&pmus_lock);
7771 return err;
7772 }
7773
7774 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7775
7776 static void sw_perf_event_destroy(struct perf_event *event)
7777 {
7778 u64 event_id = event->attr.config;
7779
7780 WARN_ON(event->parent);
7781
7782 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7783 swevent_hlist_put();
7784 }
7785
7786 static int perf_swevent_init(struct perf_event *event)
7787 {
7788 u64 event_id = event->attr.config;
7789
7790 if (event->attr.type != PERF_TYPE_SOFTWARE)
7791 return -ENOENT;
7792
7793 /*
7794 * no branch sampling for software events
7795 */
7796 if (has_branch_stack(event))
7797 return -EOPNOTSUPP;
7798
7799 switch (event_id) {
7800 case PERF_COUNT_SW_CPU_CLOCK:
7801 case PERF_COUNT_SW_TASK_CLOCK:
7802 return -ENOENT;
7803
7804 default:
7805 break;
7806 }
7807
7808 if (event_id >= PERF_COUNT_SW_MAX)
7809 return -ENOENT;
7810
7811 if (!event->parent) {
7812 int err;
7813
7814 err = swevent_hlist_get();
7815 if (err)
7816 return err;
7817
7818 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7819 event->destroy = sw_perf_event_destroy;
7820 }
7821
7822 return 0;
7823 }
7824
7825 static struct pmu perf_swevent = {
7826 .task_ctx_nr = perf_sw_context,
7827
7828 .capabilities = PERF_PMU_CAP_NO_NMI,
7829
7830 .event_init = perf_swevent_init,
7831 .add = perf_swevent_add,
7832 .del = perf_swevent_del,
7833 .start = perf_swevent_start,
7834 .stop = perf_swevent_stop,
7835 .read = perf_swevent_read,
7836 };
7837
7838 #ifdef CONFIG_EVENT_TRACING
7839
7840 static int perf_tp_filter_match(struct perf_event *event,
7841 struct perf_sample_data *data)
7842 {
7843 void *record = data->raw->frag.data;
7844
7845 /* only top level events have filters set */
7846 if (event->parent)
7847 event = event->parent;
7848
7849 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7850 return 1;
7851 return 0;
7852 }
7853
7854 static int perf_tp_event_match(struct perf_event *event,
7855 struct perf_sample_data *data,
7856 struct pt_regs *regs)
7857 {
7858 if (event->hw.state & PERF_HES_STOPPED)
7859 return 0;
7860 /*
7861 * All tracepoints are from kernel-space.
7862 */
7863 if (event->attr.exclude_kernel)
7864 return 0;
7865
7866 if (!perf_tp_filter_match(event, data))
7867 return 0;
7868
7869 return 1;
7870 }
7871
7872 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7873 struct trace_event_call *call, u64 count,
7874 struct pt_regs *regs, struct hlist_head *head,
7875 struct task_struct *task)
7876 {
7877 struct bpf_prog *prog = call->prog;
7878
7879 if (prog) {
7880 *(struct pt_regs **)raw_data = regs;
7881 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7882 perf_swevent_put_recursion_context(rctx);
7883 return;
7884 }
7885 }
7886 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7887 rctx, task);
7888 }
7889 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7890
7891 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7892 struct pt_regs *regs, struct hlist_head *head, int rctx,
7893 struct task_struct *task)
7894 {
7895 struct perf_sample_data data;
7896 struct perf_event *event;
7897
7898 struct perf_raw_record raw = {
7899 .frag = {
7900 .size = entry_size,
7901 .data = record,
7902 },
7903 };
7904
7905 perf_sample_data_init(&data, 0, 0);
7906 data.raw = &raw;
7907
7908 perf_trace_buf_update(record, event_type);
7909
7910 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7911 if (perf_tp_event_match(event, &data, regs))
7912 perf_swevent_event(event, count, &data, regs);
7913 }
7914
7915 /*
7916 * If we got specified a target task, also iterate its context and
7917 * deliver this event there too.
7918 */
7919 if (task && task != current) {
7920 struct perf_event_context *ctx;
7921 struct trace_entry *entry = record;
7922
7923 rcu_read_lock();
7924 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7925 if (!ctx)
7926 goto unlock;
7927
7928 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7929 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7930 continue;
7931 if (event->attr.config != entry->type)
7932 continue;
7933 if (perf_tp_event_match(event, &data, regs))
7934 perf_swevent_event(event, count, &data, regs);
7935 }
7936 unlock:
7937 rcu_read_unlock();
7938 }
7939
7940 perf_swevent_put_recursion_context(rctx);
7941 }
7942 EXPORT_SYMBOL_GPL(perf_tp_event);
7943
7944 static void tp_perf_event_destroy(struct perf_event *event)
7945 {
7946 perf_trace_destroy(event);
7947 }
7948
7949 static int perf_tp_event_init(struct perf_event *event)
7950 {
7951 int err;
7952
7953 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7954 return -ENOENT;
7955
7956 /*
7957 * no branch sampling for tracepoint events
7958 */
7959 if (has_branch_stack(event))
7960 return -EOPNOTSUPP;
7961
7962 err = perf_trace_init(event);
7963 if (err)
7964 return err;
7965
7966 event->destroy = tp_perf_event_destroy;
7967
7968 return 0;
7969 }
7970
7971 static struct pmu perf_tracepoint = {
7972 .task_ctx_nr = perf_sw_context,
7973
7974 .event_init = perf_tp_event_init,
7975 .add = perf_trace_add,
7976 .del = perf_trace_del,
7977 .start = perf_swevent_start,
7978 .stop = perf_swevent_stop,
7979 .read = perf_swevent_read,
7980 };
7981
7982 static inline void perf_tp_register(void)
7983 {
7984 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7985 }
7986
7987 static void perf_event_free_filter(struct perf_event *event)
7988 {
7989 ftrace_profile_free_filter(event);
7990 }
7991
7992 #ifdef CONFIG_BPF_SYSCALL
7993 static void bpf_overflow_handler(struct perf_event *event,
7994 struct perf_sample_data *data,
7995 struct pt_regs *regs)
7996 {
7997 struct bpf_perf_event_data_kern ctx = {
7998 .data = data,
7999 .regs = regs,
8000 };
8001 int ret = 0;
8002
8003 preempt_disable();
8004 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8005 goto out;
8006 rcu_read_lock();
8007 ret = BPF_PROG_RUN(event->prog, &ctx);
8008 rcu_read_unlock();
8009 out:
8010 __this_cpu_dec(bpf_prog_active);
8011 preempt_enable();
8012 if (!ret)
8013 return;
8014
8015 event->orig_overflow_handler(event, data, regs);
8016 }
8017
8018 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8019 {
8020 struct bpf_prog *prog;
8021
8022 if (event->overflow_handler_context)
8023 /* hw breakpoint or kernel counter */
8024 return -EINVAL;
8025
8026 if (event->prog)
8027 return -EEXIST;
8028
8029 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8030 if (IS_ERR(prog))
8031 return PTR_ERR(prog);
8032
8033 event->prog = prog;
8034 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8035 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8036 return 0;
8037 }
8038
8039 static void perf_event_free_bpf_handler(struct perf_event *event)
8040 {
8041 struct bpf_prog *prog = event->prog;
8042
8043 if (!prog)
8044 return;
8045
8046 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8047 event->prog = NULL;
8048 bpf_prog_put(prog);
8049 }
8050 #else
8051 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8052 {
8053 return -EOPNOTSUPP;
8054 }
8055 static void perf_event_free_bpf_handler(struct perf_event *event)
8056 {
8057 }
8058 #endif
8059
8060 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8061 {
8062 bool is_kprobe, is_tracepoint;
8063 struct bpf_prog *prog;
8064
8065 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8066 return perf_event_set_bpf_handler(event, prog_fd);
8067
8068 if (event->tp_event->prog)
8069 return -EEXIST;
8070
8071 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8072 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8073 if (!is_kprobe && !is_tracepoint)
8074 /* bpf programs can only be attached to u/kprobe or tracepoint */
8075 return -EINVAL;
8076
8077 prog = bpf_prog_get(prog_fd);
8078 if (IS_ERR(prog))
8079 return PTR_ERR(prog);
8080
8081 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8082 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8083 /* valid fd, but invalid bpf program type */
8084 bpf_prog_put(prog);
8085 return -EINVAL;
8086 }
8087
8088 if (is_tracepoint) {
8089 int off = trace_event_get_offsets(event->tp_event);
8090
8091 if (prog->aux->max_ctx_offset > off) {
8092 bpf_prog_put(prog);
8093 return -EACCES;
8094 }
8095 }
8096 event->tp_event->prog = prog;
8097
8098 return 0;
8099 }
8100
8101 static void perf_event_free_bpf_prog(struct perf_event *event)
8102 {
8103 struct bpf_prog *prog;
8104
8105 perf_event_free_bpf_handler(event);
8106
8107 if (!event->tp_event)
8108 return;
8109
8110 prog = event->tp_event->prog;
8111 if (prog) {
8112 event->tp_event->prog = NULL;
8113 bpf_prog_put(prog);
8114 }
8115 }
8116
8117 #else
8118
8119 static inline void perf_tp_register(void)
8120 {
8121 }
8122
8123 static void perf_event_free_filter(struct perf_event *event)
8124 {
8125 }
8126
8127 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8128 {
8129 return -ENOENT;
8130 }
8131
8132 static void perf_event_free_bpf_prog(struct perf_event *event)
8133 {
8134 }
8135 #endif /* CONFIG_EVENT_TRACING */
8136
8137 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8138 void perf_bp_event(struct perf_event *bp, void *data)
8139 {
8140 struct perf_sample_data sample;
8141 struct pt_regs *regs = data;
8142
8143 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8144
8145 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8146 perf_swevent_event(bp, 1, &sample, regs);
8147 }
8148 #endif
8149
8150 /*
8151 * Allocate a new address filter
8152 */
8153 static struct perf_addr_filter *
8154 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8155 {
8156 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8157 struct perf_addr_filter *filter;
8158
8159 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8160 if (!filter)
8161 return NULL;
8162
8163 INIT_LIST_HEAD(&filter->entry);
8164 list_add_tail(&filter->entry, filters);
8165
8166 return filter;
8167 }
8168
8169 static void free_filters_list(struct list_head *filters)
8170 {
8171 struct perf_addr_filter *filter, *iter;
8172
8173 list_for_each_entry_safe(filter, iter, filters, entry) {
8174 if (filter->inode)
8175 iput(filter->inode);
8176 list_del(&filter->entry);
8177 kfree(filter);
8178 }
8179 }
8180
8181 /*
8182 * Free existing address filters and optionally install new ones
8183 */
8184 static void perf_addr_filters_splice(struct perf_event *event,
8185 struct list_head *head)
8186 {
8187 unsigned long flags;
8188 LIST_HEAD(list);
8189
8190 if (!has_addr_filter(event))
8191 return;
8192
8193 /* don't bother with children, they don't have their own filters */
8194 if (event->parent)
8195 return;
8196
8197 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8198
8199 list_splice_init(&event->addr_filters.list, &list);
8200 if (head)
8201 list_splice(head, &event->addr_filters.list);
8202
8203 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8204
8205 free_filters_list(&list);
8206 }
8207
8208 /*
8209 * Scan through mm's vmas and see if one of them matches the
8210 * @filter; if so, adjust filter's address range.
8211 * Called with mm::mmap_sem down for reading.
8212 */
8213 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8214 struct mm_struct *mm)
8215 {
8216 struct vm_area_struct *vma;
8217
8218 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8219 struct file *file = vma->vm_file;
8220 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8221 unsigned long vma_size = vma->vm_end - vma->vm_start;
8222
8223 if (!file)
8224 continue;
8225
8226 if (!perf_addr_filter_match(filter, file, off, vma_size))
8227 continue;
8228
8229 return vma->vm_start;
8230 }
8231
8232 return 0;
8233 }
8234
8235 /*
8236 * Update event's address range filters based on the
8237 * task's existing mappings, if any.
8238 */
8239 static void perf_event_addr_filters_apply(struct perf_event *event)
8240 {
8241 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8242 struct task_struct *task = READ_ONCE(event->ctx->task);
8243 struct perf_addr_filter *filter;
8244 struct mm_struct *mm = NULL;
8245 unsigned int count = 0;
8246 unsigned long flags;
8247
8248 /*
8249 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8250 * will stop on the parent's child_mutex that our caller is also holding
8251 */
8252 if (task == TASK_TOMBSTONE)
8253 return;
8254
8255 if (!ifh->nr_file_filters)
8256 return;
8257
8258 mm = get_task_mm(event->ctx->task);
8259 if (!mm)
8260 goto restart;
8261
8262 down_read(&mm->mmap_sem);
8263
8264 raw_spin_lock_irqsave(&ifh->lock, flags);
8265 list_for_each_entry(filter, &ifh->list, entry) {
8266 event->addr_filters_offs[count] = 0;
8267
8268 /*
8269 * Adjust base offset if the filter is associated to a binary
8270 * that needs to be mapped:
8271 */
8272 if (filter->inode)
8273 event->addr_filters_offs[count] =
8274 perf_addr_filter_apply(filter, mm);
8275
8276 count++;
8277 }
8278
8279 event->addr_filters_gen++;
8280 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8281
8282 up_read(&mm->mmap_sem);
8283
8284 mmput(mm);
8285
8286 restart:
8287 perf_event_stop(event, 1);
8288 }
8289
8290 /*
8291 * Address range filtering: limiting the data to certain
8292 * instruction address ranges. Filters are ioctl()ed to us from
8293 * userspace as ascii strings.
8294 *
8295 * Filter string format:
8296 *
8297 * ACTION RANGE_SPEC
8298 * where ACTION is one of the
8299 * * "filter": limit the trace to this region
8300 * * "start": start tracing from this address
8301 * * "stop": stop tracing at this address/region;
8302 * RANGE_SPEC is
8303 * * for kernel addresses: <start address>[/<size>]
8304 * * for object files: <start address>[/<size>]@</path/to/object/file>
8305 *
8306 * if <size> is not specified, the range is treated as a single address.
8307 */
8308 enum {
8309 IF_ACT_NONE = -1,
8310 IF_ACT_FILTER,
8311 IF_ACT_START,
8312 IF_ACT_STOP,
8313 IF_SRC_FILE,
8314 IF_SRC_KERNEL,
8315 IF_SRC_FILEADDR,
8316 IF_SRC_KERNELADDR,
8317 };
8318
8319 enum {
8320 IF_STATE_ACTION = 0,
8321 IF_STATE_SOURCE,
8322 IF_STATE_END,
8323 };
8324
8325 static const match_table_t if_tokens = {
8326 { IF_ACT_FILTER, "filter" },
8327 { IF_ACT_START, "start" },
8328 { IF_ACT_STOP, "stop" },
8329 { IF_SRC_FILE, "%u/%u@%s" },
8330 { IF_SRC_KERNEL, "%u/%u" },
8331 { IF_SRC_FILEADDR, "%u@%s" },
8332 { IF_SRC_KERNELADDR, "%u" },
8333 { IF_ACT_NONE, NULL },
8334 };
8335
8336 /*
8337 * Address filter string parser
8338 */
8339 static int
8340 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8341 struct list_head *filters)
8342 {
8343 struct perf_addr_filter *filter = NULL;
8344 char *start, *orig, *filename = NULL;
8345 struct path path;
8346 substring_t args[MAX_OPT_ARGS];
8347 int state = IF_STATE_ACTION, token;
8348 unsigned int kernel = 0;
8349 int ret = -EINVAL;
8350
8351 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8352 if (!fstr)
8353 return -ENOMEM;
8354
8355 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8356 ret = -EINVAL;
8357
8358 if (!*start)
8359 continue;
8360
8361 /* filter definition begins */
8362 if (state == IF_STATE_ACTION) {
8363 filter = perf_addr_filter_new(event, filters);
8364 if (!filter)
8365 goto fail;
8366 }
8367
8368 token = match_token(start, if_tokens, args);
8369 switch (token) {
8370 case IF_ACT_FILTER:
8371 case IF_ACT_START:
8372 filter->filter = 1;
8373
8374 case IF_ACT_STOP:
8375 if (state != IF_STATE_ACTION)
8376 goto fail;
8377
8378 state = IF_STATE_SOURCE;
8379 break;
8380
8381 case IF_SRC_KERNELADDR:
8382 case IF_SRC_KERNEL:
8383 kernel = 1;
8384
8385 case IF_SRC_FILEADDR:
8386 case IF_SRC_FILE:
8387 if (state != IF_STATE_SOURCE)
8388 goto fail;
8389
8390 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8391 filter->range = 1;
8392
8393 *args[0].to = 0;
8394 ret = kstrtoul(args[0].from, 0, &filter->offset);
8395 if (ret)
8396 goto fail;
8397
8398 if (filter->range) {
8399 *args[1].to = 0;
8400 ret = kstrtoul(args[1].from, 0, &filter->size);
8401 if (ret)
8402 goto fail;
8403 }
8404
8405 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8406 int fpos = filter->range ? 2 : 1;
8407
8408 filename = match_strdup(&args[fpos]);
8409 if (!filename) {
8410 ret = -ENOMEM;
8411 goto fail;
8412 }
8413 }
8414
8415 state = IF_STATE_END;
8416 break;
8417
8418 default:
8419 goto fail;
8420 }
8421
8422 /*
8423 * Filter definition is fully parsed, validate and install it.
8424 * Make sure that it doesn't contradict itself or the event's
8425 * attribute.
8426 */
8427 if (state == IF_STATE_END) {
8428 ret = -EINVAL;
8429 if (kernel && event->attr.exclude_kernel)
8430 goto fail;
8431
8432 if (!kernel) {
8433 if (!filename)
8434 goto fail;
8435
8436 /*
8437 * For now, we only support file-based filters
8438 * in per-task events; doing so for CPU-wide
8439 * events requires additional context switching
8440 * trickery, since same object code will be
8441 * mapped at different virtual addresses in
8442 * different processes.
8443 */
8444 ret = -EOPNOTSUPP;
8445 if (!event->ctx->task)
8446 goto fail_free_name;
8447
8448 /* look up the path and grab its inode */
8449 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8450 if (ret)
8451 goto fail_free_name;
8452
8453 filter->inode = igrab(d_inode(path.dentry));
8454 path_put(&path);
8455 kfree(filename);
8456 filename = NULL;
8457
8458 ret = -EINVAL;
8459 if (!filter->inode ||
8460 !S_ISREG(filter->inode->i_mode))
8461 /* free_filters_list() will iput() */
8462 goto fail;
8463
8464 event->addr_filters.nr_file_filters++;
8465 }
8466
8467 /* ready to consume more filters */
8468 state = IF_STATE_ACTION;
8469 filter = NULL;
8470 }
8471 }
8472
8473 if (state != IF_STATE_ACTION)
8474 goto fail;
8475
8476 kfree(orig);
8477
8478 return 0;
8479
8480 fail_free_name:
8481 kfree(filename);
8482 fail:
8483 free_filters_list(filters);
8484 kfree(orig);
8485
8486 return ret;
8487 }
8488
8489 static int
8490 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8491 {
8492 LIST_HEAD(filters);
8493 int ret;
8494
8495 /*
8496 * Since this is called in perf_ioctl() path, we're already holding
8497 * ctx::mutex.
8498 */
8499 lockdep_assert_held(&event->ctx->mutex);
8500
8501 if (WARN_ON_ONCE(event->parent))
8502 return -EINVAL;
8503
8504 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8505 if (ret)
8506 goto fail_clear_files;
8507
8508 ret = event->pmu->addr_filters_validate(&filters);
8509 if (ret)
8510 goto fail_free_filters;
8511
8512 /* remove existing filters, if any */
8513 perf_addr_filters_splice(event, &filters);
8514
8515 /* install new filters */
8516 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8517
8518 return ret;
8519
8520 fail_free_filters:
8521 free_filters_list(&filters);
8522
8523 fail_clear_files:
8524 event->addr_filters.nr_file_filters = 0;
8525
8526 return ret;
8527 }
8528
8529 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8530 {
8531 char *filter_str;
8532 int ret = -EINVAL;
8533
8534 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8535 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8536 !has_addr_filter(event))
8537 return -EINVAL;
8538
8539 filter_str = strndup_user(arg, PAGE_SIZE);
8540 if (IS_ERR(filter_str))
8541 return PTR_ERR(filter_str);
8542
8543 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8544 event->attr.type == PERF_TYPE_TRACEPOINT)
8545 ret = ftrace_profile_set_filter(event, event->attr.config,
8546 filter_str);
8547 else if (has_addr_filter(event))
8548 ret = perf_event_set_addr_filter(event, filter_str);
8549
8550 kfree(filter_str);
8551 return ret;
8552 }
8553
8554 /*
8555 * hrtimer based swevent callback
8556 */
8557
8558 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8559 {
8560 enum hrtimer_restart ret = HRTIMER_RESTART;
8561 struct perf_sample_data data;
8562 struct pt_regs *regs;
8563 struct perf_event *event;
8564 u64 period;
8565
8566 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8567
8568 if (event->state != PERF_EVENT_STATE_ACTIVE)
8569 return HRTIMER_NORESTART;
8570
8571 event->pmu->read(event);
8572
8573 perf_sample_data_init(&data, 0, event->hw.last_period);
8574 regs = get_irq_regs();
8575
8576 if (regs && !perf_exclude_event(event, regs)) {
8577 if (!(event->attr.exclude_idle && is_idle_task(current)))
8578 if (__perf_event_overflow(event, 1, &data, regs))
8579 ret = HRTIMER_NORESTART;
8580 }
8581
8582 period = max_t(u64, 10000, event->hw.sample_period);
8583 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8584
8585 return ret;
8586 }
8587
8588 static void perf_swevent_start_hrtimer(struct perf_event *event)
8589 {
8590 struct hw_perf_event *hwc = &event->hw;
8591 s64 period;
8592
8593 if (!is_sampling_event(event))
8594 return;
8595
8596 period = local64_read(&hwc->period_left);
8597 if (period) {
8598 if (period < 0)
8599 period = 10000;
8600
8601 local64_set(&hwc->period_left, 0);
8602 } else {
8603 period = max_t(u64, 10000, hwc->sample_period);
8604 }
8605 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8606 HRTIMER_MODE_REL_PINNED);
8607 }
8608
8609 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8610 {
8611 struct hw_perf_event *hwc = &event->hw;
8612
8613 if (is_sampling_event(event)) {
8614 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8615 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8616
8617 hrtimer_cancel(&hwc->hrtimer);
8618 }
8619 }
8620
8621 static void perf_swevent_init_hrtimer(struct perf_event *event)
8622 {
8623 struct hw_perf_event *hwc = &event->hw;
8624
8625 if (!is_sampling_event(event))
8626 return;
8627
8628 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8629 hwc->hrtimer.function = perf_swevent_hrtimer;
8630
8631 /*
8632 * Since hrtimers have a fixed rate, we can do a static freq->period
8633 * mapping and avoid the whole period adjust feedback stuff.
8634 */
8635 if (event->attr.freq) {
8636 long freq = event->attr.sample_freq;
8637
8638 event->attr.sample_period = NSEC_PER_SEC / freq;
8639 hwc->sample_period = event->attr.sample_period;
8640 local64_set(&hwc->period_left, hwc->sample_period);
8641 hwc->last_period = hwc->sample_period;
8642 event->attr.freq = 0;
8643 }
8644 }
8645
8646 /*
8647 * Software event: cpu wall time clock
8648 */
8649
8650 static void cpu_clock_event_update(struct perf_event *event)
8651 {
8652 s64 prev;
8653 u64 now;
8654
8655 now = local_clock();
8656 prev = local64_xchg(&event->hw.prev_count, now);
8657 local64_add(now - prev, &event->count);
8658 }
8659
8660 static void cpu_clock_event_start(struct perf_event *event, int flags)
8661 {
8662 local64_set(&event->hw.prev_count, local_clock());
8663 perf_swevent_start_hrtimer(event);
8664 }
8665
8666 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8667 {
8668 perf_swevent_cancel_hrtimer(event);
8669 cpu_clock_event_update(event);
8670 }
8671
8672 static int cpu_clock_event_add(struct perf_event *event, int flags)
8673 {
8674 if (flags & PERF_EF_START)
8675 cpu_clock_event_start(event, flags);
8676 perf_event_update_userpage(event);
8677
8678 return 0;
8679 }
8680
8681 static void cpu_clock_event_del(struct perf_event *event, int flags)
8682 {
8683 cpu_clock_event_stop(event, flags);
8684 }
8685
8686 static void cpu_clock_event_read(struct perf_event *event)
8687 {
8688 cpu_clock_event_update(event);
8689 }
8690
8691 static int cpu_clock_event_init(struct perf_event *event)
8692 {
8693 if (event->attr.type != PERF_TYPE_SOFTWARE)
8694 return -ENOENT;
8695
8696 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8697 return -ENOENT;
8698
8699 /*
8700 * no branch sampling for software events
8701 */
8702 if (has_branch_stack(event))
8703 return -EOPNOTSUPP;
8704
8705 perf_swevent_init_hrtimer(event);
8706
8707 return 0;
8708 }
8709
8710 static struct pmu perf_cpu_clock = {
8711 .task_ctx_nr = perf_sw_context,
8712
8713 .capabilities = PERF_PMU_CAP_NO_NMI,
8714
8715 .event_init = cpu_clock_event_init,
8716 .add = cpu_clock_event_add,
8717 .del = cpu_clock_event_del,
8718 .start = cpu_clock_event_start,
8719 .stop = cpu_clock_event_stop,
8720 .read = cpu_clock_event_read,
8721 };
8722
8723 /*
8724 * Software event: task time clock
8725 */
8726
8727 static void task_clock_event_update(struct perf_event *event, u64 now)
8728 {
8729 u64 prev;
8730 s64 delta;
8731
8732 prev = local64_xchg(&event->hw.prev_count, now);
8733 delta = now - prev;
8734 local64_add(delta, &event->count);
8735 }
8736
8737 static void task_clock_event_start(struct perf_event *event, int flags)
8738 {
8739 local64_set(&event->hw.prev_count, event->ctx->time);
8740 perf_swevent_start_hrtimer(event);
8741 }
8742
8743 static void task_clock_event_stop(struct perf_event *event, int flags)
8744 {
8745 perf_swevent_cancel_hrtimer(event);
8746 task_clock_event_update(event, event->ctx->time);
8747 }
8748
8749 static int task_clock_event_add(struct perf_event *event, int flags)
8750 {
8751 if (flags & PERF_EF_START)
8752 task_clock_event_start(event, flags);
8753 perf_event_update_userpage(event);
8754
8755 return 0;
8756 }
8757
8758 static void task_clock_event_del(struct perf_event *event, int flags)
8759 {
8760 task_clock_event_stop(event, PERF_EF_UPDATE);
8761 }
8762
8763 static void task_clock_event_read(struct perf_event *event)
8764 {
8765 u64 now = perf_clock();
8766 u64 delta = now - event->ctx->timestamp;
8767 u64 time = event->ctx->time + delta;
8768
8769 task_clock_event_update(event, time);
8770 }
8771
8772 static int task_clock_event_init(struct perf_event *event)
8773 {
8774 if (event->attr.type != PERF_TYPE_SOFTWARE)
8775 return -ENOENT;
8776
8777 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8778 return -ENOENT;
8779
8780 /*
8781 * no branch sampling for software events
8782 */
8783 if (has_branch_stack(event))
8784 return -EOPNOTSUPP;
8785
8786 perf_swevent_init_hrtimer(event);
8787
8788 return 0;
8789 }
8790
8791 static struct pmu perf_task_clock = {
8792 .task_ctx_nr = perf_sw_context,
8793
8794 .capabilities = PERF_PMU_CAP_NO_NMI,
8795
8796 .event_init = task_clock_event_init,
8797 .add = task_clock_event_add,
8798 .del = task_clock_event_del,
8799 .start = task_clock_event_start,
8800 .stop = task_clock_event_stop,
8801 .read = task_clock_event_read,
8802 };
8803
8804 static void perf_pmu_nop_void(struct pmu *pmu)
8805 {
8806 }
8807
8808 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8809 {
8810 }
8811
8812 static int perf_pmu_nop_int(struct pmu *pmu)
8813 {
8814 return 0;
8815 }
8816
8817 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8818
8819 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8820 {
8821 __this_cpu_write(nop_txn_flags, flags);
8822
8823 if (flags & ~PERF_PMU_TXN_ADD)
8824 return;
8825
8826 perf_pmu_disable(pmu);
8827 }
8828
8829 static int perf_pmu_commit_txn(struct pmu *pmu)
8830 {
8831 unsigned int flags = __this_cpu_read(nop_txn_flags);
8832
8833 __this_cpu_write(nop_txn_flags, 0);
8834
8835 if (flags & ~PERF_PMU_TXN_ADD)
8836 return 0;
8837
8838 perf_pmu_enable(pmu);
8839 return 0;
8840 }
8841
8842 static void perf_pmu_cancel_txn(struct pmu *pmu)
8843 {
8844 unsigned int flags = __this_cpu_read(nop_txn_flags);
8845
8846 __this_cpu_write(nop_txn_flags, 0);
8847
8848 if (flags & ~PERF_PMU_TXN_ADD)
8849 return;
8850
8851 perf_pmu_enable(pmu);
8852 }
8853
8854 static int perf_event_idx_default(struct perf_event *event)
8855 {
8856 return 0;
8857 }
8858
8859 /*
8860 * Ensures all contexts with the same task_ctx_nr have the same
8861 * pmu_cpu_context too.
8862 */
8863 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8864 {
8865 struct pmu *pmu;
8866
8867 if (ctxn < 0)
8868 return NULL;
8869
8870 list_for_each_entry(pmu, &pmus, entry) {
8871 if (pmu->task_ctx_nr == ctxn)
8872 return pmu->pmu_cpu_context;
8873 }
8874
8875 return NULL;
8876 }
8877
8878 static void free_pmu_context(struct pmu *pmu)
8879 {
8880 mutex_lock(&pmus_lock);
8881 free_percpu(pmu->pmu_cpu_context);
8882 mutex_unlock(&pmus_lock);
8883 }
8884
8885 /*
8886 * Let userspace know that this PMU supports address range filtering:
8887 */
8888 static ssize_t nr_addr_filters_show(struct device *dev,
8889 struct device_attribute *attr,
8890 char *page)
8891 {
8892 struct pmu *pmu = dev_get_drvdata(dev);
8893
8894 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8895 }
8896 DEVICE_ATTR_RO(nr_addr_filters);
8897
8898 static struct idr pmu_idr;
8899
8900 static ssize_t
8901 type_show(struct device *dev, struct device_attribute *attr, char *page)
8902 {
8903 struct pmu *pmu = dev_get_drvdata(dev);
8904
8905 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8906 }
8907 static DEVICE_ATTR_RO(type);
8908
8909 static ssize_t
8910 perf_event_mux_interval_ms_show(struct device *dev,
8911 struct device_attribute *attr,
8912 char *page)
8913 {
8914 struct pmu *pmu = dev_get_drvdata(dev);
8915
8916 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8917 }
8918
8919 static DEFINE_MUTEX(mux_interval_mutex);
8920
8921 static ssize_t
8922 perf_event_mux_interval_ms_store(struct device *dev,
8923 struct device_attribute *attr,
8924 const char *buf, size_t count)
8925 {
8926 struct pmu *pmu = dev_get_drvdata(dev);
8927 int timer, cpu, ret;
8928
8929 ret = kstrtoint(buf, 0, &timer);
8930 if (ret)
8931 return ret;
8932
8933 if (timer < 1)
8934 return -EINVAL;
8935
8936 /* same value, noting to do */
8937 if (timer == pmu->hrtimer_interval_ms)
8938 return count;
8939
8940 mutex_lock(&mux_interval_mutex);
8941 pmu->hrtimer_interval_ms = timer;
8942
8943 /* update all cpuctx for this PMU */
8944 cpus_read_lock();
8945 for_each_online_cpu(cpu) {
8946 struct perf_cpu_context *cpuctx;
8947 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8948 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8949
8950 cpu_function_call(cpu,
8951 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8952 }
8953 cpus_read_unlock();
8954 mutex_unlock(&mux_interval_mutex);
8955
8956 return count;
8957 }
8958 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8959
8960 static struct attribute *pmu_dev_attrs[] = {
8961 &dev_attr_type.attr,
8962 &dev_attr_perf_event_mux_interval_ms.attr,
8963 NULL,
8964 };
8965 ATTRIBUTE_GROUPS(pmu_dev);
8966
8967 static int pmu_bus_running;
8968 static struct bus_type pmu_bus = {
8969 .name = "event_source",
8970 .dev_groups = pmu_dev_groups,
8971 };
8972
8973 static void pmu_dev_release(struct device *dev)
8974 {
8975 kfree(dev);
8976 }
8977
8978 static int pmu_dev_alloc(struct pmu *pmu)
8979 {
8980 int ret = -ENOMEM;
8981
8982 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8983 if (!pmu->dev)
8984 goto out;
8985
8986 pmu->dev->groups = pmu->attr_groups;
8987 device_initialize(pmu->dev);
8988 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8989 if (ret)
8990 goto free_dev;
8991
8992 dev_set_drvdata(pmu->dev, pmu);
8993 pmu->dev->bus = &pmu_bus;
8994 pmu->dev->release = pmu_dev_release;
8995 ret = device_add(pmu->dev);
8996 if (ret)
8997 goto free_dev;
8998
8999 /* For PMUs with address filters, throw in an extra attribute: */
9000 if (pmu->nr_addr_filters)
9001 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9002
9003 if (ret)
9004 goto del_dev;
9005
9006 out:
9007 return ret;
9008
9009 del_dev:
9010 device_del(pmu->dev);
9011
9012 free_dev:
9013 put_device(pmu->dev);
9014 goto out;
9015 }
9016
9017 static struct lock_class_key cpuctx_mutex;
9018 static struct lock_class_key cpuctx_lock;
9019
9020 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9021 {
9022 int cpu, ret;
9023
9024 mutex_lock(&pmus_lock);
9025 ret = -ENOMEM;
9026 pmu->pmu_disable_count = alloc_percpu(int);
9027 if (!pmu->pmu_disable_count)
9028 goto unlock;
9029
9030 pmu->type = -1;
9031 if (!name)
9032 goto skip_type;
9033 pmu->name = name;
9034
9035 if (type < 0) {
9036 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9037 if (type < 0) {
9038 ret = type;
9039 goto free_pdc;
9040 }
9041 }
9042 pmu->type = type;
9043
9044 if (pmu_bus_running) {
9045 ret = pmu_dev_alloc(pmu);
9046 if (ret)
9047 goto free_idr;
9048 }
9049
9050 skip_type:
9051 if (pmu->task_ctx_nr == perf_hw_context) {
9052 static int hw_context_taken = 0;
9053
9054 /*
9055 * Other than systems with heterogeneous CPUs, it never makes
9056 * sense for two PMUs to share perf_hw_context. PMUs which are
9057 * uncore must use perf_invalid_context.
9058 */
9059 if (WARN_ON_ONCE(hw_context_taken &&
9060 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9061 pmu->task_ctx_nr = perf_invalid_context;
9062
9063 hw_context_taken = 1;
9064 }
9065
9066 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9067 if (pmu->pmu_cpu_context)
9068 goto got_cpu_context;
9069
9070 ret = -ENOMEM;
9071 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9072 if (!pmu->pmu_cpu_context)
9073 goto free_dev;
9074
9075 for_each_possible_cpu(cpu) {
9076 struct perf_cpu_context *cpuctx;
9077
9078 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9079 __perf_event_init_context(&cpuctx->ctx);
9080 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9081 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9082 cpuctx->ctx.pmu = pmu;
9083 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9084
9085 __perf_mux_hrtimer_init(cpuctx, cpu);
9086 }
9087
9088 got_cpu_context:
9089 if (!pmu->start_txn) {
9090 if (pmu->pmu_enable) {
9091 /*
9092 * If we have pmu_enable/pmu_disable calls, install
9093 * transaction stubs that use that to try and batch
9094 * hardware accesses.
9095 */
9096 pmu->start_txn = perf_pmu_start_txn;
9097 pmu->commit_txn = perf_pmu_commit_txn;
9098 pmu->cancel_txn = perf_pmu_cancel_txn;
9099 } else {
9100 pmu->start_txn = perf_pmu_nop_txn;
9101 pmu->commit_txn = perf_pmu_nop_int;
9102 pmu->cancel_txn = perf_pmu_nop_void;
9103 }
9104 }
9105
9106 if (!pmu->pmu_enable) {
9107 pmu->pmu_enable = perf_pmu_nop_void;
9108 pmu->pmu_disable = perf_pmu_nop_void;
9109 }
9110
9111 if (!pmu->event_idx)
9112 pmu->event_idx = perf_event_idx_default;
9113
9114 list_add_rcu(&pmu->entry, &pmus);
9115 atomic_set(&pmu->exclusive_cnt, 0);
9116 ret = 0;
9117 unlock:
9118 mutex_unlock(&pmus_lock);
9119
9120 return ret;
9121
9122 free_dev:
9123 device_del(pmu->dev);
9124 put_device(pmu->dev);
9125
9126 free_idr:
9127 if (pmu->type >= PERF_TYPE_MAX)
9128 idr_remove(&pmu_idr, pmu->type);
9129
9130 free_pdc:
9131 free_percpu(pmu->pmu_disable_count);
9132 goto unlock;
9133 }
9134 EXPORT_SYMBOL_GPL(perf_pmu_register);
9135
9136 void perf_pmu_unregister(struct pmu *pmu)
9137 {
9138 int remove_device;
9139
9140 mutex_lock(&pmus_lock);
9141 remove_device = pmu_bus_running;
9142 list_del_rcu(&pmu->entry);
9143 mutex_unlock(&pmus_lock);
9144
9145 /*
9146 * We dereference the pmu list under both SRCU and regular RCU, so
9147 * synchronize against both of those.
9148 */
9149 synchronize_srcu(&pmus_srcu);
9150 synchronize_rcu();
9151
9152 free_percpu(pmu->pmu_disable_count);
9153 if (pmu->type >= PERF_TYPE_MAX)
9154 idr_remove(&pmu_idr, pmu->type);
9155 if (remove_device) {
9156 if (pmu->nr_addr_filters)
9157 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9158 device_del(pmu->dev);
9159 put_device(pmu->dev);
9160 }
9161 free_pmu_context(pmu);
9162 }
9163 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9164
9165 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9166 {
9167 struct perf_event_context *ctx = NULL;
9168 int ret;
9169
9170 if (!try_module_get(pmu->module))
9171 return -ENODEV;
9172
9173 if (event->group_leader != event) {
9174 /*
9175 * This ctx->mutex can nest when we're called through
9176 * inheritance. See the perf_event_ctx_lock_nested() comment.
9177 */
9178 ctx = perf_event_ctx_lock_nested(event->group_leader,
9179 SINGLE_DEPTH_NESTING);
9180 BUG_ON(!ctx);
9181 }
9182
9183 event->pmu = pmu;
9184 ret = pmu->event_init(event);
9185
9186 if (ctx)
9187 perf_event_ctx_unlock(event->group_leader, ctx);
9188
9189 if (ret)
9190 module_put(pmu->module);
9191
9192 return ret;
9193 }
9194
9195 static struct pmu *perf_init_event(struct perf_event *event)
9196 {
9197 struct pmu *pmu;
9198 int idx;
9199 int ret;
9200
9201 idx = srcu_read_lock(&pmus_srcu);
9202
9203 /* Try parent's PMU first: */
9204 if (event->parent && event->parent->pmu) {
9205 pmu = event->parent->pmu;
9206 ret = perf_try_init_event(pmu, event);
9207 if (!ret)
9208 goto unlock;
9209 }
9210
9211 rcu_read_lock();
9212 pmu = idr_find(&pmu_idr, event->attr.type);
9213 rcu_read_unlock();
9214 if (pmu) {
9215 ret = perf_try_init_event(pmu, event);
9216 if (ret)
9217 pmu = ERR_PTR(ret);
9218 goto unlock;
9219 }
9220
9221 list_for_each_entry_rcu(pmu, &pmus, entry) {
9222 ret = perf_try_init_event(pmu, event);
9223 if (!ret)
9224 goto unlock;
9225
9226 if (ret != -ENOENT) {
9227 pmu = ERR_PTR(ret);
9228 goto unlock;
9229 }
9230 }
9231 pmu = ERR_PTR(-ENOENT);
9232 unlock:
9233 srcu_read_unlock(&pmus_srcu, idx);
9234
9235 return pmu;
9236 }
9237
9238 static void attach_sb_event(struct perf_event *event)
9239 {
9240 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9241
9242 raw_spin_lock(&pel->lock);
9243 list_add_rcu(&event->sb_list, &pel->list);
9244 raw_spin_unlock(&pel->lock);
9245 }
9246
9247 /*
9248 * We keep a list of all !task (and therefore per-cpu) events
9249 * that need to receive side-band records.
9250 *
9251 * This avoids having to scan all the various PMU per-cpu contexts
9252 * looking for them.
9253 */
9254 static void account_pmu_sb_event(struct perf_event *event)
9255 {
9256 if (is_sb_event(event))
9257 attach_sb_event(event);
9258 }
9259
9260 static void account_event_cpu(struct perf_event *event, int cpu)
9261 {
9262 if (event->parent)
9263 return;
9264
9265 if (is_cgroup_event(event))
9266 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9267 }
9268
9269 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9270 static void account_freq_event_nohz(void)
9271 {
9272 #ifdef CONFIG_NO_HZ_FULL
9273 /* Lock so we don't race with concurrent unaccount */
9274 spin_lock(&nr_freq_lock);
9275 if (atomic_inc_return(&nr_freq_events) == 1)
9276 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9277 spin_unlock(&nr_freq_lock);
9278 #endif
9279 }
9280
9281 static void account_freq_event(void)
9282 {
9283 if (tick_nohz_full_enabled())
9284 account_freq_event_nohz();
9285 else
9286 atomic_inc(&nr_freq_events);
9287 }
9288
9289
9290 static void account_event(struct perf_event *event)
9291 {
9292 bool inc = false;
9293
9294 if (event->parent)
9295 return;
9296
9297 if (event->attach_state & PERF_ATTACH_TASK)
9298 inc = true;
9299 if (event->attr.mmap || event->attr.mmap_data)
9300 atomic_inc(&nr_mmap_events);
9301 if (event->attr.comm)
9302 atomic_inc(&nr_comm_events);
9303 if (event->attr.namespaces)
9304 atomic_inc(&nr_namespaces_events);
9305 if (event->attr.task)
9306 atomic_inc(&nr_task_events);
9307 if (event->attr.freq)
9308 account_freq_event();
9309 if (event->attr.context_switch) {
9310 atomic_inc(&nr_switch_events);
9311 inc = true;
9312 }
9313 if (has_branch_stack(event))
9314 inc = true;
9315 if (is_cgroup_event(event))
9316 inc = true;
9317
9318 if (inc) {
9319 if (atomic_inc_not_zero(&perf_sched_count))
9320 goto enabled;
9321
9322 mutex_lock(&perf_sched_mutex);
9323 if (!atomic_read(&perf_sched_count)) {
9324 static_branch_enable(&perf_sched_events);
9325 /*
9326 * Guarantee that all CPUs observe they key change and
9327 * call the perf scheduling hooks before proceeding to
9328 * install events that need them.
9329 */
9330 synchronize_sched();
9331 }
9332 /*
9333 * Now that we have waited for the sync_sched(), allow further
9334 * increments to by-pass the mutex.
9335 */
9336 atomic_inc(&perf_sched_count);
9337 mutex_unlock(&perf_sched_mutex);
9338 }
9339 enabled:
9340
9341 account_event_cpu(event, event->cpu);
9342
9343 account_pmu_sb_event(event);
9344 }
9345
9346 /*
9347 * Allocate and initialize a event structure
9348 */
9349 static struct perf_event *
9350 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9351 struct task_struct *task,
9352 struct perf_event *group_leader,
9353 struct perf_event *parent_event,
9354 perf_overflow_handler_t overflow_handler,
9355 void *context, int cgroup_fd)
9356 {
9357 struct pmu *pmu;
9358 struct perf_event *event;
9359 struct hw_perf_event *hwc;
9360 long err = -EINVAL;
9361
9362 if ((unsigned)cpu >= nr_cpu_ids) {
9363 if (!task || cpu != -1)
9364 return ERR_PTR(-EINVAL);
9365 }
9366
9367 event = kzalloc(sizeof(*event), GFP_KERNEL);
9368 if (!event)
9369 return ERR_PTR(-ENOMEM);
9370
9371 /*
9372 * Single events are their own group leaders, with an
9373 * empty sibling list:
9374 */
9375 if (!group_leader)
9376 group_leader = event;
9377
9378 mutex_init(&event->child_mutex);
9379 INIT_LIST_HEAD(&event->child_list);
9380
9381 INIT_LIST_HEAD(&event->group_entry);
9382 INIT_LIST_HEAD(&event->event_entry);
9383 INIT_LIST_HEAD(&event->sibling_list);
9384 INIT_LIST_HEAD(&event->rb_entry);
9385 INIT_LIST_HEAD(&event->active_entry);
9386 INIT_LIST_HEAD(&event->addr_filters.list);
9387 INIT_HLIST_NODE(&event->hlist_entry);
9388
9389
9390 init_waitqueue_head(&event->waitq);
9391 init_irq_work(&event->pending, perf_pending_event);
9392
9393 mutex_init(&event->mmap_mutex);
9394 raw_spin_lock_init(&event->addr_filters.lock);
9395
9396 atomic_long_set(&event->refcount, 1);
9397 event->cpu = cpu;
9398 event->attr = *attr;
9399 event->group_leader = group_leader;
9400 event->pmu = NULL;
9401 event->oncpu = -1;
9402
9403 event->parent = parent_event;
9404
9405 event->ns = get_pid_ns(task_active_pid_ns(current));
9406 event->id = atomic64_inc_return(&perf_event_id);
9407
9408 event->state = PERF_EVENT_STATE_INACTIVE;
9409
9410 if (task) {
9411 event->attach_state = PERF_ATTACH_TASK;
9412 /*
9413 * XXX pmu::event_init needs to know what task to account to
9414 * and we cannot use the ctx information because we need the
9415 * pmu before we get a ctx.
9416 */
9417 event->hw.target = task;
9418 }
9419
9420 event->clock = &local_clock;
9421 if (parent_event)
9422 event->clock = parent_event->clock;
9423
9424 if (!overflow_handler && parent_event) {
9425 overflow_handler = parent_event->overflow_handler;
9426 context = parent_event->overflow_handler_context;
9427 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9428 if (overflow_handler == bpf_overflow_handler) {
9429 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9430
9431 if (IS_ERR(prog)) {
9432 err = PTR_ERR(prog);
9433 goto err_ns;
9434 }
9435 event->prog = prog;
9436 event->orig_overflow_handler =
9437 parent_event->orig_overflow_handler;
9438 }
9439 #endif
9440 }
9441
9442 if (overflow_handler) {
9443 event->overflow_handler = overflow_handler;
9444 event->overflow_handler_context = context;
9445 } else if (is_write_backward(event)){
9446 event->overflow_handler = perf_event_output_backward;
9447 event->overflow_handler_context = NULL;
9448 } else {
9449 event->overflow_handler = perf_event_output_forward;
9450 event->overflow_handler_context = NULL;
9451 }
9452
9453 perf_event__state_init(event);
9454
9455 pmu = NULL;
9456
9457 hwc = &event->hw;
9458 hwc->sample_period = attr->sample_period;
9459 if (attr->freq && attr->sample_freq)
9460 hwc->sample_period = 1;
9461 hwc->last_period = hwc->sample_period;
9462
9463 local64_set(&hwc->period_left, hwc->sample_period);
9464
9465 /*
9466 * We currently do not support PERF_SAMPLE_READ on inherited events.
9467 * See perf_output_read().
9468 */
9469 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9470 goto err_ns;
9471
9472 if (!has_branch_stack(event))
9473 event->attr.branch_sample_type = 0;
9474
9475 if (cgroup_fd != -1) {
9476 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9477 if (err)
9478 goto err_ns;
9479 }
9480
9481 pmu = perf_init_event(event);
9482 if (IS_ERR(pmu)) {
9483 err = PTR_ERR(pmu);
9484 goto err_ns;
9485 }
9486
9487 err = exclusive_event_init(event);
9488 if (err)
9489 goto err_pmu;
9490
9491 if (has_addr_filter(event)) {
9492 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9493 sizeof(unsigned long),
9494 GFP_KERNEL);
9495 if (!event->addr_filters_offs) {
9496 err = -ENOMEM;
9497 goto err_per_task;
9498 }
9499
9500 /* force hw sync on the address filters */
9501 event->addr_filters_gen = 1;
9502 }
9503
9504 if (!event->parent) {
9505 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9506 err = get_callchain_buffers(attr->sample_max_stack);
9507 if (err)
9508 goto err_addr_filters;
9509 }
9510 }
9511
9512 /* symmetric to unaccount_event() in _free_event() */
9513 account_event(event);
9514
9515 return event;
9516
9517 err_addr_filters:
9518 kfree(event->addr_filters_offs);
9519
9520 err_per_task:
9521 exclusive_event_destroy(event);
9522
9523 err_pmu:
9524 if (event->destroy)
9525 event->destroy(event);
9526 module_put(pmu->module);
9527 err_ns:
9528 if (is_cgroup_event(event))
9529 perf_detach_cgroup(event);
9530 if (event->ns)
9531 put_pid_ns(event->ns);
9532 kfree(event);
9533
9534 return ERR_PTR(err);
9535 }
9536
9537 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9538 struct perf_event_attr *attr)
9539 {
9540 u32 size;
9541 int ret;
9542
9543 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9544 return -EFAULT;
9545
9546 /*
9547 * zero the full structure, so that a short copy will be nice.
9548 */
9549 memset(attr, 0, sizeof(*attr));
9550
9551 ret = get_user(size, &uattr->size);
9552 if (ret)
9553 return ret;
9554
9555 if (size > PAGE_SIZE) /* silly large */
9556 goto err_size;
9557
9558 if (!size) /* abi compat */
9559 size = PERF_ATTR_SIZE_VER0;
9560
9561 if (size < PERF_ATTR_SIZE_VER0)
9562 goto err_size;
9563
9564 /*
9565 * If we're handed a bigger struct than we know of,
9566 * ensure all the unknown bits are 0 - i.e. new
9567 * user-space does not rely on any kernel feature
9568 * extensions we dont know about yet.
9569 */
9570 if (size > sizeof(*attr)) {
9571 unsigned char __user *addr;
9572 unsigned char __user *end;
9573 unsigned char val;
9574
9575 addr = (void __user *)uattr + sizeof(*attr);
9576 end = (void __user *)uattr + size;
9577
9578 for (; addr < end; addr++) {
9579 ret = get_user(val, addr);
9580 if (ret)
9581 return ret;
9582 if (val)
9583 goto err_size;
9584 }
9585 size = sizeof(*attr);
9586 }
9587
9588 ret = copy_from_user(attr, uattr, size);
9589 if (ret)
9590 return -EFAULT;
9591
9592 if (attr->__reserved_1)
9593 return -EINVAL;
9594
9595 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9596 return -EINVAL;
9597
9598 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9599 return -EINVAL;
9600
9601 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9602 u64 mask = attr->branch_sample_type;
9603
9604 /* only using defined bits */
9605 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9606 return -EINVAL;
9607
9608 /* at least one branch bit must be set */
9609 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9610 return -EINVAL;
9611
9612 /* propagate priv level, when not set for branch */
9613 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9614
9615 /* exclude_kernel checked on syscall entry */
9616 if (!attr->exclude_kernel)
9617 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9618
9619 if (!attr->exclude_user)
9620 mask |= PERF_SAMPLE_BRANCH_USER;
9621
9622 if (!attr->exclude_hv)
9623 mask |= PERF_SAMPLE_BRANCH_HV;
9624 /*
9625 * adjust user setting (for HW filter setup)
9626 */
9627 attr->branch_sample_type = mask;
9628 }
9629 /* privileged levels capture (kernel, hv): check permissions */
9630 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9631 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9632 return -EACCES;
9633 }
9634
9635 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9636 ret = perf_reg_validate(attr->sample_regs_user);
9637 if (ret)
9638 return ret;
9639 }
9640
9641 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9642 if (!arch_perf_have_user_stack_dump())
9643 return -ENOSYS;
9644
9645 /*
9646 * We have __u32 type for the size, but so far
9647 * we can only use __u16 as maximum due to the
9648 * __u16 sample size limit.
9649 */
9650 if (attr->sample_stack_user >= USHRT_MAX)
9651 ret = -EINVAL;
9652 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9653 ret = -EINVAL;
9654 }
9655
9656 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9657 ret = perf_reg_validate(attr->sample_regs_intr);
9658 out:
9659 return ret;
9660
9661 err_size:
9662 put_user(sizeof(*attr), &uattr->size);
9663 ret = -E2BIG;
9664 goto out;
9665 }
9666
9667 static int
9668 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9669 {
9670 struct ring_buffer *rb = NULL;
9671 int ret = -EINVAL;
9672
9673 if (!output_event)
9674 goto set;
9675
9676 /* don't allow circular references */
9677 if (event == output_event)
9678 goto out;
9679
9680 /*
9681 * Don't allow cross-cpu buffers
9682 */
9683 if (output_event->cpu != event->cpu)
9684 goto out;
9685
9686 /*
9687 * If its not a per-cpu rb, it must be the same task.
9688 */
9689 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9690 goto out;
9691
9692 /*
9693 * Mixing clocks in the same buffer is trouble you don't need.
9694 */
9695 if (output_event->clock != event->clock)
9696 goto out;
9697
9698 /*
9699 * Either writing ring buffer from beginning or from end.
9700 * Mixing is not allowed.
9701 */
9702 if (is_write_backward(output_event) != is_write_backward(event))
9703 goto out;
9704
9705 /*
9706 * If both events generate aux data, they must be on the same PMU
9707 */
9708 if (has_aux(event) && has_aux(output_event) &&
9709 event->pmu != output_event->pmu)
9710 goto out;
9711
9712 set:
9713 mutex_lock(&event->mmap_mutex);
9714 /* Can't redirect output if we've got an active mmap() */
9715 if (atomic_read(&event->mmap_count))
9716 goto unlock;
9717
9718 if (output_event) {
9719 /* get the rb we want to redirect to */
9720 rb = ring_buffer_get(output_event);
9721 if (!rb)
9722 goto unlock;
9723 }
9724
9725 ring_buffer_attach(event, rb);
9726
9727 ret = 0;
9728 unlock:
9729 mutex_unlock(&event->mmap_mutex);
9730
9731 out:
9732 return ret;
9733 }
9734
9735 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9736 {
9737 if (b < a)
9738 swap(a, b);
9739
9740 mutex_lock(a);
9741 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9742 }
9743
9744 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9745 {
9746 bool nmi_safe = false;
9747
9748 switch (clk_id) {
9749 case CLOCK_MONOTONIC:
9750 event->clock = &ktime_get_mono_fast_ns;
9751 nmi_safe = true;
9752 break;
9753
9754 case CLOCK_MONOTONIC_RAW:
9755 event->clock = &ktime_get_raw_fast_ns;
9756 nmi_safe = true;
9757 break;
9758
9759 case CLOCK_REALTIME:
9760 event->clock = &ktime_get_real_ns;
9761 break;
9762
9763 case CLOCK_BOOTTIME:
9764 event->clock = &ktime_get_boot_ns;
9765 break;
9766
9767 case CLOCK_TAI:
9768 event->clock = &ktime_get_tai_ns;
9769 break;
9770
9771 default:
9772 return -EINVAL;
9773 }
9774
9775 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9776 return -EINVAL;
9777
9778 return 0;
9779 }
9780
9781 /*
9782 * Variation on perf_event_ctx_lock_nested(), except we take two context
9783 * mutexes.
9784 */
9785 static struct perf_event_context *
9786 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9787 struct perf_event_context *ctx)
9788 {
9789 struct perf_event_context *gctx;
9790
9791 again:
9792 rcu_read_lock();
9793 gctx = READ_ONCE(group_leader->ctx);
9794 if (!atomic_inc_not_zero(&gctx->refcount)) {
9795 rcu_read_unlock();
9796 goto again;
9797 }
9798 rcu_read_unlock();
9799
9800 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9801
9802 if (group_leader->ctx != gctx) {
9803 mutex_unlock(&ctx->mutex);
9804 mutex_unlock(&gctx->mutex);
9805 put_ctx(gctx);
9806 goto again;
9807 }
9808
9809 return gctx;
9810 }
9811
9812 /**
9813 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9814 *
9815 * @attr_uptr: event_id type attributes for monitoring/sampling
9816 * @pid: target pid
9817 * @cpu: target cpu
9818 * @group_fd: group leader event fd
9819 */
9820 SYSCALL_DEFINE5(perf_event_open,
9821 struct perf_event_attr __user *, attr_uptr,
9822 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9823 {
9824 struct perf_event *group_leader = NULL, *output_event = NULL;
9825 struct perf_event *event, *sibling;
9826 struct perf_event_attr attr;
9827 struct perf_event_context *ctx, *uninitialized_var(gctx);
9828 struct file *event_file = NULL;
9829 struct fd group = {NULL, 0};
9830 struct task_struct *task = NULL;
9831 struct pmu *pmu;
9832 int event_fd;
9833 int move_group = 0;
9834 int err;
9835 int f_flags = O_RDWR;
9836 int cgroup_fd = -1;
9837
9838 /* for future expandability... */
9839 if (flags & ~PERF_FLAG_ALL)
9840 return -EINVAL;
9841
9842 err = perf_copy_attr(attr_uptr, &attr);
9843 if (err)
9844 return err;
9845
9846 if (!attr.exclude_kernel) {
9847 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9848 return -EACCES;
9849 }
9850
9851 if (attr.namespaces) {
9852 if (!capable(CAP_SYS_ADMIN))
9853 return -EACCES;
9854 }
9855
9856 if (attr.freq) {
9857 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9858 return -EINVAL;
9859 } else {
9860 if (attr.sample_period & (1ULL << 63))
9861 return -EINVAL;
9862 }
9863
9864 if (!attr.sample_max_stack)
9865 attr.sample_max_stack = sysctl_perf_event_max_stack;
9866
9867 /*
9868 * In cgroup mode, the pid argument is used to pass the fd
9869 * opened to the cgroup directory in cgroupfs. The cpu argument
9870 * designates the cpu on which to monitor threads from that
9871 * cgroup.
9872 */
9873 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9874 return -EINVAL;
9875
9876 if (flags & PERF_FLAG_FD_CLOEXEC)
9877 f_flags |= O_CLOEXEC;
9878
9879 event_fd = get_unused_fd_flags(f_flags);
9880 if (event_fd < 0)
9881 return event_fd;
9882
9883 if (group_fd != -1) {
9884 err = perf_fget_light(group_fd, &group);
9885 if (err)
9886 goto err_fd;
9887 group_leader = group.file->private_data;
9888 if (flags & PERF_FLAG_FD_OUTPUT)
9889 output_event = group_leader;
9890 if (flags & PERF_FLAG_FD_NO_GROUP)
9891 group_leader = NULL;
9892 }
9893
9894 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9895 task = find_lively_task_by_vpid(pid);
9896 if (IS_ERR(task)) {
9897 err = PTR_ERR(task);
9898 goto err_group_fd;
9899 }
9900 }
9901
9902 if (task && group_leader &&
9903 group_leader->attr.inherit != attr.inherit) {
9904 err = -EINVAL;
9905 goto err_task;
9906 }
9907
9908 if (task) {
9909 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9910 if (err)
9911 goto err_task;
9912
9913 /*
9914 * Reuse ptrace permission checks for now.
9915 *
9916 * We must hold cred_guard_mutex across this and any potential
9917 * perf_install_in_context() call for this new event to
9918 * serialize against exec() altering our credentials (and the
9919 * perf_event_exit_task() that could imply).
9920 */
9921 err = -EACCES;
9922 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9923 goto err_cred;
9924 }
9925
9926 if (flags & PERF_FLAG_PID_CGROUP)
9927 cgroup_fd = pid;
9928
9929 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9930 NULL, NULL, cgroup_fd);
9931 if (IS_ERR(event)) {
9932 err = PTR_ERR(event);
9933 goto err_cred;
9934 }
9935
9936 if (is_sampling_event(event)) {
9937 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9938 err = -EOPNOTSUPP;
9939 goto err_alloc;
9940 }
9941 }
9942
9943 /*
9944 * Special case software events and allow them to be part of
9945 * any hardware group.
9946 */
9947 pmu = event->pmu;
9948
9949 if (attr.use_clockid) {
9950 err = perf_event_set_clock(event, attr.clockid);
9951 if (err)
9952 goto err_alloc;
9953 }
9954
9955 if (pmu->task_ctx_nr == perf_sw_context)
9956 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9957
9958 if (group_leader &&
9959 (is_software_event(event) != is_software_event(group_leader))) {
9960 if (is_software_event(event)) {
9961 /*
9962 * If event and group_leader are not both a software
9963 * event, and event is, then group leader is not.
9964 *
9965 * Allow the addition of software events to !software
9966 * groups, this is safe because software events never
9967 * fail to schedule.
9968 */
9969 pmu = group_leader->pmu;
9970 } else if (is_software_event(group_leader) &&
9971 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9972 /*
9973 * In case the group is a pure software group, and we
9974 * try to add a hardware event, move the whole group to
9975 * the hardware context.
9976 */
9977 move_group = 1;
9978 }
9979 }
9980
9981 /*
9982 * Get the target context (task or percpu):
9983 */
9984 ctx = find_get_context(pmu, task, event);
9985 if (IS_ERR(ctx)) {
9986 err = PTR_ERR(ctx);
9987 goto err_alloc;
9988 }
9989
9990 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9991 err = -EBUSY;
9992 goto err_context;
9993 }
9994
9995 /*
9996 * Look up the group leader (we will attach this event to it):
9997 */
9998 if (group_leader) {
9999 err = -EINVAL;
10000
10001 /*
10002 * Do not allow a recursive hierarchy (this new sibling
10003 * becoming part of another group-sibling):
10004 */
10005 if (group_leader->group_leader != group_leader)
10006 goto err_context;
10007
10008 /* All events in a group should have the same clock */
10009 if (group_leader->clock != event->clock)
10010 goto err_context;
10011
10012 /*
10013 * Do not allow to attach to a group in a different
10014 * task or CPU context:
10015 */
10016 if (move_group) {
10017 /*
10018 * Make sure we're both on the same task, or both
10019 * per-cpu events.
10020 */
10021 if (group_leader->ctx->task != ctx->task)
10022 goto err_context;
10023
10024 /*
10025 * Make sure we're both events for the same CPU;
10026 * grouping events for different CPUs is broken; since
10027 * you can never concurrently schedule them anyhow.
10028 */
10029 if (group_leader->cpu != event->cpu)
10030 goto err_context;
10031 } else {
10032 if (group_leader->ctx != ctx)
10033 goto err_context;
10034 }
10035
10036 /*
10037 * Only a group leader can be exclusive or pinned
10038 */
10039 if (attr.exclusive || attr.pinned)
10040 goto err_context;
10041 }
10042
10043 if (output_event) {
10044 err = perf_event_set_output(event, output_event);
10045 if (err)
10046 goto err_context;
10047 }
10048
10049 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10050 f_flags);
10051 if (IS_ERR(event_file)) {
10052 err = PTR_ERR(event_file);
10053 event_file = NULL;
10054 goto err_context;
10055 }
10056
10057 if (move_group) {
10058 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10059
10060 if (gctx->task == TASK_TOMBSTONE) {
10061 err = -ESRCH;
10062 goto err_locked;
10063 }
10064
10065 /*
10066 * Check if we raced against another sys_perf_event_open() call
10067 * moving the software group underneath us.
10068 */
10069 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10070 /*
10071 * If someone moved the group out from under us, check
10072 * if this new event wound up on the same ctx, if so
10073 * its the regular !move_group case, otherwise fail.
10074 */
10075 if (gctx != ctx) {
10076 err = -EINVAL;
10077 goto err_locked;
10078 } else {
10079 perf_event_ctx_unlock(group_leader, gctx);
10080 move_group = 0;
10081 }
10082 }
10083 } else {
10084 mutex_lock(&ctx->mutex);
10085 }
10086
10087 if (ctx->task == TASK_TOMBSTONE) {
10088 err = -ESRCH;
10089 goto err_locked;
10090 }
10091
10092 if (!perf_event_validate_size(event)) {
10093 err = -E2BIG;
10094 goto err_locked;
10095 }
10096
10097 if (!task) {
10098 /*
10099 * Check if the @cpu we're creating an event for is online.
10100 *
10101 * We use the perf_cpu_context::ctx::mutex to serialize against
10102 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10103 */
10104 struct perf_cpu_context *cpuctx =
10105 container_of(ctx, struct perf_cpu_context, ctx);
10106
10107 if (!cpuctx->online) {
10108 err = -ENODEV;
10109 goto err_locked;
10110 }
10111 }
10112
10113
10114 /*
10115 * Must be under the same ctx::mutex as perf_install_in_context(),
10116 * because we need to serialize with concurrent event creation.
10117 */
10118 if (!exclusive_event_installable(event, ctx)) {
10119 /* exclusive and group stuff are assumed mutually exclusive */
10120 WARN_ON_ONCE(move_group);
10121
10122 err = -EBUSY;
10123 goto err_locked;
10124 }
10125
10126 WARN_ON_ONCE(ctx->parent_ctx);
10127
10128 /*
10129 * This is the point on no return; we cannot fail hereafter. This is
10130 * where we start modifying current state.
10131 */
10132
10133 if (move_group) {
10134 /*
10135 * See perf_event_ctx_lock() for comments on the details
10136 * of swizzling perf_event::ctx.
10137 */
10138 perf_remove_from_context(group_leader, 0);
10139 put_ctx(gctx);
10140
10141 list_for_each_entry(sibling, &group_leader->sibling_list,
10142 group_entry) {
10143 perf_remove_from_context(sibling, 0);
10144 put_ctx(gctx);
10145 }
10146
10147 /*
10148 * Wait for everybody to stop referencing the events through
10149 * the old lists, before installing it on new lists.
10150 */
10151 synchronize_rcu();
10152
10153 /*
10154 * Install the group siblings before the group leader.
10155 *
10156 * Because a group leader will try and install the entire group
10157 * (through the sibling list, which is still in-tact), we can
10158 * end up with siblings installed in the wrong context.
10159 *
10160 * By installing siblings first we NO-OP because they're not
10161 * reachable through the group lists.
10162 */
10163 list_for_each_entry(sibling, &group_leader->sibling_list,
10164 group_entry) {
10165 perf_event__state_init(sibling);
10166 perf_install_in_context(ctx, sibling, sibling->cpu);
10167 get_ctx(ctx);
10168 }
10169
10170 /*
10171 * Removing from the context ends up with disabled
10172 * event. What we want here is event in the initial
10173 * startup state, ready to be add into new context.
10174 */
10175 perf_event__state_init(group_leader);
10176 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10177 get_ctx(ctx);
10178 }
10179
10180 /*
10181 * Precalculate sample_data sizes; do while holding ctx::mutex such
10182 * that we're serialized against further additions and before
10183 * perf_install_in_context() which is the point the event is active and
10184 * can use these values.
10185 */
10186 perf_event__header_size(event);
10187 perf_event__id_header_size(event);
10188
10189 event->owner = current;
10190
10191 perf_install_in_context(ctx, event, event->cpu);
10192 perf_unpin_context(ctx);
10193
10194 if (move_group)
10195 perf_event_ctx_unlock(group_leader, gctx);
10196 mutex_unlock(&ctx->mutex);
10197
10198 if (task) {
10199 mutex_unlock(&task->signal->cred_guard_mutex);
10200 put_task_struct(task);
10201 }
10202
10203 mutex_lock(&current->perf_event_mutex);
10204 list_add_tail(&event->owner_entry, &current->perf_event_list);
10205 mutex_unlock(&current->perf_event_mutex);
10206
10207 /*
10208 * Drop the reference on the group_event after placing the
10209 * new event on the sibling_list. This ensures destruction
10210 * of the group leader will find the pointer to itself in
10211 * perf_group_detach().
10212 */
10213 fdput(group);
10214 fd_install(event_fd, event_file);
10215 return event_fd;
10216
10217 err_locked:
10218 if (move_group)
10219 perf_event_ctx_unlock(group_leader, gctx);
10220 mutex_unlock(&ctx->mutex);
10221 /* err_file: */
10222 fput(event_file);
10223 err_context:
10224 perf_unpin_context(ctx);
10225 put_ctx(ctx);
10226 err_alloc:
10227 /*
10228 * If event_file is set, the fput() above will have called ->release()
10229 * and that will take care of freeing the event.
10230 */
10231 if (!event_file)
10232 free_event(event);
10233 err_cred:
10234 if (task)
10235 mutex_unlock(&task->signal->cred_guard_mutex);
10236 err_task:
10237 if (task)
10238 put_task_struct(task);
10239 err_group_fd:
10240 fdput(group);
10241 err_fd:
10242 put_unused_fd(event_fd);
10243 return err;
10244 }
10245
10246 /**
10247 * perf_event_create_kernel_counter
10248 *
10249 * @attr: attributes of the counter to create
10250 * @cpu: cpu in which the counter is bound
10251 * @task: task to profile (NULL for percpu)
10252 */
10253 struct perf_event *
10254 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10255 struct task_struct *task,
10256 perf_overflow_handler_t overflow_handler,
10257 void *context)
10258 {
10259 struct perf_event_context *ctx;
10260 struct perf_event *event;
10261 int err;
10262
10263 /*
10264 * Get the target context (task or percpu):
10265 */
10266
10267 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10268 overflow_handler, context, -1);
10269 if (IS_ERR(event)) {
10270 err = PTR_ERR(event);
10271 goto err;
10272 }
10273
10274 /* Mark owner so we could distinguish it from user events. */
10275 event->owner = TASK_TOMBSTONE;
10276
10277 ctx = find_get_context(event->pmu, task, event);
10278 if (IS_ERR(ctx)) {
10279 err = PTR_ERR(ctx);
10280 goto err_free;
10281 }
10282
10283 WARN_ON_ONCE(ctx->parent_ctx);
10284 mutex_lock(&ctx->mutex);
10285 if (ctx->task == TASK_TOMBSTONE) {
10286 err = -ESRCH;
10287 goto err_unlock;
10288 }
10289
10290 if (!task) {
10291 /*
10292 * Check if the @cpu we're creating an event for is online.
10293 *
10294 * We use the perf_cpu_context::ctx::mutex to serialize against
10295 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10296 */
10297 struct perf_cpu_context *cpuctx =
10298 container_of(ctx, struct perf_cpu_context, ctx);
10299 if (!cpuctx->online) {
10300 err = -ENODEV;
10301 goto err_unlock;
10302 }
10303 }
10304
10305 if (!exclusive_event_installable(event, ctx)) {
10306 err = -EBUSY;
10307 goto err_unlock;
10308 }
10309
10310 perf_install_in_context(ctx, event, cpu);
10311 perf_unpin_context(ctx);
10312 mutex_unlock(&ctx->mutex);
10313
10314 return event;
10315
10316 err_unlock:
10317 mutex_unlock(&ctx->mutex);
10318 perf_unpin_context(ctx);
10319 put_ctx(ctx);
10320 err_free:
10321 free_event(event);
10322 err:
10323 return ERR_PTR(err);
10324 }
10325 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10326
10327 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10328 {
10329 struct perf_event_context *src_ctx;
10330 struct perf_event_context *dst_ctx;
10331 struct perf_event *event, *tmp;
10332 LIST_HEAD(events);
10333
10334 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10335 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10336
10337 /*
10338 * See perf_event_ctx_lock() for comments on the details
10339 * of swizzling perf_event::ctx.
10340 */
10341 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10342 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10343 event_entry) {
10344 perf_remove_from_context(event, 0);
10345 unaccount_event_cpu(event, src_cpu);
10346 put_ctx(src_ctx);
10347 list_add(&event->migrate_entry, &events);
10348 }
10349
10350 /*
10351 * Wait for the events to quiesce before re-instating them.
10352 */
10353 synchronize_rcu();
10354
10355 /*
10356 * Re-instate events in 2 passes.
10357 *
10358 * Skip over group leaders and only install siblings on this first
10359 * pass, siblings will not get enabled without a leader, however a
10360 * leader will enable its siblings, even if those are still on the old
10361 * context.
10362 */
10363 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10364 if (event->group_leader == event)
10365 continue;
10366
10367 list_del(&event->migrate_entry);
10368 if (event->state >= PERF_EVENT_STATE_OFF)
10369 event->state = PERF_EVENT_STATE_INACTIVE;
10370 account_event_cpu(event, dst_cpu);
10371 perf_install_in_context(dst_ctx, event, dst_cpu);
10372 get_ctx(dst_ctx);
10373 }
10374
10375 /*
10376 * Once all the siblings are setup properly, install the group leaders
10377 * to make it go.
10378 */
10379 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10380 list_del(&event->migrate_entry);
10381 if (event->state >= PERF_EVENT_STATE_OFF)
10382 event->state = PERF_EVENT_STATE_INACTIVE;
10383 account_event_cpu(event, dst_cpu);
10384 perf_install_in_context(dst_ctx, event, dst_cpu);
10385 get_ctx(dst_ctx);
10386 }
10387 mutex_unlock(&dst_ctx->mutex);
10388 mutex_unlock(&src_ctx->mutex);
10389 }
10390 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10391
10392 static void sync_child_event(struct perf_event *child_event,
10393 struct task_struct *child)
10394 {
10395 struct perf_event *parent_event = child_event->parent;
10396 u64 child_val;
10397
10398 if (child_event->attr.inherit_stat)
10399 perf_event_read_event(child_event, child);
10400
10401 child_val = perf_event_count(child_event);
10402
10403 /*
10404 * Add back the child's count to the parent's count:
10405 */
10406 atomic64_add(child_val, &parent_event->child_count);
10407 atomic64_add(child_event->total_time_enabled,
10408 &parent_event->child_total_time_enabled);
10409 atomic64_add(child_event->total_time_running,
10410 &parent_event->child_total_time_running);
10411 }
10412
10413 static void
10414 perf_event_exit_event(struct perf_event *child_event,
10415 struct perf_event_context *child_ctx,
10416 struct task_struct *child)
10417 {
10418 struct perf_event *parent_event = child_event->parent;
10419
10420 /*
10421 * Do not destroy the 'original' grouping; because of the context
10422 * switch optimization the original events could've ended up in a
10423 * random child task.
10424 *
10425 * If we were to destroy the original group, all group related
10426 * operations would cease to function properly after this random
10427 * child dies.
10428 *
10429 * Do destroy all inherited groups, we don't care about those
10430 * and being thorough is better.
10431 */
10432 raw_spin_lock_irq(&child_ctx->lock);
10433 WARN_ON_ONCE(child_ctx->is_active);
10434
10435 if (parent_event)
10436 perf_group_detach(child_event);
10437 list_del_event(child_event, child_ctx);
10438 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10439 raw_spin_unlock_irq(&child_ctx->lock);
10440
10441 /*
10442 * Parent events are governed by their filedesc, retain them.
10443 */
10444 if (!parent_event) {
10445 perf_event_wakeup(child_event);
10446 return;
10447 }
10448 /*
10449 * Child events can be cleaned up.
10450 */
10451
10452 sync_child_event(child_event, child);
10453
10454 /*
10455 * Remove this event from the parent's list
10456 */
10457 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10458 mutex_lock(&parent_event->child_mutex);
10459 list_del_init(&child_event->child_list);
10460 mutex_unlock(&parent_event->child_mutex);
10461
10462 /*
10463 * Kick perf_poll() for is_event_hup().
10464 */
10465 perf_event_wakeup(parent_event);
10466 free_event(child_event);
10467 put_event(parent_event);
10468 }
10469
10470 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10471 {
10472 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10473 struct perf_event *child_event, *next;
10474
10475 WARN_ON_ONCE(child != current);
10476
10477 child_ctx = perf_pin_task_context(child, ctxn);
10478 if (!child_ctx)
10479 return;
10480
10481 /*
10482 * In order to reduce the amount of tricky in ctx tear-down, we hold
10483 * ctx::mutex over the entire thing. This serializes against almost
10484 * everything that wants to access the ctx.
10485 *
10486 * The exception is sys_perf_event_open() /
10487 * perf_event_create_kernel_count() which does find_get_context()
10488 * without ctx::mutex (it cannot because of the move_group double mutex
10489 * lock thing). See the comments in perf_install_in_context().
10490 */
10491 mutex_lock(&child_ctx->mutex);
10492
10493 /*
10494 * In a single ctx::lock section, de-schedule the events and detach the
10495 * context from the task such that we cannot ever get it scheduled back
10496 * in.
10497 */
10498 raw_spin_lock_irq(&child_ctx->lock);
10499 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10500
10501 /*
10502 * Now that the context is inactive, destroy the task <-> ctx relation
10503 * and mark the context dead.
10504 */
10505 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10506 put_ctx(child_ctx); /* cannot be last */
10507 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10508 put_task_struct(current); /* cannot be last */
10509
10510 clone_ctx = unclone_ctx(child_ctx);
10511 raw_spin_unlock_irq(&child_ctx->lock);
10512
10513 if (clone_ctx)
10514 put_ctx(clone_ctx);
10515
10516 /*
10517 * Report the task dead after unscheduling the events so that we
10518 * won't get any samples after PERF_RECORD_EXIT. We can however still
10519 * get a few PERF_RECORD_READ events.
10520 */
10521 perf_event_task(child, child_ctx, 0);
10522
10523 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10524 perf_event_exit_event(child_event, child_ctx, child);
10525
10526 mutex_unlock(&child_ctx->mutex);
10527
10528 put_ctx(child_ctx);
10529 }
10530
10531 /*
10532 * When a child task exits, feed back event values to parent events.
10533 *
10534 * Can be called with cred_guard_mutex held when called from
10535 * install_exec_creds().
10536 */
10537 void perf_event_exit_task(struct task_struct *child)
10538 {
10539 struct perf_event *event, *tmp;
10540 int ctxn;
10541
10542 mutex_lock(&child->perf_event_mutex);
10543 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10544 owner_entry) {
10545 list_del_init(&event->owner_entry);
10546
10547 /*
10548 * Ensure the list deletion is visible before we clear
10549 * the owner, closes a race against perf_release() where
10550 * we need to serialize on the owner->perf_event_mutex.
10551 */
10552 smp_store_release(&event->owner, NULL);
10553 }
10554 mutex_unlock(&child->perf_event_mutex);
10555
10556 for_each_task_context_nr(ctxn)
10557 perf_event_exit_task_context(child, ctxn);
10558
10559 /*
10560 * The perf_event_exit_task_context calls perf_event_task
10561 * with child's task_ctx, which generates EXIT events for
10562 * child contexts and sets child->perf_event_ctxp[] to NULL.
10563 * At this point we need to send EXIT events to cpu contexts.
10564 */
10565 perf_event_task(child, NULL, 0);
10566 }
10567
10568 static void perf_free_event(struct perf_event *event,
10569 struct perf_event_context *ctx)
10570 {
10571 struct perf_event *parent = event->parent;
10572
10573 if (WARN_ON_ONCE(!parent))
10574 return;
10575
10576 mutex_lock(&parent->child_mutex);
10577 list_del_init(&event->child_list);
10578 mutex_unlock(&parent->child_mutex);
10579
10580 put_event(parent);
10581
10582 raw_spin_lock_irq(&ctx->lock);
10583 perf_group_detach(event);
10584 list_del_event(event, ctx);
10585 raw_spin_unlock_irq(&ctx->lock);
10586 free_event(event);
10587 }
10588
10589 /*
10590 * Free an unexposed, unused context as created by inheritance by
10591 * perf_event_init_task below, used by fork() in case of fail.
10592 *
10593 * Not all locks are strictly required, but take them anyway to be nice and
10594 * help out with the lockdep assertions.
10595 */
10596 void perf_event_free_task(struct task_struct *task)
10597 {
10598 struct perf_event_context *ctx;
10599 struct perf_event *event, *tmp;
10600 int ctxn;
10601
10602 for_each_task_context_nr(ctxn) {
10603 ctx = task->perf_event_ctxp[ctxn];
10604 if (!ctx)
10605 continue;
10606
10607 mutex_lock(&ctx->mutex);
10608 raw_spin_lock_irq(&ctx->lock);
10609 /*
10610 * Destroy the task <-> ctx relation and mark the context dead.
10611 *
10612 * This is important because even though the task hasn't been
10613 * exposed yet the context has been (through child_list).
10614 */
10615 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10616 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10617 put_task_struct(task); /* cannot be last */
10618 raw_spin_unlock_irq(&ctx->lock);
10619
10620 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10621 perf_free_event(event, ctx);
10622
10623 mutex_unlock(&ctx->mutex);
10624 put_ctx(ctx);
10625 }
10626 }
10627
10628 void perf_event_delayed_put(struct task_struct *task)
10629 {
10630 int ctxn;
10631
10632 for_each_task_context_nr(ctxn)
10633 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10634 }
10635
10636 struct file *perf_event_get(unsigned int fd)
10637 {
10638 struct file *file;
10639
10640 file = fget_raw(fd);
10641 if (!file)
10642 return ERR_PTR(-EBADF);
10643
10644 if (file->f_op != &perf_fops) {
10645 fput(file);
10646 return ERR_PTR(-EBADF);
10647 }
10648
10649 return file;
10650 }
10651
10652 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10653 {
10654 if (!event)
10655 return ERR_PTR(-EINVAL);
10656
10657 return &event->attr;
10658 }
10659
10660 /*
10661 * Inherit a event from parent task to child task.
10662 *
10663 * Returns:
10664 * - valid pointer on success
10665 * - NULL for orphaned events
10666 * - IS_ERR() on error
10667 */
10668 static struct perf_event *
10669 inherit_event(struct perf_event *parent_event,
10670 struct task_struct *parent,
10671 struct perf_event_context *parent_ctx,
10672 struct task_struct *child,
10673 struct perf_event *group_leader,
10674 struct perf_event_context *child_ctx)
10675 {
10676 enum perf_event_active_state parent_state = parent_event->state;
10677 struct perf_event *child_event;
10678 unsigned long flags;
10679
10680 /*
10681 * Instead of creating recursive hierarchies of events,
10682 * we link inherited events back to the original parent,
10683 * which has a filp for sure, which we use as the reference
10684 * count:
10685 */
10686 if (parent_event->parent)
10687 parent_event = parent_event->parent;
10688
10689 child_event = perf_event_alloc(&parent_event->attr,
10690 parent_event->cpu,
10691 child,
10692 group_leader, parent_event,
10693 NULL, NULL, -1);
10694 if (IS_ERR(child_event))
10695 return child_event;
10696
10697 /*
10698 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10699 * must be under the same lock in order to serialize against
10700 * perf_event_release_kernel(), such that either we must observe
10701 * is_orphaned_event() or they will observe us on the child_list.
10702 */
10703 mutex_lock(&parent_event->child_mutex);
10704 if (is_orphaned_event(parent_event) ||
10705 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10706 mutex_unlock(&parent_event->child_mutex);
10707 free_event(child_event);
10708 return NULL;
10709 }
10710
10711 get_ctx(child_ctx);
10712
10713 /*
10714 * Make the child state follow the state of the parent event,
10715 * not its attr.disabled bit. We hold the parent's mutex,
10716 * so we won't race with perf_event_{en, dis}able_family.
10717 */
10718 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10719 child_event->state = PERF_EVENT_STATE_INACTIVE;
10720 else
10721 child_event->state = PERF_EVENT_STATE_OFF;
10722
10723 if (parent_event->attr.freq) {
10724 u64 sample_period = parent_event->hw.sample_period;
10725 struct hw_perf_event *hwc = &child_event->hw;
10726
10727 hwc->sample_period = sample_period;
10728 hwc->last_period = sample_period;
10729
10730 local64_set(&hwc->period_left, sample_period);
10731 }
10732
10733 child_event->ctx = child_ctx;
10734 child_event->overflow_handler = parent_event->overflow_handler;
10735 child_event->overflow_handler_context
10736 = parent_event->overflow_handler_context;
10737
10738 /*
10739 * Precalculate sample_data sizes
10740 */
10741 perf_event__header_size(child_event);
10742 perf_event__id_header_size(child_event);
10743
10744 /*
10745 * Link it up in the child's context:
10746 */
10747 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10748 add_event_to_ctx(child_event, child_ctx);
10749 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10750
10751 /*
10752 * Link this into the parent event's child list
10753 */
10754 list_add_tail(&child_event->child_list, &parent_event->child_list);
10755 mutex_unlock(&parent_event->child_mutex);
10756
10757 return child_event;
10758 }
10759
10760 /*
10761 * Inherits an event group.
10762 *
10763 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10764 * This matches with perf_event_release_kernel() removing all child events.
10765 *
10766 * Returns:
10767 * - 0 on success
10768 * - <0 on error
10769 */
10770 static int inherit_group(struct perf_event *parent_event,
10771 struct task_struct *parent,
10772 struct perf_event_context *parent_ctx,
10773 struct task_struct *child,
10774 struct perf_event_context *child_ctx)
10775 {
10776 struct perf_event *leader;
10777 struct perf_event *sub;
10778 struct perf_event *child_ctr;
10779
10780 leader = inherit_event(parent_event, parent, parent_ctx,
10781 child, NULL, child_ctx);
10782 if (IS_ERR(leader))
10783 return PTR_ERR(leader);
10784 /*
10785 * @leader can be NULL here because of is_orphaned_event(). In this
10786 * case inherit_event() will create individual events, similar to what
10787 * perf_group_detach() would do anyway.
10788 */
10789 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10790 child_ctr = inherit_event(sub, parent, parent_ctx,
10791 child, leader, child_ctx);
10792 if (IS_ERR(child_ctr))
10793 return PTR_ERR(child_ctr);
10794 }
10795 return 0;
10796 }
10797
10798 /*
10799 * Creates the child task context and tries to inherit the event-group.
10800 *
10801 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10802 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10803 * consistent with perf_event_release_kernel() removing all child events.
10804 *
10805 * Returns:
10806 * - 0 on success
10807 * - <0 on error
10808 */
10809 static int
10810 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10811 struct perf_event_context *parent_ctx,
10812 struct task_struct *child, int ctxn,
10813 int *inherited_all)
10814 {
10815 int ret;
10816 struct perf_event_context *child_ctx;
10817
10818 if (!event->attr.inherit) {
10819 *inherited_all = 0;
10820 return 0;
10821 }
10822
10823 child_ctx = child->perf_event_ctxp[ctxn];
10824 if (!child_ctx) {
10825 /*
10826 * This is executed from the parent task context, so
10827 * inherit events that have been marked for cloning.
10828 * First allocate and initialize a context for the
10829 * child.
10830 */
10831 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10832 if (!child_ctx)
10833 return -ENOMEM;
10834
10835 child->perf_event_ctxp[ctxn] = child_ctx;
10836 }
10837
10838 ret = inherit_group(event, parent, parent_ctx,
10839 child, child_ctx);
10840
10841 if (ret)
10842 *inherited_all = 0;
10843
10844 return ret;
10845 }
10846
10847 /*
10848 * Initialize the perf_event context in task_struct
10849 */
10850 static int perf_event_init_context(struct task_struct *child, int ctxn)
10851 {
10852 struct perf_event_context *child_ctx, *parent_ctx;
10853 struct perf_event_context *cloned_ctx;
10854 struct perf_event *event;
10855 struct task_struct *parent = current;
10856 int inherited_all = 1;
10857 unsigned long flags;
10858 int ret = 0;
10859
10860 if (likely(!parent->perf_event_ctxp[ctxn]))
10861 return 0;
10862
10863 /*
10864 * If the parent's context is a clone, pin it so it won't get
10865 * swapped under us.
10866 */
10867 parent_ctx = perf_pin_task_context(parent, ctxn);
10868 if (!parent_ctx)
10869 return 0;
10870
10871 /*
10872 * No need to check if parent_ctx != NULL here; since we saw
10873 * it non-NULL earlier, the only reason for it to become NULL
10874 * is if we exit, and since we're currently in the middle of
10875 * a fork we can't be exiting at the same time.
10876 */
10877
10878 /*
10879 * Lock the parent list. No need to lock the child - not PID
10880 * hashed yet and not running, so nobody can access it.
10881 */
10882 mutex_lock(&parent_ctx->mutex);
10883
10884 /*
10885 * We dont have to disable NMIs - we are only looking at
10886 * the list, not manipulating it:
10887 */
10888 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10889 ret = inherit_task_group(event, parent, parent_ctx,
10890 child, ctxn, &inherited_all);
10891 if (ret)
10892 goto out_unlock;
10893 }
10894
10895 /*
10896 * We can't hold ctx->lock when iterating the ->flexible_group list due
10897 * to allocations, but we need to prevent rotation because
10898 * rotate_ctx() will change the list from interrupt context.
10899 */
10900 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10901 parent_ctx->rotate_disable = 1;
10902 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10903
10904 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10905 ret = inherit_task_group(event, parent, parent_ctx,
10906 child, ctxn, &inherited_all);
10907 if (ret)
10908 goto out_unlock;
10909 }
10910
10911 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10912 parent_ctx->rotate_disable = 0;
10913
10914 child_ctx = child->perf_event_ctxp[ctxn];
10915
10916 if (child_ctx && inherited_all) {
10917 /*
10918 * Mark the child context as a clone of the parent
10919 * context, or of whatever the parent is a clone of.
10920 *
10921 * Note that if the parent is a clone, the holding of
10922 * parent_ctx->lock avoids it from being uncloned.
10923 */
10924 cloned_ctx = parent_ctx->parent_ctx;
10925 if (cloned_ctx) {
10926 child_ctx->parent_ctx = cloned_ctx;
10927 child_ctx->parent_gen = parent_ctx->parent_gen;
10928 } else {
10929 child_ctx->parent_ctx = parent_ctx;
10930 child_ctx->parent_gen = parent_ctx->generation;
10931 }
10932 get_ctx(child_ctx->parent_ctx);
10933 }
10934
10935 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10936 out_unlock:
10937 mutex_unlock(&parent_ctx->mutex);
10938
10939 perf_unpin_context(parent_ctx);
10940 put_ctx(parent_ctx);
10941
10942 return ret;
10943 }
10944
10945 /*
10946 * Initialize the perf_event context in task_struct
10947 */
10948 int perf_event_init_task(struct task_struct *child)
10949 {
10950 int ctxn, ret;
10951
10952 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10953 mutex_init(&child->perf_event_mutex);
10954 INIT_LIST_HEAD(&child->perf_event_list);
10955
10956 for_each_task_context_nr(ctxn) {
10957 ret = perf_event_init_context(child, ctxn);
10958 if (ret) {
10959 perf_event_free_task(child);
10960 return ret;
10961 }
10962 }
10963
10964 return 0;
10965 }
10966
10967 static void __init perf_event_init_all_cpus(void)
10968 {
10969 struct swevent_htable *swhash;
10970 int cpu;
10971
10972 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10973
10974 for_each_possible_cpu(cpu) {
10975 swhash = &per_cpu(swevent_htable, cpu);
10976 mutex_init(&swhash->hlist_mutex);
10977 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10978
10979 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10980 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10981
10982 #ifdef CONFIG_CGROUP_PERF
10983 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10984 #endif
10985 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10986 }
10987 }
10988
10989 void perf_swevent_init_cpu(unsigned int cpu)
10990 {
10991 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10992
10993 mutex_lock(&swhash->hlist_mutex);
10994 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10995 struct swevent_hlist *hlist;
10996
10997 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10998 WARN_ON(!hlist);
10999 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11000 }
11001 mutex_unlock(&swhash->hlist_mutex);
11002 }
11003
11004 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11005 static void __perf_event_exit_context(void *__info)
11006 {
11007 struct perf_event_context *ctx = __info;
11008 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11009 struct perf_event *event;
11010
11011 raw_spin_lock(&ctx->lock);
11012 list_for_each_entry(event, &ctx->event_list, event_entry)
11013 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11014 raw_spin_unlock(&ctx->lock);
11015 }
11016
11017 static void perf_event_exit_cpu_context(int cpu)
11018 {
11019 struct perf_cpu_context *cpuctx;
11020 struct perf_event_context *ctx;
11021 struct pmu *pmu;
11022
11023 mutex_lock(&pmus_lock);
11024 list_for_each_entry(pmu, &pmus, entry) {
11025 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11026 ctx = &cpuctx->ctx;
11027
11028 mutex_lock(&ctx->mutex);
11029 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11030 cpuctx->online = 0;
11031 mutex_unlock(&ctx->mutex);
11032 }
11033 cpumask_clear_cpu(cpu, perf_online_mask);
11034 mutex_unlock(&pmus_lock);
11035 }
11036 #else
11037
11038 static void perf_event_exit_cpu_context(int cpu) { }
11039
11040 #endif
11041
11042 int perf_event_init_cpu(unsigned int cpu)
11043 {
11044 struct perf_cpu_context *cpuctx;
11045 struct perf_event_context *ctx;
11046 struct pmu *pmu;
11047
11048 perf_swevent_init_cpu(cpu);
11049
11050 mutex_lock(&pmus_lock);
11051 cpumask_set_cpu(cpu, perf_online_mask);
11052 list_for_each_entry(pmu, &pmus, entry) {
11053 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11054 ctx = &cpuctx->ctx;
11055
11056 mutex_lock(&ctx->mutex);
11057 cpuctx->online = 1;
11058 mutex_unlock(&ctx->mutex);
11059 }
11060 mutex_unlock(&pmus_lock);
11061
11062 return 0;
11063 }
11064
11065 int perf_event_exit_cpu(unsigned int cpu)
11066 {
11067 perf_event_exit_cpu_context(cpu);
11068 return 0;
11069 }
11070
11071 static int
11072 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11073 {
11074 int cpu;
11075
11076 for_each_online_cpu(cpu)
11077 perf_event_exit_cpu(cpu);
11078
11079 return NOTIFY_OK;
11080 }
11081
11082 /*
11083 * Run the perf reboot notifier at the very last possible moment so that
11084 * the generic watchdog code runs as long as possible.
11085 */
11086 static struct notifier_block perf_reboot_notifier = {
11087 .notifier_call = perf_reboot,
11088 .priority = INT_MIN,
11089 };
11090
11091 void __init perf_event_init(void)
11092 {
11093 int ret;
11094
11095 idr_init(&pmu_idr);
11096
11097 perf_event_init_all_cpus();
11098 init_srcu_struct(&pmus_srcu);
11099 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11100 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11101 perf_pmu_register(&perf_task_clock, NULL, -1);
11102 perf_tp_register();
11103 perf_event_init_cpu(smp_processor_id());
11104 register_reboot_notifier(&perf_reboot_notifier);
11105
11106 ret = init_hw_breakpoint();
11107 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11108
11109 /*
11110 * Build time assertion that we keep the data_head at the intended
11111 * location. IOW, validation we got the __reserved[] size right.
11112 */
11113 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11114 != 1024);
11115 }
11116
11117 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11118 char *page)
11119 {
11120 struct perf_pmu_events_attr *pmu_attr =
11121 container_of(attr, struct perf_pmu_events_attr, attr);
11122
11123 if (pmu_attr->event_str)
11124 return sprintf(page, "%s\n", pmu_attr->event_str);
11125
11126 return 0;
11127 }
11128 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11129
11130 static int __init perf_event_sysfs_init(void)
11131 {
11132 struct pmu *pmu;
11133 int ret;
11134
11135 mutex_lock(&pmus_lock);
11136
11137 ret = bus_register(&pmu_bus);
11138 if (ret)
11139 goto unlock;
11140
11141 list_for_each_entry(pmu, &pmus, entry) {
11142 if (!pmu->name || pmu->type < 0)
11143 continue;
11144
11145 ret = pmu_dev_alloc(pmu);
11146 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11147 }
11148 pmu_bus_running = 1;
11149 ret = 0;
11150
11151 unlock:
11152 mutex_unlock(&pmus_lock);
11153
11154 return ret;
11155 }
11156 device_initcall(perf_event_sysfs_init);
11157
11158 #ifdef CONFIG_CGROUP_PERF
11159 static struct cgroup_subsys_state *
11160 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11161 {
11162 struct perf_cgroup *jc;
11163
11164 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11165 if (!jc)
11166 return ERR_PTR(-ENOMEM);
11167
11168 jc->info = alloc_percpu(struct perf_cgroup_info);
11169 if (!jc->info) {
11170 kfree(jc);
11171 return ERR_PTR(-ENOMEM);
11172 }
11173
11174 return &jc->css;
11175 }
11176
11177 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11178 {
11179 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11180
11181 free_percpu(jc->info);
11182 kfree(jc);
11183 }
11184
11185 static int __perf_cgroup_move(void *info)
11186 {
11187 struct task_struct *task = info;
11188 rcu_read_lock();
11189 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11190 rcu_read_unlock();
11191 return 0;
11192 }
11193
11194 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11195 {
11196 struct task_struct *task;
11197 struct cgroup_subsys_state *css;
11198
11199 cgroup_taskset_for_each(task, css, tset)
11200 task_function_call(task, __perf_cgroup_move, task);
11201 }
11202
11203 struct cgroup_subsys perf_event_cgrp_subsys = {
11204 .css_alloc = perf_cgroup_css_alloc,
11205 .css_free = perf_cgroup_css_free,
11206 .attach = perf_cgroup_attach,
11207 /*
11208 * Implicitly enable on dfl hierarchy so that perf events can
11209 * always be filtered by cgroup2 path as long as perf_event
11210 * controller is not mounted on a legacy hierarchy.
11211 */
11212 .implicit_on_dfl = true,
11213 };
11214 #endif /* CONFIG_CGROUP_PERF */