]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/core.c
Merge branch 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171
172 /*
173 * perf event paranoia level:
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
176 * 1 - disallow cpu events for unpriv
177 * 2 - disallow kernel profiling for unpriv
178 */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183
184 /*
185 * max perf event sample rate
186 */
187 #define DEFAULT_MAX_SAMPLE_RATE 100000
188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
196 static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198
199 static void update_perf_cpu_limits(void)
200 {
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
204 do_div(tmp, 100);
205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231 {
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
238
239 return 0;
240 }
241
242 /*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 u64 avg_local_sample_len;
255 u64 local_samples_len;
256
257 local_samples_len = __this_cpu_read(running_sample_length);
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
263 avg_local_sample_len, allowed_ns >> 1,
264 sysctl_perf_event_sample_rate);
265 }
266
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
274
275 if (allowed_ns == 0)
276 return;
277
278 /* decay the counter by 1 average sample */
279 local_samples_len = __this_cpu_read(running_sample_length);
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
282 __this_cpu_write(running_sample_length, local_samples_len);
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 if (avg_local_sample_len <= allowed_ns)
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
301 update_perf_cpu_limits();
302
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
309 }
310
311 static atomic64_t perf_event_id;
312
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322
323 void __weak perf_event_print_debug(void) { }
324
325 extern __weak const char *perf_pmu_name(void)
326 {
327 return "pmu";
328 }
329
330 static inline u64 perf_clock(void)
331 {
332 return local_clock();
333 }
334
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 return event->clock();
338 }
339
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348 {
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352 }
353
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356 {
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361
362 #ifdef CONFIG_CGROUP_PERF
363
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
386 }
387
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 css_put(&event->cgrp->css);
391 event->cgrp = NULL;
392 }
393
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 return event->cgrp != NULL;
397 }
398
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405 }
406
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418 }
419
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425 }
426
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 struct perf_cgroup *cgrp;
430
431 /*
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
434 */
435 if (!is_cgroup_event(event))
436 return;
437
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
444 }
445
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
449 {
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
463 info->timestamp = ctx->timestamp;
464 }
465
466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469 /*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475 static void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
498
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
520 WARN_ON_ONCE(cpuctx->cgrp);
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 }
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537 }
538
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
541 {
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
568 {
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592 {
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
595 struct fd f = fdget(fd);
596 int ret = 0;
597
598 if (!f.file)
599 return -EBADF;
600
601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 &perf_event_cgrp_subsys);
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
619 }
620 out:
621 fdput(f);
622 return ret;
623 }
624
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631 }
632
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644 }
645
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649 {
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 return true;
672 }
673
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 return 0;
680 }
681
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 return 0;
685 }
686
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
697 {
698 }
699
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
702 {
703 }
704
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708 {
709 return -EINVAL;
710 }
711
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
715 {
716 }
717
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 return 0;
731 }
732
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744
745 /*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751 * function must be called with interrupts disbled
752 */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 struct perf_cpu_context *cpuctx;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 rotations = perf_rotate_context(cpuctx);
762
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
769
770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 struct hrtimer *timer = &cpuctx->hrtimer;
776 struct pmu *pmu = cpuctx->ctx.pmu;
777 u64 interval;
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790
791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 timer->function = perf_mux_hrtimer_handler;
796 }
797
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 struct hrtimer *timer = &cpuctx->hrtimer;
801 struct pmu *pmu = cpuctx->ctx.pmu;
802 unsigned long flags;
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
806 return 0;
807
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815
816 return 0;
817 }
818
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
824 }
825
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
831 }
832
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834
835 /*
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
840 */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
844
845 WARN_ON(!irqs_disabled());
846
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850 }
851
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
859 }
860
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865
866 static void free_ctx(struct rcu_head *head)
867 {
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873 }
874
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
880 if (ctx->task)
881 put_task_struct(ctx->task);
882 call_rcu(&ctx->rcu_head, free_ctx);
883 }
884 }
885
886 /*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 struct perf_event_context *ctx;
951
952 again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
961 mutex_lock_nested(&ctx->mutex, nesting);
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969 }
970
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 return perf_event_ctx_lock_nested(event, 0);
975 }
976
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979 {
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982 }
983
984 /*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
997 ctx->parent_ctx = NULL;
998 ctx->generation++;
999
1000 return parent_ctx;
1001 }
1002
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012 }
1013
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023 }
1024
1025 /*
1026 * If we inherit events we want to return the parent event id
1027 * to userspace.
1028 */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 u64 id = event->id;
1032
1033 if (event->parent)
1034 id = event->parent->id;
1035
1036 return id;
1037 }
1038
1039 /*
1040 * Get the perf_event_context for a task and lock it.
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 struct perf_event_context *ctx;
1048
1049 retry:
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
1066 * perf_event_task_sched_out, though the
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 rcu_read_unlock();
1077 preempt_enable();
1078 goto retry;
1079 }
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 ctx = NULL;
1084 }
1085 }
1086 rcu_read_unlock();
1087 preempt_enable();
1088 return ctx;
1089 }
1090
1091 /*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 struct perf_event_context *ctx;
1100 unsigned long flags;
1101
1102 ctx = perf_lock_task_context(task, ctxn, &flags);
1103 if (ctx) {
1104 ++ctx->pin_count;
1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 }
1107 return ctx;
1108 }
1109
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 unsigned long flags;
1113
1114 raw_spin_lock_irqsave(&ctx->lock, flags);
1115 --ctx->pin_count;
1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118
1119 /*
1120 * Update the record of the current time in a context.
1121 */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128 }
1129
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 struct perf_event_context *ctx = event->ctx;
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
1137 return ctx ? ctx->time : 0;
1138 }
1139
1140 /*
1141 * Update the total_time_enabled and total_time_running fields for a event.
1142 * The caller of this function needs to hold the ctx->lock.
1143 */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
1163 run_end = perf_cgroup_event_time(event);
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
1174 run_end = perf_event_time(event);
1175
1176 event->total_time_running = run_end - event->tstamp_running;
1177
1178 }
1179
1180 /*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190 }
1191
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199 }
1200
1201 /*
1202 * Add a event from the lists for its context.
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
1210
1211 /*
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
1215 */
1216 if (event->group_leader == event) {
1217 struct list_head *list;
1218
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
1224 }
1225
1226 if (is_cgroup_event(event))
1227 ctx->nr_cgroups++;
1228
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
1232 ctx->nr_stat++;
1233
1234 ctx->generation++;
1235 }
1236
1237 /*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244 }
1245
1246 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1247 {
1248 int entry = sizeof(u64); /* value */
1249 int size = 0;
1250 int nr = 1;
1251
1252 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 size += sizeof(u64);
1254
1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 size += sizeof(u64);
1257
1258 if (event->attr.read_format & PERF_FORMAT_ID)
1259 entry += sizeof(u64);
1260
1261 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1262 nr += nr_siblings;
1263 size += sizeof(u64);
1264 }
1265
1266 size += entry * nr;
1267 event->read_size = size;
1268 }
1269
1270 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1271 {
1272 struct perf_sample_data *data;
1273 u16 size = 0;
1274
1275 if (sample_type & PERF_SAMPLE_IP)
1276 size += sizeof(data->ip);
1277
1278 if (sample_type & PERF_SAMPLE_ADDR)
1279 size += sizeof(data->addr);
1280
1281 if (sample_type & PERF_SAMPLE_PERIOD)
1282 size += sizeof(data->period);
1283
1284 if (sample_type & PERF_SAMPLE_WEIGHT)
1285 size += sizeof(data->weight);
1286
1287 if (sample_type & PERF_SAMPLE_READ)
1288 size += event->read_size;
1289
1290 if (sample_type & PERF_SAMPLE_DATA_SRC)
1291 size += sizeof(data->data_src.val);
1292
1293 if (sample_type & PERF_SAMPLE_TRANSACTION)
1294 size += sizeof(data->txn);
1295
1296 event->header_size = size;
1297 }
1298
1299 /*
1300 * Called at perf_event creation and when events are attached/detached from a
1301 * group.
1302 */
1303 static void perf_event__header_size(struct perf_event *event)
1304 {
1305 __perf_event_read_size(event,
1306 event->group_leader->nr_siblings);
1307 __perf_event_header_size(event, event->attr.sample_type);
1308 }
1309
1310 static void perf_event__id_header_size(struct perf_event *event)
1311 {
1312 struct perf_sample_data *data;
1313 u64 sample_type = event->attr.sample_type;
1314 u16 size = 0;
1315
1316 if (sample_type & PERF_SAMPLE_TID)
1317 size += sizeof(data->tid_entry);
1318
1319 if (sample_type & PERF_SAMPLE_TIME)
1320 size += sizeof(data->time);
1321
1322 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1323 size += sizeof(data->id);
1324
1325 if (sample_type & PERF_SAMPLE_ID)
1326 size += sizeof(data->id);
1327
1328 if (sample_type & PERF_SAMPLE_STREAM_ID)
1329 size += sizeof(data->stream_id);
1330
1331 if (sample_type & PERF_SAMPLE_CPU)
1332 size += sizeof(data->cpu_entry);
1333
1334 event->id_header_size = size;
1335 }
1336
1337 static bool perf_event_validate_size(struct perf_event *event)
1338 {
1339 /*
1340 * The values computed here will be over-written when we actually
1341 * attach the event.
1342 */
1343 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1344 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1345 perf_event__id_header_size(event);
1346
1347 /*
1348 * Sum the lot; should not exceed the 64k limit we have on records.
1349 * Conservative limit to allow for callchains and other variable fields.
1350 */
1351 if (event->read_size + event->header_size +
1352 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1353 return false;
1354
1355 return true;
1356 }
1357
1358 static void perf_group_attach(struct perf_event *event)
1359 {
1360 struct perf_event *group_leader = event->group_leader, *pos;
1361
1362 /*
1363 * We can have double attach due to group movement in perf_event_open.
1364 */
1365 if (event->attach_state & PERF_ATTACH_GROUP)
1366 return;
1367
1368 event->attach_state |= PERF_ATTACH_GROUP;
1369
1370 if (group_leader == event)
1371 return;
1372
1373 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1374
1375 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1376 !is_software_event(event))
1377 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1378
1379 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1380 group_leader->nr_siblings++;
1381
1382 perf_event__header_size(group_leader);
1383
1384 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1385 perf_event__header_size(pos);
1386 }
1387
1388 /*
1389 * Remove a event from the lists for its context.
1390 * Must be called with ctx->mutex and ctx->lock held.
1391 */
1392 static void
1393 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395 struct perf_cpu_context *cpuctx;
1396
1397 WARN_ON_ONCE(event->ctx != ctx);
1398 lockdep_assert_held(&ctx->lock);
1399
1400 /*
1401 * We can have double detach due to exit/hot-unplug + close.
1402 */
1403 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1404 return;
1405
1406 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1407
1408 if (is_cgroup_event(event)) {
1409 ctx->nr_cgroups--;
1410 cpuctx = __get_cpu_context(ctx);
1411 /*
1412 * if there are no more cgroup events
1413 * then cler cgrp to avoid stale pointer
1414 * in update_cgrp_time_from_cpuctx()
1415 */
1416 if (!ctx->nr_cgroups)
1417 cpuctx->cgrp = NULL;
1418 }
1419
1420 ctx->nr_events--;
1421 if (event->attr.inherit_stat)
1422 ctx->nr_stat--;
1423
1424 list_del_rcu(&event->event_entry);
1425
1426 if (event->group_leader == event)
1427 list_del_init(&event->group_entry);
1428
1429 update_group_times(event);
1430
1431 /*
1432 * If event was in error state, then keep it
1433 * that way, otherwise bogus counts will be
1434 * returned on read(). The only way to get out
1435 * of error state is by explicit re-enabling
1436 * of the event
1437 */
1438 if (event->state > PERF_EVENT_STATE_OFF)
1439 event->state = PERF_EVENT_STATE_OFF;
1440
1441 ctx->generation++;
1442 }
1443
1444 static void perf_group_detach(struct perf_event *event)
1445 {
1446 struct perf_event *sibling, *tmp;
1447 struct list_head *list = NULL;
1448
1449 /*
1450 * We can have double detach due to exit/hot-unplug + close.
1451 */
1452 if (!(event->attach_state & PERF_ATTACH_GROUP))
1453 return;
1454
1455 event->attach_state &= ~PERF_ATTACH_GROUP;
1456
1457 /*
1458 * If this is a sibling, remove it from its group.
1459 */
1460 if (event->group_leader != event) {
1461 list_del_init(&event->group_entry);
1462 event->group_leader->nr_siblings--;
1463 goto out;
1464 }
1465
1466 if (!list_empty(&event->group_entry))
1467 list = &event->group_entry;
1468
1469 /*
1470 * If this was a group event with sibling events then
1471 * upgrade the siblings to singleton events by adding them
1472 * to whatever list we are on.
1473 */
1474 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1475 if (list)
1476 list_move_tail(&sibling->group_entry, list);
1477 sibling->group_leader = sibling;
1478
1479 /* Inherit group flags from the previous leader */
1480 sibling->group_flags = event->group_flags;
1481
1482 WARN_ON_ONCE(sibling->ctx != event->ctx);
1483 }
1484
1485 out:
1486 perf_event__header_size(event->group_leader);
1487
1488 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1489 perf_event__header_size(tmp);
1490 }
1491
1492 /*
1493 * User event without the task.
1494 */
1495 static bool is_orphaned_event(struct perf_event *event)
1496 {
1497 return event && !is_kernel_event(event) && !event->owner;
1498 }
1499
1500 /*
1501 * Event has a parent but parent's task finished and it's
1502 * alive only because of children holding refference.
1503 */
1504 static bool is_orphaned_child(struct perf_event *event)
1505 {
1506 return is_orphaned_event(event->parent);
1507 }
1508
1509 static void orphans_remove_work(struct work_struct *work);
1510
1511 static void schedule_orphans_remove(struct perf_event_context *ctx)
1512 {
1513 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1514 return;
1515
1516 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1517 get_ctx(ctx);
1518 ctx->orphans_remove_sched = true;
1519 }
1520 }
1521
1522 static int __init perf_workqueue_init(void)
1523 {
1524 perf_wq = create_singlethread_workqueue("perf");
1525 WARN(!perf_wq, "failed to create perf workqueue\n");
1526 return perf_wq ? 0 : -1;
1527 }
1528
1529 core_initcall(perf_workqueue_init);
1530
1531 static inline int pmu_filter_match(struct perf_event *event)
1532 {
1533 struct pmu *pmu = event->pmu;
1534 return pmu->filter_match ? pmu->filter_match(event) : 1;
1535 }
1536
1537 static inline int
1538 event_filter_match(struct perf_event *event)
1539 {
1540 return (event->cpu == -1 || event->cpu == smp_processor_id())
1541 && perf_cgroup_match(event) && pmu_filter_match(event);
1542 }
1543
1544 static void
1545 event_sched_out(struct perf_event *event,
1546 struct perf_cpu_context *cpuctx,
1547 struct perf_event_context *ctx)
1548 {
1549 u64 tstamp = perf_event_time(event);
1550 u64 delta;
1551
1552 WARN_ON_ONCE(event->ctx != ctx);
1553 lockdep_assert_held(&ctx->lock);
1554
1555 /*
1556 * An event which could not be activated because of
1557 * filter mismatch still needs to have its timings
1558 * maintained, otherwise bogus information is return
1559 * via read() for time_enabled, time_running:
1560 */
1561 if (event->state == PERF_EVENT_STATE_INACTIVE
1562 && !event_filter_match(event)) {
1563 delta = tstamp - event->tstamp_stopped;
1564 event->tstamp_running += delta;
1565 event->tstamp_stopped = tstamp;
1566 }
1567
1568 if (event->state != PERF_EVENT_STATE_ACTIVE)
1569 return;
1570
1571 perf_pmu_disable(event->pmu);
1572
1573 event->state = PERF_EVENT_STATE_INACTIVE;
1574 if (event->pending_disable) {
1575 event->pending_disable = 0;
1576 event->state = PERF_EVENT_STATE_OFF;
1577 }
1578 event->tstamp_stopped = tstamp;
1579 event->pmu->del(event, 0);
1580 event->oncpu = -1;
1581
1582 if (!is_software_event(event))
1583 cpuctx->active_oncpu--;
1584 if (!--ctx->nr_active)
1585 perf_event_ctx_deactivate(ctx);
1586 if (event->attr.freq && event->attr.sample_freq)
1587 ctx->nr_freq--;
1588 if (event->attr.exclusive || !cpuctx->active_oncpu)
1589 cpuctx->exclusive = 0;
1590
1591 if (is_orphaned_child(event))
1592 schedule_orphans_remove(ctx);
1593
1594 perf_pmu_enable(event->pmu);
1595 }
1596
1597 static void
1598 group_sched_out(struct perf_event *group_event,
1599 struct perf_cpu_context *cpuctx,
1600 struct perf_event_context *ctx)
1601 {
1602 struct perf_event *event;
1603 int state = group_event->state;
1604
1605 event_sched_out(group_event, cpuctx, ctx);
1606
1607 /*
1608 * Schedule out siblings (if any):
1609 */
1610 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1611 event_sched_out(event, cpuctx, ctx);
1612
1613 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1614 cpuctx->exclusive = 0;
1615 }
1616
1617 struct remove_event {
1618 struct perf_event *event;
1619 bool detach_group;
1620 };
1621
1622 /*
1623 * Cross CPU call to remove a performance event
1624 *
1625 * We disable the event on the hardware level first. After that we
1626 * remove it from the context list.
1627 */
1628 static int __perf_remove_from_context(void *info)
1629 {
1630 struct remove_event *re = info;
1631 struct perf_event *event = re->event;
1632 struct perf_event_context *ctx = event->ctx;
1633 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1634
1635 raw_spin_lock(&ctx->lock);
1636 event_sched_out(event, cpuctx, ctx);
1637 if (re->detach_group)
1638 perf_group_detach(event);
1639 list_del_event(event, ctx);
1640 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1641 ctx->is_active = 0;
1642 cpuctx->task_ctx = NULL;
1643 }
1644 raw_spin_unlock(&ctx->lock);
1645
1646 return 0;
1647 }
1648
1649
1650 /*
1651 * Remove the event from a task's (or a CPU's) list of events.
1652 *
1653 * CPU events are removed with a smp call. For task events we only
1654 * call when the task is on a CPU.
1655 *
1656 * If event->ctx is a cloned context, callers must make sure that
1657 * every task struct that event->ctx->task could possibly point to
1658 * remains valid. This is OK when called from perf_release since
1659 * that only calls us on the top-level context, which can't be a clone.
1660 * When called from perf_event_exit_task, it's OK because the
1661 * context has been detached from its task.
1662 */
1663 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1664 {
1665 struct perf_event_context *ctx = event->ctx;
1666 struct task_struct *task = ctx->task;
1667 struct remove_event re = {
1668 .event = event,
1669 .detach_group = detach_group,
1670 };
1671
1672 lockdep_assert_held(&ctx->mutex);
1673
1674 if (!task) {
1675 /*
1676 * Per cpu events are removed via an smp call. The removal can
1677 * fail if the CPU is currently offline, but in that case we
1678 * already called __perf_remove_from_context from
1679 * perf_event_exit_cpu.
1680 */
1681 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1682 return;
1683 }
1684
1685 retry:
1686 if (!task_function_call(task, __perf_remove_from_context, &re))
1687 return;
1688
1689 raw_spin_lock_irq(&ctx->lock);
1690 /*
1691 * If we failed to find a running task, but find the context active now
1692 * that we've acquired the ctx->lock, retry.
1693 */
1694 if (ctx->is_active) {
1695 raw_spin_unlock_irq(&ctx->lock);
1696 /*
1697 * Reload the task pointer, it might have been changed by
1698 * a concurrent perf_event_context_sched_out().
1699 */
1700 task = ctx->task;
1701 goto retry;
1702 }
1703
1704 /*
1705 * Since the task isn't running, its safe to remove the event, us
1706 * holding the ctx->lock ensures the task won't get scheduled in.
1707 */
1708 if (detach_group)
1709 perf_group_detach(event);
1710 list_del_event(event, ctx);
1711 raw_spin_unlock_irq(&ctx->lock);
1712 }
1713
1714 /*
1715 * Cross CPU call to disable a performance event
1716 */
1717 int __perf_event_disable(void *info)
1718 {
1719 struct perf_event *event = info;
1720 struct perf_event_context *ctx = event->ctx;
1721 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1722
1723 /*
1724 * If this is a per-task event, need to check whether this
1725 * event's task is the current task on this cpu.
1726 *
1727 * Can trigger due to concurrent perf_event_context_sched_out()
1728 * flipping contexts around.
1729 */
1730 if (ctx->task && cpuctx->task_ctx != ctx)
1731 return -EINVAL;
1732
1733 raw_spin_lock(&ctx->lock);
1734
1735 /*
1736 * If the event is on, turn it off.
1737 * If it is in error state, leave it in error state.
1738 */
1739 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1740 update_context_time(ctx);
1741 update_cgrp_time_from_event(event);
1742 update_group_times(event);
1743 if (event == event->group_leader)
1744 group_sched_out(event, cpuctx, ctx);
1745 else
1746 event_sched_out(event, cpuctx, ctx);
1747 event->state = PERF_EVENT_STATE_OFF;
1748 }
1749
1750 raw_spin_unlock(&ctx->lock);
1751
1752 return 0;
1753 }
1754
1755 /*
1756 * Disable a event.
1757 *
1758 * If event->ctx is a cloned context, callers must make sure that
1759 * every task struct that event->ctx->task could possibly point to
1760 * remains valid. This condition is satisifed when called through
1761 * perf_event_for_each_child or perf_event_for_each because they
1762 * hold the top-level event's child_mutex, so any descendant that
1763 * goes to exit will block in sync_child_event.
1764 * When called from perf_pending_event it's OK because event->ctx
1765 * is the current context on this CPU and preemption is disabled,
1766 * hence we can't get into perf_event_task_sched_out for this context.
1767 */
1768 static void _perf_event_disable(struct perf_event *event)
1769 {
1770 struct perf_event_context *ctx = event->ctx;
1771 struct task_struct *task = ctx->task;
1772
1773 if (!task) {
1774 /*
1775 * Disable the event on the cpu that it's on
1776 */
1777 cpu_function_call(event->cpu, __perf_event_disable, event);
1778 return;
1779 }
1780
1781 retry:
1782 if (!task_function_call(task, __perf_event_disable, event))
1783 return;
1784
1785 raw_spin_lock_irq(&ctx->lock);
1786 /*
1787 * If the event is still active, we need to retry the cross-call.
1788 */
1789 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1790 raw_spin_unlock_irq(&ctx->lock);
1791 /*
1792 * Reload the task pointer, it might have been changed by
1793 * a concurrent perf_event_context_sched_out().
1794 */
1795 task = ctx->task;
1796 goto retry;
1797 }
1798
1799 /*
1800 * Since we have the lock this context can't be scheduled
1801 * in, so we can change the state safely.
1802 */
1803 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1804 update_group_times(event);
1805 event->state = PERF_EVENT_STATE_OFF;
1806 }
1807 raw_spin_unlock_irq(&ctx->lock);
1808 }
1809
1810 /*
1811 * Strictly speaking kernel users cannot create groups and therefore this
1812 * interface does not need the perf_event_ctx_lock() magic.
1813 */
1814 void perf_event_disable(struct perf_event *event)
1815 {
1816 struct perf_event_context *ctx;
1817
1818 ctx = perf_event_ctx_lock(event);
1819 _perf_event_disable(event);
1820 perf_event_ctx_unlock(event, ctx);
1821 }
1822 EXPORT_SYMBOL_GPL(perf_event_disable);
1823
1824 static void perf_set_shadow_time(struct perf_event *event,
1825 struct perf_event_context *ctx,
1826 u64 tstamp)
1827 {
1828 /*
1829 * use the correct time source for the time snapshot
1830 *
1831 * We could get by without this by leveraging the
1832 * fact that to get to this function, the caller
1833 * has most likely already called update_context_time()
1834 * and update_cgrp_time_xx() and thus both timestamp
1835 * are identical (or very close). Given that tstamp is,
1836 * already adjusted for cgroup, we could say that:
1837 * tstamp - ctx->timestamp
1838 * is equivalent to
1839 * tstamp - cgrp->timestamp.
1840 *
1841 * Then, in perf_output_read(), the calculation would
1842 * work with no changes because:
1843 * - event is guaranteed scheduled in
1844 * - no scheduled out in between
1845 * - thus the timestamp would be the same
1846 *
1847 * But this is a bit hairy.
1848 *
1849 * So instead, we have an explicit cgroup call to remain
1850 * within the time time source all along. We believe it
1851 * is cleaner and simpler to understand.
1852 */
1853 if (is_cgroup_event(event))
1854 perf_cgroup_set_shadow_time(event, tstamp);
1855 else
1856 event->shadow_ctx_time = tstamp - ctx->timestamp;
1857 }
1858
1859 #define MAX_INTERRUPTS (~0ULL)
1860
1861 static void perf_log_throttle(struct perf_event *event, int enable);
1862 static void perf_log_itrace_start(struct perf_event *event);
1863
1864 static int
1865 event_sched_in(struct perf_event *event,
1866 struct perf_cpu_context *cpuctx,
1867 struct perf_event_context *ctx)
1868 {
1869 u64 tstamp = perf_event_time(event);
1870 int ret = 0;
1871
1872 lockdep_assert_held(&ctx->lock);
1873
1874 if (event->state <= PERF_EVENT_STATE_OFF)
1875 return 0;
1876
1877 event->state = PERF_EVENT_STATE_ACTIVE;
1878 event->oncpu = smp_processor_id();
1879
1880 /*
1881 * Unthrottle events, since we scheduled we might have missed several
1882 * ticks already, also for a heavily scheduling task there is little
1883 * guarantee it'll get a tick in a timely manner.
1884 */
1885 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1886 perf_log_throttle(event, 1);
1887 event->hw.interrupts = 0;
1888 }
1889
1890 /*
1891 * The new state must be visible before we turn it on in the hardware:
1892 */
1893 smp_wmb();
1894
1895 perf_pmu_disable(event->pmu);
1896
1897 perf_set_shadow_time(event, ctx, tstamp);
1898
1899 perf_log_itrace_start(event);
1900
1901 if (event->pmu->add(event, PERF_EF_START)) {
1902 event->state = PERF_EVENT_STATE_INACTIVE;
1903 event->oncpu = -1;
1904 ret = -EAGAIN;
1905 goto out;
1906 }
1907
1908 event->tstamp_running += tstamp - event->tstamp_stopped;
1909
1910 if (!is_software_event(event))
1911 cpuctx->active_oncpu++;
1912 if (!ctx->nr_active++)
1913 perf_event_ctx_activate(ctx);
1914 if (event->attr.freq && event->attr.sample_freq)
1915 ctx->nr_freq++;
1916
1917 if (event->attr.exclusive)
1918 cpuctx->exclusive = 1;
1919
1920 if (is_orphaned_child(event))
1921 schedule_orphans_remove(ctx);
1922
1923 out:
1924 perf_pmu_enable(event->pmu);
1925
1926 return ret;
1927 }
1928
1929 static int
1930 group_sched_in(struct perf_event *group_event,
1931 struct perf_cpu_context *cpuctx,
1932 struct perf_event_context *ctx)
1933 {
1934 struct perf_event *event, *partial_group = NULL;
1935 struct pmu *pmu = ctx->pmu;
1936 u64 now = ctx->time;
1937 bool simulate = false;
1938
1939 if (group_event->state == PERF_EVENT_STATE_OFF)
1940 return 0;
1941
1942 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1943
1944 if (event_sched_in(group_event, cpuctx, ctx)) {
1945 pmu->cancel_txn(pmu);
1946 perf_mux_hrtimer_restart(cpuctx);
1947 return -EAGAIN;
1948 }
1949
1950 /*
1951 * Schedule in siblings as one group (if any):
1952 */
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event_sched_in(event, cpuctx, ctx)) {
1955 partial_group = event;
1956 goto group_error;
1957 }
1958 }
1959
1960 if (!pmu->commit_txn(pmu))
1961 return 0;
1962
1963 group_error:
1964 /*
1965 * Groups can be scheduled in as one unit only, so undo any
1966 * partial group before returning:
1967 * The events up to the failed event are scheduled out normally,
1968 * tstamp_stopped will be updated.
1969 *
1970 * The failed events and the remaining siblings need to have
1971 * their timings updated as if they had gone thru event_sched_in()
1972 * and event_sched_out(). This is required to get consistent timings
1973 * across the group. This also takes care of the case where the group
1974 * could never be scheduled by ensuring tstamp_stopped is set to mark
1975 * the time the event was actually stopped, such that time delta
1976 * calculation in update_event_times() is correct.
1977 */
1978 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979 if (event == partial_group)
1980 simulate = true;
1981
1982 if (simulate) {
1983 event->tstamp_running += now - event->tstamp_stopped;
1984 event->tstamp_stopped = now;
1985 } else {
1986 event_sched_out(event, cpuctx, ctx);
1987 }
1988 }
1989 event_sched_out(group_event, cpuctx, ctx);
1990
1991 pmu->cancel_txn(pmu);
1992
1993 perf_mux_hrtimer_restart(cpuctx);
1994
1995 return -EAGAIN;
1996 }
1997
1998 /*
1999 * Work out whether we can put this event group on the CPU now.
2000 */
2001 static int group_can_go_on(struct perf_event *event,
2002 struct perf_cpu_context *cpuctx,
2003 int can_add_hw)
2004 {
2005 /*
2006 * Groups consisting entirely of software events can always go on.
2007 */
2008 if (event->group_flags & PERF_GROUP_SOFTWARE)
2009 return 1;
2010 /*
2011 * If an exclusive group is already on, no other hardware
2012 * events can go on.
2013 */
2014 if (cpuctx->exclusive)
2015 return 0;
2016 /*
2017 * If this group is exclusive and there are already
2018 * events on the CPU, it can't go on.
2019 */
2020 if (event->attr.exclusive && cpuctx->active_oncpu)
2021 return 0;
2022 /*
2023 * Otherwise, try to add it if all previous groups were able
2024 * to go on.
2025 */
2026 return can_add_hw;
2027 }
2028
2029 static void add_event_to_ctx(struct perf_event *event,
2030 struct perf_event_context *ctx)
2031 {
2032 u64 tstamp = perf_event_time(event);
2033
2034 list_add_event(event, ctx);
2035 perf_group_attach(event);
2036 event->tstamp_enabled = tstamp;
2037 event->tstamp_running = tstamp;
2038 event->tstamp_stopped = tstamp;
2039 }
2040
2041 static void task_ctx_sched_out(struct perf_event_context *ctx);
2042 static void
2043 ctx_sched_in(struct perf_event_context *ctx,
2044 struct perf_cpu_context *cpuctx,
2045 enum event_type_t event_type,
2046 struct task_struct *task);
2047
2048 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2049 struct perf_event_context *ctx,
2050 struct task_struct *task)
2051 {
2052 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2053 if (ctx)
2054 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2055 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2056 if (ctx)
2057 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2058 }
2059
2060 /*
2061 * Cross CPU call to install and enable a performance event
2062 *
2063 * Must be called with ctx->mutex held
2064 */
2065 static int __perf_install_in_context(void *info)
2066 {
2067 struct perf_event *event = info;
2068 struct perf_event_context *ctx = event->ctx;
2069 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2070 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2071 struct task_struct *task = current;
2072
2073 perf_ctx_lock(cpuctx, task_ctx);
2074 perf_pmu_disable(cpuctx->ctx.pmu);
2075
2076 /*
2077 * If there was an active task_ctx schedule it out.
2078 */
2079 if (task_ctx)
2080 task_ctx_sched_out(task_ctx);
2081
2082 /*
2083 * If the context we're installing events in is not the
2084 * active task_ctx, flip them.
2085 */
2086 if (ctx->task && task_ctx != ctx) {
2087 if (task_ctx)
2088 raw_spin_unlock(&task_ctx->lock);
2089 raw_spin_lock(&ctx->lock);
2090 task_ctx = ctx;
2091 }
2092
2093 if (task_ctx) {
2094 cpuctx->task_ctx = task_ctx;
2095 task = task_ctx->task;
2096 }
2097
2098 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2099
2100 update_context_time(ctx);
2101 /*
2102 * update cgrp time only if current cgrp
2103 * matches event->cgrp. Must be done before
2104 * calling add_event_to_ctx()
2105 */
2106 update_cgrp_time_from_event(event);
2107
2108 add_event_to_ctx(event, ctx);
2109
2110 /*
2111 * Schedule everything back in
2112 */
2113 perf_event_sched_in(cpuctx, task_ctx, task);
2114
2115 perf_pmu_enable(cpuctx->ctx.pmu);
2116 perf_ctx_unlock(cpuctx, task_ctx);
2117
2118 return 0;
2119 }
2120
2121 /*
2122 * Attach a performance event to a context
2123 *
2124 * First we add the event to the list with the hardware enable bit
2125 * in event->hw_config cleared.
2126 *
2127 * If the event is attached to a task which is on a CPU we use a smp
2128 * call to enable it in the task context. The task might have been
2129 * scheduled away, but we check this in the smp call again.
2130 */
2131 static void
2132 perf_install_in_context(struct perf_event_context *ctx,
2133 struct perf_event *event,
2134 int cpu)
2135 {
2136 struct task_struct *task = ctx->task;
2137
2138 lockdep_assert_held(&ctx->mutex);
2139
2140 event->ctx = ctx;
2141 if (event->cpu != -1)
2142 event->cpu = cpu;
2143
2144 if (!task) {
2145 /*
2146 * Per cpu events are installed via an smp call and
2147 * the install is always successful.
2148 */
2149 cpu_function_call(cpu, __perf_install_in_context, event);
2150 return;
2151 }
2152
2153 retry:
2154 if (!task_function_call(task, __perf_install_in_context, event))
2155 return;
2156
2157 raw_spin_lock_irq(&ctx->lock);
2158 /*
2159 * If we failed to find a running task, but find the context active now
2160 * that we've acquired the ctx->lock, retry.
2161 */
2162 if (ctx->is_active) {
2163 raw_spin_unlock_irq(&ctx->lock);
2164 /*
2165 * Reload the task pointer, it might have been changed by
2166 * a concurrent perf_event_context_sched_out().
2167 */
2168 task = ctx->task;
2169 goto retry;
2170 }
2171
2172 /*
2173 * Since the task isn't running, its safe to add the event, us holding
2174 * the ctx->lock ensures the task won't get scheduled in.
2175 */
2176 add_event_to_ctx(event, ctx);
2177 raw_spin_unlock_irq(&ctx->lock);
2178 }
2179
2180 /*
2181 * Put a event into inactive state and update time fields.
2182 * Enabling the leader of a group effectively enables all
2183 * the group members that aren't explicitly disabled, so we
2184 * have to update their ->tstamp_enabled also.
2185 * Note: this works for group members as well as group leaders
2186 * since the non-leader members' sibling_lists will be empty.
2187 */
2188 static void __perf_event_mark_enabled(struct perf_event *event)
2189 {
2190 struct perf_event *sub;
2191 u64 tstamp = perf_event_time(event);
2192
2193 event->state = PERF_EVENT_STATE_INACTIVE;
2194 event->tstamp_enabled = tstamp - event->total_time_enabled;
2195 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2196 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2197 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2198 }
2199 }
2200
2201 /*
2202 * Cross CPU call to enable a performance event
2203 */
2204 static int __perf_event_enable(void *info)
2205 {
2206 struct perf_event *event = info;
2207 struct perf_event_context *ctx = event->ctx;
2208 struct perf_event *leader = event->group_leader;
2209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 int err;
2211
2212 /*
2213 * There's a time window between 'ctx->is_active' check
2214 * in perf_event_enable function and this place having:
2215 * - IRQs on
2216 * - ctx->lock unlocked
2217 *
2218 * where the task could be killed and 'ctx' deactivated
2219 * by perf_event_exit_task.
2220 */
2221 if (!ctx->is_active)
2222 return -EINVAL;
2223
2224 raw_spin_lock(&ctx->lock);
2225 update_context_time(ctx);
2226
2227 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2228 goto unlock;
2229
2230 /*
2231 * set current task's cgroup time reference point
2232 */
2233 perf_cgroup_set_timestamp(current, ctx);
2234
2235 __perf_event_mark_enabled(event);
2236
2237 if (!event_filter_match(event)) {
2238 if (is_cgroup_event(event))
2239 perf_cgroup_defer_enabled(event);
2240 goto unlock;
2241 }
2242
2243 /*
2244 * If the event is in a group and isn't the group leader,
2245 * then don't put it on unless the group is on.
2246 */
2247 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2248 goto unlock;
2249
2250 if (!group_can_go_on(event, cpuctx, 1)) {
2251 err = -EEXIST;
2252 } else {
2253 if (event == leader)
2254 err = group_sched_in(event, cpuctx, ctx);
2255 else
2256 err = event_sched_in(event, cpuctx, ctx);
2257 }
2258
2259 if (err) {
2260 /*
2261 * If this event can't go on and it's part of a
2262 * group, then the whole group has to come off.
2263 */
2264 if (leader != event) {
2265 group_sched_out(leader, cpuctx, ctx);
2266 perf_mux_hrtimer_restart(cpuctx);
2267 }
2268 if (leader->attr.pinned) {
2269 update_group_times(leader);
2270 leader->state = PERF_EVENT_STATE_ERROR;
2271 }
2272 }
2273
2274 unlock:
2275 raw_spin_unlock(&ctx->lock);
2276
2277 return 0;
2278 }
2279
2280 /*
2281 * Enable a event.
2282 *
2283 * If event->ctx is a cloned context, callers must make sure that
2284 * every task struct that event->ctx->task could possibly point to
2285 * remains valid. This condition is satisfied when called through
2286 * perf_event_for_each_child or perf_event_for_each as described
2287 * for perf_event_disable.
2288 */
2289 static void _perf_event_enable(struct perf_event *event)
2290 {
2291 struct perf_event_context *ctx = event->ctx;
2292 struct task_struct *task = ctx->task;
2293
2294 if (!task) {
2295 /*
2296 * Enable the event on the cpu that it's on
2297 */
2298 cpu_function_call(event->cpu, __perf_event_enable, event);
2299 return;
2300 }
2301
2302 raw_spin_lock_irq(&ctx->lock);
2303 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2304 goto out;
2305
2306 /*
2307 * If the event is in error state, clear that first.
2308 * That way, if we see the event in error state below, we
2309 * know that it has gone back into error state, as distinct
2310 * from the task having been scheduled away before the
2311 * cross-call arrived.
2312 */
2313 if (event->state == PERF_EVENT_STATE_ERROR)
2314 event->state = PERF_EVENT_STATE_OFF;
2315
2316 retry:
2317 if (!ctx->is_active) {
2318 __perf_event_mark_enabled(event);
2319 goto out;
2320 }
2321
2322 raw_spin_unlock_irq(&ctx->lock);
2323
2324 if (!task_function_call(task, __perf_event_enable, event))
2325 return;
2326
2327 raw_spin_lock_irq(&ctx->lock);
2328
2329 /*
2330 * If the context is active and the event is still off,
2331 * we need to retry the cross-call.
2332 */
2333 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2334 /*
2335 * task could have been flipped by a concurrent
2336 * perf_event_context_sched_out()
2337 */
2338 task = ctx->task;
2339 goto retry;
2340 }
2341
2342 out:
2343 raw_spin_unlock_irq(&ctx->lock);
2344 }
2345
2346 /*
2347 * See perf_event_disable();
2348 */
2349 void perf_event_enable(struct perf_event *event)
2350 {
2351 struct perf_event_context *ctx;
2352
2353 ctx = perf_event_ctx_lock(event);
2354 _perf_event_enable(event);
2355 perf_event_ctx_unlock(event, ctx);
2356 }
2357 EXPORT_SYMBOL_GPL(perf_event_enable);
2358
2359 static int _perf_event_refresh(struct perf_event *event, int refresh)
2360 {
2361 /*
2362 * not supported on inherited events
2363 */
2364 if (event->attr.inherit || !is_sampling_event(event))
2365 return -EINVAL;
2366
2367 atomic_add(refresh, &event->event_limit);
2368 _perf_event_enable(event);
2369
2370 return 0;
2371 }
2372
2373 /*
2374 * See perf_event_disable()
2375 */
2376 int perf_event_refresh(struct perf_event *event, int refresh)
2377 {
2378 struct perf_event_context *ctx;
2379 int ret;
2380
2381 ctx = perf_event_ctx_lock(event);
2382 ret = _perf_event_refresh(event, refresh);
2383 perf_event_ctx_unlock(event, ctx);
2384
2385 return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(perf_event_refresh);
2388
2389 static void ctx_sched_out(struct perf_event_context *ctx,
2390 struct perf_cpu_context *cpuctx,
2391 enum event_type_t event_type)
2392 {
2393 struct perf_event *event;
2394 int is_active = ctx->is_active;
2395
2396 ctx->is_active &= ~event_type;
2397 if (likely(!ctx->nr_events))
2398 return;
2399
2400 update_context_time(ctx);
2401 update_cgrp_time_from_cpuctx(cpuctx);
2402 if (!ctx->nr_active)
2403 return;
2404
2405 perf_pmu_disable(ctx->pmu);
2406 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2407 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2408 group_sched_out(event, cpuctx, ctx);
2409 }
2410
2411 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2412 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2413 group_sched_out(event, cpuctx, ctx);
2414 }
2415 perf_pmu_enable(ctx->pmu);
2416 }
2417
2418 /*
2419 * Test whether two contexts are equivalent, i.e. whether they have both been
2420 * cloned from the same version of the same context.
2421 *
2422 * Equivalence is measured using a generation number in the context that is
2423 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2424 * and list_del_event().
2425 */
2426 static int context_equiv(struct perf_event_context *ctx1,
2427 struct perf_event_context *ctx2)
2428 {
2429 lockdep_assert_held(&ctx1->lock);
2430 lockdep_assert_held(&ctx2->lock);
2431
2432 /* Pinning disables the swap optimization */
2433 if (ctx1->pin_count || ctx2->pin_count)
2434 return 0;
2435
2436 /* If ctx1 is the parent of ctx2 */
2437 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2438 return 1;
2439
2440 /* If ctx2 is the parent of ctx1 */
2441 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2442 return 1;
2443
2444 /*
2445 * If ctx1 and ctx2 have the same parent; we flatten the parent
2446 * hierarchy, see perf_event_init_context().
2447 */
2448 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2449 ctx1->parent_gen == ctx2->parent_gen)
2450 return 1;
2451
2452 /* Unmatched */
2453 return 0;
2454 }
2455
2456 static void __perf_event_sync_stat(struct perf_event *event,
2457 struct perf_event *next_event)
2458 {
2459 u64 value;
2460
2461 if (!event->attr.inherit_stat)
2462 return;
2463
2464 /*
2465 * Update the event value, we cannot use perf_event_read()
2466 * because we're in the middle of a context switch and have IRQs
2467 * disabled, which upsets smp_call_function_single(), however
2468 * we know the event must be on the current CPU, therefore we
2469 * don't need to use it.
2470 */
2471 switch (event->state) {
2472 case PERF_EVENT_STATE_ACTIVE:
2473 event->pmu->read(event);
2474 /* fall-through */
2475
2476 case PERF_EVENT_STATE_INACTIVE:
2477 update_event_times(event);
2478 break;
2479
2480 default:
2481 break;
2482 }
2483
2484 /*
2485 * In order to keep per-task stats reliable we need to flip the event
2486 * values when we flip the contexts.
2487 */
2488 value = local64_read(&next_event->count);
2489 value = local64_xchg(&event->count, value);
2490 local64_set(&next_event->count, value);
2491
2492 swap(event->total_time_enabled, next_event->total_time_enabled);
2493 swap(event->total_time_running, next_event->total_time_running);
2494
2495 /*
2496 * Since we swizzled the values, update the user visible data too.
2497 */
2498 perf_event_update_userpage(event);
2499 perf_event_update_userpage(next_event);
2500 }
2501
2502 static void perf_event_sync_stat(struct perf_event_context *ctx,
2503 struct perf_event_context *next_ctx)
2504 {
2505 struct perf_event *event, *next_event;
2506
2507 if (!ctx->nr_stat)
2508 return;
2509
2510 update_context_time(ctx);
2511
2512 event = list_first_entry(&ctx->event_list,
2513 struct perf_event, event_entry);
2514
2515 next_event = list_first_entry(&next_ctx->event_list,
2516 struct perf_event, event_entry);
2517
2518 while (&event->event_entry != &ctx->event_list &&
2519 &next_event->event_entry != &next_ctx->event_list) {
2520
2521 __perf_event_sync_stat(event, next_event);
2522
2523 event = list_next_entry(event, event_entry);
2524 next_event = list_next_entry(next_event, event_entry);
2525 }
2526 }
2527
2528 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2529 struct task_struct *next)
2530 {
2531 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2532 struct perf_event_context *next_ctx;
2533 struct perf_event_context *parent, *next_parent;
2534 struct perf_cpu_context *cpuctx;
2535 int do_switch = 1;
2536
2537 if (likely(!ctx))
2538 return;
2539
2540 cpuctx = __get_cpu_context(ctx);
2541 if (!cpuctx->task_ctx)
2542 return;
2543
2544 rcu_read_lock();
2545 next_ctx = next->perf_event_ctxp[ctxn];
2546 if (!next_ctx)
2547 goto unlock;
2548
2549 parent = rcu_dereference(ctx->parent_ctx);
2550 next_parent = rcu_dereference(next_ctx->parent_ctx);
2551
2552 /* If neither context have a parent context; they cannot be clones. */
2553 if (!parent && !next_parent)
2554 goto unlock;
2555
2556 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2557 /*
2558 * Looks like the two contexts are clones, so we might be
2559 * able to optimize the context switch. We lock both
2560 * contexts and check that they are clones under the
2561 * lock (including re-checking that neither has been
2562 * uncloned in the meantime). It doesn't matter which
2563 * order we take the locks because no other cpu could
2564 * be trying to lock both of these tasks.
2565 */
2566 raw_spin_lock(&ctx->lock);
2567 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2568 if (context_equiv(ctx, next_ctx)) {
2569 /*
2570 * XXX do we need a memory barrier of sorts
2571 * wrt to rcu_dereference() of perf_event_ctxp
2572 */
2573 task->perf_event_ctxp[ctxn] = next_ctx;
2574 next->perf_event_ctxp[ctxn] = ctx;
2575 ctx->task = next;
2576 next_ctx->task = task;
2577
2578 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2579
2580 do_switch = 0;
2581
2582 perf_event_sync_stat(ctx, next_ctx);
2583 }
2584 raw_spin_unlock(&next_ctx->lock);
2585 raw_spin_unlock(&ctx->lock);
2586 }
2587 unlock:
2588 rcu_read_unlock();
2589
2590 if (do_switch) {
2591 raw_spin_lock(&ctx->lock);
2592 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2593 cpuctx->task_ctx = NULL;
2594 raw_spin_unlock(&ctx->lock);
2595 }
2596 }
2597
2598 void perf_sched_cb_dec(struct pmu *pmu)
2599 {
2600 this_cpu_dec(perf_sched_cb_usages);
2601 }
2602
2603 void perf_sched_cb_inc(struct pmu *pmu)
2604 {
2605 this_cpu_inc(perf_sched_cb_usages);
2606 }
2607
2608 /*
2609 * This function provides the context switch callback to the lower code
2610 * layer. It is invoked ONLY when the context switch callback is enabled.
2611 */
2612 static void perf_pmu_sched_task(struct task_struct *prev,
2613 struct task_struct *next,
2614 bool sched_in)
2615 {
2616 struct perf_cpu_context *cpuctx;
2617 struct pmu *pmu;
2618 unsigned long flags;
2619
2620 if (prev == next)
2621 return;
2622
2623 local_irq_save(flags);
2624
2625 rcu_read_lock();
2626
2627 list_for_each_entry_rcu(pmu, &pmus, entry) {
2628 if (pmu->sched_task) {
2629 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2630
2631 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2632
2633 perf_pmu_disable(pmu);
2634
2635 pmu->sched_task(cpuctx->task_ctx, sched_in);
2636
2637 perf_pmu_enable(pmu);
2638
2639 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2640 }
2641 }
2642
2643 rcu_read_unlock();
2644
2645 local_irq_restore(flags);
2646 }
2647
2648 static void perf_event_switch(struct task_struct *task,
2649 struct task_struct *next_prev, bool sched_in);
2650
2651 #define for_each_task_context_nr(ctxn) \
2652 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2653
2654 /*
2655 * Called from scheduler to remove the events of the current task,
2656 * with interrupts disabled.
2657 *
2658 * We stop each event and update the event value in event->count.
2659 *
2660 * This does not protect us against NMI, but disable()
2661 * sets the disabled bit in the control field of event _before_
2662 * accessing the event control register. If a NMI hits, then it will
2663 * not restart the event.
2664 */
2665 void __perf_event_task_sched_out(struct task_struct *task,
2666 struct task_struct *next)
2667 {
2668 int ctxn;
2669
2670 if (__this_cpu_read(perf_sched_cb_usages))
2671 perf_pmu_sched_task(task, next, false);
2672
2673 if (atomic_read(&nr_switch_events))
2674 perf_event_switch(task, next, false);
2675
2676 for_each_task_context_nr(ctxn)
2677 perf_event_context_sched_out(task, ctxn, next);
2678
2679 /*
2680 * if cgroup events exist on this CPU, then we need
2681 * to check if we have to switch out PMU state.
2682 * cgroup event are system-wide mode only
2683 */
2684 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2685 perf_cgroup_sched_out(task, next);
2686 }
2687
2688 static void task_ctx_sched_out(struct perf_event_context *ctx)
2689 {
2690 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2691
2692 if (!cpuctx->task_ctx)
2693 return;
2694
2695 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2696 return;
2697
2698 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2699 cpuctx->task_ctx = NULL;
2700 }
2701
2702 /*
2703 * Called with IRQs disabled
2704 */
2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 enum event_type_t event_type)
2707 {
2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 }
2710
2711 static void
2712 ctx_pinned_sched_in(struct perf_event_context *ctx,
2713 struct perf_cpu_context *cpuctx)
2714 {
2715 struct perf_event *event;
2716
2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 if (event->state <= PERF_EVENT_STATE_OFF)
2719 continue;
2720 if (!event_filter_match(event))
2721 continue;
2722
2723 /* may need to reset tstamp_enabled */
2724 if (is_cgroup_event(event))
2725 perf_cgroup_mark_enabled(event, ctx);
2726
2727 if (group_can_go_on(event, cpuctx, 1))
2728 group_sched_in(event, cpuctx, ctx);
2729
2730 /*
2731 * If this pinned group hasn't been scheduled,
2732 * put it in error state.
2733 */
2734 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 update_group_times(event);
2736 event->state = PERF_EVENT_STATE_ERROR;
2737 }
2738 }
2739 }
2740
2741 static void
2742 ctx_flexible_sched_in(struct perf_event_context *ctx,
2743 struct perf_cpu_context *cpuctx)
2744 {
2745 struct perf_event *event;
2746 int can_add_hw = 1;
2747
2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 /* Ignore events in OFF or ERROR state */
2750 if (event->state <= PERF_EVENT_STATE_OFF)
2751 continue;
2752 /*
2753 * Listen to the 'cpu' scheduling filter constraint
2754 * of events:
2755 */
2756 if (!event_filter_match(event))
2757 continue;
2758
2759 /* may need to reset tstamp_enabled */
2760 if (is_cgroup_event(event))
2761 perf_cgroup_mark_enabled(event, ctx);
2762
2763 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764 if (group_sched_in(event, cpuctx, ctx))
2765 can_add_hw = 0;
2766 }
2767 }
2768 }
2769
2770 static void
2771 ctx_sched_in(struct perf_event_context *ctx,
2772 struct perf_cpu_context *cpuctx,
2773 enum event_type_t event_type,
2774 struct task_struct *task)
2775 {
2776 u64 now;
2777 int is_active = ctx->is_active;
2778
2779 ctx->is_active |= event_type;
2780 if (likely(!ctx->nr_events))
2781 return;
2782
2783 now = perf_clock();
2784 ctx->timestamp = now;
2785 perf_cgroup_set_timestamp(task, ctx);
2786 /*
2787 * First go through the list and put on any pinned groups
2788 * in order to give them the best chance of going on.
2789 */
2790 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2791 ctx_pinned_sched_in(ctx, cpuctx);
2792
2793 /* Then walk through the lower prio flexible groups */
2794 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2795 ctx_flexible_sched_in(ctx, cpuctx);
2796 }
2797
2798 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2799 enum event_type_t event_type,
2800 struct task_struct *task)
2801 {
2802 struct perf_event_context *ctx = &cpuctx->ctx;
2803
2804 ctx_sched_in(ctx, cpuctx, event_type, task);
2805 }
2806
2807 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2808 struct task_struct *task)
2809 {
2810 struct perf_cpu_context *cpuctx;
2811
2812 cpuctx = __get_cpu_context(ctx);
2813 if (cpuctx->task_ctx == ctx)
2814 return;
2815
2816 perf_ctx_lock(cpuctx, ctx);
2817 perf_pmu_disable(ctx->pmu);
2818 /*
2819 * We want to keep the following priority order:
2820 * cpu pinned (that don't need to move), task pinned,
2821 * cpu flexible, task flexible.
2822 */
2823 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2824
2825 if (ctx->nr_events)
2826 cpuctx->task_ctx = ctx;
2827
2828 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2829
2830 perf_pmu_enable(ctx->pmu);
2831 perf_ctx_unlock(cpuctx, ctx);
2832 }
2833
2834 /*
2835 * Called from scheduler to add the events of the current task
2836 * with interrupts disabled.
2837 *
2838 * We restore the event value and then enable it.
2839 *
2840 * This does not protect us against NMI, but enable()
2841 * sets the enabled bit in the control field of event _before_
2842 * accessing the event control register. If a NMI hits, then it will
2843 * keep the event running.
2844 */
2845 void __perf_event_task_sched_in(struct task_struct *prev,
2846 struct task_struct *task)
2847 {
2848 struct perf_event_context *ctx;
2849 int ctxn;
2850
2851 for_each_task_context_nr(ctxn) {
2852 ctx = task->perf_event_ctxp[ctxn];
2853 if (likely(!ctx))
2854 continue;
2855
2856 perf_event_context_sched_in(ctx, task);
2857 }
2858 /*
2859 * if cgroup events exist on this CPU, then we need
2860 * to check if we have to switch in PMU state.
2861 * cgroup event are system-wide mode only
2862 */
2863 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2864 perf_cgroup_sched_in(prev, task);
2865
2866 if (atomic_read(&nr_switch_events))
2867 perf_event_switch(task, prev, true);
2868
2869 if (__this_cpu_read(perf_sched_cb_usages))
2870 perf_pmu_sched_task(prev, task, true);
2871 }
2872
2873 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2874 {
2875 u64 frequency = event->attr.sample_freq;
2876 u64 sec = NSEC_PER_SEC;
2877 u64 divisor, dividend;
2878
2879 int count_fls, nsec_fls, frequency_fls, sec_fls;
2880
2881 count_fls = fls64(count);
2882 nsec_fls = fls64(nsec);
2883 frequency_fls = fls64(frequency);
2884 sec_fls = 30;
2885
2886 /*
2887 * We got @count in @nsec, with a target of sample_freq HZ
2888 * the target period becomes:
2889 *
2890 * @count * 10^9
2891 * period = -------------------
2892 * @nsec * sample_freq
2893 *
2894 */
2895
2896 /*
2897 * Reduce accuracy by one bit such that @a and @b converge
2898 * to a similar magnitude.
2899 */
2900 #define REDUCE_FLS(a, b) \
2901 do { \
2902 if (a##_fls > b##_fls) { \
2903 a >>= 1; \
2904 a##_fls--; \
2905 } else { \
2906 b >>= 1; \
2907 b##_fls--; \
2908 } \
2909 } while (0)
2910
2911 /*
2912 * Reduce accuracy until either term fits in a u64, then proceed with
2913 * the other, so that finally we can do a u64/u64 division.
2914 */
2915 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2916 REDUCE_FLS(nsec, frequency);
2917 REDUCE_FLS(sec, count);
2918 }
2919
2920 if (count_fls + sec_fls > 64) {
2921 divisor = nsec * frequency;
2922
2923 while (count_fls + sec_fls > 64) {
2924 REDUCE_FLS(count, sec);
2925 divisor >>= 1;
2926 }
2927
2928 dividend = count * sec;
2929 } else {
2930 dividend = count * sec;
2931
2932 while (nsec_fls + frequency_fls > 64) {
2933 REDUCE_FLS(nsec, frequency);
2934 dividend >>= 1;
2935 }
2936
2937 divisor = nsec * frequency;
2938 }
2939
2940 if (!divisor)
2941 return dividend;
2942
2943 return div64_u64(dividend, divisor);
2944 }
2945
2946 static DEFINE_PER_CPU(int, perf_throttled_count);
2947 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2948
2949 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2950 {
2951 struct hw_perf_event *hwc = &event->hw;
2952 s64 period, sample_period;
2953 s64 delta;
2954
2955 period = perf_calculate_period(event, nsec, count);
2956
2957 delta = (s64)(period - hwc->sample_period);
2958 delta = (delta + 7) / 8; /* low pass filter */
2959
2960 sample_period = hwc->sample_period + delta;
2961
2962 if (!sample_period)
2963 sample_period = 1;
2964
2965 hwc->sample_period = sample_period;
2966
2967 if (local64_read(&hwc->period_left) > 8*sample_period) {
2968 if (disable)
2969 event->pmu->stop(event, PERF_EF_UPDATE);
2970
2971 local64_set(&hwc->period_left, 0);
2972
2973 if (disable)
2974 event->pmu->start(event, PERF_EF_RELOAD);
2975 }
2976 }
2977
2978 /*
2979 * combine freq adjustment with unthrottling to avoid two passes over the
2980 * events. At the same time, make sure, having freq events does not change
2981 * the rate of unthrottling as that would introduce bias.
2982 */
2983 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2984 int needs_unthr)
2985 {
2986 struct perf_event *event;
2987 struct hw_perf_event *hwc;
2988 u64 now, period = TICK_NSEC;
2989 s64 delta;
2990
2991 /*
2992 * only need to iterate over all events iff:
2993 * - context have events in frequency mode (needs freq adjust)
2994 * - there are events to unthrottle on this cpu
2995 */
2996 if (!(ctx->nr_freq || needs_unthr))
2997 return;
2998
2999 raw_spin_lock(&ctx->lock);
3000 perf_pmu_disable(ctx->pmu);
3001
3002 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3003 if (event->state != PERF_EVENT_STATE_ACTIVE)
3004 continue;
3005
3006 if (!event_filter_match(event))
3007 continue;
3008
3009 perf_pmu_disable(event->pmu);
3010
3011 hwc = &event->hw;
3012
3013 if (hwc->interrupts == MAX_INTERRUPTS) {
3014 hwc->interrupts = 0;
3015 perf_log_throttle(event, 1);
3016 event->pmu->start(event, 0);
3017 }
3018
3019 if (!event->attr.freq || !event->attr.sample_freq)
3020 goto next;
3021
3022 /*
3023 * stop the event and update event->count
3024 */
3025 event->pmu->stop(event, PERF_EF_UPDATE);
3026
3027 now = local64_read(&event->count);
3028 delta = now - hwc->freq_count_stamp;
3029 hwc->freq_count_stamp = now;
3030
3031 /*
3032 * restart the event
3033 * reload only if value has changed
3034 * we have stopped the event so tell that
3035 * to perf_adjust_period() to avoid stopping it
3036 * twice.
3037 */
3038 if (delta > 0)
3039 perf_adjust_period(event, period, delta, false);
3040
3041 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3042 next:
3043 perf_pmu_enable(event->pmu);
3044 }
3045
3046 perf_pmu_enable(ctx->pmu);
3047 raw_spin_unlock(&ctx->lock);
3048 }
3049
3050 /*
3051 * Round-robin a context's events:
3052 */
3053 static void rotate_ctx(struct perf_event_context *ctx)
3054 {
3055 /*
3056 * Rotate the first entry last of non-pinned groups. Rotation might be
3057 * disabled by the inheritance code.
3058 */
3059 if (!ctx->rotate_disable)
3060 list_rotate_left(&ctx->flexible_groups);
3061 }
3062
3063 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3064 {
3065 struct perf_event_context *ctx = NULL;
3066 int rotate = 0;
3067
3068 if (cpuctx->ctx.nr_events) {
3069 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3070 rotate = 1;
3071 }
3072
3073 ctx = cpuctx->task_ctx;
3074 if (ctx && ctx->nr_events) {
3075 if (ctx->nr_events != ctx->nr_active)
3076 rotate = 1;
3077 }
3078
3079 if (!rotate)
3080 goto done;
3081
3082 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3083 perf_pmu_disable(cpuctx->ctx.pmu);
3084
3085 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3086 if (ctx)
3087 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3088
3089 rotate_ctx(&cpuctx->ctx);
3090 if (ctx)
3091 rotate_ctx(ctx);
3092
3093 perf_event_sched_in(cpuctx, ctx, current);
3094
3095 perf_pmu_enable(cpuctx->ctx.pmu);
3096 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3097 done:
3098
3099 return rotate;
3100 }
3101
3102 #ifdef CONFIG_NO_HZ_FULL
3103 bool perf_event_can_stop_tick(void)
3104 {
3105 if (atomic_read(&nr_freq_events) ||
3106 __this_cpu_read(perf_throttled_count))
3107 return false;
3108 else
3109 return true;
3110 }
3111 #endif
3112
3113 void perf_event_task_tick(void)
3114 {
3115 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3116 struct perf_event_context *ctx, *tmp;
3117 int throttled;
3118
3119 WARN_ON(!irqs_disabled());
3120
3121 __this_cpu_inc(perf_throttled_seq);
3122 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3123
3124 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3125 perf_adjust_freq_unthr_context(ctx, throttled);
3126 }
3127
3128 static int event_enable_on_exec(struct perf_event *event,
3129 struct perf_event_context *ctx)
3130 {
3131 if (!event->attr.enable_on_exec)
3132 return 0;
3133
3134 event->attr.enable_on_exec = 0;
3135 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3136 return 0;
3137
3138 __perf_event_mark_enabled(event);
3139
3140 return 1;
3141 }
3142
3143 /*
3144 * Enable all of a task's events that have been marked enable-on-exec.
3145 * This expects task == current.
3146 */
3147 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3148 {
3149 struct perf_event_context *clone_ctx = NULL;
3150 struct perf_event *event;
3151 unsigned long flags;
3152 int enabled = 0;
3153 int ret;
3154
3155 local_irq_save(flags);
3156 if (!ctx || !ctx->nr_events)
3157 goto out;
3158
3159 /*
3160 * We must ctxsw out cgroup events to avoid conflict
3161 * when invoking perf_task_event_sched_in() later on
3162 * in this function. Otherwise we end up trying to
3163 * ctxswin cgroup events which are already scheduled
3164 * in.
3165 */
3166 perf_cgroup_sched_out(current, NULL);
3167
3168 raw_spin_lock(&ctx->lock);
3169 task_ctx_sched_out(ctx);
3170
3171 list_for_each_entry(event, &ctx->event_list, event_entry) {
3172 ret = event_enable_on_exec(event, ctx);
3173 if (ret)
3174 enabled = 1;
3175 }
3176
3177 /*
3178 * Unclone this context if we enabled any event.
3179 */
3180 if (enabled)
3181 clone_ctx = unclone_ctx(ctx);
3182
3183 raw_spin_unlock(&ctx->lock);
3184
3185 /*
3186 * Also calls ctxswin for cgroup events, if any:
3187 */
3188 perf_event_context_sched_in(ctx, ctx->task);
3189 out:
3190 local_irq_restore(flags);
3191
3192 if (clone_ctx)
3193 put_ctx(clone_ctx);
3194 }
3195
3196 void perf_event_exec(void)
3197 {
3198 struct perf_event_context *ctx;
3199 int ctxn;
3200
3201 rcu_read_lock();
3202 for_each_task_context_nr(ctxn) {
3203 ctx = current->perf_event_ctxp[ctxn];
3204 if (!ctx)
3205 continue;
3206
3207 perf_event_enable_on_exec(ctx);
3208 }
3209 rcu_read_unlock();
3210 }
3211
3212 struct perf_read_data {
3213 struct perf_event *event;
3214 bool group;
3215 int ret;
3216 };
3217
3218 /*
3219 * Cross CPU call to read the hardware event
3220 */
3221 static void __perf_event_read(void *info)
3222 {
3223 struct perf_read_data *data = info;
3224 struct perf_event *sub, *event = data->event;
3225 struct perf_event_context *ctx = event->ctx;
3226 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3227 struct pmu *pmu = event->pmu;
3228
3229 /*
3230 * If this is a task context, we need to check whether it is
3231 * the current task context of this cpu. If not it has been
3232 * scheduled out before the smp call arrived. In that case
3233 * event->count would have been updated to a recent sample
3234 * when the event was scheduled out.
3235 */
3236 if (ctx->task && cpuctx->task_ctx != ctx)
3237 return;
3238
3239 raw_spin_lock(&ctx->lock);
3240 if (ctx->is_active) {
3241 update_context_time(ctx);
3242 update_cgrp_time_from_event(event);
3243 }
3244
3245 update_event_times(event);
3246 if (event->state != PERF_EVENT_STATE_ACTIVE)
3247 goto unlock;
3248
3249 if (!data->group) {
3250 pmu->read(event);
3251 data->ret = 0;
3252 goto unlock;
3253 }
3254
3255 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3256
3257 pmu->read(event);
3258
3259 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3260 update_event_times(sub);
3261 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3262 /*
3263 * Use sibling's PMU rather than @event's since
3264 * sibling could be on different (eg: software) PMU.
3265 */
3266 sub->pmu->read(sub);
3267 }
3268 }
3269
3270 data->ret = pmu->commit_txn(pmu);
3271
3272 unlock:
3273 raw_spin_unlock(&ctx->lock);
3274 }
3275
3276 static inline u64 perf_event_count(struct perf_event *event)
3277 {
3278 if (event->pmu->count)
3279 return event->pmu->count(event);
3280
3281 return __perf_event_count(event);
3282 }
3283
3284 /*
3285 * NMI-safe method to read a local event, that is an event that
3286 * is:
3287 * - either for the current task, or for this CPU
3288 * - does not have inherit set, for inherited task events
3289 * will not be local and we cannot read them atomically
3290 * - must not have a pmu::count method
3291 */
3292 u64 perf_event_read_local(struct perf_event *event)
3293 {
3294 unsigned long flags;
3295 u64 val;
3296
3297 /*
3298 * Disabling interrupts avoids all counter scheduling (context
3299 * switches, timer based rotation and IPIs).
3300 */
3301 local_irq_save(flags);
3302
3303 /* If this is a per-task event, it must be for current */
3304 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3305 event->hw.target != current);
3306
3307 /* If this is a per-CPU event, it must be for this CPU */
3308 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3309 event->cpu != smp_processor_id());
3310
3311 /*
3312 * It must not be an event with inherit set, we cannot read
3313 * all child counters from atomic context.
3314 */
3315 WARN_ON_ONCE(event->attr.inherit);
3316
3317 /*
3318 * It must not have a pmu::count method, those are not
3319 * NMI safe.
3320 */
3321 WARN_ON_ONCE(event->pmu->count);
3322
3323 /*
3324 * If the event is currently on this CPU, its either a per-task event,
3325 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3326 * oncpu == -1).
3327 */
3328 if (event->oncpu == smp_processor_id())
3329 event->pmu->read(event);
3330
3331 val = local64_read(&event->count);
3332 local_irq_restore(flags);
3333
3334 return val;
3335 }
3336
3337 static int perf_event_read(struct perf_event *event, bool group)
3338 {
3339 int ret = 0;
3340
3341 /*
3342 * If event is enabled and currently active on a CPU, update the
3343 * value in the event structure:
3344 */
3345 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3346 struct perf_read_data data = {
3347 .event = event,
3348 .group = group,
3349 .ret = 0,
3350 };
3351 smp_call_function_single(event->oncpu,
3352 __perf_event_read, &data, 1);
3353 ret = data.ret;
3354 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3355 struct perf_event_context *ctx = event->ctx;
3356 unsigned long flags;
3357
3358 raw_spin_lock_irqsave(&ctx->lock, flags);
3359 /*
3360 * may read while context is not active
3361 * (e.g., thread is blocked), in that case
3362 * we cannot update context time
3363 */
3364 if (ctx->is_active) {
3365 update_context_time(ctx);
3366 update_cgrp_time_from_event(event);
3367 }
3368 if (group)
3369 update_group_times(event);
3370 else
3371 update_event_times(event);
3372 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3373 }
3374
3375 return ret;
3376 }
3377
3378 /*
3379 * Initialize the perf_event context in a task_struct:
3380 */
3381 static void __perf_event_init_context(struct perf_event_context *ctx)
3382 {
3383 raw_spin_lock_init(&ctx->lock);
3384 mutex_init(&ctx->mutex);
3385 INIT_LIST_HEAD(&ctx->active_ctx_list);
3386 INIT_LIST_HEAD(&ctx->pinned_groups);
3387 INIT_LIST_HEAD(&ctx->flexible_groups);
3388 INIT_LIST_HEAD(&ctx->event_list);
3389 atomic_set(&ctx->refcount, 1);
3390 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3391 }
3392
3393 static struct perf_event_context *
3394 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3395 {
3396 struct perf_event_context *ctx;
3397
3398 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3399 if (!ctx)
3400 return NULL;
3401
3402 __perf_event_init_context(ctx);
3403 if (task) {
3404 ctx->task = task;
3405 get_task_struct(task);
3406 }
3407 ctx->pmu = pmu;
3408
3409 return ctx;
3410 }
3411
3412 static struct task_struct *
3413 find_lively_task_by_vpid(pid_t vpid)
3414 {
3415 struct task_struct *task;
3416 int err;
3417
3418 rcu_read_lock();
3419 if (!vpid)
3420 task = current;
3421 else
3422 task = find_task_by_vpid(vpid);
3423 if (task)
3424 get_task_struct(task);
3425 rcu_read_unlock();
3426
3427 if (!task)
3428 return ERR_PTR(-ESRCH);
3429
3430 /* Reuse ptrace permission checks for now. */
3431 err = -EACCES;
3432 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3433 goto errout;
3434
3435 return task;
3436 errout:
3437 put_task_struct(task);
3438 return ERR_PTR(err);
3439
3440 }
3441
3442 /*
3443 * Returns a matching context with refcount and pincount.
3444 */
3445 static struct perf_event_context *
3446 find_get_context(struct pmu *pmu, struct task_struct *task,
3447 struct perf_event *event)
3448 {
3449 struct perf_event_context *ctx, *clone_ctx = NULL;
3450 struct perf_cpu_context *cpuctx;
3451 void *task_ctx_data = NULL;
3452 unsigned long flags;
3453 int ctxn, err;
3454 int cpu = event->cpu;
3455
3456 if (!task) {
3457 /* Must be root to operate on a CPU event: */
3458 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3459 return ERR_PTR(-EACCES);
3460
3461 /*
3462 * We could be clever and allow to attach a event to an
3463 * offline CPU and activate it when the CPU comes up, but
3464 * that's for later.
3465 */
3466 if (!cpu_online(cpu))
3467 return ERR_PTR(-ENODEV);
3468
3469 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3470 ctx = &cpuctx->ctx;
3471 get_ctx(ctx);
3472 ++ctx->pin_count;
3473
3474 return ctx;
3475 }
3476
3477 err = -EINVAL;
3478 ctxn = pmu->task_ctx_nr;
3479 if (ctxn < 0)
3480 goto errout;
3481
3482 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3483 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3484 if (!task_ctx_data) {
3485 err = -ENOMEM;
3486 goto errout;
3487 }
3488 }
3489
3490 retry:
3491 ctx = perf_lock_task_context(task, ctxn, &flags);
3492 if (ctx) {
3493 clone_ctx = unclone_ctx(ctx);
3494 ++ctx->pin_count;
3495
3496 if (task_ctx_data && !ctx->task_ctx_data) {
3497 ctx->task_ctx_data = task_ctx_data;
3498 task_ctx_data = NULL;
3499 }
3500 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3501
3502 if (clone_ctx)
3503 put_ctx(clone_ctx);
3504 } else {
3505 ctx = alloc_perf_context(pmu, task);
3506 err = -ENOMEM;
3507 if (!ctx)
3508 goto errout;
3509
3510 if (task_ctx_data) {
3511 ctx->task_ctx_data = task_ctx_data;
3512 task_ctx_data = NULL;
3513 }
3514
3515 err = 0;
3516 mutex_lock(&task->perf_event_mutex);
3517 /*
3518 * If it has already passed perf_event_exit_task().
3519 * we must see PF_EXITING, it takes this mutex too.
3520 */
3521 if (task->flags & PF_EXITING)
3522 err = -ESRCH;
3523 else if (task->perf_event_ctxp[ctxn])
3524 err = -EAGAIN;
3525 else {
3526 get_ctx(ctx);
3527 ++ctx->pin_count;
3528 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3529 }
3530 mutex_unlock(&task->perf_event_mutex);
3531
3532 if (unlikely(err)) {
3533 put_ctx(ctx);
3534
3535 if (err == -EAGAIN)
3536 goto retry;
3537 goto errout;
3538 }
3539 }
3540
3541 kfree(task_ctx_data);
3542 return ctx;
3543
3544 errout:
3545 kfree(task_ctx_data);
3546 return ERR_PTR(err);
3547 }
3548
3549 static void perf_event_free_filter(struct perf_event *event);
3550 static void perf_event_free_bpf_prog(struct perf_event *event);
3551
3552 static void free_event_rcu(struct rcu_head *head)
3553 {
3554 struct perf_event *event;
3555
3556 event = container_of(head, struct perf_event, rcu_head);
3557 if (event->ns)
3558 put_pid_ns(event->ns);
3559 perf_event_free_filter(event);
3560 kfree(event);
3561 }
3562
3563 static void ring_buffer_attach(struct perf_event *event,
3564 struct ring_buffer *rb);
3565
3566 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3567 {
3568 if (event->parent)
3569 return;
3570
3571 if (is_cgroup_event(event))
3572 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3573 }
3574
3575 static void unaccount_event(struct perf_event *event)
3576 {
3577 if (event->parent)
3578 return;
3579
3580 if (event->attach_state & PERF_ATTACH_TASK)
3581 static_key_slow_dec_deferred(&perf_sched_events);
3582 if (event->attr.mmap || event->attr.mmap_data)
3583 atomic_dec(&nr_mmap_events);
3584 if (event->attr.comm)
3585 atomic_dec(&nr_comm_events);
3586 if (event->attr.task)
3587 atomic_dec(&nr_task_events);
3588 if (event->attr.freq)
3589 atomic_dec(&nr_freq_events);
3590 if (event->attr.context_switch) {
3591 static_key_slow_dec_deferred(&perf_sched_events);
3592 atomic_dec(&nr_switch_events);
3593 }
3594 if (is_cgroup_event(event))
3595 static_key_slow_dec_deferred(&perf_sched_events);
3596 if (has_branch_stack(event))
3597 static_key_slow_dec_deferred(&perf_sched_events);
3598
3599 unaccount_event_cpu(event, event->cpu);
3600 }
3601
3602 /*
3603 * The following implement mutual exclusion of events on "exclusive" pmus
3604 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3605 * at a time, so we disallow creating events that might conflict, namely:
3606 *
3607 * 1) cpu-wide events in the presence of per-task events,
3608 * 2) per-task events in the presence of cpu-wide events,
3609 * 3) two matching events on the same context.
3610 *
3611 * The former two cases are handled in the allocation path (perf_event_alloc(),
3612 * __free_event()), the latter -- before the first perf_install_in_context().
3613 */
3614 static int exclusive_event_init(struct perf_event *event)
3615 {
3616 struct pmu *pmu = event->pmu;
3617
3618 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3619 return 0;
3620
3621 /*
3622 * Prevent co-existence of per-task and cpu-wide events on the
3623 * same exclusive pmu.
3624 *
3625 * Negative pmu::exclusive_cnt means there are cpu-wide
3626 * events on this "exclusive" pmu, positive means there are
3627 * per-task events.
3628 *
3629 * Since this is called in perf_event_alloc() path, event::ctx
3630 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3631 * to mean "per-task event", because unlike other attach states it
3632 * never gets cleared.
3633 */
3634 if (event->attach_state & PERF_ATTACH_TASK) {
3635 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3636 return -EBUSY;
3637 } else {
3638 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3639 return -EBUSY;
3640 }
3641
3642 return 0;
3643 }
3644
3645 static void exclusive_event_destroy(struct perf_event *event)
3646 {
3647 struct pmu *pmu = event->pmu;
3648
3649 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3650 return;
3651
3652 /* see comment in exclusive_event_init() */
3653 if (event->attach_state & PERF_ATTACH_TASK)
3654 atomic_dec(&pmu->exclusive_cnt);
3655 else
3656 atomic_inc(&pmu->exclusive_cnt);
3657 }
3658
3659 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3660 {
3661 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3662 (e1->cpu == e2->cpu ||
3663 e1->cpu == -1 ||
3664 e2->cpu == -1))
3665 return true;
3666 return false;
3667 }
3668
3669 /* Called under the same ctx::mutex as perf_install_in_context() */
3670 static bool exclusive_event_installable(struct perf_event *event,
3671 struct perf_event_context *ctx)
3672 {
3673 struct perf_event *iter_event;
3674 struct pmu *pmu = event->pmu;
3675
3676 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3677 return true;
3678
3679 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3680 if (exclusive_event_match(iter_event, event))
3681 return false;
3682 }
3683
3684 return true;
3685 }
3686
3687 static void __free_event(struct perf_event *event)
3688 {
3689 if (!event->parent) {
3690 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3691 put_callchain_buffers();
3692 }
3693
3694 perf_event_free_bpf_prog(event);
3695
3696 if (event->destroy)
3697 event->destroy(event);
3698
3699 if (event->ctx)
3700 put_ctx(event->ctx);
3701
3702 if (event->pmu) {
3703 exclusive_event_destroy(event);
3704 module_put(event->pmu->module);
3705 }
3706
3707 call_rcu(&event->rcu_head, free_event_rcu);
3708 }
3709
3710 static void _free_event(struct perf_event *event)
3711 {
3712 irq_work_sync(&event->pending);
3713
3714 unaccount_event(event);
3715
3716 if (event->rb) {
3717 /*
3718 * Can happen when we close an event with re-directed output.
3719 *
3720 * Since we have a 0 refcount, perf_mmap_close() will skip
3721 * over us; possibly making our ring_buffer_put() the last.
3722 */
3723 mutex_lock(&event->mmap_mutex);
3724 ring_buffer_attach(event, NULL);
3725 mutex_unlock(&event->mmap_mutex);
3726 }
3727
3728 if (is_cgroup_event(event))
3729 perf_detach_cgroup(event);
3730
3731 __free_event(event);
3732 }
3733
3734 /*
3735 * Used to free events which have a known refcount of 1, such as in error paths
3736 * where the event isn't exposed yet and inherited events.
3737 */
3738 static void free_event(struct perf_event *event)
3739 {
3740 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3741 "unexpected event refcount: %ld; ptr=%p\n",
3742 atomic_long_read(&event->refcount), event)) {
3743 /* leak to avoid use-after-free */
3744 return;
3745 }
3746
3747 _free_event(event);
3748 }
3749
3750 /*
3751 * Remove user event from the owner task.
3752 */
3753 static void perf_remove_from_owner(struct perf_event *event)
3754 {
3755 struct task_struct *owner;
3756
3757 rcu_read_lock();
3758 owner = ACCESS_ONCE(event->owner);
3759 /*
3760 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3761 * !owner it means the list deletion is complete and we can indeed
3762 * free this event, otherwise we need to serialize on
3763 * owner->perf_event_mutex.
3764 */
3765 smp_read_barrier_depends();
3766 if (owner) {
3767 /*
3768 * Since delayed_put_task_struct() also drops the last
3769 * task reference we can safely take a new reference
3770 * while holding the rcu_read_lock().
3771 */
3772 get_task_struct(owner);
3773 }
3774 rcu_read_unlock();
3775
3776 if (owner) {
3777 /*
3778 * If we're here through perf_event_exit_task() we're already
3779 * holding ctx->mutex which would be an inversion wrt. the
3780 * normal lock order.
3781 *
3782 * However we can safely take this lock because its the child
3783 * ctx->mutex.
3784 */
3785 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3786
3787 /*
3788 * We have to re-check the event->owner field, if it is cleared
3789 * we raced with perf_event_exit_task(), acquiring the mutex
3790 * ensured they're done, and we can proceed with freeing the
3791 * event.
3792 */
3793 if (event->owner)
3794 list_del_init(&event->owner_entry);
3795 mutex_unlock(&owner->perf_event_mutex);
3796 put_task_struct(owner);
3797 }
3798 }
3799
3800 static void put_event(struct perf_event *event)
3801 {
3802 struct perf_event_context *ctx;
3803
3804 if (!atomic_long_dec_and_test(&event->refcount))
3805 return;
3806
3807 if (!is_kernel_event(event))
3808 perf_remove_from_owner(event);
3809
3810 /*
3811 * There are two ways this annotation is useful:
3812 *
3813 * 1) there is a lock recursion from perf_event_exit_task
3814 * see the comment there.
3815 *
3816 * 2) there is a lock-inversion with mmap_sem through
3817 * perf_read_group(), which takes faults while
3818 * holding ctx->mutex, however this is called after
3819 * the last filedesc died, so there is no possibility
3820 * to trigger the AB-BA case.
3821 */
3822 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3823 WARN_ON_ONCE(ctx->parent_ctx);
3824 perf_remove_from_context(event, true);
3825 perf_event_ctx_unlock(event, ctx);
3826
3827 _free_event(event);
3828 }
3829
3830 int perf_event_release_kernel(struct perf_event *event)
3831 {
3832 put_event(event);
3833 return 0;
3834 }
3835 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3836
3837 /*
3838 * Called when the last reference to the file is gone.
3839 */
3840 static int perf_release(struct inode *inode, struct file *file)
3841 {
3842 put_event(file->private_data);
3843 return 0;
3844 }
3845
3846 /*
3847 * Remove all orphanes events from the context.
3848 */
3849 static void orphans_remove_work(struct work_struct *work)
3850 {
3851 struct perf_event_context *ctx;
3852 struct perf_event *event, *tmp;
3853
3854 ctx = container_of(work, struct perf_event_context,
3855 orphans_remove.work);
3856
3857 mutex_lock(&ctx->mutex);
3858 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3859 struct perf_event *parent_event = event->parent;
3860
3861 if (!is_orphaned_child(event))
3862 continue;
3863
3864 perf_remove_from_context(event, true);
3865
3866 mutex_lock(&parent_event->child_mutex);
3867 list_del_init(&event->child_list);
3868 mutex_unlock(&parent_event->child_mutex);
3869
3870 free_event(event);
3871 put_event(parent_event);
3872 }
3873
3874 raw_spin_lock_irq(&ctx->lock);
3875 ctx->orphans_remove_sched = false;
3876 raw_spin_unlock_irq(&ctx->lock);
3877 mutex_unlock(&ctx->mutex);
3878
3879 put_ctx(ctx);
3880 }
3881
3882 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3883 {
3884 struct perf_event *child;
3885 u64 total = 0;
3886
3887 *enabled = 0;
3888 *running = 0;
3889
3890 mutex_lock(&event->child_mutex);
3891
3892 (void)perf_event_read(event, false);
3893 total += perf_event_count(event);
3894
3895 *enabled += event->total_time_enabled +
3896 atomic64_read(&event->child_total_time_enabled);
3897 *running += event->total_time_running +
3898 atomic64_read(&event->child_total_time_running);
3899
3900 list_for_each_entry(child, &event->child_list, child_list) {
3901 (void)perf_event_read(child, false);
3902 total += perf_event_count(child);
3903 *enabled += child->total_time_enabled;
3904 *running += child->total_time_running;
3905 }
3906 mutex_unlock(&event->child_mutex);
3907
3908 return total;
3909 }
3910 EXPORT_SYMBOL_GPL(perf_event_read_value);
3911
3912 static int __perf_read_group_add(struct perf_event *leader,
3913 u64 read_format, u64 *values)
3914 {
3915 struct perf_event *sub;
3916 int n = 1; /* skip @nr */
3917 int ret;
3918
3919 ret = perf_event_read(leader, true);
3920 if (ret)
3921 return ret;
3922
3923 /*
3924 * Since we co-schedule groups, {enabled,running} times of siblings
3925 * will be identical to those of the leader, so we only publish one
3926 * set.
3927 */
3928 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3929 values[n++] += leader->total_time_enabled +
3930 atomic64_read(&leader->child_total_time_enabled);
3931 }
3932
3933 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3934 values[n++] += leader->total_time_running +
3935 atomic64_read(&leader->child_total_time_running);
3936 }
3937
3938 /*
3939 * Write {count,id} tuples for every sibling.
3940 */
3941 values[n++] += perf_event_count(leader);
3942 if (read_format & PERF_FORMAT_ID)
3943 values[n++] = primary_event_id(leader);
3944
3945 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3946 values[n++] += perf_event_count(sub);
3947 if (read_format & PERF_FORMAT_ID)
3948 values[n++] = primary_event_id(sub);
3949 }
3950
3951 return 0;
3952 }
3953
3954 static int perf_read_group(struct perf_event *event,
3955 u64 read_format, char __user *buf)
3956 {
3957 struct perf_event *leader = event->group_leader, *child;
3958 struct perf_event_context *ctx = leader->ctx;
3959 int ret;
3960 u64 *values;
3961
3962 lockdep_assert_held(&ctx->mutex);
3963
3964 values = kzalloc(event->read_size, GFP_KERNEL);
3965 if (!values)
3966 return -ENOMEM;
3967
3968 values[0] = 1 + leader->nr_siblings;
3969
3970 /*
3971 * By locking the child_mutex of the leader we effectively
3972 * lock the child list of all siblings.. XXX explain how.
3973 */
3974 mutex_lock(&leader->child_mutex);
3975
3976 ret = __perf_read_group_add(leader, read_format, values);
3977 if (ret)
3978 goto unlock;
3979
3980 list_for_each_entry(child, &leader->child_list, child_list) {
3981 ret = __perf_read_group_add(child, read_format, values);
3982 if (ret)
3983 goto unlock;
3984 }
3985
3986 mutex_unlock(&leader->child_mutex);
3987
3988 ret = event->read_size;
3989 if (copy_to_user(buf, values, event->read_size))
3990 ret = -EFAULT;
3991 goto out;
3992
3993 unlock:
3994 mutex_unlock(&leader->child_mutex);
3995 out:
3996 kfree(values);
3997 return ret;
3998 }
3999
4000 static int perf_read_one(struct perf_event *event,
4001 u64 read_format, char __user *buf)
4002 {
4003 u64 enabled, running;
4004 u64 values[4];
4005 int n = 0;
4006
4007 values[n++] = perf_event_read_value(event, &enabled, &running);
4008 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4009 values[n++] = enabled;
4010 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4011 values[n++] = running;
4012 if (read_format & PERF_FORMAT_ID)
4013 values[n++] = primary_event_id(event);
4014
4015 if (copy_to_user(buf, values, n * sizeof(u64)))
4016 return -EFAULT;
4017
4018 return n * sizeof(u64);
4019 }
4020
4021 static bool is_event_hup(struct perf_event *event)
4022 {
4023 bool no_children;
4024
4025 if (event->state != PERF_EVENT_STATE_EXIT)
4026 return false;
4027
4028 mutex_lock(&event->child_mutex);
4029 no_children = list_empty(&event->child_list);
4030 mutex_unlock(&event->child_mutex);
4031 return no_children;
4032 }
4033
4034 /*
4035 * Read the performance event - simple non blocking version for now
4036 */
4037 static ssize_t
4038 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4039 {
4040 u64 read_format = event->attr.read_format;
4041 int ret;
4042
4043 /*
4044 * Return end-of-file for a read on a event that is in
4045 * error state (i.e. because it was pinned but it couldn't be
4046 * scheduled on to the CPU at some point).
4047 */
4048 if (event->state == PERF_EVENT_STATE_ERROR)
4049 return 0;
4050
4051 if (count < event->read_size)
4052 return -ENOSPC;
4053
4054 WARN_ON_ONCE(event->ctx->parent_ctx);
4055 if (read_format & PERF_FORMAT_GROUP)
4056 ret = perf_read_group(event, read_format, buf);
4057 else
4058 ret = perf_read_one(event, read_format, buf);
4059
4060 return ret;
4061 }
4062
4063 static ssize_t
4064 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4065 {
4066 struct perf_event *event = file->private_data;
4067 struct perf_event_context *ctx;
4068 int ret;
4069
4070 ctx = perf_event_ctx_lock(event);
4071 ret = __perf_read(event, buf, count);
4072 perf_event_ctx_unlock(event, ctx);
4073
4074 return ret;
4075 }
4076
4077 static unsigned int perf_poll(struct file *file, poll_table *wait)
4078 {
4079 struct perf_event *event = file->private_data;
4080 struct ring_buffer *rb;
4081 unsigned int events = POLLHUP;
4082
4083 poll_wait(file, &event->waitq, wait);
4084
4085 if (is_event_hup(event))
4086 return events;
4087
4088 /*
4089 * Pin the event->rb by taking event->mmap_mutex; otherwise
4090 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4091 */
4092 mutex_lock(&event->mmap_mutex);
4093 rb = event->rb;
4094 if (rb)
4095 events = atomic_xchg(&rb->poll, 0);
4096 mutex_unlock(&event->mmap_mutex);
4097 return events;
4098 }
4099
4100 static void _perf_event_reset(struct perf_event *event)
4101 {
4102 (void)perf_event_read(event, false);
4103 local64_set(&event->count, 0);
4104 perf_event_update_userpage(event);
4105 }
4106
4107 /*
4108 * Holding the top-level event's child_mutex means that any
4109 * descendant process that has inherited this event will block
4110 * in sync_child_event if it goes to exit, thus satisfying the
4111 * task existence requirements of perf_event_enable/disable.
4112 */
4113 static void perf_event_for_each_child(struct perf_event *event,
4114 void (*func)(struct perf_event *))
4115 {
4116 struct perf_event *child;
4117
4118 WARN_ON_ONCE(event->ctx->parent_ctx);
4119
4120 mutex_lock(&event->child_mutex);
4121 func(event);
4122 list_for_each_entry(child, &event->child_list, child_list)
4123 func(child);
4124 mutex_unlock(&event->child_mutex);
4125 }
4126
4127 static void perf_event_for_each(struct perf_event *event,
4128 void (*func)(struct perf_event *))
4129 {
4130 struct perf_event_context *ctx = event->ctx;
4131 struct perf_event *sibling;
4132
4133 lockdep_assert_held(&ctx->mutex);
4134
4135 event = event->group_leader;
4136
4137 perf_event_for_each_child(event, func);
4138 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4139 perf_event_for_each_child(sibling, func);
4140 }
4141
4142 struct period_event {
4143 struct perf_event *event;
4144 u64 value;
4145 };
4146
4147 static int __perf_event_period(void *info)
4148 {
4149 struct period_event *pe = info;
4150 struct perf_event *event = pe->event;
4151 struct perf_event_context *ctx = event->ctx;
4152 u64 value = pe->value;
4153 bool active;
4154
4155 raw_spin_lock(&ctx->lock);
4156 if (event->attr.freq) {
4157 event->attr.sample_freq = value;
4158 } else {
4159 event->attr.sample_period = value;
4160 event->hw.sample_period = value;
4161 }
4162
4163 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4164 if (active) {
4165 perf_pmu_disable(ctx->pmu);
4166 event->pmu->stop(event, PERF_EF_UPDATE);
4167 }
4168
4169 local64_set(&event->hw.period_left, 0);
4170
4171 if (active) {
4172 event->pmu->start(event, PERF_EF_RELOAD);
4173 perf_pmu_enable(ctx->pmu);
4174 }
4175 raw_spin_unlock(&ctx->lock);
4176
4177 return 0;
4178 }
4179
4180 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4181 {
4182 struct period_event pe = { .event = event, };
4183 struct perf_event_context *ctx = event->ctx;
4184 struct task_struct *task;
4185 u64 value;
4186
4187 if (!is_sampling_event(event))
4188 return -EINVAL;
4189
4190 if (copy_from_user(&value, arg, sizeof(value)))
4191 return -EFAULT;
4192
4193 if (!value)
4194 return -EINVAL;
4195
4196 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4197 return -EINVAL;
4198
4199 task = ctx->task;
4200 pe.value = value;
4201
4202 if (!task) {
4203 cpu_function_call(event->cpu, __perf_event_period, &pe);
4204 return 0;
4205 }
4206
4207 retry:
4208 if (!task_function_call(task, __perf_event_period, &pe))
4209 return 0;
4210
4211 raw_spin_lock_irq(&ctx->lock);
4212 if (ctx->is_active) {
4213 raw_spin_unlock_irq(&ctx->lock);
4214 task = ctx->task;
4215 goto retry;
4216 }
4217
4218 __perf_event_period(&pe);
4219 raw_spin_unlock_irq(&ctx->lock);
4220
4221 return 0;
4222 }
4223
4224 static const struct file_operations perf_fops;
4225
4226 static inline int perf_fget_light(int fd, struct fd *p)
4227 {
4228 struct fd f = fdget(fd);
4229 if (!f.file)
4230 return -EBADF;
4231
4232 if (f.file->f_op != &perf_fops) {
4233 fdput(f);
4234 return -EBADF;
4235 }
4236 *p = f;
4237 return 0;
4238 }
4239
4240 static int perf_event_set_output(struct perf_event *event,
4241 struct perf_event *output_event);
4242 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4243 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4244
4245 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4246 {
4247 void (*func)(struct perf_event *);
4248 u32 flags = arg;
4249
4250 switch (cmd) {
4251 case PERF_EVENT_IOC_ENABLE:
4252 func = _perf_event_enable;
4253 break;
4254 case PERF_EVENT_IOC_DISABLE:
4255 func = _perf_event_disable;
4256 break;
4257 case PERF_EVENT_IOC_RESET:
4258 func = _perf_event_reset;
4259 break;
4260
4261 case PERF_EVENT_IOC_REFRESH:
4262 return _perf_event_refresh(event, arg);
4263
4264 case PERF_EVENT_IOC_PERIOD:
4265 return perf_event_period(event, (u64 __user *)arg);
4266
4267 case PERF_EVENT_IOC_ID:
4268 {
4269 u64 id = primary_event_id(event);
4270
4271 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4272 return -EFAULT;
4273 return 0;
4274 }
4275
4276 case PERF_EVENT_IOC_SET_OUTPUT:
4277 {
4278 int ret;
4279 if (arg != -1) {
4280 struct perf_event *output_event;
4281 struct fd output;
4282 ret = perf_fget_light(arg, &output);
4283 if (ret)
4284 return ret;
4285 output_event = output.file->private_data;
4286 ret = perf_event_set_output(event, output_event);
4287 fdput(output);
4288 } else {
4289 ret = perf_event_set_output(event, NULL);
4290 }
4291 return ret;
4292 }
4293
4294 case PERF_EVENT_IOC_SET_FILTER:
4295 return perf_event_set_filter(event, (void __user *)arg);
4296
4297 case PERF_EVENT_IOC_SET_BPF:
4298 return perf_event_set_bpf_prog(event, arg);
4299
4300 default:
4301 return -ENOTTY;
4302 }
4303
4304 if (flags & PERF_IOC_FLAG_GROUP)
4305 perf_event_for_each(event, func);
4306 else
4307 perf_event_for_each_child(event, func);
4308
4309 return 0;
4310 }
4311
4312 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4313 {
4314 struct perf_event *event = file->private_data;
4315 struct perf_event_context *ctx;
4316 long ret;
4317
4318 ctx = perf_event_ctx_lock(event);
4319 ret = _perf_ioctl(event, cmd, arg);
4320 perf_event_ctx_unlock(event, ctx);
4321
4322 return ret;
4323 }
4324
4325 #ifdef CONFIG_COMPAT
4326 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4327 unsigned long arg)
4328 {
4329 switch (_IOC_NR(cmd)) {
4330 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4331 case _IOC_NR(PERF_EVENT_IOC_ID):
4332 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4333 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4334 cmd &= ~IOCSIZE_MASK;
4335 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4336 }
4337 break;
4338 }
4339 return perf_ioctl(file, cmd, arg);
4340 }
4341 #else
4342 # define perf_compat_ioctl NULL
4343 #endif
4344
4345 int perf_event_task_enable(void)
4346 {
4347 struct perf_event_context *ctx;
4348 struct perf_event *event;
4349
4350 mutex_lock(&current->perf_event_mutex);
4351 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4352 ctx = perf_event_ctx_lock(event);
4353 perf_event_for_each_child(event, _perf_event_enable);
4354 perf_event_ctx_unlock(event, ctx);
4355 }
4356 mutex_unlock(&current->perf_event_mutex);
4357
4358 return 0;
4359 }
4360
4361 int perf_event_task_disable(void)
4362 {
4363 struct perf_event_context *ctx;
4364 struct perf_event *event;
4365
4366 mutex_lock(&current->perf_event_mutex);
4367 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4368 ctx = perf_event_ctx_lock(event);
4369 perf_event_for_each_child(event, _perf_event_disable);
4370 perf_event_ctx_unlock(event, ctx);
4371 }
4372 mutex_unlock(&current->perf_event_mutex);
4373
4374 return 0;
4375 }
4376
4377 static int perf_event_index(struct perf_event *event)
4378 {
4379 if (event->hw.state & PERF_HES_STOPPED)
4380 return 0;
4381
4382 if (event->state != PERF_EVENT_STATE_ACTIVE)
4383 return 0;
4384
4385 return event->pmu->event_idx(event);
4386 }
4387
4388 static void calc_timer_values(struct perf_event *event,
4389 u64 *now,
4390 u64 *enabled,
4391 u64 *running)
4392 {
4393 u64 ctx_time;
4394
4395 *now = perf_clock();
4396 ctx_time = event->shadow_ctx_time + *now;
4397 *enabled = ctx_time - event->tstamp_enabled;
4398 *running = ctx_time - event->tstamp_running;
4399 }
4400
4401 static void perf_event_init_userpage(struct perf_event *event)
4402 {
4403 struct perf_event_mmap_page *userpg;
4404 struct ring_buffer *rb;
4405
4406 rcu_read_lock();
4407 rb = rcu_dereference(event->rb);
4408 if (!rb)
4409 goto unlock;
4410
4411 userpg = rb->user_page;
4412
4413 /* Allow new userspace to detect that bit 0 is deprecated */
4414 userpg->cap_bit0_is_deprecated = 1;
4415 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4416 userpg->data_offset = PAGE_SIZE;
4417 userpg->data_size = perf_data_size(rb);
4418
4419 unlock:
4420 rcu_read_unlock();
4421 }
4422
4423 void __weak arch_perf_update_userpage(
4424 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4425 {
4426 }
4427
4428 /*
4429 * Callers need to ensure there can be no nesting of this function, otherwise
4430 * the seqlock logic goes bad. We can not serialize this because the arch
4431 * code calls this from NMI context.
4432 */
4433 void perf_event_update_userpage(struct perf_event *event)
4434 {
4435 struct perf_event_mmap_page *userpg;
4436 struct ring_buffer *rb;
4437 u64 enabled, running, now;
4438
4439 rcu_read_lock();
4440 rb = rcu_dereference(event->rb);
4441 if (!rb)
4442 goto unlock;
4443
4444 /*
4445 * compute total_time_enabled, total_time_running
4446 * based on snapshot values taken when the event
4447 * was last scheduled in.
4448 *
4449 * we cannot simply called update_context_time()
4450 * because of locking issue as we can be called in
4451 * NMI context
4452 */
4453 calc_timer_values(event, &now, &enabled, &running);
4454
4455 userpg = rb->user_page;
4456 /*
4457 * Disable preemption so as to not let the corresponding user-space
4458 * spin too long if we get preempted.
4459 */
4460 preempt_disable();
4461 ++userpg->lock;
4462 barrier();
4463 userpg->index = perf_event_index(event);
4464 userpg->offset = perf_event_count(event);
4465 if (userpg->index)
4466 userpg->offset -= local64_read(&event->hw.prev_count);
4467
4468 userpg->time_enabled = enabled +
4469 atomic64_read(&event->child_total_time_enabled);
4470
4471 userpg->time_running = running +
4472 atomic64_read(&event->child_total_time_running);
4473
4474 arch_perf_update_userpage(event, userpg, now);
4475
4476 barrier();
4477 ++userpg->lock;
4478 preempt_enable();
4479 unlock:
4480 rcu_read_unlock();
4481 }
4482
4483 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4484 {
4485 struct perf_event *event = vma->vm_file->private_data;
4486 struct ring_buffer *rb;
4487 int ret = VM_FAULT_SIGBUS;
4488
4489 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4490 if (vmf->pgoff == 0)
4491 ret = 0;
4492 return ret;
4493 }
4494
4495 rcu_read_lock();
4496 rb = rcu_dereference(event->rb);
4497 if (!rb)
4498 goto unlock;
4499
4500 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4501 goto unlock;
4502
4503 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4504 if (!vmf->page)
4505 goto unlock;
4506
4507 get_page(vmf->page);
4508 vmf->page->mapping = vma->vm_file->f_mapping;
4509 vmf->page->index = vmf->pgoff;
4510
4511 ret = 0;
4512 unlock:
4513 rcu_read_unlock();
4514
4515 return ret;
4516 }
4517
4518 static void ring_buffer_attach(struct perf_event *event,
4519 struct ring_buffer *rb)
4520 {
4521 struct ring_buffer *old_rb = NULL;
4522 unsigned long flags;
4523
4524 if (event->rb) {
4525 /*
4526 * Should be impossible, we set this when removing
4527 * event->rb_entry and wait/clear when adding event->rb_entry.
4528 */
4529 WARN_ON_ONCE(event->rcu_pending);
4530
4531 old_rb = event->rb;
4532 spin_lock_irqsave(&old_rb->event_lock, flags);
4533 list_del_rcu(&event->rb_entry);
4534 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4535
4536 event->rcu_batches = get_state_synchronize_rcu();
4537 event->rcu_pending = 1;
4538 }
4539
4540 if (rb) {
4541 if (event->rcu_pending) {
4542 cond_synchronize_rcu(event->rcu_batches);
4543 event->rcu_pending = 0;
4544 }
4545
4546 spin_lock_irqsave(&rb->event_lock, flags);
4547 list_add_rcu(&event->rb_entry, &rb->event_list);
4548 spin_unlock_irqrestore(&rb->event_lock, flags);
4549 }
4550
4551 rcu_assign_pointer(event->rb, rb);
4552
4553 if (old_rb) {
4554 ring_buffer_put(old_rb);
4555 /*
4556 * Since we detached before setting the new rb, so that we
4557 * could attach the new rb, we could have missed a wakeup.
4558 * Provide it now.
4559 */
4560 wake_up_all(&event->waitq);
4561 }
4562 }
4563
4564 static void ring_buffer_wakeup(struct perf_event *event)
4565 {
4566 struct ring_buffer *rb;
4567
4568 rcu_read_lock();
4569 rb = rcu_dereference(event->rb);
4570 if (rb) {
4571 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4572 wake_up_all(&event->waitq);
4573 }
4574 rcu_read_unlock();
4575 }
4576
4577 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4578 {
4579 struct ring_buffer *rb;
4580
4581 rcu_read_lock();
4582 rb = rcu_dereference(event->rb);
4583 if (rb) {
4584 if (!atomic_inc_not_zero(&rb->refcount))
4585 rb = NULL;
4586 }
4587 rcu_read_unlock();
4588
4589 return rb;
4590 }
4591
4592 void ring_buffer_put(struct ring_buffer *rb)
4593 {
4594 if (!atomic_dec_and_test(&rb->refcount))
4595 return;
4596
4597 WARN_ON_ONCE(!list_empty(&rb->event_list));
4598
4599 call_rcu(&rb->rcu_head, rb_free_rcu);
4600 }
4601
4602 static void perf_mmap_open(struct vm_area_struct *vma)
4603 {
4604 struct perf_event *event = vma->vm_file->private_data;
4605
4606 atomic_inc(&event->mmap_count);
4607 atomic_inc(&event->rb->mmap_count);
4608
4609 if (vma->vm_pgoff)
4610 atomic_inc(&event->rb->aux_mmap_count);
4611
4612 if (event->pmu->event_mapped)
4613 event->pmu->event_mapped(event);
4614 }
4615
4616 /*
4617 * A buffer can be mmap()ed multiple times; either directly through the same
4618 * event, or through other events by use of perf_event_set_output().
4619 *
4620 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4621 * the buffer here, where we still have a VM context. This means we need
4622 * to detach all events redirecting to us.
4623 */
4624 static void perf_mmap_close(struct vm_area_struct *vma)
4625 {
4626 struct perf_event *event = vma->vm_file->private_data;
4627
4628 struct ring_buffer *rb = ring_buffer_get(event);
4629 struct user_struct *mmap_user = rb->mmap_user;
4630 int mmap_locked = rb->mmap_locked;
4631 unsigned long size = perf_data_size(rb);
4632
4633 if (event->pmu->event_unmapped)
4634 event->pmu->event_unmapped(event);
4635
4636 /*
4637 * rb->aux_mmap_count will always drop before rb->mmap_count and
4638 * event->mmap_count, so it is ok to use event->mmap_mutex to
4639 * serialize with perf_mmap here.
4640 */
4641 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4642 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4643 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4644 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4645
4646 rb_free_aux(rb);
4647 mutex_unlock(&event->mmap_mutex);
4648 }
4649
4650 atomic_dec(&rb->mmap_count);
4651
4652 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4653 goto out_put;
4654
4655 ring_buffer_attach(event, NULL);
4656 mutex_unlock(&event->mmap_mutex);
4657
4658 /* If there's still other mmap()s of this buffer, we're done. */
4659 if (atomic_read(&rb->mmap_count))
4660 goto out_put;
4661
4662 /*
4663 * No other mmap()s, detach from all other events that might redirect
4664 * into the now unreachable buffer. Somewhat complicated by the
4665 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4666 */
4667 again:
4668 rcu_read_lock();
4669 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4670 if (!atomic_long_inc_not_zero(&event->refcount)) {
4671 /*
4672 * This event is en-route to free_event() which will
4673 * detach it and remove it from the list.
4674 */
4675 continue;
4676 }
4677 rcu_read_unlock();
4678
4679 mutex_lock(&event->mmap_mutex);
4680 /*
4681 * Check we didn't race with perf_event_set_output() which can
4682 * swizzle the rb from under us while we were waiting to
4683 * acquire mmap_mutex.
4684 *
4685 * If we find a different rb; ignore this event, a next
4686 * iteration will no longer find it on the list. We have to
4687 * still restart the iteration to make sure we're not now
4688 * iterating the wrong list.
4689 */
4690 if (event->rb == rb)
4691 ring_buffer_attach(event, NULL);
4692
4693 mutex_unlock(&event->mmap_mutex);
4694 put_event(event);
4695
4696 /*
4697 * Restart the iteration; either we're on the wrong list or
4698 * destroyed its integrity by doing a deletion.
4699 */
4700 goto again;
4701 }
4702 rcu_read_unlock();
4703
4704 /*
4705 * It could be there's still a few 0-ref events on the list; they'll
4706 * get cleaned up by free_event() -- they'll also still have their
4707 * ref on the rb and will free it whenever they are done with it.
4708 *
4709 * Aside from that, this buffer is 'fully' detached and unmapped,
4710 * undo the VM accounting.
4711 */
4712
4713 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4714 vma->vm_mm->pinned_vm -= mmap_locked;
4715 free_uid(mmap_user);
4716
4717 out_put:
4718 ring_buffer_put(rb); /* could be last */
4719 }
4720
4721 static const struct vm_operations_struct perf_mmap_vmops = {
4722 .open = perf_mmap_open,
4723 .close = perf_mmap_close, /* non mergable */
4724 .fault = perf_mmap_fault,
4725 .page_mkwrite = perf_mmap_fault,
4726 };
4727
4728 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4729 {
4730 struct perf_event *event = file->private_data;
4731 unsigned long user_locked, user_lock_limit;
4732 struct user_struct *user = current_user();
4733 unsigned long locked, lock_limit;
4734 struct ring_buffer *rb = NULL;
4735 unsigned long vma_size;
4736 unsigned long nr_pages;
4737 long user_extra = 0, extra = 0;
4738 int ret = 0, flags = 0;
4739
4740 /*
4741 * Don't allow mmap() of inherited per-task counters. This would
4742 * create a performance issue due to all children writing to the
4743 * same rb.
4744 */
4745 if (event->cpu == -1 && event->attr.inherit)
4746 return -EINVAL;
4747
4748 if (!(vma->vm_flags & VM_SHARED))
4749 return -EINVAL;
4750
4751 vma_size = vma->vm_end - vma->vm_start;
4752
4753 if (vma->vm_pgoff == 0) {
4754 nr_pages = (vma_size / PAGE_SIZE) - 1;
4755 } else {
4756 /*
4757 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4758 * mapped, all subsequent mappings should have the same size
4759 * and offset. Must be above the normal perf buffer.
4760 */
4761 u64 aux_offset, aux_size;
4762
4763 if (!event->rb)
4764 return -EINVAL;
4765
4766 nr_pages = vma_size / PAGE_SIZE;
4767
4768 mutex_lock(&event->mmap_mutex);
4769 ret = -EINVAL;
4770
4771 rb = event->rb;
4772 if (!rb)
4773 goto aux_unlock;
4774
4775 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4776 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4777
4778 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4779 goto aux_unlock;
4780
4781 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4782 goto aux_unlock;
4783
4784 /* already mapped with a different offset */
4785 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4786 goto aux_unlock;
4787
4788 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4789 goto aux_unlock;
4790
4791 /* already mapped with a different size */
4792 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4793 goto aux_unlock;
4794
4795 if (!is_power_of_2(nr_pages))
4796 goto aux_unlock;
4797
4798 if (!atomic_inc_not_zero(&rb->mmap_count))
4799 goto aux_unlock;
4800
4801 if (rb_has_aux(rb)) {
4802 atomic_inc(&rb->aux_mmap_count);
4803 ret = 0;
4804 goto unlock;
4805 }
4806
4807 atomic_set(&rb->aux_mmap_count, 1);
4808 user_extra = nr_pages;
4809
4810 goto accounting;
4811 }
4812
4813 /*
4814 * If we have rb pages ensure they're a power-of-two number, so we
4815 * can do bitmasks instead of modulo.
4816 */
4817 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4818 return -EINVAL;
4819
4820 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4821 return -EINVAL;
4822
4823 WARN_ON_ONCE(event->ctx->parent_ctx);
4824 again:
4825 mutex_lock(&event->mmap_mutex);
4826 if (event->rb) {
4827 if (event->rb->nr_pages != nr_pages) {
4828 ret = -EINVAL;
4829 goto unlock;
4830 }
4831
4832 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4833 /*
4834 * Raced against perf_mmap_close() through
4835 * perf_event_set_output(). Try again, hope for better
4836 * luck.
4837 */
4838 mutex_unlock(&event->mmap_mutex);
4839 goto again;
4840 }
4841
4842 goto unlock;
4843 }
4844
4845 user_extra = nr_pages + 1;
4846
4847 accounting:
4848 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4849
4850 /*
4851 * Increase the limit linearly with more CPUs:
4852 */
4853 user_lock_limit *= num_online_cpus();
4854
4855 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4856
4857 if (user_locked > user_lock_limit)
4858 extra = user_locked - user_lock_limit;
4859
4860 lock_limit = rlimit(RLIMIT_MEMLOCK);
4861 lock_limit >>= PAGE_SHIFT;
4862 locked = vma->vm_mm->pinned_vm + extra;
4863
4864 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4865 !capable(CAP_IPC_LOCK)) {
4866 ret = -EPERM;
4867 goto unlock;
4868 }
4869
4870 WARN_ON(!rb && event->rb);
4871
4872 if (vma->vm_flags & VM_WRITE)
4873 flags |= RING_BUFFER_WRITABLE;
4874
4875 if (!rb) {
4876 rb = rb_alloc(nr_pages,
4877 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4878 event->cpu, flags);
4879
4880 if (!rb) {
4881 ret = -ENOMEM;
4882 goto unlock;
4883 }
4884
4885 atomic_set(&rb->mmap_count, 1);
4886 rb->mmap_user = get_current_user();
4887 rb->mmap_locked = extra;
4888
4889 ring_buffer_attach(event, rb);
4890
4891 perf_event_init_userpage(event);
4892 perf_event_update_userpage(event);
4893 } else {
4894 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4895 event->attr.aux_watermark, flags);
4896 if (!ret)
4897 rb->aux_mmap_locked = extra;
4898 }
4899
4900 unlock:
4901 if (!ret) {
4902 atomic_long_add(user_extra, &user->locked_vm);
4903 vma->vm_mm->pinned_vm += extra;
4904
4905 atomic_inc(&event->mmap_count);
4906 } else if (rb) {
4907 atomic_dec(&rb->mmap_count);
4908 }
4909 aux_unlock:
4910 mutex_unlock(&event->mmap_mutex);
4911
4912 /*
4913 * Since pinned accounting is per vm we cannot allow fork() to copy our
4914 * vma.
4915 */
4916 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4917 vma->vm_ops = &perf_mmap_vmops;
4918
4919 if (event->pmu->event_mapped)
4920 event->pmu->event_mapped(event);
4921
4922 return ret;
4923 }
4924
4925 static int perf_fasync(int fd, struct file *filp, int on)
4926 {
4927 struct inode *inode = file_inode(filp);
4928 struct perf_event *event = filp->private_data;
4929 int retval;
4930
4931 mutex_lock(&inode->i_mutex);
4932 retval = fasync_helper(fd, filp, on, &event->fasync);
4933 mutex_unlock(&inode->i_mutex);
4934
4935 if (retval < 0)
4936 return retval;
4937
4938 return 0;
4939 }
4940
4941 static const struct file_operations perf_fops = {
4942 .llseek = no_llseek,
4943 .release = perf_release,
4944 .read = perf_read,
4945 .poll = perf_poll,
4946 .unlocked_ioctl = perf_ioctl,
4947 .compat_ioctl = perf_compat_ioctl,
4948 .mmap = perf_mmap,
4949 .fasync = perf_fasync,
4950 };
4951
4952 /*
4953 * Perf event wakeup
4954 *
4955 * If there's data, ensure we set the poll() state and publish everything
4956 * to user-space before waking everybody up.
4957 */
4958
4959 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4960 {
4961 /* only the parent has fasync state */
4962 if (event->parent)
4963 event = event->parent;
4964 return &event->fasync;
4965 }
4966
4967 void perf_event_wakeup(struct perf_event *event)
4968 {
4969 ring_buffer_wakeup(event);
4970
4971 if (event->pending_kill) {
4972 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4973 event->pending_kill = 0;
4974 }
4975 }
4976
4977 static void perf_pending_event(struct irq_work *entry)
4978 {
4979 struct perf_event *event = container_of(entry,
4980 struct perf_event, pending);
4981 int rctx;
4982
4983 rctx = perf_swevent_get_recursion_context();
4984 /*
4985 * If we 'fail' here, that's OK, it means recursion is already disabled
4986 * and we won't recurse 'further'.
4987 */
4988
4989 if (event->pending_disable) {
4990 event->pending_disable = 0;
4991 __perf_event_disable(event);
4992 }
4993
4994 if (event->pending_wakeup) {
4995 event->pending_wakeup = 0;
4996 perf_event_wakeup(event);
4997 }
4998
4999 if (rctx >= 0)
5000 perf_swevent_put_recursion_context(rctx);
5001 }
5002
5003 /*
5004 * We assume there is only KVM supporting the callbacks.
5005 * Later on, we might change it to a list if there is
5006 * another virtualization implementation supporting the callbacks.
5007 */
5008 struct perf_guest_info_callbacks *perf_guest_cbs;
5009
5010 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5011 {
5012 perf_guest_cbs = cbs;
5013 return 0;
5014 }
5015 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5016
5017 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5018 {
5019 perf_guest_cbs = NULL;
5020 return 0;
5021 }
5022 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5023
5024 static void
5025 perf_output_sample_regs(struct perf_output_handle *handle,
5026 struct pt_regs *regs, u64 mask)
5027 {
5028 int bit;
5029
5030 for_each_set_bit(bit, (const unsigned long *) &mask,
5031 sizeof(mask) * BITS_PER_BYTE) {
5032 u64 val;
5033
5034 val = perf_reg_value(regs, bit);
5035 perf_output_put(handle, val);
5036 }
5037 }
5038
5039 static void perf_sample_regs_user(struct perf_regs *regs_user,
5040 struct pt_regs *regs,
5041 struct pt_regs *regs_user_copy)
5042 {
5043 if (user_mode(regs)) {
5044 regs_user->abi = perf_reg_abi(current);
5045 regs_user->regs = regs;
5046 } else if (current->mm) {
5047 perf_get_regs_user(regs_user, regs, regs_user_copy);
5048 } else {
5049 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5050 regs_user->regs = NULL;
5051 }
5052 }
5053
5054 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5055 struct pt_regs *regs)
5056 {
5057 regs_intr->regs = regs;
5058 regs_intr->abi = perf_reg_abi(current);
5059 }
5060
5061
5062 /*
5063 * Get remaining task size from user stack pointer.
5064 *
5065 * It'd be better to take stack vma map and limit this more
5066 * precisly, but there's no way to get it safely under interrupt,
5067 * so using TASK_SIZE as limit.
5068 */
5069 static u64 perf_ustack_task_size(struct pt_regs *regs)
5070 {
5071 unsigned long addr = perf_user_stack_pointer(regs);
5072
5073 if (!addr || addr >= TASK_SIZE)
5074 return 0;
5075
5076 return TASK_SIZE - addr;
5077 }
5078
5079 static u16
5080 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5081 struct pt_regs *regs)
5082 {
5083 u64 task_size;
5084
5085 /* No regs, no stack pointer, no dump. */
5086 if (!regs)
5087 return 0;
5088
5089 /*
5090 * Check if we fit in with the requested stack size into the:
5091 * - TASK_SIZE
5092 * If we don't, we limit the size to the TASK_SIZE.
5093 *
5094 * - remaining sample size
5095 * If we don't, we customize the stack size to
5096 * fit in to the remaining sample size.
5097 */
5098
5099 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5100 stack_size = min(stack_size, (u16) task_size);
5101
5102 /* Current header size plus static size and dynamic size. */
5103 header_size += 2 * sizeof(u64);
5104
5105 /* Do we fit in with the current stack dump size? */
5106 if ((u16) (header_size + stack_size) < header_size) {
5107 /*
5108 * If we overflow the maximum size for the sample,
5109 * we customize the stack dump size to fit in.
5110 */
5111 stack_size = USHRT_MAX - header_size - sizeof(u64);
5112 stack_size = round_up(stack_size, sizeof(u64));
5113 }
5114
5115 return stack_size;
5116 }
5117
5118 static void
5119 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5120 struct pt_regs *regs)
5121 {
5122 /* Case of a kernel thread, nothing to dump */
5123 if (!regs) {
5124 u64 size = 0;
5125 perf_output_put(handle, size);
5126 } else {
5127 unsigned long sp;
5128 unsigned int rem;
5129 u64 dyn_size;
5130
5131 /*
5132 * We dump:
5133 * static size
5134 * - the size requested by user or the best one we can fit
5135 * in to the sample max size
5136 * data
5137 * - user stack dump data
5138 * dynamic size
5139 * - the actual dumped size
5140 */
5141
5142 /* Static size. */
5143 perf_output_put(handle, dump_size);
5144
5145 /* Data. */
5146 sp = perf_user_stack_pointer(regs);
5147 rem = __output_copy_user(handle, (void *) sp, dump_size);
5148 dyn_size = dump_size - rem;
5149
5150 perf_output_skip(handle, rem);
5151
5152 /* Dynamic size. */
5153 perf_output_put(handle, dyn_size);
5154 }
5155 }
5156
5157 static void __perf_event_header__init_id(struct perf_event_header *header,
5158 struct perf_sample_data *data,
5159 struct perf_event *event)
5160 {
5161 u64 sample_type = event->attr.sample_type;
5162
5163 data->type = sample_type;
5164 header->size += event->id_header_size;
5165
5166 if (sample_type & PERF_SAMPLE_TID) {
5167 /* namespace issues */
5168 data->tid_entry.pid = perf_event_pid(event, current);
5169 data->tid_entry.tid = perf_event_tid(event, current);
5170 }
5171
5172 if (sample_type & PERF_SAMPLE_TIME)
5173 data->time = perf_event_clock(event);
5174
5175 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5176 data->id = primary_event_id(event);
5177
5178 if (sample_type & PERF_SAMPLE_STREAM_ID)
5179 data->stream_id = event->id;
5180
5181 if (sample_type & PERF_SAMPLE_CPU) {
5182 data->cpu_entry.cpu = raw_smp_processor_id();
5183 data->cpu_entry.reserved = 0;
5184 }
5185 }
5186
5187 void perf_event_header__init_id(struct perf_event_header *header,
5188 struct perf_sample_data *data,
5189 struct perf_event *event)
5190 {
5191 if (event->attr.sample_id_all)
5192 __perf_event_header__init_id(header, data, event);
5193 }
5194
5195 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5196 struct perf_sample_data *data)
5197 {
5198 u64 sample_type = data->type;
5199
5200 if (sample_type & PERF_SAMPLE_TID)
5201 perf_output_put(handle, data->tid_entry);
5202
5203 if (sample_type & PERF_SAMPLE_TIME)
5204 perf_output_put(handle, data->time);
5205
5206 if (sample_type & PERF_SAMPLE_ID)
5207 perf_output_put(handle, data->id);
5208
5209 if (sample_type & PERF_SAMPLE_STREAM_ID)
5210 perf_output_put(handle, data->stream_id);
5211
5212 if (sample_type & PERF_SAMPLE_CPU)
5213 perf_output_put(handle, data->cpu_entry);
5214
5215 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5216 perf_output_put(handle, data->id);
5217 }
5218
5219 void perf_event__output_id_sample(struct perf_event *event,
5220 struct perf_output_handle *handle,
5221 struct perf_sample_data *sample)
5222 {
5223 if (event->attr.sample_id_all)
5224 __perf_event__output_id_sample(handle, sample);
5225 }
5226
5227 static void perf_output_read_one(struct perf_output_handle *handle,
5228 struct perf_event *event,
5229 u64 enabled, u64 running)
5230 {
5231 u64 read_format = event->attr.read_format;
5232 u64 values[4];
5233 int n = 0;
5234
5235 values[n++] = perf_event_count(event);
5236 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5237 values[n++] = enabled +
5238 atomic64_read(&event->child_total_time_enabled);
5239 }
5240 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5241 values[n++] = running +
5242 atomic64_read(&event->child_total_time_running);
5243 }
5244 if (read_format & PERF_FORMAT_ID)
5245 values[n++] = primary_event_id(event);
5246
5247 __output_copy(handle, values, n * sizeof(u64));
5248 }
5249
5250 /*
5251 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5252 */
5253 static void perf_output_read_group(struct perf_output_handle *handle,
5254 struct perf_event *event,
5255 u64 enabled, u64 running)
5256 {
5257 struct perf_event *leader = event->group_leader, *sub;
5258 u64 read_format = event->attr.read_format;
5259 u64 values[5];
5260 int n = 0;
5261
5262 values[n++] = 1 + leader->nr_siblings;
5263
5264 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5265 values[n++] = enabled;
5266
5267 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5268 values[n++] = running;
5269
5270 if (leader != event)
5271 leader->pmu->read(leader);
5272
5273 values[n++] = perf_event_count(leader);
5274 if (read_format & PERF_FORMAT_ID)
5275 values[n++] = primary_event_id(leader);
5276
5277 __output_copy(handle, values, n * sizeof(u64));
5278
5279 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5280 n = 0;
5281
5282 if ((sub != event) &&
5283 (sub->state == PERF_EVENT_STATE_ACTIVE))
5284 sub->pmu->read(sub);
5285
5286 values[n++] = perf_event_count(sub);
5287 if (read_format & PERF_FORMAT_ID)
5288 values[n++] = primary_event_id(sub);
5289
5290 __output_copy(handle, values, n * sizeof(u64));
5291 }
5292 }
5293
5294 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5295 PERF_FORMAT_TOTAL_TIME_RUNNING)
5296
5297 static void perf_output_read(struct perf_output_handle *handle,
5298 struct perf_event *event)
5299 {
5300 u64 enabled = 0, running = 0, now;
5301 u64 read_format = event->attr.read_format;
5302
5303 /*
5304 * compute total_time_enabled, total_time_running
5305 * based on snapshot values taken when the event
5306 * was last scheduled in.
5307 *
5308 * we cannot simply called update_context_time()
5309 * because of locking issue as we are called in
5310 * NMI context
5311 */
5312 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5313 calc_timer_values(event, &now, &enabled, &running);
5314
5315 if (event->attr.read_format & PERF_FORMAT_GROUP)
5316 perf_output_read_group(handle, event, enabled, running);
5317 else
5318 perf_output_read_one(handle, event, enabled, running);
5319 }
5320
5321 void perf_output_sample(struct perf_output_handle *handle,
5322 struct perf_event_header *header,
5323 struct perf_sample_data *data,
5324 struct perf_event *event)
5325 {
5326 u64 sample_type = data->type;
5327
5328 perf_output_put(handle, *header);
5329
5330 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5331 perf_output_put(handle, data->id);
5332
5333 if (sample_type & PERF_SAMPLE_IP)
5334 perf_output_put(handle, data->ip);
5335
5336 if (sample_type & PERF_SAMPLE_TID)
5337 perf_output_put(handle, data->tid_entry);
5338
5339 if (sample_type & PERF_SAMPLE_TIME)
5340 perf_output_put(handle, data->time);
5341
5342 if (sample_type & PERF_SAMPLE_ADDR)
5343 perf_output_put(handle, data->addr);
5344
5345 if (sample_type & PERF_SAMPLE_ID)
5346 perf_output_put(handle, data->id);
5347
5348 if (sample_type & PERF_SAMPLE_STREAM_ID)
5349 perf_output_put(handle, data->stream_id);
5350
5351 if (sample_type & PERF_SAMPLE_CPU)
5352 perf_output_put(handle, data->cpu_entry);
5353
5354 if (sample_type & PERF_SAMPLE_PERIOD)
5355 perf_output_put(handle, data->period);
5356
5357 if (sample_type & PERF_SAMPLE_READ)
5358 perf_output_read(handle, event);
5359
5360 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5361 if (data->callchain) {
5362 int size = 1;
5363
5364 if (data->callchain)
5365 size += data->callchain->nr;
5366
5367 size *= sizeof(u64);
5368
5369 __output_copy(handle, data->callchain, size);
5370 } else {
5371 u64 nr = 0;
5372 perf_output_put(handle, nr);
5373 }
5374 }
5375
5376 if (sample_type & PERF_SAMPLE_RAW) {
5377 if (data->raw) {
5378 u32 raw_size = data->raw->size;
5379 u32 real_size = round_up(raw_size + sizeof(u32),
5380 sizeof(u64)) - sizeof(u32);
5381 u64 zero = 0;
5382
5383 perf_output_put(handle, real_size);
5384 __output_copy(handle, data->raw->data, raw_size);
5385 if (real_size - raw_size)
5386 __output_copy(handle, &zero, real_size - raw_size);
5387 } else {
5388 struct {
5389 u32 size;
5390 u32 data;
5391 } raw = {
5392 .size = sizeof(u32),
5393 .data = 0,
5394 };
5395 perf_output_put(handle, raw);
5396 }
5397 }
5398
5399 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5400 if (data->br_stack) {
5401 size_t size;
5402
5403 size = data->br_stack->nr
5404 * sizeof(struct perf_branch_entry);
5405
5406 perf_output_put(handle, data->br_stack->nr);
5407 perf_output_copy(handle, data->br_stack->entries, size);
5408 } else {
5409 /*
5410 * we always store at least the value of nr
5411 */
5412 u64 nr = 0;
5413 perf_output_put(handle, nr);
5414 }
5415 }
5416
5417 if (sample_type & PERF_SAMPLE_REGS_USER) {
5418 u64 abi = data->regs_user.abi;
5419
5420 /*
5421 * If there are no regs to dump, notice it through
5422 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5423 */
5424 perf_output_put(handle, abi);
5425
5426 if (abi) {
5427 u64 mask = event->attr.sample_regs_user;
5428 perf_output_sample_regs(handle,
5429 data->regs_user.regs,
5430 mask);
5431 }
5432 }
5433
5434 if (sample_type & PERF_SAMPLE_STACK_USER) {
5435 perf_output_sample_ustack(handle,
5436 data->stack_user_size,
5437 data->regs_user.regs);
5438 }
5439
5440 if (sample_type & PERF_SAMPLE_WEIGHT)
5441 perf_output_put(handle, data->weight);
5442
5443 if (sample_type & PERF_SAMPLE_DATA_SRC)
5444 perf_output_put(handle, data->data_src.val);
5445
5446 if (sample_type & PERF_SAMPLE_TRANSACTION)
5447 perf_output_put(handle, data->txn);
5448
5449 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5450 u64 abi = data->regs_intr.abi;
5451 /*
5452 * If there are no regs to dump, notice it through
5453 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5454 */
5455 perf_output_put(handle, abi);
5456
5457 if (abi) {
5458 u64 mask = event->attr.sample_regs_intr;
5459
5460 perf_output_sample_regs(handle,
5461 data->regs_intr.regs,
5462 mask);
5463 }
5464 }
5465
5466 if (!event->attr.watermark) {
5467 int wakeup_events = event->attr.wakeup_events;
5468
5469 if (wakeup_events) {
5470 struct ring_buffer *rb = handle->rb;
5471 int events = local_inc_return(&rb->events);
5472
5473 if (events >= wakeup_events) {
5474 local_sub(wakeup_events, &rb->events);
5475 local_inc(&rb->wakeup);
5476 }
5477 }
5478 }
5479 }
5480
5481 void perf_prepare_sample(struct perf_event_header *header,
5482 struct perf_sample_data *data,
5483 struct perf_event *event,
5484 struct pt_regs *regs)
5485 {
5486 u64 sample_type = event->attr.sample_type;
5487
5488 header->type = PERF_RECORD_SAMPLE;
5489 header->size = sizeof(*header) + event->header_size;
5490
5491 header->misc = 0;
5492 header->misc |= perf_misc_flags(regs);
5493
5494 __perf_event_header__init_id(header, data, event);
5495
5496 if (sample_type & PERF_SAMPLE_IP)
5497 data->ip = perf_instruction_pointer(regs);
5498
5499 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5500 int size = 1;
5501
5502 data->callchain = perf_callchain(event, regs);
5503
5504 if (data->callchain)
5505 size += data->callchain->nr;
5506
5507 header->size += size * sizeof(u64);
5508 }
5509
5510 if (sample_type & PERF_SAMPLE_RAW) {
5511 int size = sizeof(u32);
5512
5513 if (data->raw)
5514 size += data->raw->size;
5515 else
5516 size += sizeof(u32);
5517
5518 header->size += round_up(size, sizeof(u64));
5519 }
5520
5521 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5522 int size = sizeof(u64); /* nr */
5523 if (data->br_stack) {
5524 size += data->br_stack->nr
5525 * sizeof(struct perf_branch_entry);
5526 }
5527 header->size += size;
5528 }
5529
5530 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5531 perf_sample_regs_user(&data->regs_user, regs,
5532 &data->regs_user_copy);
5533
5534 if (sample_type & PERF_SAMPLE_REGS_USER) {
5535 /* regs dump ABI info */
5536 int size = sizeof(u64);
5537
5538 if (data->regs_user.regs) {
5539 u64 mask = event->attr.sample_regs_user;
5540 size += hweight64(mask) * sizeof(u64);
5541 }
5542
5543 header->size += size;
5544 }
5545
5546 if (sample_type & PERF_SAMPLE_STACK_USER) {
5547 /*
5548 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5549 * processed as the last one or have additional check added
5550 * in case new sample type is added, because we could eat
5551 * up the rest of the sample size.
5552 */
5553 u16 stack_size = event->attr.sample_stack_user;
5554 u16 size = sizeof(u64);
5555
5556 stack_size = perf_sample_ustack_size(stack_size, header->size,
5557 data->regs_user.regs);
5558
5559 /*
5560 * If there is something to dump, add space for the dump
5561 * itself and for the field that tells the dynamic size,
5562 * which is how many have been actually dumped.
5563 */
5564 if (stack_size)
5565 size += sizeof(u64) + stack_size;
5566
5567 data->stack_user_size = stack_size;
5568 header->size += size;
5569 }
5570
5571 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5572 /* regs dump ABI info */
5573 int size = sizeof(u64);
5574
5575 perf_sample_regs_intr(&data->regs_intr, regs);
5576
5577 if (data->regs_intr.regs) {
5578 u64 mask = event->attr.sample_regs_intr;
5579
5580 size += hweight64(mask) * sizeof(u64);
5581 }
5582
5583 header->size += size;
5584 }
5585 }
5586
5587 void perf_event_output(struct perf_event *event,
5588 struct perf_sample_data *data,
5589 struct pt_regs *regs)
5590 {
5591 struct perf_output_handle handle;
5592 struct perf_event_header header;
5593
5594 /* protect the callchain buffers */
5595 rcu_read_lock();
5596
5597 perf_prepare_sample(&header, data, event, regs);
5598
5599 if (perf_output_begin(&handle, event, header.size))
5600 goto exit;
5601
5602 perf_output_sample(&handle, &header, data, event);
5603
5604 perf_output_end(&handle);
5605
5606 exit:
5607 rcu_read_unlock();
5608 }
5609
5610 /*
5611 * read event_id
5612 */
5613
5614 struct perf_read_event {
5615 struct perf_event_header header;
5616
5617 u32 pid;
5618 u32 tid;
5619 };
5620
5621 static void
5622 perf_event_read_event(struct perf_event *event,
5623 struct task_struct *task)
5624 {
5625 struct perf_output_handle handle;
5626 struct perf_sample_data sample;
5627 struct perf_read_event read_event = {
5628 .header = {
5629 .type = PERF_RECORD_READ,
5630 .misc = 0,
5631 .size = sizeof(read_event) + event->read_size,
5632 },
5633 .pid = perf_event_pid(event, task),
5634 .tid = perf_event_tid(event, task),
5635 };
5636 int ret;
5637
5638 perf_event_header__init_id(&read_event.header, &sample, event);
5639 ret = perf_output_begin(&handle, event, read_event.header.size);
5640 if (ret)
5641 return;
5642
5643 perf_output_put(&handle, read_event);
5644 perf_output_read(&handle, event);
5645 perf_event__output_id_sample(event, &handle, &sample);
5646
5647 perf_output_end(&handle);
5648 }
5649
5650 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5651
5652 static void
5653 perf_event_aux_ctx(struct perf_event_context *ctx,
5654 perf_event_aux_output_cb output,
5655 void *data)
5656 {
5657 struct perf_event *event;
5658
5659 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5660 if (event->state < PERF_EVENT_STATE_INACTIVE)
5661 continue;
5662 if (!event_filter_match(event))
5663 continue;
5664 output(event, data);
5665 }
5666 }
5667
5668 static void
5669 perf_event_aux(perf_event_aux_output_cb output, void *data,
5670 struct perf_event_context *task_ctx)
5671 {
5672 struct perf_cpu_context *cpuctx;
5673 struct perf_event_context *ctx;
5674 struct pmu *pmu;
5675 int ctxn;
5676
5677 rcu_read_lock();
5678 list_for_each_entry_rcu(pmu, &pmus, entry) {
5679 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5680 if (cpuctx->unique_pmu != pmu)
5681 goto next;
5682 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5683 if (task_ctx)
5684 goto next;
5685 ctxn = pmu->task_ctx_nr;
5686 if (ctxn < 0)
5687 goto next;
5688 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5689 if (ctx)
5690 perf_event_aux_ctx(ctx, output, data);
5691 next:
5692 put_cpu_ptr(pmu->pmu_cpu_context);
5693 }
5694
5695 if (task_ctx) {
5696 preempt_disable();
5697 perf_event_aux_ctx(task_ctx, output, data);
5698 preempt_enable();
5699 }
5700 rcu_read_unlock();
5701 }
5702
5703 /*
5704 * task tracking -- fork/exit
5705 *
5706 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5707 */
5708
5709 struct perf_task_event {
5710 struct task_struct *task;
5711 struct perf_event_context *task_ctx;
5712
5713 struct {
5714 struct perf_event_header header;
5715
5716 u32 pid;
5717 u32 ppid;
5718 u32 tid;
5719 u32 ptid;
5720 u64 time;
5721 } event_id;
5722 };
5723
5724 static int perf_event_task_match(struct perf_event *event)
5725 {
5726 return event->attr.comm || event->attr.mmap ||
5727 event->attr.mmap2 || event->attr.mmap_data ||
5728 event->attr.task;
5729 }
5730
5731 static void perf_event_task_output(struct perf_event *event,
5732 void *data)
5733 {
5734 struct perf_task_event *task_event = data;
5735 struct perf_output_handle handle;
5736 struct perf_sample_data sample;
5737 struct task_struct *task = task_event->task;
5738 int ret, size = task_event->event_id.header.size;
5739
5740 if (!perf_event_task_match(event))
5741 return;
5742
5743 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5744
5745 ret = perf_output_begin(&handle, event,
5746 task_event->event_id.header.size);
5747 if (ret)
5748 goto out;
5749
5750 task_event->event_id.pid = perf_event_pid(event, task);
5751 task_event->event_id.ppid = perf_event_pid(event, current);
5752
5753 task_event->event_id.tid = perf_event_tid(event, task);
5754 task_event->event_id.ptid = perf_event_tid(event, current);
5755
5756 task_event->event_id.time = perf_event_clock(event);
5757
5758 perf_output_put(&handle, task_event->event_id);
5759
5760 perf_event__output_id_sample(event, &handle, &sample);
5761
5762 perf_output_end(&handle);
5763 out:
5764 task_event->event_id.header.size = size;
5765 }
5766
5767 static void perf_event_task(struct task_struct *task,
5768 struct perf_event_context *task_ctx,
5769 int new)
5770 {
5771 struct perf_task_event task_event;
5772
5773 if (!atomic_read(&nr_comm_events) &&
5774 !atomic_read(&nr_mmap_events) &&
5775 !atomic_read(&nr_task_events))
5776 return;
5777
5778 task_event = (struct perf_task_event){
5779 .task = task,
5780 .task_ctx = task_ctx,
5781 .event_id = {
5782 .header = {
5783 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5784 .misc = 0,
5785 .size = sizeof(task_event.event_id),
5786 },
5787 /* .pid */
5788 /* .ppid */
5789 /* .tid */
5790 /* .ptid */
5791 /* .time */
5792 },
5793 };
5794
5795 perf_event_aux(perf_event_task_output,
5796 &task_event,
5797 task_ctx);
5798 }
5799
5800 void perf_event_fork(struct task_struct *task)
5801 {
5802 perf_event_task(task, NULL, 1);
5803 }
5804
5805 /*
5806 * comm tracking
5807 */
5808
5809 struct perf_comm_event {
5810 struct task_struct *task;
5811 char *comm;
5812 int comm_size;
5813
5814 struct {
5815 struct perf_event_header header;
5816
5817 u32 pid;
5818 u32 tid;
5819 } event_id;
5820 };
5821
5822 static int perf_event_comm_match(struct perf_event *event)
5823 {
5824 return event->attr.comm;
5825 }
5826
5827 static void perf_event_comm_output(struct perf_event *event,
5828 void *data)
5829 {
5830 struct perf_comm_event *comm_event = data;
5831 struct perf_output_handle handle;
5832 struct perf_sample_data sample;
5833 int size = comm_event->event_id.header.size;
5834 int ret;
5835
5836 if (!perf_event_comm_match(event))
5837 return;
5838
5839 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5840 ret = perf_output_begin(&handle, event,
5841 comm_event->event_id.header.size);
5842
5843 if (ret)
5844 goto out;
5845
5846 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5847 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5848
5849 perf_output_put(&handle, comm_event->event_id);
5850 __output_copy(&handle, comm_event->comm,
5851 comm_event->comm_size);
5852
5853 perf_event__output_id_sample(event, &handle, &sample);
5854
5855 perf_output_end(&handle);
5856 out:
5857 comm_event->event_id.header.size = size;
5858 }
5859
5860 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5861 {
5862 char comm[TASK_COMM_LEN];
5863 unsigned int size;
5864
5865 memset(comm, 0, sizeof(comm));
5866 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5867 size = ALIGN(strlen(comm)+1, sizeof(u64));
5868
5869 comm_event->comm = comm;
5870 comm_event->comm_size = size;
5871
5872 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5873
5874 perf_event_aux(perf_event_comm_output,
5875 comm_event,
5876 NULL);
5877 }
5878
5879 void perf_event_comm(struct task_struct *task, bool exec)
5880 {
5881 struct perf_comm_event comm_event;
5882
5883 if (!atomic_read(&nr_comm_events))
5884 return;
5885
5886 comm_event = (struct perf_comm_event){
5887 .task = task,
5888 /* .comm */
5889 /* .comm_size */
5890 .event_id = {
5891 .header = {
5892 .type = PERF_RECORD_COMM,
5893 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5894 /* .size */
5895 },
5896 /* .pid */
5897 /* .tid */
5898 },
5899 };
5900
5901 perf_event_comm_event(&comm_event);
5902 }
5903
5904 /*
5905 * mmap tracking
5906 */
5907
5908 struct perf_mmap_event {
5909 struct vm_area_struct *vma;
5910
5911 const char *file_name;
5912 int file_size;
5913 int maj, min;
5914 u64 ino;
5915 u64 ino_generation;
5916 u32 prot, flags;
5917
5918 struct {
5919 struct perf_event_header header;
5920
5921 u32 pid;
5922 u32 tid;
5923 u64 start;
5924 u64 len;
5925 u64 pgoff;
5926 } event_id;
5927 };
5928
5929 static int perf_event_mmap_match(struct perf_event *event,
5930 void *data)
5931 {
5932 struct perf_mmap_event *mmap_event = data;
5933 struct vm_area_struct *vma = mmap_event->vma;
5934 int executable = vma->vm_flags & VM_EXEC;
5935
5936 return (!executable && event->attr.mmap_data) ||
5937 (executable && (event->attr.mmap || event->attr.mmap2));
5938 }
5939
5940 static void perf_event_mmap_output(struct perf_event *event,
5941 void *data)
5942 {
5943 struct perf_mmap_event *mmap_event = data;
5944 struct perf_output_handle handle;
5945 struct perf_sample_data sample;
5946 int size = mmap_event->event_id.header.size;
5947 int ret;
5948
5949 if (!perf_event_mmap_match(event, data))
5950 return;
5951
5952 if (event->attr.mmap2) {
5953 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5954 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5955 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5956 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5957 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5958 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5959 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5960 }
5961
5962 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5963 ret = perf_output_begin(&handle, event,
5964 mmap_event->event_id.header.size);
5965 if (ret)
5966 goto out;
5967
5968 mmap_event->event_id.pid = perf_event_pid(event, current);
5969 mmap_event->event_id.tid = perf_event_tid(event, current);
5970
5971 perf_output_put(&handle, mmap_event->event_id);
5972
5973 if (event->attr.mmap2) {
5974 perf_output_put(&handle, mmap_event->maj);
5975 perf_output_put(&handle, mmap_event->min);
5976 perf_output_put(&handle, mmap_event->ino);
5977 perf_output_put(&handle, mmap_event->ino_generation);
5978 perf_output_put(&handle, mmap_event->prot);
5979 perf_output_put(&handle, mmap_event->flags);
5980 }
5981
5982 __output_copy(&handle, mmap_event->file_name,
5983 mmap_event->file_size);
5984
5985 perf_event__output_id_sample(event, &handle, &sample);
5986
5987 perf_output_end(&handle);
5988 out:
5989 mmap_event->event_id.header.size = size;
5990 }
5991
5992 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5993 {
5994 struct vm_area_struct *vma = mmap_event->vma;
5995 struct file *file = vma->vm_file;
5996 int maj = 0, min = 0;
5997 u64 ino = 0, gen = 0;
5998 u32 prot = 0, flags = 0;
5999 unsigned int size;
6000 char tmp[16];
6001 char *buf = NULL;
6002 char *name;
6003
6004 if (file) {
6005 struct inode *inode;
6006 dev_t dev;
6007
6008 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6009 if (!buf) {
6010 name = "//enomem";
6011 goto cpy_name;
6012 }
6013 /*
6014 * d_path() works from the end of the rb backwards, so we
6015 * need to add enough zero bytes after the string to handle
6016 * the 64bit alignment we do later.
6017 */
6018 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6019 if (IS_ERR(name)) {
6020 name = "//toolong";
6021 goto cpy_name;
6022 }
6023 inode = file_inode(vma->vm_file);
6024 dev = inode->i_sb->s_dev;
6025 ino = inode->i_ino;
6026 gen = inode->i_generation;
6027 maj = MAJOR(dev);
6028 min = MINOR(dev);
6029
6030 if (vma->vm_flags & VM_READ)
6031 prot |= PROT_READ;
6032 if (vma->vm_flags & VM_WRITE)
6033 prot |= PROT_WRITE;
6034 if (vma->vm_flags & VM_EXEC)
6035 prot |= PROT_EXEC;
6036
6037 if (vma->vm_flags & VM_MAYSHARE)
6038 flags = MAP_SHARED;
6039 else
6040 flags = MAP_PRIVATE;
6041
6042 if (vma->vm_flags & VM_DENYWRITE)
6043 flags |= MAP_DENYWRITE;
6044 if (vma->vm_flags & VM_MAYEXEC)
6045 flags |= MAP_EXECUTABLE;
6046 if (vma->vm_flags & VM_LOCKED)
6047 flags |= MAP_LOCKED;
6048 if (vma->vm_flags & VM_HUGETLB)
6049 flags |= MAP_HUGETLB;
6050
6051 goto got_name;
6052 } else {
6053 if (vma->vm_ops && vma->vm_ops->name) {
6054 name = (char *) vma->vm_ops->name(vma);
6055 if (name)
6056 goto cpy_name;
6057 }
6058
6059 name = (char *)arch_vma_name(vma);
6060 if (name)
6061 goto cpy_name;
6062
6063 if (vma->vm_start <= vma->vm_mm->start_brk &&
6064 vma->vm_end >= vma->vm_mm->brk) {
6065 name = "[heap]";
6066 goto cpy_name;
6067 }
6068 if (vma->vm_start <= vma->vm_mm->start_stack &&
6069 vma->vm_end >= vma->vm_mm->start_stack) {
6070 name = "[stack]";
6071 goto cpy_name;
6072 }
6073
6074 name = "//anon";
6075 goto cpy_name;
6076 }
6077
6078 cpy_name:
6079 strlcpy(tmp, name, sizeof(tmp));
6080 name = tmp;
6081 got_name:
6082 /*
6083 * Since our buffer works in 8 byte units we need to align our string
6084 * size to a multiple of 8. However, we must guarantee the tail end is
6085 * zero'd out to avoid leaking random bits to userspace.
6086 */
6087 size = strlen(name)+1;
6088 while (!IS_ALIGNED(size, sizeof(u64)))
6089 name[size++] = '\0';
6090
6091 mmap_event->file_name = name;
6092 mmap_event->file_size = size;
6093 mmap_event->maj = maj;
6094 mmap_event->min = min;
6095 mmap_event->ino = ino;
6096 mmap_event->ino_generation = gen;
6097 mmap_event->prot = prot;
6098 mmap_event->flags = flags;
6099
6100 if (!(vma->vm_flags & VM_EXEC))
6101 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6102
6103 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6104
6105 perf_event_aux(perf_event_mmap_output,
6106 mmap_event,
6107 NULL);
6108
6109 kfree(buf);
6110 }
6111
6112 void perf_event_mmap(struct vm_area_struct *vma)
6113 {
6114 struct perf_mmap_event mmap_event;
6115
6116 if (!atomic_read(&nr_mmap_events))
6117 return;
6118
6119 mmap_event = (struct perf_mmap_event){
6120 .vma = vma,
6121 /* .file_name */
6122 /* .file_size */
6123 .event_id = {
6124 .header = {
6125 .type = PERF_RECORD_MMAP,
6126 .misc = PERF_RECORD_MISC_USER,
6127 /* .size */
6128 },
6129 /* .pid */
6130 /* .tid */
6131 .start = vma->vm_start,
6132 .len = vma->vm_end - vma->vm_start,
6133 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6134 },
6135 /* .maj (attr_mmap2 only) */
6136 /* .min (attr_mmap2 only) */
6137 /* .ino (attr_mmap2 only) */
6138 /* .ino_generation (attr_mmap2 only) */
6139 /* .prot (attr_mmap2 only) */
6140 /* .flags (attr_mmap2 only) */
6141 };
6142
6143 perf_event_mmap_event(&mmap_event);
6144 }
6145
6146 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6147 unsigned long size, u64 flags)
6148 {
6149 struct perf_output_handle handle;
6150 struct perf_sample_data sample;
6151 struct perf_aux_event {
6152 struct perf_event_header header;
6153 u64 offset;
6154 u64 size;
6155 u64 flags;
6156 } rec = {
6157 .header = {
6158 .type = PERF_RECORD_AUX,
6159 .misc = 0,
6160 .size = sizeof(rec),
6161 },
6162 .offset = head,
6163 .size = size,
6164 .flags = flags,
6165 };
6166 int ret;
6167
6168 perf_event_header__init_id(&rec.header, &sample, event);
6169 ret = perf_output_begin(&handle, event, rec.header.size);
6170
6171 if (ret)
6172 return;
6173
6174 perf_output_put(&handle, rec);
6175 perf_event__output_id_sample(event, &handle, &sample);
6176
6177 perf_output_end(&handle);
6178 }
6179
6180 /*
6181 * Lost/dropped samples logging
6182 */
6183 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6184 {
6185 struct perf_output_handle handle;
6186 struct perf_sample_data sample;
6187 int ret;
6188
6189 struct {
6190 struct perf_event_header header;
6191 u64 lost;
6192 } lost_samples_event = {
6193 .header = {
6194 .type = PERF_RECORD_LOST_SAMPLES,
6195 .misc = 0,
6196 .size = sizeof(lost_samples_event),
6197 },
6198 .lost = lost,
6199 };
6200
6201 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6202
6203 ret = perf_output_begin(&handle, event,
6204 lost_samples_event.header.size);
6205 if (ret)
6206 return;
6207
6208 perf_output_put(&handle, lost_samples_event);
6209 perf_event__output_id_sample(event, &handle, &sample);
6210 perf_output_end(&handle);
6211 }
6212
6213 /*
6214 * context_switch tracking
6215 */
6216
6217 struct perf_switch_event {
6218 struct task_struct *task;
6219 struct task_struct *next_prev;
6220
6221 struct {
6222 struct perf_event_header header;
6223 u32 next_prev_pid;
6224 u32 next_prev_tid;
6225 } event_id;
6226 };
6227
6228 static int perf_event_switch_match(struct perf_event *event)
6229 {
6230 return event->attr.context_switch;
6231 }
6232
6233 static void perf_event_switch_output(struct perf_event *event, void *data)
6234 {
6235 struct perf_switch_event *se = data;
6236 struct perf_output_handle handle;
6237 struct perf_sample_data sample;
6238 int ret;
6239
6240 if (!perf_event_switch_match(event))
6241 return;
6242
6243 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6244 if (event->ctx->task) {
6245 se->event_id.header.type = PERF_RECORD_SWITCH;
6246 se->event_id.header.size = sizeof(se->event_id.header);
6247 } else {
6248 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6249 se->event_id.header.size = sizeof(se->event_id);
6250 se->event_id.next_prev_pid =
6251 perf_event_pid(event, se->next_prev);
6252 se->event_id.next_prev_tid =
6253 perf_event_tid(event, se->next_prev);
6254 }
6255
6256 perf_event_header__init_id(&se->event_id.header, &sample, event);
6257
6258 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6259 if (ret)
6260 return;
6261
6262 if (event->ctx->task)
6263 perf_output_put(&handle, se->event_id.header);
6264 else
6265 perf_output_put(&handle, se->event_id);
6266
6267 perf_event__output_id_sample(event, &handle, &sample);
6268
6269 perf_output_end(&handle);
6270 }
6271
6272 static void perf_event_switch(struct task_struct *task,
6273 struct task_struct *next_prev, bool sched_in)
6274 {
6275 struct perf_switch_event switch_event;
6276
6277 /* N.B. caller checks nr_switch_events != 0 */
6278
6279 switch_event = (struct perf_switch_event){
6280 .task = task,
6281 .next_prev = next_prev,
6282 .event_id = {
6283 .header = {
6284 /* .type */
6285 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6286 /* .size */
6287 },
6288 /* .next_prev_pid */
6289 /* .next_prev_tid */
6290 },
6291 };
6292
6293 perf_event_aux(perf_event_switch_output,
6294 &switch_event,
6295 NULL);
6296 }
6297
6298 /*
6299 * IRQ throttle logging
6300 */
6301
6302 static void perf_log_throttle(struct perf_event *event, int enable)
6303 {
6304 struct perf_output_handle handle;
6305 struct perf_sample_data sample;
6306 int ret;
6307
6308 struct {
6309 struct perf_event_header header;
6310 u64 time;
6311 u64 id;
6312 u64 stream_id;
6313 } throttle_event = {
6314 .header = {
6315 .type = PERF_RECORD_THROTTLE,
6316 .misc = 0,
6317 .size = sizeof(throttle_event),
6318 },
6319 .time = perf_event_clock(event),
6320 .id = primary_event_id(event),
6321 .stream_id = event->id,
6322 };
6323
6324 if (enable)
6325 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6326
6327 perf_event_header__init_id(&throttle_event.header, &sample, event);
6328
6329 ret = perf_output_begin(&handle, event,
6330 throttle_event.header.size);
6331 if (ret)
6332 return;
6333
6334 perf_output_put(&handle, throttle_event);
6335 perf_event__output_id_sample(event, &handle, &sample);
6336 perf_output_end(&handle);
6337 }
6338
6339 static void perf_log_itrace_start(struct perf_event *event)
6340 {
6341 struct perf_output_handle handle;
6342 struct perf_sample_data sample;
6343 struct perf_aux_event {
6344 struct perf_event_header header;
6345 u32 pid;
6346 u32 tid;
6347 } rec;
6348 int ret;
6349
6350 if (event->parent)
6351 event = event->parent;
6352
6353 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6354 event->hw.itrace_started)
6355 return;
6356
6357 rec.header.type = PERF_RECORD_ITRACE_START;
6358 rec.header.misc = 0;
6359 rec.header.size = sizeof(rec);
6360 rec.pid = perf_event_pid(event, current);
6361 rec.tid = perf_event_tid(event, current);
6362
6363 perf_event_header__init_id(&rec.header, &sample, event);
6364 ret = perf_output_begin(&handle, event, rec.header.size);
6365
6366 if (ret)
6367 return;
6368
6369 perf_output_put(&handle, rec);
6370 perf_event__output_id_sample(event, &handle, &sample);
6371
6372 perf_output_end(&handle);
6373 }
6374
6375 /*
6376 * Generic event overflow handling, sampling.
6377 */
6378
6379 static int __perf_event_overflow(struct perf_event *event,
6380 int throttle, struct perf_sample_data *data,
6381 struct pt_regs *regs)
6382 {
6383 int events = atomic_read(&event->event_limit);
6384 struct hw_perf_event *hwc = &event->hw;
6385 u64 seq;
6386 int ret = 0;
6387
6388 /*
6389 * Non-sampling counters might still use the PMI to fold short
6390 * hardware counters, ignore those.
6391 */
6392 if (unlikely(!is_sampling_event(event)))
6393 return 0;
6394
6395 seq = __this_cpu_read(perf_throttled_seq);
6396 if (seq != hwc->interrupts_seq) {
6397 hwc->interrupts_seq = seq;
6398 hwc->interrupts = 1;
6399 } else {
6400 hwc->interrupts++;
6401 if (unlikely(throttle
6402 && hwc->interrupts >= max_samples_per_tick)) {
6403 __this_cpu_inc(perf_throttled_count);
6404 hwc->interrupts = MAX_INTERRUPTS;
6405 perf_log_throttle(event, 0);
6406 tick_nohz_full_kick();
6407 ret = 1;
6408 }
6409 }
6410
6411 if (event->attr.freq) {
6412 u64 now = perf_clock();
6413 s64 delta = now - hwc->freq_time_stamp;
6414
6415 hwc->freq_time_stamp = now;
6416
6417 if (delta > 0 && delta < 2*TICK_NSEC)
6418 perf_adjust_period(event, delta, hwc->last_period, true);
6419 }
6420
6421 /*
6422 * XXX event_limit might not quite work as expected on inherited
6423 * events
6424 */
6425
6426 event->pending_kill = POLL_IN;
6427 if (events && atomic_dec_and_test(&event->event_limit)) {
6428 ret = 1;
6429 event->pending_kill = POLL_HUP;
6430 event->pending_disable = 1;
6431 irq_work_queue(&event->pending);
6432 }
6433
6434 if (event->overflow_handler)
6435 event->overflow_handler(event, data, regs);
6436 else
6437 perf_event_output(event, data, regs);
6438
6439 if (*perf_event_fasync(event) && event->pending_kill) {
6440 event->pending_wakeup = 1;
6441 irq_work_queue(&event->pending);
6442 }
6443
6444 return ret;
6445 }
6446
6447 int perf_event_overflow(struct perf_event *event,
6448 struct perf_sample_data *data,
6449 struct pt_regs *regs)
6450 {
6451 return __perf_event_overflow(event, 1, data, regs);
6452 }
6453
6454 /*
6455 * Generic software event infrastructure
6456 */
6457
6458 struct swevent_htable {
6459 struct swevent_hlist *swevent_hlist;
6460 struct mutex hlist_mutex;
6461 int hlist_refcount;
6462
6463 /* Recursion avoidance in each contexts */
6464 int recursion[PERF_NR_CONTEXTS];
6465
6466 /* Keeps track of cpu being initialized/exited */
6467 bool online;
6468 };
6469
6470 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6471
6472 /*
6473 * We directly increment event->count and keep a second value in
6474 * event->hw.period_left to count intervals. This period event
6475 * is kept in the range [-sample_period, 0] so that we can use the
6476 * sign as trigger.
6477 */
6478
6479 u64 perf_swevent_set_period(struct perf_event *event)
6480 {
6481 struct hw_perf_event *hwc = &event->hw;
6482 u64 period = hwc->last_period;
6483 u64 nr, offset;
6484 s64 old, val;
6485
6486 hwc->last_period = hwc->sample_period;
6487
6488 again:
6489 old = val = local64_read(&hwc->period_left);
6490 if (val < 0)
6491 return 0;
6492
6493 nr = div64_u64(period + val, period);
6494 offset = nr * period;
6495 val -= offset;
6496 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6497 goto again;
6498
6499 return nr;
6500 }
6501
6502 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6503 struct perf_sample_data *data,
6504 struct pt_regs *regs)
6505 {
6506 struct hw_perf_event *hwc = &event->hw;
6507 int throttle = 0;
6508
6509 if (!overflow)
6510 overflow = perf_swevent_set_period(event);
6511
6512 if (hwc->interrupts == MAX_INTERRUPTS)
6513 return;
6514
6515 for (; overflow; overflow--) {
6516 if (__perf_event_overflow(event, throttle,
6517 data, regs)) {
6518 /*
6519 * We inhibit the overflow from happening when
6520 * hwc->interrupts == MAX_INTERRUPTS.
6521 */
6522 break;
6523 }
6524 throttle = 1;
6525 }
6526 }
6527
6528 static void perf_swevent_event(struct perf_event *event, u64 nr,
6529 struct perf_sample_data *data,
6530 struct pt_regs *regs)
6531 {
6532 struct hw_perf_event *hwc = &event->hw;
6533
6534 local64_add(nr, &event->count);
6535
6536 if (!regs)
6537 return;
6538
6539 if (!is_sampling_event(event))
6540 return;
6541
6542 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6543 data->period = nr;
6544 return perf_swevent_overflow(event, 1, data, regs);
6545 } else
6546 data->period = event->hw.last_period;
6547
6548 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6549 return perf_swevent_overflow(event, 1, data, regs);
6550
6551 if (local64_add_negative(nr, &hwc->period_left))
6552 return;
6553
6554 perf_swevent_overflow(event, 0, data, regs);
6555 }
6556
6557 static int perf_exclude_event(struct perf_event *event,
6558 struct pt_regs *regs)
6559 {
6560 if (event->hw.state & PERF_HES_STOPPED)
6561 return 1;
6562
6563 if (regs) {
6564 if (event->attr.exclude_user && user_mode(regs))
6565 return 1;
6566
6567 if (event->attr.exclude_kernel && !user_mode(regs))
6568 return 1;
6569 }
6570
6571 return 0;
6572 }
6573
6574 static int perf_swevent_match(struct perf_event *event,
6575 enum perf_type_id type,
6576 u32 event_id,
6577 struct perf_sample_data *data,
6578 struct pt_regs *regs)
6579 {
6580 if (event->attr.type != type)
6581 return 0;
6582
6583 if (event->attr.config != event_id)
6584 return 0;
6585
6586 if (perf_exclude_event(event, regs))
6587 return 0;
6588
6589 return 1;
6590 }
6591
6592 static inline u64 swevent_hash(u64 type, u32 event_id)
6593 {
6594 u64 val = event_id | (type << 32);
6595
6596 return hash_64(val, SWEVENT_HLIST_BITS);
6597 }
6598
6599 static inline struct hlist_head *
6600 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6601 {
6602 u64 hash = swevent_hash(type, event_id);
6603
6604 return &hlist->heads[hash];
6605 }
6606
6607 /* For the read side: events when they trigger */
6608 static inline struct hlist_head *
6609 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6610 {
6611 struct swevent_hlist *hlist;
6612
6613 hlist = rcu_dereference(swhash->swevent_hlist);
6614 if (!hlist)
6615 return NULL;
6616
6617 return __find_swevent_head(hlist, type, event_id);
6618 }
6619
6620 /* For the event head insertion and removal in the hlist */
6621 static inline struct hlist_head *
6622 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6623 {
6624 struct swevent_hlist *hlist;
6625 u32 event_id = event->attr.config;
6626 u64 type = event->attr.type;
6627
6628 /*
6629 * Event scheduling is always serialized against hlist allocation
6630 * and release. Which makes the protected version suitable here.
6631 * The context lock guarantees that.
6632 */
6633 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6634 lockdep_is_held(&event->ctx->lock));
6635 if (!hlist)
6636 return NULL;
6637
6638 return __find_swevent_head(hlist, type, event_id);
6639 }
6640
6641 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6642 u64 nr,
6643 struct perf_sample_data *data,
6644 struct pt_regs *regs)
6645 {
6646 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6647 struct perf_event *event;
6648 struct hlist_head *head;
6649
6650 rcu_read_lock();
6651 head = find_swevent_head_rcu(swhash, type, event_id);
6652 if (!head)
6653 goto end;
6654
6655 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6656 if (perf_swevent_match(event, type, event_id, data, regs))
6657 perf_swevent_event(event, nr, data, regs);
6658 }
6659 end:
6660 rcu_read_unlock();
6661 }
6662
6663 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6664
6665 int perf_swevent_get_recursion_context(void)
6666 {
6667 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6668
6669 return get_recursion_context(swhash->recursion);
6670 }
6671 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6672
6673 inline void perf_swevent_put_recursion_context(int rctx)
6674 {
6675 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6676
6677 put_recursion_context(swhash->recursion, rctx);
6678 }
6679
6680 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6681 {
6682 struct perf_sample_data data;
6683
6684 if (WARN_ON_ONCE(!regs))
6685 return;
6686
6687 perf_sample_data_init(&data, addr, 0);
6688 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6689 }
6690
6691 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6692 {
6693 int rctx;
6694
6695 preempt_disable_notrace();
6696 rctx = perf_swevent_get_recursion_context();
6697 if (unlikely(rctx < 0))
6698 goto fail;
6699
6700 ___perf_sw_event(event_id, nr, regs, addr);
6701
6702 perf_swevent_put_recursion_context(rctx);
6703 fail:
6704 preempt_enable_notrace();
6705 }
6706
6707 static void perf_swevent_read(struct perf_event *event)
6708 {
6709 }
6710
6711 static int perf_swevent_add(struct perf_event *event, int flags)
6712 {
6713 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6714 struct hw_perf_event *hwc = &event->hw;
6715 struct hlist_head *head;
6716
6717 if (is_sampling_event(event)) {
6718 hwc->last_period = hwc->sample_period;
6719 perf_swevent_set_period(event);
6720 }
6721
6722 hwc->state = !(flags & PERF_EF_START);
6723
6724 head = find_swevent_head(swhash, event);
6725 if (!head) {
6726 /*
6727 * We can race with cpu hotplug code. Do not
6728 * WARN if the cpu just got unplugged.
6729 */
6730 WARN_ON_ONCE(swhash->online);
6731 return -EINVAL;
6732 }
6733
6734 hlist_add_head_rcu(&event->hlist_entry, head);
6735 perf_event_update_userpage(event);
6736
6737 return 0;
6738 }
6739
6740 static void perf_swevent_del(struct perf_event *event, int flags)
6741 {
6742 hlist_del_rcu(&event->hlist_entry);
6743 }
6744
6745 static void perf_swevent_start(struct perf_event *event, int flags)
6746 {
6747 event->hw.state = 0;
6748 }
6749
6750 static void perf_swevent_stop(struct perf_event *event, int flags)
6751 {
6752 event->hw.state = PERF_HES_STOPPED;
6753 }
6754
6755 /* Deref the hlist from the update side */
6756 static inline struct swevent_hlist *
6757 swevent_hlist_deref(struct swevent_htable *swhash)
6758 {
6759 return rcu_dereference_protected(swhash->swevent_hlist,
6760 lockdep_is_held(&swhash->hlist_mutex));
6761 }
6762
6763 static void swevent_hlist_release(struct swevent_htable *swhash)
6764 {
6765 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6766
6767 if (!hlist)
6768 return;
6769
6770 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6771 kfree_rcu(hlist, rcu_head);
6772 }
6773
6774 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6775 {
6776 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6777
6778 mutex_lock(&swhash->hlist_mutex);
6779
6780 if (!--swhash->hlist_refcount)
6781 swevent_hlist_release(swhash);
6782
6783 mutex_unlock(&swhash->hlist_mutex);
6784 }
6785
6786 static void swevent_hlist_put(struct perf_event *event)
6787 {
6788 int cpu;
6789
6790 for_each_possible_cpu(cpu)
6791 swevent_hlist_put_cpu(event, cpu);
6792 }
6793
6794 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6795 {
6796 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6797 int err = 0;
6798
6799 mutex_lock(&swhash->hlist_mutex);
6800
6801 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6802 struct swevent_hlist *hlist;
6803
6804 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6805 if (!hlist) {
6806 err = -ENOMEM;
6807 goto exit;
6808 }
6809 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6810 }
6811 swhash->hlist_refcount++;
6812 exit:
6813 mutex_unlock(&swhash->hlist_mutex);
6814
6815 return err;
6816 }
6817
6818 static int swevent_hlist_get(struct perf_event *event)
6819 {
6820 int err;
6821 int cpu, failed_cpu;
6822
6823 get_online_cpus();
6824 for_each_possible_cpu(cpu) {
6825 err = swevent_hlist_get_cpu(event, cpu);
6826 if (err) {
6827 failed_cpu = cpu;
6828 goto fail;
6829 }
6830 }
6831 put_online_cpus();
6832
6833 return 0;
6834 fail:
6835 for_each_possible_cpu(cpu) {
6836 if (cpu == failed_cpu)
6837 break;
6838 swevent_hlist_put_cpu(event, cpu);
6839 }
6840
6841 put_online_cpus();
6842 return err;
6843 }
6844
6845 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6846
6847 static void sw_perf_event_destroy(struct perf_event *event)
6848 {
6849 u64 event_id = event->attr.config;
6850
6851 WARN_ON(event->parent);
6852
6853 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6854 swevent_hlist_put(event);
6855 }
6856
6857 static int perf_swevent_init(struct perf_event *event)
6858 {
6859 u64 event_id = event->attr.config;
6860
6861 if (event->attr.type != PERF_TYPE_SOFTWARE)
6862 return -ENOENT;
6863
6864 /*
6865 * no branch sampling for software events
6866 */
6867 if (has_branch_stack(event))
6868 return -EOPNOTSUPP;
6869
6870 switch (event_id) {
6871 case PERF_COUNT_SW_CPU_CLOCK:
6872 case PERF_COUNT_SW_TASK_CLOCK:
6873 return -ENOENT;
6874
6875 default:
6876 break;
6877 }
6878
6879 if (event_id >= PERF_COUNT_SW_MAX)
6880 return -ENOENT;
6881
6882 if (!event->parent) {
6883 int err;
6884
6885 err = swevent_hlist_get(event);
6886 if (err)
6887 return err;
6888
6889 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6890 event->destroy = sw_perf_event_destroy;
6891 }
6892
6893 return 0;
6894 }
6895
6896 static struct pmu perf_swevent = {
6897 .task_ctx_nr = perf_sw_context,
6898
6899 .capabilities = PERF_PMU_CAP_NO_NMI,
6900
6901 .event_init = perf_swevent_init,
6902 .add = perf_swevent_add,
6903 .del = perf_swevent_del,
6904 .start = perf_swevent_start,
6905 .stop = perf_swevent_stop,
6906 .read = perf_swevent_read,
6907 };
6908
6909 #ifdef CONFIG_EVENT_TRACING
6910
6911 static int perf_tp_filter_match(struct perf_event *event,
6912 struct perf_sample_data *data)
6913 {
6914 void *record = data->raw->data;
6915
6916 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6917 return 1;
6918 return 0;
6919 }
6920
6921 static int perf_tp_event_match(struct perf_event *event,
6922 struct perf_sample_data *data,
6923 struct pt_regs *regs)
6924 {
6925 if (event->hw.state & PERF_HES_STOPPED)
6926 return 0;
6927 /*
6928 * All tracepoints are from kernel-space.
6929 */
6930 if (event->attr.exclude_kernel)
6931 return 0;
6932
6933 if (!perf_tp_filter_match(event, data))
6934 return 0;
6935
6936 return 1;
6937 }
6938
6939 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6940 struct pt_regs *regs, struct hlist_head *head, int rctx,
6941 struct task_struct *task)
6942 {
6943 struct perf_sample_data data;
6944 struct perf_event *event;
6945
6946 struct perf_raw_record raw = {
6947 .size = entry_size,
6948 .data = record,
6949 };
6950
6951 perf_sample_data_init(&data, addr, 0);
6952 data.raw = &raw;
6953
6954 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6955 if (perf_tp_event_match(event, &data, regs))
6956 perf_swevent_event(event, count, &data, regs);
6957 }
6958
6959 /*
6960 * If we got specified a target task, also iterate its context and
6961 * deliver this event there too.
6962 */
6963 if (task && task != current) {
6964 struct perf_event_context *ctx;
6965 struct trace_entry *entry = record;
6966
6967 rcu_read_lock();
6968 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6969 if (!ctx)
6970 goto unlock;
6971
6972 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6973 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6974 continue;
6975 if (event->attr.config != entry->type)
6976 continue;
6977 if (perf_tp_event_match(event, &data, regs))
6978 perf_swevent_event(event, count, &data, regs);
6979 }
6980 unlock:
6981 rcu_read_unlock();
6982 }
6983
6984 perf_swevent_put_recursion_context(rctx);
6985 }
6986 EXPORT_SYMBOL_GPL(perf_tp_event);
6987
6988 static void tp_perf_event_destroy(struct perf_event *event)
6989 {
6990 perf_trace_destroy(event);
6991 }
6992
6993 static int perf_tp_event_init(struct perf_event *event)
6994 {
6995 int err;
6996
6997 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6998 return -ENOENT;
6999
7000 /*
7001 * no branch sampling for tracepoint events
7002 */
7003 if (has_branch_stack(event))
7004 return -EOPNOTSUPP;
7005
7006 err = perf_trace_init(event);
7007 if (err)
7008 return err;
7009
7010 event->destroy = tp_perf_event_destroy;
7011
7012 return 0;
7013 }
7014
7015 static struct pmu perf_tracepoint = {
7016 .task_ctx_nr = perf_sw_context,
7017
7018 .event_init = perf_tp_event_init,
7019 .add = perf_trace_add,
7020 .del = perf_trace_del,
7021 .start = perf_swevent_start,
7022 .stop = perf_swevent_stop,
7023 .read = perf_swevent_read,
7024 };
7025
7026 static inline void perf_tp_register(void)
7027 {
7028 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7029 }
7030
7031 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7032 {
7033 char *filter_str;
7034 int ret;
7035
7036 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7037 return -EINVAL;
7038
7039 filter_str = strndup_user(arg, PAGE_SIZE);
7040 if (IS_ERR(filter_str))
7041 return PTR_ERR(filter_str);
7042
7043 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7044
7045 kfree(filter_str);
7046 return ret;
7047 }
7048
7049 static void perf_event_free_filter(struct perf_event *event)
7050 {
7051 ftrace_profile_free_filter(event);
7052 }
7053
7054 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7055 {
7056 struct bpf_prog *prog;
7057
7058 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7059 return -EINVAL;
7060
7061 if (event->tp_event->prog)
7062 return -EEXIST;
7063
7064 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7065 /* bpf programs can only be attached to u/kprobes */
7066 return -EINVAL;
7067
7068 prog = bpf_prog_get(prog_fd);
7069 if (IS_ERR(prog))
7070 return PTR_ERR(prog);
7071
7072 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7073 /* valid fd, but invalid bpf program type */
7074 bpf_prog_put(prog);
7075 return -EINVAL;
7076 }
7077
7078 event->tp_event->prog = prog;
7079
7080 return 0;
7081 }
7082
7083 static void perf_event_free_bpf_prog(struct perf_event *event)
7084 {
7085 struct bpf_prog *prog;
7086
7087 if (!event->tp_event)
7088 return;
7089
7090 prog = event->tp_event->prog;
7091 if (prog) {
7092 event->tp_event->prog = NULL;
7093 bpf_prog_put(prog);
7094 }
7095 }
7096
7097 #else
7098
7099 static inline void perf_tp_register(void)
7100 {
7101 }
7102
7103 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7104 {
7105 return -ENOENT;
7106 }
7107
7108 static void perf_event_free_filter(struct perf_event *event)
7109 {
7110 }
7111
7112 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7113 {
7114 return -ENOENT;
7115 }
7116
7117 static void perf_event_free_bpf_prog(struct perf_event *event)
7118 {
7119 }
7120 #endif /* CONFIG_EVENT_TRACING */
7121
7122 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7123 void perf_bp_event(struct perf_event *bp, void *data)
7124 {
7125 struct perf_sample_data sample;
7126 struct pt_regs *regs = data;
7127
7128 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7129
7130 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7131 perf_swevent_event(bp, 1, &sample, regs);
7132 }
7133 #endif
7134
7135 /*
7136 * hrtimer based swevent callback
7137 */
7138
7139 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7140 {
7141 enum hrtimer_restart ret = HRTIMER_RESTART;
7142 struct perf_sample_data data;
7143 struct pt_regs *regs;
7144 struct perf_event *event;
7145 u64 period;
7146
7147 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7148
7149 if (event->state != PERF_EVENT_STATE_ACTIVE)
7150 return HRTIMER_NORESTART;
7151
7152 event->pmu->read(event);
7153
7154 perf_sample_data_init(&data, 0, event->hw.last_period);
7155 regs = get_irq_regs();
7156
7157 if (regs && !perf_exclude_event(event, regs)) {
7158 if (!(event->attr.exclude_idle && is_idle_task(current)))
7159 if (__perf_event_overflow(event, 1, &data, regs))
7160 ret = HRTIMER_NORESTART;
7161 }
7162
7163 period = max_t(u64, 10000, event->hw.sample_period);
7164 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7165
7166 return ret;
7167 }
7168
7169 static void perf_swevent_start_hrtimer(struct perf_event *event)
7170 {
7171 struct hw_perf_event *hwc = &event->hw;
7172 s64 period;
7173
7174 if (!is_sampling_event(event))
7175 return;
7176
7177 period = local64_read(&hwc->period_left);
7178 if (period) {
7179 if (period < 0)
7180 period = 10000;
7181
7182 local64_set(&hwc->period_left, 0);
7183 } else {
7184 period = max_t(u64, 10000, hwc->sample_period);
7185 }
7186 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7187 HRTIMER_MODE_REL_PINNED);
7188 }
7189
7190 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7191 {
7192 struct hw_perf_event *hwc = &event->hw;
7193
7194 if (is_sampling_event(event)) {
7195 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7196 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7197
7198 hrtimer_cancel(&hwc->hrtimer);
7199 }
7200 }
7201
7202 static void perf_swevent_init_hrtimer(struct perf_event *event)
7203 {
7204 struct hw_perf_event *hwc = &event->hw;
7205
7206 if (!is_sampling_event(event))
7207 return;
7208
7209 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7210 hwc->hrtimer.function = perf_swevent_hrtimer;
7211
7212 /*
7213 * Since hrtimers have a fixed rate, we can do a static freq->period
7214 * mapping and avoid the whole period adjust feedback stuff.
7215 */
7216 if (event->attr.freq) {
7217 long freq = event->attr.sample_freq;
7218
7219 event->attr.sample_period = NSEC_PER_SEC / freq;
7220 hwc->sample_period = event->attr.sample_period;
7221 local64_set(&hwc->period_left, hwc->sample_period);
7222 hwc->last_period = hwc->sample_period;
7223 event->attr.freq = 0;
7224 }
7225 }
7226
7227 /*
7228 * Software event: cpu wall time clock
7229 */
7230
7231 static void cpu_clock_event_update(struct perf_event *event)
7232 {
7233 s64 prev;
7234 u64 now;
7235
7236 now = local_clock();
7237 prev = local64_xchg(&event->hw.prev_count, now);
7238 local64_add(now - prev, &event->count);
7239 }
7240
7241 static void cpu_clock_event_start(struct perf_event *event, int flags)
7242 {
7243 local64_set(&event->hw.prev_count, local_clock());
7244 perf_swevent_start_hrtimer(event);
7245 }
7246
7247 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7248 {
7249 perf_swevent_cancel_hrtimer(event);
7250 cpu_clock_event_update(event);
7251 }
7252
7253 static int cpu_clock_event_add(struct perf_event *event, int flags)
7254 {
7255 if (flags & PERF_EF_START)
7256 cpu_clock_event_start(event, flags);
7257 perf_event_update_userpage(event);
7258
7259 return 0;
7260 }
7261
7262 static void cpu_clock_event_del(struct perf_event *event, int flags)
7263 {
7264 cpu_clock_event_stop(event, flags);
7265 }
7266
7267 static void cpu_clock_event_read(struct perf_event *event)
7268 {
7269 cpu_clock_event_update(event);
7270 }
7271
7272 static int cpu_clock_event_init(struct perf_event *event)
7273 {
7274 if (event->attr.type != PERF_TYPE_SOFTWARE)
7275 return -ENOENT;
7276
7277 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7278 return -ENOENT;
7279
7280 /*
7281 * no branch sampling for software events
7282 */
7283 if (has_branch_stack(event))
7284 return -EOPNOTSUPP;
7285
7286 perf_swevent_init_hrtimer(event);
7287
7288 return 0;
7289 }
7290
7291 static struct pmu perf_cpu_clock = {
7292 .task_ctx_nr = perf_sw_context,
7293
7294 .capabilities = PERF_PMU_CAP_NO_NMI,
7295
7296 .event_init = cpu_clock_event_init,
7297 .add = cpu_clock_event_add,
7298 .del = cpu_clock_event_del,
7299 .start = cpu_clock_event_start,
7300 .stop = cpu_clock_event_stop,
7301 .read = cpu_clock_event_read,
7302 };
7303
7304 /*
7305 * Software event: task time clock
7306 */
7307
7308 static void task_clock_event_update(struct perf_event *event, u64 now)
7309 {
7310 u64 prev;
7311 s64 delta;
7312
7313 prev = local64_xchg(&event->hw.prev_count, now);
7314 delta = now - prev;
7315 local64_add(delta, &event->count);
7316 }
7317
7318 static void task_clock_event_start(struct perf_event *event, int flags)
7319 {
7320 local64_set(&event->hw.prev_count, event->ctx->time);
7321 perf_swevent_start_hrtimer(event);
7322 }
7323
7324 static void task_clock_event_stop(struct perf_event *event, int flags)
7325 {
7326 perf_swevent_cancel_hrtimer(event);
7327 task_clock_event_update(event, event->ctx->time);
7328 }
7329
7330 static int task_clock_event_add(struct perf_event *event, int flags)
7331 {
7332 if (flags & PERF_EF_START)
7333 task_clock_event_start(event, flags);
7334 perf_event_update_userpage(event);
7335
7336 return 0;
7337 }
7338
7339 static void task_clock_event_del(struct perf_event *event, int flags)
7340 {
7341 task_clock_event_stop(event, PERF_EF_UPDATE);
7342 }
7343
7344 static void task_clock_event_read(struct perf_event *event)
7345 {
7346 u64 now = perf_clock();
7347 u64 delta = now - event->ctx->timestamp;
7348 u64 time = event->ctx->time + delta;
7349
7350 task_clock_event_update(event, time);
7351 }
7352
7353 static int task_clock_event_init(struct perf_event *event)
7354 {
7355 if (event->attr.type != PERF_TYPE_SOFTWARE)
7356 return -ENOENT;
7357
7358 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7359 return -ENOENT;
7360
7361 /*
7362 * no branch sampling for software events
7363 */
7364 if (has_branch_stack(event))
7365 return -EOPNOTSUPP;
7366
7367 perf_swevent_init_hrtimer(event);
7368
7369 return 0;
7370 }
7371
7372 static struct pmu perf_task_clock = {
7373 .task_ctx_nr = perf_sw_context,
7374
7375 .capabilities = PERF_PMU_CAP_NO_NMI,
7376
7377 .event_init = task_clock_event_init,
7378 .add = task_clock_event_add,
7379 .del = task_clock_event_del,
7380 .start = task_clock_event_start,
7381 .stop = task_clock_event_stop,
7382 .read = task_clock_event_read,
7383 };
7384
7385 static void perf_pmu_nop_void(struct pmu *pmu)
7386 {
7387 }
7388
7389 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7390 {
7391 }
7392
7393 static int perf_pmu_nop_int(struct pmu *pmu)
7394 {
7395 return 0;
7396 }
7397
7398 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7399
7400 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7401 {
7402 __this_cpu_write(nop_txn_flags, flags);
7403
7404 if (flags & ~PERF_PMU_TXN_ADD)
7405 return;
7406
7407 perf_pmu_disable(pmu);
7408 }
7409
7410 static int perf_pmu_commit_txn(struct pmu *pmu)
7411 {
7412 unsigned int flags = __this_cpu_read(nop_txn_flags);
7413
7414 __this_cpu_write(nop_txn_flags, 0);
7415
7416 if (flags & ~PERF_PMU_TXN_ADD)
7417 return 0;
7418
7419 perf_pmu_enable(pmu);
7420 return 0;
7421 }
7422
7423 static void perf_pmu_cancel_txn(struct pmu *pmu)
7424 {
7425 unsigned int flags = __this_cpu_read(nop_txn_flags);
7426
7427 __this_cpu_write(nop_txn_flags, 0);
7428
7429 if (flags & ~PERF_PMU_TXN_ADD)
7430 return;
7431
7432 perf_pmu_enable(pmu);
7433 }
7434
7435 static int perf_event_idx_default(struct perf_event *event)
7436 {
7437 return 0;
7438 }
7439
7440 /*
7441 * Ensures all contexts with the same task_ctx_nr have the same
7442 * pmu_cpu_context too.
7443 */
7444 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7445 {
7446 struct pmu *pmu;
7447
7448 if (ctxn < 0)
7449 return NULL;
7450
7451 list_for_each_entry(pmu, &pmus, entry) {
7452 if (pmu->task_ctx_nr == ctxn)
7453 return pmu->pmu_cpu_context;
7454 }
7455
7456 return NULL;
7457 }
7458
7459 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7460 {
7461 int cpu;
7462
7463 for_each_possible_cpu(cpu) {
7464 struct perf_cpu_context *cpuctx;
7465
7466 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7467
7468 if (cpuctx->unique_pmu == old_pmu)
7469 cpuctx->unique_pmu = pmu;
7470 }
7471 }
7472
7473 static void free_pmu_context(struct pmu *pmu)
7474 {
7475 struct pmu *i;
7476
7477 mutex_lock(&pmus_lock);
7478 /*
7479 * Like a real lame refcount.
7480 */
7481 list_for_each_entry(i, &pmus, entry) {
7482 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7483 update_pmu_context(i, pmu);
7484 goto out;
7485 }
7486 }
7487
7488 free_percpu(pmu->pmu_cpu_context);
7489 out:
7490 mutex_unlock(&pmus_lock);
7491 }
7492 static struct idr pmu_idr;
7493
7494 static ssize_t
7495 type_show(struct device *dev, struct device_attribute *attr, char *page)
7496 {
7497 struct pmu *pmu = dev_get_drvdata(dev);
7498
7499 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7500 }
7501 static DEVICE_ATTR_RO(type);
7502
7503 static ssize_t
7504 perf_event_mux_interval_ms_show(struct device *dev,
7505 struct device_attribute *attr,
7506 char *page)
7507 {
7508 struct pmu *pmu = dev_get_drvdata(dev);
7509
7510 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7511 }
7512
7513 static DEFINE_MUTEX(mux_interval_mutex);
7514
7515 static ssize_t
7516 perf_event_mux_interval_ms_store(struct device *dev,
7517 struct device_attribute *attr,
7518 const char *buf, size_t count)
7519 {
7520 struct pmu *pmu = dev_get_drvdata(dev);
7521 int timer, cpu, ret;
7522
7523 ret = kstrtoint(buf, 0, &timer);
7524 if (ret)
7525 return ret;
7526
7527 if (timer < 1)
7528 return -EINVAL;
7529
7530 /* same value, noting to do */
7531 if (timer == pmu->hrtimer_interval_ms)
7532 return count;
7533
7534 mutex_lock(&mux_interval_mutex);
7535 pmu->hrtimer_interval_ms = timer;
7536
7537 /* update all cpuctx for this PMU */
7538 get_online_cpus();
7539 for_each_online_cpu(cpu) {
7540 struct perf_cpu_context *cpuctx;
7541 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7542 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7543
7544 cpu_function_call(cpu,
7545 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7546 }
7547 put_online_cpus();
7548 mutex_unlock(&mux_interval_mutex);
7549
7550 return count;
7551 }
7552 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7553
7554 static struct attribute *pmu_dev_attrs[] = {
7555 &dev_attr_type.attr,
7556 &dev_attr_perf_event_mux_interval_ms.attr,
7557 NULL,
7558 };
7559 ATTRIBUTE_GROUPS(pmu_dev);
7560
7561 static int pmu_bus_running;
7562 static struct bus_type pmu_bus = {
7563 .name = "event_source",
7564 .dev_groups = pmu_dev_groups,
7565 };
7566
7567 static void pmu_dev_release(struct device *dev)
7568 {
7569 kfree(dev);
7570 }
7571
7572 static int pmu_dev_alloc(struct pmu *pmu)
7573 {
7574 int ret = -ENOMEM;
7575
7576 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7577 if (!pmu->dev)
7578 goto out;
7579
7580 pmu->dev->groups = pmu->attr_groups;
7581 device_initialize(pmu->dev);
7582 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7583 if (ret)
7584 goto free_dev;
7585
7586 dev_set_drvdata(pmu->dev, pmu);
7587 pmu->dev->bus = &pmu_bus;
7588 pmu->dev->release = pmu_dev_release;
7589 ret = device_add(pmu->dev);
7590 if (ret)
7591 goto free_dev;
7592
7593 out:
7594 return ret;
7595
7596 free_dev:
7597 put_device(pmu->dev);
7598 goto out;
7599 }
7600
7601 static struct lock_class_key cpuctx_mutex;
7602 static struct lock_class_key cpuctx_lock;
7603
7604 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7605 {
7606 int cpu, ret;
7607
7608 mutex_lock(&pmus_lock);
7609 ret = -ENOMEM;
7610 pmu->pmu_disable_count = alloc_percpu(int);
7611 if (!pmu->pmu_disable_count)
7612 goto unlock;
7613
7614 pmu->type = -1;
7615 if (!name)
7616 goto skip_type;
7617 pmu->name = name;
7618
7619 if (type < 0) {
7620 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7621 if (type < 0) {
7622 ret = type;
7623 goto free_pdc;
7624 }
7625 }
7626 pmu->type = type;
7627
7628 if (pmu_bus_running) {
7629 ret = pmu_dev_alloc(pmu);
7630 if (ret)
7631 goto free_idr;
7632 }
7633
7634 skip_type:
7635 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7636 if (pmu->pmu_cpu_context)
7637 goto got_cpu_context;
7638
7639 ret = -ENOMEM;
7640 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7641 if (!pmu->pmu_cpu_context)
7642 goto free_dev;
7643
7644 for_each_possible_cpu(cpu) {
7645 struct perf_cpu_context *cpuctx;
7646
7647 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7648 __perf_event_init_context(&cpuctx->ctx);
7649 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7650 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7651 cpuctx->ctx.pmu = pmu;
7652
7653 __perf_mux_hrtimer_init(cpuctx, cpu);
7654
7655 cpuctx->unique_pmu = pmu;
7656 }
7657
7658 got_cpu_context:
7659 if (!pmu->start_txn) {
7660 if (pmu->pmu_enable) {
7661 /*
7662 * If we have pmu_enable/pmu_disable calls, install
7663 * transaction stubs that use that to try and batch
7664 * hardware accesses.
7665 */
7666 pmu->start_txn = perf_pmu_start_txn;
7667 pmu->commit_txn = perf_pmu_commit_txn;
7668 pmu->cancel_txn = perf_pmu_cancel_txn;
7669 } else {
7670 pmu->start_txn = perf_pmu_nop_txn;
7671 pmu->commit_txn = perf_pmu_nop_int;
7672 pmu->cancel_txn = perf_pmu_nop_void;
7673 }
7674 }
7675
7676 if (!pmu->pmu_enable) {
7677 pmu->pmu_enable = perf_pmu_nop_void;
7678 pmu->pmu_disable = perf_pmu_nop_void;
7679 }
7680
7681 if (!pmu->event_idx)
7682 pmu->event_idx = perf_event_idx_default;
7683
7684 list_add_rcu(&pmu->entry, &pmus);
7685 atomic_set(&pmu->exclusive_cnt, 0);
7686 ret = 0;
7687 unlock:
7688 mutex_unlock(&pmus_lock);
7689
7690 return ret;
7691
7692 free_dev:
7693 device_del(pmu->dev);
7694 put_device(pmu->dev);
7695
7696 free_idr:
7697 if (pmu->type >= PERF_TYPE_MAX)
7698 idr_remove(&pmu_idr, pmu->type);
7699
7700 free_pdc:
7701 free_percpu(pmu->pmu_disable_count);
7702 goto unlock;
7703 }
7704 EXPORT_SYMBOL_GPL(perf_pmu_register);
7705
7706 void perf_pmu_unregister(struct pmu *pmu)
7707 {
7708 mutex_lock(&pmus_lock);
7709 list_del_rcu(&pmu->entry);
7710 mutex_unlock(&pmus_lock);
7711
7712 /*
7713 * We dereference the pmu list under both SRCU and regular RCU, so
7714 * synchronize against both of those.
7715 */
7716 synchronize_srcu(&pmus_srcu);
7717 synchronize_rcu();
7718
7719 free_percpu(pmu->pmu_disable_count);
7720 if (pmu->type >= PERF_TYPE_MAX)
7721 idr_remove(&pmu_idr, pmu->type);
7722 device_del(pmu->dev);
7723 put_device(pmu->dev);
7724 free_pmu_context(pmu);
7725 }
7726 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7727
7728 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7729 {
7730 struct perf_event_context *ctx = NULL;
7731 int ret;
7732
7733 if (!try_module_get(pmu->module))
7734 return -ENODEV;
7735
7736 if (event->group_leader != event) {
7737 /*
7738 * This ctx->mutex can nest when we're called through
7739 * inheritance. See the perf_event_ctx_lock_nested() comment.
7740 */
7741 ctx = perf_event_ctx_lock_nested(event->group_leader,
7742 SINGLE_DEPTH_NESTING);
7743 BUG_ON(!ctx);
7744 }
7745
7746 event->pmu = pmu;
7747 ret = pmu->event_init(event);
7748
7749 if (ctx)
7750 perf_event_ctx_unlock(event->group_leader, ctx);
7751
7752 if (ret)
7753 module_put(pmu->module);
7754
7755 return ret;
7756 }
7757
7758 static struct pmu *perf_init_event(struct perf_event *event)
7759 {
7760 struct pmu *pmu = NULL;
7761 int idx;
7762 int ret;
7763
7764 idx = srcu_read_lock(&pmus_srcu);
7765
7766 rcu_read_lock();
7767 pmu = idr_find(&pmu_idr, event->attr.type);
7768 rcu_read_unlock();
7769 if (pmu) {
7770 ret = perf_try_init_event(pmu, event);
7771 if (ret)
7772 pmu = ERR_PTR(ret);
7773 goto unlock;
7774 }
7775
7776 list_for_each_entry_rcu(pmu, &pmus, entry) {
7777 ret = perf_try_init_event(pmu, event);
7778 if (!ret)
7779 goto unlock;
7780
7781 if (ret != -ENOENT) {
7782 pmu = ERR_PTR(ret);
7783 goto unlock;
7784 }
7785 }
7786 pmu = ERR_PTR(-ENOENT);
7787 unlock:
7788 srcu_read_unlock(&pmus_srcu, idx);
7789
7790 return pmu;
7791 }
7792
7793 static void account_event_cpu(struct perf_event *event, int cpu)
7794 {
7795 if (event->parent)
7796 return;
7797
7798 if (is_cgroup_event(event))
7799 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7800 }
7801
7802 static void account_event(struct perf_event *event)
7803 {
7804 if (event->parent)
7805 return;
7806
7807 if (event->attach_state & PERF_ATTACH_TASK)
7808 static_key_slow_inc(&perf_sched_events.key);
7809 if (event->attr.mmap || event->attr.mmap_data)
7810 atomic_inc(&nr_mmap_events);
7811 if (event->attr.comm)
7812 atomic_inc(&nr_comm_events);
7813 if (event->attr.task)
7814 atomic_inc(&nr_task_events);
7815 if (event->attr.freq) {
7816 if (atomic_inc_return(&nr_freq_events) == 1)
7817 tick_nohz_full_kick_all();
7818 }
7819 if (event->attr.context_switch) {
7820 atomic_inc(&nr_switch_events);
7821 static_key_slow_inc(&perf_sched_events.key);
7822 }
7823 if (has_branch_stack(event))
7824 static_key_slow_inc(&perf_sched_events.key);
7825 if (is_cgroup_event(event))
7826 static_key_slow_inc(&perf_sched_events.key);
7827
7828 account_event_cpu(event, event->cpu);
7829 }
7830
7831 /*
7832 * Allocate and initialize a event structure
7833 */
7834 static struct perf_event *
7835 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7836 struct task_struct *task,
7837 struct perf_event *group_leader,
7838 struct perf_event *parent_event,
7839 perf_overflow_handler_t overflow_handler,
7840 void *context, int cgroup_fd)
7841 {
7842 struct pmu *pmu;
7843 struct perf_event *event;
7844 struct hw_perf_event *hwc;
7845 long err = -EINVAL;
7846
7847 if ((unsigned)cpu >= nr_cpu_ids) {
7848 if (!task || cpu != -1)
7849 return ERR_PTR(-EINVAL);
7850 }
7851
7852 event = kzalloc(sizeof(*event), GFP_KERNEL);
7853 if (!event)
7854 return ERR_PTR(-ENOMEM);
7855
7856 /*
7857 * Single events are their own group leaders, with an
7858 * empty sibling list:
7859 */
7860 if (!group_leader)
7861 group_leader = event;
7862
7863 mutex_init(&event->child_mutex);
7864 INIT_LIST_HEAD(&event->child_list);
7865
7866 INIT_LIST_HEAD(&event->group_entry);
7867 INIT_LIST_HEAD(&event->event_entry);
7868 INIT_LIST_HEAD(&event->sibling_list);
7869 INIT_LIST_HEAD(&event->rb_entry);
7870 INIT_LIST_HEAD(&event->active_entry);
7871 INIT_HLIST_NODE(&event->hlist_entry);
7872
7873
7874 init_waitqueue_head(&event->waitq);
7875 init_irq_work(&event->pending, perf_pending_event);
7876
7877 mutex_init(&event->mmap_mutex);
7878
7879 atomic_long_set(&event->refcount, 1);
7880 event->cpu = cpu;
7881 event->attr = *attr;
7882 event->group_leader = group_leader;
7883 event->pmu = NULL;
7884 event->oncpu = -1;
7885
7886 event->parent = parent_event;
7887
7888 event->ns = get_pid_ns(task_active_pid_ns(current));
7889 event->id = atomic64_inc_return(&perf_event_id);
7890
7891 event->state = PERF_EVENT_STATE_INACTIVE;
7892
7893 if (task) {
7894 event->attach_state = PERF_ATTACH_TASK;
7895 /*
7896 * XXX pmu::event_init needs to know what task to account to
7897 * and we cannot use the ctx information because we need the
7898 * pmu before we get a ctx.
7899 */
7900 event->hw.target = task;
7901 }
7902
7903 event->clock = &local_clock;
7904 if (parent_event)
7905 event->clock = parent_event->clock;
7906
7907 if (!overflow_handler && parent_event) {
7908 overflow_handler = parent_event->overflow_handler;
7909 context = parent_event->overflow_handler_context;
7910 }
7911
7912 event->overflow_handler = overflow_handler;
7913 event->overflow_handler_context = context;
7914
7915 perf_event__state_init(event);
7916
7917 pmu = NULL;
7918
7919 hwc = &event->hw;
7920 hwc->sample_period = attr->sample_period;
7921 if (attr->freq && attr->sample_freq)
7922 hwc->sample_period = 1;
7923 hwc->last_period = hwc->sample_period;
7924
7925 local64_set(&hwc->period_left, hwc->sample_period);
7926
7927 /*
7928 * we currently do not support PERF_FORMAT_GROUP on inherited events
7929 */
7930 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7931 goto err_ns;
7932
7933 if (!has_branch_stack(event))
7934 event->attr.branch_sample_type = 0;
7935
7936 if (cgroup_fd != -1) {
7937 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7938 if (err)
7939 goto err_ns;
7940 }
7941
7942 pmu = perf_init_event(event);
7943 if (!pmu)
7944 goto err_ns;
7945 else if (IS_ERR(pmu)) {
7946 err = PTR_ERR(pmu);
7947 goto err_ns;
7948 }
7949
7950 err = exclusive_event_init(event);
7951 if (err)
7952 goto err_pmu;
7953
7954 if (!event->parent) {
7955 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7956 err = get_callchain_buffers();
7957 if (err)
7958 goto err_per_task;
7959 }
7960 }
7961
7962 return event;
7963
7964 err_per_task:
7965 exclusive_event_destroy(event);
7966
7967 err_pmu:
7968 if (event->destroy)
7969 event->destroy(event);
7970 module_put(pmu->module);
7971 err_ns:
7972 if (is_cgroup_event(event))
7973 perf_detach_cgroup(event);
7974 if (event->ns)
7975 put_pid_ns(event->ns);
7976 kfree(event);
7977
7978 return ERR_PTR(err);
7979 }
7980
7981 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7982 struct perf_event_attr *attr)
7983 {
7984 u32 size;
7985 int ret;
7986
7987 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7988 return -EFAULT;
7989
7990 /*
7991 * zero the full structure, so that a short copy will be nice.
7992 */
7993 memset(attr, 0, sizeof(*attr));
7994
7995 ret = get_user(size, &uattr->size);
7996 if (ret)
7997 return ret;
7998
7999 if (size > PAGE_SIZE) /* silly large */
8000 goto err_size;
8001
8002 if (!size) /* abi compat */
8003 size = PERF_ATTR_SIZE_VER0;
8004
8005 if (size < PERF_ATTR_SIZE_VER0)
8006 goto err_size;
8007
8008 /*
8009 * If we're handed a bigger struct than we know of,
8010 * ensure all the unknown bits are 0 - i.e. new
8011 * user-space does not rely on any kernel feature
8012 * extensions we dont know about yet.
8013 */
8014 if (size > sizeof(*attr)) {
8015 unsigned char __user *addr;
8016 unsigned char __user *end;
8017 unsigned char val;
8018
8019 addr = (void __user *)uattr + sizeof(*attr);
8020 end = (void __user *)uattr + size;
8021
8022 for (; addr < end; addr++) {
8023 ret = get_user(val, addr);
8024 if (ret)
8025 return ret;
8026 if (val)
8027 goto err_size;
8028 }
8029 size = sizeof(*attr);
8030 }
8031
8032 ret = copy_from_user(attr, uattr, size);
8033 if (ret)
8034 return -EFAULT;
8035
8036 if (attr->__reserved_1)
8037 return -EINVAL;
8038
8039 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8040 return -EINVAL;
8041
8042 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8043 return -EINVAL;
8044
8045 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8046 u64 mask = attr->branch_sample_type;
8047
8048 /* only using defined bits */
8049 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8050 return -EINVAL;
8051
8052 /* at least one branch bit must be set */
8053 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8054 return -EINVAL;
8055
8056 /* propagate priv level, when not set for branch */
8057 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8058
8059 /* exclude_kernel checked on syscall entry */
8060 if (!attr->exclude_kernel)
8061 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8062
8063 if (!attr->exclude_user)
8064 mask |= PERF_SAMPLE_BRANCH_USER;
8065
8066 if (!attr->exclude_hv)
8067 mask |= PERF_SAMPLE_BRANCH_HV;
8068 /*
8069 * adjust user setting (for HW filter setup)
8070 */
8071 attr->branch_sample_type = mask;
8072 }
8073 /* privileged levels capture (kernel, hv): check permissions */
8074 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8075 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8076 return -EACCES;
8077 }
8078
8079 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8080 ret = perf_reg_validate(attr->sample_regs_user);
8081 if (ret)
8082 return ret;
8083 }
8084
8085 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8086 if (!arch_perf_have_user_stack_dump())
8087 return -ENOSYS;
8088
8089 /*
8090 * We have __u32 type for the size, but so far
8091 * we can only use __u16 as maximum due to the
8092 * __u16 sample size limit.
8093 */
8094 if (attr->sample_stack_user >= USHRT_MAX)
8095 ret = -EINVAL;
8096 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8097 ret = -EINVAL;
8098 }
8099
8100 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8101 ret = perf_reg_validate(attr->sample_regs_intr);
8102 out:
8103 return ret;
8104
8105 err_size:
8106 put_user(sizeof(*attr), &uattr->size);
8107 ret = -E2BIG;
8108 goto out;
8109 }
8110
8111 static int
8112 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8113 {
8114 struct ring_buffer *rb = NULL;
8115 int ret = -EINVAL;
8116
8117 if (!output_event)
8118 goto set;
8119
8120 /* don't allow circular references */
8121 if (event == output_event)
8122 goto out;
8123
8124 /*
8125 * Don't allow cross-cpu buffers
8126 */
8127 if (output_event->cpu != event->cpu)
8128 goto out;
8129
8130 /*
8131 * If its not a per-cpu rb, it must be the same task.
8132 */
8133 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8134 goto out;
8135
8136 /*
8137 * Mixing clocks in the same buffer is trouble you don't need.
8138 */
8139 if (output_event->clock != event->clock)
8140 goto out;
8141
8142 /*
8143 * If both events generate aux data, they must be on the same PMU
8144 */
8145 if (has_aux(event) && has_aux(output_event) &&
8146 event->pmu != output_event->pmu)
8147 goto out;
8148
8149 set:
8150 mutex_lock(&event->mmap_mutex);
8151 /* Can't redirect output if we've got an active mmap() */
8152 if (atomic_read(&event->mmap_count))
8153 goto unlock;
8154
8155 if (output_event) {
8156 /* get the rb we want to redirect to */
8157 rb = ring_buffer_get(output_event);
8158 if (!rb)
8159 goto unlock;
8160 }
8161
8162 ring_buffer_attach(event, rb);
8163
8164 ret = 0;
8165 unlock:
8166 mutex_unlock(&event->mmap_mutex);
8167
8168 out:
8169 return ret;
8170 }
8171
8172 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8173 {
8174 if (b < a)
8175 swap(a, b);
8176
8177 mutex_lock(a);
8178 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8179 }
8180
8181 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8182 {
8183 bool nmi_safe = false;
8184
8185 switch (clk_id) {
8186 case CLOCK_MONOTONIC:
8187 event->clock = &ktime_get_mono_fast_ns;
8188 nmi_safe = true;
8189 break;
8190
8191 case CLOCK_MONOTONIC_RAW:
8192 event->clock = &ktime_get_raw_fast_ns;
8193 nmi_safe = true;
8194 break;
8195
8196 case CLOCK_REALTIME:
8197 event->clock = &ktime_get_real_ns;
8198 break;
8199
8200 case CLOCK_BOOTTIME:
8201 event->clock = &ktime_get_boot_ns;
8202 break;
8203
8204 case CLOCK_TAI:
8205 event->clock = &ktime_get_tai_ns;
8206 break;
8207
8208 default:
8209 return -EINVAL;
8210 }
8211
8212 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8213 return -EINVAL;
8214
8215 return 0;
8216 }
8217
8218 /**
8219 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8220 *
8221 * @attr_uptr: event_id type attributes for monitoring/sampling
8222 * @pid: target pid
8223 * @cpu: target cpu
8224 * @group_fd: group leader event fd
8225 */
8226 SYSCALL_DEFINE5(perf_event_open,
8227 struct perf_event_attr __user *, attr_uptr,
8228 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8229 {
8230 struct perf_event *group_leader = NULL, *output_event = NULL;
8231 struct perf_event *event, *sibling;
8232 struct perf_event_attr attr;
8233 struct perf_event_context *ctx, *uninitialized_var(gctx);
8234 struct file *event_file = NULL;
8235 struct fd group = {NULL, 0};
8236 struct task_struct *task = NULL;
8237 struct pmu *pmu;
8238 int event_fd;
8239 int move_group = 0;
8240 int err;
8241 int f_flags = O_RDWR;
8242 int cgroup_fd = -1;
8243
8244 /* for future expandability... */
8245 if (flags & ~PERF_FLAG_ALL)
8246 return -EINVAL;
8247
8248 err = perf_copy_attr(attr_uptr, &attr);
8249 if (err)
8250 return err;
8251
8252 if (!attr.exclude_kernel) {
8253 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8254 return -EACCES;
8255 }
8256
8257 if (attr.freq) {
8258 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8259 return -EINVAL;
8260 } else {
8261 if (attr.sample_period & (1ULL << 63))
8262 return -EINVAL;
8263 }
8264
8265 /*
8266 * In cgroup mode, the pid argument is used to pass the fd
8267 * opened to the cgroup directory in cgroupfs. The cpu argument
8268 * designates the cpu on which to monitor threads from that
8269 * cgroup.
8270 */
8271 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8272 return -EINVAL;
8273
8274 if (flags & PERF_FLAG_FD_CLOEXEC)
8275 f_flags |= O_CLOEXEC;
8276
8277 event_fd = get_unused_fd_flags(f_flags);
8278 if (event_fd < 0)
8279 return event_fd;
8280
8281 if (group_fd != -1) {
8282 err = perf_fget_light(group_fd, &group);
8283 if (err)
8284 goto err_fd;
8285 group_leader = group.file->private_data;
8286 if (flags & PERF_FLAG_FD_OUTPUT)
8287 output_event = group_leader;
8288 if (flags & PERF_FLAG_FD_NO_GROUP)
8289 group_leader = NULL;
8290 }
8291
8292 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8293 task = find_lively_task_by_vpid(pid);
8294 if (IS_ERR(task)) {
8295 err = PTR_ERR(task);
8296 goto err_group_fd;
8297 }
8298 }
8299
8300 if (task && group_leader &&
8301 group_leader->attr.inherit != attr.inherit) {
8302 err = -EINVAL;
8303 goto err_task;
8304 }
8305
8306 get_online_cpus();
8307
8308 if (flags & PERF_FLAG_PID_CGROUP)
8309 cgroup_fd = pid;
8310
8311 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8312 NULL, NULL, cgroup_fd);
8313 if (IS_ERR(event)) {
8314 err = PTR_ERR(event);
8315 goto err_cpus;
8316 }
8317
8318 if (is_sampling_event(event)) {
8319 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8320 err = -ENOTSUPP;
8321 goto err_alloc;
8322 }
8323 }
8324
8325 account_event(event);
8326
8327 /*
8328 * Special case software events and allow them to be part of
8329 * any hardware group.
8330 */
8331 pmu = event->pmu;
8332
8333 if (attr.use_clockid) {
8334 err = perf_event_set_clock(event, attr.clockid);
8335 if (err)
8336 goto err_alloc;
8337 }
8338
8339 if (group_leader &&
8340 (is_software_event(event) != is_software_event(group_leader))) {
8341 if (is_software_event(event)) {
8342 /*
8343 * If event and group_leader are not both a software
8344 * event, and event is, then group leader is not.
8345 *
8346 * Allow the addition of software events to !software
8347 * groups, this is safe because software events never
8348 * fail to schedule.
8349 */
8350 pmu = group_leader->pmu;
8351 } else if (is_software_event(group_leader) &&
8352 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8353 /*
8354 * In case the group is a pure software group, and we
8355 * try to add a hardware event, move the whole group to
8356 * the hardware context.
8357 */
8358 move_group = 1;
8359 }
8360 }
8361
8362 /*
8363 * Get the target context (task or percpu):
8364 */
8365 ctx = find_get_context(pmu, task, event);
8366 if (IS_ERR(ctx)) {
8367 err = PTR_ERR(ctx);
8368 goto err_alloc;
8369 }
8370
8371 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8372 err = -EBUSY;
8373 goto err_context;
8374 }
8375
8376 if (task) {
8377 put_task_struct(task);
8378 task = NULL;
8379 }
8380
8381 /*
8382 * Look up the group leader (we will attach this event to it):
8383 */
8384 if (group_leader) {
8385 err = -EINVAL;
8386
8387 /*
8388 * Do not allow a recursive hierarchy (this new sibling
8389 * becoming part of another group-sibling):
8390 */
8391 if (group_leader->group_leader != group_leader)
8392 goto err_context;
8393
8394 /* All events in a group should have the same clock */
8395 if (group_leader->clock != event->clock)
8396 goto err_context;
8397
8398 /*
8399 * Do not allow to attach to a group in a different
8400 * task or CPU context:
8401 */
8402 if (move_group) {
8403 /*
8404 * Make sure we're both on the same task, or both
8405 * per-cpu events.
8406 */
8407 if (group_leader->ctx->task != ctx->task)
8408 goto err_context;
8409
8410 /*
8411 * Make sure we're both events for the same CPU;
8412 * grouping events for different CPUs is broken; since
8413 * you can never concurrently schedule them anyhow.
8414 */
8415 if (group_leader->cpu != event->cpu)
8416 goto err_context;
8417 } else {
8418 if (group_leader->ctx != ctx)
8419 goto err_context;
8420 }
8421
8422 /*
8423 * Only a group leader can be exclusive or pinned
8424 */
8425 if (attr.exclusive || attr.pinned)
8426 goto err_context;
8427 }
8428
8429 if (output_event) {
8430 err = perf_event_set_output(event, output_event);
8431 if (err)
8432 goto err_context;
8433 }
8434
8435 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8436 f_flags);
8437 if (IS_ERR(event_file)) {
8438 err = PTR_ERR(event_file);
8439 goto err_context;
8440 }
8441
8442 if (move_group) {
8443 gctx = group_leader->ctx;
8444 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8445 } else {
8446 mutex_lock(&ctx->mutex);
8447 }
8448
8449 if (!perf_event_validate_size(event)) {
8450 err = -E2BIG;
8451 goto err_locked;
8452 }
8453
8454 /*
8455 * Must be under the same ctx::mutex as perf_install_in_context(),
8456 * because we need to serialize with concurrent event creation.
8457 */
8458 if (!exclusive_event_installable(event, ctx)) {
8459 /* exclusive and group stuff are assumed mutually exclusive */
8460 WARN_ON_ONCE(move_group);
8461
8462 err = -EBUSY;
8463 goto err_locked;
8464 }
8465
8466 WARN_ON_ONCE(ctx->parent_ctx);
8467
8468 if (move_group) {
8469 /*
8470 * See perf_event_ctx_lock() for comments on the details
8471 * of swizzling perf_event::ctx.
8472 */
8473 perf_remove_from_context(group_leader, false);
8474
8475 list_for_each_entry(sibling, &group_leader->sibling_list,
8476 group_entry) {
8477 perf_remove_from_context(sibling, false);
8478 put_ctx(gctx);
8479 }
8480
8481 /*
8482 * Wait for everybody to stop referencing the events through
8483 * the old lists, before installing it on new lists.
8484 */
8485 synchronize_rcu();
8486
8487 /*
8488 * Install the group siblings before the group leader.
8489 *
8490 * Because a group leader will try and install the entire group
8491 * (through the sibling list, which is still in-tact), we can
8492 * end up with siblings installed in the wrong context.
8493 *
8494 * By installing siblings first we NO-OP because they're not
8495 * reachable through the group lists.
8496 */
8497 list_for_each_entry(sibling, &group_leader->sibling_list,
8498 group_entry) {
8499 perf_event__state_init(sibling);
8500 perf_install_in_context(ctx, sibling, sibling->cpu);
8501 get_ctx(ctx);
8502 }
8503
8504 /*
8505 * Removing from the context ends up with disabled
8506 * event. What we want here is event in the initial
8507 * startup state, ready to be add into new context.
8508 */
8509 perf_event__state_init(group_leader);
8510 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8511 get_ctx(ctx);
8512
8513 /*
8514 * Now that all events are installed in @ctx, nothing
8515 * references @gctx anymore, so drop the last reference we have
8516 * on it.
8517 */
8518 put_ctx(gctx);
8519 }
8520
8521 /*
8522 * Precalculate sample_data sizes; do while holding ctx::mutex such
8523 * that we're serialized against further additions and before
8524 * perf_install_in_context() which is the point the event is active and
8525 * can use these values.
8526 */
8527 perf_event__header_size(event);
8528 perf_event__id_header_size(event);
8529
8530 perf_install_in_context(ctx, event, event->cpu);
8531 perf_unpin_context(ctx);
8532
8533 if (move_group)
8534 mutex_unlock(&gctx->mutex);
8535 mutex_unlock(&ctx->mutex);
8536
8537 put_online_cpus();
8538
8539 event->owner = current;
8540
8541 mutex_lock(&current->perf_event_mutex);
8542 list_add_tail(&event->owner_entry, &current->perf_event_list);
8543 mutex_unlock(&current->perf_event_mutex);
8544
8545 /*
8546 * Drop the reference on the group_event after placing the
8547 * new event on the sibling_list. This ensures destruction
8548 * of the group leader will find the pointer to itself in
8549 * perf_group_detach().
8550 */
8551 fdput(group);
8552 fd_install(event_fd, event_file);
8553 return event_fd;
8554
8555 err_locked:
8556 if (move_group)
8557 mutex_unlock(&gctx->mutex);
8558 mutex_unlock(&ctx->mutex);
8559 /* err_file: */
8560 fput(event_file);
8561 err_context:
8562 perf_unpin_context(ctx);
8563 put_ctx(ctx);
8564 err_alloc:
8565 free_event(event);
8566 err_cpus:
8567 put_online_cpus();
8568 err_task:
8569 if (task)
8570 put_task_struct(task);
8571 err_group_fd:
8572 fdput(group);
8573 err_fd:
8574 put_unused_fd(event_fd);
8575 return err;
8576 }
8577
8578 /**
8579 * perf_event_create_kernel_counter
8580 *
8581 * @attr: attributes of the counter to create
8582 * @cpu: cpu in which the counter is bound
8583 * @task: task to profile (NULL for percpu)
8584 */
8585 struct perf_event *
8586 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8587 struct task_struct *task,
8588 perf_overflow_handler_t overflow_handler,
8589 void *context)
8590 {
8591 struct perf_event_context *ctx;
8592 struct perf_event *event;
8593 int err;
8594
8595 /*
8596 * Get the target context (task or percpu):
8597 */
8598
8599 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8600 overflow_handler, context, -1);
8601 if (IS_ERR(event)) {
8602 err = PTR_ERR(event);
8603 goto err;
8604 }
8605
8606 /* Mark owner so we could distinguish it from user events. */
8607 event->owner = EVENT_OWNER_KERNEL;
8608
8609 account_event(event);
8610
8611 ctx = find_get_context(event->pmu, task, event);
8612 if (IS_ERR(ctx)) {
8613 err = PTR_ERR(ctx);
8614 goto err_free;
8615 }
8616
8617 WARN_ON_ONCE(ctx->parent_ctx);
8618 mutex_lock(&ctx->mutex);
8619 if (!exclusive_event_installable(event, ctx)) {
8620 mutex_unlock(&ctx->mutex);
8621 perf_unpin_context(ctx);
8622 put_ctx(ctx);
8623 err = -EBUSY;
8624 goto err_free;
8625 }
8626
8627 perf_install_in_context(ctx, event, cpu);
8628 perf_unpin_context(ctx);
8629 mutex_unlock(&ctx->mutex);
8630
8631 return event;
8632
8633 err_free:
8634 free_event(event);
8635 err:
8636 return ERR_PTR(err);
8637 }
8638 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8639
8640 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8641 {
8642 struct perf_event_context *src_ctx;
8643 struct perf_event_context *dst_ctx;
8644 struct perf_event *event, *tmp;
8645 LIST_HEAD(events);
8646
8647 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8648 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8649
8650 /*
8651 * See perf_event_ctx_lock() for comments on the details
8652 * of swizzling perf_event::ctx.
8653 */
8654 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8655 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8656 event_entry) {
8657 perf_remove_from_context(event, false);
8658 unaccount_event_cpu(event, src_cpu);
8659 put_ctx(src_ctx);
8660 list_add(&event->migrate_entry, &events);
8661 }
8662
8663 /*
8664 * Wait for the events to quiesce before re-instating them.
8665 */
8666 synchronize_rcu();
8667
8668 /*
8669 * Re-instate events in 2 passes.
8670 *
8671 * Skip over group leaders and only install siblings on this first
8672 * pass, siblings will not get enabled without a leader, however a
8673 * leader will enable its siblings, even if those are still on the old
8674 * context.
8675 */
8676 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8677 if (event->group_leader == event)
8678 continue;
8679
8680 list_del(&event->migrate_entry);
8681 if (event->state >= PERF_EVENT_STATE_OFF)
8682 event->state = PERF_EVENT_STATE_INACTIVE;
8683 account_event_cpu(event, dst_cpu);
8684 perf_install_in_context(dst_ctx, event, dst_cpu);
8685 get_ctx(dst_ctx);
8686 }
8687
8688 /*
8689 * Once all the siblings are setup properly, install the group leaders
8690 * to make it go.
8691 */
8692 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8693 list_del(&event->migrate_entry);
8694 if (event->state >= PERF_EVENT_STATE_OFF)
8695 event->state = PERF_EVENT_STATE_INACTIVE;
8696 account_event_cpu(event, dst_cpu);
8697 perf_install_in_context(dst_ctx, event, dst_cpu);
8698 get_ctx(dst_ctx);
8699 }
8700 mutex_unlock(&dst_ctx->mutex);
8701 mutex_unlock(&src_ctx->mutex);
8702 }
8703 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8704
8705 static void sync_child_event(struct perf_event *child_event,
8706 struct task_struct *child)
8707 {
8708 struct perf_event *parent_event = child_event->parent;
8709 u64 child_val;
8710
8711 if (child_event->attr.inherit_stat)
8712 perf_event_read_event(child_event, child);
8713
8714 child_val = perf_event_count(child_event);
8715
8716 /*
8717 * Add back the child's count to the parent's count:
8718 */
8719 atomic64_add(child_val, &parent_event->child_count);
8720 atomic64_add(child_event->total_time_enabled,
8721 &parent_event->child_total_time_enabled);
8722 atomic64_add(child_event->total_time_running,
8723 &parent_event->child_total_time_running);
8724
8725 /*
8726 * Remove this event from the parent's list
8727 */
8728 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8729 mutex_lock(&parent_event->child_mutex);
8730 list_del_init(&child_event->child_list);
8731 mutex_unlock(&parent_event->child_mutex);
8732
8733 /*
8734 * Make sure user/parent get notified, that we just
8735 * lost one event.
8736 */
8737 perf_event_wakeup(parent_event);
8738
8739 /*
8740 * Release the parent event, if this was the last
8741 * reference to it.
8742 */
8743 put_event(parent_event);
8744 }
8745
8746 static void
8747 __perf_event_exit_task(struct perf_event *child_event,
8748 struct perf_event_context *child_ctx,
8749 struct task_struct *child)
8750 {
8751 /*
8752 * Do not destroy the 'original' grouping; because of the context
8753 * switch optimization the original events could've ended up in a
8754 * random child task.
8755 *
8756 * If we were to destroy the original group, all group related
8757 * operations would cease to function properly after this random
8758 * child dies.
8759 *
8760 * Do destroy all inherited groups, we don't care about those
8761 * and being thorough is better.
8762 */
8763 perf_remove_from_context(child_event, !!child_event->parent);
8764
8765 /*
8766 * It can happen that the parent exits first, and has events
8767 * that are still around due to the child reference. These
8768 * events need to be zapped.
8769 */
8770 if (child_event->parent) {
8771 sync_child_event(child_event, child);
8772 free_event(child_event);
8773 } else {
8774 child_event->state = PERF_EVENT_STATE_EXIT;
8775 perf_event_wakeup(child_event);
8776 }
8777 }
8778
8779 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8780 {
8781 struct perf_event *child_event, *next;
8782 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8783 unsigned long flags;
8784
8785 if (likely(!child->perf_event_ctxp[ctxn])) {
8786 perf_event_task(child, NULL, 0);
8787 return;
8788 }
8789
8790 local_irq_save(flags);
8791 /*
8792 * We can't reschedule here because interrupts are disabled,
8793 * and either child is current or it is a task that can't be
8794 * scheduled, so we are now safe from rescheduling changing
8795 * our context.
8796 */
8797 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8798
8799 /*
8800 * Take the context lock here so that if find_get_context is
8801 * reading child->perf_event_ctxp, we wait until it has
8802 * incremented the context's refcount before we do put_ctx below.
8803 */
8804 raw_spin_lock(&child_ctx->lock);
8805 task_ctx_sched_out(child_ctx);
8806 child->perf_event_ctxp[ctxn] = NULL;
8807
8808 /*
8809 * If this context is a clone; unclone it so it can't get
8810 * swapped to another process while we're removing all
8811 * the events from it.
8812 */
8813 clone_ctx = unclone_ctx(child_ctx);
8814 update_context_time(child_ctx);
8815 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8816
8817 if (clone_ctx)
8818 put_ctx(clone_ctx);
8819
8820 /*
8821 * Report the task dead after unscheduling the events so that we
8822 * won't get any samples after PERF_RECORD_EXIT. We can however still
8823 * get a few PERF_RECORD_READ events.
8824 */
8825 perf_event_task(child, child_ctx, 0);
8826
8827 /*
8828 * We can recurse on the same lock type through:
8829 *
8830 * __perf_event_exit_task()
8831 * sync_child_event()
8832 * put_event()
8833 * mutex_lock(&ctx->mutex)
8834 *
8835 * But since its the parent context it won't be the same instance.
8836 */
8837 mutex_lock(&child_ctx->mutex);
8838
8839 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8840 __perf_event_exit_task(child_event, child_ctx, child);
8841
8842 mutex_unlock(&child_ctx->mutex);
8843
8844 put_ctx(child_ctx);
8845 }
8846
8847 /*
8848 * When a child task exits, feed back event values to parent events.
8849 */
8850 void perf_event_exit_task(struct task_struct *child)
8851 {
8852 struct perf_event *event, *tmp;
8853 int ctxn;
8854
8855 mutex_lock(&child->perf_event_mutex);
8856 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8857 owner_entry) {
8858 list_del_init(&event->owner_entry);
8859
8860 /*
8861 * Ensure the list deletion is visible before we clear
8862 * the owner, closes a race against perf_release() where
8863 * we need to serialize on the owner->perf_event_mutex.
8864 */
8865 smp_wmb();
8866 event->owner = NULL;
8867 }
8868 mutex_unlock(&child->perf_event_mutex);
8869
8870 for_each_task_context_nr(ctxn)
8871 perf_event_exit_task_context(child, ctxn);
8872 }
8873
8874 static void perf_free_event(struct perf_event *event,
8875 struct perf_event_context *ctx)
8876 {
8877 struct perf_event *parent = event->parent;
8878
8879 if (WARN_ON_ONCE(!parent))
8880 return;
8881
8882 mutex_lock(&parent->child_mutex);
8883 list_del_init(&event->child_list);
8884 mutex_unlock(&parent->child_mutex);
8885
8886 put_event(parent);
8887
8888 raw_spin_lock_irq(&ctx->lock);
8889 perf_group_detach(event);
8890 list_del_event(event, ctx);
8891 raw_spin_unlock_irq(&ctx->lock);
8892 free_event(event);
8893 }
8894
8895 /*
8896 * Free an unexposed, unused context as created by inheritance by
8897 * perf_event_init_task below, used by fork() in case of fail.
8898 *
8899 * Not all locks are strictly required, but take them anyway to be nice and
8900 * help out with the lockdep assertions.
8901 */
8902 void perf_event_free_task(struct task_struct *task)
8903 {
8904 struct perf_event_context *ctx;
8905 struct perf_event *event, *tmp;
8906 int ctxn;
8907
8908 for_each_task_context_nr(ctxn) {
8909 ctx = task->perf_event_ctxp[ctxn];
8910 if (!ctx)
8911 continue;
8912
8913 mutex_lock(&ctx->mutex);
8914 again:
8915 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8916 group_entry)
8917 perf_free_event(event, ctx);
8918
8919 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8920 group_entry)
8921 perf_free_event(event, ctx);
8922
8923 if (!list_empty(&ctx->pinned_groups) ||
8924 !list_empty(&ctx->flexible_groups))
8925 goto again;
8926
8927 mutex_unlock(&ctx->mutex);
8928
8929 put_ctx(ctx);
8930 }
8931 }
8932
8933 void perf_event_delayed_put(struct task_struct *task)
8934 {
8935 int ctxn;
8936
8937 for_each_task_context_nr(ctxn)
8938 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8939 }
8940
8941 struct perf_event *perf_event_get(unsigned int fd)
8942 {
8943 int err;
8944 struct fd f;
8945 struct perf_event *event;
8946
8947 err = perf_fget_light(fd, &f);
8948 if (err)
8949 return ERR_PTR(err);
8950
8951 event = f.file->private_data;
8952 atomic_long_inc(&event->refcount);
8953 fdput(f);
8954
8955 return event;
8956 }
8957
8958 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8959 {
8960 if (!event)
8961 return ERR_PTR(-EINVAL);
8962
8963 return &event->attr;
8964 }
8965
8966 /*
8967 * inherit a event from parent task to child task:
8968 */
8969 static struct perf_event *
8970 inherit_event(struct perf_event *parent_event,
8971 struct task_struct *parent,
8972 struct perf_event_context *parent_ctx,
8973 struct task_struct *child,
8974 struct perf_event *group_leader,
8975 struct perf_event_context *child_ctx)
8976 {
8977 enum perf_event_active_state parent_state = parent_event->state;
8978 struct perf_event *child_event;
8979 unsigned long flags;
8980
8981 /*
8982 * Instead of creating recursive hierarchies of events,
8983 * we link inherited events back to the original parent,
8984 * which has a filp for sure, which we use as the reference
8985 * count:
8986 */
8987 if (parent_event->parent)
8988 parent_event = parent_event->parent;
8989
8990 child_event = perf_event_alloc(&parent_event->attr,
8991 parent_event->cpu,
8992 child,
8993 group_leader, parent_event,
8994 NULL, NULL, -1);
8995 if (IS_ERR(child_event))
8996 return child_event;
8997
8998 if (is_orphaned_event(parent_event) ||
8999 !atomic_long_inc_not_zero(&parent_event->refcount)) {
9000 free_event(child_event);
9001 return NULL;
9002 }
9003
9004 get_ctx(child_ctx);
9005
9006 /*
9007 * Make the child state follow the state of the parent event,
9008 * not its attr.disabled bit. We hold the parent's mutex,
9009 * so we won't race with perf_event_{en, dis}able_family.
9010 */
9011 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9012 child_event->state = PERF_EVENT_STATE_INACTIVE;
9013 else
9014 child_event->state = PERF_EVENT_STATE_OFF;
9015
9016 if (parent_event->attr.freq) {
9017 u64 sample_period = parent_event->hw.sample_period;
9018 struct hw_perf_event *hwc = &child_event->hw;
9019
9020 hwc->sample_period = sample_period;
9021 hwc->last_period = sample_period;
9022
9023 local64_set(&hwc->period_left, sample_period);
9024 }
9025
9026 child_event->ctx = child_ctx;
9027 child_event->overflow_handler = parent_event->overflow_handler;
9028 child_event->overflow_handler_context
9029 = parent_event->overflow_handler_context;
9030
9031 /*
9032 * Precalculate sample_data sizes
9033 */
9034 perf_event__header_size(child_event);
9035 perf_event__id_header_size(child_event);
9036
9037 /*
9038 * Link it up in the child's context:
9039 */
9040 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9041 add_event_to_ctx(child_event, child_ctx);
9042 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9043
9044 /*
9045 * Link this into the parent event's child list
9046 */
9047 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9048 mutex_lock(&parent_event->child_mutex);
9049 list_add_tail(&child_event->child_list, &parent_event->child_list);
9050 mutex_unlock(&parent_event->child_mutex);
9051
9052 return child_event;
9053 }
9054
9055 static int inherit_group(struct perf_event *parent_event,
9056 struct task_struct *parent,
9057 struct perf_event_context *parent_ctx,
9058 struct task_struct *child,
9059 struct perf_event_context *child_ctx)
9060 {
9061 struct perf_event *leader;
9062 struct perf_event *sub;
9063 struct perf_event *child_ctr;
9064
9065 leader = inherit_event(parent_event, parent, parent_ctx,
9066 child, NULL, child_ctx);
9067 if (IS_ERR(leader))
9068 return PTR_ERR(leader);
9069 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9070 child_ctr = inherit_event(sub, parent, parent_ctx,
9071 child, leader, child_ctx);
9072 if (IS_ERR(child_ctr))
9073 return PTR_ERR(child_ctr);
9074 }
9075 return 0;
9076 }
9077
9078 static int
9079 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9080 struct perf_event_context *parent_ctx,
9081 struct task_struct *child, int ctxn,
9082 int *inherited_all)
9083 {
9084 int ret;
9085 struct perf_event_context *child_ctx;
9086
9087 if (!event->attr.inherit) {
9088 *inherited_all = 0;
9089 return 0;
9090 }
9091
9092 child_ctx = child->perf_event_ctxp[ctxn];
9093 if (!child_ctx) {
9094 /*
9095 * This is executed from the parent task context, so
9096 * inherit events that have been marked for cloning.
9097 * First allocate and initialize a context for the
9098 * child.
9099 */
9100
9101 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9102 if (!child_ctx)
9103 return -ENOMEM;
9104
9105 child->perf_event_ctxp[ctxn] = child_ctx;
9106 }
9107
9108 ret = inherit_group(event, parent, parent_ctx,
9109 child, child_ctx);
9110
9111 if (ret)
9112 *inherited_all = 0;
9113
9114 return ret;
9115 }
9116
9117 /*
9118 * Initialize the perf_event context in task_struct
9119 */
9120 static int perf_event_init_context(struct task_struct *child, int ctxn)
9121 {
9122 struct perf_event_context *child_ctx, *parent_ctx;
9123 struct perf_event_context *cloned_ctx;
9124 struct perf_event *event;
9125 struct task_struct *parent = current;
9126 int inherited_all = 1;
9127 unsigned long flags;
9128 int ret = 0;
9129
9130 if (likely(!parent->perf_event_ctxp[ctxn]))
9131 return 0;
9132
9133 /*
9134 * If the parent's context is a clone, pin it so it won't get
9135 * swapped under us.
9136 */
9137 parent_ctx = perf_pin_task_context(parent, ctxn);
9138 if (!parent_ctx)
9139 return 0;
9140
9141 /*
9142 * No need to check if parent_ctx != NULL here; since we saw
9143 * it non-NULL earlier, the only reason for it to become NULL
9144 * is if we exit, and since we're currently in the middle of
9145 * a fork we can't be exiting at the same time.
9146 */
9147
9148 /*
9149 * Lock the parent list. No need to lock the child - not PID
9150 * hashed yet and not running, so nobody can access it.
9151 */
9152 mutex_lock(&parent_ctx->mutex);
9153
9154 /*
9155 * We dont have to disable NMIs - we are only looking at
9156 * the list, not manipulating it:
9157 */
9158 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9159 ret = inherit_task_group(event, parent, parent_ctx,
9160 child, ctxn, &inherited_all);
9161 if (ret)
9162 break;
9163 }
9164
9165 /*
9166 * We can't hold ctx->lock when iterating the ->flexible_group list due
9167 * to allocations, but we need to prevent rotation because
9168 * rotate_ctx() will change the list from interrupt context.
9169 */
9170 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9171 parent_ctx->rotate_disable = 1;
9172 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9173
9174 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9175 ret = inherit_task_group(event, parent, parent_ctx,
9176 child, ctxn, &inherited_all);
9177 if (ret)
9178 break;
9179 }
9180
9181 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9182 parent_ctx->rotate_disable = 0;
9183
9184 child_ctx = child->perf_event_ctxp[ctxn];
9185
9186 if (child_ctx && inherited_all) {
9187 /*
9188 * Mark the child context as a clone of the parent
9189 * context, or of whatever the parent is a clone of.
9190 *
9191 * Note that if the parent is a clone, the holding of
9192 * parent_ctx->lock avoids it from being uncloned.
9193 */
9194 cloned_ctx = parent_ctx->parent_ctx;
9195 if (cloned_ctx) {
9196 child_ctx->parent_ctx = cloned_ctx;
9197 child_ctx->parent_gen = parent_ctx->parent_gen;
9198 } else {
9199 child_ctx->parent_ctx = parent_ctx;
9200 child_ctx->parent_gen = parent_ctx->generation;
9201 }
9202 get_ctx(child_ctx->parent_ctx);
9203 }
9204
9205 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9206 mutex_unlock(&parent_ctx->mutex);
9207
9208 perf_unpin_context(parent_ctx);
9209 put_ctx(parent_ctx);
9210
9211 return ret;
9212 }
9213
9214 /*
9215 * Initialize the perf_event context in task_struct
9216 */
9217 int perf_event_init_task(struct task_struct *child)
9218 {
9219 int ctxn, ret;
9220
9221 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9222 mutex_init(&child->perf_event_mutex);
9223 INIT_LIST_HEAD(&child->perf_event_list);
9224
9225 for_each_task_context_nr(ctxn) {
9226 ret = perf_event_init_context(child, ctxn);
9227 if (ret) {
9228 perf_event_free_task(child);
9229 return ret;
9230 }
9231 }
9232
9233 return 0;
9234 }
9235
9236 static void __init perf_event_init_all_cpus(void)
9237 {
9238 struct swevent_htable *swhash;
9239 int cpu;
9240
9241 for_each_possible_cpu(cpu) {
9242 swhash = &per_cpu(swevent_htable, cpu);
9243 mutex_init(&swhash->hlist_mutex);
9244 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9245 }
9246 }
9247
9248 static void perf_event_init_cpu(int cpu)
9249 {
9250 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9251
9252 mutex_lock(&swhash->hlist_mutex);
9253 swhash->online = true;
9254 if (swhash->hlist_refcount > 0) {
9255 struct swevent_hlist *hlist;
9256
9257 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9258 WARN_ON(!hlist);
9259 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9260 }
9261 mutex_unlock(&swhash->hlist_mutex);
9262 }
9263
9264 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9265 static void __perf_event_exit_context(void *__info)
9266 {
9267 struct remove_event re = { .detach_group = true };
9268 struct perf_event_context *ctx = __info;
9269
9270 rcu_read_lock();
9271 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9272 __perf_remove_from_context(&re);
9273 rcu_read_unlock();
9274 }
9275
9276 static void perf_event_exit_cpu_context(int cpu)
9277 {
9278 struct perf_event_context *ctx;
9279 struct pmu *pmu;
9280 int idx;
9281
9282 idx = srcu_read_lock(&pmus_srcu);
9283 list_for_each_entry_rcu(pmu, &pmus, entry) {
9284 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9285
9286 mutex_lock(&ctx->mutex);
9287 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9288 mutex_unlock(&ctx->mutex);
9289 }
9290 srcu_read_unlock(&pmus_srcu, idx);
9291 }
9292
9293 static void perf_event_exit_cpu(int cpu)
9294 {
9295 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9296
9297 perf_event_exit_cpu_context(cpu);
9298
9299 mutex_lock(&swhash->hlist_mutex);
9300 swhash->online = false;
9301 swevent_hlist_release(swhash);
9302 mutex_unlock(&swhash->hlist_mutex);
9303 }
9304 #else
9305 static inline void perf_event_exit_cpu(int cpu) { }
9306 #endif
9307
9308 static int
9309 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9310 {
9311 int cpu;
9312
9313 for_each_online_cpu(cpu)
9314 perf_event_exit_cpu(cpu);
9315
9316 return NOTIFY_OK;
9317 }
9318
9319 /*
9320 * Run the perf reboot notifier at the very last possible moment so that
9321 * the generic watchdog code runs as long as possible.
9322 */
9323 static struct notifier_block perf_reboot_notifier = {
9324 .notifier_call = perf_reboot,
9325 .priority = INT_MIN,
9326 };
9327
9328 static int
9329 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9330 {
9331 unsigned int cpu = (long)hcpu;
9332
9333 switch (action & ~CPU_TASKS_FROZEN) {
9334
9335 case CPU_UP_PREPARE:
9336 case CPU_DOWN_FAILED:
9337 perf_event_init_cpu(cpu);
9338 break;
9339
9340 case CPU_UP_CANCELED:
9341 case CPU_DOWN_PREPARE:
9342 perf_event_exit_cpu(cpu);
9343 break;
9344 default:
9345 break;
9346 }
9347
9348 return NOTIFY_OK;
9349 }
9350
9351 void __init perf_event_init(void)
9352 {
9353 int ret;
9354
9355 idr_init(&pmu_idr);
9356
9357 perf_event_init_all_cpus();
9358 init_srcu_struct(&pmus_srcu);
9359 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9360 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9361 perf_pmu_register(&perf_task_clock, NULL, -1);
9362 perf_tp_register();
9363 perf_cpu_notifier(perf_cpu_notify);
9364 register_reboot_notifier(&perf_reboot_notifier);
9365
9366 ret = init_hw_breakpoint();
9367 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9368
9369 /* do not patch jump label more than once per second */
9370 jump_label_rate_limit(&perf_sched_events, HZ);
9371
9372 /*
9373 * Build time assertion that we keep the data_head at the intended
9374 * location. IOW, validation we got the __reserved[] size right.
9375 */
9376 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9377 != 1024);
9378 }
9379
9380 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9381 char *page)
9382 {
9383 struct perf_pmu_events_attr *pmu_attr =
9384 container_of(attr, struct perf_pmu_events_attr, attr);
9385
9386 if (pmu_attr->event_str)
9387 return sprintf(page, "%s\n", pmu_attr->event_str);
9388
9389 return 0;
9390 }
9391
9392 static int __init perf_event_sysfs_init(void)
9393 {
9394 struct pmu *pmu;
9395 int ret;
9396
9397 mutex_lock(&pmus_lock);
9398
9399 ret = bus_register(&pmu_bus);
9400 if (ret)
9401 goto unlock;
9402
9403 list_for_each_entry(pmu, &pmus, entry) {
9404 if (!pmu->name || pmu->type < 0)
9405 continue;
9406
9407 ret = pmu_dev_alloc(pmu);
9408 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9409 }
9410 pmu_bus_running = 1;
9411 ret = 0;
9412
9413 unlock:
9414 mutex_unlock(&pmus_lock);
9415
9416 return ret;
9417 }
9418 device_initcall(perf_event_sysfs_init);
9419
9420 #ifdef CONFIG_CGROUP_PERF
9421 static struct cgroup_subsys_state *
9422 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9423 {
9424 struct perf_cgroup *jc;
9425
9426 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9427 if (!jc)
9428 return ERR_PTR(-ENOMEM);
9429
9430 jc->info = alloc_percpu(struct perf_cgroup_info);
9431 if (!jc->info) {
9432 kfree(jc);
9433 return ERR_PTR(-ENOMEM);
9434 }
9435
9436 return &jc->css;
9437 }
9438
9439 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9440 {
9441 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9442
9443 free_percpu(jc->info);
9444 kfree(jc);
9445 }
9446
9447 static int __perf_cgroup_move(void *info)
9448 {
9449 struct task_struct *task = info;
9450 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9451 return 0;
9452 }
9453
9454 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9455 struct cgroup_taskset *tset)
9456 {
9457 struct task_struct *task;
9458
9459 cgroup_taskset_for_each(task, tset)
9460 task_function_call(task, __perf_cgroup_move, task);
9461 }
9462
9463 struct cgroup_subsys perf_event_cgrp_subsys = {
9464 .css_alloc = perf_cgroup_css_alloc,
9465 .css_free = perf_cgroup_css_free,
9466 .attach = perf_cgroup_attach,
9467 };
9468 #endif /* CONFIG_CGROUP_PERF */