]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/events/core.c
perf: Kill the dead !vma->vm_mm code in perf_event_mmap_event()
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
124 /*
125 * branch priv levels that need permission checks
126 */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136
137 /*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
149
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153
154 /*
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
160 */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165
166 /*
167 * max perf event sample rate
168 */
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178 static int perf_sample_allowed_ns __read_mostly =
179 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
180
181 void update_perf_cpu_limits(void)
182 {
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
188 }
189
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195 {
196 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206 }
207
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
220
221 return 0;
222 }
223
224 /*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230 #define NR_ACCUMULATED_SAMPLES 128
231 static DEFINE_PER_CPU(u64, running_sample_length);
232
233 void perf_sample_event_took(u64 sample_len_ns)
234 {
235 u64 avg_local_sample_len;
236 u64 local_samples_len;
237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238
239 if (allowed_ns == 0)
240 return;
241
242 /* decay the counter by 1 average sample */
243 local_samples_len = __get_cpu_var(running_sample_length);
244 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
245 local_samples_len += sample_len_ns;
246 __get_cpu_var(running_sample_length) = local_samples_len;
247
248 /*
249 * note: this will be biased artifically low until we have
250 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
251 * from having to maintain a count.
252 */
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 if (avg_local_sample_len <= allowed_ns)
256 return;
257
258 if (max_samples_per_tick <= 1)
259 return;
260
261 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
262 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
263 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264
265 printk_ratelimited(KERN_WARNING
266 "perf samples too long (%lld > %lld), lowering "
267 "kernel.perf_event_max_sample_rate to %d\n",
268 avg_local_sample_len, allowed_ns,
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272 }
273
274 static atomic64_t perf_event_id;
275
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
285
286 void __weak perf_event_print_debug(void) { }
287
288 extern __weak const char *perf_pmu_name(void)
289 {
290 return "pmu";
291 }
292
293 static inline u64 perf_clock(void)
294 {
295 return local_clock();
296 }
297
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
300 {
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302 }
303
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306 {
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310 }
311
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314 {
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318 }
319
320 #ifdef CONFIG_CGROUP_PERF
321
322 /*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326 struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329 };
330
331 struct perf_cgroup {
332 struct cgroup_subsys_state css;
333 struct perf_cgroup_info __percpu *info;
334 };
335
336 /*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
343 {
344 return container_of(task_css(task, perf_subsys_id),
345 struct perf_cgroup, css);
346 }
347
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
350 {
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
370 }
371
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
373 {
374 return css_tryget(&event->cgrp->css);
375 }
376
377 static inline void perf_put_cgroup(struct perf_event *event)
378 {
379 css_put(&event->cgrp->css);
380 }
381
382 static inline void perf_detach_cgroup(struct perf_event *event)
383 {
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386 }
387
388 static inline int is_cgroup_event(struct perf_event *event)
389 {
390 return event->cgrp != NULL;
391 }
392
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
394 {
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399 }
400
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402 {
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412 }
413
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415 {
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419 }
420
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
422 {
423 struct perf_cgroup *cgrp;
424
425 /*
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
428 */
429 if (!is_cgroup_event(event))
430 return;
431
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
438 }
439
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
443 {
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
457 info->timestamp = ctx->timestamp;
458 }
459
460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463 /*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469 void perf_cgroup_switch(struct task_struct *task, int mode)
470 {
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
492
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
514 WARN_ON_ONCE(cpuctx->cgrp);
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
525 }
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531 }
532
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
535 {
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
558 }
559
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
562 {
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
581 }
582
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586 {
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
589 struct fd f = fdget(fd);
590 int ret = 0;
591
592 if (!f.file)
593 return -EBADF;
594
595 rcu_read_lock();
596
597 css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 if (IS_ERR(css)) {
599 ret = PTR_ERR(css);
600 goto out;
601 }
602
603 cgrp = container_of(css, struct perf_cgroup, css);
604 event->cgrp = cgrp;
605
606 /* must be done before we fput() the file */
607 if (!perf_tryget_cgroup(event)) {
608 event->cgrp = NULL;
609 ret = -ENOENT;
610 goto out;
611 }
612
613 /*
614 * all events in a group must monitor
615 * the same cgroup because a task belongs
616 * to only one perf cgroup at a time
617 */
618 if (group_leader && group_leader->cgrp != cgrp) {
619 perf_detach_cgroup(event);
620 ret = -EINVAL;
621 }
622 out:
623 rcu_read_unlock();
624 fdput(f);
625 return ret;
626 }
627
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630 {
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
634 }
635
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
638 {
639 /*
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
644 */
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
647 }
648
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
652 {
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
655
656 if (!event->cgrp_defer_enabled)
657 return;
658
659 event->cgrp_defer_enabled = 0;
660
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
666 }
667 }
668 }
669 #else /* !CONFIG_CGROUP_PERF */
670
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 return true;
675 }
676
677 static inline void perf_detach_cgroup(struct perf_event *event)
678 {}
679
680 static inline int is_cgroup_event(struct perf_event *event)
681 {
682 return 0;
683 }
684
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686 {
687 return 0;
688 }
689
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
691 {
692 }
693
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695 {
696 }
697
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
700 {
701 }
702
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
705 {
706 }
707
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
711 {
712 return -EINVAL;
713 }
714
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
718 {
719 }
720
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723 {
724 }
725
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728 {
729 }
730
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 return 0;
734 }
735
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
738 {
739 }
740
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
744 {
745 }
746 #endif
747
748 /*
749 * set default to be dependent on timer tick just
750 * like original code
751 */
752 #define PERF_CPU_HRTIMER (1000 / HZ)
753 /*
754 * function must be called with interrupts disbled
755 */
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757 {
758 struct perf_cpu_context *cpuctx;
759 enum hrtimer_restart ret = HRTIMER_NORESTART;
760 int rotations = 0;
761
762 WARN_ON(!irqs_disabled());
763
764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765
766 rotations = perf_rotate_context(cpuctx);
767
768 /*
769 * arm timer if needed
770 */
771 if (rotations) {
772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 ret = HRTIMER_RESTART;
774 }
775
776 return ret;
777 }
778
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
781 {
782 struct perf_cpu_context *cpuctx;
783 struct pmu *pmu;
784 unsigned long flags;
785
786 if (WARN_ON(cpu != smp_processor_id()))
787 return;
788
789 local_irq_save(flags);
790
791 rcu_read_lock();
792
793 list_for_each_entry_rcu(pmu, &pmus, entry) {
794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795
796 if (pmu->task_ctx_nr == perf_sw_context)
797 continue;
798
799 hrtimer_cancel(&cpuctx->hrtimer);
800 }
801
802 rcu_read_unlock();
803
804 local_irq_restore(flags);
805 }
806
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808 {
809 struct hrtimer *hr = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
811 int timer;
812
813 /* no multiplexing needed for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return;
816
817 /*
818 * check default is sane, if not set then force to
819 * default interval (1/tick)
820 */
821 timer = pmu->hrtimer_interval_ms;
822 if (timer < 1)
823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824
825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826
827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 hr->function = perf_cpu_hrtimer_handler;
829 }
830
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832 {
833 struct hrtimer *hr = &cpuctx->hrtimer;
834 struct pmu *pmu = cpuctx->ctx.pmu;
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return;
839
840 if (hrtimer_active(hr))
841 return;
842
843 if (!hrtimer_callback_running(hr))
844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 0, HRTIMER_MODE_REL_PINNED, 0);
846 }
847
848 void perf_pmu_disable(struct pmu *pmu)
849 {
850 int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 if (!(*count)++)
852 pmu->pmu_disable(pmu);
853 }
854
855 void perf_pmu_enable(struct pmu *pmu)
856 {
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!--(*count))
859 pmu->pmu_enable(pmu);
860 }
861
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
863
864 /*
865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866 * because they're strictly cpu affine and rotate_start is called with IRQs
867 * disabled, while rotate_context is called from IRQ context.
868 */
869 static void perf_pmu_rotate_start(struct pmu *pmu)
870 {
871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 struct list_head *head = &__get_cpu_var(rotation_list);
873
874 WARN_ON(!irqs_disabled());
875
876 if (list_empty(&cpuctx->rotation_list))
877 list_add(&cpuctx->rotation_list, head);
878 }
879
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
890 if (ctx->task)
891 put_task_struct(ctx->task);
892 kfree_rcu(ctx, rcu_head);
893 }
894 }
895
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902 }
903
904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905 {
906 /*
907 * only top level events have the pid namespace they were created in
908 */
909 if (event->parent)
910 event = event->parent;
911
912 return task_tgid_nr_ns(p, event->ns);
913 }
914
915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916 {
917 /*
918 * only top level events have the pid namespace they were created in
919 */
920 if (event->parent)
921 event = event->parent;
922
923 return task_pid_nr_ns(p, event->ns);
924 }
925
926 /*
927 * If we inherit events we want to return the parent event id
928 * to userspace.
929 */
930 static u64 primary_event_id(struct perf_event *event)
931 {
932 u64 id = event->id;
933
934 if (event->parent)
935 id = event->parent->id;
936
937 return id;
938 }
939
940 /*
941 * Get the perf_event_context for a task and lock it.
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
944 */
945 static struct perf_event_context *
946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947 {
948 struct perf_event_context *ctx;
949
950 retry:
951 /*
952 * One of the few rules of preemptible RCU is that one cannot do
953 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 * part of the read side critical section was preemptible -- see
955 * rcu_read_unlock_special().
956 *
957 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 * side critical section is non-preemptible.
959 */
960 preempt_disable();
961 rcu_read_lock();
962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 if (ctx) {
964 /*
965 * If this context is a clone of another, it might
966 * get swapped for another underneath us by
967 * perf_event_task_sched_out, though the
968 * rcu_read_lock() protects us from any context
969 * getting freed. Lock the context and check if it
970 * got swapped before we could get the lock, and retry
971 * if so. If we locked the right context, then it
972 * can't get swapped on us any more.
973 */
974 raw_spin_lock_irqsave(&ctx->lock, *flags);
975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 rcu_read_unlock();
978 preempt_enable();
979 goto retry;
980 }
981
982 if (!atomic_inc_not_zero(&ctx->refcount)) {
983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 ctx = NULL;
985 }
986 }
987 rcu_read_unlock();
988 preempt_enable();
989 return ctx;
990 }
991
992 /*
993 * Get the context for a task and increment its pin_count so it
994 * can't get swapped to another task. This also increments its
995 * reference count so that the context can't get freed.
996 */
997 static struct perf_event_context *
998 perf_pin_task_context(struct task_struct *task, int ctxn)
999 {
1000 struct perf_event_context *ctx;
1001 unsigned long flags;
1002
1003 ctx = perf_lock_task_context(task, ctxn, &flags);
1004 if (ctx) {
1005 ++ctx->pin_count;
1006 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007 }
1008 return ctx;
1009 }
1010
1011 static void perf_unpin_context(struct perf_event_context *ctx)
1012 {
1013 unsigned long flags;
1014
1015 raw_spin_lock_irqsave(&ctx->lock, flags);
1016 --ctx->pin_count;
1017 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 }
1019
1020 /*
1021 * Update the record of the current time in a context.
1022 */
1023 static void update_context_time(struct perf_event_context *ctx)
1024 {
1025 u64 now = perf_clock();
1026
1027 ctx->time += now - ctx->timestamp;
1028 ctx->timestamp = now;
1029 }
1030
1031 static u64 perf_event_time(struct perf_event *event)
1032 {
1033 struct perf_event_context *ctx = event->ctx;
1034
1035 if (is_cgroup_event(event))
1036 return perf_cgroup_event_time(event);
1037
1038 return ctx ? ctx->time : 0;
1039 }
1040
1041 /*
1042 * Update the total_time_enabled and total_time_running fields for a event.
1043 * The caller of this function needs to hold the ctx->lock.
1044 */
1045 static void update_event_times(struct perf_event *event)
1046 {
1047 struct perf_event_context *ctx = event->ctx;
1048 u64 run_end;
1049
1050 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 return;
1053 /*
1054 * in cgroup mode, time_enabled represents
1055 * the time the event was enabled AND active
1056 * tasks were in the monitored cgroup. This is
1057 * independent of the activity of the context as
1058 * there may be a mix of cgroup and non-cgroup events.
1059 *
1060 * That is why we treat cgroup events differently
1061 * here.
1062 */
1063 if (is_cgroup_event(event))
1064 run_end = perf_cgroup_event_time(event);
1065 else if (ctx->is_active)
1066 run_end = ctx->time;
1067 else
1068 run_end = event->tstamp_stopped;
1069
1070 event->total_time_enabled = run_end - event->tstamp_enabled;
1071
1072 if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 run_end = event->tstamp_stopped;
1074 else
1075 run_end = perf_event_time(event);
1076
1077 event->total_time_running = run_end - event->tstamp_running;
1078
1079 }
1080
1081 /*
1082 * Update total_time_enabled and total_time_running for all events in a group.
1083 */
1084 static void update_group_times(struct perf_event *leader)
1085 {
1086 struct perf_event *event;
1087
1088 update_event_times(leader);
1089 list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 update_event_times(event);
1091 }
1092
1093 static struct list_head *
1094 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095 {
1096 if (event->attr.pinned)
1097 return &ctx->pinned_groups;
1098 else
1099 return &ctx->flexible_groups;
1100 }
1101
1102 /*
1103 * Add a event from the lists for its context.
1104 * Must be called with ctx->mutex and ctx->lock held.
1105 */
1106 static void
1107 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108 {
1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 event->attach_state |= PERF_ATTACH_CONTEXT;
1111
1112 /*
1113 * If we're a stand alone event or group leader, we go to the context
1114 * list, group events are kept attached to the group so that
1115 * perf_group_detach can, at all times, locate all siblings.
1116 */
1117 if (event->group_leader == event) {
1118 struct list_head *list;
1119
1120 if (is_software_event(event))
1121 event->group_flags |= PERF_GROUP_SOFTWARE;
1122
1123 list = ctx_group_list(event, ctx);
1124 list_add_tail(&event->group_entry, list);
1125 }
1126
1127 if (is_cgroup_event(event))
1128 ctx->nr_cgroups++;
1129
1130 if (has_branch_stack(event))
1131 ctx->nr_branch_stack++;
1132
1133 list_add_rcu(&event->event_entry, &ctx->event_list);
1134 if (!ctx->nr_events)
1135 perf_pmu_rotate_start(ctx->pmu);
1136 ctx->nr_events++;
1137 if (event->attr.inherit_stat)
1138 ctx->nr_stat++;
1139 }
1140
1141 /*
1142 * Initialize event state based on the perf_event_attr::disabled.
1143 */
1144 static inline void perf_event__state_init(struct perf_event *event)
1145 {
1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 PERF_EVENT_STATE_INACTIVE;
1148 }
1149
1150 /*
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1153 */
1154 static void perf_event__read_size(struct perf_event *event)
1155 {
1156 int entry = sizeof(u64); /* value */
1157 int size = 0;
1158 int nr = 1;
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 size += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_ID)
1167 entry += sizeof(u64);
1168
1169 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 nr += event->group_leader->nr_siblings;
1171 size += sizeof(u64);
1172 }
1173
1174 size += entry * nr;
1175 event->read_size = size;
1176 }
1177
1178 static void perf_event__header_size(struct perf_event *event)
1179 {
1180 struct perf_sample_data *data;
1181 u64 sample_type = event->attr.sample_type;
1182 u16 size = 0;
1183
1184 perf_event__read_size(event);
1185
1186 if (sample_type & PERF_SAMPLE_IP)
1187 size += sizeof(data->ip);
1188
1189 if (sample_type & PERF_SAMPLE_ADDR)
1190 size += sizeof(data->addr);
1191
1192 if (sample_type & PERF_SAMPLE_PERIOD)
1193 size += sizeof(data->period);
1194
1195 if (sample_type & PERF_SAMPLE_WEIGHT)
1196 size += sizeof(data->weight);
1197
1198 if (sample_type & PERF_SAMPLE_READ)
1199 size += event->read_size;
1200
1201 if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 size += sizeof(data->data_src.val);
1203
1204 if (sample_type & PERF_SAMPLE_TRANSACTION)
1205 size += sizeof(data->txn);
1206
1207 event->header_size = size;
1208 }
1209
1210 static void perf_event__id_header_size(struct perf_event *event)
1211 {
1212 struct perf_sample_data *data;
1213 u64 sample_type = event->attr.sample_type;
1214 u16 size = 0;
1215
1216 if (sample_type & PERF_SAMPLE_TID)
1217 size += sizeof(data->tid_entry);
1218
1219 if (sample_type & PERF_SAMPLE_TIME)
1220 size += sizeof(data->time);
1221
1222 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1223 size += sizeof(data->id);
1224
1225 if (sample_type & PERF_SAMPLE_ID)
1226 size += sizeof(data->id);
1227
1228 if (sample_type & PERF_SAMPLE_STREAM_ID)
1229 size += sizeof(data->stream_id);
1230
1231 if (sample_type & PERF_SAMPLE_CPU)
1232 size += sizeof(data->cpu_entry);
1233
1234 event->id_header_size = size;
1235 }
1236
1237 static void perf_group_attach(struct perf_event *event)
1238 {
1239 struct perf_event *group_leader = event->group_leader, *pos;
1240
1241 /*
1242 * We can have double attach due to group movement in perf_event_open.
1243 */
1244 if (event->attach_state & PERF_ATTACH_GROUP)
1245 return;
1246
1247 event->attach_state |= PERF_ATTACH_GROUP;
1248
1249 if (group_leader == event)
1250 return;
1251
1252 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1253 !is_software_event(event))
1254 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1255
1256 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1257 group_leader->nr_siblings++;
1258
1259 perf_event__header_size(group_leader);
1260
1261 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1262 perf_event__header_size(pos);
1263 }
1264
1265 /*
1266 * Remove a event from the lists for its context.
1267 * Must be called with ctx->mutex and ctx->lock held.
1268 */
1269 static void
1270 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1271 {
1272 struct perf_cpu_context *cpuctx;
1273 /*
1274 * We can have double detach due to exit/hot-unplug + close.
1275 */
1276 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1277 return;
1278
1279 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1280
1281 if (is_cgroup_event(event)) {
1282 ctx->nr_cgroups--;
1283 cpuctx = __get_cpu_context(ctx);
1284 /*
1285 * if there are no more cgroup events
1286 * then cler cgrp to avoid stale pointer
1287 * in update_cgrp_time_from_cpuctx()
1288 */
1289 if (!ctx->nr_cgroups)
1290 cpuctx->cgrp = NULL;
1291 }
1292
1293 if (has_branch_stack(event))
1294 ctx->nr_branch_stack--;
1295
1296 ctx->nr_events--;
1297 if (event->attr.inherit_stat)
1298 ctx->nr_stat--;
1299
1300 list_del_rcu(&event->event_entry);
1301
1302 if (event->group_leader == event)
1303 list_del_init(&event->group_entry);
1304
1305 update_group_times(event);
1306
1307 /*
1308 * If event was in error state, then keep it
1309 * that way, otherwise bogus counts will be
1310 * returned on read(). The only way to get out
1311 * of error state is by explicit re-enabling
1312 * of the event
1313 */
1314 if (event->state > PERF_EVENT_STATE_OFF)
1315 event->state = PERF_EVENT_STATE_OFF;
1316 }
1317
1318 static void perf_group_detach(struct perf_event *event)
1319 {
1320 struct perf_event *sibling, *tmp;
1321 struct list_head *list = NULL;
1322
1323 /*
1324 * We can have double detach due to exit/hot-unplug + close.
1325 */
1326 if (!(event->attach_state & PERF_ATTACH_GROUP))
1327 return;
1328
1329 event->attach_state &= ~PERF_ATTACH_GROUP;
1330
1331 /*
1332 * If this is a sibling, remove it from its group.
1333 */
1334 if (event->group_leader != event) {
1335 list_del_init(&event->group_entry);
1336 event->group_leader->nr_siblings--;
1337 goto out;
1338 }
1339
1340 if (!list_empty(&event->group_entry))
1341 list = &event->group_entry;
1342
1343 /*
1344 * If this was a group event with sibling events then
1345 * upgrade the siblings to singleton events by adding them
1346 * to whatever list we are on.
1347 */
1348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1349 if (list)
1350 list_move_tail(&sibling->group_entry, list);
1351 sibling->group_leader = sibling;
1352
1353 /* Inherit group flags from the previous leader */
1354 sibling->group_flags = event->group_flags;
1355 }
1356
1357 out:
1358 perf_event__header_size(event->group_leader);
1359
1360 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1361 perf_event__header_size(tmp);
1362 }
1363
1364 static inline int
1365 event_filter_match(struct perf_event *event)
1366 {
1367 return (event->cpu == -1 || event->cpu == smp_processor_id())
1368 && perf_cgroup_match(event);
1369 }
1370
1371 static void
1372 event_sched_out(struct perf_event *event,
1373 struct perf_cpu_context *cpuctx,
1374 struct perf_event_context *ctx)
1375 {
1376 u64 tstamp = perf_event_time(event);
1377 u64 delta;
1378 /*
1379 * An event which could not be activated because of
1380 * filter mismatch still needs to have its timings
1381 * maintained, otherwise bogus information is return
1382 * via read() for time_enabled, time_running:
1383 */
1384 if (event->state == PERF_EVENT_STATE_INACTIVE
1385 && !event_filter_match(event)) {
1386 delta = tstamp - event->tstamp_stopped;
1387 event->tstamp_running += delta;
1388 event->tstamp_stopped = tstamp;
1389 }
1390
1391 if (event->state != PERF_EVENT_STATE_ACTIVE)
1392 return;
1393
1394 event->state = PERF_EVENT_STATE_INACTIVE;
1395 if (event->pending_disable) {
1396 event->pending_disable = 0;
1397 event->state = PERF_EVENT_STATE_OFF;
1398 }
1399 event->tstamp_stopped = tstamp;
1400 event->pmu->del(event, 0);
1401 event->oncpu = -1;
1402
1403 if (!is_software_event(event))
1404 cpuctx->active_oncpu--;
1405 ctx->nr_active--;
1406 if (event->attr.freq && event->attr.sample_freq)
1407 ctx->nr_freq--;
1408 if (event->attr.exclusive || !cpuctx->active_oncpu)
1409 cpuctx->exclusive = 0;
1410 }
1411
1412 static void
1413 group_sched_out(struct perf_event *group_event,
1414 struct perf_cpu_context *cpuctx,
1415 struct perf_event_context *ctx)
1416 {
1417 struct perf_event *event;
1418 int state = group_event->state;
1419
1420 event_sched_out(group_event, cpuctx, ctx);
1421
1422 /*
1423 * Schedule out siblings (if any):
1424 */
1425 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1426 event_sched_out(event, cpuctx, ctx);
1427
1428 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1429 cpuctx->exclusive = 0;
1430 }
1431
1432 /*
1433 * Cross CPU call to remove a performance event
1434 *
1435 * We disable the event on the hardware level first. After that we
1436 * remove it from the context list.
1437 */
1438 static int __perf_remove_from_context(void *info)
1439 {
1440 struct perf_event *event = info;
1441 struct perf_event_context *ctx = event->ctx;
1442 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1443
1444 raw_spin_lock(&ctx->lock);
1445 event_sched_out(event, cpuctx, ctx);
1446 list_del_event(event, ctx);
1447 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1448 ctx->is_active = 0;
1449 cpuctx->task_ctx = NULL;
1450 }
1451 raw_spin_unlock(&ctx->lock);
1452
1453 return 0;
1454 }
1455
1456
1457 /*
1458 * Remove the event from a task's (or a CPU's) list of events.
1459 *
1460 * CPU events are removed with a smp call. For task events we only
1461 * call when the task is on a CPU.
1462 *
1463 * If event->ctx is a cloned context, callers must make sure that
1464 * every task struct that event->ctx->task could possibly point to
1465 * remains valid. This is OK when called from perf_release since
1466 * that only calls us on the top-level context, which can't be a clone.
1467 * When called from perf_event_exit_task, it's OK because the
1468 * context has been detached from its task.
1469 */
1470 static void perf_remove_from_context(struct perf_event *event)
1471 {
1472 struct perf_event_context *ctx = event->ctx;
1473 struct task_struct *task = ctx->task;
1474
1475 lockdep_assert_held(&ctx->mutex);
1476
1477 if (!task) {
1478 /*
1479 * Per cpu events are removed via an smp call and
1480 * the removal is always successful.
1481 */
1482 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1483 return;
1484 }
1485
1486 retry:
1487 if (!task_function_call(task, __perf_remove_from_context, event))
1488 return;
1489
1490 raw_spin_lock_irq(&ctx->lock);
1491 /*
1492 * If we failed to find a running task, but find the context active now
1493 * that we've acquired the ctx->lock, retry.
1494 */
1495 if (ctx->is_active) {
1496 raw_spin_unlock_irq(&ctx->lock);
1497 goto retry;
1498 }
1499
1500 /*
1501 * Since the task isn't running, its safe to remove the event, us
1502 * holding the ctx->lock ensures the task won't get scheduled in.
1503 */
1504 list_del_event(event, ctx);
1505 raw_spin_unlock_irq(&ctx->lock);
1506 }
1507
1508 /*
1509 * Cross CPU call to disable a performance event
1510 */
1511 int __perf_event_disable(void *info)
1512 {
1513 struct perf_event *event = info;
1514 struct perf_event_context *ctx = event->ctx;
1515 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1516
1517 /*
1518 * If this is a per-task event, need to check whether this
1519 * event's task is the current task on this cpu.
1520 *
1521 * Can trigger due to concurrent perf_event_context_sched_out()
1522 * flipping contexts around.
1523 */
1524 if (ctx->task && cpuctx->task_ctx != ctx)
1525 return -EINVAL;
1526
1527 raw_spin_lock(&ctx->lock);
1528
1529 /*
1530 * If the event is on, turn it off.
1531 * If it is in error state, leave it in error state.
1532 */
1533 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1534 update_context_time(ctx);
1535 update_cgrp_time_from_event(event);
1536 update_group_times(event);
1537 if (event == event->group_leader)
1538 group_sched_out(event, cpuctx, ctx);
1539 else
1540 event_sched_out(event, cpuctx, ctx);
1541 event->state = PERF_EVENT_STATE_OFF;
1542 }
1543
1544 raw_spin_unlock(&ctx->lock);
1545
1546 return 0;
1547 }
1548
1549 /*
1550 * Disable a event.
1551 *
1552 * If event->ctx is a cloned context, callers must make sure that
1553 * every task struct that event->ctx->task could possibly point to
1554 * remains valid. This condition is satisifed when called through
1555 * perf_event_for_each_child or perf_event_for_each because they
1556 * hold the top-level event's child_mutex, so any descendant that
1557 * goes to exit will block in sync_child_event.
1558 * When called from perf_pending_event it's OK because event->ctx
1559 * is the current context on this CPU and preemption is disabled,
1560 * hence we can't get into perf_event_task_sched_out for this context.
1561 */
1562 void perf_event_disable(struct perf_event *event)
1563 {
1564 struct perf_event_context *ctx = event->ctx;
1565 struct task_struct *task = ctx->task;
1566
1567 if (!task) {
1568 /*
1569 * Disable the event on the cpu that it's on
1570 */
1571 cpu_function_call(event->cpu, __perf_event_disable, event);
1572 return;
1573 }
1574
1575 retry:
1576 if (!task_function_call(task, __perf_event_disable, event))
1577 return;
1578
1579 raw_spin_lock_irq(&ctx->lock);
1580 /*
1581 * If the event is still active, we need to retry the cross-call.
1582 */
1583 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1584 raw_spin_unlock_irq(&ctx->lock);
1585 /*
1586 * Reload the task pointer, it might have been changed by
1587 * a concurrent perf_event_context_sched_out().
1588 */
1589 task = ctx->task;
1590 goto retry;
1591 }
1592
1593 /*
1594 * Since we have the lock this context can't be scheduled
1595 * in, so we can change the state safely.
1596 */
1597 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1598 update_group_times(event);
1599 event->state = PERF_EVENT_STATE_OFF;
1600 }
1601 raw_spin_unlock_irq(&ctx->lock);
1602 }
1603 EXPORT_SYMBOL_GPL(perf_event_disable);
1604
1605 static void perf_set_shadow_time(struct perf_event *event,
1606 struct perf_event_context *ctx,
1607 u64 tstamp)
1608 {
1609 /*
1610 * use the correct time source for the time snapshot
1611 *
1612 * We could get by without this by leveraging the
1613 * fact that to get to this function, the caller
1614 * has most likely already called update_context_time()
1615 * and update_cgrp_time_xx() and thus both timestamp
1616 * are identical (or very close). Given that tstamp is,
1617 * already adjusted for cgroup, we could say that:
1618 * tstamp - ctx->timestamp
1619 * is equivalent to
1620 * tstamp - cgrp->timestamp.
1621 *
1622 * Then, in perf_output_read(), the calculation would
1623 * work with no changes because:
1624 * - event is guaranteed scheduled in
1625 * - no scheduled out in between
1626 * - thus the timestamp would be the same
1627 *
1628 * But this is a bit hairy.
1629 *
1630 * So instead, we have an explicit cgroup call to remain
1631 * within the time time source all along. We believe it
1632 * is cleaner and simpler to understand.
1633 */
1634 if (is_cgroup_event(event))
1635 perf_cgroup_set_shadow_time(event, tstamp);
1636 else
1637 event->shadow_ctx_time = tstamp - ctx->timestamp;
1638 }
1639
1640 #define MAX_INTERRUPTS (~0ULL)
1641
1642 static void perf_log_throttle(struct perf_event *event, int enable);
1643
1644 static int
1645 event_sched_in(struct perf_event *event,
1646 struct perf_cpu_context *cpuctx,
1647 struct perf_event_context *ctx)
1648 {
1649 u64 tstamp = perf_event_time(event);
1650
1651 if (event->state <= PERF_EVENT_STATE_OFF)
1652 return 0;
1653
1654 event->state = PERF_EVENT_STATE_ACTIVE;
1655 event->oncpu = smp_processor_id();
1656
1657 /*
1658 * Unthrottle events, since we scheduled we might have missed several
1659 * ticks already, also for a heavily scheduling task there is little
1660 * guarantee it'll get a tick in a timely manner.
1661 */
1662 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1663 perf_log_throttle(event, 1);
1664 event->hw.interrupts = 0;
1665 }
1666
1667 /*
1668 * The new state must be visible before we turn it on in the hardware:
1669 */
1670 smp_wmb();
1671
1672 if (event->pmu->add(event, PERF_EF_START)) {
1673 event->state = PERF_EVENT_STATE_INACTIVE;
1674 event->oncpu = -1;
1675 return -EAGAIN;
1676 }
1677
1678 event->tstamp_running += tstamp - event->tstamp_stopped;
1679
1680 perf_set_shadow_time(event, ctx, tstamp);
1681
1682 if (!is_software_event(event))
1683 cpuctx->active_oncpu++;
1684 ctx->nr_active++;
1685 if (event->attr.freq && event->attr.sample_freq)
1686 ctx->nr_freq++;
1687
1688 if (event->attr.exclusive)
1689 cpuctx->exclusive = 1;
1690
1691 return 0;
1692 }
1693
1694 static int
1695 group_sched_in(struct perf_event *group_event,
1696 struct perf_cpu_context *cpuctx,
1697 struct perf_event_context *ctx)
1698 {
1699 struct perf_event *event, *partial_group = NULL;
1700 struct pmu *pmu = group_event->pmu;
1701 u64 now = ctx->time;
1702 bool simulate = false;
1703
1704 if (group_event->state == PERF_EVENT_STATE_OFF)
1705 return 0;
1706
1707 pmu->start_txn(pmu);
1708
1709 if (event_sched_in(group_event, cpuctx, ctx)) {
1710 pmu->cancel_txn(pmu);
1711 perf_cpu_hrtimer_restart(cpuctx);
1712 return -EAGAIN;
1713 }
1714
1715 /*
1716 * Schedule in siblings as one group (if any):
1717 */
1718 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1719 if (event_sched_in(event, cpuctx, ctx)) {
1720 partial_group = event;
1721 goto group_error;
1722 }
1723 }
1724
1725 if (!pmu->commit_txn(pmu))
1726 return 0;
1727
1728 group_error:
1729 /*
1730 * Groups can be scheduled in as one unit only, so undo any
1731 * partial group before returning:
1732 * The events up to the failed event are scheduled out normally,
1733 * tstamp_stopped will be updated.
1734 *
1735 * The failed events and the remaining siblings need to have
1736 * their timings updated as if they had gone thru event_sched_in()
1737 * and event_sched_out(). This is required to get consistent timings
1738 * across the group. This also takes care of the case where the group
1739 * could never be scheduled by ensuring tstamp_stopped is set to mark
1740 * the time the event was actually stopped, such that time delta
1741 * calculation in update_event_times() is correct.
1742 */
1743 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1744 if (event == partial_group)
1745 simulate = true;
1746
1747 if (simulate) {
1748 event->tstamp_running += now - event->tstamp_stopped;
1749 event->tstamp_stopped = now;
1750 } else {
1751 event_sched_out(event, cpuctx, ctx);
1752 }
1753 }
1754 event_sched_out(group_event, cpuctx, ctx);
1755
1756 pmu->cancel_txn(pmu);
1757
1758 perf_cpu_hrtimer_restart(cpuctx);
1759
1760 return -EAGAIN;
1761 }
1762
1763 /*
1764 * Work out whether we can put this event group on the CPU now.
1765 */
1766 static int group_can_go_on(struct perf_event *event,
1767 struct perf_cpu_context *cpuctx,
1768 int can_add_hw)
1769 {
1770 /*
1771 * Groups consisting entirely of software events can always go on.
1772 */
1773 if (event->group_flags & PERF_GROUP_SOFTWARE)
1774 return 1;
1775 /*
1776 * If an exclusive group is already on, no other hardware
1777 * events can go on.
1778 */
1779 if (cpuctx->exclusive)
1780 return 0;
1781 /*
1782 * If this group is exclusive and there are already
1783 * events on the CPU, it can't go on.
1784 */
1785 if (event->attr.exclusive && cpuctx->active_oncpu)
1786 return 0;
1787 /*
1788 * Otherwise, try to add it if all previous groups were able
1789 * to go on.
1790 */
1791 return can_add_hw;
1792 }
1793
1794 static void add_event_to_ctx(struct perf_event *event,
1795 struct perf_event_context *ctx)
1796 {
1797 u64 tstamp = perf_event_time(event);
1798
1799 list_add_event(event, ctx);
1800 perf_group_attach(event);
1801 event->tstamp_enabled = tstamp;
1802 event->tstamp_running = tstamp;
1803 event->tstamp_stopped = tstamp;
1804 }
1805
1806 static void task_ctx_sched_out(struct perf_event_context *ctx);
1807 static void
1808 ctx_sched_in(struct perf_event_context *ctx,
1809 struct perf_cpu_context *cpuctx,
1810 enum event_type_t event_type,
1811 struct task_struct *task);
1812
1813 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1814 struct perf_event_context *ctx,
1815 struct task_struct *task)
1816 {
1817 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1818 if (ctx)
1819 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1820 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1821 if (ctx)
1822 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1823 }
1824
1825 /*
1826 * Cross CPU call to install and enable a performance event
1827 *
1828 * Must be called with ctx->mutex held
1829 */
1830 static int __perf_install_in_context(void *info)
1831 {
1832 struct perf_event *event = info;
1833 struct perf_event_context *ctx = event->ctx;
1834 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1835 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1836 struct task_struct *task = current;
1837
1838 perf_ctx_lock(cpuctx, task_ctx);
1839 perf_pmu_disable(cpuctx->ctx.pmu);
1840
1841 /*
1842 * If there was an active task_ctx schedule it out.
1843 */
1844 if (task_ctx)
1845 task_ctx_sched_out(task_ctx);
1846
1847 /*
1848 * If the context we're installing events in is not the
1849 * active task_ctx, flip them.
1850 */
1851 if (ctx->task && task_ctx != ctx) {
1852 if (task_ctx)
1853 raw_spin_unlock(&task_ctx->lock);
1854 raw_spin_lock(&ctx->lock);
1855 task_ctx = ctx;
1856 }
1857
1858 if (task_ctx) {
1859 cpuctx->task_ctx = task_ctx;
1860 task = task_ctx->task;
1861 }
1862
1863 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1864
1865 update_context_time(ctx);
1866 /*
1867 * update cgrp time only if current cgrp
1868 * matches event->cgrp. Must be done before
1869 * calling add_event_to_ctx()
1870 */
1871 update_cgrp_time_from_event(event);
1872
1873 add_event_to_ctx(event, ctx);
1874
1875 /*
1876 * Schedule everything back in
1877 */
1878 perf_event_sched_in(cpuctx, task_ctx, task);
1879
1880 perf_pmu_enable(cpuctx->ctx.pmu);
1881 perf_ctx_unlock(cpuctx, task_ctx);
1882
1883 return 0;
1884 }
1885
1886 /*
1887 * Attach a performance event to a context
1888 *
1889 * First we add the event to the list with the hardware enable bit
1890 * in event->hw_config cleared.
1891 *
1892 * If the event is attached to a task which is on a CPU we use a smp
1893 * call to enable it in the task context. The task might have been
1894 * scheduled away, but we check this in the smp call again.
1895 */
1896 static void
1897 perf_install_in_context(struct perf_event_context *ctx,
1898 struct perf_event *event,
1899 int cpu)
1900 {
1901 struct task_struct *task = ctx->task;
1902
1903 lockdep_assert_held(&ctx->mutex);
1904
1905 event->ctx = ctx;
1906 if (event->cpu != -1)
1907 event->cpu = cpu;
1908
1909 if (!task) {
1910 /*
1911 * Per cpu events are installed via an smp call and
1912 * the install is always successful.
1913 */
1914 cpu_function_call(cpu, __perf_install_in_context, event);
1915 return;
1916 }
1917
1918 retry:
1919 if (!task_function_call(task, __perf_install_in_context, event))
1920 return;
1921
1922 raw_spin_lock_irq(&ctx->lock);
1923 /*
1924 * If we failed to find a running task, but find the context active now
1925 * that we've acquired the ctx->lock, retry.
1926 */
1927 if (ctx->is_active) {
1928 raw_spin_unlock_irq(&ctx->lock);
1929 goto retry;
1930 }
1931
1932 /*
1933 * Since the task isn't running, its safe to add the event, us holding
1934 * the ctx->lock ensures the task won't get scheduled in.
1935 */
1936 add_event_to_ctx(event, ctx);
1937 raw_spin_unlock_irq(&ctx->lock);
1938 }
1939
1940 /*
1941 * Put a event into inactive state and update time fields.
1942 * Enabling the leader of a group effectively enables all
1943 * the group members that aren't explicitly disabled, so we
1944 * have to update their ->tstamp_enabled also.
1945 * Note: this works for group members as well as group leaders
1946 * since the non-leader members' sibling_lists will be empty.
1947 */
1948 static void __perf_event_mark_enabled(struct perf_event *event)
1949 {
1950 struct perf_event *sub;
1951 u64 tstamp = perf_event_time(event);
1952
1953 event->state = PERF_EVENT_STATE_INACTIVE;
1954 event->tstamp_enabled = tstamp - event->total_time_enabled;
1955 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1956 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1957 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1958 }
1959 }
1960
1961 /*
1962 * Cross CPU call to enable a performance event
1963 */
1964 static int __perf_event_enable(void *info)
1965 {
1966 struct perf_event *event = info;
1967 struct perf_event_context *ctx = event->ctx;
1968 struct perf_event *leader = event->group_leader;
1969 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1970 int err;
1971
1972 /*
1973 * There's a time window between 'ctx->is_active' check
1974 * in perf_event_enable function and this place having:
1975 * - IRQs on
1976 * - ctx->lock unlocked
1977 *
1978 * where the task could be killed and 'ctx' deactivated
1979 * by perf_event_exit_task.
1980 */
1981 if (!ctx->is_active)
1982 return -EINVAL;
1983
1984 raw_spin_lock(&ctx->lock);
1985 update_context_time(ctx);
1986
1987 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1988 goto unlock;
1989
1990 /*
1991 * set current task's cgroup time reference point
1992 */
1993 perf_cgroup_set_timestamp(current, ctx);
1994
1995 __perf_event_mark_enabled(event);
1996
1997 if (!event_filter_match(event)) {
1998 if (is_cgroup_event(event))
1999 perf_cgroup_defer_enabled(event);
2000 goto unlock;
2001 }
2002
2003 /*
2004 * If the event is in a group and isn't the group leader,
2005 * then don't put it on unless the group is on.
2006 */
2007 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2008 goto unlock;
2009
2010 if (!group_can_go_on(event, cpuctx, 1)) {
2011 err = -EEXIST;
2012 } else {
2013 if (event == leader)
2014 err = group_sched_in(event, cpuctx, ctx);
2015 else
2016 err = event_sched_in(event, cpuctx, ctx);
2017 }
2018
2019 if (err) {
2020 /*
2021 * If this event can't go on and it's part of a
2022 * group, then the whole group has to come off.
2023 */
2024 if (leader != event) {
2025 group_sched_out(leader, cpuctx, ctx);
2026 perf_cpu_hrtimer_restart(cpuctx);
2027 }
2028 if (leader->attr.pinned) {
2029 update_group_times(leader);
2030 leader->state = PERF_EVENT_STATE_ERROR;
2031 }
2032 }
2033
2034 unlock:
2035 raw_spin_unlock(&ctx->lock);
2036
2037 return 0;
2038 }
2039
2040 /*
2041 * Enable a event.
2042 *
2043 * If event->ctx is a cloned context, callers must make sure that
2044 * every task struct that event->ctx->task could possibly point to
2045 * remains valid. This condition is satisfied when called through
2046 * perf_event_for_each_child or perf_event_for_each as described
2047 * for perf_event_disable.
2048 */
2049 void perf_event_enable(struct perf_event *event)
2050 {
2051 struct perf_event_context *ctx = event->ctx;
2052 struct task_struct *task = ctx->task;
2053
2054 if (!task) {
2055 /*
2056 * Enable the event on the cpu that it's on
2057 */
2058 cpu_function_call(event->cpu, __perf_event_enable, event);
2059 return;
2060 }
2061
2062 raw_spin_lock_irq(&ctx->lock);
2063 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2064 goto out;
2065
2066 /*
2067 * If the event is in error state, clear that first.
2068 * That way, if we see the event in error state below, we
2069 * know that it has gone back into error state, as distinct
2070 * from the task having been scheduled away before the
2071 * cross-call arrived.
2072 */
2073 if (event->state == PERF_EVENT_STATE_ERROR)
2074 event->state = PERF_EVENT_STATE_OFF;
2075
2076 retry:
2077 if (!ctx->is_active) {
2078 __perf_event_mark_enabled(event);
2079 goto out;
2080 }
2081
2082 raw_spin_unlock_irq(&ctx->lock);
2083
2084 if (!task_function_call(task, __perf_event_enable, event))
2085 return;
2086
2087 raw_spin_lock_irq(&ctx->lock);
2088
2089 /*
2090 * If the context is active and the event is still off,
2091 * we need to retry the cross-call.
2092 */
2093 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2094 /*
2095 * task could have been flipped by a concurrent
2096 * perf_event_context_sched_out()
2097 */
2098 task = ctx->task;
2099 goto retry;
2100 }
2101
2102 out:
2103 raw_spin_unlock_irq(&ctx->lock);
2104 }
2105 EXPORT_SYMBOL_GPL(perf_event_enable);
2106
2107 int perf_event_refresh(struct perf_event *event, int refresh)
2108 {
2109 /*
2110 * not supported on inherited events
2111 */
2112 if (event->attr.inherit || !is_sampling_event(event))
2113 return -EINVAL;
2114
2115 atomic_add(refresh, &event->event_limit);
2116 perf_event_enable(event);
2117
2118 return 0;
2119 }
2120 EXPORT_SYMBOL_GPL(perf_event_refresh);
2121
2122 static void ctx_sched_out(struct perf_event_context *ctx,
2123 struct perf_cpu_context *cpuctx,
2124 enum event_type_t event_type)
2125 {
2126 struct perf_event *event;
2127 int is_active = ctx->is_active;
2128
2129 ctx->is_active &= ~event_type;
2130 if (likely(!ctx->nr_events))
2131 return;
2132
2133 update_context_time(ctx);
2134 update_cgrp_time_from_cpuctx(cpuctx);
2135 if (!ctx->nr_active)
2136 return;
2137
2138 perf_pmu_disable(ctx->pmu);
2139 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2140 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2141 group_sched_out(event, cpuctx, ctx);
2142 }
2143
2144 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2145 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2146 group_sched_out(event, cpuctx, ctx);
2147 }
2148 perf_pmu_enable(ctx->pmu);
2149 }
2150
2151 /*
2152 * Test whether two contexts are equivalent, i.e. whether they
2153 * have both been cloned from the same version of the same context
2154 * and they both have the same number of enabled events.
2155 * If the number of enabled events is the same, then the set
2156 * of enabled events should be the same, because these are both
2157 * inherited contexts, therefore we can't access individual events
2158 * in them directly with an fd; we can only enable/disable all
2159 * events via prctl, or enable/disable all events in a family
2160 * via ioctl, which will have the same effect on both contexts.
2161 */
2162 static int context_equiv(struct perf_event_context *ctx1,
2163 struct perf_event_context *ctx2)
2164 {
2165 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2166 && ctx1->parent_gen == ctx2->parent_gen
2167 && !ctx1->pin_count && !ctx2->pin_count;
2168 }
2169
2170 static void __perf_event_sync_stat(struct perf_event *event,
2171 struct perf_event *next_event)
2172 {
2173 u64 value;
2174
2175 if (!event->attr.inherit_stat)
2176 return;
2177
2178 /*
2179 * Update the event value, we cannot use perf_event_read()
2180 * because we're in the middle of a context switch and have IRQs
2181 * disabled, which upsets smp_call_function_single(), however
2182 * we know the event must be on the current CPU, therefore we
2183 * don't need to use it.
2184 */
2185 switch (event->state) {
2186 case PERF_EVENT_STATE_ACTIVE:
2187 event->pmu->read(event);
2188 /* fall-through */
2189
2190 case PERF_EVENT_STATE_INACTIVE:
2191 update_event_times(event);
2192 break;
2193
2194 default:
2195 break;
2196 }
2197
2198 /*
2199 * In order to keep per-task stats reliable we need to flip the event
2200 * values when we flip the contexts.
2201 */
2202 value = local64_read(&next_event->count);
2203 value = local64_xchg(&event->count, value);
2204 local64_set(&next_event->count, value);
2205
2206 swap(event->total_time_enabled, next_event->total_time_enabled);
2207 swap(event->total_time_running, next_event->total_time_running);
2208
2209 /*
2210 * Since we swizzled the values, update the user visible data too.
2211 */
2212 perf_event_update_userpage(event);
2213 perf_event_update_userpage(next_event);
2214 }
2215
2216 #define list_next_entry(pos, member) \
2217 list_entry(pos->member.next, typeof(*pos), member)
2218
2219 static void perf_event_sync_stat(struct perf_event_context *ctx,
2220 struct perf_event_context *next_ctx)
2221 {
2222 struct perf_event *event, *next_event;
2223
2224 if (!ctx->nr_stat)
2225 return;
2226
2227 update_context_time(ctx);
2228
2229 event = list_first_entry(&ctx->event_list,
2230 struct perf_event, event_entry);
2231
2232 next_event = list_first_entry(&next_ctx->event_list,
2233 struct perf_event, event_entry);
2234
2235 while (&event->event_entry != &ctx->event_list &&
2236 &next_event->event_entry != &next_ctx->event_list) {
2237
2238 __perf_event_sync_stat(event, next_event);
2239
2240 event = list_next_entry(event, event_entry);
2241 next_event = list_next_entry(next_event, event_entry);
2242 }
2243 }
2244
2245 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2246 struct task_struct *next)
2247 {
2248 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2249 struct perf_event_context *next_ctx;
2250 struct perf_event_context *parent;
2251 struct perf_cpu_context *cpuctx;
2252 int do_switch = 1;
2253
2254 if (likely(!ctx))
2255 return;
2256
2257 cpuctx = __get_cpu_context(ctx);
2258 if (!cpuctx->task_ctx)
2259 return;
2260
2261 rcu_read_lock();
2262 parent = rcu_dereference(ctx->parent_ctx);
2263 next_ctx = next->perf_event_ctxp[ctxn];
2264 if (parent && next_ctx &&
2265 rcu_dereference(next_ctx->parent_ctx) == parent) {
2266 /*
2267 * Looks like the two contexts are clones, so we might be
2268 * able to optimize the context switch. We lock both
2269 * contexts and check that they are clones under the
2270 * lock (including re-checking that neither has been
2271 * uncloned in the meantime). It doesn't matter which
2272 * order we take the locks because no other cpu could
2273 * be trying to lock both of these tasks.
2274 */
2275 raw_spin_lock(&ctx->lock);
2276 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2277 if (context_equiv(ctx, next_ctx)) {
2278 /*
2279 * XXX do we need a memory barrier of sorts
2280 * wrt to rcu_dereference() of perf_event_ctxp
2281 */
2282 task->perf_event_ctxp[ctxn] = next_ctx;
2283 next->perf_event_ctxp[ctxn] = ctx;
2284 ctx->task = next;
2285 next_ctx->task = task;
2286 do_switch = 0;
2287
2288 perf_event_sync_stat(ctx, next_ctx);
2289 }
2290 raw_spin_unlock(&next_ctx->lock);
2291 raw_spin_unlock(&ctx->lock);
2292 }
2293 rcu_read_unlock();
2294
2295 if (do_switch) {
2296 raw_spin_lock(&ctx->lock);
2297 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2298 cpuctx->task_ctx = NULL;
2299 raw_spin_unlock(&ctx->lock);
2300 }
2301 }
2302
2303 #define for_each_task_context_nr(ctxn) \
2304 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2305
2306 /*
2307 * Called from scheduler to remove the events of the current task,
2308 * with interrupts disabled.
2309 *
2310 * We stop each event and update the event value in event->count.
2311 *
2312 * This does not protect us against NMI, but disable()
2313 * sets the disabled bit in the control field of event _before_
2314 * accessing the event control register. If a NMI hits, then it will
2315 * not restart the event.
2316 */
2317 void __perf_event_task_sched_out(struct task_struct *task,
2318 struct task_struct *next)
2319 {
2320 int ctxn;
2321
2322 for_each_task_context_nr(ctxn)
2323 perf_event_context_sched_out(task, ctxn, next);
2324
2325 /*
2326 * if cgroup events exist on this CPU, then we need
2327 * to check if we have to switch out PMU state.
2328 * cgroup event are system-wide mode only
2329 */
2330 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2331 perf_cgroup_sched_out(task, next);
2332 }
2333
2334 static void task_ctx_sched_out(struct perf_event_context *ctx)
2335 {
2336 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2337
2338 if (!cpuctx->task_ctx)
2339 return;
2340
2341 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2342 return;
2343
2344 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2345 cpuctx->task_ctx = NULL;
2346 }
2347
2348 /*
2349 * Called with IRQs disabled
2350 */
2351 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2352 enum event_type_t event_type)
2353 {
2354 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2355 }
2356
2357 static void
2358 ctx_pinned_sched_in(struct perf_event_context *ctx,
2359 struct perf_cpu_context *cpuctx)
2360 {
2361 struct perf_event *event;
2362
2363 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2364 if (event->state <= PERF_EVENT_STATE_OFF)
2365 continue;
2366 if (!event_filter_match(event))
2367 continue;
2368
2369 /* may need to reset tstamp_enabled */
2370 if (is_cgroup_event(event))
2371 perf_cgroup_mark_enabled(event, ctx);
2372
2373 if (group_can_go_on(event, cpuctx, 1))
2374 group_sched_in(event, cpuctx, ctx);
2375
2376 /*
2377 * If this pinned group hasn't been scheduled,
2378 * put it in error state.
2379 */
2380 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2381 update_group_times(event);
2382 event->state = PERF_EVENT_STATE_ERROR;
2383 }
2384 }
2385 }
2386
2387 static void
2388 ctx_flexible_sched_in(struct perf_event_context *ctx,
2389 struct perf_cpu_context *cpuctx)
2390 {
2391 struct perf_event *event;
2392 int can_add_hw = 1;
2393
2394 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2395 /* Ignore events in OFF or ERROR state */
2396 if (event->state <= PERF_EVENT_STATE_OFF)
2397 continue;
2398 /*
2399 * Listen to the 'cpu' scheduling filter constraint
2400 * of events:
2401 */
2402 if (!event_filter_match(event))
2403 continue;
2404
2405 /* may need to reset tstamp_enabled */
2406 if (is_cgroup_event(event))
2407 perf_cgroup_mark_enabled(event, ctx);
2408
2409 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2410 if (group_sched_in(event, cpuctx, ctx))
2411 can_add_hw = 0;
2412 }
2413 }
2414 }
2415
2416 static void
2417 ctx_sched_in(struct perf_event_context *ctx,
2418 struct perf_cpu_context *cpuctx,
2419 enum event_type_t event_type,
2420 struct task_struct *task)
2421 {
2422 u64 now;
2423 int is_active = ctx->is_active;
2424
2425 ctx->is_active |= event_type;
2426 if (likely(!ctx->nr_events))
2427 return;
2428
2429 now = perf_clock();
2430 ctx->timestamp = now;
2431 perf_cgroup_set_timestamp(task, ctx);
2432 /*
2433 * First go through the list and put on any pinned groups
2434 * in order to give them the best chance of going on.
2435 */
2436 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2437 ctx_pinned_sched_in(ctx, cpuctx);
2438
2439 /* Then walk through the lower prio flexible groups */
2440 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2441 ctx_flexible_sched_in(ctx, cpuctx);
2442 }
2443
2444 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2445 enum event_type_t event_type,
2446 struct task_struct *task)
2447 {
2448 struct perf_event_context *ctx = &cpuctx->ctx;
2449
2450 ctx_sched_in(ctx, cpuctx, event_type, task);
2451 }
2452
2453 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2454 struct task_struct *task)
2455 {
2456 struct perf_cpu_context *cpuctx;
2457
2458 cpuctx = __get_cpu_context(ctx);
2459 if (cpuctx->task_ctx == ctx)
2460 return;
2461
2462 perf_ctx_lock(cpuctx, ctx);
2463 perf_pmu_disable(ctx->pmu);
2464 /*
2465 * We want to keep the following priority order:
2466 * cpu pinned (that don't need to move), task pinned,
2467 * cpu flexible, task flexible.
2468 */
2469 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2470
2471 if (ctx->nr_events)
2472 cpuctx->task_ctx = ctx;
2473
2474 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2475
2476 perf_pmu_enable(ctx->pmu);
2477 perf_ctx_unlock(cpuctx, ctx);
2478
2479 /*
2480 * Since these rotations are per-cpu, we need to ensure the
2481 * cpu-context we got scheduled on is actually rotating.
2482 */
2483 perf_pmu_rotate_start(ctx->pmu);
2484 }
2485
2486 /*
2487 * When sampling the branck stack in system-wide, it may be necessary
2488 * to flush the stack on context switch. This happens when the branch
2489 * stack does not tag its entries with the pid of the current task.
2490 * Otherwise it becomes impossible to associate a branch entry with a
2491 * task. This ambiguity is more likely to appear when the branch stack
2492 * supports priv level filtering and the user sets it to monitor only
2493 * at the user level (which could be a useful measurement in system-wide
2494 * mode). In that case, the risk is high of having a branch stack with
2495 * branch from multiple tasks. Flushing may mean dropping the existing
2496 * entries or stashing them somewhere in the PMU specific code layer.
2497 *
2498 * This function provides the context switch callback to the lower code
2499 * layer. It is invoked ONLY when there is at least one system-wide context
2500 * with at least one active event using taken branch sampling.
2501 */
2502 static void perf_branch_stack_sched_in(struct task_struct *prev,
2503 struct task_struct *task)
2504 {
2505 struct perf_cpu_context *cpuctx;
2506 struct pmu *pmu;
2507 unsigned long flags;
2508
2509 /* no need to flush branch stack if not changing task */
2510 if (prev == task)
2511 return;
2512
2513 local_irq_save(flags);
2514
2515 rcu_read_lock();
2516
2517 list_for_each_entry_rcu(pmu, &pmus, entry) {
2518 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2519
2520 /*
2521 * check if the context has at least one
2522 * event using PERF_SAMPLE_BRANCH_STACK
2523 */
2524 if (cpuctx->ctx.nr_branch_stack > 0
2525 && pmu->flush_branch_stack) {
2526
2527 pmu = cpuctx->ctx.pmu;
2528
2529 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2530
2531 perf_pmu_disable(pmu);
2532
2533 pmu->flush_branch_stack();
2534
2535 perf_pmu_enable(pmu);
2536
2537 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2538 }
2539 }
2540
2541 rcu_read_unlock();
2542
2543 local_irq_restore(flags);
2544 }
2545
2546 /*
2547 * Called from scheduler to add the events of the current task
2548 * with interrupts disabled.
2549 *
2550 * We restore the event value and then enable it.
2551 *
2552 * This does not protect us against NMI, but enable()
2553 * sets the enabled bit in the control field of event _before_
2554 * accessing the event control register. If a NMI hits, then it will
2555 * keep the event running.
2556 */
2557 void __perf_event_task_sched_in(struct task_struct *prev,
2558 struct task_struct *task)
2559 {
2560 struct perf_event_context *ctx;
2561 int ctxn;
2562
2563 for_each_task_context_nr(ctxn) {
2564 ctx = task->perf_event_ctxp[ctxn];
2565 if (likely(!ctx))
2566 continue;
2567
2568 perf_event_context_sched_in(ctx, task);
2569 }
2570 /*
2571 * if cgroup events exist on this CPU, then we need
2572 * to check if we have to switch in PMU state.
2573 * cgroup event are system-wide mode only
2574 */
2575 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2576 perf_cgroup_sched_in(prev, task);
2577
2578 /* check for system-wide branch_stack events */
2579 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2580 perf_branch_stack_sched_in(prev, task);
2581 }
2582
2583 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2584 {
2585 u64 frequency = event->attr.sample_freq;
2586 u64 sec = NSEC_PER_SEC;
2587 u64 divisor, dividend;
2588
2589 int count_fls, nsec_fls, frequency_fls, sec_fls;
2590
2591 count_fls = fls64(count);
2592 nsec_fls = fls64(nsec);
2593 frequency_fls = fls64(frequency);
2594 sec_fls = 30;
2595
2596 /*
2597 * We got @count in @nsec, with a target of sample_freq HZ
2598 * the target period becomes:
2599 *
2600 * @count * 10^9
2601 * period = -------------------
2602 * @nsec * sample_freq
2603 *
2604 */
2605
2606 /*
2607 * Reduce accuracy by one bit such that @a and @b converge
2608 * to a similar magnitude.
2609 */
2610 #define REDUCE_FLS(a, b) \
2611 do { \
2612 if (a##_fls > b##_fls) { \
2613 a >>= 1; \
2614 a##_fls--; \
2615 } else { \
2616 b >>= 1; \
2617 b##_fls--; \
2618 } \
2619 } while (0)
2620
2621 /*
2622 * Reduce accuracy until either term fits in a u64, then proceed with
2623 * the other, so that finally we can do a u64/u64 division.
2624 */
2625 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2626 REDUCE_FLS(nsec, frequency);
2627 REDUCE_FLS(sec, count);
2628 }
2629
2630 if (count_fls + sec_fls > 64) {
2631 divisor = nsec * frequency;
2632
2633 while (count_fls + sec_fls > 64) {
2634 REDUCE_FLS(count, sec);
2635 divisor >>= 1;
2636 }
2637
2638 dividend = count * sec;
2639 } else {
2640 dividend = count * sec;
2641
2642 while (nsec_fls + frequency_fls > 64) {
2643 REDUCE_FLS(nsec, frequency);
2644 dividend >>= 1;
2645 }
2646
2647 divisor = nsec * frequency;
2648 }
2649
2650 if (!divisor)
2651 return dividend;
2652
2653 return div64_u64(dividend, divisor);
2654 }
2655
2656 static DEFINE_PER_CPU(int, perf_throttled_count);
2657 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2658
2659 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2660 {
2661 struct hw_perf_event *hwc = &event->hw;
2662 s64 period, sample_period;
2663 s64 delta;
2664
2665 period = perf_calculate_period(event, nsec, count);
2666
2667 delta = (s64)(period - hwc->sample_period);
2668 delta = (delta + 7) / 8; /* low pass filter */
2669
2670 sample_period = hwc->sample_period + delta;
2671
2672 if (!sample_period)
2673 sample_period = 1;
2674
2675 hwc->sample_period = sample_period;
2676
2677 if (local64_read(&hwc->period_left) > 8*sample_period) {
2678 if (disable)
2679 event->pmu->stop(event, PERF_EF_UPDATE);
2680
2681 local64_set(&hwc->period_left, 0);
2682
2683 if (disable)
2684 event->pmu->start(event, PERF_EF_RELOAD);
2685 }
2686 }
2687
2688 /*
2689 * combine freq adjustment with unthrottling to avoid two passes over the
2690 * events. At the same time, make sure, having freq events does not change
2691 * the rate of unthrottling as that would introduce bias.
2692 */
2693 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2694 int needs_unthr)
2695 {
2696 struct perf_event *event;
2697 struct hw_perf_event *hwc;
2698 u64 now, period = TICK_NSEC;
2699 s64 delta;
2700
2701 /*
2702 * only need to iterate over all events iff:
2703 * - context have events in frequency mode (needs freq adjust)
2704 * - there are events to unthrottle on this cpu
2705 */
2706 if (!(ctx->nr_freq || needs_unthr))
2707 return;
2708
2709 raw_spin_lock(&ctx->lock);
2710 perf_pmu_disable(ctx->pmu);
2711
2712 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2713 if (event->state != PERF_EVENT_STATE_ACTIVE)
2714 continue;
2715
2716 if (!event_filter_match(event))
2717 continue;
2718
2719 hwc = &event->hw;
2720
2721 if (hwc->interrupts == MAX_INTERRUPTS) {
2722 hwc->interrupts = 0;
2723 perf_log_throttle(event, 1);
2724 event->pmu->start(event, 0);
2725 }
2726
2727 if (!event->attr.freq || !event->attr.sample_freq)
2728 continue;
2729
2730 /*
2731 * stop the event and update event->count
2732 */
2733 event->pmu->stop(event, PERF_EF_UPDATE);
2734
2735 now = local64_read(&event->count);
2736 delta = now - hwc->freq_count_stamp;
2737 hwc->freq_count_stamp = now;
2738
2739 /*
2740 * restart the event
2741 * reload only if value has changed
2742 * we have stopped the event so tell that
2743 * to perf_adjust_period() to avoid stopping it
2744 * twice.
2745 */
2746 if (delta > 0)
2747 perf_adjust_period(event, period, delta, false);
2748
2749 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2750 }
2751
2752 perf_pmu_enable(ctx->pmu);
2753 raw_spin_unlock(&ctx->lock);
2754 }
2755
2756 /*
2757 * Round-robin a context's events:
2758 */
2759 static void rotate_ctx(struct perf_event_context *ctx)
2760 {
2761 /*
2762 * Rotate the first entry last of non-pinned groups. Rotation might be
2763 * disabled by the inheritance code.
2764 */
2765 if (!ctx->rotate_disable)
2766 list_rotate_left(&ctx->flexible_groups);
2767 }
2768
2769 /*
2770 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2771 * because they're strictly cpu affine and rotate_start is called with IRQs
2772 * disabled, while rotate_context is called from IRQ context.
2773 */
2774 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2775 {
2776 struct perf_event_context *ctx = NULL;
2777 int rotate = 0, remove = 1;
2778
2779 if (cpuctx->ctx.nr_events) {
2780 remove = 0;
2781 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2782 rotate = 1;
2783 }
2784
2785 ctx = cpuctx->task_ctx;
2786 if (ctx && ctx->nr_events) {
2787 remove = 0;
2788 if (ctx->nr_events != ctx->nr_active)
2789 rotate = 1;
2790 }
2791
2792 if (!rotate)
2793 goto done;
2794
2795 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2796 perf_pmu_disable(cpuctx->ctx.pmu);
2797
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799 if (ctx)
2800 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2801
2802 rotate_ctx(&cpuctx->ctx);
2803 if (ctx)
2804 rotate_ctx(ctx);
2805
2806 perf_event_sched_in(cpuctx, ctx, current);
2807
2808 perf_pmu_enable(cpuctx->ctx.pmu);
2809 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2810 done:
2811 if (remove)
2812 list_del_init(&cpuctx->rotation_list);
2813
2814 return rotate;
2815 }
2816
2817 #ifdef CONFIG_NO_HZ_FULL
2818 bool perf_event_can_stop_tick(void)
2819 {
2820 if (atomic_read(&nr_freq_events) ||
2821 __this_cpu_read(perf_throttled_count))
2822 return false;
2823 else
2824 return true;
2825 }
2826 #endif
2827
2828 void perf_event_task_tick(void)
2829 {
2830 struct list_head *head = &__get_cpu_var(rotation_list);
2831 struct perf_cpu_context *cpuctx, *tmp;
2832 struct perf_event_context *ctx;
2833 int throttled;
2834
2835 WARN_ON(!irqs_disabled());
2836
2837 __this_cpu_inc(perf_throttled_seq);
2838 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2839
2840 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2841 ctx = &cpuctx->ctx;
2842 perf_adjust_freq_unthr_context(ctx, throttled);
2843
2844 ctx = cpuctx->task_ctx;
2845 if (ctx)
2846 perf_adjust_freq_unthr_context(ctx, throttled);
2847 }
2848 }
2849
2850 static int event_enable_on_exec(struct perf_event *event,
2851 struct perf_event_context *ctx)
2852 {
2853 if (!event->attr.enable_on_exec)
2854 return 0;
2855
2856 event->attr.enable_on_exec = 0;
2857 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2858 return 0;
2859
2860 __perf_event_mark_enabled(event);
2861
2862 return 1;
2863 }
2864
2865 /*
2866 * Enable all of a task's events that have been marked enable-on-exec.
2867 * This expects task == current.
2868 */
2869 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2870 {
2871 struct perf_event *event;
2872 unsigned long flags;
2873 int enabled = 0;
2874 int ret;
2875
2876 local_irq_save(flags);
2877 if (!ctx || !ctx->nr_events)
2878 goto out;
2879
2880 /*
2881 * We must ctxsw out cgroup events to avoid conflict
2882 * when invoking perf_task_event_sched_in() later on
2883 * in this function. Otherwise we end up trying to
2884 * ctxswin cgroup events which are already scheduled
2885 * in.
2886 */
2887 perf_cgroup_sched_out(current, NULL);
2888
2889 raw_spin_lock(&ctx->lock);
2890 task_ctx_sched_out(ctx);
2891
2892 list_for_each_entry(event, &ctx->event_list, event_entry) {
2893 ret = event_enable_on_exec(event, ctx);
2894 if (ret)
2895 enabled = 1;
2896 }
2897
2898 /*
2899 * Unclone this context if we enabled any event.
2900 */
2901 if (enabled)
2902 unclone_ctx(ctx);
2903
2904 raw_spin_unlock(&ctx->lock);
2905
2906 /*
2907 * Also calls ctxswin for cgroup events, if any:
2908 */
2909 perf_event_context_sched_in(ctx, ctx->task);
2910 out:
2911 local_irq_restore(flags);
2912 }
2913
2914 /*
2915 * Cross CPU call to read the hardware event
2916 */
2917 static void __perf_event_read(void *info)
2918 {
2919 struct perf_event *event = info;
2920 struct perf_event_context *ctx = event->ctx;
2921 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2922
2923 /*
2924 * If this is a task context, we need to check whether it is
2925 * the current task context of this cpu. If not it has been
2926 * scheduled out before the smp call arrived. In that case
2927 * event->count would have been updated to a recent sample
2928 * when the event was scheduled out.
2929 */
2930 if (ctx->task && cpuctx->task_ctx != ctx)
2931 return;
2932
2933 raw_spin_lock(&ctx->lock);
2934 if (ctx->is_active) {
2935 update_context_time(ctx);
2936 update_cgrp_time_from_event(event);
2937 }
2938 update_event_times(event);
2939 if (event->state == PERF_EVENT_STATE_ACTIVE)
2940 event->pmu->read(event);
2941 raw_spin_unlock(&ctx->lock);
2942 }
2943
2944 static inline u64 perf_event_count(struct perf_event *event)
2945 {
2946 return local64_read(&event->count) + atomic64_read(&event->child_count);
2947 }
2948
2949 static u64 perf_event_read(struct perf_event *event)
2950 {
2951 /*
2952 * If event is enabled and currently active on a CPU, update the
2953 * value in the event structure:
2954 */
2955 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2956 smp_call_function_single(event->oncpu,
2957 __perf_event_read, event, 1);
2958 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2959 struct perf_event_context *ctx = event->ctx;
2960 unsigned long flags;
2961
2962 raw_spin_lock_irqsave(&ctx->lock, flags);
2963 /*
2964 * may read while context is not active
2965 * (e.g., thread is blocked), in that case
2966 * we cannot update context time
2967 */
2968 if (ctx->is_active) {
2969 update_context_time(ctx);
2970 update_cgrp_time_from_event(event);
2971 }
2972 update_event_times(event);
2973 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2974 }
2975
2976 return perf_event_count(event);
2977 }
2978
2979 /*
2980 * Initialize the perf_event context in a task_struct:
2981 */
2982 static void __perf_event_init_context(struct perf_event_context *ctx)
2983 {
2984 raw_spin_lock_init(&ctx->lock);
2985 mutex_init(&ctx->mutex);
2986 INIT_LIST_HEAD(&ctx->pinned_groups);
2987 INIT_LIST_HEAD(&ctx->flexible_groups);
2988 INIT_LIST_HEAD(&ctx->event_list);
2989 atomic_set(&ctx->refcount, 1);
2990 }
2991
2992 static struct perf_event_context *
2993 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2994 {
2995 struct perf_event_context *ctx;
2996
2997 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2998 if (!ctx)
2999 return NULL;
3000
3001 __perf_event_init_context(ctx);
3002 if (task) {
3003 ctx->task = task;
3004 get_task_struct(task);
3005 }
3006 ctx->pmu = pmu;
3007
3008 return ctx;
3009 }
3010
3011 static struct task_struct *
3012 find_lively_task_by_vpid(pid_t vpid)
3013 {
3014 struct task_struct *task;
3015 int err;
3016
3017 rcu_read_lock();
3018 if (!vpid)
3019 task = current;
3020 else
3021 task = find_task_by_vpid(vpid);
3022 if (task)
3023 get_task_struct(task);
3024 rcu_read_unlock();
3025
3026 if (!task)
3027 return ERR_PTR(-ESRCH);
3028
3029 /* Reuse ptrace permission checks for now. */
3030 err = -EACCES;
3031 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3032 goto errout;
3033
3034 return task;
3035 errout:
3036 put_task_struct(task);
3037 return ERR_PTR(err);
3038
3039 }
3040
3041 /*
3042 * Returns a matching context with refcount and pincount.
3043 */
3044 static struct perf_event_context *
3045 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3046 {
3047 struct perf_event_context *ctx;
3048 struct perf_cpu_context *cpuctx;
3049 unsigned long flags;
3050 int ctxn, err;
3051
3052 if (!task) {
3053 /* Must be root to operate on a CPU event: */
3054 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3055 return ERR_PTR(-EACCES);
3056
3057 /*
3058 * We could be clever and allow to attach a event to an
3059 * offline CPU and activate it when the CPU comes up, but
3060 * that's for later.
3061 */
3062 if (!cpu_online(cpu))
3063 return ERR_PTR(-ENODEV);
3064
3065 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3066 ctx = &cpuctx->ctx;
3067 get_ctx(ctx);
3068 ++ctx->pin_count;
3069
3070 return ctx;
3071 }
3072
3073 err = -EINVAL;
3074 ctxn = pmu->task_ctx_nr;
3075 if (ctxn < 0)
3076 goto errout;
3077
3078 retry:
3079 ctx = perf_lock_task_context(task, ctxn, &flags);
3080 if (ctx) {
3081 unclone_ctx(ctx);
3082 ++ctx->pin_count;
3083 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3084 } else {
3085 ctx = alloc_perf_context(pmu, task);
3086 err = -ENOMEM;
3087 if (!ctx)
3088 goto errout;
3089
3090 err = 0;
3091 mutex_lock(&task->perf_event_mutex);
3092 /*
3093 * If it has already passed perf_event_exit_task().
3094 * we must see PF_EXITING, it takes this mutex too.
3095 */
3096 if (task->flags & PF_EXITING)
3097 err = -ESRCH;
3098 else if (task->perf_event_ctxp[ctxn])
3099 err = -EAGAIN;
3100 else {
3101 get_ctx(ctx);
3102 ++ctx->pin_count;
3103 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3104 }
3105 mutex_unlock(&task->perf_event_mutex);
3106
3107 if (unlikely(err)) {
3108 put_ctx(ctx);
3109
3110 if (err == -EAGAIN)
3111 goto retry;
3112 goto errout;
3113 }
3114 }
3115
3116 return ctx;
3117
3118 errout:
3119 return ERR_PTR(err);
3120 }
3121
3122 static void perf_event_free_filter(struct perf_event *event);
3123
3124 static void free_event_rcu(struct rcu_head *head)
3125 {
3126 struct perf_event *event;
3127
3128 event = container_of(head, struct perf_event, rcu_head);
3129 if (event->ns)
3130 put_pid_ns(event->ns);
3131 perf_event_free_filter(event);
3132 kfree(event);
3133 }
3134
3135 static void ring_buffer_put(struct ring_buffer *rb);
3136 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3137
3138 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3139 {
3140 if (event->parent)
3141 return;
3142
3143 if (has_branch_stack(event)) {
3144 if (!(event->attach_state & PERF_ATTACH_TASK))
3145 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3146 }
3147 if (is_cgroup_event(event))
3148 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3149 }
3150
3151 static void unaccount_event(struct perf_event *event)
3152 {
3153 if (event->parent)
3154 return;
3155
3156 if (event->attach_state & PERF_ATTACH_TASK)
3157 static_key_slow_dec_deferred(&perf_sched_events);
3158 if (event->attr.mmap || event->attr.mmap_data)
3159 atomic_dec(&nr_mmap_events);
3160 if (event->attr.comm)
3161 atomic_dec(&nr_comm_events);
3162 if (event->attr.task)
3163 atomic_dec(&nr_task_events);
3164 if (event->attr.freq)
3165 atomic_dec(&nr_freq_events);
3166 if (is_cgroup_event(event))
3167 static_key_slow_dec_deferred(&perf_sched_events);
3168 if (has_branch_stack(event))
3169 static_key_slow_dec_deferred(&perf_sched_events);
3170
3171 unaccount_event_cpu(event, event->cpu);
3172 }
3173
3174 static void __free_event(struct perf_event *event)
3175 {
3176 if (!event->parent) {
3177 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3178 put_callchain_buffers();
3179 }
3180
3181 if (event->destroy)
3182 event->destroy(event);
3183
3184 if (event->ctx)
3185 put_ctx(event->ctx);
3186
3187 call_rcu(&event->rcu_head, free_event_rcu);
3188 }
3189 static void free_event(struct perf_event *event)
3190 {
3191 irq_work_sync(&event->pending);
3192
3193 unaccount_event(event);
3194
3195 if (event->rb) {
3196 struct ring_buffer *rb;
3197
3198 /*
3199 * Can happen when we close an event with re-directed output.
3200 *
3201 * Since we have a 0 refcount, perf_mmap_close() will skip
3202 * over us; possibly making our ring_buffer_put() the last.
3203 */
3204 mutex_lock(&event->mmap_mutex);
3205 rb = event->rb;
3206 if (rb) {
3207 rcu_assign_pointer(event->rb, NULL);
3208 ring_buffer_detach(event, rb);
3209 ring_buffer_put(rb); /* could be last */
3210 }
3211 mutex_unlock(&event->mmap_mutex);
3212 }
3213
3214 if (is_cgroup_event(event))
3215 perf_detach_cgroup(event);
3216
3217
3218 __free_event(event);
3219 }
3220
3221 int perf_event_release_kernel(struct perf_event *event)
3222 {
3223 struct perf_event_context *ctx = event->ctx;
3224
3225 WARN_ON_ONCE(ctx->parent_ctx);
3226 /*
3227 * There are two ways this annotation is useful:
3228 *
3229 * 1) there is a lock recursion from perf_event_exit_task
3230 * see the comment there.
3231 *
3232 * 2) there is a lock-inversion with mmap_sem through
3233 * perf_event_read_group(), which takes faults while
3234 * holding ctx->mutex, however this is called after
3235 * the last filedesc died, so there is no possibility
3236 * to trigger the AB-BA case.
3237 */
3238 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3239 raw_spin_lock_irq(&ctx->lock);
3240 perf_group_detach(event);
3241 raw_spin_unlock_irq(&ctx->lock);
3242 perf_remove_from_context(event);
3243 mutex_unlock(&ctx->mutex);
3244
3245 free_event(event);
3246
3247 return 0;
3248 }
3249 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3250
3251 /*
3252 * Called when the last reference to the file is gone.
3253 */
3254 static void put_event(struct perf_event *event)
3255 {
3256 struct task_struct *owner;
3257
3258 if (!atomic_long_dec_and_test(&event->refcount))
3259 return;
3260
3261 rcu_read_lock();
3262 owner = ACCESS_ONCE(event->owner);
3263 /*
3264 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3265 * !owner it means the list deletion is complete and we can indeed
3266 * free this event, otherwise we need to serialize on
3267 * owner->perf_event_mutex.
3268 */
3269 smp_read_barrier_depends();
3270 if (owner) {
3271 /*
3272 * Since delayed_put_task_struct() also drops the last
3273 * task reference we can safely take a new reference
3274 * while holding the rcu_read_lock().
3275 */
3276 get_task_struct(owner);
3277 }
3278 rcu_read_unlock();
3279
3280 if (owner) {
3281 mutex_lock(&owner->perf_event_mutex);
3282 /*
3283 * We have to re-check the event->owner field, if it is cleared
3284 * we raced with perf_event_exit_task(), acquiring the mutex
3285 * ensured they're done, and we can proceed with freeing the
3286 * event.
3287 */
3288 if (event->owner)
3289 list_del_init(&event->owner_entry);
3290 mutex_unlock(&owner->perf_event_mutex);
3291 put_task_struct(owner);
3292 }
3293
3294 perf_event_release_kernel(event);
3295 }
3296
3297 static int perf_release(struct inode *inode, struct file *file)
3298 {
3299 put_event(file->private_data);
3300 return 0;
3301 }
3302
3303 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3304 {
3305 struct perf_event *child;
3306 u64 total = 0;
3307
3308 *enabled = 0;
3309 *running = 0;
3310
3311 mutex_lock(&event->child_mutex);
3312 total += perf_event_read(event);
3313 *enabled += event->total_time_enabled +
3314 atomic64_read(&event->child_total_time_enabled);
3315 *running += event->total_time_running +
3316 atomic64_read(&event->child_total_time_running);
3317
3318 list_for_each_entry(child, &event->child_list, child_list) {
3319 total += perf_event_read(child);
3320 *enabled += child->total_time_enabled;
3321 *running += child->total_time_running;
3322 }
3323 mutex_unlock(&event->child_mutex);
3324
3325 return total;
3326 }
3327 EXPORT_SYMBOL_GPL(perf_event_read_value);
3328
3329 static int perf_event_read_group(struct perf_event *event,
3330 u64 read_format, char __user *buf)
3331 {
3332 struct perf_event *leader = event->group_leader, *sub;
3333 int n = 0, size = 0, ret = -EFAULT;
3334 struct perf_event_context *ctx = leader->ctx;
3335 u64 values[5];
3336 u64 count, enabled, running;
3337
3338 mutex_lock(&ctx->mutex);
3339 count = perf_event_read_value(leader, &enabled, &running);
3340
3341 values[n++] = 1 + leader->nr_siblings;
3342 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3343 values[n++] = enabled;
3344 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3345 values[n++] = running;
3346 values[n++] = count;
3347 if (read_format & PERF_FORMAT_ID)
3348 values[n++] = primary_event_id(leader);
3349
3350 size = n * sizeof(u64);
3351
3352 if (copy_to_user(buf, values, size))
3353 goto unlock;
3354
3355 ret = size;
3356
3357 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3358 n = 0;
3359
3360 values[n++] = perf_event_read_value(sub, &enabled, &running);
3361 if (read_format & PERF_FORMAT_ID)
3362 values[n++] = primary_event_id(sub);
3363
3364 size = n * sizeof(u64);
3365
3366 if (copy_to_user(buf + ret, values, size)) {
3367 ret = -EFAULT;
3368 goto unlock;
3369 }
3370
3371 ret += size;
3372 }
3373 unlock:
3374 mutex_unlock(&ctx->mutex);
3375
3376 return ret;
3377 }
3378
3379 static int perf_event_read_one(struct perf_event *event,
3380 u64 read_format, char __user *buf)
3381 {
3382 u64 enabled, running;
3383 u64 values[4];
3384 int n = 0;
3385
3386 values[n++] = perf_event_read_value(event, &enabled, &running);
3387 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3388 values[n++] = enabled;
3389 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3390 values[n++] = running;
3391 if (read_format & PERF_FORMAT_ID)
3392 values[n++] = primary_event_id(event);
3393
3394 if (copy_to_user(buf, values, n * sizeof(u64)))
3395 return -EFAULT;
3396
3397 return n * sizeof(u64);
3398 }
3399
3400 /*
3401 * Read the performance event - simple non blocking version for now
3402 */
3403 static ssize_t
3404 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3405 {
3406 u64 read_format = event->attr.read_format;
3407 int ret;
3408
3409 /*
3410 * Return end-of-file for a read on a event that is in
3411 * error state (i.e. because it was pinned but it couldn't be
3412 * scheduled on to the CPU at some point).
3413 */
3414 if (event->state == PERF_EVENT_STATE_ERROR)
3415 return 0;
3416
3417 if (count < event->read_size)
3418 return -ENOSPC;
3419
3420 WARN_ON_ONCE(event->ctx->parent_ctx);
3421 if (read_format & PERF_FORMAT_GROUP)
3422 ret = perf_event_read_group(event, read_format, buf);
3423 else
3424 ret = perf_event_read_one(event, read_format, buf);
3425
3426 return ret;
3427 }
3428
3429 static ssize_t
3430 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3431 {
3432 struct perf_event *event = file->private_data;
3433
3434 return perf_read_hw(event, buf, count);
3435 }
3436
3437 static unsigned int perf_poll(struct file *file, poll_table *wait)
3438 {
3439 struct perf_event *event = file->private_data;
3440 struct ring_buffer *rb;
3441 unsigned int events = POLL_HUP;
3442
3443 /*
3444 * Pin the event->rb by taking event->mmap_mutex; otherwise
3445 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3446 */
3447 mutex_lock(&event->mmap_mutex);
3448 rb = event->rb;
3449 if (rb)
3450 events = atomic_xchg(&rb->poll, 0);
3451 mutex_unlock(&event->mmap_mutex);
3452
3453 poll_wait(file, &event->waitq, wait);
3454
3455 return events;
3456 }
3457
3458 static void perf_event_reset(struct perf_event *event)
3459 {
3460 (void)perf_event_read(event);
3461 local64_set(&event->count, 0);
3462 perf_event_update_userpage(event);
3463 }
3464
3465 /*
3466 * Holding the top-level event's child_mutex means that any
3467 * descendant process that has inherited this event will block
3468 * in sync_child_event if it goes to exit, thus satisfying the
3469 * task existence requirements of perf_event_enable/disable.
3470 */
3471 static void perf_event_for_each_child(struct perf_event *event,
3472 void (*func)(struct perf_event *))
3473 {
3474 struct perf_event *child;
3475
3476 WARN_ON_ONCE(event->ctx->parent_ctx);
3477 mutex_lock(&event->child_mutex);
3478 func(event);
3479 list_for_each_entry(child, &event->child_list, child_list)
3480 func(child);
3481 mutex_unlock(&event->child_mutex);
3482 }
3483
3484 static void perf_event_for_each(struct perf_event *event,
3485 void (*func)(struct perf_event *))
3486 {
3487 struct perf_event_context *ctx = event->ctx;
3488 struct perf_event *sibling;
3489
3490 WARN_ON_ONCE(ctx->parent_ctx);
3491 mutex_lock(&ctx->mutex);
3492 event = event->group_leader;
3493
3494 perf_event_for_each_child(event, func);
3495 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3496 perf_event_for_each_child(sibling, func);
3497 mutex_unlock(&ctx->mutex);
3498 }
3499
3500 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3501 {
3502 struct perf_event_context *ctx = event->ctx;
3503 int ret = 0;
3504 u64 value;
3505
3506 if (!is_sampling_event(event))
3507 return -EINVAL;
3508
3509 if (copy_from_user(&value, arg, sizeof(value)))
3510 return -EFAULT;
3511
3512 if (!value)
3513 return -EINVAL;
3514
3515 raw_spin_lock_irq(&ctx->lock);
3516 if (event->attr.freq) {
3517 if (value > sysctl_perf_event_sample_rate) {
3518 ret = -EINVAL;
3519 goto unlock;
3520 }
3521
3522 event->attr.sample_freq = value;
3523 } else {
3524 event->attr.sample_period = value;
3525 event->hw.sample_period = value;
3526 }
3527 unlock:
3528 raw_spin_unlock_irq(&ctx->lock);
3529
3530 return ret;
3531 }
3532
3533 static const struct file_operations perf_fops;
3534
3535 static inline int perf_fget_light(int fd, struct fd *p)
3536 {
3537 struct fd f = fdget(fd);
3538 if (!f.file)
3539 return -EBADF;
3540
3541 if (f.file->f_op != &perf_fops) {
3542 fdput(f);
3543 return -EBADF;
3544 }
3545 *p = f;
3546 return 0;
3547 }
3548
3549 static int perf_event_set_output(struct perf_event *event,
3550 struct perf_event *output_event);
3551 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3552
3553 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3554 {
3555 struct perf_event *event = file->private_data;
3556 void (*func)(struct perf_event *);
3557 u32 flags = arg;
3558
3559 switch (cmd) {
3560 case PERF_EVENT_IOC_ENABLE:
3561 func = perf_event_enable;
3562 break;
3563 case PERF_EVENT_IOC_DISABLE:
3564 func = perf_event_disable;
3565 break;
3566 case PERF_EVENT_IOC_RESET:
3567 func = perf_event_reset;
3568 break;
3569
3570 case PERF_EVENT_IOC_REFRESH:
3571 return perf_event_refresh(event, arg);
3572
3573 case PERF_EVENT_IOC_PERIOD:
3574 return perf_event_period(event, (u64 __user *)arg);
3575
3576 case PERF_EVENT_IOC_ID:
3577 {
3578 u64 id = primary_event_id(event);
3579
3580 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3581 return -EFAULT;
3582 return 0;
3583 }
3584
3585 case PERF_EVENT_IOC_SET_OUTPUT:
3586 {
3587 int ret;
3588 if (arg != -1) {
3589 struct perf_event *output_event;
3590 struct fd output;
3591 ret = perf_fget_light(arg, &output);
3592 if (ret)
3593 return ret;
3594 output_event = output.file->private_data;
3595 ret = perf_event_set_output(event, output_event);
3596 fdput(output);
3597 } else {
3598 ret = perf_event_set_output(event, NULL);
3599 }
3600 return ret;
3601 }
3602
3603 case PERF_EVENT_IOC_SET_FILTER:
3604 return perf_event_set_filter(event, (void __user *)arg);
3605
3606 default:
3607 return -ENOTTY;
3608 }
3609
3610 if (flags & PERF_IOC_FLAG_GROUP)
3611 perf_event_for_each(event, func);
3612 else
3613 perf_event_for_each_child(event, func);
3614
3615 return 0;
3616 }
3617
3618 int perf_event_task_enable(void)
3619 {
3620 struct perf_event *event;
3621
3622 mutex_lock(&current->perf_event_mutex);
3623 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3624 perf_event_for_each_child(event, perf_event_enable);
3625 mutex_unlock(&current->perf_event_mutex);
3626
3627 return 0;
3628 }
3629
3630 int perf_event_task_disable(void)
3631 {
3632 struct perf_event *event;
3633
3634 mutex_lock(&current->perf_event_mutex);
3635 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3636 perf_event_for_each_child(event, perf_event_disable);
3637 mutex_unlock(&current->perf_event_mutex);
3638
3639 return 0;
3640 }
3641
3642 static int perf_event_index(struct perf_event *event)
3643 {
3644 if (event->hw.state & PERF_HES_STOPPED)
3645 return 0;
3646
3647 if (event->state != PERF_EVENT_STATE_ACTIVE)
3648 return 0;
3649
3650 return event->pmu->event_idx(event);
3651 }
3652
3653 static void calc_timer_values(struct perf_event *event,
3654 u64 *now,
3655 u64 *enabled,
3656 u64 *running)
3657 {
3658 u64 ctx_time;
3659
3660 *now = perf_clock();
3661 ctx_time = event->shadow_ctx_time + *now;
3662 *enabled = ctx_time - event->tstamp_enabled;
3663 *running = ctx_time - event->tstamp_running;
3664 }
3665
3666 static void perf_event_init_userpage(struct perf_event *event)
3667 {
3668 struct perf_event_mmap_page *userpg;
3669 struct ring_buffer *rb;
3670
3671 rcu_read_lock();
3672 rb = rcu_dereference(event->rb);
3673 if (!rb)
3674 goto unlock;
3675
3676 userpg = rb->user_page;
3677
3678 /* Allow new userspace to detect that bit 0 is deprecated */
3679 userpg->cap_bit0_is_deprecated = 1;
3680 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3681
3682 unlock:
3683 rcu_read_unlock();
3684 }
3685
3686 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3687 {
3688 }
3689
3690 /*
3691 * Callers need to ensure there can be no nesting of this function, otherwise
3692 * the seqlock logic goes bad. We can not serialize this because the arch
3693 * code calls this from NMI context.
3694 */
3695 void perf_event_update_userpage(struct perf_event *event)
3696 {
3697 struct perf_event_mmap_page *userpg;
3698 struct ring_buffer *rb;
3699 u64 enabled, running, now;
3700
3701 rcu_read_lock();
3702 rb = rcu_dereference(event->rb);
3703 if (!rb)
3704 goto unlock;
3705
3706 /*
3707 * compute total_time_enabled, total_time_running
3708 * based on snapshot values taken when the event
3709 * was last scheduled in.
3710 *
3711 * we cannot simply called update_context_time()
3712 * because of locking issue as we can be called in
3713 * NMI context
3714 */
3715 calc_timer_values(event, &now, &enabled, &running);
3716
3717 userpg = rb->user_page;
3718 /*
3719 * Disable preemption so as to not let the corresponding user-space
3720 * spin too long if we get preempted.
3721 */
3722 preempt_disable();
3723 ++userpg->lock;
3724 barrier();
3725 userpg->index = perf_event_index(event);
3726 userpg->offset = perf_event_count(event);
3727 if (userpg->index)
3728 userpg->offset -= local64_read(&event->hw.prev_count);
3729
3730 userpg->time_enabled = enabled +
3731 atomic64_read(&event->child_total_time_enabled);
3732
3733 userpg->time_running = running +
3734 atomic64_read(&event->child_total_time_running);
3735
3736 arch_perf_update_userpage(userpg, now);
3737
3738 barrier();
3739 ++userpg->lock;
3740 preempt_enable();
3741 unlock:
3742 rcu_read_unlock();
3743 }
3744
3745 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3746 {
3747 struct perf_event *event = vma->vm_file->private_data;
3748 struct ring_buffer *rb;
3749 int ret = VM_FAULT_SIGBUS;
3750
3751 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3752 if (vmf->pgoff == 0)
3753 ret = 0;
3754 return ret;
3755 }
3756
3757 rcu_read_lock();
3758 rb = rcu_dereference(event->rb);
3759 if (!rb)
3760 goto unlock;
3761
3762 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3763 goto unlock;
3764
3765 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3766 if (!vmf->page)
3767 goto unlock;
3768
3769 get_page(vmf->page);
3770 vmf->page->mapping = vma->vm_file->f_mapping;
3771 vmf->page->index = vmf->pgoff;
3772
3773 ret = 0;
3774 unlock:
3775 rcu_read_unlock();
3776
3777 return ret;
3778 }
3779
3780 static void ring_buffer_attach(struct perf_event *event,
3781 struct ring_buffer *rb)
3782 {
3783 unsigned long flags;
3784
3785 if (!list_empty(&event->rb_entry))
3786 return;
3787
3788 spin_lock_irqsave(&rb->event_lock, flags);
3789 if (list_empty(&event->rb_entry))
3790 list_add(&event->rb_entry, &rb->event_list);
3791 spin_unlock_irqrestore(&rb->event_lock, flags);
3792 }
3793
3794 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3795 {
3796 unsigned long flags;
3797
3798 if (list_empty(&event->rb_entry))
3799 return;
3800
3801 spin_lock_irqsave(&rb->event_lock, flags);
3802 list_del_init(&event->rb_entry);
3803 wake_up_all(&event->waitq);
3804 spin_unlock_irqrestore(&rb->event_lock, flags);
3805 }
3806
3807 static void ring_buffer_wakeup(struct perf_event *event)
3808 {
3809 struct ring_buffer *rb;
3810
3811 rcu_read_lock();
3812 rb = rcu_dereference(event->rb);
3813 if (rb) {
3814 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3815 wake_up_all(&event->waitq);
3816 }
3817 rcu_read_unlock();
3818 }
3819
3820 static void rb_free_rcu(struct rcu_head *rcu_head)
3821 {
3822 struct ring_buffer *rb;
3823
3824 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3825 rb_free(rb);
3826 }
3827
3828 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3829 {
3830 struct ring_buffer *rb;
3831
3832 rcu_read_lock();
3833 rb = rcu_dereference(event->rb);
3834 if (rb) {
3835 if (!atomic_inc_not_zero(&rb->refcount))
3836 rb = NULL;
3837 }
3838 rcu_read_unlock();
3839
3840 return rb;
3841 }
3842
3843 static void ring_buffer_put(struct ring_buffer *rb)
3844 {
3845 if (!atomic_dec_and_test(&rb->refcount))
3846 return;
3847
3848 WARN_ON_ONCE(!list_empty(&rb->event_list));
3849
3850 call_rcu(&rb->rcu_head, rb_free_rcu);
3851 }
3852
3853 static void perf_mmap_open(struct vm_area_struct *vma)
3854 {
3855 struct perf_event *event = vma->vm_file->private_data;
3856
3857 atomic_inc(&event->mmap_count);
3858 atomic_inc(&event->rb->mmap_count);
3859 }
3860
3861 /*
3862 * A buffer can be mmap()ed multiple times; either directly through the same
3863 * event, or through other events by use of perf_event_set_output().
3864 *
3865 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3866 * the buffer here, where we still have a VM context. This means we need
3867 * to detach all events redirecting to us.
3868 */
3869 static void perf_mmap_close(struct vm_area_struct *vma)
3870 {
3871 struct perf_event *event = vma->vm_file->private_data;
3872
3873 struct ring_buffer *rb = event->rb;
3874 struct user_struct *mmap_user = rb->mmap_user;
3875 int mmap_locked = rb->mmap_locked;
3876 unsigned long size = perf_data_size(rb);
3877
3878 atomic_dec(&rb->mmap_count);
3879
3880 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3881 return;
3882
3883 /* Detach current event from the buffer. */
3884 rcu_assign_pointer(event->rb, NULL);
3885 ring_buffer_detach(event, rb);
3886 mutex_unlock(&event->mmap_mutex);
3887
3888 /* If there's still other mmap()s of this buffer, we're done. */
3889 if (atomic_read(&rb->mmap_count)) {
3890 ring_buffer_put(rb); /* can't be last */
3891 return;
3892 }
3893
3894 /*
3895 * No other mmap()s, detach from all other events that might redirect
3896 * into the now unreachable buffer. Somewhat complicated by the
3897 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3898 */
3899 again:
3900 rcu_read_lock();
3901 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3902 if (!atomic_long_inc_not_zero(&event->refcount)) {
3903 /*
3904 * This event is en-route to free_event() which will
3905 * detach it and remove it from the list.
3906 */
3907 continue;
3908 }
3909 rcu_read_unlock();
3910
3911 mutex_lock(&event->mmap_mutex);
3912 /*
3913 * Check we didn't race with perf_event_set_output() which can
3914 * swizzle the rb from under us while we were waiting to
3915 * acquire mmap_mutex.
3916 *
3917 * If we find a different rb; ignore this event, a next
3918 * iteration will no longer find it on the list. We have to
3919 * still restart the iteration to make sure we're not now
3920 * iterating the wrong list.
3921 */
3922 if (event->rb == rb) {
3923 rcu_assign_pointer(event->rb, NULL);
3924 ring_buffer_detach(event, rb);
3925 ring_buffer_put(rb); /* can't be last, we still have one */
3926 }
3927 mutex_unlock(&event->mmap_mutex);
3928 put_event(event);
3929
3930 /*
3931 * Restart the iteration; either we're on the wrong list or
3932 * destroyed its integrity by doing a deletion.
3933 */
3934 goto again;
3935 }
3936 rcu_read_unlock();
3937
3938 /*
3939 * It could be there's still a few 0-ref events on the list; they'll
3940 * get cleaned up by free_event() -- they'll also still have their
3941 * ref on the rb and will free it whenever they are done with it.
3942 *
3943 * Aside from that, this buffer is 'fully' detached and unmapped,
3944 * undo the VM accounting.
3945 */
3946
3947 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3948 vma->vm_mm->pinned_vm -= mmap_locked;
3949 free_uid(mmap_user);
3950
3951 ring_buffer_put(rb); /* could be last */
3952 }
3953
3954 static const struct vm_operations_struct perf_mmap_vmops = {
3955 .open = perf_mmap_open,
3956 .close = perf_mmap_close,
3957 .fault = perf_mmap_fault,
3958 .page_mkwrite = perf_mmap_fault,
3959 };
3960
3961 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3962 {
3963 struct perf_event *event = file->private_data;
3964 unsigned long user_locked, user_lock_limit;
3965 struct user_struct *user = current_user();
3966 unsigned long locked, lock_limit;
3967 struct ring_buffer *rb;
3968 unsigned long vma_size;
3969 unsigned long nr_pages;
3970 long user_extra, extra;
3971 int ret = 0, flags = 0;
3972
3973 /*
3974 * Don't allow mmap() of inherited per-task counters. This would
3975 * create a performance issue due to all children writing to the
3976 * same rb.
3977 */
3978 if (event->cpu == -1 && event->attr.inherit)
3979 return -EINVAL;
3980
3981 if (!(vma->vm_flags & VM_SHARED))
3982 return -EINVAL;
3983
3984 vma_size = vma->vm_end - vma->vm_start;
3985 nr_pages = (vma_size / PAGE_SIZE) - 1;
3986
3987 /*
3988 * If we have rb pages ensure they're a power-of-two number, so we
3989 * can do bitmasks instead of modulo.
3990 */
3991 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3992 return -EINVAL;
3993
3994 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3995 return -EINVAL;
3996
3997 if (vma->vm_pgoff != 0)
3998 return -EINVAL;
3999
4000 WARN_ON_ONCE(event->ctx->parent_ctx);
4001 again:
4002 mutex_lock(&event->mmap_mutex);
4003 if (event->rb) {
4004 if (event->rb->nr_pages != nr_pages) {
4005 ret = -EINVAL;
4006 goto unlock;
4007 }
4008
4009 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4010 /*
4011 * Raced against perf_mmap_close() through
4012 * perf_event_set_output(). Try again, hope for better
4013 * luck.
4014 */
4015 mutex_unlock(&event->mmap_mutex);
4016 goto again;
4017 }
4018
4019 goto unlock;
4020 }
4021
4022 user_extra = nr_pages + 1;
4023 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4024
4025 /*
4026 * Increase the limit linearly with more CPUs:
4027 */
4028 user_lock_limit *= num_online_cpus();
4029
4030 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4031
4032 extra = 0;
4033 if (user_locked > user_lock_limit)
4034 extra = user_locked - user_lock_limit;
4035
4036 lock_limit = rlimit(RLIMIT_MEMLOCK);
4037 lock_limit >>= PAGE_SHIFT;
4038 locked = vma->vm_mm->pinned_vm + extra;
4039
4040 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4041 !capable(CAP_IPC_LOCK)) {
4042 ret = -EPERM;
4043 goto unlock;
4044 }
4045
4046 WARN_ON(event->rb);
4047
4048 if (vma->vm_flags & VM_WRITE)
4049 flags |= RING_BUFFER_WRITABLE;
4050
4051 rb = rb_alloc(nr_pages,
4052 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4053 event->cpu, flags);
4054
4055 if (!rb) {
4056 ret = -ENOMEM;
4057 goto unlock;
4058 }
4059
4060 atomic_set(&rb->mmap_count, 1);
4061 rb->mmap_locked = extra;
4062 rb->mmap_user = get_current_user();
4063
4064 atomic_long_add(user_extra, &user->locked_vm);
4065 vma->vm_mm->pinned_vm += extra;
4066
4067 ring_buffer_attach(event, rb);
4068 rcu_assign_pointer(event->rb, rb);
4069
4070 perf_event_init_userpage(event);
4071 perf_event_update_userpage(event);
4072
4073 unlock:
4074 if (!ret)
4075 atomic_inc(&event->mmap_count);
4076 mutex_unlock(&event->mmap_mutex);
4077
4078 /*
4079 * Since pinned accounting is per vm we cannot allow fork() to copy our
4080 * vma.
4081 */
4082 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4083 vma->vm_ops = &perf_mmap_vmops;
4084
4085 return ret;
4086 }
4087
4088 static int perf_fasync(int fd, struct file *filp, int on)
4089 {
4090 struct inode *inode = file_inode(filp);
4091 struct perf_event *event = filp->private_data;
4092 int retval;
4093
4094 mutex_lock(&inode->i_mutex);
4095 retval = fasync_helper(fd, filp, on, &event->fasync);
4096 mutex_unlock(&inode->i_mutex);
4097
4098 if (retval < 0)
4099 return retval;
4100
4101 return 0;
4102 }
4103
4104 static const struct file_operations perf_fops = {
4105 .llseek = no_llseek,
4106 .release = perf_release,
4107 .read = perf_read,
4108 .poll = perf_poll,
4109 .unlocked_ioctl = perf_ioctl,
4110 .compat_ioctl = perf_ioctl,
4111 .mmap = perf_mmap,
4112 .fasync = perf_fasync,
4113 };
4114
4115 /*
4116 * Perf event wakeup
4117 *
4118 * If there's data, ensure we set the poll() state and publish everything
4119 * to user-space before waking everybody up.
4120 */
4121
4122 void perf_event_wakeup(struct perf_event *event)
4123 {
4124 ring_buffer_wakeup(event);
4125
4126 if (event->pending_kill) {
4127 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4128 event->pending_kill = 0;
4129 }
4130 }
4131
4132 static void perf_pending_event(struct irq_work *entry)
4133 {
4134 struct perf_event *event = container_of(entry,
4135 struct perf_event, pending);
4136
4137 if (event->pending_disable) {
4138 event->pending_disable = 0;
4139 __perf_event_disable(event);
4140 }
4141
4142 if (event->pending_wakeup) {
4143 event->pending_wakeup = 0;
4144 perf_event_wakeup(event);
4145 }
4146 }
4147
4148 /*
4149 * We assume there is only KVM supporting the callbacks.
4150 * Later on, we might change it to a list if there is
4151 * another virtualization implementation supporting the callbacks.
4152 */
4153 struct perf_guest_info_callbacks *perf_guest_cbs;
4154
4155 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4156 {
4157 perf_guest_cbs = cbs;
4158 return 0;
4159 }
4160 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4161
4162 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4163 {
4164 perf_guest_cbs = NULL;
4165 return 0;
4166 }
4167 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4168
4169 static void
4170 perf_output_sample_regs(struct perf_output_handle *handle,
4171 struct pt_regs *regs, u64 mask)
4172 {
4173 int bit;
4174
4175 for_each_set_bit(bit, (const unsigned long *) &mask,
4176 sizeof(mask) * BITS_PER_BYTE) {
4177 u64 val;
4178
4179 val = perf_reg_value(regs, bit);
4180 perf_output_put(handle, val);
4181 }
4182 }
4183
4184 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4185 struct pt_regs *regs)
4186 {
4187 if (!user_mode(regs)) {
4188 if (current->mm)
4189 regs = task_pt_regs(current);
4190 else
4191 regs = NULL;
4192 }
4193
4194 if (regs) {
4195 regs_user->regs = regs;
4196 regs_user->abi = perf_reg_abi(current);
4197 }
4198 }
4199
4200 /*
4201 * Get remaining task size from user stack pointer.
4202 *
4203 * It'd be better to take stack vma map and limit this more
4204 * precisly, but there's no way to get it safely under interrupt,
4205 * so using TASK_SIZE as limit.
4206 */
4207 static u64 perf_ustack_task_size(struct pt_regs *regs)
4208 {
4209 unsigned long addr = perf_user_stack_pointer(regs);
4210
4211 if (!addr || addr >= TASK_SIZE)
4212 return 0;
4213
4214 return TASK_SIZE - addr;
4215 }
4216
4217 static u16
4218 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4219 struct pt_regs *regs)
4220 {
4221 u64 task_size;
4222
4223 /* No regs, no stack pointer, no dump. */
4224 if (!regs)
4225 return 0;
4226
4227 /*
4228 * Check if we fit in with the requested stack size into the:
4229 * - TASK_SIZE
4230 * If we don't, we limit the size to the TASK_SIZE.
4231 *
4232 * - remaining sample size
4233 * If we don't, we customize the stack size to
4234 * fit in to the remaining sample size.
4235 */
4236
4237 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4238 stack_size = min(stack_size, (u16) task_size);
4239
4240 /* Current header size plus static size and dynamic size. */
4241 header_size += 2 * sizeof(u64);
4242
4243 /* Do we fit in with the current stack dump size? */
4244 if ((u16) (header_size + stack_size) < header_size) {
4245 /*
4246 * If we overflow the maximum size for the sample,
4247 * we customize the stack dump size to fit in.
4248 */
4249 stack_size = USHRT_MAX - header_size - sizeof(u64);
4250 stack_size = round_up(stack_size, sizeof(u64));
4251 }
4252
4253 return stack_size;
4254 }
4255
4256 static void
4257 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4258 struct pt_regs *regs)
4259 {
4260 /* Case of a kernel thread, nothing to dump */
4261 if (!regs) {
4262 u64 size = 0;
4263 perf_output_put(handle, size);
4264 } else {
4265 unsigned long sp;
4266 unsigned int rem;
4267 u64 dyn_size;
4268
4269 /*
4270 * We dump:
4271 * static size
4272 * - the size requested by user or the best one we can fit
4273 * in to the sample max size
4274 * data
4275 * - user stack dump data
4276 * dynamic size
4277 * - the actual dumped size
4278 */
4279
4280 /* Static size. */
4281 perf_output_put(handle, dump_size);
4282
4283 /* Data. */
4284 sp = perf_user_stack_pointer(regs);
4285 rem = __output_copy_user(handle, (void *) sp, dump_size);
4286 dyn_size = dump_size - rem;
4287
4288 perf_output_skip(handle, rem);
4289
4290 /* Dynamic size. */
4291 perf_output_put(handle, dyn_size);
4292 }
4293 }
4294
4295 static void __perf_event_header__init_id(struct perf_event_header *header,
4296 struct perf_sample_data *data,
4297 struct perf_event *event)
4298 {
4299 u64 sample_type = event->attr.sample_type;
4300
4301 data->type = sample_type;
4302 header->size += event->id_header_size;
4303
4304 if (sample_type & PERF_SAMPLE_TID) {
4305 /* namespace issues */
4306 data->tid_entry.pid = perf_event_pid(event, current);
4307 data->tid_entry.tid = perf_event_tid(event, current);
4308 }
4309
4310 if (sample_type & PERF_SAMPLE_TIME)
4311 data->time = perf_clock();
4312
4313 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4314 data->id = primary_event_id(event);
4315
4316 if (sample_type & PERF_SAMPLE_STREAM_ID)
4317 data->stream_id = event->id;
4318
4319 if (sample_type & PERF_SAMPLE_CPU) {
4320 data->cpu_entry.cpu = raw_smp_processor_id();
4321 data->cpu_entry.reserved = 0;
4322 }
4323 }
4324
4325 void perf_event_header__init_id(struct perf_event_header *header,
4326 struct perf_sample_data *data,
4327 struct perf_event *event)
4328 {
4329 if (event->attr.sample_id_all)
4330 __perf_event_header__init_id(header, data, event);
4331 }
4332
4333 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4334 struct perf_sample_data *data)
4335 {
4336 u64 sample_type = data->type;
4337
4338 if (sample_type & PERF_SAMPLE_TID)
4339 perf_output_put(handle, data->tid_entry);
4340
4341 if (sample_type & PERF_SAMPLE_TIME)
4342 perf_output_put(handle, data->time);
4343
4344 if (sample_type & PERF_SAMPLE_ID)
4345 perf_output_put(handle, data->id);
4346
4347 if (sample_type & PERF_SAMPLE_STREAM_ID)
4348 perf_output_put(handle, data->stream_id);
4349
4350 if (sample_type & PERF_SAMPLE_CPU)
4351 perf_output_put(handle, data->cpu_entry);
4352
4353 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4354 perf_output_put(handle, data->id);
4355 }
4356
4357 void perf_event__output_id_sample(struct perf_event *event,
4358 struct perf_output_handle *handle,
4359 struct perf_sample_data *sample)
4360 {
4361 if (event->attr.sample_id_all)
4362 __perf_event__output_id_sample(handle, sample);
4363 }
4364
4365 static void perf_output_read_one(struct perf_output_handle *handle,
4366 struct perf_event *event,
4367 u64 enabled, u64 running)
4368 {
4369 u64 read_format = event->attr.read_format;
4370 u64 values[4];
4371 int n = 0;
4372
4373 values[n++] = perf_event_count(event);
4374 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4375 values[n++] = enabled +
4376 atomic64_read(&event->child_total_time_enabled);
4377 }
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379 values[n++] = running +
4380 atomic64_read(&event->child_total_time_running);
4381 }
4382 if (read_format & PERF_FORMAT_ID)
4383 values[n++] = primary_event_id(event);
4384
4385 __output_copy(handle, values, n * sizeof(u64));
4386 }
4387
4388 /*
4389 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4390 */
4391 static void perf_output_read_group(struct perf_output_handle *handle,
4392 struct perf_event *event,
4393 u64 enabled, u64 running)
4394 {
4395 struct perf_event *leader = event->group_leader, *sub;
4396 u64 read_format = event->attr.read_format;
4397 u64 values[5];
4398 int n = 0;
4399
4400 values[n++] = 1 + leader->nr_siblings;
4401
4402 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4403 values[n++] = enabled;
4404
4405 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4406 values[n++] = running;
4407
4408 if (leader != event)
4409 leader->pmu->read(leader);
4410
4411 values[n++] = perf_event_count(leader);
4412 if (read_format & PERF_FORMAT_ID)
4413 values[n++] = primary_event_id(leader);
4414
4415 __output_copy(handle, values, n * sizeof(u64));
4416
4417 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4418 n = 0;
4419
4420 if ((sub != event) &&
4421 (sub->state == PERF_EVENT_STATE_ACTIVE))
4422 sub->pmu->read(sub);
4423
4424 values[n++] = perf_event_count(sub);
4425 if (read_format & PERF_FORMAT_ID)
4426 values[n++] = primary_event_id(sub);
4427
4428 __output_copy(handle, values, n * sizeof(u64));
4429 }
4430 }
4431
4432 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4433 PERF_FORMAT_TOTAL_TIME_RUNNING)
4434
4435 static void perf_output_read(struct perf_output_handle *handle,
4436 struct perf_event *event)
4437 {
4438 u64 enabled = 0, running = 0, now;
4439 u64 read_format = event->attr.read_format;
4440
4441 /*
4442 * compute total_time_enabled, total_time_running
4443 * based on snapshot values taken when the event
4444 * was last scheduled in.
4445 *
4446 * we cannot simply called update_context_time()
4447 * because of locking issue as we are called in
4448 * NMI context
4449 */
4450 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4451 calc_timer_values(event, &now, &enabled, &running);
4452
4453 if (event->attr.read_format & PERF_FORMAT_GROUP)
4454 perf_output_read_group(handle, event, enabled, running);
4455 else
4456 perf_output_read_one(handle, event, enabled, running);
4457 }
4458
4459 void perf_output_sample(struct perf_output_handle *handle,
4460 struct perf_event_header *header,
4461 struct perf_sample_data *data,
4462 struct perf_event *event)
4463 {
4464 u64 sample_type = data->type;
4465
4466 perf_output_put(handle, *header);
4467
4468 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4469 perf_output_put(handle, data->id);
4470
4471 if (sample_type & PERF_SAMPLE_IP)
4472 perf_output_put(handle, data->ip);
4473
4474 if (sample_type & PERF_SAMPLE_TID)
4475 perf_output_put(handle, data->tid_entry);
4476
4477 if (sample_type & PERF_SAMPLE_TIME)
4478 perf_output_put(handle, data->time);
4479
4480 if (sample_type & PERF_SAMPLE_ADDR)
4481 perf_output_put(handle, data->addr);
4482
4483 if (sample_type & PERF_SAMPLE_ID)
4484 perf_output_put(handle, data->id);
4485
4486 if (sample_type & PERF_SAMPLE_STREAM_ID)
4487 perf_output_put(handle, data->stream_id);
4488
4489 if (sample_type & PERF_SAMPLE_CPU)
4490 perf_output_put(handle, data->cpu_entry);
4491
4492 if (sample_type & PERF_SAMPLE_PERIOD)
4493 perf_output_put(handle, data->period);
4494
4495 if (sample_type & PERF_SAMPLE_READ)
4496 perf_output_read(handle, event);
4497
4498 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4499 if (data->callchain) {
4500 int size = 1;
4501
4502 if (data->callchain)
4503 size += data->callchain->nr;
4504
4505 size *= sizeof(u64);
4506
4507 __output_copy(handle, data->callchain, size);
4508 } else {
4509 u64 nr = 0;
4510 perf_output_put(handle, nr);
4511 }
4512 }
4513
4514 if (sample_type & PERF_SAMPLE_RAW) {
4515 if (data->raw) {
4516 perf_output_put(handle, data->raw->size);
4517 __output_copy(handle, data->raw->data,
4518 data->raw->size);
4519 } else {
4520 struct {
4521 u32 size;
4522 u32 data;
4523 } raw = {
4524 .size = sizeof(u32),
4525 .data = 0,
4526 };
4527 perf_output_put(handle, raw);
4528 }
4529 }
4530
4531 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4532 if (data->br_stack) {
4533 size_t size;
4534
4535 size = data->br_stack->nr
4536 * sizeof(struct perf_branch_entry);
4537
4538 perf_output_put(handle, data->br_stack->nr);
4539 perf_output_copy(handle, data->br_stack->entries, size);
4540 } else {
4541 /*
4542 * we always store at least the value of nr
4543 */
4544 u64 nr = 0;
4545 perf_output_put(handle, nr);
4546 }
4547 }
4548
4549 if (sample_type & PERF_SAMPLE_REGS_USER) {
4550 u64 abi = data->regs_user.abi;
4551
4552 /*
4553 * If there are no regs to dump, notice it through
4554 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4555 */
4556 perf_output_put(handle, abi);
4557
4558 if (abi) {
4559 u64 mask = event->attr.sample_regs_user;
4560 perf_output_sample_regs(handle,
4561 data->regs_user.regs,
4562 mask);
4563 }
4564 }
4565
4566 if (sample_type & PERF_SAMPLE_STACK_USER) {
4567 perf_output_sample_ustack(handle,
4568 data->stack_user_size,
4569 data->regs_user.regs);
4570 }
4571
4572 if (sample_type & PERF_SAMPLE_WEIGHT)
4573 perf_output_put(handle, data->weight);
4574
4575 if (sample_type & PERF_SAMPLE_DATA_SRC)
4576 perf_output_put(handle, data->data_src.val);
4577
4578 if (sample_type & PERF_SAMPLE_TRANSACTION)
4579 perf_output_put(handle, data->txn);
4580
4581 if (!event->attr.watermark) {
4582 int wakeup_events = event->attr.wakeup_events;
4583
4584 if (wakeup_events) {
4585 struct ring_buffer *rb = handle->rb;
4586 int events = local_inc_return(&rb->events);
4587
4588 if (events >= wakeup_events) {
4589 local_sub(wakeup_events, &rb->events);
4590 local_inc(&rb->wakeup);
4591 }
4592 }
4593 }
4594 }
4595
4596 void perf_prepare_sample(struct perf_event_header *header,
4597 struct perf_sample_data *data,
4598 struct perf_event *event,
4599 struct pt_regs *regs)
4600 {
4601 u64 sample_type = event->attr.sample_type;
4602
4603 header->type = PERF_RECORD_SAMPLE;
4604 header->size = sizeof(*header) + event->header_size;
4605
4606 header->misc = 0;
4607 header->misc |= perf_misc_flags(regs);
4608
4609 __perf_event_header__init_id(header, data, event);
4610
4611 if (sample_type & PERF_SAMPLE_IP)
4612 data->ip = perf_instruction_pointer(regs);
4613
4614 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4615 int size = 1;
4616
4617 data->callchain = perf_callchain(event, regs);
4618
4619 if (data->callchain)
4620 size += data->callchain->nr;
4621
4622 header->size += size * sizeof(u64);
4623 }
4624
4625 if (sample_type & PERF_SAMPLE_RAW) {
4626 int size = sizeof(u32);
4627
4628 if (data->raw)
4629 size += data->raw->size;
4630 else
4631 size += sizeof(u32);
4632
4633 WARN_ON_ONCE(size & (sizeof(u64)-1));
4634 header->size += size;
4635 }
4636
4637 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4638 int size = sizeof(u64); /* nr */
4639 if (data->br_stack) {
4640 size += data->br_stack->nr
4641 * sizeof(struct perf_branch_entry);
4642 }
4643 header->size += size;
4644 }
4645
4646 if (sample_type & PERF_SAMPLE_REGS_USER) {
4647 /* regs dump ABI info */
4648 int size = sizeof(u64);
4649
4650 perf_sample_regs_user(&data->regs_user, regs);
4651
4652 if (data->regs_user.regs) {
4653 u64 mask = event->attr.sample_regs_user;
4654 size += hweight64(mask) * sizeof(u64);
4655 }
4656
4657 header->size += size;
4658 }
4659
4660 if (sample_type & PERF_SAMPLE_STACK_USER) {
4661 /*
4662 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4663 * processed as the last one or have additional check added
4664 * in case new sample type is added, because we could eat
4665 * up the rest of the sample size.
4666 */
4667 struct perf_regs_user *uregs = &data->regs_user;
4668 u16 stack_size = event->attr.sample_stack_user;
4669 u16 size = sizeof(u64);
4670
4671 if (!uregs->abi)
4672 perf_sample_regs_user(uregs, regs);
4673
4674 stack_size = perf_sample_ustack_size(stack_size, header->size,
4675 uregs->regs);
4676
4677 /*
4678 * If there is something to dump, add space for the dump
4679 * itself and for the field that tells the dynamic size,
4680 * which is how many have been actually dumped.
4681 */
4682 if (stack_size)
4683 size += sizeof(u64) + stack_size;
4684
4685 data->stack_user_size = stack_size;
4686 header->size += size;
4687 }
4688 }
4689
4690 static void perf_event_output(struct perf_event *event,
4691 struct perf_sample_data *data,
4692 struct pt_regs *regs)
4693 {
4694 struct perf_output_handle handle;
4695 struct perf_event_header header;
4696
4697 /* protect the callchain buffers */
4698 rcu_read_lock();
4699
4700 perf_prepare_sample(&header, data, event, regs);
4701
4702 if (perf_output_begin(&handle, event, header.size))
4703 goto exit;
4704
4705 perf_output_sample(&handle, &header, data, event);
4706
4707 perf_output_end(&handle);
4708
4709 exit:
4710 rcu_read_unlock();
4711 }
4712
4713 /*
4714 * read event_id
4715 */
4716
4717 struct perf_read_event {
4718 struct perf_event_header header;
4719
4720 u32 pid;
4721 u32 tid;
4722 };
4723
4724 static void
4725 perf_event_read_event(struct perf_event *event,
4726 struct task_struct *task)
4727 {
4728 struct perf_output_handle handle;
4729 struct perf_sample_data sample;
4730 struct perf_read_event read_event = {
4731 .header = {
4732 .type = PERF_RECORD_READ,
4733 .misc = 0,
4734 .size = sizeof(read_event) + event->read_size,
4735 },
4736 .pid = perf_event_pid(event, task),
4737 .tid = perf_event_tid(event, task),
4738 };
4739 int ret;
4740
4741 perf_event_header__init_id(&read_event.header, &sample, event);
4742 ret = perf_output_begin(&handle, event, read_event.header.size);
4743 if (ret)
4744 return;
4745
4746 perf_output_put(&handle, read_event);
4747 perf_output_read(&handle, event);
4748 perf_event__output_id_sample(event, &handle, &sample);
4749
4750 perf_output_end(&handle);
4751 }
4752
4753 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4754
4755 static void
4756 perf_event_aux_ctx(struct perf_event_context *ctx,
4757 perf_event_aux_output_cb output,
4758 void *data)
4759 {
4760 struct perf_event *event;
4761
4762 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4763 if (event->state < PERF_EVENT_STATE_INACTIVE)
4764 continue;
4765 if (!event_filter_match(event))
4766 continue;
4767 output(event, data);
4768 }
4769 }
4770
4771 static void
4772 perf_event_aux(perf_event_aux_output_cb output, void *data,
4773 struct perf_event_context *task_ctx)
4774 {
4775 struct perf_cpu_context *cpuctx;
4776 struct perf_event_context *ctx;
4777 struct pmu *pmu;
4778 int ctxn;
4779
4780 rcu_read_lock();
4781 list_for_each_entry_rcu(pmu, &pmus, entry) {
4782 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4783 if (cpuctx->unique_pmu != pmu)
4784 goto next;
4785 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4786 if (task_ctx)
4787 goto next;
4788 ctxn = pmu->task_ctx_nr;
4789 if (ctxn < 0)
4790 goto next;
4791 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4792 if (ctx)
4793 perf_event_aux_ctx(ctx, output, data);
4794 next:
4795 put_cpu_ptr(pmu->pmu_cpu_context);
4796 }
4797
4798 if (task_ctx) {
4799 preempt_disable();
4800 perf_event_aux_ctx(task_ctx, output, data);
4801 preempt_enable();
4802 }
4803 rcu_read_unlock();
4804 }
4805
4806 /*
4807 * task tracking -- fork/exit
4808 *
4809 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4810 */
4811
4812 struct perf_task_event {
4813 struct task_struct *task;
4814 struct perf_event_context *task_ctx;
4815
4816 struct {
4817 struct perf_event_header header;
4818
4819 u32 pid;
4820 u32 ppid;
4821 u32 tid;
4822 u32 ptid;
4823 u64 time;
4824 } event_id;
4825 };
4826
4827 static int perf_event_task_match(struct perf_event *event)
4828 {
4829 return event->attr.comm || event->attr.mmap ||
4830 event->attr.mmap2 || event->attr.mmap_data ||
4831 event->attr.task;
4832 }
4833
4834 static void perf_event_task_output(struct perf_event *event,
4835 void *data)
4836 {
4837 struct perf_task_event *task_event = data;
4838 struct perf_output_handle handle;
4839 struct perf_sample_data sample;
4840 struct task_struct *task = task_event->task;
4841 int ret, size = task_event->event_id.header.size;
4842
4843 if (!perf_event_task_match(event))
4844 return;
4845
4846 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4847
4848 ret = perf_output_begin(&handle, event,
4849 task_event->event_id.header.size);
4850 if (ret)
4851 goto out;
4852
4853 task_event->event_id.pid = perf_event_pid(event, task);
4854 task_event->event_id.ppid = perf_event_pid(event, current);
4855
4856 task_event->event_id.tid = perf_event_tid(event, task);
4857 task_event->event_id.ptid = perf_event_tid(event, current);
4858
4859 perf_output_put(&handle, task_event->event_id);
4860
4861 perf_event__output_id_sample(event, &handle, &sample);
4862
4863 perf_output_end(&handle);
4864 out:
4865 task_event->event_id.header.size = size;
4866 }
4867
4868 static void perf_event_task(struct task_struct *task,
4869 struct perf_event_context *task_ctx,
4870 int new)
4871 {
4872 struct perf_task_event task_event;
4873
4874 if (!atomic_read(&nr_comm_events) &&
4875 !atomic_read(&nr_mmap_events) &&
4876 !atomic_read(&nr_task_events))
4877 return;
4878
4879 task_event = (struct perf_task_event){
4880 .task = task,
4881 .task_ctx = task_ctx,
4882 .event_id = {
4883 .header = {
4884 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4885 .misc = 0,
4886 .size = sizeof(task_event.event_id),
4887 },
4888 /* .pid */
4889 /* .ppid */
4890 /* .tid */
4891 /* .ptid */
4892 .time = perf_clock(),
4893 },
4894 };
4895
4896 perf_event_aux(perf_event_task_output,
4897 &task_event,
4898 task_ctx);
4899 }
4900
4901 void perf_event_fork(struct task_struct *task)
4902 {
4903 perf_event_task(task, NULL, 1);
4904 }
4905
4906 /*
4907 * comm tracking
4908 */
4909
4910 struct perf_comm_event {
4911 struct task_struct *task;
4912 char *comm;
4913 int comm_size;
4914
4915 struct {
4916 struct perf_event_header header;
4917
4918 u32 pid;
4919 u32 tid;
4920 } event_id;
4921 };
4922
4923 static int perf_event_comm_match(struct perf_event *event)
4924 {
4925 return event->attr.comm;
4926 }
4927
4928 static void perf_event_comm_output(struct perf_event *event,
4929 void *data)
4930 {
4931 struct perf_comm_event *comm_event = data;
4932 struct perf_output_handle handle;
4933 struct perf_sample_data sample;
4934 int size = comm_event->event_id.header.size;
4935 int ret;
4936
4937 if (!perf_event_comm_match(event))
4938 return;
4939
4940 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4941 ret = perf_output_begin(&handle, event,
4942 comm_event->event_id.header.size);
4943
4944 if (ret)
4945 goto out;
4946
4947 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4948 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4949
4950 perf_output_put(&handle, comm_event->event_id);
4951 __output_copy(&handle, comm_event->comm,
4952 comm_event->comm_size);
4953
4954 perf_event__output_id_sample(event, &handle, &sample);
4955
4956 perf_output_end(&handle);
4957 out:
4958 comm_event->event_id.header.size = size;
4959 }
4960
4961 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4962 {
4963 char comm[TASK_COMM_LEN];
4964 unsigned int size;
4965
4966 memset(comm, 0, sizeof(comm));
4967 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4968 size = ALIGN(strlen(comm)+1, sizeof(u64));
4969
4970 comm_event->comm = comm;
4971 comm_event->comm_size = size;
4972
4973 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4974
4975 perf_event_aux(perf_event_comm_output,
4976 comm_event,
4977 NULL);
4978 }
4979
4980 void perf_event_comm(struct task_struct *task)
4981 {
4982 struct perf_comm_event comm_event;
4983 struct perf_event_context *ctx;
4984 int ctxn;
4985
4986 rcu_read_lock();
4987 for_each_task_context_nr(ctxn) {
4988 ctx = task->perf_event_ctxp[ctxn];
4989 if (!ctx)
4990 continue;
4991
4992 perf_event_enable_on_exec(ctx);
4993 }
4994 rcu_read_unlock();
4995
4996 if (!atomic_read(&nr_comm_events))
4997 return;
4998
4999 comm_event = (struct perf_comm_event){
5000 .task = task,
5001 /* .comm */
5002 /* .comm_size */
5003 .event_id = {
5004 .header = {
5005 .type = PERF_RECORD_COMM,
5006 .misc = 0,
5007 /* .size */
5008 },
5009 /* .pid */
5010 /* .tid */
5011 },
5012 };
5013
5014 perf_event_comm_event(&comm_event);
5015 }
5016
5017 /*
5018 * mmap tracking
5019 */
5020
5021 struct perf_mmap_event {
5022 struct vm_area_struct *vma;
5023
5024 const char *file_name;
5025 int file_size;
5026 int maj, min;
5027 u64 ino;
5028 u64 ino_generation;
5029
5030 struct {
5031 struct perf_event_header header;
5032
5033 u32 pid;
5034 u32 tid;
5035 u64 start;
5036 u64 len;
5037 u64 pgoff;
5038 } event_id;
5039 };
5040
5041 static int perf_event_mmap_match(struct perf_event *event,
5042 void *data)
5043 {
5044 struct perf_mmap_event *mmap_event = data;
5045 struct vm_area_struct *vma = mmap_event->vma;
5046 int executable = vma->vm_flags & VM_EXEC;
5047
5048 return (!executable && event->attr.mmap_data) ||
5049 (executable && (event->attr.mmap || event->attr.mmap2));
5050 }
5051
5052 static void perf_event_mmap_output(struct perf_event *event,
5053 void *data)
5054 {
5055 struct perf_mmap_event *mmap_event = data;
5056 struct perf_output_handle handle;
5057 struct perf_sample_data sample;
5058 int size = mmap_event->event_id.header.size;
5059 int ret;
5060
5061 if (!perf_event_mmap_match(event, data))
5062 return;
5063
5064 if (event->attr.mmap2) {
5065 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5066 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5067 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5068 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5069 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5070 }
5071
5072 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5073 ret = perf_output_begin(&handle, event,
5074 mmap_event->event_id.header.size);
5075 if (ret)
5076 goto out;
5077
5078 mmap_event->event_id.pid = perf_event_pid(event, current);
5079 mmap_event->event_id.tid = perf_event_tid(event, current);
5080
5081 perf_output_put(&handle, mmap_event->event_id);
5082
5083 if (event->attr.mmap2) {
5084 perf_output_put(&handle, mmap_event->maj);
5085 perf_output_put(&handle, mmap_event->min);
5086 perf_output_put(&handle, mmap_event->ino);
5087 perf_output_put(&handle, mmap_event->ino_generation);
5088 }
5089
5090 __output_copy(&handle, mmap_event->file_name,
5091 mmap_event->file_size);
5092
5093 perf_event__output_id_sample(event, &handle, &sample);
5094
5095 perf_output_end(&handle);
5096 out:
5097 mmap_event->event_id.header.size = size;
5098 }
5099
5100 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5101 {
5102 struct vm_area_struct *vma = mmap_event->vma;
5103 struct file *file = vma->vm_file;
5104 int maj = 0, min = 0;
5105 u64 ino = 0, gen = 0;
5106 unsigned int size;
5107 char tmp[16];
5108 char *buf = NULL;
5109 const char *name;
5110
5111 memset(tmp, 0, sizeof(tmp));
5112
5113 if (file) {
5114 struct inode *inode;
5115 dev_t dev;
5116 /*
5117 * d_path works from the end of the rb backwards, so we
5118 * need to add enough zero bytes after the string to handle
5119 * the 64bit alignment we do later.
5120 */
5121 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5122 if (!buf) {
5123 name = strncpy(tmp, "//enomem", sizeof(tmp));
5124 goto got_name;
5125 }
5126 name = d_path(&file->f_path, buf, PATH_MAX);
5127 if (IS_ERR(name)) {
5128 name = strncpy(tmp, "//toolong", sizeof(tmp));
5129 goto got_name;
5130 }
5131 inode = file_inode(vma->vm_file);
5132 dev = inode->i_sb->s_dev;
5133 ino = inode->i_ino;
5134 gen = inode->i_generation;
5135 maj = MAJOR(dev);
5136 min = MINOR(dev);
5137
5138 } else {
5139 name = arch_vma_name(vma);
5140 if (name) {
5141 name = strncpy(tmp, name, sizeof(tmp) - 1);
5142 tmp[sizeof(tmp) - 1] = '\0';
5143 goto got_name;
5144 }
5145
5146 if (vma->vm_start <= vma->vm_mm->start_brk &&
5147 vma->vm_end >= vma->vm_mm->brk) {
5148 name = strncpy(tmp, "[heap]", sizeof(tmp));
5149 goto got_name;
5150 }
5151 if (vma->vm_start <= vma->vm_mm->start_stack &&
5152 vma->vm_end >= vma->vm_mm->start_stack) {
5153 name = strncpy(tmp, "[stack]", sizeof(tmp));
5154 goto got_name;
5155 }
5156
5157 name = strncpy(tmp, "//anon", sizeof(tmp));
5158 goto got_name;
5159 }
5160
5161 got_name:
5162 size = ALIGN(strlen(name)+1, sizeof(u64));
5163
5164 mmap_event->file_name = name;
5165 mmap_event->file_size = size;
5166 mmap_event->maj = maj;
5167 mmap_event->min = min;
5168 mmap_event->ino = ino;
5169 mmap_event->ino_generation = gen;
5170
5171 if (!(vma->vm_flags & VM_EXEC))
5172 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5173
5174 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5175
5176 perf_event_aux(perf_event_mmap_output,
5177 mmap_event,
5178 NULL);
5179
5180 kfree(buf);
5181 }
5182
5183 void perf_event_mmap(struct vm_area_struct *vma)
5184 {
5185 struct perf_mmap_event mmap_event;
5186
5187 if (!atomic_read(&nr_mmap_events))
5188 return;
5189
5190 mmap_event = (struct perf_mmap_event){
5191 .vma = vma,
5192 /* .file_name */
5193 /* .file_size */
5194 .event_id = {
5195 .header = {
5196 .type = PERF_RECORD_MMAP,
5197 .misc = PERF_RECORD_MISC_USER,
5198 /* .size */
5199 },
5200 /* .pid */
5201 /* .tid */
5202 .start = vma->vm_start,
5203 .len = vma->vm_end - vma->vm_start,
5204 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5205 },
5206 /* .maj (attr_mmap2 only) */
5207 /* .min (attr_mmap2 only) */
5208 /* .ino (attr_mmap2 only) */
5209 /* .ino_generation (attr_mmap2 only) */
5210 };
5211
5212 perf_event_mmap_event(&mmap_event);
5213 }
5214
5215 /*
5216 * IRQ throttle logging
5217 */
5218
5219 static void perf_log_throttle(struct perf_event *event, int enable)
5220 {
5221 struct perf_output_handle handle;
5222 struct perf_sample_data sample;
5223 int ret;
5224
5225 struct {
5226 struct perf_event_header header;
5227 u64 time;
5228 u64 id;
5229 u64 stream_id;
5230 } throttle_event = {
5231 .header = {
5232 .type = PERF_RECORD_THROTTLE,
5233 .misc = 0,
5234 .size = sizeof(throttle_event),
5235 },
5236 .time = perf_clock(),
5237 .id = primary_event_id(event),
5238 .stream_id = event->id,
5239 };
5240
5241 if (enable)
5242 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5243
5244 perf_event_header__init_id(&throttle_event.header, &sample, event);
5245
5246 ret = perf_output_begin(&handle, event,
5247 throttle_event.header.size);
5248 if (ret)
5249 return;
5250
5251 perf_output_put(&handle, throttle_event);
5252 perf_event__output_id_sample(event, &handle, &sample);
5253 perf_output_end(&handle);
5254 }
5255
5256 /*
5257 * Generic event overflow handling, sampling.
5258 */
5259
5260 static int __perf_event_overflow(struct perf_event *event,
5261 int throttle, struct perf_sample_data *data,
5262 struct pt_regs *regs)
5263 {
5264 int events = atomic_read(&event->event_limit);
5265 struct hw_perf_event *hwc = &event->hw;
5266 u64 seq;
5267 int ret = 0;
5268
5269 /*
5270 * Non-sampling counters might still use the PMI to fold short
5271 * hardware counters, ignore those.
5272 */
5273 if (unlikely(!is_sampling_event(event)))
5274 return 0;
5275
5276 seq = __this_cpu_read(perf_throttled_seq);
5277 if (seq != hwc->interrupts_seq) {
5278 hwc->interrupts_seq = seq;
5279 hwc->interrupts = 1;
5280 } else {
5281 hwc->interrupts++;
5282 if (unlikely(throttle
5283 && hwc->interrupts >= max_samples_per_tick)) {
5284 __this_cpu_inc(perf_throttled_count);
5285 hwc->interrupts = MAX_INTERRUPTS;
5286 perf_log_throttle(event, 0);
5287 tick_nohz_full_kick();
5288 ret = 1;
5289 }
5290 }
5291
5292 if (event->attr.freq) {
5293 u64 now = perf_clock();
5294 s64 delta = now - hwc->freq_time_stamp;
5295
5296 hwc->freq_time_stamp = now;
5297
5298 if (delta > 0 && delta < 2*TICK_NSEC)
5299 perf_adjust_period(event, delta, hwc->last_period, true);
5300 }
5301
5302 /*
5303 * XXX event_limit might not quite work as expected on inherited
5304 * events
5305 */
5306
5307 event->pending_kill = POLL_IN;
5308 if (events && atomic_dec_and_test(&event->event_limit)) {
5309 ret = 1;
5310 event->pending_kill = POLL_HUP;
5311 event->pending_disable = 1;
5312 irq_work_queue(&event->pending);
5313 }
5314
5315 if (event->overflow_handler)
5316 event->overflow_handler(event, data, regs);
5317 else
5318 perf_event_output(event, data, regs);
5319
5320 if (event->fasync && event->pending_kill) {
5321 event->pending_wakeup = 1;
5322 irq_work_queue(&event->pending);
5323 }
5324
5325 return ret;
5326 }
5327
5328 int perf_event_overflow(struct perf_event *event,
5329 struct perf_sample_data *data,
5330 struct pt_regs *regs)
5331 {
5332 return __perf_event_overflow(event, 1, data, regs);
5333 }
5334
5335 /*
5336 * Generic software event infrastructure
5337 */
5338
5339 struct swevent_htable {
5340 struct swevent_hlist *swevent_hlist;
5341 struct mutex hlist_mutex;
5342 int hlist_refcount;
5343
5344 /* Recursion avoidance in each contexts */
5345 int recursion[PERF_NR_CONTEXTS];
5346 };
5347
5348 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5349
5350 /*
5351 * We directly increment event->count and keep a second value in
5352 * event->hw.period_left to count intervals. This period event
5353 * is kept in the range [-sample_period, 0] so that we can use the
5354 * sign as trigger.
5355 */
5356
5357 u64 perf_swevent_set_period(struct perf_event *event)
5358 {
5359 struct hw_perf_event *hwc = &event->hw;
5360 u64 period = hwc->last_period;
5361 u64 nr, offset;
5362 s64 old, val;
5363
5364 hwc->last_period = hwc->sample_period;
5365
5366 again:
5367 old = val = local64_read(&hwc->period_left);
5368 if (val < 0)
5369 return 0;
5370
5371 nr = div64_u64(period + val, period);
5372 offset = nr * period;
5373 val -= offset;
5374 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5375 goto again;
5376
5377 return nr;
5378 }
5379
5380 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5381 struct perf_sample_data *data,
5382 struct pt_regs *regs)
5383 {
5384 struct hw_perf_event *hwc = &event->hw;
5385 int throttle = 0;
5386
5387 if (!overflow)
5388 overflow = perf_swevent_set_period(event);
5389
5390 if (hwc->interrupts == MAX_INTERRUPTS)
5391 return;
5392
5393 for (; overflow; overflow--) {
5394 if (__perf_event_overflow(event, throttle,
5395 data, regs)) {
5396 /*
5397 * We inhibit the overflow from happening when
5398 * hwc->interrupts == MAX_INTERRUPTS.
5399 */
5400 break;
5401 }
5402 throttle = 1;
5403 }
5404 }
5405
5406 static void perf_swevent_event(struct perf_event *event, u64 nr,
5407 struct perf_sample_data *data,
5408 struct pt_regs *regs)
5409 {
5410 struct hw_perf_event *hwc = &event->hw;
5411
5412 local64_add(nr, &event->count);
5413
5414 if (!regs)
5415 return;
5416
5417 if (!is_sampling_event(event))
5418 return;
5419
5420 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5421 data->period = nr;
5422 return perf_swevent_overflow(event, 1, data, regs);
5423 } else
5424 data->period = event->hw.last_period;
5425
5426 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5427 return perf_swevent_overflow(event, 1, data, regs);
5428
5429 if (local64_add_negative(nr, &hwc->period_left))
5430 return;
5431
5432 perf_swevent_overflow(event, 0, data, regs);
5433 }
5434
5435 static int perf_exclude_event(struct perf_event *event,
5436 struct pt_regs *regs)
5437 {
5438 if (event->hw.state & PERF_HES_STOPPED)
5439 return 1;
5440
5441 if (regs) {
5442 if (event->attr.exclude_user && user_mode(regs))
5443 return 1;
5444
5445 if (event->attr.exclude_kernel && !user_mode(regs))
5446 return 1;
5447 }
5448
5449 return 0;
5450 }
5451
5452 static int perf_swevent_match(struct perf_event *event,
5453 enum perf_type_id type,
5454 u32 event_id,
5455 struct perf_sample_data *data,
5456 struct pt_regs *regs)
5457 {
5458 if (event->attr.type != type)
5459 return 0;
5460
5461 if (event->attr.config != event_id)
5462 return 0;
5463
5464 if (perf_exclude_event(event, regs))
5465 return 0;
5466
5467 return 1;
5468 }
5469
5470 static inline u64 swevent_hash(u64 type, u32 event_id)
5471 {
5472 u64 val = event_id | (type << 32);
5473
5474 return hash_64(val, SWEVENT_HLIST_BITS);
5475 }
5476
5477 static inline struct hlist_head *
5478 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5479 {
5480 u64 hash = swevent_hash(type, event_id);
5481
5482 return &hlist->heads[hash];
5483 }
5484
5485 /* For the read side: events when they trigger */
5486 static inline struct hlist_head *
5487 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5488 {
5489 struct swevent_hlist *hlist;
5490
5491 hlist = rcu_dereference(swhash->swevent_hlist);
5492 if (!hlist)
5493 return NULL;
5494
5495 return __find_swevent_head(hlist, type, event_id);
5496 }
5497
5498 /* For the event head insertion and removal in the hlist */
5499 static inline struct hlist_head *
5500 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5501 {
5502 struct swevent_hlist *hlist;
5503 u32 event_id = event->attr.config;
5504 u64 type = event->attr.type;
5505
5506 /*
5507 * Event scheduling is always serialized against hlist allocation
5508 * and release. Which makes the protected version suitable here.
5509 * The context lock guarantees that.
5510 */
5511 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5512 lockdep_is_held(&event->ctx->lock));
5513 if (!hlist)
5514 return NULL;
5515
5516 return __find_swevent_head(hlist, type, event_id);
5517 }
5518
5519 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5520 u64 nr,
5521 struct perf_sample_data *data,
5522 struct pt_regs *regs)
5523 {
5524 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5525 struct perf_event *event;
5526 struct hlist_head *head;
5527
5528 rcu_read_lock();
5529 head = find_swevent_head_rcu(swhash, type, event_id);
5530 if (!head)
5531 goto end;
5532
5533 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5534 if (perf_swevent_match(event, type, event_id, data, regs))
5535 perf_swevent_event(event, nr, data, regs);
5536 }
5537 end:
5538 rcu_read_unlock();
5539 }
5540
5541 int perf_swevent_get_recursion_context(void)
5542 {
5543 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5544
5545 return get_recursion_context(swhash->recursion);
5546 }
5547 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5548
5549 inline void perf_swevent_put_recursion_context(int rctx)
5550 {
5551 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5552
5553 put_recursion_context(swhash->recursion, rctx);
5554 }
5555
5556 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5557 {
5558 struct perf_sample_data data;
5559 int rctx;
5560
5561 preempt_disable_notrace();
5562 rctx = perf_swevent_get_recursion_context();
5563 if (rctx < 0)
5564 return;
5565
5566 perf_sample_data_init(&data, addr, 0);
5567
5568 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5569
5570 perf_swevent_put_recursion_context(rctx);
5571 preempt_enable_notrace();
5572 }
5573
5574 static void perf_swevent_read(struct perf_event *event)
5575 {
5576 }
5577
5578 static int perf_swevent_add(struct perf_event *event, int flags)
5579 {
5580 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5581 struct hw_perf_event *hwc = &event->hw;
5582 struct hlist_head *head;
5583
5584 if (is_sampling_event(event)) {
5585 hwc->last_period = hwc->sample_period;
5586 perf_swevent_set_period(event);
5587 }
5588
5589 hwc->state = !(flags & PERF_EF_START);
5590
5591 head = find_swevent_head(swhash, event);
5592 if (WARN_ON_ONCE(!head))
5593 return -EINVAL;
5594
5595 hlist_add_head_rcu(&event->hlist_entry, head);
5596
5597 return 0;
5598 }
5599
5600 static void perf_swevent_del(struct perf_event *event, int flags)
5601 {
5602 hlist_del_rcu(&event->hlist_entry);
5603 }
5604
5605 static void perf_swevent_start(struct perf_event *event, int flags)
5606 {
5607 event->hw.state = 0;
5608 }
5609
5610 static void perf_swevent_stop(struct perf_event *event, int flags)
5611 {
5612 event->hw.state = PERF_HES_STOPPED;
5613 }
5614
5615 /* Deref the hlist from the update side */
5616 static inline struct swevent_hlist *
5617 swevent_hlist_deref(struct swevent_htable *swhash)
5618 {
5619 return rcu_dereference_protected(swhash->swevent_hlist,
5620 lockdep_is_held(&swhash->hlist_mutex));
5621 }
5622
5623 static void swevent_hlist_release(struct swevent_htable *swhash)
5624 {
5625 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5626
5627 if (!hlist)
5628 return;
5629
5630 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5631 kfree_rcu(hlist, rcu_head);
5632 }
5633
5634 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5635 {
5636 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5637
5638 mutex_lock(&swhash->hlist_mutex);
5639
5640 if (!--swhash->hlist_refcount)
5641 swevent_hlist_release(swhash);
5642
5643 mutex_unlock(&swhash->hlist_mutex);
5644 }
5645
5646 static void swevent_hlist_put(struct perf_event *event)
5647 {
5648 int cpu;
5649
5650 if (event->cpu != -1) {
5651 swevent_hlist_put_cpu(event, event->cpu);
5652 return;
5653 }
5654
5655 for_each_possible_cpu(cpu)
5656 swevent_hlist_put_cpu(event, cpu);
5657 }
5658
5659 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5660 {
5661 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5662 int err = 0;
5663
5664 mutex_lock(&swhash->hlist_mutex);
5665
5666 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5667 struct swevent_hlist *hlist;
5668
5669 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5670 if (!hlist) {
5671 err = -ENOMEM;
5672 goto exit;
5673 }
5674 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5675 }
5676 swhash->hlist_refcount++;
5677 exit:
5678 mutex_unlock(&swhash->hlist_mutex);
5679
5680 return err;
5681 }
5682
5683 static int swevent_hlist_get(struct perf_event *event)
5684 {
5685 int err;
5686 int cpu, failed_cpu;
5687
5688 if (event->cpu != -1)
5689 return swevent_hlist_get_cpu(event, event->cpu);
5690
5691 get_online_cpus();
5692 for_each_possible_cpu(cpu) {
5693 err = swevent_hlist_get_cpu(event, cpu);
5694 if (err) {
5695 failed_cpu = cpu;
5696 goto fail;
5697 }
5698 }
5699 put_online_cpus();
5700
5701 return 0;
5702 fail:
5703 for_each_possible_cpu(cpu) {
5704 if (cpu == failed_cpu)
5705 break;
5706 swevent_hlist_put_cpu(event, cpu);
5707 }
5708
5709 put_online_cpus();
5710 return err;
5711 }
5712
5713 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5714
5715 static void sw_perf_event_destroy(struct perf_event *event)
5716 {
5717 u64 event_id = event->attr.config;
5718
5719 WARN_ON(event->parent);
5720
5721 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5722 swevent_hlist_put(event);
5723 }
5724
5725 static int perf_swevent_init(struct perf_event *event)
5726 {
5727 u64 event_id = event->attr.config;
5728
5729 if (event->attr.type != PERF_TYPE_SOFTWARE)
5730 return -ENOENT;
5731
5732 /*
5733 * no branch sampling for software events
5734 */
5735 if (has_branch_stack(event))
5736 return -EOPNOTSUPP;
5737
5738 switch (event_id) {
5739 case PERF_COUNT_SW_CPU_CLOCK:
5740 case PERF_COUNT_SW_TASK_CLOCK:
5741 return -ENOENT;
5742
5743 default:
5744 break;
5745 }
5746
5747 if (event_id >= PERF_COUNT_SW_MAX)
5748 return -ENOENT;
5749
5750 if (!event->parent) {
5751 int err;
5752
5753 err = swevent_hlist_get(event);
5754 if (err)
5755 return err;
5756
5757 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5758 event->destroy = sw_perf_event_destroy;
5759 }
5760
5761 return 0;
5762 }
5763
5764 static int perf_swevent_event_idx(struct perf_event *event)
5765 {
5766 return 0;
5767 }
5768
5769 static struct pmu perf_swevent = {
5770 .task_ctx_nr = perf_sw_context,
5771
5772 .event_init = perf_swevent_init,
5773 .add = perf_swevent_add,
5774 .del = perf_swevent_del,
5775 .start = perf_swevent_start,
5776 .stop = perf_swevent_stop,
5777 .read = perf_swevent_read,
5778
5779 .event_idx = perf_swevent_event_idx,
5780 };
5781
5782 #ifdef CONFIG_EVENT_TRACING
5783
5784 static int perf_tp_filter_match(struct perf_event *event,
5785 struct perf_sample_data *data)
5786 {
5787 void *record = data->raw->data;
5788
5789 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5790 return 1;
5791 return 0;
5792 }
5793
5794 static int perf_tp_event_match(struct perf_event *event,
5795 struct perf_sample_data *data,
5796 struct pt_regs *regs)
5797 {
5798 if (event->hw.state & PERF_HES_STOPPED)
5799 return 0;
5800 /*
5801 * All tracepoints are from kernel-space.
5802 */
5803 if (event->attr.exclude_kernel)
5804 return 0;
5805
5806 if (!perf_tp_filter_match(event, data))
5807 return 0;
5808
5809 return 1;
5810 }
5811
5812 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5813 struct pt_regs *regs, struct hlist_head *head, int rctx,
5814 struct task_struct *task)
5815 {
5816 struct perf_sample_data data;
5817 struct perf_event *event;
5818
5819 struct perf_raw_record raw = {
5820 .size = entry_size,
5821 .data = record,
5822 };
5823
5824 perf_sample_data_init(&data, addr, 0);
5825 data.raw = &raw;
5826
5827 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5828 if (perf_tp_event_match(event, &data, regs))
5829 perf_swevent_event(event, count, &data, regs);
5830 }
5831
5832 /*
5833 * If we got specified a target task, also iterate its context and
5834 * deliver this event there too.
5835 */
5836 if (task && task != current) {
5837 struct perf_event_context *ctx;
5838 struct trace_entry *entry = record;
5839
5840 rcu_read_lock();
5841 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5842 if (!ctx)
5843 goto unlock;
5844
5845 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5846 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5847 continue;
5848 if (event->attr.config != entry->type)
5849 continue;
5850 if (perf_tp_event_match(event, &data, regs))
5851 perf_swevent_event(event, count, &data, regs);
5852 }
5853 unlock:
5854 rcu_read_unlock();
5855 }
5856
5857 perf_swevent_put_recursion_context(rctx);
5858 }
5859 EXPORT_SYMBOL_GPL(perf_tp_event);
5860
5861 static void tp_perf_event_destroy(struct perf_event *event)
5862 {
5863 perf_trace_destroy(event);
5864 }
5865
5866 static int perf_tp_event_init(struct perf_event *event)
5867 {
5868 int err;
5869
5870 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5871 return -ENOENT;
5872
5873 /*
5874 * no branch sampling for tracepoint events
5875 */
5876 if (has_branch_stack(event))
5877 return -EOPNOTSUPP;
5878
5879 err = perf_trace_init(event);
5880 if (err)
5881 return err;
5882
5883 event->destroy = tp_perf_event_destroy;
5884
5885 return 0;
5886 }
5887
5888 static struct pmu perf_tracepoint = {
5889 .task_ctx_nr = perf_sw_context,
5890
5891 .event_init = perf_tp_event_init,
5892 .add = perf_trace_add,
5893 .del = perf_trace_del,
5894 .start = perf_swevent_start,
5895 .stop = perf_swevent_stop,
5896 .read = perf_swevent_read,
5897
5898 .event_idx = perf_swevent_event_idx,
5899 };
5900
5901 static inline void perf_tp_register(void)
5902 {
5903 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5904 }
5905
5906 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5907 {
5908 char *filter_str;
5909 int ret;
5910
5911 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5912 return -EINVAL;
5913
5914 filter_str = strndup_user(arg, PAGE_SIZE);
5915 if (IS_ERR(filter_str))
5916 return PTR_ERR(filter_str);
5917
5918 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5919
5920 kfree(filter_str);
5921 return ret;
5922 }
5923
5924 static void perf_event_free_filter(struct perf_event *event)
5925 {
5926 ftrace_profile_free_filter(event);
5927 }
5928
5929 #else
5930
5931 static inline void perf_tp_register(void)
5932 {
5933 }
5934
5935 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5936 {
5937 return -ENOENT;
5938 }
5939
5940 static void perf_event_free_filter(struct perf_event *event)
5941 {
5942 }
5943
5944 #endif /* CONFIG_EVENT_TRACING */
5945
5946 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5947 void perf_bp_event(struct perf_event *bp, void *data)
5948 {
5949 struct perf_sample_data sample;
5950 struct pt_regs *regs = data;
5951
5952 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5953
5954 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5955 perf_swevent_event(bp, 1, &sample, regs);
5956 }
5957 #endif
5958
5959 /*
5960 * hrtimer based swevent callback
5961 */
5962
5963 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5964 {
5965 enum hrtimer_restart ret = HRTIMER_RESTART;
5966 struct perf_sample_data data;
5967 struct pt_regs *regs;
5968 struct perf_event *event;
5969 u64 period;
5970
5971 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5972
5973 if (event->state != PERF_EVENT_STATE_ACTIVE)
5974 return HRTIMER_NORESTART;
5975
5976 event->pmu->read(event);
5977
5978 perf_sample_data_init(&data, 0, event->hw.last_period);
5979 regs = get_irq_regs();
5980
5981 if (regs && !perf_exclude_event(event, regs)) {
5982 if (!(event->attr.exclude_idle && is_idle_task(current)))
5983 if (__perf_event_overflow(event, 1, &data, regs))
5984 ret = HRTIMER_NORESTART;
5985 }
5986
5987 period = max_t(u64, 10000, event->hw.sample_period);
5988 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5989
5990 return ret;
5991 }
5992
5993 static void perf_swevent_start_hrtimer(struct perf_event *event)
5994 {
5995 struct hw_perf_event *hwc = &event->hw;
5996 s64 period;
5997
5998 if (!is_sampling_event(event))
5999 return;
6000
6001 period = local64_read(&hwc->period_left);
6002 if (period) {
6003 if (period < 0)
6004 period = 10000;
6005
6006 local64_set(&hwc->period_left, 0);
6007 } else {
6008 period = max_t(u64, 10000, hwc->sample_period);
6009 }
6010 __hrtimer_start_range_ns(&hwc->hrtimer,
6011 ns_to_ktime(period), 0,
6012 HRTIMER_MODE_REL_PINNED, 0);
6013 }
6014
6015 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6016 {
6017 struct hw_perf_event *hwc = &event->hw;
6018
6019 if (is_sampling_event(event)) {
6020 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6021 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6022
6023 hrtimer_cancel(&hwc->hrtimer);
6024 }
6025 }
6026
6027 static void perf_swevent_init_hrtimer(struct perf_event *event)
6028 {
6029 struct hw_perf_event *hwc = &event->hw;
6030
6031 if (!is_sampling_event(event))
6032 return;
6033
6034 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6035 hwc->hrtimer.function = perf_swevent_hrtimer;
6036
6037 /*
6038 * Since hrtimers have a fixed rate, we can do a static freq->period
6039 * mapping and avoid the whole period adjust feedback stuff.
6040 */
6041 if (event->attr.freq) {
6042 long freq = event->attr.sample_freq;
6043
6044 event->attr.sample_period = NSEC_PER_SEC / freq;
6045 hwc->sample_period = event->attr.sample_period;
6046 local64_set(&hwc->period_left, hwc->sample_period);
6047 hwc->last_period = hwc->sample_period;
6048 event->attr.freq = 0;
6049 }
6050 }
6051
6052 /*
6053 * Software event: cpu wall time clock
6054 */
6055
6056 static void cpu_clock_event_update(struct perf_event *event)
6057 {
6058 s64 prev;
6059 u64 now;
6060
6061 now = local_clock();
6062 prev = local64_xchg(&event->hw.prev_count, now);
6063 local64_add(now - prev, &event->count);
6064 }
6065
6066 static void cpu_clock_event_start(struct perf_event *event, int flags)
6067 {
6068 local64_set(&event->hw.prev_count, local_clock());
6069 perf_swevent_start_hrtimer(event);
6070 }
6071
6072 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6073 {
6074 perf_swevent_cancel_hrtimer(event);
6075 cpu_clock_event_update(event);
6076 }
6077
6078 static int cpu_clock_event_add(struct perf_event *event, int flags)
6079 {
6080 if (flags & PERF_EF_START)
6081 cpu_clock_event_start(event, flags);
6082
6083 return 0;
6084 }
6085
6086 static void cpu_clock_event_del(struct perf_event *event, int flags)
6087 {
6088 cpu_clock_event_stop(event, flags);
6089 }
6090
6091 static void cpu_clock_event_read(struct perf_event *event)
6092 {
6093 cpu_clock_event_update(event);
6094 }
6095
6096 static int cpu_clock_event_init(struct perf_event *event)
6097 {
6098 if (event->attr.type != PERF_TYPE_SOFTWARE)
6099 return -ENOENT;
6100
6101 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6102 return -ENOENT;
6103
6104 /*
6105 * no branch sampling for software events
6106 */
6107 if (has_branch_stack(event))
6108 return -EOPNOTSUPP;
6109
6110 perf_swevent_init_hrtimer(event);
6111
6112 return 0;
6113 }
6114
6115 static struct pmu perf_cpu_clock = {
6116 .task_ctx_nr = perf_sw_context,
6117
6118 .event_init = cpu_clock_event_init,
6119 .add = cpu_clock_event_add,
6120 .del = cpu_clock_event_del,
6121 .start = cpu_clock_event_start,
6122 .stop = cpu_clock_event_stop,
6123 .read = cpu_clock_event_read,
6124
6125 .event_idx = perf_swevent_event_idx,
6126 };
6127
6128 /*
6129 * Software event: task time clock
6130 */
6131
6132 static void task_clock_event_update(struct perf_event *event, u64 now)
6133 {
6134 u64 prev;
6135 s64 delta;
6136
6137 prev = local64_xchg(&event->hw.prev_count, now);
6138 delta = now - prev;
6139 local64_add(delta, &event->count);
6140 }
6141
6142 static void task_clock_event_start(struct perf_event *event, int flags)
6143 {
6144 local64_set(&event->hw.prev_count, event->ctx->time);
6145 perf_swevent_start_hrtimer(event);
6146 }
6147
6148 static void task_clock_event_stop(struct perf_event *event, int flags)
6149 {
6150 perf_swevent_cancel_hrtimer(event);
6151 task_clock_event_update(event, event->ctx->time);
6152 }
6153
6154 static int task_clock_event_add(struct perf_event *event, int flags)
6155 {
6156 if (flags & PERF_EF_START)
6157 task_clock_event_start(event, flags);
6158
6159 return 0;
6160 }
6161
6162 static void task_clock_event_del(struct perf_event *event, int flags)
6163 {
6164 task_clock_event_stop(event, PERF_EF_UPDATE);
6165 }
6166
6167 static void task_clock_event_read(struct perf_event *event)
6168 {
6169 u64 now = perf_clock();
6170 u64 delta = now - event->ctx->timestamp;
6171 u64 time = event->ctx->time + delta;
6172
6173 task_clock_event_update(event, time);
6174 }
6175
6176 static int task_clock_event_init(struct perf_event *event)
6177 {
6178 if (event->attr.type != PERF_TYPE_SOFTWARE)
6179 return -ENOENT;
6180
6181 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6182 return -ENOENT;
6183
6184 /*
6185 * no branch sampling for software events
6186 */
6187 if (has_branch_stack(event))
6188 return -EOPNOTSUPP;
6189
6190 perf_swevent_init_hrtimer(event);
6191
6192 return 0;
6193 }
6194
6195 static struct pmu perf_task_clock = {
6196 .task_ctx_nr = perf_sw_context,
6197
6198 .event_init = task_clock_event_init,
6199 .add = task_clock_event_add,
6200 .del = task_clock_event_del,
6201 .start = task_clock_event_start,
6202 .stop = task_clock_event_stop,
6203 .read = task_clock_event_read,
6204
6205 .event_idx = perf_swevent_event_idx,
6206 };
6207
6208 static void perf_pmu_nop_void(struct pmu *pmu)
6209 {
6210 }
6211
6212 static int perf_pmu_nop_int(struct pmu *pmu)
6213 {
6214 return 0;
6215 }
6216
6217 static void perf_pmu_start_txn(struct pmu *pmu)
6218 {
6219 perf_pmu_disable(pmu);
6220 }
6221
6222 static int perf_pmu_commit_txn(struct pmu *pmu)
6223 {
6224 perf_pmu_enable(pmu);
6225 return 0;
6226 }
6227
6228 static void perf_pmu_cancel_txn(struct pmu *pmu)
6229 {
6230 perf_pmu_enable(pmu);
6231 }
6232
6233 static int perf_event_idx_default(struct perf_event *event)
6234 {
6235 return event->hw.idx + 1;
6236 }
6237
6238 /*
6239 * Ensures all contexts with the same task_ctx_nr have the same
6240 * pmu_cpu_context too.
6241 */
6242 static void *find_pmu_context(int ctxn)
6243 {
6244 struct pmu *pmu;
6245
6246 if (ctxn < 0)
6247 return NULL;
6248
6249 list_for_each_entry(pmu, &pmus, entry) {
6250 if (pmu->task_ctx_nr == ctxn)
6251 return pmu->pmu_cpu_context;
6252 }
6253
6254 return NULL;
6255 }
6256
6257 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6258 {
6259 int cpu;
6260
6261 for_each_possible_cpu(cpu) {
6262 struct perf_cpu_context *cpuctx;
6263
6264 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6265
6266 if (cpuctx->unique_pmu == old_pmu)
6267 cpuctx->unique_pmu = pmu;
6268 }
6269 }
6270
6271 static void free_pmu_context(struct pmu *pmu)
6272 {
6273 struct pmu *i;
6274
6275 mutex_lock(&pmus_lock);
6276 /*
6277 * Like a real lame refcount.
6278 */
6279 list_for_each_entry(i, &pmus, entry) {
6280 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6281 update_pmu_context(i, pmu);
6282 goto out;
6283 }
6284 }
6285
6286 free_percpu(pmu->pmu_cpu_context);
6287 out:
6288 mutex_unlock(&pmus_lock);
6289 }
6290 static struct idr pmu_idr;
6291
6292 static ssize_t
6293 type_show(struct device *dev, struct device_attribute *attr, char *page)
6294 {
6295 struct pmu *pmu = dev_get_drvdata(dev);
6296
6297 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6298 }
6299
6300 static ssize_t
6301 perf_event_mux_interval_ms_show(struct device *dev,
6302 struct device_attribute *attr,
6303 char *page)
6304 {
6305 struct pmu *pmu = dev_get_drvdata(dev);
6306
6307 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6308 }
6309
6310 static ssize_t
6311 perf_event_mux_interval_ms_store(struct device *dev,
6312 struct device_attribute *attr,
6313 const char *buf, size_t count)
6314 {
6315 struct pmu *pmu = dev_get_drvdata(dev);
6316 int timer, cpu, ret;
6317
6318 ret = kstrtoint(buf, 0, &timer);
6319 if (ret)
6320 return ret;
6321
6322 if (timer < 1)
6323 return -EINVAL;
6324
6325 /* same value, noting to do */
6326 if (timer == pmu->hrtimer_interval_ms)
6327 return count;
6328
6329 pmu->hrtimer_interval_ms = timer;
6330
6331 /* update all cpuctx for this PMU */
6332 for_each_possible_cpu(cpu) {
6333 struct perf_cpu_context *cpuctx;
6334 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6335 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6336
6337 if (hrtimer_active(&cpuctx->hrtimer))
6338 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6339 }
6340
6341 return count;
6342 }
6343
6344 static struct device_attribute pmu_dev_attrs[] = {
6345 __ATTR_RO(type),
6346 __ATTR_RW(perf_event_mux_interval_ms),
6347 __ATTR_NULL,
6348 };
6349
6350 static int pmu_bus_running;
6351 static struct bus_type pmu_bus = {
6352 .name = "event_source",
6353 .dev_attrs = pmu_dev_attrs,
6354 };
6355
6356 static void pmu_dev_release(struct device *dev)
6357 {
6358 kfree(dev);
6359 }
6360
6361 static int pmu_dev_alloc(struct pmu *pmu)
6362 {
6363 int ret = -ENOMEM;
6364
6365 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6366 if (!pmu->dev)
6367 goto out;
6368
6369 pmu->dev->groups = pmu->attr_groups;
6370 device_initialize(pmu->dev);
6371 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6372 if (ret)
6373 goto free_dev;
6374
6375 dev_set_drvdata(pmu->dev, pmu);
6376 pmu->dev->bus = &pmu_bus;
6377 pmu->dev->release = pmu_dev_release;
6378 ret = device_add(pmu->dev);
6379 if (ret)
6380 goto free_dev;
6381
6382 out:
6383 return ret;
6384
6385 free_dev:
6386 put_device(pmu->dev);
6387 goto out;
6388 }
6389
6390 static struct lock_class_key cpuctx_mutex;
6391 static struct lock_class_key cpuctx_lock;
6392
6393 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6394 {
6395 int cpu, ret;
6396
6397 mutex_lock(&pmus_lock);
6398 ret = -ENOMEM;
6399 pmu->pmu_disable_count = alloc_percpu(int);
6400 if (!pmu->pmu_disable_count)
6401 goto unlock;
6402
6403 pmu->type = -1;
6404 if (!name)
6405 goto skip_type;
6406 pmu->name = name;
6407
6408 if (type < 0) {
6409 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6410 if (type < 0) {
6411 ret = type;
6412 goto free_pdc;
6413 }
6414 }
6415 pmu->type = type;
6416
6417 if (pmu_bus_running) {
6418 ret = pmu_dev_alloc(pmu);
6419 if (ret)
6420 goto free_idr;
6421 }
6422
6423 skip_type:
6424 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6425 if (pmu->pmu_cpu_context)
6426 goto got_cpu_context;
6427
6428 ret = -ENOMEM;
6429 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6430 if (!pmu->pmu_cpu_context)
6431 goto free_dev;
6432
6433 for_each_possible_cpu(cpu) {
6434 struct perf_cpu_context *cpuctx;
6435
6436 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6437 __perf_event_init_context(&cpuctx->ctx);
6438 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6439 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6440 cpuctx->ctx.type = cpu_context;
6441 cpuctx->ctx.pmu = pmu;
6442
6443 __perf_cpu_hrtimer_init(cpuctx, cpu);
6444
6445 INIT_LIST_HEAD(&cpuctx->rotation_list);
6446 cpuctx->unique_pmu = pmu;
6447 }
6448
6449 got_cpu_context:
6450 if (!pmu->start_txn) {
6451 if (pmu->pmu_enable) {
6452 /*
6453 * If we have pmu_enable/pmu_disable calls, install
6454 * transaction stubs that use that to try and batch
6455 * hardware accesses.
6456 */
6457 pmu->start_txn = perf_pmu_start_txn;
6458 pmu->commit_txn = perf_pmu_commit_txn;
6459 pmu->cancel_txn = perf_pmu_cancel_txn;
6460 } else {
6461 pmu->start_txn = perf_pmu_nop_void;
6462 pmu->commit_txn = perf_pmu_nop_int;
6463 pmu->cancel_txn = perf_pmu_nop_void;
6464 }
6465 }
6466
6467 if (!pmu->pmu_enable) {
6468 pmu->pmu_enable = perf_pmu_nop_void;
6469 pmu->pmu_disable = perf_pmu_nop_void;
6470 }
6471
6472 if (!pmu->event_idx)
6473 pmu->event_idx = perf_event_idx_default;
6474
6475 list_add_rcu(&pmu->entry, &pmus);
6476 ret = 0;
6477 unlock:
6478 mutex_unlock(&pmus_lock);
6479
6480 return ret;
6481
6482 free_dev:
6483 device_del(pmu->dev);
6484 put_device(pmu->dev);
6485
6486 free_idr:
6487 if (pmu->type >= PERF_TYPE_MAX)
6488 idr_remove(&pmu_idr, pmu->type);
6489
6490 free_pdc:
6491 free_percpu(pmu->pmu_disable_count);
6492 goto unlock;
6493 }
6494
6495 void perf_pmu_unregister(struct pmu *pmu)
6496 {
6497 mutex_lock(&pmus_lock);
6498 list_del_rcu(&pmu->entry);
6499 mutex_unlock(&pmus_lock);
6500
6501 /*
6502 * We dereference the pmu list under both SRCU and regular RCU, so
6503 * synchronize against both of those.
6504 */
6505 synchronize_srcu(&pmus_srcu);
6506 synchronize_rcu();
6507
6508 free_percpu(pmu->pmu_disable_count);
6509 if (pmu->type >= PERF_TYPE_MAX)
6510 idr_remove(&pmu_idr, pmu->type);
6511 device_del(pmu->dev);
6512 put_device(pmu->dev);
6513 free_pmu_context(pmu);
6514 }
6515
6516 struct pmu *perf_init_event(struct perf_event *event)
6517 {
6518 struct pmu *pmu = NULL;
6519 int idx;
6520 int ret;
6521
6522 idx = srcu_read_lock(&pmus_srcu);
6523
6524 rcu_read_lock();
6525 pmu = idr_find(&pmu_idr, event->attr.type);
6526 rcu_read_unlock();
6527 if (pmu) {
6528 event->pmu = pmu;
6529 ret = pmu->event_init(event);
6530 if (ret)
6531 pmu = ERR_PTR(ret);
6532 goto unlock;
6533 }
6534
6535 list_for_each_entry_rcu(pmu, &pmus, entry) {
6536 event->pmu = pmu;
6537 ret = pmu->event_init(event);
6538 if (!ret)
6539 goto unlock;
6540
6541 if (ret != -ENOENT) {
6542 pmu = ERR_PTR(ret);
6543 goto unlock;
6544 }
6545 }
6546 pmu = ERR_PTR(-ENOENT);
6547 unlock:
6548 srcu_read_unlock(&pmus_srcu, idx);
6549
6550 return pmu;
6551 }
6552
6553 static void account_event_cpu(struct perf_event *event, int cpu)
6554 {
6555 if (event->parent)
6556 return;
6557
6558 if (has_branch_stack(event)) {
6559 if (!(event->attach_state & PERF_ATTACH_TASK))
6560 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6561 }
6562 if (is_cgroup_event(event))
6563 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6564 }
6565
6566 static void account_event(struct perf_event *event)
6567 {
6568 if (event->parent)
6569 return;
6570
6571 if (event->attach_state & PERF_ATTACH_TASK)
6572 static_key_slow_inc(&perf_sched_events.key);
6573 if (event->attr.mmap || event->attr.mmap_data)
6574 atomic_inc(&nr_mmap_events);
6575 if (event->attr.comm)
6576 atomic_inc(&nr_comm_events);
6577 if (event->attr.task)
6578 atomic_inc(&nr_task_events);
6579 if (event->attr.freq) {
6580 if (atomic_inc_return(&nr_freq_events) == 1)
6581 tick_nohz_full_kick_all();
6582 }
6583 if (has_branch_stack(event))
6584 static_key_slow_inc(&perf_sched_events.key);
6585 if (is_cgroup_event(event))
6586 static_key_slow_inc(&perf_sched_events.key);
6587
6588 account_event_cpu(event, event->cpu);
6589 }
6590
6591 /*
6592 * Allocate and initialize a event structure
6593 */
6594 static struct perf_event *
6595 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6596 struct task_struct *task,
6597 struct perf_event *group_leader,
6598 struct perf_event *parent_event,
6599 perf_overflow_handler_t overflow_handler,
6600 void *context)
6601 {
6602 struct pmu *pmu;
6603 struct perf_event *event;
6604 struct hw_perf_event *hwc;
6605 long err = -EINVAL;
6606
6607 if ((unsigned)cpu >= nr_cpu_ids) {
6608 if (!task || cpu != -1)
6609 return ERR_PTR(-EINVAL);
6610 }
6611
6612 event = kzalloc(sizeof(*event), GFP_KERNEL);
6613 if (!event)
6614 return ERR_PTR(-ENOMEM);
6615
6616 /*
6617 * Single events are their own group leaders, with an
6618 * empty sibling list:
6619 */
6620 if (!group_leader)
6621 group_leader = event;
6622
6623 mutex_init(&event->child_mutex);
6624 INIT_LIST_HEAD(&event->child_list);
6625
6626 INIT_LIST_HEAD(&event->group_entry);
6627 INIT_LIST_HEAD(&event->event_entry);
6628 INIT_LIST_HEAD(&event->sibling_list);
6629 INIT_LIST_HEAD(&event->rb_entry);
6630
6631 init_waitqueue_head(&event->waitq);
6632 init_irq_work(&event->pending, perf_pending_event);
6633
6634 mutex_init(&event->mmap_mutex);
6635
6636 atomic_long_set(&event->refcount, 1);
6637 event->cpu = cpu;
6638 event->attr = *attr;
6639 event->group_leader = group_leader;
6640 event->pmu = NULL;
6641 event->oncpu = -1;
6642
6643 event->parent = parent_event;
6644
6645 event->ns = get_pid_ns(task_active_pid_ns(current));
6646 event->id = atomic64_inc_return(&perf_event_id);
6647
6648 event->state = PERF_EVENT_STATE_INACTIVE;
6649
6650 if (task) {
6651 event->attach_state = PERF_ATTACH_TASK;
6652
6653 if (attr->type == PERF_TYPE_TRACEPOINT)
6654 event->hw.tp_target = task;
6655 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6656 /*
6657 * hw_breakpoint is a bit difficult here..
6658 */
6659 else if (attr->type == PERF_TYPE_BREAKPOINT)
6660 event->hw.bp_target = task;
6661 #endif
6662 }
6663
6664 if (!overflow_handler && parent_event) {
6665 overflow_handler = parent_event->overflow_handler;
6666 context = parent_event->overflow_handler_context;
6667 }
6668
6669 event->overflow_handler = overflow_handler;
6670 event->overflow_handler_context = context;
6671
6672 perf_event__state_init(event);
6673
6674 pmu = NULL;
6675
6676 hwc = &event->hw;
6677 hwc->sample_period = attr->sample_period;
6678 if (attr->freq && attr->sample_freq)
6679 hwc->sample_period = 1;
6680 hwc->last_period = hwc->sample_period;
6681
6682 local64_set(&hwc->period_left, hwc->sample_period);
6683
6684 /*
6685 * we currently do not support PERF_FORMAT_GROUP on inherited events
6686 */
6687 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6688 goto err_ns;
6689
6690 pmu = perf_init_event(event);
6691 if (!pmu)
6692 goto err_ns;
6693 else if (IS_ERR(pmu)) {
6694 err = PTR_ERR(pmu);
6695 goto err_ns;
6696 }
6697
6698 if (!event->parent) {
6699 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6700 err = get_callchain_buffers();
6701 if (err)
6702 goto err_pmu;
6703 }
6704 }
6705
6706 return event;
6707
6708 err_pmu:
6709 if (event->destroy)
6710 event->destroy(event);
6711 err_ns:
6712 if (event->ns)
6713 put_pid_ns(event->ns);
6714 kfree(event);
6715
6716 return ERR_PTR(err);
6717 }
6718
6719 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6720 struct perf_event_attr *attr)
6721 {
6722 u32 size;
6723 int ret;
6724
6725 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6726 return -EFAULT;
6727
6728 /*
6729 * zero the full structure, so that a short copy will be nice.
6730 */
6731 memset(attr, 0, sizeof(*attr));
6732
6733 ret = get_user(size, &uattr->size);
6734 if (ret)
6735 return ret;
6736
6737 if (size > PAGE_SIZE) /* silly large */
6738 goto err_size;
6739
6740 if (!size) /* abi compat */
6741 size = PERF_ATTR_SIZE_VER0;
6742
6743 if (size < PERF_ATTR_SIZE_VER0)
6744 goto err_size;
6745
6746 /*
6747 * If we're handed a bigger struct than we know of,
6748 * ensure all the unknown bits are 0 - i.e. new
6749 * user-space does not rely on any kernel feature
6750 * extensions we dont know about yet.
6751 */
6752 if (size > sizeof(*attr)) {
6753 unsigned char __user *addr;
6754 unsigned char __user *end;
6755 unsigned char val;
6756
6757 addr = (void __user *)uattr + sizeof(*attr);
6758 end = (void __user *)uattr + size;
6759
6760 for (; addr < end; addr++) {
6761 ret = get_user(val, addr);
6762 if (ret)
6763 return ret;
6764 if (val)
6765 goto err_size;
6766 }
6767 size = sizeof(*attr);
6768 }
6769
6770 ret = copy_from_user(attr, uattr, size);
6771 if (ret)
6772 return -EFAULT;
6773
6774 /* disabled for now */
6775 if (attr->mmap2)
6776 return -EINVAL;
6777
6778 if (attr->__reserved_1)
6779 return -EINVAL;
6780
6781 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6782 return -EINVAL;
6783
6784 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6785 return -EINVAL;
6786
6787 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6788 u64 mask = attr->branch_sample_type;
6789
6790 /* only using defined bits */
6791 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6792 return -EINVAL;
6793
6794 /* at least one branch bit must be set */
6795 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6796 return -EINVAL;
6797
6798 /* propagate priv level, when not set for branch */
6799 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6800
6801 /* exclude_kernel checked on syscall entry */
6802 if (!attr->exclude_kernel)
6803 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6804
6805 if (!attr->exclude_user)
6806 mask |= PERF_SAMPLE_BRANCH_USER;
6807
6808 if (!attr->exclude_hv)
6809 mask |= PERF_SAMPLE_BRANCH_HV;
6810 /*
6811 * adjust user setting (for HW filter setup)
6812 */
6813 attr->branch_sample_type = mask;
6814 }
6815 /* privileged levels capture (kernel, hv): check permissions */
6816 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6817 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6818 return -EACCES;
6819 }
6820
6821 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6822 ret = perf_reg_validate(attr->sample_regs_user);
6823 if (ret)
6824 return ret;
6825 }
6826
6827 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6828 if (!arch_perf_have_user_stack_dump())
6829 return -ENOSYS;
6830
6831 /*
6832 * We have __u32 type for the size, but so far
6833 * we can only use __u16 as maximum due to the
6834 * __u16 sample size limit.
6835 */
6836 if (attr->sample_stack_user >= USHRT_MAX)
6837 ret = -EINVAL;
6838 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6839 ret = -EINVAL;
6840 }
6841
6842 out:
6843 return ret;
6844
6845 err_size:
6846 put_user(sizeof(*attr), &uattr->size);
6847 ret = -E2BIG;
6848 goto out;
6849 }
6850
6851 static int
6852 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6853 {
6854 struct ring_buffer *rb = NULL, *old_rb = NULL;
6855 int ret = -EINVAL;
6856
6857 if (!output_event)
6858 goto set;
6859
6860 /* don't allow circular references */
6861 if (event == output_event)
6862 goto out;
6863
6864 /*
6865 * Don't allow cross-cpu buffers
6866 */
6867 if (output_event->cpu != event->cpu)
6868 goto out;
6869
6870 /*
6871 * If its not a per-cpu rb, it must be the same task.
6872 */
6873 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6874 goto out;
6875
6876 set:
6877 mutex_lock(&event->mmap_mutex);
6878 /* Can't redirect output if we've got an active mmap() */
6879 if (atomic_read(&event->mmap_count))
6880 goto unlock;
6881
6882 old_rb = event->rb;
6883
6884 if (output_event) {
6885 /* get the rb we want to redirect to */
6886 rb = ring_buffer_get(output_event);
6887 if (!rb)
6888 goto unlock;
6889 }
6890
6891 if (old_rb)
6892 ring_buffer_detach(event, old_rb);
6893
6894 if (rb)
6895 ring_buffer_attach(event, rb);
6896
6897 rcu_assign_pointer(event->rb, rb);
6898
6899 if (old_rb) {
6900 ring_buffer_put(old_rb);
6901 /*
6902 * Since we detached before setting the new rb, so that we
6903 * could attach the new rb, we could have missed a wakeup.
6904 * Provide it now.
6905 */
6906 wake_up_all(&event->waitq);
6907 }
6908
6909 ret = 0;
6910 unlock:
6911 mutex_unlock(&event->mmap_mutex);
6912
6913 out:
6914 return ret;
6915 }
6916
6917 /**
6918 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6919 *
6920 * @attr_uptr: event_id type attributes for monitoring/sampling
6921 * @pid: target pid
6922 * @cpu: target cpu
6923 * @group_fd: group leader event fd
6924 */
6925 SYSCALL_DEFINE5(perf_event_open,
6926 struct perf_event_attr __user *, attr_uptr,
6927 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6928 {
6929 struct perf_event *group_leader = NULL, *output_event = NULL;
6930 struct perf_event *event, *sibling;
6931 struct perf_event_attr attr;
6932 struct perf_event_context *ctx;
6933 struct file *event_file = NULL;
6934 struct fd group = {NULL, 0};
6935 struct task_struct *task = NULL;
6936 struct pmu *pmu;
6937 int event_fd;
6938 int move_group = 0;
6939 int err;
6940
6941 /* for future expandability... */
6942 if (flags & ~PERF_FLAG_ALL)
6943 return -EINVAL;
6944
6945 err = perf_copy_attr(attr_uptr, &attr);
6946 if (err)
6947 return err;
6948
6949 if (!attr.exclude_kernel) {
6950 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6951 return -EACCES;
6952 }
6953
6954 if (attr.freq) {
6955 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6956 return -EINVAL;
6957 }
6958
6959 /*
6960 * In cgroup mode, the pid argument is used to pass the fd
6961 * opened to the cgroup directory in cgroupfs. The cpu argument
6962 * designates the cpu on which to monitor threads from that
6963 * cgroup.
6964 */
6965 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6966 return -EINVAL;
6967
6968 event_fd = get_unused_fd();
6969 if (event_fd < 0)
6970 return event_fd;
6971
6972 if (group_fd != -1) {
6973 err = perf_fget_light(group_fd, &group);
6974 if (err)
6975 goto err_fd;
6976 group_leader = group.file->private_data;
6977 if (flags & PERF_FLAG_FD_OUTPUT)
6978 output_event = group_leader;
6979 if (flags & PERF_FLAG_FD_NO_GROUP)
6980 group_leader = NULL;
6981 }
6982
6983 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6984 task = find_lively_task_by_vpid(pid);
6985 if (IS_ERR(task)) {
6986 err = PTR_ERR(task);
6987 goto err_group_fd;
6988 }
6989 }
6990
6991 get_online_cpus();
6992
6993 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6994 NULL, NULL);
6995 if (IS_ERR(event)) {
6996 err = PTR_ERR(event);
6997 goto err_task;
6998 }
6999
7000 if (flags & PERF_FLAG_PID_CGROUP) {
7001 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7002 if (err) {
7003 __free_event(event);
7004 goto err_task;
7005 }
7006 }
7007
7008 account_event(event);
7009
7010 /*
7011 * Special case software events and allow them to be part of
7012 * any hardware group.
7013 */
7014 pmu = event->pmu;
7015
7016 if (group_leader &&
7017 (is_software_event(event) != is_software_event(group_leader))) {
7018 if (is_software_event(event)) {
7019 /*
7020 * If event and group_leader are not both a software
7021 * event, and event is, then group leader is not.
7022 *
7023 * Allow the addition of software events to !software
7024 * groups, this is safe because software events never
7025 * fail to schedule.
7026 */
7027 pmu = group_leader->pmu;
7028 } else if (is_software_event(group_leader) &&
7029 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7030 /*
7031 * In case the group is a pure software group, and we
7032 * try to add a hardware event, move the whole group to
7033 * the hardware context.
7034 */
7035 move_group = 1;
7036 }
7037 }
7038
7039 /*
7040 * Get the target context (task or percpu):
7041 */
7042 ctx = find_get_context(pmu, task, event->cpu);
7043 if (IS_ERR(ctx)) {
7044 err = PTR_ERR(ctx);
7045 goto err_alloc;
7046 }
7047
7048 if (task) {
7049 put_task_struct(task);
7050 task = NULL;
7051 }
7052
7053 /*
7054 * Look up the group leader (we will attach this event to it):
7055 */
7056 if (group_leader) {
7057 err = -EINVAL;
7058
7059 /*
7060 * Do not allow a recursive hierarchy (this new sibling
7061 * becoming part of another group-sibling):
7062 */
7063 if (group_leader->group_leader != group_leader)
7064 goto err_context;
7065 /*
7066 * Do not allow to attach to a group in a different
7067 * task or CPU context:
7068 */
7069 if (move_group) {
7070 if (group_leader->ctx->type != ctx->type)
7071 goto err_context;
7072 } else {
7073 if (group_leader->ctx != ctx)
7074 goto err_context;
7075 }
7076
7077 /*
7078 * Only a group leader can be exclusive or pinned
7079 */
7080 if (attr.exclusive || attr.pinned)
7081 goto err_context;
7082 }
7083
7084 if (output_event) {
7085 err = perf_event_set_output(event, output_event);
7086 if (err)
7087 goto err_context;
7088 }
7089
7090 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7091 if (IS_ERR(event_file)) {
7092 err = PTR_ERR(event_file);
7093 goto err_context;
7094 }
7095
7096 if (move_group) {
7097 struct perf_event_context *gctx = group_leader->ctx;
7098
7099 mutex_lock(&gctx->mutex);
7100 perf_remove_from_context(group_leader);
7101
7102 /*
7103 * Removing from the context ends up with disabled
7104 * event. What we want here is event in the initial
7105 * startup state, ready to be add into new context.
7106 */
7107 perf_event__state_init(group_leader);
7108 list_for_each_entry(sibling, &group_leader->sibling_list,
7109 group_entry) {
7110 perf_remove_from_context(sibling);
7111 perf_event__state_init(sibling);
7112 put_ctx(gctx);
7113 }
7114 mutex_unlock(&gctx->mutex);
7115 put_ctx(gctx);
7116 }
7117
7118 WARN_ON_ONCE(ctx->parent_ctx);
7119 mutex_lock(&ctx->mutex);
7120
7121 if (move_group) {
7122 synchronize_rcu();
7123 perf_install_in_context(ctx, group_leader, event->cpu);
7124 get_ctx(ctx);
7125 list_for_each_entry(sibling, &group_leader->sibling_list,
7126 group_entry) {
7127 perf_install_in_context(ctx, sibling, event->cpu);
7128 get_ctx(ctx);
7129 }
7130 }
7131
7132 perf_install_in_context(ctx, event, event->cpu);
7133 ++ctx->generation;
7134 perf_unpin_context(ctx);
7135 mutex_unlock(&ctx->mutex);
7136
7137 put_online_cpus();
7138
7139 event->owner = current;
7140
7141 mutex_lock(&current->perf_event_mutex);
7142 list_add_tail(&event->owner_entry, &current->perf_event_list);
7143 mutex_unlock(&current->perf_event_mutex);
7144
7145 /*
7146 * Precalculate sample_data sizes
7147 */
7148 perf_event__header_size(event);
7149 perf_event__id_header_size(event);
7150
7151 /*
7152 * Drop the reference on the group_event after placing the
7153 * new event on the sibling_list. This ensures destruction
7154 * of the group leader will find the pointer to itself in
7155 * perf_group_detach().
7156 */
7157 fdput(group);
7158 fd_install(event_fd, event_file);
7159 return event_fd;
7160
7161 err_context:
7162 perf_unpin_context(ctx);
7163 put_ctx(ctx);
7164 err_alloc:
7165 free_event(event);
7166 err_task:
7167 put_online_cpus();
7168 if (task)
7169 put_task_struct(task);
7170 err_group_fd:
7171 fdput(group);
7172 err_fd:
7173 put_unused_fd(event_fd);
7174 return err;
7175 }
7176
7177 /**
7178 * perf_event_create_kernel_counter
7179 *
7180 * @attr: attributes of the counter to create
7181 * @cpu: cpu in which the counter is bound
7182 * @task: task to profile (NULL for percpu)
7183 */
7184 struct perf_event *
7185 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7186 struct task_struct *task,
7187 perf_overflow_handler_t overflow_handler,
7188 void *context)
7189 {
7190 struct perf_event_context *ctx;
7191 struct perf_event *event;
7192 int err;
7193
7194 /*
7195 * Get the target context (task or percpu):
7196 */
7197
7198 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7199 overflow_handler, context);
7200 if (IS_ERR(event)) {
7201 err = PTR_ERR(event);
7202 goto err;
7203 }
7204
7205 account_event(event);
7206
7207 ctx = find_get_context(event->pmu, task, cpu);
7208 if (IS_ERR(ctx)) {
7209 err = PTR_ERR(ctx);
7210 goto err_free;
7211 }
7212
7213 WARN_ON_ONCE(ctx->parent_ctx);
7214 mutex_lock(&ctx->mutex);
7215 perf_install_in_context(ctx, event, cpu);
7216 ++ctx->generation;
7217 perf_unpin_context(ctx);
7218 mutex_unlock(&ctx->mutex);
7219
7220 return event;
7221
7222 err_free:
7223 free_event(event);
7224 err:
7225 return ERR_PTR(err);
7226 }
7227 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7228
7229 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7230 {
7231 struct perf_event_context *src_ctx;
7232 struct perf_event_context *dst_ctx;
7233 struct perf_event *event, *tmp;
7234 LIST_HEAD(events);
7235
7236 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7237 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7238
7239 mutex_lock(&src_ctx->mutex);
7240 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7241 event_entry) {
7242 perf_remove_from_context(event);
7243 unaccount_event_cpu(event, src_cpu);
7244 put_ctx(src_ctx);
7245 list_add(&event->migrate_entry, &events);
7246 }
7247 mutex_unlock(&src_ctx->mutex);
7248
7249 synchronize_rcu();
7250
7251 mutex_lock(&dst_ctx->mutex);
7252 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7253 list_del(&event->migrate_entry);
7254 if (event->state >= PERF_EVENT_STATE_OFF)
7255 event->state = PERF_EVENT_STATE_INACTIVE;
7256 account_event_cpu(event, dst_cpu);
7257 perf_install_in_context(dst_ctx, event, dst_cpu);
7258 get_ctx(dst_ctx);
7259 }
7260 mutex_unlock(&dst_ctx->mutex);
7261 }
7262 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7263
7264 static void sync_child_event(struct perf_event *child_event,
7265 struct task_struct *child)
7266 {
7267 struct perf_event *parent_event = child_event->parent;
7268 u64 child_val;
7269
7270 if (child_event->attr.inherit_stat)
7271 perf_event_read_event(child_event, child);
7272
7273 child_val = perf_event_count(child_event);
7274
7275 /*
7276 * Add back the child's count to the parent's count:
7277 */
7278 atomic64_add(child_val, &parent_event->child_count);
7279 atomic64_add(child_event->total_time_enabled,
7280 &parent_event->child_total_time_enabled);
7281 atomic64_add(child_event->total_time_running,
7282 &parent_event->child_total_time_running);
7283
7284 /*
7285 * Remove this event from the parent's list
7286 */
7287 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7288 mutex_lock(&parent_event->child_mutex);
7289 list_del_init(&child_event->child_list);
7290 mutex_unlock(&parent_event->child_mutex);
7291
7292 /*
7293 * Release the parent event, if this was the last
7294 * reference to it.
7295 */
7296 put_event(parent_event);
7297 }
7298
7299 static void
7300 __perf_event_exit_task(struct perf_event *child_event,
7301 struct perf_event_context *child_ctx,
7302 struct task_struct *child)
7303 {
7304 if (child_event->parent) {
7305 raw_spin_lock_irq(&child_ctx->lock);
7306 perf_group_detach(child_event);
7307 raw_spin_unlock_irq(&child_ctx->lock);
7308 }
7309
7310 perf_remove_from_context(child_event);
7311
7312 /*
7313 * It can happen that the parent exits first, and has events
7314 * that are still around due to the child reference. These
7315 * events need to be zapped.
7316 */
7317 if (child_event->parent) {
7318 sync_child_event(child_event, child);
7319 free_event(child_event);
7320 }
7321 }
7322
7323 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7324 {
7325 struct perf_event *child_event, *tmp;
7326 struct perf_event_context *child_ctx;
7327 unsigned long flags;
7328
7329 if (likely(!child->perf_event_ctxp[ctxn])) {
7330 perf_event_task(child, NULL, 0);
7331 return;
7332 }
7333
7334 local_irq_save(flags);
7335 /*
7336 * We can't reschedule here because interrupts are disabled,
7337 * and either child is current or it is a task that can't be
7338 * scheduled, so we are now safe from rescheduling changing
7339 * our context.
7340 */
7341 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7342
7343 /*
7344 * Take the context lock here so that if find_get_context is
7345 * reading child->perf_event_ctxp, we wait until it has
7346 * incremented the context's refcount before we do put_ctx below.
7347 */
7348 raw_spin_lock(&child_ctx->lock);
7349 task_ctx_sched_out(child_ctx);
7350 child->perf_event_ctxp[ctxn] = NULL;
7351 /*
7352 * If this context is a clone; unclone it so it can't get
7353 * swapped to another process while we're removing all
7354 * the events from it.
7355 */
7356 unclone_ctx(child_ctx);
7357 update_context_time(child_ctx);
7358 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7359
7360 /*
7361 * Report the task dead after unscheduling the events so that we
7362 * won't get any samples after PERF_RECORD_EXIT. We can however still
7363 * get a few PERF_RECORD_READ events.
7364 */
7365 perf_event_task(child, child_ctx, 0);
7366
7367 /*
7368 * We can recurse on the same lock type through:
7369 *
7370 * __perf_event_exit_task()
7371 * sync_child_event()
7372 * put_event()
7373 * mutex_lock(&ctx->mutex)
7374 *
7375 * But since its the parent context it won't be the same instance.
7376 */
7377 mutex_lock(&child_ctx->mutex);
7378
7379 again:
7380 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7381 group_entry)
7382 __perf_event_exit_task(child_event, child_ctx, child);
7383
7384 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7385 group_entry)
7386 __perf_event_exit_task(child_event, child_ctx, child);
7387
7388 /*
7389 * If the last event was a group event, it will have appended all
7390 * its siblings to the list, but we obtained 'tmp' before that which
7391 * will still point to the list head terminating the iteration.
7392 */
7393 if (!list_empty(&child_ctx->pinned_groups) ||
7394 !list_empty(&child_ctx->flexible_groups))
7395 goto again;
7396
7397 mutex_unlock(&child_ctx->mutex);
7398
7399 put_ctx(child_ctx);
7400 }
7401
7402 /*
7403 * When a child task exits, feed back event values to parent events.
7404 */
7405 void perf_event_exit_task(struct task_struct *child)
7406 {
7407 struct perf_event *event, *tmp;
7408 int ctxn;
7409
7410 mutex_lock(&child->perf_event_mutex);
7411 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7412 owner_entry) {
7413 list_del_init(&event->owner_entry);
7414
7415 /*
7416 * Ensure the list deletion is visible before we clear
7417 * the owner, closes a race against perf_release() where
7418 * we need to serialize on the owner->perf_event_mutex.
7419 */
7420 smp_wmb();
7421 event->owner = NULL;
7422 }
7423 mutex_unlock(&child->perf_event_mutex);
7424
7425 for_each_task_context_nr(ctxn)
7426 perf_event_exit_task_context(child, ctxn);
7427 }
7428
7429 static void perf_free_event(struct perf_event *event,
7430 struct perf_event_context *ctx)
7431 {
7432 struct perf_event *parent = event->parent;
7433
7434 if (WARN_ON_ONCE(!parent))
7435 return;
7436
7437 mutex_lock(&parent->child_mutex);
7438 list_del_init(&event->child_list);
7439 mutex_unlock(&parent->child_mutex);
7440
7441 put_event(parent);
7442
7443 perf_group_detach(event);
7444 list_del_event(event, ctx);
7445 free_event(event);
7446 }
7447
7448 /*
7449 * free an unexposed, unused context as created by inheritance by
7450 * perf_event_init_task below, used by fork() in case of fail.
7451 */
7452 void perf_event_free_task(struct task_struct *task)
7453 {
7454 struct perf_event_context *ctx;
7455 struct perf_event *event, *tmp;
7456 int ctxn;
7457
7458 for_each_task_context_nr(ctxn) {
7459 ctx = task->perf_event_ctxp[ctxn];
7460 if (!ctx)
7461 continue;
7462
7463 mutex_lock(&ctx->mutex);
7464 again:
7465 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7466 group_entry)
7467 perf_free_event(event, ctx);
7468
7469 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7470 group_entry)
7471 perf_free_event(event, ctx);
7472
7473 if (!list_empty(&ctx->pinned_groups) ||
7474 !list_empty(&ctx->flexible_groups))
7475 goto again;
7476
7477 mutex_unlock(&ctx->mutex);
7478
7479 put_ctx(ctx);
7480 }
7481 }
7482
7483 void perf_event_delayed_put(struct task_struct *task)
7484 {
7485 int ctxn;
7486
7487 for_each_task_context_nr(ctxn)
7488 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7489 }
7490
7491 /*
7492 * inherit a event from parent task to child task:
7493 */
7494 static struct perf_event *
7495 inherit_event(struct perf_event *parent_event,
7496 struct task_struct *parent,
7497 struct perf_event_context *parent_ctx,
7498 struct task_struct *child,
7499 struct perf_event *group_leader,
7500 struct perf_event_context *child_ctx)
7501 {
7502 struct perf_event *child_event;
7503 unsigned long flags;
7504
7505 /*
7506 * Instead of creating recursive hierarchies of events,
7507 * we link inherited events back to the original parent,
7508 * which has a filp for sure, which we use as the reference
7509 * count:
7510 */
7511 if (parent_event->parent)
7512 parent_event = parent_event->parent;
7513
7514 child_event = perf_event_alloc(&parent_event->attr,
7515 parent_event->cpu,
7516 child,
7517 group_leader, parent_event,
7518 NULL, NULL);
7519 if (IS_ERR(child_event))
7520 return child_event;
7521
7522 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7523 free_event(child_event);
7524 return NULL;
7525 }
7526
7527 get_ctx(child_ctx);
7528
7529 /*
7530 * Make the child state follow the state of the parent event,
7531 * not its attr.disabled bit. We hold the parent's mutex,
7532 * so we won't race with perf_event_{en, dis}able_family.
7533 */
7534 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7535 child_event->state = PERF_EVENT_STATE_INACTIVE;
7536 else
7537 child_event->state = PERF_EVENT_STATE_OFF;
7538
7539 if (parent_event->attr.freq) {
7540 u64 sample_period = parent_event->hw.sample_period;
7541 struct hw_perf_event *hwc = &child_event->hw;
7542
7543 hwc->sample_period = sample_period;
7544 hwc->last_period = sample_period;
7545
7546 local64_set(&hwc->period_left, sample_period);
7547 }
7548
7549 child_event->ctx = child_ctx;
7550 child_event->overflow_handler = parent_event->overflow_handler;
7551 child_event->overflow_handler_context
7552 = parent_event->overflow_handler_context;
7553
7554 /*
7555 * Precalculate sample_data sizes
7556 */
7557 perf_event__header_size(child_event);
7558 perf_event__id_header_size(child_event);
7559
7560 /*
7561 * Link it up in the child's context:
7562 */
7563 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7564 add_event_to_ctx(child_event, child_ctx);
7565 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7566
7567 /*
7568 * Link this into the parent event's child list
7569 */
7570 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7571 mutex_lock(&parent_event->child_mutex);
7572 list_add_tail(&child_event->child_list, &parent_event->child_list);
7573 mutex_unlock(&parent_event->child_mutex);
7574
7575 return child_event;
7576 }
7577
7578 static int inherit_group(struct perf_event *parent_event,
7579 struct task_struct *parent,
7580 struct perf_event_context *parent_ctx,
7581 struct task_struct *child,
7582 struct perf_event_context *child_ctx)
7583 {
7584 struct perf_event *leader;
7585 struct perf_event *sub;
7586 struct perf_event *child_ctr;
7587
7588 leader = inherit_event(parent_event, parent, parent_ctx,
7589 child, NULL, child_ctx);
7590 if (IS_ERR(leader))
7591 return PTR_ERR(leader);
7592 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7593 child_ctr = inherit_event(sub, parent, parent_ctx,
7594 child, leader, child_ctx);
7595 if (IS_ERR(child_ctr))
7596 return PTR_ERR(child_ctr);
7597 }
7598 return 0;
7599 }
7600
7601 static int
7602 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7603 struct perf_event_context *parent_ctx,
7604 struct task_struct *child, int ctxn,
7605 int *inherited_all)
7606 {
7607 int ret;
7608 struct perf_event_context *child_ctx;
7609
7610 if (!event->attr.inherit) {
7611 *inherited_all = 0;
7612 return 0;
7613 }
7614
7615 child_ctx = child->perf_event_ctxp[ctxn];
7616 if (!child_ctx) {
7617 /*
7618 * This is executed from the parent task context, so
7619 * inherit events that have been marked for cloning.
7620 * First allocate and initialize a context for the
7621 * child.
7622 */
7623
7624 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7625 if (!child_ctx)
7626 return -ENOMEM;
7627
7628 child->perf_event_ctxp[ctxn] = child_ctx;
7629 }
7630
7631 ret = inherit_group(event, parent, parent_ctx,
7632 child, child_ctx);
7633
7634 if (ret)
7635 *inherited_all = 0;
7636
7637 return ret;
7638 }
7639
7640 /*
7641 * Initialize the perf_event context in task_struct
7642 */
7643 int perf_event_init_context(struct task_struct *child, int ctxn)
7644 {
7645 struct perf_event_context *child_ctx, *parent_ctx;
7646 struct perf_event_context *cloned_ctx;
7647 struct perf_event *event;
7648 struct task_struct *parent = current;
7649 int inherited_all = 1;
7650 unsigned long flags;
7651 int ret = 0;
7652
7653 if (likely(!parent->perf_event_ctxp[ctxn]))
7654 return 0;
7655
7656 /*
7657 * If the parent's context is a clone, pin it so it won't get
7658 * swapped under us.
7659 */
7660 parent_ctx = perf_pin_task_context(parent, ctxn);
7661
7662 /*
7663 * No need to check if parent_ctx != NULL here; since we saw
7664 * it non-NULL earlier, the only reason for it to become NULL
7665 * is if we exit, and since we're currently in the middle of
7666 * a fork we can't be exiting at the same time.
7667 */
7668
7669 /*
7670 * Lock the parent list. No need to lock the child - not PID
7671 * hashed yet and not running, so nobody can access it.
7672 */
7673 mutex_lock(&parent_ctx->mutex);
7674
7675 /*
7676 * We dont have to disable NMIs - we are only looking at
7677 * the list, not manipulating it:
7678 */
7679 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7680 ret = inherit_task_group(event, parent, parent_ctx,
7681 child, ctxn, &inherited_all);
7682 if (ret)
7683 break;
7684 }
7685
7686 /*
7687 * We can't hold ctx->lock when iterating the ->flexible_group list due
7688 * to allocations, but we need to prevent rotation because
7689 * rotate_ctx() will change the list from interrupt context.
7690 */
7691 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7692 parent_ctx->rotate_disable = 1;
7693 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7694
7695 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7696 ret = inherit_task_group(event, parent, parent_ctx,
7697 child, ctxn, &inherited_all);
7698 if (ret)
7699 break;
7700 }
7701
7702 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7703 parent_ctx->rotate_disable = 0;
7704
7705 child_ctx = child->perf_event_ctxp[ctxn];
7706
7707 if (child_ctx && inherited_all) {
7708 /*
7709 * Mark the child context as a clone of the parent
7710 * context, or of whatever the parent is a clone of.
7711 *
7712 * Note that if the parent is a clone, the holding of
7713 * parent_ctx->lock avoids it from being uncloned.
7714 */
7715 cloned_ctx = parent_ctx->parent_ctx;
7716 if (cloned_ctx) {
7717 child_ctx->parent_ctx = cloned_ctx;
7718 child_ctx->parent_gen = parent_ctx->parent_gen;
7719 } else {
7720 child_ctx->parent_ctx = parent_ctx;
7721 child_ctx->parent_gen = parent_ctx->generation;
7722 }
7723 get_ctx(child_ctx->parent_ctx);
7724 }
7725
7726 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7727 mutex_unlock(&parent_ctx->mutex);
7728
7729 perf_unpin_context(parent_ctx);
7730 put_ctx(parent_ctx);
7731
7732 return ret;
7733 }
7734
7735 /*
7736 * Initialize the perf_event context in task_struct
7737 */
7738 int perf_event_init_task(struct task_struct *child)
7739 {
7740 int ctxn, ret;
7741
7742 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7743 mutex_init(&child->perf_event_mutex);
7744 INIT_LIST_HEAD(&child->perf_event_list);
7745
7746 for_each_task_context_nr(ctxn) {
7747 ret = perf_event_init_context(child, ctxn);
7748 if (ret)
7749 return ret;
7750 }
7751
7752 return 0;
7753 }
7754
7755 static void __init perf_event_init_all_cpus(void)
7756 {
7757 struct swevent_htable *swhash;
7758 int cpu;
7759
7760 for_each_possible_cpu(cpu) {
7761 swhash = &per_cpu(swevent_htable, cpu);
7762 mutex_init(&swhash->hlist_mutex);
7763 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7764 }
7765 }
7766
7767 static void perf_event_init_cpu(int cpu)
7768 {
7769 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7770
7771 mutex_lock(&swhash->hlist_mutex);
7772 if (swhash->hlist_refcount > 0) {
7773 struct swevent_hlist *hlist;
7774
7775 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7776 WARN_ON(!hlist);
7777 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7778 }
7779 mutex_unlock(&swhash->hlist_mutex);
7780 }
7781
7782 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7783 static void perf_pmu_rotate_stop(struct pmu *pmu)
7784 {
7785 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7786
7787 WARN_ON(!irqs_disabled());
7788
7789 list_del_init(&cpuctx->rotation_list);
7790 }
7791
7792 static void __perf_event_exit_context(void *__info)
7793 {
7794 struct perf_event_context *ctx = __info;
7795 struct perf_event *event, *tmp;
7796
7797 perf_pmu_rotate_stop(ctx->pmu);
7798
7799 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7800 __perf_remove_from_context(event);
7801 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7802 __perf_remove_from_context(event);
7803 }
7804
7805 static void perf_event_exit_cpu_context(int cpu)
7806 {
7807 struct perf_event_context *ctx;
7808 struct pmu *pmu;
7809 int idx;
7810
7811 idx = srcu_read_lock(&pmus_srcu);
7812 list_for_each_entry_rcu(pmu, &pmus, entry) {
7813 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7814
7815 mutex_lock(&ctx->mutex);
7816 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7817 mutex_unlock(&ctx->mutex);
7818 }
7819 srcu_read_unlock(&pmus_srcu, idx);
7820 }
7821
7822 static void perf_event_exit_cpu(int cpu)
7823 {
7824 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7825
7826 mutex_lock(&swhash->hlist_mutex);
7827 swevent_hlist_release(swhash);
7828 mutex_unlock(&swhash->hlist_mutex);
7829
7830 perf_event_exit_cpu_context(cpu);
7831 }
7832 #else
7833 static inline void perf_event_exit_cpu(int cpu) { }
7834 #endif
7835
7836 static int
7837 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7838 {
7839 int cpu;
7840
7841 for_each_online_cpu(cpu)
7842 perf_event_exit_cpu(cpu);
7843
7844 return NOTIFY_OK;
7845 }
7846
7847 /*
7848 * Run the perf reboot notifier at the very last possible moment so that
7849 * the generic watchdog code runs as long as possible.
7850 */
7851 static struct notifier_block perf_reboot_notifier = {
7852 .notifier_call = perf_reboot,
7853 .priority = INT_MIN,
7854 };
7855
7856 static int
7857 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7858 {
7859 unsigned int cpu = (long)hcpu;
7860
7861 switch (action & ~CPU_TASKS_FROZEN) {
7862
7863 case CPU_UP_PREPARE:
7864 case CPU_DOWN_FAILED:
7865 perf_event_init_cpu(cpu);
7866 break;
7867
7868 case CPU_UP_CANCELED:
7869 case CPU_DOWN_PREPARE:
7870 perf_event_exit_cpu(cpu);
7871 break;
7872 default:
7873 break;
7874 }
7875
7876 return NOTIFY_OK;
7877 }
7878
7879 void __init perf_event_init(void)
7880 {
7881 int ret;
7882
7883 idr_init(&pmu_idr);
7884
7885 perf_event_init_all_cpus();
7886 init_srcu_struct(&pmus_srcu);
7887 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7888 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7889 perf_pmu_register(&perf_task_clock, NULL, -1);
7890 perf_tp_register();
7891 perf_cpu_notifier(perf_cpu_notify);
7892 register_reboot_notifier(&perf_reboot_notifier);
7893
7894 ret = init_hw_breakpoint();
7895 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7896
7897 /* do not patch jump label more than once per second */
7898 jump_label_rate_limit(&perf_sched_events, HZ);
7899
7900 /*
7901 * Build time assertion that we keep the data_head at the intended
7902 * location. IOW, validation we got the __reserved[] size right.
7903 */
7904 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7905 != 1024);
7906 }
7907
7908 static int __init perf_event_sysfs_init(void)
7909 {
7910 struct pmu *pmu;
7911 int ret;
7912
7913 mutex_lock(&pmus_lock);
7914
7915 ret = bus_register(&pmu_bus);
7916 if (ret)
7917 goto unlock;
7918
7919 list_for_each_entry(pmu, &pmus, entry) {
7920 if (!pmu->name || pmu->type < 0)
7921 continue;
7922
7923 ret = pmu_dev_alloc(pmu);
7924 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7925 }
7926 pmu_bus_running = 1;
7927 ret = 0;
7928
7929 unlock:
7930 mutex_unlock(&pmus_lock);
7931
7932 return ret;
7933 }
7934 device_initcall(perf_event_sysfs_init);
7935
7936 #ifdef CONFIG_CGROUP_PERF
7937 static struct cgroup_subsys_state *
7938 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7939 {
7940 struct perf_cgroup *jc;
7941
7942 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7943 if (!jc)
7944 return ERR_PTR(-ENOMEM);
7945
7946 jc->info = alloc_percpu(struct perf_cgroup_info);
7947 if (!jc->info) {
7948 kfree(jc);
7949 return ERR_PTR(-ENOMEM);
7950 }
7951
7952 return &jc->css;
7953 }
7954
7955 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7956 {
7957 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7958
7959 free_percpu(jc->info);
7960 kfree(jc);
7961 }
7962
7963 static int __perf_cgroup_move(void *info)
7964 {
7965 struct task_struct *task = info;
7966 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7967 return 0;
7968 }
7969
7970 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7971 struct cgroup_taskset *tset)
7972 {
7973 struct task_struct *task;
7974
7975 cgroup_taskset_for_each(task, css, tset)
7976 task_function_call(task, __perf_cgroup_move, task);
7977 }
7978
7979 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
7980 struct cgroup_subsys_state *old_css,
7981 struct task_struct *task)
7982 {
7983 /*
7984 * cgroup_exit() is called in the copy_process() failure path.
7985 * Ignore this case since the task hasn't ran yet, this avoids
7986 * trying to poke a half freed task state from generic code.
7987 */
7988 if (!(task->flags & PF_EXITING))
7989 return;
7990
7991 task_function_call(task, __perf_cgroup_move, task);
7992 }
7993
7994 struct cgroup_subsys perf_subsys = {
7995 .name = "perf_event",
7996 .subsys_id = perf_subsys_id,
7997 .css_alloc = perf_cgroup_css_alloc,
7998 .css_free = perf_cgroup_css_free,
7999 .exit = perf_cgroup_exit,
8000 .attach = perf_cgroup_attach,
8001 };
8002 #endif /* CONFIG_CGROUP_PERF */